WO2011071025A1 - Container and process for producing container - Google Patents

Container and process for producing container Download PDF

Info

Publication number
WO2011071025A1
WO2011071025A1 PCT/JP2010/071850 JP2010071850W WO2011071025A1 WO 2011071025 A1 WO2011071025 A1 WO 2011071025A1 JP 2010071850 W JP2010071850 W JP 2010071850W WO 2011071025 A1 WO2011071025 A1 WO 2011071025A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer film
container
crystalline polymer
film
cavities
Prior art date
Application number
PCT/JP2010/071850
Other languages
French (fr)
Japanese (ja)
Inventor
清一 渡辺
徹 小倉
伸輔 高橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009277878A external-priority patent/JP2011116443A/en
Priority claimed from JP2009277882A external-priority patent/JP2011116444A/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011071025A1 publication Critical patent/WO2011071025A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/16Lining or labelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/34Coverings or external coatings
    • B65D25/36Coverings or external coatings formed by applying sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3865Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation drinking cups or like containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • B29C2049/2414Linings or labels, e.g. specific geometry, multi-layered or material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • B29C49/12Stretching rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • B29C49/2408In-mould lining or labelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/04Combined thermoforming and prestretching, e.g. biaxial stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/744Labels, badges, e.g. marker sleeves

Definitions

  • the present invention relates to a container in which a crystalline polymer film containing a cavity is wound around a side surface of the container, and a method for manufacturing the container.
  • containers plastic bottles, glass bottles, metal cans (hereinafter referred to as “containers”) have been developed. Films describing product information and the like are wound around the surfaces of these containers.
  • a part or all of the mouth, shoulder, trunk, etc. of the container is quickly covered or bound.
  • a contracted film hereinafter sometimes referred to as “shrink film”.
  • a packaging method using a shrink film for example, there is a method in which a tubular or bag-like film is primarily packaged with a slight margin, and then the film is contracted (shrinked) to the outer peripheral surface of the container by hot air, steam, or the like.
  • the film is wrapped in a certain degree of tension, the end of the film is folded into the bottom of the container, and the folded portion is primarily packaged by self-adhesion between the films or by heat-sealing, and is then subjected to a shrink treatment to prevent the film from loosening.
  • a method such as stretch shrink for removing wrinkles is known.
  • Shrink wrapping can fit any shape of container, such as square, round, gourd, etc., so the container shape can be selected widely.
  • the shrink film and the container are not directly bonded to each other, they can be completely separated from the container. For this reason, from the viewpoint of recycling, the demand for shrinkable film that can be separated from containers is expected to increase.
  • shrink wrapping a colorless shrink film or printed shrink film to add a function to display the product name, manufacturer name, contents, and design on the entire surface of these containers and the sealed part. Containers are also packaged.
  • a shrink film which added the light-shielding function by using a colored shrink film.
  • the entire container is also packaged.
  • a technique for imparting light shielding properties to the shrink film for example, a thin film layer of metal (such as aluminum) is laminated on the shrink film (see Patent Document 2), and a white ink layer containing an aluminum paste is laminated on the shrink film. (Refer to Patent Document 3), and a light-shielding pressure-sensitive adhesive containing titanium oxide is further laminated on a shrink film containing an ultraviolet absorber (refer to Patent Document 4).
  • the present shrink film has not been provided with a heat insulation necessary for improving the storage stability of the contents of the container.
  • One method is to reduce the amount of PET bottles (to reduce the amount of resin used). For example, in the case of a PET bottle, usually about 20 g of PET resin is used in a 500 mL container. If this amount can be reduced, even if the same 500 mL PET bottled beverage is manufactured, the energy required for processing the resin can be reduced, so that resources and energy can be saved. It is thought that energy can be saved even during recycling, and carbon dioxide emissions can be reduced.
  • the container is fragile, when a force is applied to the finger, the container easily deforms and the beverage inside spills out, or when the finger is loosened to suppress the deformation of the container There is a concern of dropping.
  • the open part of the cup-shaped container is sealed by heat sealing, fitted with a lid, and also provided with a rim around the opening to improve the mouth feel when touching the mouth and to prevent the beverage from spilling. In many cases, the strength of the opening is increased.
  • the holding method shown in FIG. 2 is often used when the container is held.
  • the force is relatively concentrated on the thumb portion, if the portion cannot withstand the applied force and is so soft that the shape cannot be maintained, the container cannot be held.
  • a force is applied to bend the container around the point supporting the container. The force concentrates on the arrow 3 (see FIG. 3). If the container is fragile, there is a concern that the container may be easily deformed to spill the beverage or the like, or the container cannot be held.
  • the open part of the container is sealed by heat sealing, the lid is fitted, and in order to improve the mouth feel when attached to the mouth and to prevent the beverage from spilling, a rim is provided around the opening to provide an opening.
  • the strength is improved.
  • the container body portion it is difficult to give a special shape from the viewpoints of ease of molding processing, cost reduction, label winding ease, and the like, which is one of the factors that make it difficult to promote thinning.
  • volume reduction volume reduction
  • JP-A-10-128837 Japanese Patent Laid-Open No. 2003-200965 Japanese Patent Laid-Open No. 2003-200966 JP 2007-83518 A
  • an object of the present invention is to provide a container that is excellent in strength, light-shielding property, and heat retention, can be easily compressed to reduce the volume, and is excellent in recyclability, and a method for producing the container. To do.
  • the present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is, ⁇ 1> A container formed by winding a crystalline polymer film, which is made of a polymer having crystallinity and contains an elongated cavity inside with the length direction oriented in the first direction. And In the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are the crystal from each center.
  • the distance h (i) to the surface of the conductive polymer film is calculated, and the arithmetic average value h (avg) of each calculated distance h (i) satisfies the relationship of the following formula (1): Container. h (avg)> T / 100 (1)
  • T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 ⁇ T apart.
  • ⁇ 2> The container according to ⁇ 1>, wherein a radius of curvature R of a corner portion on the side surface of the container is 1 mm or more.
  • ⁇ 3> The container according to any one of ⁇ 1> to ⁇ 2>, wherein the crystalline polymer film in the container has a thickness of 30 ⁇ m or more and 500 ⁇ m or less.
  • a ratio ((B / A) ⁇ 100) of the surface area (A) of the container and the area (B) of the crystalline polymer film in the container is 25% or more ⁇ 1> to ⁇ 3> It is a container in any one of.
  • ⁇ 5> The container according to any one of ⁇ 1> to ⁇ 4>, wherein the crystalline polymer film and the container are integrated.
  • ⁇ 6> The container according to ⁇ 1>, wherein the crystalline polymer film wound around the container is contracted.
  • ⁇ 7> The thermal contraction rate at 150 ° C. of the crystalline polymer film is 10% or more in the first direction and 5% or less in the second direction orthogonal to the first direction.
  • the container. ⁇ 8> The container according to any one of ⁇ 6> to ⁇ 7>, wherein the crystalline polymer film in the container has a thickness of 45 ⁇ m or more and 300 ⁇ m or less.
  • ⁇ 9> The ratio of the surface area (A) of the container to the area (B) of the crystalline polymer film in the container ((B / A) ⁇ 100) is 30% or more.
  • ⁇ 6> to ⁇ 8> It is a container in any one of.
  • ⁇ 10> The container according to any one of ⁇ 6> to ⁇ 9>, wherein a transmittance of the crystalline polymer film with respect to light having one wavelength selected from wavelengths of 300 nm to 780 nm is 10% or less.
  • ⁇ 11> consisting of a polymer having crystallinity, and placing a crystalline polymer film containing a long cavity inside thereof in a state in which the length direction is oriented in the first direction in a blow mold; Placing a preform in a blow mold in which the crystalline polymer film is placed; Blowing the preform, In the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are the crystal from each center.
  • the distance h (i) to the surface of the conductive polymer film is calculated, and the arithmetic average value h (avg) of each calculated distance h (i) satisfies the relationship of the following formula (1):
  • This is a method for manufacturing a container.
  • T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 ⁇ T apart.
  • ⁇ 12> consisting of a polymer having crystallinity, winding a crystalline polymer film containing a long cavity inside thereof in a state in which the length direction is oriented in the first direction; Shrinking the wound crystalline polymer film, In the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are the crystal from each center.
  • the distance h (i) to the surface of the conductive polymer film is calculated, and the arithmetic average value h (avg) of each calculated distance h (i) satisfies the relationship of the following formula (1): This is a method for manufacturing a container.
  • T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 ⁇ T apart.
  • the container is excellent in strength, light-shielding property, and heat retaining property, and can be easily compressed to reduce the volume, and the container is excellent in recyclability, and the container
  • the manufacturing method of can be provided.
  • FIG. 1 is a diagram illustrating a state in which a cup-shaped container is held.
  • FIG. 2 is a diagram illustrating a state in which the PET bottle is held.
  • FIG. 3 is a diagram illustrating a state in which a PET bottle is held.
  • FIG. 4A is a diagram for specifically explaining the aspect ratio, and is a perspective view of a crystalline polymer film.
  • FIG. 4B is a diagram for specifically explaining the aspect ratio, and is a cross-sectional view taken along the line A-A ′ of the crystalline polymer film in FIG. 4A.
  • FIG. 4C is a diagram for specifically explaining the aspect ratio, and is a B-B ′ cross-sectional view of the crystalline polymer film in FIG. 4A.
  • FIG. 4A is a diagram illustrating a state in which a cup-shaped container is held.
  • FIG. 2 is a diagram illustrating a state in which the PET bottle is held.
  • FIG. 3 is a diagram illustrating a state
  • FIG. 4D is a cross-sectional view taken along the line A-A ′ in FIG. 4A for explaining a method of measuring the distance from the film surface of ten cavities located closest to the film surface.
  • 5A is a cross-sectional view taken along the line A-A ′ of the crystalline polymer film in FIG. 4A taken with an electron microscope.
  • FIG. 5B is a B-B ′ cross-sectional view of the crystalline polymer film in FIG. 4A taken by an electron microscope.
  • FIG. 6 is a diagram showing an example of a method for producing a crystalline polymer film of the present invention, and is a flow diagram of a biaxially stretched film production apparatus.
  • FIG. 7 is a schematic diagram for explaining the blowing process.
  • FIG. 8A is a diagram showing a crystalline polymer film processed into a fan shape.
  • FIG. 8B is a diagram showing a state in which the crystalline polymer film is attached to a jig.
  • FIG. 8C is a schematic diagram of a blow mold.
  • FIG. 8D is a schematic cross-sectional view of a blow mold.
  • FIG. 9 is a view for explaining the container of Example A-1.
  • FIG. 10 is a diagram illustrating a process of winding the crystalline polymer film around the container of Example A-2.
  • FIG. 11 is a diagram illustrating the shape of the container of Example A-4.
  • FIG. 12 is a view for explaining the shape of the container of Example A-5.
  • FIG. 13 is an explanatory diagram of the design printed in Example A-1.
  • FIG. 14A is a schematic diagram for explaining the measurement of heat resistance.
  • FIG. 14B is a schematic diagram for explaining the measurement of heat resistance.
  • FIG. 14C is a schematic diagram for explaining the measurement of heat resistance.
  • FIG. 15 is a schematic diagram for explaining the container used in Example B-1.
  • the container of this invention has a container and a crystalline polymer film at least, and also has another structure as needed.
  • the crystalline polymer film is made of a polymer having crystallinity, and contains a long cavity in a state where the length direction is oriented in the first direction.
  • polymers are classified into crystalline polymers and amorphous (amorphous) polymers, but even polymers with crystallinity are not 100% crystalline, and long chain molecules in the molecular structure. Includes a crystalline region regularly arranged and an amorphous region which is not regularly arranged. Therefore, the polymer having crystallinity according to the present invention only needs to include at least the crystalline region in the molecular structure, and the crystalline region and the amorphous region may be mixed.
  • the polymer having crystallinity is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include polyolefins (for example, low density polyethylene, high density polyethylene, polypropylene, etc.), polyamides (PA) (for example, nylon-6, etc., polyacetals (POM), polyesters (eg, PET, PEN, PTT, PBT, PPT, PHT, PBN, PES, PBS, etc.), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polyether ether ketones (PEEK), liquid crystal polymers (LCP), fluororesin, isotactic polypropylene (isoPP) and the like.
  • polyolefins for example, low density polyethylene, high density polyethylene, polypropylene, etc.
  • PA polyamides
  • POM polyacetals
  • polyesters eg, PET, PEN, PTT, PBT, PPT, PHT,
  • polyolefins polyolefins, polyesters, syndiotactic polystyrene (SPS), and liquid crystal polymers (LCP) are preferable, and polyolefins and polyesters are more preferable from the viewpoints of durability, mechanical strength, production, and cost. Two or more kinds of these polymers may be blended or copolymerized.
  • SPS syndiotactic polystyrene
  • LCP liquid crystal polymers
  • the polymer having crystallinity does not contain a functional group having high absorption in the ultraviolet region, such as an aromatic ring, for example, in order to reduce the light transmittance in the ultraviolet region of the crystalline polymer film (enhance reflection characteristics). It is preferable. Therefore, aliphatic polyester is particularly preferable among the polyesters.
  • the melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa ⁇ s to 700 Pa ⁇ s, more preferably 70 Pa ⁇ s to 500 Pa ⁇ s, More preferably, it is 80 Pa ⁇ s to 300 Pa ⁇ s.
  • the melt viscosity of 50 Pa ⁇ s to 700 Pa ⁇ s is preferred in that the shape of the molten film discharged from the die head during melt film formation is stable and uniform film formation is facilitated.
  • the melt viscosity is 50 Pa ⁇ s to 700 Pa ⁇ s
  • the viscosity at the time of melt film formation becomes appropriate and the extrusion becomes easy, or the melt film at the time of film formation is leveled to reduce unevenness.
  • the melt viscosity can be measured by a plate type rheometer or a capillary rheometer.
  • the intrinsic viscosity (IV) of the polymer having crystallinity is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.4, preferably 0.6 to 1.2. More preferred is 0.7 to 1.0.
  • the IV is 0.4 to 1.4, the strength of the formed film is increased, and this is preferable in that the film can be efficiently stretched.
  • the IV can be measured by an Ubbelohde viscometer.
  • the melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 40 ° C. to 350 ° C., more preferably 100 ° C. to 300 ° C., and more preferably 100 ° C. More preferred is ⁇ 260 ° C.
  • the melting point of 40 ° C. to 350 ° C. is preferable in that the shape can be easily maintained in a temperature range expected for normal use, and even without using a special technique required for processing at a high temperature. It is preferable at the point which can form a uniform film.
  • the melting point can be measured by a differential thermal analyzer (DSC).
  • polyester resins mean a general term for polymer compounds having an ester bond as a main bond chain. Therefore, as the polyester resin suitable as the polymer having crystallinity, the exemplified PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), PPT ( Polycondensation of polypentamethylene terephthalate), PHT (polyhexamethylene terephthalate), PBN (polybutylene naphthalate), PES (polyethylene succinate), PBS (polybutylene succinate), dicarboxylic acid component and diol component All polymer compounds obtained by the reaction are included.
  • the dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, oxycarboxylic acids, and polyfunctional acids. Can be mentioned.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, and 5-sodium sulfoisophthalic acid.
  • Acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are preferable, and terephthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are more preferable.
  • Examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, eicoic acid, adipic acid, sebacic acid, dimer acid, dodecanedioic acid, maleic acid, and fumaric acid.
  • Examples of the alicyclic dicarboxylic acid include cyclohexane dicarboxylic acid.
  • Examples of the oxycarboxylic acid include p-oxybenzoic acid.
  • Examples of the polyfunctional acid include trimellitic acid and pyromellitic acid.
  • the crystalline polymer film has low transmittance (excellent reflection characteristics) in a wide wavelength range including the ultraviolet region, so that succinic acid, adipic acid, Cyclohexanedicarboxylic acid is preferable, and succinic acid and adipic acid are more preferable.
  • the diol component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic diols, alicyclic diols, aromatic diols, diethylene glycol, and polyalkylene glycols. Among these, An aliphatic diol is preferable in that the crystalline polymer film has low transmittance (excellent reflection characteristics) in a wide wavelength range including the ultraviolet region.
  • Examples of the aliphatic diol include ethylene glycol, propane diol, butane diol, pentane diol, hexane diol, neopentyl glycol, triethylene glycol and the like. Among these, propane diol, butane diol, pentane diol, hexane Diols are particularly preferred.
  • Examples of the alicyclic diol include cyclohexanedimethanol.
  • Examples of the aromatic diol include bisphenol A and bisphenol S.
  • the melt viscosity of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa ⁇ s to 700 Pa ⁇ s, more preferably 70 Pa ⁇ s to 500 Pa ⁇ s, and more preferably 80 Pa ⁇ s. More preferable is 300 Pa ⁇ s.
  • the melt viscosity is higher, voids are more likely to occur during stretching.
  • the melt viscosity is 50 Pa ⁇ s to 700 Pa ⁇ s, extrusion becomes easier during film formation, and the resin flow stabilizes and stays. This is preferable in that it becomes difficult and the quality is stabilized.
  • the melt viscosity of 50 Pa ⁇ s to 700 Pa ⁇ s is preferable in that the drawing tension is appropriately maintained at the time of drawing, and it becomes easy to draw uniformly and is difficult to break. Further, when the melt viscosity is 50 Pa ⁇ s to 700 Pa ⁇ s or more, it is easy to maintain the form of the melt film discharged from the die head at the time of film formation, and it is possible to stably form or damage the product. It is preferable in that the physical properties are increased.
  • the intrinsic viscosity (IV) of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.4, more preferably 0.6 to 1.2, More preferably, it is 0.7 to 1.0.
  • IV is larger, voids are more likely to be generated during stretching.
  • the IV is 0.4 to 1.4, extrusion is easier during film formation, and the resin flow is stable and retention is less likely to occur. It is preferable in that the quality is stabilized.
  • the stretching tension is appropriately maintained at the time of stretching, so that it is easy to stretch uniformly, and it is preferable in that a load is not easily applied to the apparatus.
  • the product is less likely to be damaged, which is preferable in terms of improving physical properties.
  • the melting point of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose. However, from the viewpoint of heat resistance and film forming property, 70 ° C. to 300 ° C. is preferable, and 90 ° C. to 270 ° C. More preferred.
  • the said dicarboxylic acid component and the said diol component may respectively superpose
  • a polymer may be formed by copolymerization.
  • two or more kinds of polymers may be blended and used.
  • the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity that are close to those of the main polymer, and the addition amount is smaller when the film is formed or melted. It is preferable in that the physical properties are enhanced during extrusion and the extrusion becomes easy.
  • a resin other than polyester may be added to the polyester resin.
  • the crystalline polymer film can form voids in a simple process even without adding a void forming agent such as inorganic fine particles and incompatible resins added in the prior art. it can. Thereby, the recyclability of the crystalline polymer film can be enhanced. Furthermore, no special equipment for dissolving the inert gas in the resin in advance is required. The method for producing the crystalline polymer film will be described later.
  • the crystalline polymer film is a component that does not contribute to the development of cavities, it may contain other components other than the polymer having crystallinity as necessary.
  • the other components include a heat resistance stabilizer, an antioxidant, an organic lubricant, a nucleating agent, a dye, a pigment, a dispersant, and a coupling agent.
  • Whether or not the other component contributed to the development of the cavity can be determined by whether or not a component other than the polymer having crystallinity (for example, each component described later) is detected in the cavity or at the interface portion of the cavity. .
  • antioxidants there is no restriction
  • the hindered phenols include antioxidants commercially available under trade names such as Irganox 1010, Sumilyzer BHT, Sumilyzer GA-80.
  • the antioxidant can be used as a primary antioxidant and further combined with a secondary antioxidant.
  • the secondary antioxidant include antioxidants commercially available under trade names such as Sumilizer TPL-R, Sumilizer TPM, Sumilizer TP-D, and the like.
  • the fluorescent brightening agent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • commercially available products with trade names such as Ubitech, OB-1, TBO, Keicoal, Kayalite, Leukopua, EGM, etc. Can be used.
  • the said fluorescent whitening agent may be used individually by 1 type, and may use 2 or more types together. By adding the fluorescent whitening agent in this way, it is possible to give a brighter and more bluish whiteness and to have a high-class feeling.
  • the crystalline polymer film contains elongated cavities inside with the length direction oriented in one direction, and is characterized by the cavity content and aspect ratio of the cavities.
  • the cavity means a domain in a vacuum state or a gas phase domain existing inside the crystalline polymer film.
  • the void content means the total volume of the contained cavities relative to the sum of the total volume of the solid phase portion of the crystalline polymer film and the total volume of the contained cavities.
  • the void content is not particularly limited as long as the effects of the present invention are not impaired, can be appropriately selected according to the purpose, and is preferably 3% by volume to 50% by volume, and 5% by volume to 40% by volume. More preferably, 10% by volume to 30% by volume is even more preferable.
  • the void content can be calculated based on the specific gravity by measuring the specific gravity. Specifically, the void content can be obtained by the following equation (2).
  • Cavity content (%) ⁇ 1 ⁇ (density of crystalline polymer film after stretching) / (density of polymer molded body before stretching) ⁇ (2)
  • the aspect ratio refers to an average length of the cavity in the thickness direction orthogonal to the orientation direction of the cavity, r ( ⁇ m), and an average length of the cavity in the orientation direction of the cavity, L ( ⁇ m). L / r ratio is meant.
  • the aspect ratio is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose.
  • the aspect ratio is preferably 10 or more, more preferably 15 or more, and still more preferably 20 or more.
  • FIG. 4A to 4C are diagrams for specifically explaining the aspect ratio.
  • FIG. 4A is a perspective view of the crystalline polymer film
  • FIG. 4B is an A diagram of the crystalline polymer film in FIG. 4A.
  • FIG. 4C is a cross-sectional view taken along the line ⁇ A ′
  • FIG. 4C is a cross-sectional view taken along the line BB ′ of the crystalline polymer film in FIG. 4A.
  • the cavities are usually oriented along the first stretching direction. Therefore, the “average length (r ( ⁇ m) of the cavities in the thickness direction orthogonal to the orientation direction of the cavities)” is perpendicular to the surface 1a of the crystalline polymer film 1 and in the first stretching direction. This corresponds to the average thickness r (see FIG. 4B) of the cavity 100 in a cross section at right angles (cross section AA ′ in FIG. 4A). Further, “the average length of the cavities (L ( ⁇ m)) in the orientation direction of the cavities” is a cross section perpendicular to the surface 1a of the crystalline polymer film 1 and parallel to the first stretching direction ( This corresponds to the average length L (see FIG. 4C) of the cavity 100 in the BB ′ cross section in FIG. 4A.
  • stretching direction shows the extending direction of 1 axis
  • this longitudinal stretching direction corresponds to the first stretching direction.
  • stretching is biaxial or more, at least 1 direction is shown among the extending directions aiming at cavity formation.
  • longitudinal stretching is performed along the flow direction of the molded body during production, and a cavity can be formed by this longitudinal stretching. It corresponds to the first stretching direction.
  • the average length (r ( ⁇ m)) of the cavities in the thickness direction perpendicular to the alignment direction of the cavities can be measured by an image of an optical microscope or an electron microscope.
  • the average length (L ( ⁇ m)) of the cavities in the alignment direction of the cavities can be measured by an image of an optical microscope or an electron microscope.
  • the average number P of the cavities in the thickness direction perpendicular to the orientation direction of the cavities is not particularly limited and can be appropriately selected according to the purpose, preferably 5 or more, more preferably 10 or more, 15 or more are more preferable.
  • the “number of the cavities in the thickness direction orthogonal to the orientation direction of the cavities” is a cross section perpendicular to the surface 1a of the crystalline polymer film 1 and perpendicular to the first stretching direction (A in FIG. 4A). This corresponds to the number of cavities 100 included in the film thickness direction in ( ⁇ A ′ cross section).
  • the average number P of the cavities in the thickness direction orthogonal to the orientation direction of the cavities can be measured by an image of an optical microscope or an electron microscope.
  • FIGS. 5A and 5B An example of a cross-sectional view of the crystalline polymer film of the present invention is shown in FIGS. 5A and 5B.
  • FIG. 5A is a cross-sectional view taken along the line AA ′ of the crystalline polymer film in FIG. 4A taken with an electron microscope.
  • FIG. 5B is a BB ′ cross-sectional view of the crystalline polymer film in FIG. 4A taken with an electron microscope.
  • the cross-sectional view of the crystalline polymer film of the present invention is not limited to FIGS. 5A and 5B.
  • the refractive index difference ⁇ N between the crystalline polymer layer and the cavity layer is specifically the refractive index of the cavity layer with respect to light with a wavelength of 589 nm, where N1 is the refractive index of the polymer layer with crystallinity with respect to light with a wavelength of 589 nm.
  • ⁇ N the refractive index of the cavity layer with respect to light with a wavelength of 589 nm
  • N1 is the refractive index of the polymer layer with crystallinity with respect to light with a wavelength of 589 nm.
  • ⁇ N the refractive indices N1 and N2 of the crystalline polymer layer and the cavity layer
  • the product of ⁇ N and P is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3 or more, more preferably 5 or more, and still more preferably 7 or more.
  • the crystalline polymer film has excellent surface smoothness because it contains the voids but is not added with inorganic fine particles, incompatible resin, inert gas, etc. for expressing the voids.
  • the crystalline polymer film has various excellent characteristics in terms of, for example, heat shrinkage rate, light transmittance, heat insulating property, strength, and the like due to the inclusion of the cavities.
  • characteristics such as heat shrinkage rate, light transmittance, heat insulating property, strength, etc. can be adjusted by changing the mode of the cavities contained in the crystalline polymer film.
  • the crystalline polymer film is characterized in that no cavity is formed not only on the film surface but also at a predetermined distance from the film surface. That is, in the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are separated from each center.
  • the distance h (i) to the surface of the crystalline polymer film is calculated, and the calculated arithmetic average value h (avg) of each distance h (i) satisfies the relationship of the following formula (1).
  • T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 ⁇ T apart.
  • the “center of the cavity” means the center when the cross-sectional shape of the cavity in the cross section is a perfect circle, and is arbitrarily set by, for example, the maximum square center method in the case of other shapes.
  • the center of the circle that minimizes the sum of squares of the deviation from the reference circle is determined, and this is set as the center of the cavity.
  • the “surface of the crystalline polymer film” means the outermost surface of the crystalline polymer film in the thickness direction. Usually, it means the upper surface when the crystalline polymer film is placed.
  • a cross-section perpendicular to the surface of the crystalline polymer film and perpendicular to the longitudinal stretching direction (see FIG. 4D) is appropriately magnified 300 to 3000 times using a scanning electron microscope. Microscope and take a cross-sectional picture. In the cross-sectional photograph, an arithmetic average value T of the thickness is calculated. As the arithmetic average value T of the thickness, a thickness measured using a long range contact displacement meter or the like may be used. Next, an arbitrary straight line parallel to the thickness direction is drawn in the cross-sectional photograph, and another straight line that is parallel to the single straight line and separated by 20 ⁇ T is drawn.
  • the center of a circle that minimizes the sum of squares of deviations from the reference circle arbitrarily set by the maximum square center method is determined, and this is set as the center of the cavity.
  • ten cavities having the shortest distance from the center of the cavity to the surface of the crystalline polymer film are selected in a region sandwiched between the one straight line and the other straight line.
  • the “distance from the center of the cavity to the surface of the crystalline polymer film” means that when drawing a circle centered on the “center of the cavity”, the radius of the circle to be drawn is sequentially increased, The radius of the circle when it first contacts the surface of the crystalline polymer film.
  • h (avg) ( ⁇ h (i)) / 10 (3)
  • the “distance h (i) from each center to the surface of the crystalline polymer film” should be accurately measured when the crystalline polymer film is curved or stressed. Therefore, it is preferable that the measurement is performed in a state where it is placed in a flat shape.
  • the said crystalline polymer film contains the said cavity, since the cavity is not formed near the surface of the crystalline polymer film, it has the outstanding surface smoothness.
  • the light transmittance of the crystalline polymer film is the light intensity of transmitted light / light intensity of incident light when light of a predetermined wavelength is incident perpendicularly to the surface of the crystalline polymer film ⁇ 100. It means the value of (%).
  • the transmittance of the crystalline polymer film with respect to light having one wavelength selected from wavelengths of 300 nm to 780 nm is not particularly limited as long as the effect of the present invention is not impaired, and depends on the purpose. Although it can select suitably, 10% or less is preferable, 5% or less is more preferable, 4% or less is further more preferable, and 3% or less is especially preferable.
  • the crystalline polymer film has the same thickness as that of the crystalline polymer film, where M ⁇ (%) is a transmittance with respect to light having one wavelength selected from wavelengths of 300 nm to 780 nm.
  • the ⁇ / N ⁇ ratio is preferably 0.2 or less, more preferably 0.18 or less, and still more preferably 0.15 or less.
  • the transmittance can be measured by a spectrophotometer.
  • the crystalline polymer film has a low transmittance (high reflectance) in the ultraviolet region (300 nm to 380 nm), and further has a low transmittance (high reflectance) in the ultraviolet region. However, it has low transmittance (excellent reflection characteristics) even in the visible region (380 nm to 780 nm).
  • the low transmittance (excellent reflection characteristic) of the crystalline polymer film is due to the structural optical interference between multiple layers formed inside the crystalline polymer film consisting of a cavity layer and a crystalline polymer layer. by. In other words, the reflection characteristics such as the transmittance can be adjusted by changing the mode (aspect ratio, refractive index, etc.) of the cavities contained in the crystalline polymer film.
  • the thickness of the crystalline polymer film is preferably 30 ⁇ m to 500 ⁇ m, more preferably 50 ⁇ m to 300 ⁇ m, and more preferably 80 ⁇ m. Particularly preferred is ⁇ 150 ⁇ m.
  • the thickness of the crystalline polymer film is less than 30 ⁇ m, there is a concern that the container cannot be held by hand, and when it exceeds 500 ⁇ m, it may not be possible to smoothly fit the container.
  • the thickness of the crystalline polymer film is within the particularly preferable range, it is advantageous in that a sufficient function as a container can be expressed.
  • the thickness of the crystalline polymer film is preferably 45 ⁇ m to 300 ⁇ m, more preferably 80 ⁇ m to 200 ⁇ m. 80 ⁇ m to 120 ⁇ m is particularly preferable. If the thickness of the crystalline polymer film is less than 45 ⁇ m, the strength may be insufficient and the film may be easily deformed, and the generation of voids may not be stable, making it difficult to obtain sufficient reflection and light shielding functions.
  • the thickness of the crystalline polymer film is within the particularly preferable range, it is advantageous in that it can be easily processed and a sufficient function can be obtained.
  • the heat shrinkage rate of the crystalline polymer film is a sample obtained by cutting the crystalline polymer film into a 100 mm square and heat-treating the sample in an oven adjusted to a predetermined temperature for 10 minutes. It means a value measured and determined according to the following formula.
  • the heat shrinkage rate at 150 ° C. in the first direction of the crystalline polymer film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% or more, more preferably 12% or more. Preferably, 15% or more is more preferable.
  • the “first direction” means the first stretching direction (FIG. 4A).
  • the heat shrinkage rate at 150 ° C. in the second direction orthogonal to the first direction of the crystalline polymer film is not particularly limited and can be appropriately selected according to the purpose. It is preferably 4% or less, more preferably 3% or less.
  • the method for producing the crystalline polymer film is not particularly limited and may be appropriately selected depending on the intended purpose. However, it preferably includes at least a stretching step of stretching the polymer molded body 2 to 10 times. By including the said extending
  • the method for producing the crystalline polymer film may further include other steps such as a film forming step as necessary.
  • the said polymer molded object shows the thing which consists of a polymer which has the said crystallinity, and does not contain a cavity especially, for example, a polymer film, a polymer sheet, etc. are mentioned.
  • the stretching step the polymer molded body is stretched at least uniaxially. Then, by the stretching step, the polymer molded body is stretched, and a cavity oriented along the first stretching direction is formed therein, whereby a crystalline polymer film is obtained.
  • the cavity is formed by stretching is that the polymer having at least one crystallinity constituting the polymer molded body has a microcrystalline domain or a crystalline domain, and a microcrystal or crystal that is difficult to stretch during stretching. It is considered that the cavity is formed by being peeled and stretched in such a manner that the amorphous phase and the resin in the amorphous portion are torn off. Such void formation by stretching is possible not only when there is only one kind of polymer having crystallinity but also when two or more kinds of polymers having crystallinity are blended or copolymerized. is there.
  • the stretching method is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching. It is preferable that longitudinal stretching is performed along the direction in which the molded body flows.
  • the number of longitudinal stretching stages and the stretching speed can be adjusted by the combination of rolls and the speed difference between the rolls.
  • the number of stages of the longitudinal stretching is not particularly limited as long as it is one or more, but it can be stretched more than two stages in terms of more stable and high-speed stretching and production yield and machine restrictions. It is preferable to do.
  • longitudinal stretching in two or more stages is advantageous in that a cavity can be formed by stretching in the second stage after confirming the occurrence of necking in the first stage.
  • the stretching speed of the longitudinal stretching is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose, but is preferably 10 mm / min to 36,000 mm / min, and preferably 800 mm / min. Is more preferably 24,000 mm / min, and further preferably 1,200 mm / min to 12,000 mm / min.
  • the stretching speed is 10 mm / min or more, it is preferable in that sufficient necking can be easily expressed.
  • the stretching speed is 36,000 mm / min or less, uniform stretching is facilitated, the resin is not easily broken, and the cost is reduced without requiring a large stretching apparatus for high-speed stretching. It is preferable in that it can be performed.
  • the stretching speed is 10 mm / min to 36,000 mm / min, sufficient necking is easily exhibited, uniform stretching is facilitated, the resin is not easily broken, and high speed stretching is intended. This is preferable in that the cost can be reduced without requiring a large stretching apparatus.
  • the stretching speed in the case of one-stage stretching is preferably 1,000 mm / min to 36,000 mm / min, more preferably 1,100 mm / min to 24,000 mm / min, and 1,200 mm / min. More preferably, it is from min to 12,000 mm / min.
  • the first-stage stretching is a preliminary stretching whose main purpose is to develop necking.
  • the stretching speed of the preliminary stretching is preferably 10 mm / min to 300 mm / min, more preferably 40 mm / min to 220 mm / min, and still more preferably 70 mm / min to 150 mm / min.
  • the second-stage stretching speed after the necking is expressed by the preliminary stretching is preferably changed from the stretching speed of the preliminary stretching.
  • the second stage stretching speed after causing necking by the preliminary stretching is preferably 600 mm / min to 36,000 mm / min, more preferably 800 mm / min to 24,000 mm / min, and 1,200 mm. / Min to 15,000 mm / min is more preferable.
  • the temperature during stretching is not particularly limited and can be appropriately selected according to the purpose.
  • T (° C) and the glass transition temperature is Tg (° C), (Tg-30) (° C.) ⁇ T (° C.) ⁇ (Tg + 70) (° C.)
  • Tg-25 glass transition temperature
  • Tg + 70 glass transition temperature
  • Tg + 70 glass transition temperature
  • Tg ⁇ 20 glass transition temperature
  • Tg + 70 glass transition temperature
  • the stretching temperature (° C.) is ⁇ glass transition temperature (Tg) ⁇ 30 ⁇ ° C. or higher, ⁇ glass transition temperature ( Tg) +70 ⁇ ° C. or lower is preferable in that the void content increases, the aspect ratio tends to be 10 or more, and the voids are sufficiently developed.
  • the stretching temperature T (° C.) can be measured with a non-contact thermometer.
  • the glass transition temperature Tg (° C.) can be measured by a differential thermal analyzer (DSC).
  • lateral stretching may or may not be performed as long as it does not hinder the appearance of cavities.
  • the film may be relaxed or heat-treated using a lateral stretching process.
  • the stretched void-containing resin molded body may be further subjected to treatment such as heat shrinkage by applying heat or applying tension for the purpose of shape stabilization.
  • the method for producing the polymer molded body is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the polymer having crystallinity is a polyolefin, a polyester resin, or a polyamide, it is melted. It can be suitably manufactured by a film forming method.
  • the polymer molded body may be produced independently of the stretching step or continuously.
  • FIG. 6 is a diagram showing an example of a method for producing a crystalline polymer film of the present invention, and is a flow diagram of a biaxially stretched film production apparatus.
  • the raw material resin 11 is hot-melted and kneaded inside the extruder 12 (a twin screw extruder or a single screw extruder is used depending on the raw material shape and production scale).
  • the extruder 12 a twin screw extruder or a single screw extruder is used depending on the raw material shape and production scale.
  • the extruder 12 a twin screw extruder or a single screw extruder is used depending on the raw material shape and production scale.
  • the discharged film or sheet F is cooled and solidified by the casting roll 14 to form a film.
  • the formed film or sheet F (corresponding to “polymer molded body”) is sent to the longitudinal stretching machine 15.
  • seat F formed into a film is again heated within the longitudinal stretch machine 15, and is stretched
  • a cavity is formed in the film or sheet F along the stretching direction.
  • the film or sheet F in which the cavity is formed is gripped at both ends by the left and right clips 16a of the transverse stretching machine 16, and is stretched laterally while being sent to the winder side (not shown).
  • the polymer film 1 is obtained.
  • ⁇ Container> There is no restriction
  • the container include a take-out coffee that is poured into a cup at a store.
  • Containers having no irregularities on the surface of these containers are advantageous in that the crystalline polymer film can be easily wound in the manufacture of containers by insert blow molding described later. Furthermore, if the surface has no irregularities and the shape is simple, there is an advantage that less material is required and manufacturing costs can be reduced. If the shape is simple, it can be stacked compactly, and can be transported and stored efficiently, and there is also an advantage that a special technique is not required when applying printing or other design.
  • the shape is simple, it can be held well without being aware of how to hold it, and it is less likely to cause trouble when handled by babies, infants and the elderly.
  • the container include food containers such as soy sauce, dressing, sprinkle, seasoned seaweed, tempura oil, and beverages such as milk, lactic acid bacteria beverages, beer, shochu, wine, vitamin beverages, juices, carbonated beverages, water, and tea.
  • a container having an uneven portion on the surface of a container such as a beverage container is easy to shrink the crystalline polymer film. Is advantageous.
  • the radius of curvature R can be measured by, for example, a three-dimensional shape measuring apparatus XYZAX RA1600A (manufactured by Tokyo Seimitsu Co., Ltd.).
  • a three-dimensional shape measuring apparatus XYZAX RA1600A manufactured by Tokyo Seimitsu Co., Ltd.
  • whether or not the cavity in the crystalline polymer film at the corner has been crushed can be confirmed as follows. For example, after embedding and cutting out the site
  • the method (henceforth "the 1st” which winds the said crystalline polymer film around the shape
  • the insert blow molding method integrates the crystalline polymer film and the container to produce a container having excellent strength. This is advantageous in that it can be done.
  • the first aspect includes at least a winding step, and further includes other steps as necessary.
  • the winding step is a step of winding the crystalline polymer film around a molded container.
  • the shape, size and material of the molded container are not particularly limited and can be appropriately selected according to the purpose.
  • the method for winding the crystalline polymer film around the container is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a film that has been processed into a cylindrical shape in advance is placed on the container, For example, after winding directly, the winding end is cut and heat-sealed or glued.
  • a crystalline polymer film is disposed in a blow mold (hereinafter sometimes referred to as “crystalline polymer film disposing step”), and the crystalline polymer film is disposed.
  • the second aspect is also referred to as insert blow molding.
  • a preform also referred to as a parison
  • the crystalline polymer film is attached in advance to the inner wall of the blow mold, and in the subsequent blow step, the preform is molded. Reform swells.
  • This is a method for producing a container, in which the crystalline polymer film is attached to the outer surface of a resin molded body (blow molded product) that sticks to the inner wall of the mold to obtain a container having a design and other functions.
  • the crystalline polymer film arranging step is a step of arranging the crystalline polymer film in a blow mold.
  • the blow mold is usually divided into two or more members in order to take out the container (molded product) after the molding is completed in the blow process described later (in FIG. 7, it is divided into two parts).
  • FIG. 8A is a diagram showing a crystalline polymer film 41 processed into a fan shape.
  • the crystalline polymer film 41 is attached to a jig 42 (see FIG. 8B).
  • the jig 42 preferably has substantially the same angle as the inner wall of the blow mold (or an angle that allows a slight gap at the lower end when set on the blow mold).
  • reference numeral 46 denotes a suction hole
  • the crystalline polymer film 41 can be brought into close contact with the jig 42 by suction in the direction of the arrow.
  • the blow mold 43 is provided with a slit 44 for air suction, whereby the suction of the jig 42 is stopped after the crystalline polymer film 41 is sucked, and the jig is stopped.
  • the tool 42 is removed from the blow mold. Thereby, the crystalline polymer film 41 can be disposed in the blow mold.
  • FIG. 8D is a schematic cross-sectional view of the blow mold 43.
  • Reference numeral 45 indicates a suction nozzle, and an arrow indicates a suction direction.
  • the adhesive is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a heat-sensitive adhesive used for a hot stamp thermal transfer film a hot-melt adhesive that is activated at a heating temperature in a blow process described later. Agents and the like.
  • the heat-sensitive adhesive used for the hot stamp thermal transfer film include cyclized rubber resins, acrylic resins, vinyl chloride resins, and vinyl acetate resins.
  • hot melt adhesive examples include ethylene-vinyl acetate copolymer (EVA), polyethylene, atactic polypropylene (APP), ethylene-ethyl acrylate copolymer (EEA), and polyamide.
  • EVA ethylene-vinyl acetate copolymer
  • APP atactic polypropylene
  • EAA ethylene-ethyl acrylate copolymer
  • polyamide examples of the hot melt adhesive that is activated at the heating temperature in the blowing step
  • base polymer such as polyester, and tackifiers compatible with these base polymers include rosin and derivatives thereof, pinene polymers, and waxes.
  • compatibility and adhesiveness are adjusted so that desired sticking strength may be obtained.
  • the said crystalline polymer film can also be made easy to peel from the container after use.
  • the preform placement step is a step of placing a preform on a mold on which the crystalline polymer film is placed.
  • the preform may be preheated before being placed in the blow mold.
  • the temperature of the preheating is not particularly limited and is appropriately selected depending on the type of resin used for the preform, the crystallinity of the preform, the crystal size of the preform, the thickness of the preform, the shape of the preform, and the like.
  • PET resin it may be heated at about 90 ° C. to 110 ° C.
  • an infrared panel heater is mentioned.
  • the preferred temperature for the preheating can be determined by performing a heating test while measuring the temperature of the preform body with a non-contact thermometer or the like.
  • the blowing step is a step of blowing the preform to form a container.
  • FIG. 7 is a schematic diagram for explaining the blowing process.
  • high pressure air is introduced into the preform from the air flow path 59 into the preform 55 arranged in the blow molds 51 and 52, and blow is performed. Thereby, the container of the shape along the shape inside a blow die can be obtained.
  • stretching (longitudinal stretching) using the stretching rod 58 may be performed in order to stably obtain the shape of the molded body (container) or as necessary.
  • the stretching using the stretching rod 58 may be performed before high-pressure air is introduced, or may be performed simultaneously with the introduction of high-pressure air.
  • the stretching rod 58 of FIG. 7 has a stretching rod head 54 at the tip.
  • FIG. 7 shows a state in which the stretching rod head 54 pushes up the inner wall of the front end of the preform 55.
  • the stretching rod can be lifted by a hydraulic cylinder, for example.
  • the speed at which the hydraulic cylinder is lifted is not particularly limited as long as stretch blow can be performed, and can be appropriately selected according to the purpose, but is 10 cm / 0.1 sec to 10 cm / About 2 sec is preferable in that the preform extends without unevenness.
  • the distance for lifting the stretching rod is not particularly limited and can be appropriately selected depending on the purpose.
  • the blow mold ceiling (the bottom of the blow molded body is formed from the surface of the base 56 of the blow mold).
  • reference numeral 53 denotes a crystalline polymer film
  • reference numeral 56 denotes a base
  • reference numeral 57 denotes a guide.
  • the pressure of the high-pressure air is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 MPa to 4 MPa, more preferably 1 MPa to 3 MPa, and particularly preferably 1 MPa to 2 MPa. If the pressure is less than 0.5 MPa, it may not be able to swell sufficiently, and if it exceeds 4 MPa, it is difficult to blow uniformly, and the container may be broken during blowing. On the other hand, when the pressure is within the particularly preferable range, it is advantageous in that the container can be stably inflated.
  • the temperature of the high-pressure air is not particularly limited, and is appropriately selected according to the type of resin used in the preform, the crystallinity of the preform, the crystal size of the preform, the thickness of the preform, the shape of the preform, etc. For example, 60 degreeC is mentioned.
  • the crystalline polymer film when the crystalline polymer film is wound and does not shrink (shrink), it can be suitably manufactured according to the first aspect and the second aspect.
  • the crystalline polymer film when the crystalline polymer film is wound and is not shrunk, it is preferable that the crystalline polymer film and the container are integrated.
  • the number of laminated crystalline polymer films is not particularly limited and can be appropriately selected according to the purpose. However, 1 to 10 sheets are preferable, and 1 to 5 sheets are more preferable.
  • the number of laminated layers is 10 or more, the number of pretreatment steps such as adhesion when laminating increases, and it becomes difficult to make a homogeneous film.
  • the laminated film becomes thick and the flexibility becomes low, and alignment may be difficult when set in a mold.
  • the thickness of the crystalline polymer film in the case where the crystalline polymer film is wound and not contracted (shrinked) in the container of the present invention is not particularly limited and can be appropriately selected depending on the purpose. 30 ⁇ m to 500 ⁇ m is preferable, 80 ⁇ m to 300 ⁇ m is more preferable, and 100 ⁇ m to 200 ⁇ m is particularly preferable. If the thickness of the crystalline polymer film in the container is less than 30 ⁇ m, the film may wrinkle during insert molding, and if it exceeds 500 ⁇ m, it may be attached to a jig when set in the mold. It may be difficult to attach. On the other hand, when the thickness of the crystalline polymer film in the container is within the particularly preferable range, it is advantageous in that the film can be easily set at a predetermined position.
  • the ratio of the surface area (A) of the container and the area (B) of the crystalline polymer film in the container when the crystalline polymer film is not wound and contracted (shrink) in the container of the present invention ((B / A) ⁇ 100) is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 25% or more, more preferably 67% or more, and particularly preferably 80% or more.
  • the ratio is less than 25%, since the ratio of the surface covered with the film is small, the container is easily deformed, and the film performance may not be sufficiently exhibited.
  • the ratio is within the particularly preferable range, it is advantageous not only that the container is hardly deformed but also that the performance of the film can be sufficiently exhibited.
  • the arrangement of the crystalline polymer film in the case of winding the crystalline polymer film in the container of the present invention and not shrinking (shrinking) is not particularly limited and can be appropriately selected according to the purpose.
  • it is preferably used on the side of the container in terms of strength, heat insulation, design, and the like.
  • the third aspect includes at least a winding step and a contraction (shrink) step, and further includes other steps as necessary.
  • the container of the present invention in which the crystalline polymer film is wound and contracted (shrinked) can be suitably manufactured.
  • the winding step is a step of winding the crystalline polymer film around a molded container.
  • the shape, size and material of the molded container are not particularly limited and can be appropriately selected according to the purpose.
  • the method for winding the crystalline polymer film around the container is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a film that has been processed into a cylindrical shape in advance is placed on the container, For example, after winding directly, the winding end is cut and heat-sealed or glued.
  • the shrinking step is a step of shrinking (shrinking) the wound crystalline polymer film.
  • the thickness of the crystalline polymer film in the container of the present invention obtained by winding and shrinking (shrinking) the crystalline polymer film obtained as described above is not particularly limited and can be appropriately selected depending on the purpose. However, it is preferably 45 ⁇ m to 300 ⁇ m, more preferably 80 ⁇ m to 200 ⁇ m, and particularly preferably 80 ⁇ m to 120 ⁇ m. If the thickness of the crystalline polymer film in the container is less than 45 ⁇ m, the strength may be insufficient and the film may be easily deformed, or the generation of voids may not be stable, and it may be difficult to obtain sufficient reflection and light shielding functions. If it exceeds 300 ⁇ m, it may be difficult to process and wrinkles may occur. On the other hand, when the thickness of the crystalline polymer film in the container is within the particularly preferable range, it is advantageous in that the workability is excellent and a sufficient function can be expressed.
  • limiting in particular as (x100) Although it can select suitably according to the objective, 30% or more is preferable, 50% or more is more preferable, and 70% or more is especially preferable.
  • the ratio is less than 30%, the effect of the shrink film of the present invention may be reduced.
  • the ratio is within the particularly preferable range, it is advantageous in that the effect of the shrink film of the present invention can be sufficiently exhibited.
  • the arrangement of the crystalline polymer film in a container in which the crystalline polymer film is wound and contracted (shrinked) is not particularly limited and can be appropriately selected depending on the purpose.
  • the trunk portion of the container is preferable in that the shrink treatment is easily performed uniformly and the shrink film is less likely to be wrinkled.
  • the barrel portion occupies a large area of the container and is preferable in that the effect of winding the film is easily obtained.
  • FIG. 5A is a cross-sectional view taken along the line AA ′ of the crystalline polymer film in FIG. 4A, taken with an electron microscope of the crystalline polymer film of Production Example A-1-1, and the crystalline polymer film in FIG. 4A.
  • FIG. 5B shows a cross-sectional view of BB ′.
  • the said draw ratio generally refers to the speed difference of an extending
  • the speed difference of a roll is not in inverse proportion to the thickness of a stretched film.
  • Table 1 shows the composition of the films of Production Examples A-1-1 to A-1-2 and Comparative Production Example A-1.
  • Light blocking ratio (%) 100-[ ⁇ (light intensity of sample) / (intensity of blank light) ⁇ ⁇ 100]
  • the arithmetic average value T of the thicknesses calculated for the films of each of Production Examples A-1-1 to A-1-2 and Comparative Production Example A-1 was measured in the above “(1) Measurement of thickness”. It was the same as the thickness (see Table 2).
  • an arbitrary straight line parallel to the thickness direction was drawn in the cross-sectional photograph, and another straight line parallel to the single straight line and separated by 20 ⁇ T was drawn.
  • the cavity was orientating along the vertical extending
  • the center of the circle that minimizes the sum of squares of deviations from the reference circle arbitrarily set by the maximum square center method was determined, and this was set as the center of the cavity.
  • Table 2 shows the appearance, thickness, and h (ave) of the film.
  • Production Example A-2-1 Molding of preform using PET resin
  • a preform was injection molded using Unitika PET pellets (NEH2070).
  • the injection temperature was 295 ° C.-295 ° C.-260 ° C.-120 ° C.-40 ° C. in order from the nozzle tip, the injection pressure was 2,000 MPa, and the mold temperature was 15 ° C.
  • a preform of Production Example A-2-1 was obtained.
  • Production Example A-2-2 A preform was produced in the same manner as in Production Example A-2-1 except that the volume was optimized to be applied to the shapes of Examples A-4 and A-5 described later. It was.
  • Example A-1 Using the crystalline polymer film of Production Example A-1-2 and the preform of Production Example A-2-1, Container A-1 was produced as follows.
  • a predetermined printing was applied to the crystalline polymer film of Production Example A-1-2 (printed with the design of FIG. 13 using a pigment inkjet printer PX-9500S manufactured by EPSON), and then on the inner wall of the blow mold Along with it, it was cut into a fan shape so that it could be mounted without being overlapped or bent, and an adhesive was applied to make an insert film.
  • an adhesive an ethylene-ethyl acrylate copolymer adhesive was used.
  • the crystalline polymer film was attached to the jig shown in FIG. 8B and sucked in the direction of the arrow, thereby bringing the crystalline polymer film into close contact with the jig.
  • a jig having the crystalline polymer film adhered thereto was inserted into the mold from under the blow mold (closed). Then, after sucking the crystalline polymer film from the air suction slit of the blow mold, suction of the jig was stopped, and the jig was removed from the blow mold. As described above, the crystalline polymer film was placed in the blow mold.
  • the preform heated in advance in Production Example A-2-1 was set in a blow mold on which the crystalline polymer film was placed, with the convex part of the base (reference numeral 56 in FIG. 7) fitted.
  • the preform was heated by an infrared panel heater until the body of the preform reached 90 ° C.
  • the stretching rod is formed from the surface of the base of the blow mold by the hydraulic cylinder, and the ceiling of the blow mold (the bottom of the blow molded body is formed). It was lifted at a speed of 10 cm / 0.5 sec up to 80% of the distance to (part).
  • the crystalline polymer film and the container having the inner diameter of the opening of 75 mm, the height of 115 mm, the outer diameter of the bottom surface of 62 mm, and the thickness of the body portion of 200 ⁇ m (the thickness of the crystalline polymer film is about 100 ⁇ m)
  • a container A-1 see FIG. 9).
  • a crystalline polymer film was disposed on the entire body (side surface) of the container.
  • the ratio (B / A) of the surface area (A) of the container A-1 to the area (B) of the crystalline polymer film in the container A-1 was 0.83 (83%).
  • R about 42 mm in the small R portion of the container bottom.
  • Example A-2 In Example A-1, the point where the crystalline polymer film was placed in the blow mold and the container was blow-molded was that the container was blow-molded without placing the crystalline polymer film in the blow mold, Thereafter, a container A-2 was produced in the same manner as in Example A-1, except that the crystalline polymer film was wound around the container.
  • the thickness of the body part of the blow molded container was 100 ⁇ m.
  • the crystalline polymer film is wound around the container with an adhesive having a width of 2 mm at the beginning and end of winding of the crystalline polymer film (both ends of the crystalline polymer film; part A in FIG. 10). It was performed by winding it around a container after coating and blow molding (see FIG. 10).
  • Example A-3 In Example A-2, the crystalline polymer film of Production Example A-1-1 was used as the crystalline polymer film.
  • a container A-3 was produced in the same manner as in Example A-2, except that:
  • Example A-4 In Example A-1, the preform of Production Example A-2-1 was used as the preform in place of the preform of Production Example A-2-2.
  • a container A-4 was produced in the same manner as in Example A-1, except for changing from to FIG. 11 below.
  • the container A-4 has an opening with a cross section of ⁇ 70 mm, a height of 100 mm, a bottom cross section of ⁇ 50 mm, and a body portion having a thickness of 500 ⁇ m (the thickness of the crystalline polymer film is about 120 ⁇ m) (FIG. 11). reference).
  • a crystalline polymer film was disposed on the entire body (side surface) of the container.
  • Example A-5 In Example A-1, the preform of Production Example A-2-1 was used as the preform in place of the preform of Production Example A-2-2. To A in the same manner as in Example A-1, except for changing to FIG. 12 below.
  • the container A-5 has an opening with a section of 70 mm, a height of 120 mm, a bottom section of 40 mm, and a body thickness of 500 ⁇ m (the crystalline polymer film has a thickness of about 120 ⁇ m) (FIG. 12). reference).
  • a crystalline polymer film was disposed on the entire body (side surface) of the container.
  • Example A-6 A container A-6 was produced in the same manner as in Example A-2 except that the crystalline polymer film was not used in Example A-2.
  • Example A-2 In Example A-1, except that the crystalline polymer film of Production Example A-1-2 was used, except that the crystalline polymer film containing no cavity of Comparative Production Example A-1 was used.
  • Container A-7 was produced in the same manner as Example A-1.
  • Table 3 summarizes the configurations of the containers of Examples A-1 to A-5 and Comparative Examples A-1 to A-2.
  • thermo insulation heat retention
  • The difference between the outer surface of the container after 3 minutes and the hot water temperature is 10 ° C. or more.
  • delta The difference of the outer surface of a container and warm water temperature after 3 minutes is 5 degreeC or more and less than 10 degreeC.
  • X The difference between the outer surface of the container after 3 minutes and the hot water temperature is less than 5 ° C.
  • the thickness of the cavity portion measured from the electron microscope cross-sectional photograph of the film after being wound around the container is 50% of the thickness of the cavity portion measured from the electron microscope cross-sectional photograph of the film before being wound around the container. Greater than 80%.
  • X The thickness of the cavity part measured from the electron microscope cross-sectional photograph of the film after being wound around the container is 50% with respect to the thickness of the cavity part measured from the electron microscope sectional photograph of the film before being wound around the container. Less than (the cavity has been crushed).
  • the containers A-1 to A-5 of Examples A-1 to A-5 wound with the crystalline polymer film containing the cavities inside are highly crystalline. It was found that the container is comprehensively superior compared to the containers A-6 to A-7 of Comparative Examples A-1 to A-2 in which no molecular film is wound. It was also found that Example A-1 in which the crystalline polymer film and the container were integrated had superior strength compared to Examples A-2 to A-3 that were not integrated. Further, in the containers A-1 to A-4 of Examples A-1 to A-4 in which the corner portion R on the side surface of the container is 1 mm or more, the corner cavity is particularly retained.
  • Example A-1 having a high ratio ((B / A) ⁇ 100) is particularly preferable. I found it excellent. From the above results, the containers of Examples A-1 to A-5, which are the containers of the present invention, are excellent in strength, light-shielding properties, and heat-retaining properties, and can be easily compressed to reduce the volume and recycled. It was found that it was excellent in design and design.
  • Isotactic polypropylene (manufactured by Aldrich) having a weight average molecular weight of 190,000, a number average molecular weight of 50,000, Tg of -13 ° C., and a melting point of 170 ° C. to 175 ° C. at 210 ° C. using a melt extruder. And solidified with a casting drum to obtain a polymer molded body (polymer film) having a thickness of 363 ⁇ m. This polymer molded body (polymer film) was uniaxially stretched (longitudinal stretching).
  • a white ink (entire solid printing) layer is NT-Hilamic Conk White (manufactured by Dainichi Seika Co., Ltd.), using a halftone plate with a plate depth of 28 ⁇ m and a line number of 175 lines.
  • Gravure printing was performed by two overprints of solid printing.
  • a white ink (full solid printing) layer As a white ink (full solid printing) layer containing aluminum paste, NT-Hilamic Conk White (manufactured by Dainichi Seika Co., Ltd., aluminum paste content: 1% by weight) ), A solid gravure printing was performed using a halftone plate having a plate depth of 28 ⁇ m and a line number of 175 lines.
  • the light-shielding pressure-sensitive adhesive prepared in the preparation of the light-shielding pressure-sensitive adhesive is applied to release paper (SP-8E, manufactured by Lintec Corporation) with an applicator so as to have a dry film thickness of 25 ⁇ m, and is circulated with hot air at 100 ° C. Machine dried for 2 minutes. After drying, the film was affixed to the ultraviolet-absorbing shrink film prepared in the preparation of the ultraviolet-absorbing shrink film to prepare a film of Comparative Production Example B-2.
  • Table 5 summarizes the film configurations and the like of Production Examples B-1 to B-5 and Comparative Production Examples B-1 to B-2.
  • the films of the above Production Examples B-1 to B-5 and Comparative Production Examples B-1 to B-2 were made of aluminum bottles (350 mL containers, A thin temperature sensor (reference numeral 63 in FIG. 14A) having a diameter of about 0.5 mm is attached to the side surface of reference numeral 61) in FIG. 14A, and a PET adhesive film (10 mm ⁇ 10 mm, thickness 10 ⁇ m, Affixing was performed using reference numeral 64) in FIG. 14A.
  • the temperature sensor was also attached to the opposite side of the bottle at 180 ° in the same manner, and was attached to a total of two places (reference numerals 63 (1) and 63 (2) in FIG.
  • FIGS. 14A to 14B are views of the bottle as seen from the front
  • FIG. 14B is a view of the bottle as seen from above.
  • Water was put into this bottle, and it was put into a minus 20 ° C. freezer for 10 hours to freeze the water. At this time, the bottle lid was not capped to prevent the bottle from bursting.
  • the bottle was taken out into a room at 25 ° C., and the temperature sensor part was held with a finger (one temperature sensor with the thumb and the other temperature sensor with the middle finger) to lift the container (see FIG. 14C). .
  • the heat insulation was evaluated according to the following evaluation criteria. The results are shown in Table 6.
  • The temperature sensor showed 5 ° C. or higher, and the bottle could be held for 5 minutes.
  • X The temperature sensor showed below 0 degree
  • Example B-1 ⁇ Winding process>
  • a PET bottle shown in FIG. 15 (the thickness of the straight body portion from XY to about 160 ⁇ m) was produced by injection molding and used.
  • the crystalline polymer film obtained in Production Example B-1 was wound around the container once.
  • the thickness of the crystalline polymer film in the container B-1 is 66 ⁇ m ⁇ 1 turn, and the surface area (A) of the container B-1 and the area (B) of the crystalline polymer film in the container B-1 Ratio ((B / A) ⁇ 100) to 75%.
  • the crystalline polymer film in the container B-1 was placed on the side surface.
  • Example B-2 to B-5 Comparative Examples B-1 to B-2
  • Example B-1 the points using the crystalline polymer film obtained in Production Example B-1 were obtained in Production Examples B-2 to B-5 and Comparative Production Examples B-1 to B-2.
  • Containers of Examples B-2 to B-5 and Comparative Examples B-1 to B-2 were produced in the same manner as Example B-1, except that the obtained film was replaced.
  • Example B-6 In Example B-1, the ratio of the surface area (A) of the container to the area (B) of the crystalline polymer film in the container ((B / A) ⁇ 100) was set to 75%.
  • a container of Example B-6 was produced in the same manner as Example B-1, except that the changes were made.
  • Example B-7 In Example B-1, the ratio of the surface area (A) of the container to the area (B) of the crystalline polymer film in the container ((B / A) ⁇ 100) was set to 75%.
  • a container of Example B-7 was produced in the same manner as Example B-1, except that the changes were made.
  • Table 7 summarizes the configurations of the containers of Examples B-1 to B-7 and Comparative Examples B-1 to B-2.
  • Table 8 shows the results of comprehensive evaluation based on the following evaluation criteria based on the evaluation results of light shielding properties, heat insulating properties, and strength.
  • There is no x or ⁇ in each evaluation item.
  • Each evaluation item has at least one ⁇ .
  • X There is at least one x in each evaluation item.
  • the containers of Examples B-1 to B-7 which are the containers of the present invention, are excellent in strength, light-shielding property, and heat retention, and can be easily compressed to reduce the volume, and can be recycled. It was found to be excellent in performance.
  • the container of the present invention is excellent in strength, light-shielding property, and heat retaining property, and can be easily compressed to reduce the volume, is excellent in recyclability, and is also excellent in design properties. Can be suitably used.

Abstract

Disclosed is a container obtained by winding a container with a crystalline polymer film which comprises a polymer having crystallinity and has elongated voids inside that are in such a state that the lengthwise directions of the voids have been oriented in a first direction, wherein in a cross-section of the crystalline polymer film which is orthogonal to the orientation direction of the voids, ten voids which are the shortest in the distance from the center of the void to the surface of the crystalline polymer film satisfy the following relationship (1): h(avg) > T/100 (1) where h(avg) is the arithmetic mean value of calculated distances h(i) from the respective centers to the surface of the crystalline polymer film.

Description

容器、及び容器の製造方法Container and method for manufacturing container
 本発明は、容器の側面に、内部に空洞を含有する結晶性高分子フィルムを巻回してなる容器、及び該容器の製造方法に関する。 The present invention relates to a container in which a crystalline polymer film containing a cavity is wound around a side surface of the container, and a method for manufacturing the container.
 従来、乳・乳飲料、ビール、ビタミン飲料、ジュ-ス、炭酸飲料、水、お茶等の飲料水、あるいは、オイル、調味料、その他種々の液状食品を充填包装するために、種々の形態からなるプラスチック製ボトル、ガラス瓶、金属缶等(以下「容器」という)が開発されている。これらの容器の表面には、製品の情報などを記載したフィルムが巻回されている。 Conventionally, from various forms to fill and package milk, milk drinks, beer, vitamin drinks, juice, carbonated drinks, water such as water and tea, or oil, seasonings and other various liquid foods Plastic bottles, glass bottles, metal cans (hereinafter referred to as “containers”) have been developed. Films describing product information and the like are wound around the surfaces of these containers.
 このようなフィルムを容器に巻回する方法としては、例えば、金型内にラベルを配置した状態でパリソンにガスを吹き込んでボトルを成形する、インモールドラベルブロー成形方法(例えば、特許文献1参照)などが提案されている。この方法によれば、金型に複雑な加工やラベル材質に制限を加えることなく、さらに短い冷却時間にて、ラベルにしわや浮きを起こさないようにすることができる。 As a method of winding such a film around a container, for example, an in-mold label blow molding method in which a bottle is formed by blowing gas into a parison with a label placed in a mold (see, for example, Patent Document 1). ) Etc. have been proposed. According to this method, it is possible to prevent the label from wrinkling or floating in a shorter cooling time without adding complicated processing to the mold or limiting the label material.
 また、容器の表面に、容器の保護、意匠性の付与、結束、ラベル貼り等の目的で、上記容器の口部、肩部、胴部等の一部または全部を迅速に被覆、あるいは、結束する包装材料として、フィルムを収縮させたもの(以下、「シュリンクフィルム」と称することがある)が、知られている。 Moreover, on the surface of the container, for the purpose of protecting the container, imparting design properties, binding, labeling, etc., a part or all of the mouth, shoulder, trunk, etc. of the container is quickly covered or bound. As a packaging material to be used, a contracted film (hereinafter sometimes referred to as “shrink film”) is known.
 シュリンクフィルムによる包装方法としては、例えば、筒状、若しくは、袋状のフィルムに少し余裕を持たせて一次包装した後、熱風、スチーム等によって該フィルムを容器外周面に収縮(シュリンク)させる方法が知られている。また、フィルムをある程度緊張状態で包装し、フィルムの端を容器の底部に折り込んで、該折り込み部をフィルム同士の自己密着力または熱融着により一次包装した後、シュリンク処理させてフィルムの弛みやシワを除去するストレッチシュリンク等の方法が知られている。 As a packaging method using a shrink film, for example, there is a method in which a tubular or bag-like film is primarily packaged with a slight margin, and then the film is contracted (shrinked) to the outer peripheral surface of the container by hot air, steam, or the like. Are known. In addition, the film is wrapped in a certain degree of tension, the end of the film is folded into the bottom of the container, and the folded portion is primarily packaged by self-adhesion between the films or by heat-sealing, and is then subjected to a shrink treatment to prevent the film from loosening. A method such as stretch shrink for removing wrinkles is known.
 シュリンク包装は、角状、丸状、ひょうたん状等のあらゆる形状の容器にフィットすることができるため、容器形状の選択を広くとることができるものである。また、シュリンクフィルムと容器を全面的に、直接接着していないため、容器と完全に分離することもできるものである。このため、環境面においても、リサイクルの観点から、容器と分別可能なシュリンクフィルムは、今後益々需要の拡大が期待される。シュリンク包装としては、これらの容器の全面、密封する部分に、無色のシュリンクフィルムや、商品名、製造業者名、内容物、デザインを表示する機能を付加するために、印刷を施したシュリンクフィルムで容器を包装することも行われている。 Shrink wrapping can fit any shape of container, such as square, round, gourd, etc., so the container shape can be selected widely. In addition, since the shrink film and the container are not directly bonded to each other, they can be completely separated from the container. For this reason, from the viewpoint of recycling, the demand for shrinkable film that can be separated from containers is expected to increase. As shrink wrapping, a colorless shrink film or printed shrink film to add a function to display the product name, manufacturer name, contents, and design on the entire surface of these containers and the sealed part. Containers are also packaged.
 また、ビール、化粧品、健康食品、サプリメント、医薬品等の遮光性を必要とする内容物を外部光より保護するために、着色のシュリンクフィルムを用いることによって、遮光性の機能を付加したシュリンクフィルムで容器全体を包装することも行われている。
 シュリンクフィルムに遮光性を付与する技術として、例えば、シュリンクフィルムに金属(アルミニウム等)の薄膜層を積層すること(特許文献2参照)、シュリンクフィルムにアルミペーストを含有する白色インキ層を積層すること(特許文献3参照)、紫外線吸収剤を含むシュリンクフィルムに更に酸化チタンを含有する遮光性粘着剤を積層すること(特許文献4参照)等がある。これらの技術は、シュリンクフィルムに遮光材層を積層することによって遮光性を付与したものであり、シュリンクフィルム自身が遮光性を有するものではなかった。さらに、顔料、染料、金属、無機粒子等を含有する層を有する積層体であって、簡易な構成のものでないため、リサイクルが困難であるという問題がある。
Moreover, in order to protect the contents which need light-shielding properties, such as beer, cosmetics, health food, a supplement, and a pharmaceutical, from external light, it is a shrink film which added the light-shielding function by using a colored shrink film. The entire container is also packaged.
As a technique for imparting light shielding properties to the shrink film, for example, a thin film layer of metal (such as aluminum) is laminated on the shrink film (see Patent Document 2), and a white ink layer containing an aluminum paste is laminated on the shrink film. (Refer to Patent Document 3), and a light-shielding pressure-sensitive adhesive containing titanium oxide is further laminated on a shrink film containing an ultraviolet absorber (refer to Patent Document 4). These techniques provide light shielding properties by laminating a light shielding material layer on the shrink film, and the shrink film itself does not have light shielding properties. Furthermore, it is a laminate having a layer containing pigments, dyes, metals, inorganic particles and the like, and has a problem that recycling is difficult because it is not a simple structure.
 また、これまでのシュリンクフィルムには、容器の内容物の保存性を向上するために必要な断熱性を有するものは提供されていないのが現状である。 In addition, the present shrink film has not been provided with a heat insulation necessary for improving the storage stability of the contents of the container.
 更に、昨今、オゾン層破壊あるいは地球の温暖化等、環境問題が社会的問題となりクローズアップされている。こういう状況下で、企業が作り出す製品にも環境問題への配慮がなされているかどうかが、消費者のニーズにこたえるという観点で極めて重要になっている。そのため、PETボトルに代表される樹脂製飲料容器も、使い捨てにせず、リサイクルによる資源の有効活用が進められている。
 このようにリサイクルによって再度製品として生まれ変われば、捨てられてしまう資源も、有効活用できるが、例えばPETボトルの製造といった工程でも多くのエネルギーを必要とするため、製品を作る過程、あるいはそれをリサイクルする過程で出来るだけエネルギーを使わないようにして、更に、二酸化炭素の排出量を抑制しようという『環境に優しい商品を提供する』方向の模索も始まっている。その1つの方法として、PETボトルの減量(使用する樹脂の量を減らすこと)がある。
 例えば、PETボトルの場合、通常500mL容器で20g程度のPET樹脂を使用している。この量を減ずることが出来れば、同じ500mLPETボトル入り飲料を製造するにしても、樹脂の加工に要するエネルギーを削減することが出来るため、資源やエネルギーを節約することが出来る。リサイクルの際にもエネルギーを節約でき、二酸化炭素排出量を削減することが出来ると考えられる。
Furthermore, recently, environmental problems such as ozone layer destruction or global warming have become a social issue and are being highlighted. Under such circumstances, it is extremely important from the viewpoint of responding to consumer needs whether environmental issues are taken into consideration for products produced by companies. For this reason, plastic beverage containers represented by PET bottles are not disposable, and effective use of resources by recycling is being promoted.
In this way, if the product is reborn as a product by recycling, the resources that are discarded can be used effectively, but for example, the process of manufacturing a PET bottle, or recycling it, requires a lot of energy even in the process of manufacturing PET bottles. The search for the direction of “providing environmentally friendly products” is also underway to reduce carbon dioxide emissions by using as little energy as possible in the process. One method is to reduce the amount of PET bottles (to reduce the amount of resin used).
For example, in the case of a PET bottle, usually about 20 g of PET resin is used in a 500 mL container. If this amount can be reduced, even if the same 500 mL PET bottled beverage is manufactured, the energy required for processing the resin can be reduced, so that resources and energy can be saved. It is thought that energy can be saved even during recycling, and carbon dioxide emissions can be reduced.
 また、PETボトルなどの容器をリサイクルする際には、容器をつぶして工場へと搬送する。その際、容器が硬いとなかなかつぶせずに余計にエネルギーを要したり、十分につぶすことができないと、嵩高いまま運送しなければならずエネルギーの無駄使いだけではなく、搬送の効率が悪くなり、コストアップになる。したがって、容器をつぶしやすくするためにも、樹脂の使用量を減らすことが求められている。 Also, when recycling containers such as PET bottles, they are crushed and transported to the factory. At that time, if the container is hard, it will not be crushed so much that it will require more energy, or if it cannot be crushed sufficiently, it will have to be transported while being bulky, and not only will it be wasted energy, but also the efficiency of conveyance will be reduced. Cost up. Therefore, in order to facilitate crushing the container, it is required to reduce the amount of resin used.
 しかしながら、ただ樹脂の使用量を削減するのでは、容器の強度が低下してしまうという問題がある。 However, simply reducing the amount of resin used has the problem of reducing the strength of the container.
 例えば、上部が開放しているコップ状の容器では、容器がたわみやすく、容器の厚みを薄くし難いという問題がある。
 上部が大きく開放している樹脂製容器、例えばコップ型の容器の場合、容器を持ち上げる際に、図1に示すような保持の仕方をすることが多い。この際、親指部分に比較的力が集中するため、この部分が柔らかいと、容器を保持できなくなる。更にこの状態から内部に入っている飲料などを飲もうとすると、容器を傾ける必要があり、その場合、容器を支持している点を中心に容器を折り曲げる力が加わるため、特に親指部分に力が集中する。もし、容器が脆弱であると、指に力を入れた際に、容器が容易に変形して中の飲料などがこぼれてしまったり、容器の変形を抑えようと指の力を緩めると容器を落としてしまう懸念がある。
 容器の保持に大きな注意を払わないと、うまく持っていられないような商品では、その使用に際して非常に問題があり、特に指の力のコントロールが容易でない小児、児童、高齢者などに対しては、容器を持つことに格段の注意を払わなくても、普通に容器が保持できることが望ましい。
 通常、コップ形状容器の開放部分はヒートシールによる密閉や、フタのはめ込み、さらには口に接した時の口当たりを良くすると共に飲料がこぼれないようにするために、開口部周囲にリムを設けて開口部の強度アップを図っていることが多い。
 しかしながら、容器胴体部分に関しては、成形加工の容易性、コストダウン、ラベル巻きつけの容易性、などの観点から特殊な形状が付与しにくく、更に特殊な形状を付与すると使用樹脂量が大幅に増えてしまい、エコではなくなってしまう(エコを訴求し難くなる)という問題があり、それも薄肉化を促進し難い要因のひとつとなっている。
For example, in a cup-shaped container having an open top, there is a problem that the container is easily bent and it is difficult to reduce the thickness of the container.
In the case of a resin container having an open upper part, for example, a cup-shaped container, when the container is lifted, the holding method shown in FIG. 1 is often used. At this time, since the force is relatively concentrated on the thumb portion, if this portion is soft, the container cannot be held. Furthermore, when trying to drink beverages or the like contained inside from this state, it is necessary to tilt the container. In this case, a force to bend the container around the point where the container is supported is applied, so the force is applied particularly to the thumb part. Concentrate. If the container is fragile, when a force is applied to the finger, the container easily deforms and the beverage inside spills out, or when the finger is loosened to suppress the deformation of the container There is a concern of dropping.
For products that cannot be held well unless great care is taken to hold the container, there are very problems in use, especially for children, children, elderly people, etc. whose finger force control is not easy It is desirable that the container can be held normally without paying special attention to having the container.
Usually, the open part of the cup-shaped container is sealed by heat sealing, fitted with a lid, and also provided with a rim around the opening to improve the mouth feel when touching the mouth and to prevent the beverage from spilling. In many cases, the strength of the opening is increased.
However, with regard to the container body, it is difficult to give a special shape from the viewpoint of ease of molding, cost reduction, ease of label winding, etc., and if a special shape is given, the amount of resin used will increase significantly. As a result, there is a problem that it is no longer eco-friendly (it is difficult to appeal for eco-friendly), which is one of the factors that make it difficult to promote thinning.
 また、例えば、PETボトルの容器の場合、容器を持つ際に、図2に示すような保持の仕方をすることが多い。この際、親指部分に比較的力が集中するため、この部分が加えられた力に耐えられずに、形状を維持できないほど柔らかいと、容器を保持できなくなる。更にこの状態から内部に入っている飲料などを飲もうとすると、容器を傾ける必要があり、その場合、容器を支持している点を中心に容器を折り曲げる力が加わるため、特に親指部分(図3の矢印)に力が集中する(図3参照)。もし、容器が脆弱であると、容易に変形して中の飲料などがこぼれてしまったり、容器を保持できなくなる懸念がある。
 通常、容器の開放部分はヒートシールによる密閉や、フタのはめ込み、さらには口に付けた時の口当たりを良くすると共に飲料がこぼれないようにするために、開口部周囲にリムを設けて開口部の強度アップを図っている。
 しかしながら。容器胴体部分に関しては、成形加工の容易性、コストダウン、ラベル巻きつけの容易性、などの観点から特殊な形状が付与しにくく、それも薄肉化を促進し難い要因のひとつとなっている。
For example, in the case of a PET bottle container, the holding method shown in FIG. 2 is often used when the container is held. At this time, since the force is relatively concentrated on the thumb portion, if the portion cannot withstand the applied force and is so soft that the shape cannot be maintained, the container cannot be held. In addition, when trying to drink a beverage or the like contained inside from this state, it is necessary to tilt the container, and in this case, a force is applied to bend the container around the point supporting the container. The force concentrates on the arrow 3 (see FIG. 3). If the container is fragile, there is a concern that the container may be easily deformed to spill the beverage or the like, or the container cannot be held.
Usually, the open part of the container is sealed by heat sealing, the lid is fitted, and in order to improve the mouth feel when attached to the mouth and to prevent the beverage from spilling, a rim is provided around the opening to provide an opening. The strength is improved.
However. As for the container body portion, it is difficult to give a special shape from the viewpoints of ease of molding processing, cost reduction, label winding ease, and the like, which is one of the factors that make it difficult to promote thinning.
 したがって、強度、遮光性、及び保温性に優れると共に、容易に圧縮して体積を減ずる(減容と称する)ことが出来て、リサイクル性に優れる容器、及び該容器の製造方法の速やかな提供が強く求められているのが現状である。 Therefore, it is possible to quickly provide a container excellent in strength, light-shielding property, and heat retaining property, and easily compressed to reduce the volume (referred to as volume reduction), and excellent in recyclability, and a method for producing the container. The current situation is strongly demanded.
特開平10-128837号公報JP-A-10-128837 特開2003-200965号公報Japanese Patent Laid-Open No. 2003-200965 特開2003-200966号公報Japanese Patent Laid-Open No. 2003-200966 特開2007-83518号公報JP 2007-83518 A
 本発明は、前記従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、強度、遮光性、及び保温性に優れると共に、容易に圧縮して体積を減ずることが出来て、リサイクル性に優れる容器、及び該容器の製造方法を提供することを目的とする。 This invention makes it a subject to solve the said conventional problems and to achieve the following objectives. That is, an object of the present invention is to provide a container that is excellent in strength, light-shielding property, and heat retention, can be easily compressed to reduce the volume, and is excellent in recyclability, and a method for producing the container. To do.
 前記課題を解決するため、本発明者らは鋭意検討した結果、以下のような知見を得た。即ち、PBT(ポリブチレンテレフタレート)、PHT(ポリヘキサメチレンテレフタレート)、PBS(ポリブチレンサクシネート)等の結晶性を有するポリマーからなるポリマー成形体(ポリマーフィルム)を2倍~10倍高速延伸すると、空洞含有フィルムになり、前記フィルム内部の空洞構造のため、保温性を有するという知見、及び、該フィルムが延伸により結晶化が促進されるためと考えられるが、該フィルムを巻回してなる容器の強度を増加することができるという知見、更に多層ボイド構造を発現するため、光の多重反射に起因すると考えられる、広い波長範囲にわたる、高い光線反射特性(遮光性)を有すると言う知見、また、前記フィルム自体が延伸により作製されていることから、収縮(シュリンク)性に優れ、更に、内部の空洞構造のため、該フィルムを巻回し、シュリンクさせた容器の強度を増加することができるという知見である。 In order to solve the above-mentioned problems, the present inventors have made extensive studies and obtained the following knowledge. That is, when a polymer molded body (polymer film) made of a polymer having crystallinity such as PBT (polybutylene terephthalate), PHT (polyhexamethylene terephthalate), PBS (polybutylene succinate) or the like is stretched at a speed of 2 to 10 times, It becomes a void-containing film, and because of the hollow structure inside the film, it is considered that the film has heat retention, and the crystallization is promoted by stretching, but the container is formed by winding the film. The knowledge that the intensity can be increased, and further the knowledge that it has a high light reflection characteristic (light shielding property) over a wide wavelength range, which is considered to be caused by multiple reflection of light, in order to express a multilayer void structure, Since the film itself is produced by stretching, it has excellent shrinkage, For internal cavity structure, winding the film, a finding that it is possible to increase the strength of the container obtained by shrink.
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 結晶性を有するポリマーからなり、長尺状の空洞をその長さ方向が第1の方向に配向した状態で内部に含有する結晶性高分子フィルムを容器に巻回してなる容器であって、
 前記結晶性高分子フィルムにおける、前記空洞の配向方向に直交する断面において、前記空洞の中心から前記結晶性高分子フィルムの表面までの距離が最も短い10個の前記空洞について、各中心から前記結晶性高分子フィルムの表面までの距離h(i)を算出し、算出された各前記距離h(i)の算術平均値h(avg)が、下記式(1)の関係を満たすことを特徴とする容器である。
 h(avg)>T/100 ・・・(1)
 但し、前記式(1)中、Tは、前記断面における厚みの算術平均値を表し、10個の前記空洞は、前記厚み方向に平行な任意の一の直線と、前記一の直線に対し平行でかつ20×Tだけ離れて位置する他の直線とで挟まれた領域内に存在する空洞の中から選択される。
<2> 容器側面の角部の曲率半径Rが、1mm以上である前記<1>に記載の容器である。
<3> 容器における結晶性高分子フィルムの厚みが、30μm以上500μm以下である前記<1>から<2>のいずれかに記載の容器である。
<4> 容器の表面積(A)と、容器における結晶性高分子フィルムの面積(B)との比((B/A)×100)が、25%以上である前記<1>から<3>のいずれかに記載の容器である。
<5> 結晶性高分子フィルムと、容器とが一体化してなる前記<1>から<4>のいずれかに記載の容器である。
<6> 容器に巻回した結晶性高分子フィルムを収縮させてなる前記<1>に記載の容器である。
<7> 結晶性高分子フィルムの150℃の熱収縮率が、第1の方向において10%以上、前記第1の方向と直交する第2の方向において5%以下である前記<6>に記載の容器である。
<8> 容器における結晶性高分子フィルムの厚みが、45μm以上300μm以下である前記<6>から<7>のいずれかに記載の容器である。
<9> 容器の表面積(A)と、容器における結晶性高分子フィルムの面積(B)との比((B/A)×100)が、30%以上である前記<6>から<8>のいずれかに記載の容器である。
<10> 波長300nm~780nmから選択される1つの波長の光に対する結晶性高分子フィルムの透過率が10%以下である前記<6>から<9>のいずれかに記載の容器である。
<11> 結晶性を有するポリマーからなり、長尺状の空洞をその長さ方向が第1の方向に配向した状態で内部に含有する結晶性高分子フィルムをブロー金型に配置する工程と、
 前記結晶性高分子フィルムを配置したブロー金型にプリフォームを配置する工程と、
 前記プリフォームをブローする工程とを含み、
 前記結晶性高分子フィルムにおける、前記空洞の配向方向に直交する断面において、前記空洞の中心から前記結晶性高分子フィルムの表面までの距離が最も短い10個の前記空洞について、各中心から前記結晶性高分子フィルムの表面までの距離h(i)を算出し、算出された各前記距離h(i)の算術平均値h(avg)が、下記式(1)の関係を満たすことを特徴とする容器の製造方法である。
 h(avg)>T/100 ・・・(1)
 但し、前記式(1)中、Tは、前記断面における厚みの算術平均値を表し、10個の前記空洞は、前記厚み方向に平行な任意の一の直線と、前記一の直線に対し平行でかつ20×Tだけ離れて位置する他の直線とで挟まれた領域内に存在する空洞の中から選択される。
<12> 結晶性を有するポリマーからなり、長尺状の空洞をその長さ方向が第1の方向に配向した状態で内部に含有する結晶性高分子フィルムを容器に巻回する工程と、
 前記巻回した結晶性高分子フィルムを収縮させる工程とを含み、
 前記結晶性高分子フィルムにおける、前記空洞の配向方向に直交する断面において、前記空洞の中心から前記結晶性高分子フィルムの表面までの距離が最も短い10個の前記空洞について、各中心から前記結晶性高分子フィルムの表面までの距離h(i)を算出し、算出された各前記距離h(i)の算術平均値h(avg)が、下記式(1)の関係を満たすことを特徴とする容器の製造方法である。
 h(avg)>T/100 ・・・(1)
 但し、前記式(1)中、Tは、前記断面における厚みの算術平均値を表し、10個の前記空洞は、前記厚み方向に平行な任意の一の直線と、前記一の直線に対し平行でかつ20×Tだけ離れて位置する他の直線とで挟まれた領域内に存在する空洞の中から選択される。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> A container formed by winding a crystalline polymer film, which is made of a polymer having crystallinity and contains an elongated cavity inside with the length direction oriented in the first direction. And
In the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are the crystal from each center. The distance h (i) to the surface of the conductive polymer film is calculated, and the arithmetic average value h (avg) of each calculated distance h (i) satisfies the relationship of the following formula (1): Container.
h (avg)> T / 100 (1)
However, in said Formula (1), T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 × T apart.
<2> The container according to <1>, wherein a radius of curvature R of a corner portion on the side surface of the container is 1 mm or more.
<3> The container according to any one of <1> to <2>, wherein the crystalline polymer film in the container has a thickness of 30 μm or more and 500 μm or less.
<4> A ratio ((B / A) × 100) of the surface area (A) of the container and the area (B) of the crystalline polymer film in the container is 25% or more <1> to <3> It is a container in any one of.
<5> The container according to any one of <1> to <4>, wherein the crystalline polymer film and the container are integrated.
<6> The container according to <1>, wherein the crystalline polymer film wound around the container is contracted.
<7> The thermal contraction rate at 150 ° C. of the crystalline polymer film is 10% or more in the first direction and 5% or less in the second direction orthogonal to the first direction. The container.
<8> The container according to any one of <6> to <7>, wherein the crystalline polymer film in the container has a thickness of 45 μm or more and 300 μm or less.
<9> The ratio of the surface area (A) of the container to the area (B) of the crystalline polymer film in the container ((B / A) × 100) is 30% or more. <6> to <8> It is a container in any one of.
<10> The container according to any one of <6> to <9>, wherein a transmittance of the crystalline polymer film with respect to light having one wavelength selected from wavelengths of 300 nm to 780 nm is 10% or less.
<11> consisting of a polymer having crystallinity, and placing a crystalline polymer film containing a long cavity inside thereof in a state in which the length direction is oriented in the first direction in a blow mold;
Placing a preform in a blow mold in which the crystalline polymer film is placed;
Blowing the preform,
In the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are the crystal from each center. The distance h (i) to the surface of the conductive polymer film is calculated, and the arithmetic average value h (avg) of each calculated distance h (i) satisfies the relationship of the following formula (1): This is a method for manufacturing a container.
h (avg)> T / 100 (1)
However, in said Formula (1), T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 × T apart.
<12> consisting of a polymer having crystallinity, winding a crystalline polymer film containing a long cavity inside thereof in a state in which the length direction is oriented in the first direction;
Shrinking the wound crystalline polymer film,
In the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are the crystal from each center. The distance h (i) to the surface of the conductive polymer film is calculated, and the arithmetic average value h (avg) of each calculated distance h (i) satisfies the relationship of the following formula (1): This is a method for manufacturing a container.
h (avg)> T / 100 (1)
However, in said Formula (1), T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 × T apart.
 本発明によると、従来における諸問題を解決することができ、強度、遮光性、及び保温性に優れると共に、容易に圧縮して体積を減ずることが出来て、リサイクル性に優れる容器、及び該容器の製造方法を提供することができる。 According to the present invention, various conventional problems can be solved, and the container is excellent in strength, light-shielding property, and heat retaining property, and can be easily compressed to reduce the volume, and the container is excellent in recyclability, and the container The manufacturing method of can be provided.
図1は、コップ型の容器を保持した様子を示す図である。FIG. 1 is a diagram illustrating a state in which a cup-shaped container is held. 図2は、PETボトルを保持した様子を示す図である。FIG. 2 is a diagram illustrating a state in which the PET bottle is held. 図3は、PETボトルを保持した様子を示す図である。FIG. 3 is a diagram illustrating a state in which a PET bottle is held. 図4Aは、アスペクト比を具体的に説明するための図であって、結晶性高分子フィルムの斜視図である。FIG. 4A is a diagram for specifically explaining the aspect ratio, and is a perspective view of a crystalline polymer film. 図4Bは、アスペクト比を具体的に説明するための図であって、図4Aにおける結晶性高分子フィルムのA-A’断面図である。FIG. 4B is a diagram for specifically explaining the aspect ratio, and is a cross-sectional view taken along the line A-A ′ of the crystalline polymer film in FIG. 4A. 図4Cは、アスペクト比を具体的に説明するための図であって、図4Aにおける結晶性高分子フィルムのB-B’断面図である。FIG. 4C is a diagram for specifically explaining the aspect ratio, and is a B-B ′ cross-sectional view of the crystalline polymer film in FIG. 4A. 図4Dは、フィルム表面から最も近くに位置する10個の空洞の、フィルム表面からの距離を測定する方法を説明するための図であって、図4AにおけるA-A’断面図である。FIG. 4D is a cross-sectional view taken along the line A-A ′ in FIG. 4A for explaining a method of measuring the distance from the film surface of ten cavities located closest to the film surface. 図5Aは、電子顕微鏡により撮影した図4Aにおける結晶性高分子フィルムのA-A’断面図である。5A is a cross-sectional view taken along the line A-A ′ of the crystalline polymer film in FIG. 4A taken with an electron microscope. 図5Bは、電子顕微鏡により撮影した図4Aにおける結晶性高分子フィルムのB-B’断面図である。FIG. 5B is a B-B ′ cross-sectional view of the crystalline polymer film in FIG. 4A taken by an electron microscope. 図6は、本発明の結晶性高分子フィルムの製造方法の一例を示す図であって、二軸延伸フィルム製造装置のフロー図である。FIG. 6 is a diagram showing an example of a method for producing a crystalline polymer film of the present invention, and is a flow diagram of a biaxially stretched film production apparatus. 図7は、ブロー工程を説明するための模式図である。FIG. 7 is a schematic diagram for explaining the blowing process. 図8Aは、扇形に加工した結晶性高分子フィルムを示す図である。FIG. 8A is a diagram showing a crystalline polymer film processed into a fan shape. 図8Bは、結晶性高分子フィルムを治具に取り付ける様子を示す図である。FIG. 8B is a diagram showing a state in which the crystalline polymer film is attached to a jig. 図8Cは、ブロー金型の模式図である。FIG. 8C is a schematic diagram of a blow mold. 図8Dは、ブロー金型の断面模式図である。FIG. 8D is a schematic cross-sectional view of a blow mold. 図9は、実施例A-1の容器を説明する図である。FIG. 9 is a view for explaining the container of Example A-1. 図10は、実施例A-2の容器への結晶性高分子フィルムを巻回する工程を説明する図である。FIG. 10 is a diagram illustrating a process of winding the crystalline polymer film around the container of Example A-2. 図11は、実施例A-4の容器の形状を説明する図である。FIG. 11 is a diagram illustrating the shape of the container of Example A-4. 図12は、実施例A-5の容器の形状を説明する図である。FIG. 12 is a view for explaining the shape of the container of Example A-5. 図13は、実施例A-1において印刷した意匠の説明図である。FIG. 13 is an explanatory diagram of the design printed in Example A-1. 図14Aは、耐熱性の測定を説明するための模式図である。FIG. 14A is a schematic diagram for explaining the measurement of heat resistance. 図14Bは、耐熱性の測定を説明するための模式図である。FIG. 14B is a schematic diagram for explaining the measurement of heat resistance. 図14Cは、耐熱性の測定を説明するための模式図である。FIG. 14C is a schematic diagram for explaining the measurement of heat resistance. 図15は、実施例B-1に用いた容器を説明するための模式図である。FIG. 15 is a schematic diagram for explaining the container used in Example B-1.
(容器)
 本発明の容器は、容器と、結晶性高分子フィルムとを少なくとも有し、必要に応じて更にその他の構成を有する。
(container)
The container of this invention has a container and a crystalline polymer film at least, and also has another structure as needed.
<結晶性高分子フィルム>
 前記結晶性高分子フィルムは、結晶性を有するポリマーからなり、長尺状の空洞をその長さ方向が第1の方向に配向した状態で内部に含有する。
<Crystalline polymer film>
The crystalline polymer film is made of a polymer having crystallinity, and contains a long cavity in a state where the length direction is oriented in the first direction.
-結晶性を有するポリマー-
 一般に、ポリマーは、結晶性を有するポリマーと非晶性(アモルファス)ポリマーとに分けられるが、結晶性を有するポリマーといえども100%結晶ということはなく、分子構造の中に長い鎖状の分子が規則的に並んだ結晶性領域と、規則的に並んでいない非結晶(アモルファス)領域とを含んでいる。
 したがって、本発明の前記結晶性を有するポリマーとしては、分子構造の中に少なくとも前記結晶性領域を含んでいればよく、結晶性領域と非結晶領域とが混在していてもよい。
-Polymer with crystallinity-
In general, polymers are classified into crystalline polymers and amorphous (amorphous) polymers, but even polymers with crystallinity are not 100% crystalline, and long chain molecules in the molecular structure. Includes a crystalline region regularly arranged and an amorphous region which is not regularly arranged.
Therefore, the polymer having crystallinity according to the present invention only needs to include at least the crystalline region in the molecular structure, and the crystalline region and the amorphous region may be mixed.
 前記結晶性を有するポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリオレフィン類(例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなど)、ポリアミド類(PA)(例えば、ナイロン-6など)、ポリアセタール類(POM)、ポリエステル類(例えば、PET、PEN、PTT、PBT、PPT、PHT、PBN、PES、PBSなど)、シンジオタクチック・ポリスチレン(SPS)、ポリフェニレンサルファイド類(PPS)、ポリエーテルエーテルケトン類(PEEK)、液晶ポリマー類(LCP)、フッ素樹脂、アイソタクティックポリプロピレン(isoPP)などが挙げられる。その中でも、耐久性、力学強度、製造およびコストの観点から、ポリオレフィン類、ポリエステル類、シンジオタクチック・ポリスチレン(SPS)、液晶ポリマー類(LCP)が好ましく、ポリオレフィン類、ポリエステル類がより好ましい。また、これらのうち2種以上のポリマーをブレンドしたり、共重合させたりして使用してもよい。 The polymer having crystallinity is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyolefins (for example, low density polyethylene, high density polyethylene, polypropylene, etc.), polyamides (PA) ( For example, nylon-6, etc., polyacetals (POM), polyesters (eg, PET, PEN, PTT, PBT, PPT, PHT, PBN, PES, PBS, etc.), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polyether ether ketones (PEEK), liquid crystal polymers (LCP), fluororesin, isotactic polypropylene (isoPP) and the like. Among these, polyolefins, polyesters, syndiotactic polystyrene (SPS), and liquid crystal polymers (LCP) are preferable, and polyolefins and polyesters are more preferable from the viewpoints of durability, mechanical strength, production, and cost. Two or more kinds of these polymers may be blended or copolymerized.
 前記結晶性を有するポリマーは、結晶性高分子フィルムの紫外領域における光透過率を低くする(反射特性を高める)ために、例えば、芳香環などの、紫外領域において吸収が高い官能基を含まないことが好ましい。したがって、前記ポリエステル類のなかでも、脂肪族ポリエステルが特に好ましい。 The polymer having crystallinity does not contain a functional group having high absorption in the ultraviolet region, such as an aromatic ring, for example, in order to reduce the light transmittance in the ultraviolet region of the crystalline polymer film (enhance reflection characteristics). It is preferable. Therefore, aliphatic polyester is particularly preferable among the polyesters.
 前記結晶性を有するポリマーの溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50Pa・s~700Pa・sが好ましく、70Pa・s~500Pa・sがより好ましく、80Pa・s~300Pa・sが更に好ましい。前記溶融粘度が50Pa・s~700Pa・sであると、溶融製膜時にダイヘッドから吐出される溶融膜の形状が安定し、均一に製膜しやすくなる点で好ましい。また、前記溶融粘度が50Pa・s~700Pa・sであると、溶融製膜時の粘度が適切になって押出ししやすくなったり、製膜時の溶融膜がレベリングされて凹凸を低減できたりする点で好ましい。
 ここで、前記溶融粘度は、プレートタイプのレオメーターやキャピラリーレオメーターにより測定することができる。
The melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa · s to 700 Pa · s, more preferably 70 Pa · s to 500 Pa · s, More preferably, it is 80 Pa · s to 300 Pa · s. The melt viscosity of 50 Pa · s to 700 Pa · s is preferred in that the shape of the molten film discharged from the die head during melt film formation is stable and uniform film formation is facilitated. Further, when the melt viscosity is 50 Pa · s to 700 Pa · s, the viscosity at the time of melt film formation becomes appropriate and the extrusion becomes easy, or the melt film at the time of film formation is leveled to reduce unevenness. This is preferable.
Here, the melt viscosity can be measured by a plate type rheometer or a capillary rheometer.
 前記結晶性を有するポリマーの極限粘度(IV)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.4が好ましく、0.6~1.2がより好ましく、0.7~1.0が更に好ましい。前記IVが0.4~1.4であると、製膜されたフィルムの強度が高くなり、効率よく延伸することができる点で好ましい。
 ここで、前記IVは、ウベローデ型粘度計により測定することができる。
The intrinsic viscosity (IV) of the polymer having crystallinity is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.4, preferably 0.6 to 1.2. More preferred is 0.7 to 1.0. When the IV is 0.4 to 1.4, the strength of the formed film is increased, and this is preferable in that the film can be efficiently stretched.
Here, the IV can be measured by an Ubbelohde viscometer.
 前記結晶性を有するポリマーの融点(Tm)としては、特に制限はなく、目的に応じて適宜選択することができるが、40℃~350℃が好ましく、100℃~300℃がより好ましく、100℃~260℃がより好ましい。前記融点が40℃~350℃であると、通常の使用で予想される温度範囲で形を保ちやすくなる点で好ましく、高温での加工に必要とされる特殊な技術を特に用いなくても、均一な製膜ができる点で好ましい。
 ここで、前記融点は、示差熱分析装置(DSC)により測定することができる。
The melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 40 ° C. to 350 ° C., more preferably 100 ° C. to 300 ° C., and more preferably 100 ° C. More preferred is ~ 260 ° C. The melting point of 40 ° C. to 350 ° C. is preferable in that the shape can be easily maintained in a temperature range expected for normal use, and even without using a special technique required for processing at a high temperature. It is preferable at the point which can form a uniform film.
Here, the melting point can be measured by a differential thermal analyzer (DSC).
--ポリエステル樹脂--
 前記ポリエステル類(以下、「ポリエステル樹脂」と称する。)は、エステル結合を主鎖の主要な結合鎖とする高分子化合物の総称を意味する。したがって、前記結晶性を有するポリマーとして好適な前記ポリエステル樹脂としては、前記例示したPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PTT(ポリトリメチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PPT(ポリペンタメチレンテレフタレート)、PHT(ポリヘキサメチレンテレフタレート)、PBN(ポリブチレンナフタレート)、PES(ポリエチレンサクシネート)、PBS(ポリブチレンサクシネート)だけでなく、ジカルボン酸成分とジオール成分との重縮合反応によって得られる高分子化合物が全て含まれる。
--- Polyester resin--
The polyesters (hereinafter referred to as “polyester resins”) mean a general term for polymer compounds having an ester bond as a main bond chain. Therefore, as the polyester resin suitable as the polymer having crystallinity, the exemplified PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), PPT ( Polycondensation of polypentamethylene terephthalate), PHT (polyhexamethylene terephthalate), PBN (polybutylene naphthalate), PES (polyethylene succinate), PBS (polybutylene succinate), dicarboxylic acid component and diol component All polymer compounds obtained by the reaction are included.
 前記ジカルボン酸成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸、オキシカルボン酸、多官能酸などが挙げられる。 The dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, oxycarboxylic acids, and polyfunctional acids. Can be mentioned.
 前記芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ナフタレンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホイソフタル酸などが挙げられ、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸が好ましく、テレフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸がより好ましい。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, and 5-sodium sulfoisophthalic acid. Acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are preferable, and terephthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are more preferable.
 前記脂肪族ジカルボン酸としては、例えば、シュウ酸、コハク酸、エイコ酸、アジピン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、マレイン酸、フマル酸が挙げられる。前記脂環族ジカルボン酸としては、例えば、シクロヘキサンジカルボン酸などが挙げられる。前記オキシカルボン酸としては、例えば、p-オキシ安息香酸などが挙げられる。前記多官能酸としては、例えば、トリメリット酸、ピロメリット酸などが挙げられる。前記脂肪族ジカルボン酸及び脂環族ジカルボン酸の中では、前記結晶性高分子フィルムが紫外領域を含む広い波長範囲において低い透過率(優れた反射特性)を有する点で、コハク酸、アジピン酸、シクロヘキサンジカルボン酸が好ましく、コハク酸、アジピン酸がより好ましい。 Examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, eicoic acid, adipic acid, sebacic acid, dimer acid, dodecanedioic acid, maleic acid, and fumaric acid. Examples of the alicyclic dicarboxylic acid include cyclohexane dicarboxylic acid. Examples of the oxycarboxylic acid include p-oxybenzoic acid. Examples of the polyfunctional acid include trimellitic acid and pyromellitic acid. Among the aliphatic dicarboxylic acids and alicyclic dicarboxylic acids, the crystalline polymer film has low transmittance (excellent reflection characteristics) in a wide wavelength range including the ultraviolet region, so that succinic acid, adipic acid, Cyclohexanedicarboxylic acid is preferable, and succinic acid and adipic acid are more preferable.
 前記ジオール成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族ジオール、脂環族ジオール、芳香族ジオール、ジエチレングリコール、ポリアルキレングリコールなどが挙げられ、これらの中でも、前記結晶性高分子フィルムが紫外領域を含む広い波長範囲において低い透過率(優れた反射特性)を有する点で、脂肪族ジオールが好ましい。 The diol component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic diols, alicyclic diols, aromatic diols, diethylene glycol, and polyalkylene glycols. Among these, An aliphatic diol is preferable in that the crystalline polymer film has low transmittance (excellent reflection characteristics) in a wide wavelength range including the ultraviolet region.
 前記脂肪族ジオールとしては、例えば、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコールなどが挙げられ、これらの中でも、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオールが特に好ましい。
 前記脂環族ジオールとしては、例えば、シクロヘキサンジメタノールなどが挙げられる。
 前記芳香族ジオールとしては、例えば、ビスフェノールA、ビスフェノールSなどが挙げられる。
Examples of the aliphatic diol include ethylene glycol, propane diol, butane diol, pentane diol, hexane diol, neopentyl glycol, triethylene glycol and the like. Among these, propane diol, butane diol, pentane diol, hexane Diols are particularly preferred.
Examples of the alicyclic diol include cyclohexanedimethanol.
Examples of the aromatic diol include bisphenol A and bisphenol S.
 前記ポリエステル樹脂の溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50Pa・s~700Pa・sが好ましく、70Pa・s~500Pa・sがより好ましく、80Pa・s~300Pa・sが更に好ましい。前記溶融粘度が大きいほうが延伸時にボイドを発現しやすいが、前記溶融粘度が50Pa・s~700Pa・sであると、製膜時に押出しがしやすくなったり、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定したりする点で好ましい。また、前記溶融粘度が50Pa・s~700Pa・sであると、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、破断しづらくなる点で好ましい。また、前記溶融粘度が50Pa・s~700Pa・s以上であると、製膜時にダイヘッドから吐出される溶融膜の形態が維持しやすくなって、安定的に成形できたり、製品が破損しにくくなったりするなど、物性が高まる点で好ましい。 The melt viscosity of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa · s to 700 Pa · s, more preferably 70 Pa · s to 500 Pa · s, and more preferably 80 Pa · s. More preferable is 300 Pa · s. When the melt viscosity is higher, voids are more likely to occur during stretching. However, when the melt viscosity is 50 Pa · s to 700 Pa · s, extrusion becomes easier during film formation, and the resin flow stabilizes and stays. This is preferable in that it becomes difficult and the quality is stabilized. Further, the melt viscosity of 50 Pa · s to 700 Pa · s is preferable in that the drawing tension is appropriately maintained at the time of drawing, and it becomes easy to draw uniformly and is difficult to break. Further, when the melt viscosity is 50 Pa · s to 700 Pa · s or more, it is easy to maintain the form of the melt film discharged from the die head at the time of film formation, and it is possible to stably form or damage the product. It is preferable in that the physical properties are increased.
 前記ポリエステル樹脂の極限粘度(IV)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.4が好ましく、0.6~1.2がより好ましく、0.7~1.0が更に好ましい。前記IVが大きいほうが延伸時にボイドを発現しやすいが、前記IVが0.4~1.4であると、製膜時に押出しがしやすくなったり、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定したりする点で好ましい。さらに、前記IVが0.4~1.4であると、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、装置に負荷がかかりにくい点で好ましい。加えて、前記IVが0.4~1.4であると、製品が破損しにくくなって、物性が高まる点で好ましい。 The intrinsic viscosity (IV) of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.4, more preferably 0.6 to 1.2, More preferably, it is 0.7 to 1.0. When the IV is larger, voids are more likely to be generated during stretching. However, when the IV is 0.4 to 1.4, extrusion is easier during film formation, and the resin flow is stable and retention is less likely to occur. It is preferable in that the quality is stabilized. Furthermore, when the IV is 0.4 to 1.4, the stretching tension is appropriately maintained at the time of stretching, so that it is easy to stretch uniformly, and it is preferable in that a load is not easily applied to the apparatus. In addition, when the IV is 0.4 to 1.4, the product is less likely to be damaged, which is preferable in terms of improving physical properties.
 前記ポリエステル樹脂の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、耐熱性や製膜性などの観点から、70℃~300℃が好ましく、90℃~270℃がより好ましい。 The melting point of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose. However, from the viewpoint of heat resistance and film forming property, 70 ° C. to 300 ° C. is preferable, and 90 ° C. to 270 ° C. More preferred.
 なお、前記ポリエステル樹脂として、前記ジカルボン酸成分と前記ジオール成分とが、それぞれ1種で重合してポリマーを形成していてもよく、前記ジカルボン酸成分及び/又は前記ジオール成分が、2種以上で共重合してポリマーを形成していてもよい。また、前記ポリエステル樹脂として、2種以上のポリマーをブレンドして使用してもよい。 In addition, as said polyester resin, the said dicarboxylic acid component and the said diol component may respectively superpose | polymerize with 1 type, and may form the polymer, and the said dicarboxylic acid component and / or the said diol component are 2 or more types. A polymer may be formed by copolymerization. Further, as the polyester resin, two or more kinds of polymers may be blended and used.
 前記2種以上でのポリマーのブレンドにおいて、主たるポリマーに対して添加されるポリマーは、前記主たるポリマーに対して、溶融粘度及び極限粘度が近く、添加量が少量であるほうが、製膜時や溶融押出し時に物性が高まり、押出ししやすくなる点で好ましい。 In the blend of two or more polymers, the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity that are close to those of the main polymer, and the addition amount is smaller when the film is formed or melted. It is preferable in that the physical properties are enhanced during extrusion and the extrusion becomes easy.
 また、前記ポリエステル樹脂の流動特性の改良、光線透過性の制御、塗布液との密着性の向上などを目的として、前記ポリエステル樹脂に対してポリエステル系以外の樹脂を添加してもよい。 In addition, for the purpose of improving the flow characteristics of the polyester resin, controlling light transmittance, and improving the adhesion with the coating solution, a resin other than polyester may be added to the polyester resin.
 このように、前記結晶性高分子フィルムは、従来技術において添加されていた無機系微粒子、相溶しない樹脂などの空洞形成剤を特に添加しなくても、簡便な工程でボイドを形成させることができる。これにより、結晶性高分子フィルムのリサイクル性を高めることができる。さらに、不活性ガスを予め樹脂の中に溶け込ませるための特殊な設備も必要としない。なお、前記結晶性高分子フィルムの製造方法については、後記する。 As described above, the crystalline polymer film can form voids in a simple process even without adding a void forming agent such as inorganic fine particles and incompatible resins added in the prior art. it can. Thereby, the recyclability of the crystalline polymer film can be enhanced. Furthermore, no special equipment for dissolving the inert gas in the resin in advance is required. The method for producing the crystalline polymer film will be described later.
 ここで、前記結晶性高分子フィルムは、空洞の発現に寄与しない成分であれば、必要に応じて前記結晶性を有するポリマー以外のその他の成分を含んでいてもよい。前記その他の成分としては、耐熱安定剤、酸化防止剤、有機の易滑剤、核剤、染料、顔料、分散剤、カップリング剤などが挙げられる。前記その他の成分が空洞の発現に寄与したかどうかは、空洞内又は空洞の界面部分に、結晶性を有するポリマー以外の成分(例えば、後記する各成分など)が検出されるかどうかで判別できる。 Here, as long as the crystalline polymer film is a component that does not contribute to the development of cavities, it may contain other components other than the polymer having crystallinity as necessary. Examples of the other components include a heat resistance stabilizer, an antioxidant, an organic lubricant, a nucleating agent, a dye, a pigment, a dispersant, and a coupling agent. Whether or not the other component contributed to the development of the cavity can be determined by whether or not a component other than the polymer having crystallinity (for example, each component described later) is detected in the cavity or at the interface portion of the cavity. .
 前記酸化防止剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知のヒンダードフェノール類を添加してもよい。前記ヒンダードフェノール類としては、例えば、イルガノックス1010、同スミライザーBHT、同スミライザーGA-80などの商品名で市販されている酸化防止剤が挙げられる。
 また、前記酸化防止剤を一次酸化防止剤として利用し、更に二次酸化防止剤を組み合わせて適用することもできる。前記二次酸化防止剤としては、例えば、スミライザーTPL-R、同スミライザーTPM、同スミライザーTP-Dなどの商品名で市販されている酸化防止剤が挙げられる。
There is no restriction | limiting in particular as said antioxidant, According to the objective, it can select suitably, For example, you may add well-known hindered phenols. Examples of the hindered phenols include antioxidants commercially available under trade names such as Irganox 1010, Sumilyzer BHT, Sumilyzer GA-80.
Further, the antioxidant can be used as a primary antioxidant and further combined with a secondary antioxidant. Examples of the secondary antioxidant include antioxidants commercially available under trade names such as Sumilizer TPL-R, Sumilizer TPM, Sumilizer TP-D, and the like.
 前記蛍光増白剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばユビテック、OB-1、TBO、ケイコール、カヤライト、リューコプア、EGMなどの商品名で市販されているものを用いることができる。なお、前記蛍光増白剤は、1種単独で使用してもよいし、2種以上を併用してもよい。このように蛍光増白剤を添加することで、より鮮明で青味のある白色性を与え、高級感を持たせることができる。 The fluorescent brightening agent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, commercially available products with trade names such as Ubitech, OB-1, TBO, Keicoal, Kayalite, Leukopua, EGM, etc. Can be used. In addition, the said fluorescent whitening agent may be used individually by 1 type, and may use 2 or more types together. By adding the fluorescent whitening agent in this way, it is possible to give a brighter and more bluish whiteness and to have a high-class feeling.
-空洞-
 前記結晶性高分子フィルムは、長尺状の空洞をその長さ方向が一方向に配向した状態で内部に含有し、前記空洞の空洞含有率及びアスペクト比に特徴を有している。
 前記空洞とは、結晶性高分子フィルム内部に存在する、真空状態のドメイン又は気相のドメインを意味する。
-cavity-
The crystalline polymer film contains elongated cavities inside with the length direction oriented in one direction, and is characterized by the cavity content and aspect ratio of the cavities.
The cavity means a domain in a vacuum state or a gas phase domain existing inside the crystalline polymer film.
 前記空洞含有率とは、結晶性高分子フィルムの固相部分の総体積と含有される空洞の総体積の和に対する、前記含有される空洞の総体積を意味する。
 前記空洞含有率としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができ、3体積%~50体積%が好ましく、5体積%~40体積%がより好ましく、10体積%~30体積%が更に好ましい。
 ここで、前記空洞含有率は、比重を測定し、前記比重に基づいて算出することができる。
 具体的には、前記空洞含有率は、下記の(2)式により求めることができる。
 空洞含有率(%)={1-(延伸後の結晶性高分子フィルムの密度)/(延伸前のポリマー成形体の密度)}   ・・・(2)
The void content means the total volume of the contained cavities relative to the sum of the total volume of the solid phase portion of the crystalline polymer film and the total volume of the contained cavities.
The void content is not particularly limited as long as the effects of the present invention are not impaired, can be appropriately selected according to the purpose, and is preferably 3% by volume to 50% by volume, and 5% by volume to 40% by volume. More preferably, 10% by volume to 30% by volume is even more preferable.
Here, the void content can be calculated based on the specific gravity by measuring the specific gravity.
Specifically, the void content can be obtained by the following equation (2).
Cavity content (%) = {1− (density of crystalline polymer film after stretching) / (density of polymer molded body before stretching)} (2)
 前記アスペクト比とは、空洞の配向方向に直交する厚み方向における前記空洞の平均長さをr(μm)として、前記空洞の配向方向における前記空洞の平均長さをL(μm)とした際のL/r比を意味する。
 前記アスペクト比としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができ、10以上が好ましく、15以上がより好ましく、20以上が更に好ましい。
The aspect ratio refers to an average length of the cavity in the thickness direction orthogonal to the orientation direction of the cavity, r (μm), and an average length of the cavity in the orientation direction of the cavity, L (μm). L / r ratio is meant.
The aspect ratio is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose. The aspect ratio is preferably 10 or more, more preferably 15 or more, and still more preferably 20 or more.
 図4A~4Cは、アスペクト比を具体的に説明するための図であって、図4Aは、結晶性高分子フィルムの斜視図であり、図4Bは、図4Aにおける結晶性高分子フィルムのA-A’断面図であり、図4Cは、図4Aにおける結晶性高分子フィルムのB-B’断面図である。 4A to 4C are diagrams for specifically explaining the aspect ratio. FIG. 4A is a perspective view of the crystalline polymer film, and FIG. 4B is an A diagram of the crystalline polymer film in FIG. 4A. FIG. 4C is a cross-sectional view taken along the line −A ′, and FIG. 4C is a cross-sectional view taken along the line BB ′ of the crystalline polymer film in FIG. 4A.
 前記結晶性高分子フィルムの製造工程において、前記空洞は、通常、第一の延伸方向に沿って配向する。したがって、前記「空洞の配向方向に直交する厚み方向における前記空洞の平均長さ(r(μm))」は、結晶性高分子フィルム1の表面1aに垂直で、かつ、第一の延伸方向に直角な断面(図4AにおけるA-A’断面)における空洞100の平均の厚みr(図4B参照)に相当する。また、「前記空洞の配向方向における前記空洞の平均長さ(L(μm))」は、結晶性高分子フィルム1の表面1aに垂直で、かつ、前記第一の延伸方向に平行な断面(図4AにおけるB-B’断面)における空洞100の平均の長さL(図4C参照)に相当する。 In the manufacturing process of the crystalline polymer film, the cavities are usually oriented along the first stretching direction. Therefore, the “average length (r (μm) of the cavities in the thickness direction orthogonal to the orientation direction of the cavities)” is perpendicular to the surface 1a of the crystalline polymer film 1 and in the first stretching direction. This corresponds to the average thickness r (see FIG. 4B) of the cavity 100 in a cross section at right angles (cross section AA ′ in FIG. 4A). Further, “the average length of the cavities (L (μm)) in the orientation direction of the cavities” is a cross section perpendicular to the surface 1a of the crystalline polymer film 1 and parallel to the first stretching direction ( This corresponds to the average length L (see FIG. 4C) of the cavity 100 in the BB ′ cross section in FIG. 4A.
 なお、前記第一の延伸方向とは、延伸が1軸のみの場合には、その1軸の延伸方向を示す。通常は、製造時に成形体の流れる方向に沿って縦延伸を行うため、この縦延伸の方向が前記第一の延伸方向に相当する。
 また、延伸が2軸以上の場合には、空洞形成を目的とした延伸方向のうち少なくとも1方向を示す。通常は、2軸以上の延伸においても、製造時に成形体の流れる方向に沿って縦延伸が行われ、かつ、この縦延伸により空洞を形成することが可能であるため、この縦延伸の方向が前記第一の延伸方向に相当する。
In addition, said 1st extending | stretching direction shows the extending direction of 1 axis | shaft, when extending | stretching is only 1 axis | shaft. Usually, since longitudinal stretching is performed along the direction in which the molded body flows during production, this longitudinal stretching direction corresponds to the first stretching direction.
Moreover, when extending | stretching is biaxial or more, at least 1 direction is shown among the extending directions aiming at cavity formation. Usually, even in stretching with two or more axes, longitudinal stretching is performed along the flow direction of the molded body during production, and a cavity can be formed by this longitudinal stretching. It corresponds to the first stretching direction.
 ここで、空洞の配向方向に直交する厚み方向における前記空洞の平均長さ(r(μm))は、光学顕微鏡や電子顕微鏡の画像により測定することができる。同様に、前記空洞の配向方向における前記空洞の平均長さ(L(μm))は、光学顕微鏡や電子顕微鏡の画像により測定することができる。 Here, the average length (r (μm)) of the cavities in the thickness direction perpendicular to the alignment direction of the cavities can be measured by an image of an optical microscope or an electron microscope. Similarly, the average length (L (μm)) of the cavities in the alignment direction of the cavities can be measured by an image of an optical microscope or an electron microscope.
 前記空洞の配向方向に直交する厚み方向における前記空洞の平均の個数Pとしては、特に制限はなく、目的に応じて適宜選択することができ、5個以上が好ましく、10個以上がより好ましく、15個以上が更に好ましい。 The average number P of the cavities in the thickness direction perpendicular to the orientation direction of the cavities is not particularly limited and can be appropriately selected according to the purpose, preferably 5 or more, more preferably 10 or more, 15 or more are more preferable.
 前記結晶性高分子フィルムの製造工程において、前記空洞は、通常、第一の延伸方向に沿って配向する。したがって、前記「空洞の配向方向に直交する厚み方向における前記空洞の個数」は、結晶性高分子フィルム1の表面1aに垂直で、かつ、第一の延伸方向に直角な断面(図4AにおけるA-A’断面)において、膜厚方向に含まれる空洞100の個数に相当する。
 ここで、前記空洞の配向方向に直交する厚み方向における前記空洞の平均の個数Pは、光学顕微鏡や電子顕微鏡の画像により測定することができる。
In the manufacturing process of the crystalline polymer film, the cavities are usually oriented along the first stretching direction. Therefore, the “number of the cavities in the thickness direction orthogonal to the orientation direction of the cavities” is a cross section perpendicular to the surface 1a of the crystalline polymer film 1 and perpendicular to the first stretching direction (A in FIG. 4A). This corresponds to the number of cavities 100 included in the film thickness direction in (−A ′ cross section).
Here, the average number P of the cavities in the thickness direction orthogonal to the orientation direction of the cavities can be measured by an image of an optical microscope or an electron microscope.
 本発明の結晶性高分子フィルムの断面図の一例を図5A、及び図5Bに示す。
 図5Aは、電子顕微鏡により撮影した図4Aにおける結晶性高分子フィルムのA-A’断面図である。図5Bは、電子顕微鏡により撮影した図4Aにおける結晶性高分子フィルムのB-B’断面図である。
 なお、本発明の結晶性高分子フィルムの断面図は、前記図5A及び図5Bに限定されるものではない。
An example of a cross-sectional view of the crystalline polymer film of the present invention is shown in FIGS. 5A and 5B.
FIG. 5A is a cross-sectional view taken along the line AA ′ of the crystalline polymer film in FIG. 4A taken with an electron microscope. FIG. 5B is a BB ′ cross-sectional view of the crystalline polymer film in FIG. 4A taken with an electron microscope.
The cross-sectional view of the crystalline polymer film of the present invention is not limited to FIGS. 5A and 5B.
 結晶性を有するポリマー層と空洞層との屈折率差ΔNは、具体的には、波長589nmの光に対する結晶性を有するポリマー層の屈折率をN1として、波長589nmの光に対する空洞層の屈折率をN2とした際に、N1とN2との差であるΔN(=N1-N2)の値を意味する。
 ここで、結晶性を有するポリマー層及び空洞層の屈折率N1、N2は、アッベ屈折計などにより測定することができる。
 前記ΔNと前記Pとの積は、特に制限はなく、目的に応じて適宜選択することができるが、3以上が好ましく、5以上がより好ましく、7以上が更に好ましい。
The refractive index difference ΔN between the crystalline polymer layer and the cavity layer is specifically the refractive index of the cavity layer with respect to light with a wavelength of 589 nm, where N1 is the refractive index of the polymer layer with crystallinity with respect to light with a wavelength of 589 nm. Is the value of ΔN (= N1−N2) which is the difference between N1 and N2.
Here, the refractive indices N1 and N2 of the crystalline polymer layer and the cavity layer can be measured by an Abbe refractometer or the like.
The product of ΔN and P is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3 or more, more preferably 5 or more, and still more preferably 7 or more.
 更に、前記結晶性高分子フィルムは、前記空洞を含有しつつも、空洞を発現するための無機系微粒子、相溶しない樹脂、不活性ガスなどが添加されていないため、優れた表面平滑性を有している。
 前記結晶性高分子フィルムの表面平滑性としては、特に制限はなく、目的に応じて適宜選択することができるが、Ra=0.3μm以下が好ましく、Ra=0.25μm以下が更に好ましく、Ra=0.1μm以下が特に好ましい。
Furthermore, the crystalline polymer film has excellent surface smoothness because it contains the voids but is not added with inorganic fine particles, incompatible resin, inert gas, etc. for expressing the voids. Have.
The surface smoothness of the crystalline polymer film is not particularly limited and may be appropriately selected according to the purpose. However, Ra = 0.3 μm or less is preferable, Ra = 0.25 μm or less is more preferable, and Ra = 0.1 μm or less is particularly preferable.
 このように、前記結晶性高分子フィルムは、前記空洞を含有していることにより、例えば、熱収縮率、光線透過率、断熱性、強度などにおいて、様々な優れた特性を有している。言い換えると、前記結晶性高分子フィルムに含有される空洞の態様を変化させることで、熱収縮率、光線透過率、断熱性、強度などの特性を調節することができる。 As described above, the crystalline polymer film has various excellent characteristics in terms of, for example, heat shrinkage rate, light transmittance, heat insulating property, strength, and the like due to the inclusion of the cavities. In other words, characteristics such as heat shrinkage rate, light transmittance, heat insulating property, strength, etc. can be adjusted by changing the mode of the cavities contained in the crystalline polymer film.
 更に、前記結晶性高分子フィルムは、フィルム表面だけでなく、フィルム表面から所定の距離においても空洞が形成されていないことを特徴とする。
 即ち、前記結晶性高分子フィルムにおける、前記空洞の配向方向に直交する断面において、前記空洞の中心から前記結晶性高分子フィルムの表面までの距離が最も短い10個の前記空洞について、各中心から前記結晶性高分子フィルムの表面までの距離h(i)を算出し、算出された各前記距離h(i)の算術平均値h(avg)が、下記式(1)の関係を満たす。
 h(avg)>T/100 ・・・(1)
 但し、前記式(1)中、Tは、前記断面における厚みの算術平均値を表し、10個の前記空洞は、前記厚み方向に平行な任意の一の直線と、前記一の直線に対し平行でかつ20×Tだけ離れて位置する他の直線とで挟まれた領域内に存在する空洞の中から選択される。
Further, the crystalline polymer film is characterized in that no cavity is formed not only on the film surface but also at a predetermined distance from the film surface.
That is, in the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are separated from each center. The distance h (i) to the surface of the crystalline polymer film is calculated, and the calculated arithmetic average value h (avg) of each distance h (i) satisfies the relationship of the following formula (1).
h (avg)> T / 100 (1)
However, in said Formula (1), T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 × T apart.
 前記「空洞の中心」とは、前記断面における空洞の断面形状が、真円である場合にはその中心を意味し、それ以外の形状の場合には、例えば、最大二乗中心法により任意に設定した基準円からの偏差の二乗和が最小となる円の中心を決定し、これを空洞の中心とする。
 前記「結晶性高分子フィルムの表面」とは、厚み方向における、結晶性高分子フィルムの最外面を意味する。通常、前記結晶性高分子フィルムを載置したときの上面を意味する。
The “center of the cavity” means the center when the cross-sectional shape of the cavity in the cross section is a perfect circle, and is arbitrarily set by, for example, the maximum square center method in the case of other shapes. The center of the circle that minimizes the sum of squares of the deviation from the reference circle is determined, and this is set as the center of the cavity.
The “surface of the crystalline polymer film” means the outermost surface of the crystalline polymer film in the thickness direction. Usually, it means the upper surface when the crystalline polymer film is placed.
 具体的には、結晶性高分子フィルムの表面に垂直で、かつ、縦延伸方向に直角な断面(図4D参照)を、走査型電子顕微鏡を用いて300倍~3,000倍の適切な倍率で検鏡し、断面写真を撮像する。前記断面写真内において、厚みの算術平均値Tを算出する。厚みの算術平均値Tとして、ロングレンジ接触式変位計などを用いて測定された厚さを用いてもよい。
 次に、前記断面写真内において、厚み方向に平行な任意の一の直線を描画し、更に、前記一の直線に対し平行でかつ20×Tだけ離れて位置する他の直線を描画する。
 そして、断面写真内の各空洞において、最大二乗中心法により任意に設定した基準円からの偏差の二乗和が最小となる円の中心を決定し、これを空洞の中心とする。
 そして、前記一の直線と前記他の直線とで挟まれた領域内において、空洞の中心から結晶性高分子フィルムの表面までの距離が最も短い10個の空洞を選択する。なお、前記「空洞の中心から結晶性高分子フィルムの表面までの距離」は、前記「空洞の中心」を中心とした円を描画する際に、描画する円の半径を順次大きくし、円弧が最初に結晶性高分子フィルムの表面に接したときの円の半径とする。
 そして、選択した10個の空洞について、各中心から前記結晶性高分子フィルムの表面までの距離h(i)を算出し、算出された各前記距離h(i)の算術平均値h(avg)を下記(3)式により算出する。
 h(avg)=(Σh(i))/10   ・・・(3)
 なお、前記「各中心から前記結晶性高分子フィルムの表面までの距離h(i)」は、前記結晶性高分子フィルムが、湾曲していたり、応力がかかっていたりすると、正確に測定することができないため、測定の際には平面状に載置した状態で測定することが好ましい。
 前記結晶性高分子フィルムは、前記空洞を含有しつつも、結晶性高分子フィルムの表面近くに空洞が形成されていないため、優れた表面平滑性を有している。
Specifically, a cross-section (see FIG. 4D) perpendicular to the surface of the crystalline polymer film and perpendicular to the longitudinal stretching direction (see FIG. 4D) is appropriately magnified 300 to 3000 times using a scanning electron microscope. Microscope and take a cross-sectional picture. In the cross-sectional photograph, an arithmetic average value T of the thickness is calculated. As the arithmetic average value T of the thickness, a thickness measured using a long range contact displacement meter or the like may be used.
Next, an arbitrary straight line parallel to the thickness direction is drawn in the cross-sectional photograph, and another straight line that is parallel to the single straight line and separated by 20 × T is drawn.
Then, in each cavity in the cross-sectional photograph, the center of a circle that minimizes the sum of squares of deviations from the reference circle arbitrarily set by the maximum square center method is determined, and this is set as the center of the cavity.
Then, ten cavities having the shortest distance from the center of the cavity to the surface of the crystalline polymer film are selected in a region sandwiched between the one straight line and the other straight line. Note that the “distance from the center of the cavity to the surface of the crystalline polymer film” means that when drawing a circle centered on the “center of the cavity”, the radius of the circle to be drawn is sequentially increased, The radius of the circle when it first contacts the surface of the crystalline polymer film.
Then, for the 10 selected cavities, a distance h (i) from each center to the surface of the crystalline polymer film is calculated, and an arithmetic average value h (avg) of each calculated distance h (i) Is calculated by the following equation (3).
h (avg) = (Σh (i)) / 10 (3)
The “distance h (i) from each center to the surface of the crystalline polymer film” should be accurately measured when the crystalline polymer film is curved or stressed. Therefore, it is preferable that the measurement is performed in a state where it is placed in a flat shape.
Although the said crystalline polymer film contains the said cavity, since the cavity is not formed near the surface of the crystalline polymer film, it has the outstanding surface smoothness.
-光線透過率-
 前記結晶性高分子フィルムの光線透過率とは、前記結晶性高分子フィルムの表面に対し、垂直に、所定波長の光を入射したときの、透過光の光強度/入射光の光強度×100(%)の値を意味する。
-Light transmittance-
The light transmittance of the crystalline polymer film is the light intensity of transmitted light / light intensity of incident light when light of a predetermined wavelength is incident perpendicularly to the surface of the crystalline polymer film × 100. It means the value of (%).
 前記結晶性高分子フィルムの、波長300nm~780nmから選択される1つの波長の光に対する透過率(光線透過率)としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができるが、10%以下が好ましく、5%以下がより好ましく、4%以下が更に好ましく、3%以下が特に好ましい。 The transmittance of the crystalline polymer film with respect to light having one wavelength selected from wavelengths of 300 nm to 780 nm (light transmittance) is not particularly limited as long as the effect of the present invention is not impaired, and depends on the purpose. Although it can select suitably, 10% or less is preferable, 5% or less is more preferable, 4% or less is further more preferable, and 3% or less is especially preferable.
 また、前記結晶性高分子フィルムの、波長300nm~780nmから選択される1つの波長の光に対する透過率をMλ(%)として、前記結晶性高分子フィルムと同じ厚みで、前記結晶性高分子フィルムを構成する結晶性を有するポリマーと同一の結晶性を有するポリマーからなり、空洞を含有しないポリマー成形体の、前記選択された波長の光に対する透過率をNλ(%)とした際のMλ/Nλ比が、0.2以下であることが好ましく、0.18以下であることがより好ましく、0.15以下であることが更に好ましい。
 ここで、前記透過率は、分光光度計により測定することができる。
The crystalline polymer film has the same thickness as that of the crystalline polymer film, where M λ (%) is a transmittance with respect to light having one wavelength selected from wavelengths of 300 nm to 780 nm. M when the transmittance of light of the selected wavelength, which is made of a polymer having the same crystallinity as the polymer having the crystallinity constituting the film and does not contain a cavity, is N λ (%) The λ / ratio is preferably 0.2 or less, more preferably 0.18 or less, and still more preferably 0.15 or less.
Here, the transmittance can be measured by a spectrophotometer.
 以上のように、前記結晶性高分子フィルムは、紫外領域(300nm~380nm)における低い透過率(高い反射率)を有し、更には、紫外領域における低い透過率(高い反射率)を有しつつ、可視領域(380nm~780nm)においても低い透過率(優れた反射特性)を有するものである。前記結晶性高分子フィルムの低い透過率(優れた反射特性)は、前記結晶性高分子フィルム内部に形成された、空洞層及び結晶性を有するポリマー層からなる多重層間の、構造的な光干渉による。言い換えると、前記結晶性高分子フィルムに含有される空洞の態様(アスペクト比、屈折率など)を変化させることで、前記透過率などの反射特性を調節することができる。 As described above, the crystalline polymer film has a low transmittance (high reflectance) in the ultraviolet region (300 nm to 380 nm), and further has a low transmittance (high reflectance) in the ultraviolet region. However, it has low transmittance (excellent reflection characteristics) even in the visible region (380 nm to 780 nm). The low transmittance (excellent reflection characteristic) of the crystalline polymer film is due to the structural optical interference between multiple layers formed inside the crystalline polymer film consisting of a cavity layer and a crystalline polymer layer. by. In other words, the reflection characteristics such as the transmittance can be adjusted by changing the mode (aspect ratio, refractive index, etc.) of the cavities contained in the crystalline polymer film.
-厚み-
 前記結晶性高分子フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができる。
 本発明の容器において、前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させない場合には、前記結晶性高分子フィルムの厚みとしては、30μm~500μmが好ましく、50μm~300μmがより好ましく、80μm~150μmが特に好ましい。前記結晶性高分子フィルムの厚みが30μm未満であると、容器が手で保持できない懸念があり、500μmを超えると、容器に滑らかに沿わせることが出来ないことがある。一方、前記結晶性高分子フィルムの厚みが前記特に好ましい範囲内であると、容器として充分な機能が発現できる点で、有利である。
 また、本発明の容器において、前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させる場合には、前記結晶性高分子フィルムの厚みとしては、45μm~300μmが好ましく、80μm~200μmがより好ましく、80μm~120μmが特に好ましい。前記結晶性高分子フィルムの厚みが45μm未満であると、強度が不足して変形しやすくなったり、ボイドの発生が安定しなくなり、充分な反射、遮光機能が得難いことがある。300μmを超えると、均一なフィルムが得難く、加工も難しくなって、シワが入りやすいなどの問題を生ずる。一方、前記結晶性高分子フィルムの厚みが前記特に好ましい範囲内であると、加工しやすく、充分な機能が得られる点で、有利である。
-Thickness-
There is no restriction | limiting in particular as thickness of the said crystalline polymer film, According to the objective, it can select suitably.
In the container of the present invention, when the crystalline polymer film is wound and is not shrunk, the thickness of the crystalline polymer film is preferably 30 μm to 500 μm, more preferably 50 μm to 300 μm, and more preferably 80 μm. Particularly preferred is ˜150 μm. When the thickness of the crystalline polymer film is less than 30 μm, there is a concern that the container cannot be held by hand, and when it exceeds 500 μm, it may not be possible to smoothly fit the container. On the other hand, when the thickness of the crystalline polymer film is within the particularly preferable range, it is advantageous in that a sufficient function as a container can be expressed.
In the container of the present invention, when the crystalline polymer film is wound and contracted (shrinked), the thickness of the crystalline polymer film is preferably 45 μm to 300 μm, more preferably 80 μm to 200 μm. 80 μm to 120 μm is particularly preferable. If the thickness of the crystalline polymer film is less than 45 μm, the strength may be insufficient and the film may be easily deformed, and the generation of voids may not be stable, making it difficult to obtain sufficient reflection and light shielding functions. When the thickness exceeds 300 μm, it is difficult to obtain a uniform film, processing becomes difficult, and wrinkles are likely to occur. On the other hand, when the thickness of the crystalline polymer film is within the particularly preferable range, it is advantageous in that it can be easily processed and a sufficient function can be obtained.
-熱収縮率-
 前記結晶性高分子フィルムの熱収縮率とは、前記結晶性高分子フィルムを100mm角に裁断してサンプルとし、このサンプルを所定温度に調整したオーブン中で10分間熱処理した後、フィルムの寸法を測定し、下記式に従って求めた値を意味する。
Figure JPOXMLDOC01-appb-M000001
 前記結晶性高分子フィルムの前記第1の方向における150℃の熱収縮率としては、特に制限はなく、目的に応じて適宜選択することができるが、10%以上が好ましく、12%以上がより好ましく、15%以上が更に好ましい。前記「第1の方向」とは、前記第一の延伸方向(図4A)を意味する。
 前記結晶性高分子フィルムの前記第1の方向と直交する第2の方向における150℃の熱収縮率としては、特に制限はなく、目的に応じて適宜選択することができるが、5%以下が好ましく、4%以下がより好ましく、3%以下が更に好ましい。
-Thermal shrinkage-
The heat shrinkage rate of the crystalline polymer film is a sample obtained by cutting the crystalline polymer film into a 100 mm square and heat-treating the sample in an oven adjusted to a predetermined temperature for 10 minutes. It means a value measured and determined according to the following formula.
Figure JPOXMLDOC01-appb-M000001
The heat shrinkage rate at 150 ° C. in the first direction of the crystalline polymer film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% or more, more preferably 12% or more. Preferably, 15% or more is more preferable. The “first direction” means the first stretching direction (FIG. 4A).
The heat shrinkage rate at 150 ° C. in the second direction orthogonal to the first direction of the crystalline polymer film is not particularly limited and can be appropriately selected according to the purpose. It is preferably 4% or less, more preferably 3% or less.
-結晶性高分子フィルムの製造方法-
 前記結晶性高分子フィルムの製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、少なくともポリマー成形体を2倍~10倍延伸する延伸工程を含むことが好ましい。前記延伸工程を含むことにより、得られる結晶性高分子フィルムのシュリンク性を向上することができる。前記結晶性高分子フィルムの製造方法は、更に必要に応じて製膜工程などのその他の工程を含んでもよい。
 なお、前記ポリマー成形体とは、前記結晶性を有するポリマーからなり、特に空洞を含有していないものを示し、例えば、ポリマーフィルム、ポリマーシートなどが挙げられる。
-Method for producing crystalline polymer film-
The method for producing the crystalline polymer film is not particularly limited and may be appropriately selected depending on the intended purpose. However, it preferably includes at least a stretching step of stretching the polymer molded body 2 to 10 times. By including the said extending | stretching process, the shrinkability of the crystalline polymer film obtained can be improved. The method for producing the crystalline polymer film may further include other steps such as a film forming step as necessary.
In addition, the said polymer molded object shows the thing which consists of a polymer which has the said crystallinity, and does not contain a cavity especially, for example, a polymer film, a polymer sheet, etc. are mentioned.
--延伸工程--
 前記延伸工程では、前記ポリマー成形体が少なくとも1軸に延伸される。そして、前記延伸工程により、ポリマー成形体が延伸されるとともに、その内部に第一の延伸方向に沿って配向した空洞が形成されることで、結晶性高分子フィルムが得られる。
--Stretching process--
In the stretching step, the polymer molded body is stretched at least uniaxially. Then, by the stretching step, the polymer molded body is stretched, and a cavity oriented along the first stretching direction is formed therein, whereby a crystalline polymer film is obtained.
 延伸により空洞が形成される理由としては、前記ポリマー成形体を構成する少なくとも1種類の結晶性を有するポリマーが、微結晶ドメイン又は、結晶ドメインを有し、延伸時に伸張し難い微結晶又は結晶を含む相と、アモルファス部分の樹脂が引きちぎられるような形で剥離延伸されることにより、これが空洞形成源となって空洞が形成されるものと考えられる。
 なお、このような延伸による空洞形成は、結晶性を有するポリマーが1種類の場合だけではなく、2種類以上の結晶性を有するポリマーが、ブレンド又は共重合されている場合であっても可能である。
The reason why the cavity is formed by stretching is that the polymer having at least one crystallinity constituting the polymer molded body has a microcrystalline domain or a crystalline domain, and a microcrystal or crystal that is difficult to stretch during stretching. It is considered that the cavity is formed by being peeled and stretched in such a manner that the amorphous phase and the resin in the amorphous portion are torn off.
Such void formation by stretching is possible not only when there is only one kind of polymer having crystallinity but also when two or more kinds of polymers having crystallinity are blended or copolymerized. is there.
 前記延伸の方法としては、本発明の効果を損なわない限り、特に制限はなく、例えば、1軸延伸、逐次2軸延伸、同時2軸延伸が挙げられるが、いずれの延伸方法においても、製造時に成形体の流れる方向に沿って縦延伸が行われることが好ましい。 The stretching method is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching. It is preferable that longitudinal stretching is performed along the direction in which the molded body flows.
 一般に、縦延伸においては、ロールの組合せやロール間の速度差により、縦延伸の段数や延伸速度を調節することができる。
 前記縦延伸の段数としては、1段以上であれば特に制限はないが、より安定して高速に延伸することができる点及び製造の歩留まりや機械の制約の点から、2段以上に縦延伸することが好ましい。また、2段以上に縦延伸することは、1段目の延伸によりネッキングの発生を確認したうえで、2段目の延伸により空洞を形成させることができる点においても、有利である。
In general, in the longitudinal stretching, the number of longitudinal stretching stages and the stretching speed can be adjusted by the combination of rolls and the speed difference between the rolls.
The number of stages of the longitudinal stretching is not particularly limited as long as it is one or more, but it can be stretched more than two stages in terms of more stable and high-speed stretching and production yield and machine restrictions. It is preferable to do. Further, longitudinal stretching in two or more stages is advantageous in that a cavity can be formed by stretching in the second stage after confirming the occurrence of necking in the first stage.
--延伸速度--
 前記縦延伸の延伸速度としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができるが、10mm/min~36,000mm/minが好ましく、800mm/min~24,000mm/minがより好ましく、1,200mm/min~12,000mm/minが更に好ましい。前記延伸速度が、10mm/min以上であると、充分なネッキングを発現させやすい点で好ましい。また、前記延伸速度が、36,000mm/min以下であると、均一な延伸がしやすくなり、樹脂が破断しづらくなり、高速延伸を目的とした大型な延伸装置を必要とせずにコストを低減できる点で好ましい。したがって、前記延伸速度が、10mm/min~36,000mm/minであると、充分なネッキングを発現させやすく、かつ、均一な延伸がしやすくなり、樹脂が破断しづらくなり、高速延伸を目的とした大型な延伸装置を必要とせずにコストを低減できる点で好ましい。
--Stretching speed--
The stretching speed of the longitudinal stretching is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose, but is preferably 10 mm / min to 36,000 mm / min, and preferably 800 mm / min. Is more preferably 24,000 mm / min, and further preferably 1,200 mm / min to 12,000 mm / min. When the stretching speed is 10 mm / min or more, it is preferable in that sufficient necking can be easily expressed. Further, when the stretching speed is 36,000 mm / min or less, uniform stretching is facilitated, the resin is not easily broken, and the cost is reduced without requiring a large stretching apparatus for high-speed stretching. It is preferable in that it can be performed. Therefore, when the stretching speed is 10 mm / min to 36,000 mm / min, sufficient necking is easily exhibited, uniform stretching is facilitated, the resin is not easily broken, and high speed stretching is intended. This is preferable in that the cost can be reduced without requiring a large stretching apparatus.
 より具体的には、1段延伸の場合の延伸速度としては、1,000mm/min~36,000mm/minが好ましく、1,100mm/min~24,000mm/minがより好ましく、1,200mm/min~12,000mm/minが更に好ましい。 More specifically, the stretching speed in the case of one-stage stretching is preferably 1,000 mm / min to 36,000 mm / min, more preferably 1,100 mm / min to 24,000 mm / min, and 1,200 mm / min. More preferably, it is from min to 12,000 mm / min.
 2段延伸の場合には、1段目の延伸を、ネッキングを発現させることを主なる目的とした予備的な延伸とすることが好ましい。前記予備的な延伸の延伸速度としては、10mm/min~300mm/minが好ましく、40mm/min~220mm/minがより好ましく、70mm/min~150mm/minが更に好ましい。 In the case of two-stage stretching, it is preferable that the first-stage stretching is a preliminary stretching whose main purpose is to develop necking. The stretching speed of the preliminary stretching is preferably 10 mm / min to 300 mm / min, more preferably 40 mm / min to 220 mm / min, and still more preferably 70 mm / min to 150 mm / min.
 そして、2段延伸における、前記予備的な延伸(1段目の延伸)によりネッキングを発現させた後の2段目の延伸速度は、前記予備的な延伸の延伸速度と変えることが好ましい。前記予備的延伸によりネッキングを発現させた後の、2段目の延伸速度としては、600mm/min~36,000mm/minが好ましく、800mm/min~24,000mm/minがより好ましく、1,200mm/min~15,000mm/minが更に好ましい。 In the two-stage stretching, the second-stage stretching speed after the necking is expressed by the preliminary stretching (first-stage stretching) is preferably changed from the stretching speed of the preliminary stretching. The second stage stretching speed after causing necking by the preliminary stretching is preferably 600 mm / min to 36,000 mm / min, more preferably 800 mm / min to 24,000 mm / min, and 1,200 mm. / Min to 15,000 mm / min is more preferable.
--延伸温度--
 延伸時の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、
 延伸温度をT(℃)、ガラス転移温度をTg(℃)としたときに、
 (Tg-30)(℃)≦T(℃)≦(Tg+70)(℃)
で示される範囲の延伸温度T(℃)で延伸することが好ましく、
 (Tg-25)(℃)≦T(℃)≦(Tg+70)(℃)
で示される範囲の延伸温度T(℃)で延伸することがより好ましく、
 (Tg-20)(℃)≦T(℃)≦(Tg+70)(℃)
で示される範囲の延伸温度T(℃)で延伸することが更に好ましい。
--Extension temperature--
The temperature during stretching is not particularly limited and can be appropriately selected according to the purpose.
When the stretching temperature is T (° C) and the glass transition temperature is Tg (° C),
(Tg-30) (° C.) ≦ T (° C.) ≦ (Tg + 70) (° C.)
It is preferable to stretch at a stretching temperature T (° C.) in the range indicated by
(Tg-25) (° C) ≦ T (° C) ≦ (Tg + 70) (° C)
It is more preferable to stretch at a stretching temperature T (° C.) in the range indicated by
(Tg−20) (° C.) ≦ T (° C.) ≦ (Tg + 70) (° C.)
More preferably, the film is stretched at a stretching temperature T (° C.) in the range indicated by.
 一般に、延伸温度(℃)が高いほど延伸張力も低めに抑えられて容易に延伸できるが、前記延伸温度(℃)が、{ガラス転移温度(Tg)-30}℃以上、{ガラス転移温度(Tg)+70}℃以下であると、空洞含有率が高くなり、アスペクト比が10以上になりやすく、かつ、充分に空洞が発現する点で好ましい。
 ここで、前記延伸温度T(℃)は、非接触式温度計により測定することができる。また、前記ガラス転移温度Tg(℃)は、示差熱分析装置(DSC)により測定することができる。
Generally, the higher the stretching temperature (° C.), the lower the stretching tension, and the easier the stretching. However, the stretching temperature (° C.) is {glass transition temperature (Tg) −30} ° C. or higher, {glass transition temperature ( Tg) +70} ° C. or lower is preferable in that the void content increases, the aspect ratio tends to be 10 or more, and the voids are sufficiently developed.
Here, the stretching temperature T (° C.) can be measured with a non-contact thermometer. The glass transition temperature Tg (° C.) can be measured by a differential thermal analyzer (DSC).
 なお、前記延伸工程において、空洞の発現の妨げにならない範囲で、横延伸はしてもよく、しなくてもよい。また横延伸をする場合には、横延伸工程を利用してフィルムを緩和させたり、熱処理を行ったりしてもよい。
 また、延伸後の空洞含有樹脂成形体は、形状安定化などの目的で、更に熱を加えて熱収縮させたり、張力を加えたりする等の処理をしてもよい。
In the stretching step, lateral stretching may or may not be performed as long as it does not hinder the appearance of cavities. In the case of lateral stretching, the film may be relaxed or heat-treated using a lateral stretching process.
Further, the stretched void-containing resin molded body may be further subjected to treatment such as heat shrinkage by applying heat or applying tension for the purpose of shape stabilization.
 前記ポリマー成形体の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、結晶性を有するポリマーがポリオレフィン類、ポリエステル樹脂およびポリアミド類などである場合には、溶融製膜方法により好適に製造することができる。
 また、前記ポリマー成形体の製造は、前記延伸工程と独立に行ってもよく、連続的に行ってもよい。
The method for producing the polymer molded body is not particularly limited and may be appropriately selected depending on the intended purpose. For example, when the polymer having crystallinity is a polyolefin, a polyester resin, or a polyamide, it is melted. It can be suitably manufactured by a film forming method.
Moreover, the polymer molded body may be produced independently of the stretching step or continuously.
 図6は、本発明の結晶性高分子フィルムの製造方法の一例を示す図であって、二軸延伸フィルム製造装置のフロー図である。
 図6に示すように、原料樹脂11は、押出機12(原料形状や、製造規模によって、二軸押出機を用いたり、単軸押出し機を用いたりする)内部で熱溶融、混練された後、Tダイ13から柔らかい板状(フィルム又はシート状)に吐出される。
 次に、吐出されたフィルム又はシートFは、キャスティングロール14で冷却固化されて、製膜される。製膜されたフィルム又はシートF(「ポリマー成形体」に相当する)は、縦延伸機15に送られる。
 そして、製膜されたフィルム又はシートFは、縦延伸機15内で再び加熱され、速度の異なるロール15a間で、縦に延伸される。この縦延伸により、フィルム又はシートFの内部に延伸方向に沿って空洞が形成される。そして、空洞が形成されたフィルム又はシートFは、横延伸機16の左右のクリップ16aで両端を把持されて、巻取機側(図示せず)へ送られながら横に延伸されて、結晶性高分子フィルム1となる。なお、前記工程において、縦延伸のみを行ったフィルム又はシートFを横延伸機16に供さず、結晶性高分子フィルム1として使用してもよい。
FIG. 6 is a diagram showing an example of a method for producing a crystalline polymer film of the present invention, and is a flow diagram of a biaxially stretched film production apparatus.
As shown in FIG. 6, after the raw material resin 11 is hot-melted and kneaded inside the extruder 12 (a twin screw extruder or a single screw extruder is used depending on the raw material shape and production scale). , And discharged from the T-die 13 in a soft plate shape (film or sheet shape).
Next, the discharged film or sheet F is cooled and solidified by the casting roll 14 to form a film. The formed film or sheet F (corresponding to “polymer molded body”) is sent to the longitudinal stretching machine 15.
And the film or sheet | seat F formed into a film is again heated within the longitudinal stretch machine 15, and is stretched | stretched longitudinally between the rolls 15a from which speed differs. By this longitudinal stretching, a cavity is formed in the film or sheet F along the stretching direction. The film or sheet F in which the cavity is formed is gripped at both ends by the left and right clips 16a of the transverse stretching machine 16, and is stretched laterally while being sent to the winder side (not shown). The polymer film 1 is obtained. In addition, in the said process, you may use the film or sheet | seat F which performed only the longitudinal stretch as the crystalline polymer film 1, without providing to the transverse stretcher 16. FIG.
<容器>
 前記容器としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記容器としては、例えば、店頭でカップに注いで供されるような、テイクアウト用のコーヒーなどの用途が挙げられる。これら容器の表面に凹凸部を有さない容器が、後述するインサートブロー成形による容器の製造において前記結晶性高分子フィルムを巻回させやすい点で、有利である。更に表面に凹凸がなく形状が単純であると、材料も少なくてすみ、製造コストが抑えられるメリットもある。形状が単純であると、コンパクトに重ねることも出来、輸送、保管が効率的に行えるほか、印刷その他意匠を付与する際にも、特段の技術を使用しなくてすむ利点もある。形状が単純であれば、持ち方を意識しなくても、充分保持でき、乳児、幼児、高齢者が取り扱う時にもトラブルになりにくい。
 また、前記容器としては、例えば、醤油、ドレッシング、ふりかけ、味付け海苔、てんぷら油などの食品容器、乳、乳酸菌飲料、ビール、焼酎、ワイン、ビタミン飲料、ジュース、炭酸飲料、水、お茶などの飲料容器、メーク落とし、ローション、スキンケア、日焼け止め、美白、洗顔、保湿、美容液などの化粧品容器、身体用、ペット用、衣料用、工業用洗剤容器等が挙げられる。前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させる場合には、これらの中でも、飲料容器などの容器の表面に凹凸部を有する容器が、前記結晶性高分子フィルムをシュリンクさせやすい点で、有利である。
<Container>
There is no restriction | limiting in particular as said container, According to the objective, it can select suitably.
Examples of the container include a take-out coffee that is poured into a cup at a store. Containers having no irregularities on the surface of these containers are advantageous in that the crystalline polymer film can be easily wound in the manufacture of containers by insert blow molding described later. Furthermore, if the surface has no irregularities and the shape is simple, there is an advantage that less material is required and manufacturing costs can be reduced. If the shape is simple, it can be stacked compactly, and can be transported and stored efficiently, and there is also an advantage that a special technique is not required when applying printing or other design. If the shape is simple, it can be held well without being aware of how to hold it, and it is less likely to cause trouble when handled by babies, infants and the elderly.
Examples of the container include food containers such as soy sauce, dressing, sprinkle, seasoned seaweed, tempura oil, and beverages such as milk, lactic acid bacteria beverages, beer, shochu, wine, vitamin beverages, juices, carbonated beverages, water, and tea. Containers, makeup removers, lotions, skin care, sunscreens, whitening, facial cleansing, moisturizing, cosmetic containers such as cosmetics, body, pet, clothing, industrial detergent containers and the like. In the case where the crystalline polymer film is wound and contracted (shrink), among these, a container having an uneven portion on the surface of a container such as a beverage container is easy to shrink the crystalline polymer film. Is advantageous.
-曲率半径R-
 前記容器側面の角部の曲率半径Rとしては、特に制限はなく、目的に応じて適宜選択することができるが、1mm以上が好ましく、2mm以上がより好ましく、5mm以上が特に好ましい。前記曲率半径Rが、1mm未満であると、曲げた部分の空洞がつぶれてフィルムの機能が発現し難くなることがある。一方、前記曲率半径Rが前記特に好ましい範囲内であると、成形後にフィルムの性能が充分発現できる点で、有利である。
 前記曲率半径Rは、例えば、3次元形状測定装置 XYZAX RA1600A((株)東京精密製)などにより、測定することができる。
 ここで、角部における結晶性高分子フィルム中の空洞がつぶれたか否かは、以下のようにして確認することができる。例えば、観察したい部位を樹脂包埋して切出した後、その断面を電子顕微鏡にて、観察して確認することができる。
-Radius of curvature R-
There is no restriction | limiting in particular as the curvature radius R of the corner | angular part of the said container side surface, Although it can select suitably according to the objective, 1 mm or more is preferable, 2 mm or more is more preferable, and 5 mm or more is especially preferable. If the curvature radius R is less than 1 mm, the cavity of the bent portion may be crushed and the function of the film may be difficult to be exhibited. On the other hand, when the radius of curvature R is within the particularly preferable range, it is advantageous in that the film performance can be sufficiently exhibited after molding.
The radius of curvature R can be measured by, for example, a three-dimensional shape measuring apparatus XYZAX RA1600A (manufactured by Tokyo Seimitsu Co., Ltd.).
Here, whether or not the cavity in the crystalline polymer film at the corner has been crushed can be confirmed as follows. For example, after embedding and cutting out the site | part which wants to observe, the cross section can be observed and confirmed with an electron microscope.
(容器の製造方法)
 本発明の容器の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、成形された容器に前記結晶性高分子フィルムを巻回する方法(以下、「第1の態様」と称することがある。)、容器の成形とともに前記結晶性高分子フィルムを巻回するインサートブロー成形法(以下、「第2の態様」と称することがある。)、巻回工程と、収縮(シュリンク)工程とを少なくとも含む方法(以下、「第3の態様」と称することがある。)などが挙げられる。
 これらの中でも、前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させない場合には、インサートブロー成形法が、結晶性高分子フィルムと、容器とが一体化してなり、強度に優れる容器を製造することができる点で、有利である。
(Manufacturing method of container)
There is no restriction | limiting in particular as a manufacturing method of the container of this invention, According to the objective, it can select suitably, For example, the method (henceforth "the 1st" which winds the said crystalline polymer film around the shape | molded container. ), An insert blow molding method in which the crystalline polymer film is wound together with the molding of the container (hereinafter, sometimes referred to as “second aspect”), a winding step, And a method including at least a contraction (shrink) step (hereinafter, may be referred to as a “third aspect”).
Among these, when the crystalline polymer film is wound and does not shrink (shrink), the insert blow molding method integrates the crystalline polymer film and the container to produce a container having excellent strength. This is advantageous in that it can be done.
<第1の態様>
 前記第1の態様は、巻回工程を少なくとも含み、必要に応じて更にその他の工程を含む。
<First aspect>
The first aspect includes at least a winding step, and further includes other steps as necessary.
-巻回工程-
 前記巻回工程は、前記結晶性高分子フィルムを成形された容器に巻回する工程である。
-Winding process-
The winding step is a step of winding the crystalline polymer film around a molded container.
 前記成形された容器の形状、大きさ、材質としては、特に制限はなく、目的に応じて適宜選択することができる。 The shape, size and material of the molded container are not particularly limited and can be appropriately selected according to the purpose.
 前記結晶性高分子フィルムを前記容器に巻回する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、あらかじめ筒状に加工したフィルムを容器にかぶせたり、容器に直接巻いた後、巻き端を切断して、熱融着や糊止めする、などが挙げられる。 The method for winding the crystalline polymer film around the container is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a film that has been processed into a cylindrical shape in advance is placed on the container, For example, after winding directly, the winding end is cut and heat-sealed or glued.
<第2の態様>
 前記第2の態様は、結晶性高分子フィルムをブロー金型に配置する工程(以下、「結晶性高分子フィルム配置工程」と称することがある。)と、前記結晶性高分子フィルムを配置した金型にプリフォームを配置する工程(以下、「プリフォーム配置工程」と称することがある。)と、前記プリフォームをブローする工程(以下、「ブロー工程」と称することがある。)とを少なくとも含み、必要に応じて更にその他の工程を含む。
 前記第2の態様は、インサートブロー成形ともいう。前記インサートブロー成形は、プリフォーム(パリソンともいう。)をブロー金型内にセットする際、あらかじめブロー金型内壁に前記結晶性高分子フィルムを貼り付けておき、その後のブロー工程で、前記プリフォームが膨らむ。これにより、金型内壁に張り付く樹脂成形体(ブロー成形品)の外面に、前記結晶性高分子フィルムを貼り付け、意匠性その他の機能を有する容器を得る容器の製造方法である。
<Second aspect>
In the second aspect, a crystalline polymer film is disposed in a blow mold (hereinafter sometimes referred to as “crystalline polymer film disposing step”), and the crystalline polymer film is disposed. A step of placing a preform on the mold (hereinafter, sometimes referred to as “preform placement step”) and a step of blowing the preform (hereinafter, also referred to as “blowing step”). Including at least, and further including other steps as necessary.
The second aspect is also referred to as insert blow molding. In the insert blow molding, when a preform (also referred to as a parison) is set in a blow mold, the crystalline polymer film is attached in advance to the inner wall of the blow mold, and in the subsequent blow step, the preform is molded. Reform swells. This is a method for producing a container, in which the crystalline polymer film is attached to the outer surface of a resin molded body (blow molded product) that sticks to the inner wall of the mold to obtain a container having a design and other functions.
-結晶性高分子フィルム配置工程-
 前記結晶性高分子フィルム配置工程は、前記結晶性高分子フィルムをブロー金型に配置する工程である。
-Crystalline polymer film placement process-
The crystalline polymer film arranging step is a step of arranging the crystalline polymer film in a blow mold.
--ブロー金型--
 前記ブロー金型の形状、大きさ、材質としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記ブロー金型は、後述するブロー工程で成形が完了した後に、容器(成形体)を取り出すため、通常、2つ以上の部材に分かれている(図7では、2分割)。
--Blow mold--
There is no restriction | limiting in particular as a shape, a magnitude | size, and a material of the said blow die, According to the objective, it can select suitably.
The blow mold is usually divided into two or more members in order to take out the container (molded product) after the molding is completed in the blow process described later (in FIG. 7, it is divided into two parts).
--配置--
 前記ブロー金型に前記結晶性高分子フィルムを配置する方法としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記ブロー金型に前記結晶性高分子フィルムを配置する方法の例を、図8A~図8Dを参照して説明する。
 図8Aは、扇形に加工した結晶性高分子フィルム41を示す図である。前記結晶性高分子フィルム41を治具42に取り付ける(図8B参照)。前記治具42は、前記ブロー金型の内壁とほぼ同じ角度(又は、前記ブロー金型にセットした際に下端に少し隙間が出来る角度)とすることが好ましい。図8B中、符号46は吸引穴を示し、矢印の方向に吸引することにより、結晶性高分子フィルム41を前記治具42に密着させることができる。
 前記結晶性高分子フィルム41が密着させてずれないようにしたまま、前記結晶性高分子フィルム41を密着させた治具42を、前記ブロー金型(閉じたもの)の下から、金型内部に挿入する。
 図8Cに示すようにブロー金型43には、エア吸引用のスリット44が設けられており、これにより、結晶性高分子フィルム41を吸引した後、前記治具42の吸引を止め、前記治具42をブロー金型から抜き取る。
 これにより、結晶性高分子フィルム41をブロー金型に配置することができる。
 なお、図8Dは、ブロー金型43の断面模式図であり、符号45は吸引ノズルを示し、矢印は吸引方向を示す。
--- Arrangement--
There is no restriction | limiting in particular as a method of arrange | positioning the said crystalline polymer film in the said blow die, According to the objective, it can select suitably.
An example of a method for disposing the crystalline polymer film in the blow mold will be described with reference to FIGS. 8A to 8D.
FIG. 8A is a diagram showing a crystalline polymer film 41 processed into a fan shape. The crystalline polymer film 41 is attached to a jig 42 (see FIG. 8B). The jig 42 preferably has substantially the same angle as the inner wall of the blow mold (or an angle that allows a slight gap at the lower end when set on the blow mold). In FIG. 8B, reference numeral 46 denotes a suction hole, and the crystalline polymer film 41 can be brought into close contact with the jig 42 by suction in the direction of the arrow.
The jig 42 to which the crystalline polymer film 41 is brought into close contact with the crystalline polymer film 41 from the bottom of the blow mold (closed) while keeping the crystalline polymer film 41 in close contact with the inside of the mold. Insert into.
As shown in FIG. 8C, the blow mold 43 is provided with a slit 44 for air suction, whereby the suction of the jig 42 is stopped after the crystalline polymer film 41 is sucked, and the jig is stopped. The tool 42 is removed from the blow mold.
Thereby, the crystalline polymer film 41 can be disposed in the blow mold.
FIG. 8D is a schematic cross-sectional view of the blow mold 43. Reference numeral 45 indicates a suction nozzle, and an arrow indicates a suction direction.
 前記結晶性高分子フィルムには、接着剤を塗布することが好ましい。
 前記接着剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ホットスタンプの熱転写フィルムに用いられる感熱接着剤、後述するブロー工程の加熱温度で活性化するホットメルト接着剤などが挙げられる。
 前記ホットスタンプの熱転写フィルムに用いられる感熱接着剤としては、例えば、環化ゴム系樹脂、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系などが挙げられる。
 前記ブロー工程の加熱温度で活性化するホットメルト接着剤としては、例えば、エチレン-酢酸ビニル共重合体(EVA)、ポリエチレン、アタクチックポリプロピレン(APP)、エチレン-アクリル酸エチルコポリマー(EEA)、ポリアミド、ポリエステルなどをベースポリマーとしたものが挙げられ、これらベースポリマーに相溶する粘着付与剤として、ロジンおよびその誘導体やピネン系ポリマー、さらにワックス類を混合したものが挙げられる。
 前記接着剤の塗布量としては、特に制限はなく、容器の商品形態に応じて、相溶性、粘着性を調整して、所望の張り付き強さが得られるようにする。これにより、使用後の容器から、前記結晶性高分子フィルムを剥がれやすくすることもできる。
It is preferable to apply an adhesive to the crystalline polymer film.
The adhesive is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a heat-sensitive adhesive used for a hot stamp thermal transfer film, a hot-melt adhesive that is activated at a heating temperature in a blow process described later. Agents and the like.
Examples of the heat-sensitive adhesive used for the hot stamp thermal transfer film include cyclized rubber resins, acrylic resins, vinyl chloride resins, and vinyl acetate resins.
Examples of the hot melt adhesive that is activated at the heating temperature in the blowing step include ethylene-vinyl acetate copolymer (EVA), polyethylene, atactic polypropylene (APP), ethylene-ethyl acrylate copolymer (EEA), and polyamide. And those having a base polymer such as polyester, and tackifiers compatible with these base polymers include rosin and derivatives thereof, pinene polymers, and waxes.
There is no restriction | limiting in particular as an application quantity of the said adhesive agent, According to the goods form of a container, compatibility and adhesiveness are adjusted so that desired sticking strength may be obtained. Thereby, the said crystalline polymer film can also be made easy to peel from the container after use.
-プリフォーム配置工程-
 前記プリフォーム配置工程は、前記結晶性高分子フィルムを配置した金型にプリフォームを配置する工程である。
-Preform placement process-
The preform placement step is a step of placing a preform on a mold on which the crystalline polymer film is placed.
--プリフォーム--
 前記プリフォーム(パリソンとも称する。)の材質、形状、大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
 前記プリフォームの製造方法としては、特に制限はなく、例えば、射出成形法が挙げられる。
--preform--
There is no restriction | limiting in particular as a material of the said preform (it is also called parison), a shape, and a magnitude | size, According to the objective, it can select suitably.
There is no restriction | limiting in particular as a manufacturing method of the said preform, For example, the injection molding method is mentioned.
--配置--
 前記プリフォームを前記ブロー金型に配置する方法としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記プリフォームを予備加熱した場合には、プリフォームの胴部の温度が所定の温度になった後、素早くブロー金型に配置することが好ましい。
--- Arrangement--
There is no restriction | limiting in particular as a method of arrange | positioning the said preform in the said blow metal mold | die, According to the objective, it can select suitably.
When the preform is preheated, it is preferable that the preform is quickly placed in the blow mold after the temperature of the body portion of the preform reaches a predetermined temperature.
 前記プリフォームは、ブロー金型に配置する前に予備加熱してもよい。
 前記予備加熱の温度としては、特に制限はなく、プリフォームに用いた樹脂の種類、プリフォームの結晶化度、プリフォームの結晶サイズ、プリフォームの厚み、プリフォームの形状などに応じて適宜選択することができ、例えば、PET樹脂の場合では約90℃~110℃で加熱することがある。
 前記予備加熱の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、赤外線パネルヒータが挙げられる。
 前記予備加熱の好ましい温度は、非接触式温度計などでプリフォーム胴部の温度を測定しながら加熱テストを行うことにより、決定することができる
The preform may be preheated before being placed in the blow mold.
The temperature of the preheating is not particularly limited and is appropriately selected depending on the type of resin used for the preform, the crystallinity of the preform, the crystal size of the preform, the thickness of the preform, the shape of the preform, and the like. For example, in the case of PET resin, it may be heated at about 90 ° C. to 110 ° C.
There is no restriction | limiting in particular as the method of the said preheating, According to the objective, it can select suitably, For example, an infrared panel heater is mentioned.
The preferred temperature for the preheating can be determined by performing a heating test while measuring the temperature of the preform body with a non-contact thermometer or the like.
-ブロー工程-
 前記ブロー工程は、前記プリフォームをブローし、容器を成形する工程である。
 図7は、ブロー工程を説明するための模式図である。
 前記ブロー工程では、ブロー金型51、及び52内に配置されたプリフォーム55に、エア流路59からプリフォーム内部へ高圧空気を導入しブローを行う。これにより、ブロー金型内部の形状に沿った形状の容器を得ることができる。
-Blow process-
The blowing step is a step of blowing the preform to form a container.
FIG. 7 is a schematic diagram for explaining the blowing process.
In the blowing step, high pressure air is introduced into the preform from the air flow path 59 into the preform 55 arranged in the blow molds 51 and 52, and blow is performed. Thereby, the container of the shape along the shape inside a blow die can be obtained.
 前記ブローに際して、成形体(容器)の形状を安定的に得るため、又はその他必要に応じて、延伸ロッド58を用いての引き伸ばし(縦方向への延伸)を行ってもよい。前記延伸ロッド58を用いる引き伸ばしは、高圧空気を導入する前に行ってもよいし、高圧空気の導入と同時に行ってもよい。
 図7の延伸ロッド58は、先端に延伸ロッドヘッド54が付いている。前記延伸ロッドヘッドの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、上向きに丸みがある凸形状が挙げられる。
 図7では、延伸ロッドヘッド54がプリフォーム55の先端内壁を押し上げている状態を示すが、延伸ロッド58が上昇する前は、延伸ロッドヘッド54はベース直上まで下がっており、プリフォーム55の先端内壁と延伸ロッドヘッド54は接触していない。
 前記延伸ロッドは、例えば、油圧シリンダーによって持ち上げることができる。前記油圧シリンダーを持ち上げる速度(プリフォームを延伸する速度)としては、延伸ブローを行うことができれば、特に制限はなく、目的に応じて適宜選択することができるが、10cm/0.1sec~10cm/2sec程度が、プリフォームがムラなく伸びる点で、好ましい。
 前記延伸ロッドを持ち上げる距離としては、特に制限はなく、目的に応じて適宜選択することができるが、ブロー金型のベース56の表面から、ブロー金型の天井(ブロー成形体の底が形成される部分)までの距離の50%~80%が好ましい。
 なお、図7に示すようにブロー成形体の開口部は下(ブロー金型のベース側)を向いている。
 図7中、符号53は結晶性高分子フィルムを示し、符号56はベースを示し、符号57はガイドを示す。
During the blowing, stretching (longitudinal stretching) using the stretching rod 58 may be performed in order to stably obtain the shape of the molded body (container) or as necessary. The stretching using the stretching rod 58 may be performed before high-pressure air is introduced, or may be performed simultaneously with the introduction of high-pressure air.
The stretching rod 58 of FIG. 7 has a stretching rod head 54 at the tip. There is no restriction | limiting in particular as a shape of the said extending | stretching rod head, According to the objective, it can select suitably, For example, the convex shape which is round upwards is mentioned.
FIG. 7 shows a state in which the stretching rod head 54 pushes up the inner wall of the front end of the preform 55. Before the stretching rod 58 rises, the stretching rod head 54 is lowered to the position just above the base, and the front end of the preform 55 The inner wall and the extending rod head 54 are not in contact.
The stretching rod can be lifted by a hydraulic cylinder, for example. The speed at which the hydraulic cylinder is lifted (the speed at which the preform is stretched) is not particularly limited as long as stretch blow can be performed, and can be appropriately selected according to the purpose, but is 10 cm / 0.1 sec to 10 cm / About 2 sec is preferable in that the preform extends without unevenness.
The distance for lifting the stretching rod is not particularly limited and can be appropriately selected depending on the purpose. However, the blow mold ceiling (the bottom of the blow molded body is formed from the surface of the base 56 of the blow mold). To 50% to 80% of the distance to the portion.
In addition, as shown in FIG. 7, the opening part of a blow molded object has faced down (base side of a blow mold).
In FIG. 7, reference numeral 53 denotes a crystalline polymer film, reference numeral 56 denotes a base, and reference numeral 57 denotes a guide.
 前記高圧空気の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5MPa~4MPaが好ましく、1MPa~3MPaがより好ましく、1MPa~2MPaが特に好ましい。前記圧力が、0.5MPa未満であると、充分膨らますことが出来ないことがあり、4MPaを超えると、ブローが均一にし難く、ブロー中に容器が破れることがある。一方、前記圧力が前記特に好ましい範囲内であると、安定して容器を膨らませることが出来る点で、有利である。
 前記高圧空気の温度としては、特に制限はなく、プリフォームに用いた樹脂の種類、プリフォームの結晶化度、プリフォームの結晶サイズ、プリフォームの厚み、プリフォームの形状などに応じて適宜選択することができ、例えば、60℃が挙げられる。
The pressure of the high-pressure air is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 MPa to 4 MPa, more preferably 1 MPa to 3 MPa, and particularly preferably 1 MPa to 2 MPa. If the pressure is less than 0.5 MPa, it may not be able to swell sufficiently, and if it exceeds 4 MPa, it is difficult to blow uniformly, and the container may be broken during blowing. On the other hand, when the pressure is within the particularly preferable range, it is advantageous in that the container can be stably inflated.
The temperature of the high-pressure air is not particularly limited, and is appropriately selected according to the type of resin used in the preform, the crystallinity of the preform, the crystal size of the preform, the thickness of the preform, the shape of the preform, etc. For example, 60 degreeC is mentioned.
 本発明の容器のうち前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させない場合は、前記第1の態様、前記第2の態様により好適に製造することができる。
 本発明の容器において、前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させない場合には、結晶性高分子フィルムと、容器とが一体化してなることが好ましい。
In the case of the container of the present invention, when the crystalline polymer film is wound and does not shrink (shrink), it can be suitably manufactured according to the first aspect and the second aspect.
In the container of the present invention, when the crystalline polymer film is wound and is not shrunk, it is preferable that the crystalline polymer film and the container are integrated.
 本発明の容器のうち前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させない場合における前記結晶性高分子フィルムの積層枚数としては、特に制限はなく、目的に応じて適宜選択することができるが、1枚から10枚が好ましく、1枚から5枚が更に好ましい。前記積層枚数が、10枚以上になると、積層する際の接着などの前処理工数が多くなり、均質なフィルムが作りにくくなる。また、積層フィルムが厚くなって柔軟性が低くなり、金型内にセットする際に位置合わせが困難になる場合がある。 In the container of the present invention, when the crystalline polymer film is wound and not contracted (shrinked), the number of laminated crystalline polymer films is not particularly limited and can be appropriately selected according to the purpose. However, 1 to 10 sheets are preferable, and 1 to 5 sheets are more preferable. When the number of laminated layers is 10 or more, the number of pretreatment steps such as adhesion when laminating increases, and it becomes difficult to make a homogeneous film. In addition, the laminated film becomes thick and the flexibility becomes low, and alignment may be difficult when set in a mold.
 本発明の容器のうち前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させない場合における前記結晶性高分子フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、30μm~500μmが好ましく、80μm~300μmがより好ましく、100μm~200μmが特に好ましい。前記容器における結晶性高分子フィルムの厚みが、30μm未満であると、インサート成形の際にフィルムにシワがよることがあり、500μmを超えると、金型内にセットする際、治具への貼り付けが困難になることがある。一方、前記容器における結晶性高分子フィルムの厚みが前記特に好ましい範囲内であると、所定の位置に容易にフィルムをセットできる点で、有利である。 The thickness of the crystalline polymer film in the case where the crystalline polymer film is wound and not contracted (shrinked) in the container of the present invention is not particularly limited and can be appropriately selected depending on the purpose. 30 μm to 500 μm is preferable, 80 μm to 300 μm is more preferable, and 100 μm to 200 μm is particularly preferable. If the thickness of the crystalline polymer film in the container is less than 30 μm, the film may wrinkle during insert molding, and if it exceeds 500 μm, it may be attached to a jig when set in the mold. It may be difficult to attach. On the other hand, when the thickness of the crystalline polymer film in the container is within the particularly preferable range, it is advantageous in that the film can be easily set at a predetermined position.
 本発明の容器のうち前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させない場合における、容器の表面積(A)と、容器における結晶性高分子フィルムの面積(B)との比((B/A)×100)としては、特に制限はなく、目的に応じて適宜選択することができるが、25%以上が好ましく、67%以上がより好ましく、80%以上が特に好ましい。前記比が、25%未満であると、フィルムで覆われている面の割合が少ないので、容器が変形しやすく、フィルムの性能を充分発揮できないことがある。一方、前記比が前記特に好ましい範囲内であると、容器が変形しにくくなるだけでなく、フィルムの性能が充分発揮できる点で、有利である。 The ratio of the surface area (A) of the container and the area (B) of the crystalline polymer film in the container when the crystalline polymer film is not wound and contracted (shrink) in the container of the present invention ((B / A) × 100) is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 25% or more, more preferably 67% or more, and particularly preferably 80% or more. When the ratio is less than 25%, since the ratio of the surface covered with the film is small, the container is easily deformed, and the film performance may not be sufficiently exhibited. On the other hand, when the ratio is within the particularly preferable range, it is advantageous not only that the container is hardly deformed but also that the performance of the film can be sufficiently exhibited.
 本発明の容器のうち前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させない場合における前記結晶性高分子フィルムの配置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、強度、断熱、意匠などの点で、容器の側面に用いるのが好ましい。 The arrangement of the crystalline polymer film in the case of winding the crystalline polymer film in the container of the present invention and not shrinking (shrinking) is not particularly limited and can be appropriately selected according to the purpose. For example, it is preferably used on the side of the container in terms of strength, heat insulation, design, and the like.
<第3の態様>
 前記第3の態様は、巻回工程と、収縮(シュリンク)工程とを少なくとも含み、必要に応じて更にその他の工程を含む。
 前記第3の態様により、前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させた本発明の容器を好適に製造することができる。
<Third Aspect>
The third aspect includes at least a winding step and a contraction (shrink) step, and further includes other steps as necessary.
According to the third aspect, the container of the present invention in which the crystalline polymer film is wound and contracted (shrinked) can be suitably manufactured.
-巻回工程-
 前記巻回工程は、結晶性高分子フィルムを成形された容器に巻回する工程である。
-Winding process-
The winding step is a step of winding the crystalline polymer film around a molded container.
 前記成形された容器の形状、大きさ、材質としては、特に制限はなく、目的に応じて適宜選択することができる。 The shape, size and material of the molded container are not particularly limited and can be appropriately selected according to the purpose.
 前記結晶性高分子フィルムを前記容器に巻回する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、あらかじめ筒状に加工したフィルムを容器にかぶせたり、容器に直接巻いた後、巻き端を切断して、熱融着や糊止めする、などが挙げられる。 The method for winding the crystalline polymer film around the container is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a film that has been processed into a cylindrical shape in advance is placed on the container, For example, after winding directly, the winding end is cut and heat-sealed or glued.
-収縮(シュリンク)工程-
 前記収縮(シュリンク)工程は、前記巻回した結晶性高分子フィルムを収縮(シュリンク)させる工程である。
-Shrink process-
The shrinking step is a step of shrinking (shrinking) the wound crystalline polymer film.
 前記収縮(シュリンク)の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、火炎、スチーム、熱水、熱風、遠赤外線ヒーター、炭酸ガスレーザー、などが挙げられる。
 前記シュリンクに用いる装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱されたトンネルに当該製品を通すなどの方法でもよく、(株)ホリコー社のシュリンクトンネル IST-780EF、などが挙げられる。
There is no restriction | limiting in particular as the method of the said shrink (shrink), According to the objective, it can select suitably, For example, a flame, steam, hot water, a hot air, a far-infrared heater, a carbon dioxide laser, etc. are mentioned.
There is no restriction | limiting in particular as an apparatus used for the said shrink, According to the objective, it can select suitably, For example, the method of letting the said product pass through a heated tunnel, etc., the shrink tunnel IST of Horiko Co., Ltd. -780EF, etc.
 上記により得られる前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させた本発明の容器における結晶性高分子フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、45μm~300μmが好ましく、80μm~200μmがより好ましく、80μm~120μmが特に好ましい。前記容器における結晶性高分子フィルムの厚みが、45μm未満であると、強度が不足して変形しやすくなったり、ボイドの発生が安定しなくなり、充分な反射、遮光機能が得難いことがある。300μmを超えると、加工し難く、シワが入りやすいなどの問題を生ずることがある。一方、前記容器における結晶性高分子フィルムの厚みが前記特に好ましい範囲内であると、加工性にすぐれ、充分な機能が発現できる点で、有利である。 The thickness of the crystalline polymer film in the container of the present invention obtained by winding and shrinking (shrinking) the crystalline polymer film obtained as described above is not particularly limited and can be appropriately selected depending on the purpose. However, it is preferably 45 μm to 300 μm, more preferably 80 μm to 200 μm, and particularly preferably 80 μm to 120 μm. If the thickness of the crystalline polymer film in the container is less than 45 μm, the strength may be insufficient and the film may be easily deformed, or the generation of voids may not be stable, and it may be difficult to obtain sufficient reflection and light shielding functions. If it exceeds 300 μm, it may be difficult to process and wrinkles may occur. On the other hand, when the thickness of the crystalline polymer film in the container is within the particularly preferable range, it is advantageous in that the workability is excellent and a sufficient function can be expressed.
 また、前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させた容器における、容器の表面積(A)と、容器における結晶性高分子フィルムの面積(B)との比((B/A)×100)としては、特に制限はなく、目的に応じて適宜選択することができるが、30%以上が好ましく、50%以上がより好ましく、70%以上が特に好ましい。前記比が、30%未満であると、本発明のシュリンクフィルムの効果が低減することがある。一方、前記比が前記特に好ましい範囲内であると、本発明のシュリンクフィルムの効果が充分発現できる点で、有利である。 The ratio of the surface area (A) of the container and the area (B) of the crystalline polymer film in the container ((B / A)) in the container wound and contracted (shrinked). There is no restriction | limiting in particular as (x100), Although it can select suitably according to the objective, 30% or more is preferable, 50% or more is more preferable, and 70% or more is especially preferable. When the ratio is less than 30%, the effect of the shrink film of the present invention may be reduced. On the other hand, when the ratio is within the particularly preferable range, it is advantageous in that the effect of the shrink film of the present invention can be sufficiently exhibited.
 また、前記結晶性高分子フィルムを巻回し、収縮(シュリンク)させた容器における前記結晶性高分子フィルムの配置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、容器の胴部分、ふたに近いネック部分、容器の底部、などが挙げられる。これらの中でも、容器の胴部分が、シュリンク処理が均一に行いやすく、シュリンクフィルムにシワがよりにくい点で好ましい。更に胴部分は容器の大きな面積を占め、フィルム巻きつけの効果が出やすい、などの点で、好ましい。 Further, the arrangement of the crystalline polymer film in a container in which the crystalline polymer film is wound and contracted (shrinked) is not particularly limited and can be appropriately selected depending on the purpose. A neck portion near the lid, a bottom portion of the container, and the like. Among these, the trunk portion of the container is preferable in that the shrink treatment is easily performed uniformly and the shrink film is less likely to be wrinkled. Further, the barrel portion occupies a large area of the container and is preferable in that the effect of winding the film is easily obtained.
 以下、実施例を挙げて本発明を更に詳細に説明するが、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全ての本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and modifications may be made without departing from the spirit described above and below. Included in the technical scope.
(製造例A-1-1)
 極限粘度(IV)=0.72であるPBT(ポリブチレンテレフタレート100%樹脂)をスクリュー式の溶融押出し装置に、コートハンガータイプのダイヘッドを取り付けて255℃で押出し、15℃に冷却したキャスティングドラム上で固化させて、厚さ0.5mmのポリマーフィルムを得た。
 このポリマーフィルムを1軸延伸(縦延伸)した。具体的には、42℃の加温雰囲気下で、6,000mm/minの速度でネッキング延伸(1軸)を行った。
 なお、前記1段階の一軸延伸により、ポリマー成形体(ポリマーフィルム)は、5.2倍延伸された。
 以上により、製造例A-1-1の結晶性高分子フィルムを作製した。前記結晶性高分子フィルムは、厚さが120μmであり、空洞(ボイド)を有し、金属様光沢を発現していた。また、前記フィルムは、フィルム表面から4μm~10μmの深さにはボイドを有さず、空隙率(全体積に占める空洞体積の割合)は23%であった。
 前記製造例A-1-1の結晶性高分子フィルムの電子顕微鏡により撮影した、図4Aにおける結晶性高分子フィルムのA-A’断面図を図5Aに示し、図4Aにおける結晶性高分子フィルムのB-B’断面図を図5Bに示す。
 なお、前記延伸倍率は、一般的にroll to roll延伸で延伸ロールの速度差のことをいうが、ネッキング延伸の場合には、ロールの速度差が延伸フィルムの厚みに反比例しない。
(Production Example A-1-1)
PBT (polybutylene terephthalate 100% resin) having an intrinsic viscosity (IV) = 0.72 is extruded on a casting melt extruder with a coat hanger type die head at 255 ° C. and cooled to 15 ° C. And a polymer film having a thickness of 0.5 mm was obtained.
This polymer film was uniaxially stretched (longitudinal stretching). Specifically, necking stretching (uniaxial) was performed at a speed of 6,000 mm / min in a heated atmosphere of 42 ° C.
The polymer molded body (polymer film) was stretched 5.2 times by the one-stage uniaxial stretching.
Thus, the crystalline polymer film of Production Example A-1-1 was produced. The crystalline polymer film had a thickness of 120 μm, had voids, and exhibited a metallic luster. The film had no voids at a depth of 4 μm to 10 μm from the film surface, and the porosity (the ratio of the cavity volume to the total volume) was 23%.
FIG. 5A is a cross-sectional view taken along the line AA ′ of the crystalline polymer film in FIG. 4A, taken with an electron microscope of the crystalline polymer film of Production Example A-1-1, and the crystalline polymer film in FIG. 4A. FIG. 5B shows a cross-sectional view of BB ′.
In addition, although the said draw ratio generally refers to the speed difference of an extending | stretching roll by roll to roll extending | stretching, in the case of necking extending | stretching, the speed difference of a roll is not in inverse proportion to the thickness of a stretched film.
(製造例A-1-2)
 極限粘度(IV)=0.67であるPET樹脂を、1軸溶融押出し装置にコートハンガータイプのダイヘッドを取り付けて290℃で押出し、58℃に冷却したキャスティングドラム上で固化させて、厚さ0.5mmのポリマーフィルムを得た。
 このポリマーフィルムを遠赤外線ヒーターにより60℃に加熱し、5.5倍の1軸ネッキング延伸(延伸速度:6,000mm/min)を行った。
 以上により、製造例A-1-2の結晶性高分子フィルムを作製した。前記結晶性高分子フィルムは、厚さが厚さ100μmであり、空洞を有し、金属光沢を発現していた。また、前記フィルムは、フィルム表面から4μm~10μmの深さにはボイドを有さず、空隙率は19%であった。
(Production Example A-1-2)
A PET resin having an intrinsic viscosity (IV) = 0.67 is extruded at 290 ° C. with a coat hanger type die head attached to a uniaxial melt extruder, and solidified on a casting drum cooled to 58 ° C. A 5 mm polymer film was obtained.
This polymer film was heated to 60 ° C. with a far-infrared heater, and uniaxial necking stretching (stretching speed: 6,000 mm / min) was performed 5.5 times.
Thus, the crystalline polymer film of Production Example A-1-2 was produced. The crystalline polymer film had a thickness of 100 μm, had a cavity, and exhibited a metallic luster. The film had no voids at a depth of 4 μm to 10 μm from the film surface, and the porosity was 19%.
(比較製造例A-1)
 極限粘度(IV)=0.68であるPET(ポリエチレンテレフタレート100%樹脂)をスクリュー式の溶融押出し装置に、コートハンガータイプのダイヘッドを取り付けて295℃で押出し、60℃に冷却したキャスティングドラム上で固化させて、厚さ0.5mmのポリマーフィルムを得た。
 このポリマーフィルムを1軸延伸(縦延伸)した。具体的には、110℃の加温雰囲気下で、500mm/minの速度で延伸(1軸)を行った。
 なお、前記1段階の一軸延伸により、ポリマー成形体(ポリマーフィルム)は、4.2倍延伸された。
 以上により、比較製造例A-1の結晶性高分子フィルムを作製した。前記結晶性高分子フィルムは、厚さが120μmであり、空洞(ボイド)を有さず、金属様光沢を発現していなかった。
(Comparative Production Example A-1)
PET (polyethylene terephthalate 100% resin) with intrinsic viscosity (IV) = 0.68 is extruded at 295 ° C. with a coat hanger type die head attached to a screw-type melt extruder, on a casting drum cooled to 60 ° C. Solidified to obtain a polymer film having a thickness of 0.5 mm.
This polymer film was uniaxially stretched (longitudinal stretching). Specifically, stretching (uniaxial) was performed at a speed of 500 mm / min in a heated atmosphere of 110 ° C.
The polymer molded body (polymer film) was stretched 4.2 times by the one-stage uniaxial stretching.
Thus, a crystalline polymer film of Comparative Production Example A-1 was produced. The crystalline polymer film had a thickness of 120 μm, had no voids, and did not exhibit a metallic luster.
 前記製造例A-1-1~A-1-2、及び比較製造例A-1のフィルムの構成などについて、表1にまとめて示す。 Table 1 shows the composition of the films of Production Examples A-1-1 to A-1-2 and Comparative Production Example A-1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(評価A-1)
 前記製造例A-1-1~A-1-2、及び比較製造例A-1で得られたフィルムについて、下記の評価を行った。
(Evaluation A-1)
The films obtained in Production Examples A-1-1 to A-1-2 and Comparative Production Example A-1 were evaluated as follows.
(1)厚みの測定
 キーエンス社製、ロングレンジ接触式変位計AF030(測定部)、AF350(指示部)を用いて測定した。結果を表2に示す。
(1) Measurement of thickness It measured using the Keyence Corporation make and long range contact-type displacement meter AF030 (measurement part), AF350 (indication part). The results are shown in Table 2.
(2)遮光率の測定(遮光性)
 日立製作所製分光光度計U-4100を用いて測定した。前記製造例A-1-1~A-1-2、及び比較製造例A-1のフィルムの表面に垂直に波長550nmの光を入射させ、前記製造例A-1-1~A-1-2、及び比較製造例A-1のフィルム(サンプル)を透過する光の強度と、前記製造例A-1-1~A-1-2、及び比較製造例A-1のフィルムを置かないブランクの光の強度とを以下の評価基準で比較した。結果を表4に示す。
 遮光率(%)=100-[{(サンプルの光の強度)/(ブランクの光の強度)}×100]
 ○・・・550nmの波長における遮光率が80%以上。
 ×・・・550nmの波長における遮光率が80%未満。
(2) Measurement of light shielding rate (light shielding property)
Measurement was performed using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. Light with a wavelength of 550 nm is incident perpendicularly on the surfaces of the films of the production examples A-1-1 to A-1-2 and the comparative production example A-1, and the production examples A-1-1 to A-1- 2 and the intensity of light transmitted through the film (sample) of Comparative Production Example A-1, and a blank without the films of Production Examples A-1-1 to A-1-2 and Comparative Production Example A-1 The light intensity was compared with the following evaluation criteria. The results are shown in Table 4.
Light blocking ratio (%) = 100-[{(light intensity of sample) / (intensity of blank light)} × 100]
A: The light shielding rate at a wavelength of 550 nm is 80% or more.
X: The light shielding rate at a wavelength of 550 nm is less than 80%.
(3)フィルム表面に最も近くに位置する空洞からフィルム表面までの距離の測定
 前記製造例A-1-1~A-1-2、及び比較製造例A-1-1のフィルムの表面に垂直で、かつ、縦延伸方向に直角な断面(図4D参照)を、走査型電子顕微鏡を用いて300倍~3,000倍の適切な倍率で検鏡し、断面写真を撮像した。
 撮像の際には、前記製造例A-1-1~A-1-2、及び比較製造例A-1のフィルムを平面状に載置した状態で走査型電子顕微鏡にセットして撮像した。
 前記断面写真内において、厚みの算術平均値Tを算出した。各前記製造例A-1-1~A-1-2、及び比較製造例A-1のフィルムにおいて算出された厚みの算術平均値Tは、上記「(1)厚みの測定」で測定された厚み(表2参照)と同じであった。
 次に、前記断面写真内において、厚み方向に平行な任意の一の直線を描画し、更に、前記一の直線に対し平行でかつ20×Tだけ離れて位置する他の直線を描画した。また、前記走査型電子顕微鏡による検鏡により、空洞が縦延伸方向に沿って配向していることを確認した。
 そして、断面写真内の各空洞において、最大二乗中心法により任意に設定した基準円からの偏差の二乗和が最小となる円の中心を決定し、これを空洞の中心とした。
 そして、前記一の直線と前記他の直線とで挟まれた領域内において、空洞の中心から前記フィルム上面までの距離が最も近い10個の空洞を選択した。なお、前記「空洞の中心から前記フィルム上面までの距離」は、前記「空洞の中心」を中心とした円を描画する際に、描画する円の半径を順次大きくし、円弧が最初に前記フィルムの表面に接したときの円の半径とした。
 そして、選択した10個の空洞について、各中心から前記フィルムの上面までの距離h(i)を算出し、算出された各前記距離h(i)の算術平均値h(avg)を下記(3)式により算出した。結果を表2に示す。
 h(avg)=(Σh(i))/10   ・・・(3)
(3) Measurement of the distance from the cavity located closest to the film surface to the film surface, perpendicular to the film surfaces of Production Examples A-1-1 to A-1-2 and Comparative Production Example A-1-1 In addition, a cross section perpendicular to the longitudinal stretching direction (see FIG. 4D) was examined using a scanning electron microscope at an appropriate magnification of 300 to 3,000 times, and a cross-sectional photograph was taken.
At the time of imaging, the films of Production Examples A-1-1 to A-1-2 and Comparative Production Example A-1 were set on a scanning electron microscope in a state where the films were placed in a plane, and the images were taken.
In the cross-sectional photograph, an arithmetic average value T of thickness was calculated. The arithmetic average value T of the thicknesses calculated for the films of each of Production Examples A-1-1 to A-1-2 and Comparative Production Example A-1 was measured in the above “(1) Measurement of thickness”. It was the same as the thickness (see Table 2).
Next, an arbitrary straight line parallel to the thickness direction was drawn in the cross-sectional photograph, and another straight line parallel to the single straight line and separated by 20 × T was drawn. Moreover, it confirmed that the cavity was orientating along the vertical extending | stretching direction by the examination by the said scanning electron microscope.
Then, in each cavity in the cross-sectional photograph, the center of the circle that minimizes the sum of squares of deviations from the reference circle arbitrarily set by the maximum square center method was determined, and this was set as the center of the cavity.
Then, in the region sandwiched between the one straight line and the other straight line, ten cavities having the shortest distance from the center of the cavity to the top surface of the film were selected. Note that the “distance from the center of the cavity to the top surface of the film” means that when drawing a circle centered on the “center of the cavity”, the radius of the circle to be drawn is sequentially increased, and an arc is the film first. The radius of the circle when touching the surface of.
Then, for the 10 selected cavities, a distance h (i) from each center to the upper surface of the film is calculated, and an arithmetic average value h (avg) of each calculated distance h (i) is expressed as (3 ). The results are shown in Table 2.
h (avg) = (Σh (i)) / 10 (3)
 フィルムの外観、厚み、h(ave)について、表2に示す。
Figure JPOXMLDOC01-appb-T000003
Table 2 shows the appearance, thickness, and h (ave) of the film.
Figure JPOXMLDOC01-appb-T000003
(製造例A-2-1:PET樹脂を用いたプリフォームの成形)
 ユニチカ製PETペレット(NEH2070)を用いてプリフォームを射出成形した。
 射出温度は、ノズル先端から順に295℃-295℃-260℃-120℃-40℃とし、射出圧力2,000MPa、金型温度15℃とした。
 以上により、製造例A-2-1のプリフォームを得た。
(Production Example A-2-1: Molding of preform using PET resin)
A preform was injection molded using Unitika PET pellets (NEH2070).
The injection temperature was 295 ° C.-295 ° C.-260 ° C.-120 ° C.-40 ° C. in order from the nozzle tip, the injection pressure was 2,000 MPa, and the mold temperature was 15 ° C.
Thus, a preform of Production Example A-2-1 was obtained.
(製造例A-2-2)
 後述の実施例A-4、A-5の形状に適用するためボリュームを最適化した以外は、製造例A-2-1と同様に作製し、製造例A-2-2のプリフォームを得た。
(Production Example A-2-2)
A preform was produced in the same manner as in Production Example A-2-1 except that the volume was optimized to be applied to the shapes of Examples A-4 and A-5 described later. It was.
(実施例A-1)
 前記製造例A-1-2の結晶性高分子フィルムと、前記製造例A-2-1のプリフォームを用い、以下のようにして、容器A-1を製造した。
Example A-1
Using the crystalline polymer film of Production Example A-1-2 and the preform of Production Example A-2-1, Container A-1 was produced as follows.
 前記製造例A-1-2の結晶性高分子フィルムに所定の印刷を付した(EPSON社製 顔料インクジェットプリンターPX-9500Sを用いて、図13の意匠を印刷した)後、ブロー金型内壁に沿って、重なり、折れ曲がりがなく装着できるように、扇型にカットし、接着剤を塗布してインサートフィルムとした。前記接着剤として、エチレン-アクリル酸エチルコポリマー接着剤を使用した。 A predetermined printing was applied to the crystalline polymer film of Production Example A-1-2 (printed with the design of FIG. 13 using a pigment inkjet printer PX-9500S manufactured by EPSON), and then on the inner wall of the blow mold Along with it, it was cut into a fan shape so that it could be mounted without being overlapped or bent, and an adhesive was applied to make an insert film. As the adhesive, an ethylene-ethyl acrylate copolymer adhesive was used.
 前記結晶性高分子フィルムを図8Bに記載の治具に取り付け、矢印の方向に吸引することにより、結晶性高分子フィルムを治具に密着させた。
 前記結晶性高分子フィルムを密着させた治具を、ブロー金型(閉じたもの)の下から、金型内部に挿入した。
 その後、ブロー金型のエア吸引用のスリットから、結晶性高分子フィルムを吸引した後、前記治具の吸引を止め、治具をブロー金型から抜き取った。
 以上により、結晶性高分子フィルムをブロー金型に配置した。
The crystalline polymer film was attached to the jig shown in FIG. 8B and sucked in the direction of the arrow, thereby bringing the crystalline polymer film into close contact with the jig.
A jig having the crystalline polymer film adhered thereto was inserted into the mold from under the blow mold (closed).
Then, after sucking the crystalline polymer film from the air suction slit of the blow mold, suction of the jig was stopped, and the jig was removed from the blow mold.
As described above, the crystalline polymer film was placed in the blow mold.
 前記結晶性高分子フィルムを配置したブロー金型に、予め加熱した前記製造例A-2-1のプリフォームをベース(図7の符号56)の凸部にはめた状態でセットした。
 前記プリフォームの加熱は、赤外線パネルヒータにより、前記プリフォームの胴部が90℃になるまで加熱した。
The preform heated in advance in Production Example A-2-1 was set in a blow mold on which the crystalline polymer film was placed, with the convex part of the base (reference numeral 56 in FIG. 7) fitted.
The preform was heated by an infrared panel heater until the body of the preform reached 90 ° C.
 次いで、高圧空気(圧力:2MPa、温度:100℃)の導入と同時に、延伸ロッドを油圧シリンダーにより、ブロー金型のベースの表面から、ブロー金型の天井(ブロー成形体の底が形成される部分)までの距離の80%まで、10cm/0.5secの速度で持ち上げた。
 以上により、開口部の内径が75mm、高さが115mm、底面の外径が62mm、胴体部分の厚みが200μm(結晶性高分子フィルムの厚みは約100μm)の、結晶性高分子フィルムと容器とが一体化されてなる容器A-1を得た(図9参照)。
Next, simultaneously with the introduction of high-pressure air (pressure: 2 MPa, temperature: 100 ° C.), the stretching rod is formed from the surface of the base of the blow mold by the hydraulic cylinder, and the ceiling of the blow mold (the bottom of the blow molded body is formed). It was lifted at a speed of 10 cm / 0.5 sec up to 80% of the distance to (part).
As described above, the crystalline polymer film and the container having the inner diameter of the opening of 75 mm, the height of 115 mm, the outer diameter of the bottom surface of 62 mm, and the thickness of the body portion of 200 μm (the thickness of the crystalline polymer film is about 100 μm) To obtain a container A-1 (see FIG. 9).
 前記容器A-1では、容器の胴部(側面)全体に結晶性高分子フィルムを配置した。このときの容器A-1の表面積(A)と、容器A-1における結晶性高分子フィルムの面積(B)との比(B/A)は、0.83(83%)であった。
 また、前記容器A-1の側面の角部の曲率半径Rを三次元形状測定装置により測定したところ、容器底部のRの小さい部分でR=約42mmであった。
In the container A-1, a crystalline polymer film was disposed on the entire body (side surface) of the container. At this time, the ratio (B / A) of the surface area (A) of the container A-1 to the area (B) of the crystalline polymer film in the container A-1 was 0.83 (83%).
Further, when the radius of curvature R of the corner portion of the side surface of the container A-1 was measured with a three-dimensional shape measuring apparatus, R = about 42 mm in the small R portion of the container bottom.
(実施例A-2)
 前記実施例A-1において、結晶性高分子フィルムをブロー金型に配置して容器をブロー成形していた点を、結晶性高分子フィルムをブロー金型に配置せず容器をブロー成形し、その後、結晶性高分子フィルムを容器に巻回した以外は、実施例A-1と同様にして、容器A-2を製造した。
 前記ブロー成形した容器の胴部の厚みは、100μmであった。
 前記容器への結晶性高分子フィルムの巻回は、前記結晶性高分子フィルムの巻き初めと巻き終わり(結晶性高分子フィルムの両端;図10のA部分)に、それぞれ2mm幅に接着剤を塗布し、ブロー成形した後の容器に巻回することにより行った(図10参照)。
Example A-2
In Example A-1, the point where the crystalline polymer film was placed in the blow mold and the container was blow-molded was that the container was blow-molded without placing the crystalline polymer film in the blow mold, Thereafter, a container A-2 was produced in the same manner as in Example A-1, except that the crystalline polymer film was wound around the container.
The thickness of the body part of the blow molded container was 100 μm.
The crystalline polymer film is wound around the container with an adhesive having a width of 2 mm at the beginning and end of winding of the crystalline polymer film (both ends of the crystalline polymer film; part A in FIG. 10). It was performed by winding it around a container after coating and blow molding (see FIG. 10).
(実施例A-3)
 前記実施例A-2において、結晶性高分子フィルムとして、前記製造例A-1-2の結晶性高分子フィルムを用いていた点を、前記製造例A-1-1の結晶性高分子フィルムに代えた以外は、実施例A-2と同様にして、容器A-3を製造した。
Example A-3
In Example A-2, the crystalline polymer film of Production Example A-1-1 was used as the crystalline polymer film. A container A-3 was produced in the same manner as in Example A-2, except that:
(実施例A-4)
 前記実施例A-1において、プリフォームとして、前記製造例A-2-1のプリフォームを用いていた点を、前記製造例A-2-2のプリフォームに代え、容器の形状を図9から以下の図11に変えた以外は、実施例A-1と同様にして、容器A-4を製造した。
 前記容器A-4は、開口部の断面が□70mm、高さが100mm、底面の断面が□50mm、胴体部分の厚みが500μm(結晶性高分子フィルムの厚みは約120μm)である(図11参照)。
 前記容器A-4では、容器の胴部(側面)全体に結晶性高分子フィルムを配置した。このときの容器A-4の表面積(A)と、容器A-4における結晶性高分子フィルムの面積(B)との比(B/A)は、0.30(30%)とした。
 また、前記容器A-4の側面の角部の曲率半径Rを三次元形状測定装置により測定したところ、容器底部のRの小さい部分でR=1mmであった。
Example A-4
In Example A-1, the preform of Production Example A-2-1 was used as the preform in place of the preform of Production Example A-2-2. A container A-4 was produced in the same manner as in Example A-1, except for changing from to FIG. 11 below.
The container A-4 has an opening with a cross section of □ 70 mm, a height of 100 mm, a bottom cross section of □ 50 mm, and a body portion having a thickness of 500 μm (the thickness of the crystalline polymer film is about 120 μm) (FIG. 11). reference).
In the container A-4, a crystalline polymer film was disposed on the entire body (side surface) of the container. At this time, the ratio (B / A) of the surface area (A) of the container A-4 to the area (B) of the crystalline polymer film in the container A-4 was 0.30 (30%).
Further, when the radius of curvature R of the corner portion of the side surface of the container A-4 was measured with a three-dimensional shape measuring apparatus, R = 1 mm at a small portion of R at the bottom of the container.
(実施例A-5)
 前記実施例A-1において、プリフォームとして、前記製造例A-2-1のプリフォームを用いていた点を、前記製造例A-2-2のプリフォームに代え、容器の形状を図9から以下の図12に代えた以外は、実施例A-1と同様にして、容器A-5を製造した。
 前記容器A-5は、開口部の断面が□70mm、高さが120mm、底面の断面が□40mm、胴体部分の厚みが500μm(結晶性高分子フィルムの厚みは約120μm)である(図12参照)。
 前記容器A-5では、容器の胴部(側面)全体に結晶性高分子フィルムを配置した。このときの容器A-5の表面積(A)と、容器A-5における結晶性高分子フィルムの面積(B)との比(B/A)は、0.30(30%)とした。
 また、前記容器A-5の側面の角部の曲率半径Rを三次元形状測定装置により測定したところ、容器底部のRの小さい部分でR=0.8mmであった。
Example A-5
In Example A-1, the preform of Production Example A-2-1 was used as the preform in place of the preform of Production Example A-2-2. To A in the same manner as in Example A-1, except for changing to FIG. 12 below.
The container A-5 has an opening with a section of 70 mm, a height of 120 mm, a bottom section of 40 mm, and a body thickness of 500 μm (the crystalline polymer film has a thickness of about 120 μm) (FIG. 12). reference).
In the container A-5, a crystalline polymer film was disposed on the entire body (side surface) of the container. At this time, the ratio (B / A) of the surface area (A) of the container A-5 to the area (B) of the crystalline polymer film in the container A-5 was 0.30 (30%).
Further, when the radius of curvature R of the corner portion of the side surface of the container A-5 was measured by a three-dimensional shape measuring apparatus, R = 0.8 mm at the small R portion of the container bottom.
(比較例A-1)
 実施例A-2において、結晶性高分子フィルムを用いなかった以外は、実施例A-2と同様にして、容器A-6を製造した。
(Comparative Example A-1)
A container A-6 was produced in the same manner as in Example A-2 except that the crystalline polymer film was not used in Example A-2.
(比較例A-2)
 実施例A-1において、製造例A-1-2の結晶性高分子フィルムを用いていた点を、比較製造例A-1の空洞を含有しない結晶性高分子フィルムに代えた以外は、実施例A-1と同様にして、容器A-7を製造した。
(Comparative Example A-2)
In Example A-1, except that the crystalline polymer film of Production Example A-1-2 was used, except that the crystalline polymer film containing no cavity of Comparative Production Example A-1 was used. Container A-7 was produced in the same manner as Example A-1.
 前記実施例A-1~A-5、及び比較例A-1~A-2の容器の構成などについて、表3にまとめて示す。 Table 3 summarizes the configurations of the containers of Examples A-1 to A-5 and Comparative Examples A-1 to A-2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(評価A-2)
 前記実施例A-1~A-5、及び比較例A-1~A-2の容器について、下記の評価を行った。
(Evaluation A-2)
The containers of Examples A-1 to A-5 and Comparative Examples A-1 to A-2 were evaluated as follows.
(1)断熱性(保温性)の測定
 25℃の室内にて、容器に85℃の温水を上部つば部分までいっぱい入れ、容器の下から1/3の高さの容器の外面に温度計(熱電対)を貼り付けた。そして、温度計の温度変化を経時で測定した。
 前記測定結果を基に以下の評価基準で評価した結果を表4に示す。
 ○: 3分後の容器外面と温水温度の差が10℃以上。
 △: 3分後の容器外面と温水温度の差が5℃以上10℃未満。
 ×: 3分後の容器外面と温水温度の差が5℃未満。
(1) Measurement of thermal insulation (heat retention) In a 25 ° C room, fill the container with 85 ° C warm water up to the upper brim, and put a thermometer on the outer surface of the container 1/3 height below the container. A thermocouple) was attached. And the temperature change of the thermometer was measured with time.
Table 4 shows the results of evaluation according to the following evaluation criteria based on the measurement results.
◯: The difference between the outer surface of the container after 3 minutes and the hot water temperature is 10 ° C. or more.
(Triangle | delta): The difference of the outer surface of a container and warm water temperature after 3 minutes is 5 degreeC or more and less than 10 degreeC.
X: The difference between the outer surface of the container after 3 minutes and the hot water temperature is less than 5 ° C.
(2)強度の測定
 容器に、付属の平型アタッチメントを取り付けたデジタルフォースゲージDS-2型((株)イマダ製)を圧縮用手動計測スタンドSV-1((株)イマダ製)にセットし、測定部を容器の側面の所定の位置に押し付け、3mm押し込んだ(変形した)ときのデジタルフォースゲージの値を計測した。このデジタルフォースゲージの値が大きいほど、強度が優れることを示す。
 前記側面の所定の位置(測定位置)は、容器の開口部(上部)から底までの距離の1/2の位置とした。
 前記結果を基に以下の評価基準で評価した結果を表4に示す。
  ◎:5N以上・・・問題なく普通に保持できる。
  ○:3N以上5N未満・・・少し柔らかいが何とか保持できる。
  △:1.5Nより大きく3N未満・・・なんとか保持できるが、保持にかなりの注意を払う必要がある。小児などでは保持することが困難。
  ×:1.5N以下・・・容器が非常に脆弱で手で持つと容易につぶれてしまい、使用に耐えない。
(2) Strength measurement Set the digital force gauge DS-2 type (manufactured by Imada Co., Ltd.) with the attached flat attachment attached to the container on the compression manual measurement stand SV-1 (manufactured by Imada Co., Ltd.). The value of the digital force gauge was measured when the measuring unit was pressed against a predetermined position on the side surface of the container and pressed (deformed) by 3 mm. It shows that intensity | strength is excellent, so that the value of this digital force gauge is large.
The predetermined position (measurement position) of the side surface was set to a position that was a half of the distance from the opening (top) to the bottom of the container.
Table 4 shows the results of evaluation according to the following evaluation criteria based on the above results.
A: 5N or more: Can be held normally without problems.
◯: 3N or more and less than 5N.
Δ: Greater than 1.5N and less than 3N. It can be held somehow, but considerable care must be taken for holding. Difficult to hold in children.
X: 1.5N or less: The container is very fragile and easily crushed when held by hand and cannot be used.
(3)容器側面の角部における結晶性高分子フィルム中の空洞の有無
 サンプルを大きく切出し、樹脂包埋したのちミクロトームにより切断し、断面サンプルを得た。つぎに走査型電子顕微鏡にて断面を観察し、容器側面の角部における結晶性高分子フィルムの空洞の有無を調べた。
 前記結果を基に以下の評価基準で評価した結果を表4に示す。
 ○:容器に巻回した後のフィルムの電子顕微鏡断面写真より測定した空洞部分の厚みが、容器に巻回する前のフィルムの電子顕微鏡断面写真より測定した空洞部分の厚みに対して、80%以上。
 △:容器に巻回した後のフィルムの電子顕微鏡断面写真より測定した空洞部分の厚みが、容器に巻回する前のフィルムの電子顕微鏡断面写真より測定した空洞部分の厚みに対して、50%より大きく、80%未満。
 ×:容器に巻回した後のフィルムの電子顕微鏡断面写真より測定した空洞部分の厚みが、容器に巻回する前のフィルムの電子顕微鏡断面写真より測定した空洞部分の厚みに対して、50%未満(空洞がつぶれてしまっている)。
(3) Presence / absence of cavities in the crystalline polymer film at the corners on the side of the container A sample was largely cut out, embedded in a resin, and cut with a microtome to obtain a cross-sectional sample. Next, the cross section was observed with a scanning electron microscope, and the presence or absence of a cavity of the crystalline polymer film at the corner of the side surface of the container was examined.
Table 4 shows the results of evaluation according to the following evaluation criteria based on the above results.
○: The thickness of the cavity portion measured from the electron microscope cross-sectional photograph of the film after being wound around the container is 80% with respect to the thickness of the cavity portion measured from the electron microscope cross-sectional photograph of the film before being wound around the container. more than.
Δ: The thickness of the cavity portion measured from the electron microscope cross-sectional photograph of the film after being wound around the container is 50% of the thickness of the cavity portion measured from the electron microscope cross-sectional photograph of the film before being wound around the container. Greater than 80%.
X: The thickness of the cavity part measured from the electron microscope cross-sectional photograph of the film after being wound around the container is 50% with respect to the thickness of the cavity part measured from the electron microscope sectional photograph of the film before being wound around the container. Less than (the cavity has been crushed).
(4)総合評価
 以下の評価基準で、総合評価を行った結果を表4に示す。
 ○:前記各評価項目(遮光性、断熱性、強度、角部における空洞)に、1つも×、及び△がない。
 △:前記各評価項目(遮光性、断熱性、強度、角部における空洞)に、少なくとも1つ△がある。
 ×:前記各評価項目(遮光性、断熱性、強度、角部における空洞)に、少なくとも1つ×がある。
(4) Comprehensive evaluation Table 4 shows the results of comprehensive evaluation with the following evaluation criteria.
◯: None of the evaluation items (light shielding properties, heat insulating properties, strength, cavities at the corners) have x or Δ.
Δ: There is at least one Δ in each of the evaluation items (light shielding properties, heat insulating properties, strength, and cavities at corners).
X: There is at least one x in each of the evaluation items (light-shielding property, heat insulating property, strength, cavity at the corner).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4の結果から、空洞を内部に含有する結晶性高分子フィルムを巻回した実施例A-1~A-5の容器A-1~A-5は、空洞を内部に含有する結晶性高分子フィルムを巻回していない比較例A-1~A-2の容器A-6~A-7と比較して、総合的に優れた容器であることがわかった。
 また、結晶性高分子フィルムと容器とを一体化した実施例A-1では、一体化していない実施例A-2~A-3に比べ、優れた強度を有していることがわかった。
 また、容器側面の角部のRが1mm以上である実施例A-1~A-4の容器A-1~A-4は、角部の空洞が特に保持されていた。
 また、結晶性高分子フィルムと容器とを一体化した実施例A-1、A-4、及びA-5の中でも、比((B/A)×100)が高い実施例A-1が特に優れていることがわかった。
 以上の結果から、本発明の容器である実施例A-1~A-5の容器は、強度、遮光性、及び保温性に優れると共に、容易に圧縮して体積を減ずることが出来て、リサイクル性に優れ、更に意匠性にも優れることがわかった。
From the results shown in Table 4, the containers A-1 to A-5 of Examples A-1 to A-5 wound with the crystalline polymer film containing the cavities inside are highly crystalline. It was found that the container is comprehensively superior compared to the containers A-6 to A-7 of Comparative Examples A-1 to A-2 in which no molecular film is wound.
It was also found that Example A-1 in which the crystalline polymer film and the container were integrated had superior strength compared to Examples A-2 to A-3 that were not integrated.
Further, in the containers A-1 to A-4 of Examples A-1 to A-4 in which the corner portion R on the side surface of the container is 1 mm or more, the corner cavity is particularly retained.
Among Examples A-1, A-4, and A-5 in which the crystalline polymer film and the container are integrated, Example A-1 having a high ratio ((B / A) × 100) is particularly preferable. I found it excellent.
From the above results, the containers of Examples A-1 to A-5, which are the containers of the present invention, are excellent in strength, light-shielding properties, and heat-retaining properties, and can be easily compressed to reduce the volume and recycled. It was found that it was excellent in design and design.
(製造例B-1)
 IV=0.72であるPBT(ポリブチレンテレフタレート100%樹脂)を溶融押出機を用いて248℃でTダイから押出し、キャスティングドラムで固化させて、厚さ約265μmのポリマー成形体(ポリマーフィルム)を得た。このポリマー成形体(ポリマーフィルム)を1軸延伸(縦延伸)した。
 具体的には、42℃の雰囲気下で、120mm/minの速度で1軸延伸し、ネッキングが発生したことを確認した後、6,000mm/minの速度で、初めと同一方向に更に1軸延伸した。
 なお、前記2段階の一軸延伸により、ポリマー成形体(ポリマーフィルム)は、4.5倍延伸された。
 以上により、製造例B-1の結晶性高分子フィルムを作製した。
(Production Example B-1)
PBT (polybutylene terephthalate 100% resin) with IV = 0.72 was extruded from a T-die at 248 ° C. using a melt extruder and solidified with a casting drum, and a polymer molded body (polymer film) having a thickness of about 265 μm Got. This polymer molded body (polymer film) was uniaxially stretched (longitudinal stretching).
Specifically, uniaxial stretching was performed at a speed of 120 mm / min in an atmosphere of 42 ° C., and after confirming that necking had occurred, a further uniaxial movement was performed in the same direction as the beginning at a speed of 6,000 mm / min. Stretched.
The polymer molded body (polymer film) was stretched 4.5 times by the two-stage uniaxial stretching.
Thus, the crystalline polymer film of Production Example B-1 was produced.
(製造例B-2)
 IV=0.70であるPHT(ポリヘキサメチレンテレフタレート100%樹脂)を溶融押出機を用いて180℃でTダイから押出し、キャスティングドラムで固化させて、厚さ約276μmのポリマー成形体(ポリマーフィルム)を得た。このポリマー成形体(ポリマーフィルム)を1軸延伸(縦延伸)した。
 具体的には、22℃の雰囲気下で、100mm/minの速度で1軸延伸し、ネッキングが発生したことを確認した後、5,200mm/minの速度で、初めと同一方向に更に1軸延伸した。
 なお、前記2段階の一軸延伸により、ポリマー成形体(ポリマーフィルム)は、4.8倍延伸された。
 以上により、製造例B-2の結晶性高分子フィルムを作製した。
(Production Example B-2)
PHT (polyhexamethylene terephthalate 100% resin) with IV = 0.70 was extruded from a T-die at 180 ° C. using a melt extruder and solidified with a casting drum to give a polymer molded body (polymer film) having a thickness of about 276 μm. ) This polymer molded body (polymer film) was uniaxially stretched (longitudinal stretching).
Specifically, in an atmosphere of 22 ° C., uniaxially stretching at a speed of 100 mm / min and confirming that necking has occurred, and then further uniaxially in the same direction as the beginning at a speed of 5,200 mm / min. Stretched.
The polymer molded body (polymer film) was stretched 4.8 times by the two-stage uniaxial stretching.
Thus, a crystalline polymer film of Production Example B-2 was produced.
(製造例B-3)
 IV=0.67であるPBS(ポリブチレンサクシネート100%樹脂)を溶融押出機を用いて135℃でTダイから押出し、キャスティングドラムで固化させて、厚さ281μmのポリマー成形体(ポリマーフィルム)を得た。このポリマー成形体(ポリマーフィルム)を1軸延伸(縦延伸)した。
 具体的には、15℃の雰囲気下で、100mm/minの速度で1軸延伸し、ネッキングが発生したことを確認した後、4,800mm/minの速度で、初めと同一方向に更に1軸延伸した。
 なお、前記2段階の一軸延伸により、ポリマー成形体(ポリマーフィルム)は、5.5倍延伸された。
 以上により、製造例B-3の結晶性高分子フィルムを作製した。
(Production Example B-3)
PBS (polybutylene succinate 100% resin) with IV = 0.67 was extruded from a T-die at 135 ° C. using a melt extruder and solidified with a casting drum to give a polymer molded body (polymer film) having a thickness of 281 μm. Got. This polymer molded body (polymer film) was uniaxially stretched (longitudinal stretching).
Specifically, in an atmosphere of 15 ° C., uniaxial stretching was performed at a speed of 100 mm / min, and after confirming that necking had occurred, the uniaxial stretching was further performed in the same direction as the beginning at a speed of 4,800 mm / min. Stretched.
The polymer molded body (polymer film) was stretched 5.5 times by the two-stage uniaxial stretching.
Thus, a crystalline polymer film of Production Example B-3 was produced.
(製造例B-4)
 重量平均分子量190,000、数平均分子量50,000、Tg-13℃、融点170℃~175℃のアイソタクティックポリプロピレン(isoPP)(Aldrich社製)を溶融押出機を用いて210℃でTダイから押出し、キャスティングドラムで固化させて、厚さ363μmのポリマー成形体(ポリマーフィルム)を得た。このポリマー成形体(ポリマーフィルム)を1軸延伸(縦延伸)した。
 具体的には、35℃の雰囲気下で、100mm/minの速度で1軸延伸し、ネッキングが発生したことを確認した後、11,000mm/minの速度で、初めと同一方向に更に1軸延伸した。
 なお、前記2段階の一軸延伸により、ポリマー成形体(ポリマーフィルム)は、7.2倍延伸された。
 以上により、製造例B-4の結晶性高分子フィルムを作製した。
(Production Example B-4)
Isotactic polypropylene (isoPP) (manufactured by Aldrich) having a weight average molecular weight of 190,000, a number average molecular weight of 50,000, Tg of -13 ° C., and a melting point of 170 ° C. to 175 ° C. at 210 ° C. using a melt extruder. And solidified with a casting drum to obtain a polymer molded body (polymer film) having a thickness of 363 μm. This polymer molded body (polymer film) was uniaxially stretched (longitudinal stretching).
Specifically, uniaxial stretching was performed at a speed of 100 mm / min in an atmosphere of 35 ° C., and after confirming that necking had occurred, a further uniaxial movement was performed in the same direction as the beginning at a speed of 11,000 mm / min. Stretched.
The polymer molded body (polymer film) was stretched 7.2 times by the two-stage uniaxial stretching.
Thus, a crystalline polymer film of Production Example B-4 was produced.
(製造例B-5)
 IV=0.70であるPBT(ポリブチレンテレフタレート100%樹脂、ガラス転移温度(Tg)=39℃)を溶融押出機を用いて250℃でTダイから押出し、キャスティングドラムで固化させて、厚さ約263μmのポリマー成形体(ポリマーフィルム)を得た。このポリマー成形体(ポリマーフィルム)を1軸延伸(縦延伸)した。
 具体的には、58℃の雰囲気下で、120mm/minの速度で1軸延伸し、ネッキングが発生したことを確認した後、4,000mm/minの速度で、初めと同一方向に更に1軸延伸した。
 なお、前記2段階の1軸延伸により、ポリマー成形体(ポリマーフィルム)は、4.5倍延伸され、また、横延伸は、行わなかった。
 以上により、製造例B-5の結晶性高分子フィルムを作製した。
(Production Example B-5)
PBT (polybutylene terephthalate 100% resin, glass transition temperature (Tg) = 39 ° C.) with IV = 0.70 was extruded from a T die at 250 ° C. using a melt extruder and solidified with a casting drum to obtain a thickness. A polymer molded body (polymer film) of about 263 μm was obtained. This polymer molded body (polymer film) was uniaxially stretched (longitudinal stretching).
Specifically, uniaxial stretching was performed at a speed of 120 mm / min in an atmosphere of 58 ° C., and after confirming that necking had occurred, a further uniaxial movement was performed in the same direction as the beginning at a speed of 4,000 mm / min. Stretched.
The polymer molded body (polymer film) was stretched 4.5 times by the two-stage uniaxial stretching, and the lateral stretching was not performed.
Thus, the crystalline polymer film of Production Example B-5 was produced.
(比較製造例B-1)
 熱収縮性合成樹脂フィルムとして、厚さ45μmのポリエチレンテレフタレートフィルム(東洋紡績株式会社製、S7561)を準備した。前記熱収縮性合成樹脂フィルムの上に絵柄印刷層として、NT-ハイラミック藍(大日精化株式会社製)で、版深28μm、線数175線の網版を用いてグラビア印刷を施した。前記の絵柄印刷層の上に、白色インキ(全面ベタ刷り)層として、NT-ハイラミックコンク白(大日精化株式会社製)で、版深28μm、線数175線の網版を用いて全面ベタ刷りの2度重ね刷りでグラビア印刷を施した。前記白色インキ(全面ベタ刷り)層の上に、アルミペーストを含有する白色インキ(全面ベタ刷り)層として、NT-ハイラミックコンク白(大日精化株式会社製、アルミペースト含有量:1重量%)で、版深28μm、線数175線の網版を用いて全面ベタ刷りのグラビア印刷を施した。その結果、ポリエチレンテレフタレートフィルム/絵柄印刷層/白色インキ(全面ベタ2回刷り)層/白色インキ(アルミペースト含有量:1重量%)全面ベタ刷り層からなる比較製造例B-1のフィルムを得た。
(Comparative Production Example B-1)
A 45 μm thick polyethylene terephthalate film (Toyobo Co., Ltd., S7561) was prepared as a heat-shrinkable synthetic resin film. On the heat-shrinkable synthetic resin film, gravure printing was performed using NT-Hilamic Indigo (manufactured by Dainichi Seika Co., Ltd.) as a pattern printing layer using a halftone plate having a plate depth of 28 μm and a line number of 175 lines. On the pattern printing layer, a white ink (entire solid printing) layer is NT-Hilamic Conk White (manufactured by Dainichi Seika Co., Ltd.), using a halftone plate with a plate depth of 28 μm and a line number of 175 lines. Gravure printing was performed by two overprints of solid printing. On top of the white ink (full solid printing) layer, as a white ink (full solid printing) layer containing aluminum paste, NT-Hilamic Conk White (manufactured by Dainichi Seika Co., Ltd., aluminum paste content: 1% by weight) ), A solid gravure printing was performed using a halftone plate having a plate depth of 28 μm and a line number of 175 lines. As a result, a film of Comparative Production Example B-1 comprising a polyethylene terephthalate film / pattern printing layer / white ink (whole surface printing twice) layer / white ink (aluminum paste content: 1% by weight) whole surface printing layer was obtained. It was.
(比較製造例B-2)
<紫外線吸収性シュリンクフィルムの調製>
 ジムロート、滴下ロート、温度計、窒素導入管、攪拌装置を備えた300mlのセパラブルフラスコに、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシ)フェニル]ベンゾトリアゾール30.0g、メタクリル酸メチル50g、アクリル酸ブチル15g、メタクリル酸2g、2-ヒドロキシエチルメタクリレート0.5g、n-ドデシルメルカプタン1.6g、酢酸エチル100gを加え、窒素導入管から窒素を吹き込みながら50℃まで昇温した。その後、少量の酢酸エチルに溶解したアゾビスイソブチロニトリル0.3gを30分で滴下し、滴下終了後70℃まで昇温した後、8時間反応を行うことで紫外線吸収性アクリル系共重合体を調製した。紫外線吸収性アクリル系共重合体を、厚さ50μmのシュリンクポリエチレンテレフタレート(シーアイ化成(株)製、ボンセット)に乾燥膜厚5μmになるように塗工した後、60℃で30秒乾燥し、紫外線吸収性シュリンクフィルムを調製した。
(Comparative Production Example B-2)
<Preparation of UV-absorbing shrink film>
In a 300 ml separable flask equipped with a Dimroth, dropping funnel, thermometer, nitrogen inlet tube, and stirring device, 30.0 g of 2- [2′-hydroxy-5 ′-(methacryloyloxy) phenyl] benzotriazole, methyl methacrylate 50 g, 15 g of butyl acrylate, 2 g of methacrylic acid, 0.5 g of 2-hydroxyethyl methacrylate, 1.6 g of n-dodecyl mercaptan and 100 g of ethyl acetate were added, and the temperature was raised to 50 ° C. while blowing nitrogen from the nitrogen introduction tube. Thereafter, 0.3 g of azobisisobutyronitrile dissolved in a small amount of ethyl acetate was added dropwise over 30 minutes. After the completion of the addition, the temperature was raised to 70 ° C., and the reaction was carried out for 8 hours. A coalescence was prepared. The UV-absorbing acrylic copolymer was applied to a 50 μm-thick shrink polyethylene terephthalate (Ci Kasei Co., Ltd., bonset) to a dry film thickness of 5 μm, and then dried at 60 ° C. for 30 seconds. A UV-absorbing shrink film was prepared.
<遮光性粘着剤の調製>
 ジムロート、滴下ロート、温度計、窒素導入管、攪拌装置を備えた300mlのセパラブルフラスコに、2-エチルヘキシルアクリレート55g、酢酸ビニル25g、2-ヒドロキシエチルメタクリレート4g、酢酸エチル100gを加え、窒素導入管から窒素を吹き込みながら50℃まで昇温した。その後、少量の酢酸エチルに溶解したアゾビスイソブチロニトリル0.3gを30分で滴下し、滴下終了後70℃まで昇温した後、8時間反応を行うことで粘着性アクリル系共重合体溶液を調製した。
 前記粘着性アクリル系共重合体溶液100重量部に対して平均粒子径0.03μmの酸化チタン1重量部配合し、3本ロールミルで1時間分散させた。分散後、コロネートL(日本ポリウレタン工業(株)製、イソシアネート系架橋剤)0.13重量部配合し、遮光性粘着剤を調製した。
<Preparation of light-shielding pressure-sensitive adhesive>
To a 300 ml separable flask equipped with a Dimroth, dropping funnel, thermometer, nitrogen inlet tube, and stirrer were added 55 g of 2-ethylhexyl acrylate, 25 g of vinyl acetate, 4 g of 2-hydroxyethyl methacrylate, and 100 g of ethyl acetate, and a nitrogen inlet tube Then, the temperature was raised to 50 ° C. while blowing nitrogen. Thereafter, 0.3 g of azobisisobutyronitrile dissolved in a small amount of ethyl acetate was added dropwise over 30 minutes, and after completion of the addition, the temperature was raised to 70 ° C., and the reaction was carried out for 8 hours. A solution was prepared.
1 part by weight of titanium oxide having an average particle size of 0.03 μm was blended with 100 parts by weight of the adhesive acrylic copolymer solution, and was dispersed for 1 hour by a three-roll mill. After dispersion, 0.13 parts by weight of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd., isocyanate-based crosslinking agent) was blended to prepare a light-shielding pressure-sensitive adhesive.
<フィルムの調製>
 前記遮光性粘着剤の調製で作製した遮光性粘着剤を乾燥膜厚25μmになるようにアプリケーターで剥離紙(SP-8E、リンテック(株)製)に塗布し、100℃の循環式温風乾燥機で2分間乾燥した。乾燥後、前記紫外線吸収性シュリンクフィルムの調製で作製した紫外線吸収シュリンクフィルムに貼着し、比較製造例B-2のフィルムを調製した。
<Preparation of film>
The light-shielding pressure-sensitive adhesive prepared in the preparation of the light-shielding pressure-sensitive adhesive is applied to release paper (SP-8E, manufactured by Lintec Corporation) with an applicator so as to have a dry film thickness of 25 μm, and is circulated with hot air at 100 ° C. Machine dried for 2 minutes. After drying, the film was affixed to the ultraviolet-absorbing shrink film prepared in the preparation of the ultraviolet-absorbing shrink film to prepare a film of Comparative Production Example B-2.
 前記製造例B-1~B-5、及び比較製造例B-1~B-2のフィルムの構成などについて、表5にまとめて示す。 Table 5 summarizes the film configurations and the like of Production Examples B-1 to B-5 and Comparative Production Examples B-1 to B-2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(評価B-1)
 前記製造例B-1~B-5、及び比較製造例B-1~B-2のフィルムについて、下記の評価を行った。
(Evaluation B-1)
The films of Production Examples B-1 to B-5 and Comparative Production Examples B-1 to B-2 were evaluated as follows.
(1)厚みの測定
 前記評価A-1における(1)厚みの測定と同様にして測定した。
(1) Measurement of thickness The thickness was measured in the same manner as (1) Measurement of thickness in Evaluation A-1.
(2)光線透過率の測定(遮光性)
 分光光度計(U-4100、日立製作所製)を用いて透過率を測定した。前記得られたフィルム(サンプル)の表面の法線方向から光を入射させ、該フィルムを透過する光の強度を、該フィルムを透過させないブランクの値と比較した。波長は400nmを使用して透過率(%)を測定した。
 光線透過率(%)={(サンプルの光の強度)/(ブランクの光の強度)}×100
 以下の評価基準で評価した結果を表8に示す。
 ◎:10%以下。
 ○:10%より大きく、20%以下。
 △:20%より大きく、30%以下。
 ×:30%より大きい。
(2) Measurement of light transmittance (light shielding property)
The transmittance was measured using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.). Light was incident from the normal direction of the surface of the obtained film (sample), and the intensity of light transmitted through the film was compared with the value of a blank that did not transmit the film. The transmittance (%) was measured using a wavelength of 400 nm.
Light transmittance (%) = {(sample light intensity) / (blank light intensity)} × 100
Table 8 shows the results of evaluation based on the following evaluation criteria.
A: 10% or less.
○: Greater than 10% and 20% or less.
Δ: Greater than 20% and 30% or less.
X: Greater than 30%.
(3)熱収縮率の測定
 前記製造例B-1~B-5、及び比較製造例B-1~B-2のフィルムを100mm角に裁断してサンプルとし、このサンプルを150℃に調整したオーブン中で10分間熱処理した後、フィルムの延伸方向(第1の方向)及び該フィルムの延伸方向(第1の方向)と直交する方向(第2の方向)の寸法を測定し、それぞれの熱収縮率を下記式に従って求めた。ただし、製造例B-3のフィルムの熱収縮率の測定については、オーブン温度を100℃に変更した。
(3) Measurement of heat shrinkage rate The films of Production Examples B-1 to B-5 and Comparative Production Examples B-1 to B-2 were cut into 100 mm squares, and the samples were adjusted to 150 ° C. After heat treatment for 10 minutes in the oven, the dimensions of the film stretching direction (first direction) and the direction perpendicular to the film stretching direction (first direction) (second direction) are measured, and the respective heat The shrinkage was determined according to the following formula. However, the oven temperature was changed to 100 ° C. for the measurement of the heat shrinkage rate of the film of Production Example B-3.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
(4)フィルム表面に最も近くに位置する空洞からフィルム表面までの距離の測定
 前記評価A-1における(3)フィルム表面に最も近くに位置する空洞からフィルム表面までの距離の測定と同様にして測定した。
 なお、各前記製造例B-1~B-5、及び比較製造例B-1~B-2のフィルムにおいて算出された厚みの算術平均値Tは、上記評価B-1における「(1)厚みの測定」で測定された厚み(表6参照)と同じであった。
(4) Measurement of the distance from the cavity closest to the film surface to the film surface As in (3) Measurement of the distance from the cavity closest to the film surface to the film surface in Evaluation A-1 It was measured.
It should be noted that the arithmetic average value T of the thicknesses calculated in the films of each of the above Production Examples B-1 to B-5 and Comparative Production Examples B-1 to B-2 is “(1) Thickness” in the evaluation B-1. It was the same as the thickness (see Table 6) measured in “Measurement of”.
(5)断熱性(保温性)の測定
 前記製造例B-1~B-5、及び比較製造例B-1~B-2のフィルム(図14Aの符号62)をアルミ製ボトル(350mL容器、図14Aの符号61)の側面に張り付け、更にその上に、センサー部分の直径が約0.5mmの細い温度センサー(図14Aの符号63)を、PET粘着フィルム(10mm×10mm、厚さ10μm、図14Aの符号64)を使って貼り付けた。温度センサーは、ボトルの180°反対側にも、同様に貼り付け、合計2箇所(図14Bの符号63(1)、63(2))に貼り付けた(図14A~図14B参照、なお、図14Aは、ボトルを正面から見た図であり、図14Bは、ボトルを上から見た図である。)。
 このボトルに水を入れて、マイナス20℃の冷凍庫に10時間入れ、水を氷結させた。この時、ボトルの破裂を防ぐためボトルのフタはしなかった。
 このボトルを25℃の室内に取り出し、温度センサー部分を指で(温度センサーの1つを親指で、温度センサーの他の1つを中指で)保持して、容器を持ち上げた(図14C参照)。
 このときに、以下の評価基準で、断熱性を評価した。結果を表6に示す。
 ○:温度センサーが5℃以上を示し、ボトルを5分間保持することが可能だった。
 ×:温度センサーが零度以下を示し、かつボトルを保持している指先が低温のため痛くなり、ボトルを2分以上保持できなかった。
(5) Measurement of heat insulation (heat retention) The films of the above Production Examples B-1 to B-5 and Comparative Production Examples B-1 to B-2 (reference numeral 62 in FIG. 14A) were made of aluminum bottles (350 mL containers, A thin temperature sensor (reference numeral 63 in FIG. 14A) having a diameter of about 0.5 mm is attached to the side surface of reference numeral 61) in FIG. 14A, and a PET adhesive film (10 mm × 10 mm, thickness 10 μm, Affixing was performed using reference numeral 64) in FIG. 14A. The temperature sensor was also attached to the opposite side of the bottle at 180 ° in the same manner, and was attached to a total of two places (reference numerals 63 (1) and 63 (2) in FIG. 14B) (see FIGS. 14A to 14B, FIG. 14A is a view of the bottle as seen from the front, and FIG. 14B is a view of the bottle as seen from above.
Water was put into this bottle, and it was put into a minus 20 ° C. freezer for 10 hours to freeze the water. At this time, the bottle lid was not capped to prevent the bottle from bursting.
The bottle was taken out into a room at 25 ° C., and the temperature sensor part was held with a finger (one temperature sensor with the thumb and the other temperature sensor with the middle finger) to lift the container (see FIG. 14C). .
At this time, the heat insulation was evaluated according to the following evaluation criteria. The results are shown in Table 6.
○: The temperature sensor showed 5 ° C. or higher, and the bottle could be held for 5 minutes.
X: The temperature sensor showed below 0 degree | times, and the fingertip holding the bottle became painful because of low temperature, and the bottle could not be held for 2 minutes or more.
 以上の評価結果について、表6にまとめた。
Figure JPOXMLDOC01-appb-T000008
The above evaluation results are summarized in Table 6.
Figure JPOXMLDOC01-appb-T000008
(実施例B-1)
<巻回工程>
 容器として、図15に示すPETボトル(X~Yまでの直胴部分の肉厚約160μm)を射出成形にて作製して用いた。
 前記製造例B-1で得られた結晶性高分子フィルムを、前記容器に1回、巻回した。
Example B-1
<Winding process>
As the container, a PET bottle shown in FIG. 15 (the thickness of the straight body portion from XY to about 160 μm) was produced by injection molding and used.
The crystalline polymer film obtained in Production Example B-1 was wound around the container once.
<シュリンク工程>
 105℃の加湿水蒸気をノズルより大気開放することにより、熱水を伴いながら前記巻回された容器にスプレーして、結晶性高分子フィルムをシュリンクさせて容器B-1を得た。
<Shrink process>
By releasing the humidified steam at 105 ° C. from the nozzle to the atmosphere, it was sprayed onto the wound container with hot water to shrink the crystalline polymer film to obtain a container B-1.
 前記容器B-1における、前記結晶性高分子フィルムの厚みは、66μm×1回巻きとし、容器B-1の表面積(A)と、容器B-1における結晶性高分子フィルムの面積(B)との比((B/A)×100)は、75%とした。
 また、前記容器B-1における前記結晶性高分子フィルムの配置は、側面とした。
The thickness of the crystalline polymer film in the container B-1 is 66 μm × 1 turn, and the surface area (A) of the container B-1 and the area (B) of the crystalline polymer film in the container B-1 Ratio ((B / A) × 100) to 75%.
In addition, the crystalline polymer film in the container B-1 was placed on the side surface.
(実施例B-2~B-5、比較例B-1~B-2)
 実施例B-1において、製造例B-1で得られた結晶性高分子フィルムを用いた点を、製造例B-2~B-5、及び比較製造例B-1~B-2で得られたフィルムに代えた以外は、実施例B-1と同様にして、実施例B-2~B-5、及び比較例B-1~B-2の容器を作製した。
(Examples B-2 to B-5, Comparative Examples B-1 to B-2)
In Example B-1, the points using the crystalline polymer film obtained in Production Example B-1 were obtained in Production Examples B-2 to B-5 and Comparative Production Examples B-1 to B-2. Containers of Examples B-2 to B-5 and Comparative Examples B-1 to B-2 were produced in the same manner as Example B-1, except that the obtained film was replaced.
(実施例B-6)
 実施例B-1において、容器の表面積(A)と、容器における結晶性高分子フィルムの面積(B)との比((B/A)×100)を75%としていた点を、65%に変えた以外は、実施例B-1と同様にして、実施例B-6の容器を作製した。
(Example B-6)
In Example B-1, the ratio of the surface area (A) of the container to the area (B) of the crystalline polymer film in the container ((B / A) × 100) was set to 75%. A container of Example B-6 was produced in the same manner as Example B-1, except that the changes were made.
(実施例B-7)
 実施例B-1において、容器の表面積(A)と、容器における結晶性高分子フィルムの面積(B)との比((B/A)×100)を75%としていた点を、55%に変えた以外は、実施例B-1と同様にして、実施例B-7の容器を作製した。
(Example B-7)
In Example B-1, the ratio of the surface area (A) of the container to the area (B) of the crystalline polymer film in the container ((B / A) × 100) was set to 75%. A container of Example B-7 was produced in the same manner as Example B-1, except that the changes were made.
 前記実施例B-1~B-7、及び比較例B-1~B-2の容器の構成などについて、表7にまとめて示す。 Table 7 summarizes the configurations of the containers of Examples B-1 to B-7 and Comparative Examples B-1 to B-2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(評価B-2)
 前記実施例B-1~B-7、及び比較例B-1~B-2の容器について、下記の評価を行った。
(Evaluation B-2)
The containers of Examples B-1 to B-7 and Comparative Examples B-1 to B-2 were evaluated as follows.
(1)強度の測定
 前記評価A-2における(2)強度の測定と同様にして強度を測定し、評価した。
 評価した結果を表8に示す。
(1) Measurement of strength The strength was measured and evaluated in the same manner as (2) Measurement of strength in Evaluation A-2.
Table 8 shows the evaluation results.
(総合評価)
 遮光性、断熱性、及び強度の評価結果をもとに、以下の評価基準で、総合評価を行った結果を表8に示す。
 ○:各評価項目で、1つも×又は△がない。
 △:各評価項目で、少なくとも1つ△がある。
 ×:各評価項目で、少なくとも1つ×がある。
(Comprehensive evaluation)
Table 8 shows the results of comprehensive evaluation based on the following evaluation criteria based on the evaluation results of light shielding properties, heat insulating properties, and strength.
○: There is no x or Δ in each evaluation item.
Δ: Each evaluation item has at least one Δ.
X: There is at least one x in each evaluation item.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 以上の結果から、本発明の容器である実施例B-1~B-7の容器は、強度、遮光性、及び保温性に優れると共に、容易に圧縮して体積を減ずることが出来て、リサイクル性に優れることがわかった。 From the above results, the containers of Examples B-1 to B-7, which are the containers of the present invention, are excellent in strength, light-shielding property, and heat retention, and can be easily compressed to reduce the volume, and can be recycled. It was found to be excellent in performance.
 本発明の容器は、強度、遮光性、及び保温性に優れると共に、容易に圧縮して体積を減ずることが出来て、リサイクル性に優れ、更に意匠性にも優れるため、例えば、飲料用容器などとして好適に利用することができる。 The container of the present invention is excellent in strength, light-shielding property, and heat retaining property, and can be easily compressed to reduce the volume, is excellent in recyclability, and is also excellent in design properties. Can be suitably used.
   1     結晶性高分子フィルム
  1a     表面
  11     原料
  12     押出機
  13     Tダイ
  14     キャスティングロール
  15     縦延伸機
 15a     ロール
  16     横延伸機
 16a     クリップ
 100     空洞
   F     フィルム又はシート
   L     空洞の配向方向における空洞の長さ
   r     空洞の配向方向に直交する厚み方向における空洞の長さ
  41     結晶性高分子フィルム
  42     治具
  43     ブロー金型
  44     スリット
  45     吸引ノズル
  46     吸引穴
  51     ブロー金型(1)
  52     ブロー金型(2)
  53     結晶性高分子フィルム
  54     延伸ロッドヘッド
  55     プリフォーム
  56     ベース
  57     ガイド
  58     延伸ロッド
  59     エア流路
  61     ボトル
  62     フィルム
  63     温度センサー
  63(1)  温度センサー
  63(2)  温度センサー
  64     PET粘着フィルム
DESCRIPTION OF SYMBOLS 1 Crystalline polymer film 1a Surface 11 Raw material 12 Extruder 13 T die 14 Casting roll 15 Longitudinal stretcher 15a Roll 16 Lateral stretcher 16a Clip 100 Cavity F Film or sheet L The length of the cavity in the orientation direction of the cavity r The cavity Length of cavity in thickness direction orthogonal to orientation direction 41 Crystalline polymer film 42 Jig 43 Blow mold 44 Slit 45 Suction nozzle 46 Suction hole 51 Blow mold (1)
52 Blow mold (2)
53 Crystalline polymer film 54 Stretched rod head 55 Preform 56 Base 57 Guide 58 Stretched rod 59 Air flow path 61 Bottle 62 Film 63 Temperature sensor 63 (1) Temperature sensor 63 (2) Temperature sensor 64 PET adhesive film

Claims (12)

  1.  結晶性を有するポリマーからなり、長尺状の空洞をその長さ方向が第1の方向に配向した状態で内部に含有する結晶性高分子フィルムを容器に巻回してなる容器であって、
     前記結晶性高分子フィルムにおける、前記空洞の配向方向に直交する断面において、前記空洞の中心から前記結晶性高分子フィルムの表面までの距離が最も短い10個の前記空洞について、各中心から前記結晶性高分子フィルムの表面までの距離h(i)を算出し、算出された各前記距離h(i)の算術平均値h(avg)が、下記式(1)の関係を満たすことを特徴とする容器。
     h(avg)>T/100 ・・・(1)
     但し、前記式(1)中、Tは、前記断面における厚みの算術平均値を表し、10個の前記空洞は、前記厚み方向に平行な任意の一の直線と、前記一の直線に対し平行でかつ20×Tだけ離れて位置する他の直線とで挟まれた領域内に存在する空洞の中から選択される。
    A container formed by winding a crystalline polymer film containing a crystalline polymer film containing therein a long cavity in a state in which the length direction is oriented in the first direction,
    In the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are the crystal from each center. The distance h (i) to the surface of the conductive polymer film is calculated, and the arithmetic average value h (avg) of each calculated distance h (i) satisfies the relationship of the following formula (1): Container to be used.
    h (avg)> T / 100 (1)
    However, in said Formula (1), T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 × T apart.
  2.  容器側面の角部の曲率半径Rが、1mm以上である請求項1に記載の容器。 The container according to claim 1, wherein a radius of curvature R of a corner portion on the side surface of the container is 1 mm or more.
  3.  容器における結晶性高分子フィルムの厚みが、30μm以上500μm以下である請求項1から2のいずれかに記載の容器。 The container according to claim 1, wherein the crystalline polymer film in the container has a thickness of 30 μm or more and 500 μm or less.
  4.  容器の表面積(A)と、容器における結晶性高分子フィルムの面積(B)との比((B/A)×100)が、25%以上である請求項1から3のいずれかに記載の容器。 The ratio ((B / A) x 100) of the surface area (A) of the container and the area (B) of the crystalline polymer film in the container is 25% or more. container.
  5.  結晶性高分子フィルムと、容器とが一体化してなる請求項1から4のいずれかに記載の容器。 The container according to any one of claims 1 to 4, wherein the crystalline polymer film and the container are integrated.
  6.  容器に巻回した結晶性高分子フィルムを収縮させてなる請求項1に記載の容器。 The container according to claim 1, wherein the crystalline polymer film wound around the container is contracted.
  7.  結晶性高分子フィルムの150℃の熱収縮率が、第1の方向において10%以上、前記第1の方向と直交する第2の方向において5%以下である請求項6に記載の容器。 The container according to claim 6, wherein the heat shrinkage rate of the crystalline polymer film at 150 ° C is 10% or more in the first direction and 5% or less in the second direction orthogonal to the first direction.
  8.  容器における結晶性高分子フィルムの厚みが、45μm以上300μm以下である請求項6から7のいずれかに記載の容器。 The container according to claim 6, wherein the thickness of the crystalline polymer film in the container is 45 μm or more and 300 μm or less.
  9.  容器の表面積(A)と、容器における結晶性高分子フィルムの面積(B)との比((B/A)×100)が、30%以上である請求項6から8のいずれかに記載の容器。 9. The ratio ((B / A) × 100) between the surface area (A) of the container and the area (B) of the crystalline polymer film in the container is 30% or more. 9. container.
  10.  波長300nm~780nmから選択される1つの波長の光に対する結晶性高分子フィルムの透過率が10%以下である請求項6から9のいずれかに記載の容器。 10. The container according to claim 6, wherein the transmittance of the crystalline polymer film with respect to light having one wavelength selected from wavelengths of 300 nm to 780 nm is 10% or less.
  11.  結晶性を有するポリマーからなり、長尺状の空洞をその長さ方向が第1の方向に配向した状態で内部に含有する結晶性高分子フィルムをブロー金型に配置する工程と、
     前記結晶性高分子フィルムを配置したブロー金型にプリフォームを配置する工程と、
     前記プリフォームをブローする工程とを含み、
     前記結晶性高分子フィルムにおける、前記空洞の配向方向に直交する断面において、前記空洞の中心から前記結晶性高分子フィルムの表面までの距離が最も短い10個の前記空洞について、各中心から前記結晶性高分子フィルムの表面までの距離h(i)を算出し、算出された各前記距離h(i)の算術平均値h(avg)が、下記式(1)の関係を満たすことを特徴とする容器の製造方法。
     h(avg)>T/100 ・・・(1)
     但し、前記式(1)中、Tは、前記断面における厚みの算術平均値を表し、10個の前記空洞は、前記厚み方向に平行な任意の一の直線と、前記一の直線に対し平行でかつ20×Tだけ離れて位置する他の直線とで挟まれた領域内に存在する空洞の中から選択される。
    A step of disposing a crystalline polymer film containing a crystalline polymer and containing a long cavity inside the blow mold in a state where the length direction is oriented in the first direction;
    Placing a preform in a blow mold in which the crystalline polymer film is placed;
    Blowing the preform,
    In the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are the crystal from each center. The distance h (i) to the surface of the conductive polymer film is calculated, and the arithmetic average value h (avg) of each calculated distance h (i) satisfies the relationship of the following formula (1): A method for manufacturing a container.
    h (avg)> T / 100 (1)
    However, in said Formula (1), T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 × T apart.
  12.  結晶性を有するポリマーからなり、長尺状の空洞をその長さ方向が第1の方向に配向した状態で内部に含有する結晶性高分子フィルムを容器に巻回する工程と、
     前記巻回した結晶性高分子フィルムを収縮させる工程とを含み、
     前記結晶性高分子フィルムにおける、前記空洞の配向方向に直交する断面において、前記空洞の中心から前記結晶性高分子フィルムの表面までの距離が最も短い10個の前記空洞について、各中心から前記結晶性高分子フィルムの表面までの距離h(i)を算出し、算出された各前記距離h(i)の算術平均値h(avg)が、下記式(1)の関係を満たすことを特徴とする容器の製造方法。
     h(avg)>T/100 ・・・(1)
     但し、前記式(1)中、Tは、前記断面における厚みの算術平均値を表し、10個の前記空洞は、前記厚み方向に平行な任意の一の直線と、前記一の直線に対し平行でかつ20×Tだけ離れて位置する他の直線とで挟まれた領域内に存在する空洞の中から選択される。
    A step of winding a crystalline polymer film comprising a polymer having crystallinity and containing a long cavity inside thereof in a state in which the length direction is oriented in the first direction;
    Shrinking the wound crystalline polymer film,
    In the cross section perpendicular to the orientation direction of the cavities in the crystalline polymer film, the ten cavities having the shortest distance from the center of the cavities to the surface of the crystalline polymer film are the crystal from each center. The distance h (i) to the surface of the conductive polymer film is calculated, and the arithmetic average value h (avg) of each calculated distance h (i) satisfies the relationship of the following formula (1): A method for manufacturing a container.
    h (avg)> T / 100 (1)
    However, in said Formula (1), T represents the arithmetic mean value of the thickness in the said cross section, and the ten said cavities are parallel to the arbitrary 1 straight line parallel to the said thickness direction, and the said 1 straight line. And a cavity existing in a region sandwiched by other straight lines located 20 × T apart.
PCT/JP2010/071850 2009-12-07 2010-12-06 Container and process for producing container WO2011071025A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009277878A JP2011116443A (en) 2009-12-07 2009-12-07 Container and method for manufacturing container
JP2009-277878 2009-12-07
JP2009-277882 2009-12-07
JP2009277882A JP2011116444A (en) 2009-12-07 2009-12-07 Container and method for manufacturing container

Publications (1)

Publication Number Publication Date
WO2011071025A1 true WO2011071025A1 (en) 2011-06-16

Family

ID=44145569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071850 WO2011071025A1 (en) 2009-12-07 2010-12-06 Container and process for producing container

Country Status (1)

Country Link
WO (1) WO2011071025A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186239A (en) * 1984-10-04 1986-05-01 Ube Ind Ltd Manufacture of porous thermoplastic film
JPH04176328A (en) * 1990-08-09 1992-06-24 Ube Ind Ltd Production of microporous membrane and fusion cutting resistant microporous membrane produced by this method
JPH10128837A (en) * 1996-10-31 1998-05-19 Kao Corp Blow molding method for in-mold label
JP2007297583A (en) * 2006-04-03 2007-11-15 Mitsubishi Plastics Ind Ltd Porous film
JP2008094911A (en) * 2006-10-10 2008-04-24 Mitsubishi Plastics Ind Ltd Porous film and method for producing the same
JP2008145498A (en) * 2006-12-06 2008-06-26 Dainippon Printing Co Ltd Roll shrink label, container with roll shrink label, and manufacturing method of the same
JP2009214535A (en) * 2008-02-12 2009-09-24 Fujifilm Corp Shading shrink film
JP2009215545A (en) * 2008-02-12 2009-09-24 Fujifilm Corp Light-blocking shrink film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186239A (en) * 1984-10-04 1986-05-01 Ube Ind Ltd Manufacture of porous thermoplastic film
JPH04176328A (en) * 1990-08-09 1992-06-24 Ube Ind Ltd Production of microporous membrane and fusion cutting resistant microporous membrane produced by this method
JPH10128837A (en) * 1996-10-31 1998-05-19 Kao Corp Blow molding method for in-mold label
JP2007297583A (en) * 2006-04-03 2007-11-15 Mitsubishi Plastics Ind Ltd Porous film
JP2008094911A (en) * 2006-10-10 2008-04-24 Mitsubishi Plastics Ind Ltd Porous film and method for producing the same
JP2008145498A (en) * 2006-12-06 2008-06-26 Dainippon Printing Co Ltd Roll shrink label, container with roll shrink label, and manufacturing method of the same
JP2009214535A (en) * 2008-02-12 2009-09-24 Fujifilm Corp Shading shrink film
JP2009215545A (en) * 2008-02-12 2009-09-24 Fujifilm Corp Light-blocking shrink film

Similar Documents

Publication Publication Date Title
US6312772B1 (en) Multilayer laminate formed from a substantially stretched non-molten wholly aromatic liquid crystalline polymer and non-polyester thermoplastic polymer
JP6613879B2 (en) Reflective light-shielding laminate
US7829163B2 (en) Shrink sleeve for an article closure
JPH11268191A (en) Laminate molded of wholly aromatic, amorphous and stretchable liquid crystal polymer and non-liquid crystal polyester, and manufacture thereof
JP7069005B2 (en) Manufacturing method of packaging
EP1238916B1 (en) Process for shirnk sleeveing bottle with a handle
JP6012064B2 (en) Polyethylene heat-shrinkable multilayer film for integrated packaging
US20150013273A1 (en) Expanded Content Heat Shrinkable Label
JP2006213341A (en) Heat-shrinkable cylindrical label
WO2008018528A1 (en) Package
JP5492547B2 (en) Labeled container and manufacturing method thereof
JP2019147605A (en) Standing pouch
JP2011116444A (en) Container and method for manufacturing container
WO2011071025A1 (en) Container and process for producing container
US11548271B2 (en) Low adsorption sealant film, laminated body, and packaging bag
JP2008037066A (en) Laminated sheet for forming and sheet formed container
JP2009214535A (en) Shading shrink film
JP2011116443A (en) Container and method for manufacturing container
JP2020033041A (en) Package with IC chip
JP2009215545A (en) Light-blocking shrink film
JP2003200965A (en) Shrink lamination with shading property
JP2009220868A (en) Cylindrical pouch
EP3326809A1 (en) Unidirectional oriented polyethylene-based heat shrinkable polymeric label
JP2002166920A (en) Covered plastic container and manufacturing method therefor
CN201051342Y (en) Hot shrinkage coated mark with folded edge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835945

Country of ref document: EP

Kind code of ref document: A1