WO2008018528A1 - Package - Google Patents

Package Download PDF

Info

Publication number
WO2008018528A1
WO2008018528A1 PCT/JP2007/065586 JP2007065586W WO2008018528A1 WO 2008018528 A1 WO2008018528 A1 WO 2008018528A1 JP 2007065586 W JP2007065586 W JP 2007065586W WO 2008018528 A1 WO2008018528 A1 WO 2008018528A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
label
heat
less
shrinkage
Prior art date
Application number
PCT/JP2007/065586
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Haruta
Masakazu Iwasaki
Masatoshi Hashimoto
Katsuhiko Nose
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007206372A external-priority patent/JP2008273619A/en
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2008018528A1 publication Critical patent/WO2008018528A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/003Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/744Labels, badges, e.g. marker sleeves

Definitions

  • the present invention relates to a packaging body coated with a label formed of a heat-shrinkable film, and more particularly to a packaging body having a good tearing condition of a label made of a coated heat-shrinkable film. is there.
  • a film that is greatly shrunk in the width direction is widely used.
  • the film is stretched at a high magnification in the width direction in order to develop shrinkage characteristics in the width direction, but is orthogonal to the main shrinkage direction.
  • the longitudinal direction there are some that are only stretched at a low magnification and that are often not stretched.
  • a film that has been stretched at a low magnification in the longitudinal direction or a film that has been stretched only in the width direction has a drawback that the mechanical strength in the longitudinal direction is inferior.
  • a lapping method has been developed to hold the container in a closed state by covering the periphery of a single-open container made of synthetic resin with a belt-like film, and a film that shrinks in the longitudinal direction is suitable for such packaging applications. ing. Therefore, demand for films that shrink in the longitudinal direction is expected to increase dramatically in the future.
  • a non-stretched film that eliminates the mechanical strength defect in the direction orthogonal to the main shrinkage direction as described above and develops a function of shrinking in the longitudinal direction is referred to as the longitudinal direction (also referred to as the longitudinal direction).
  • Stretch in the longitudinal direction by stretching 2.0 to 5.0 times each in the width direction (also referred to as the transverse direction) and then re-stretching 1.1 times or more in the longitudinal direction.
  • a heat-shrinkable polyester film is known in which both the Young's modulus and the Young's modulus in the width direction are adjusted to a predetermined value or more (Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-244114
  • FIG. 1 is an explanatory view showing the shape of a test piece in the measurement of right-angled tear strength (the unit of length of each part of the test piece in the figure is mm).
  • An object of the present invention is to solve the problems of the heat-shrinkable polyester film of Patent Document 1 described above, and in the width direction orthogonal to the main shrinkage direction in which the shrinkage in the longitudinal direction, which is the main shrinkage direction, is high.
  • a heat-shrinkable film that has high mechanical strength and does not cause winding and tightening in the roll film produced, and that has a good opening property that makes it difficult for paper rolls to enter the film roll. It is intended to provide a package in which a label made of an adhesive film is coated and the bow of the label is cracked well.
  • the invention described in claim 1 is a package formed by heat-shrinking at least a part of the outer periphery with a label having a heat-shrinkable film as a base material.
  • the Elmendorf ratio when measuring the Elmendorf tear load in the direction perpendicular to the main shrinkage direction of the coated label and the Elmendorf tear load in the main shrinkage direction is 0.5 or more and 2.0 or less. To do.
  • the heat-shrinkable film of the present invention examples include a heat-shrinkable polyester film, a heat-shrinkable polystyrene film, a heat-shrinkable polyolefin film, and a heat-shrinkable polychlorinated butyl film.
  • the perforation means that a plurality of slits are continuously provided in a linear shape or a curved shape, but includes one in which only one slit is provided.
  • the shape of the slit constituting the perforation is not particularly limited.
  • the notch refers to a notch provided at the edge of the label, and its shape is not particularly limited.
  • the Elmendorf tear load in the direction perpendicular to the main shrinkage direction of the coated label or in the main shrinkage direction is the direction perpendicular to the main shrinkage direction of the film substrate excluding the printed layer of the coated label or the main shrinkage direction.
  • the Elmendorf tear load in the direction of contraction is the direction perpendicular to the main shrinkage direction of the film substrate excluding the printed layer of the coated label or the main shrinkage direction.
  • the invention described in claim 2 is the invention described in claim 1, wherein the tensile fracture strength in the direction perpendicular to the main shrinkage direction of the coated label is not less than lOOMPa and not more than 300 MPa. It is characterized by. Note that the main shrinkage direction of the coated label
  • the tensile breaking strength in the intersecting direction refers to the tensile breaking strength in the direction orthogonal to the main shrinkage direction of the film substrate excluding the printed layer of the coated label.
  • the invention described in claim 3 is orthogonal to the main shrinkage direction of the film substrate excluding the printed layer of the coated label in the invention described in claim 1 or claim 2.
  • the refractive index in the direction is 1.570 or more and 1.600 or less.
  • the invention described in claim 4 is the invention described in any one of claims 1 to 3, wherein the right-angled tear strength in the direction perpendicular to the main shrinkage direction per unit thickness of the coated label. Is characterized by being 100 N / mm or more and 300 N / mm or less.
  • the right-angle tear strength in the direction perpendicular to the main shrinkage direction per unit thickness of the coated label is the perforation main shrinkage per unit thickness of the film substrate excluding the printed layer of the coated label. This is the right-angle tear strength in the direction perpendicular to the direction.
  • the invention described in claim 5 is the invention described in any one of claims 1 to 4, wherein a perforation or a pair of notches is provided along a direction orthogonal to the main contraction direction of the label. It is characterized by that.
  • the invention described in claim 6 is the invention described in any one of claims 1 to 5, wherein the unstretched film is held in the tenter in a state where both ends in the width direction are held by clips.
  • 100 A process of heat treatment at a temperature not lower than 170 ° C and not higher than 170 ° C for a time not shorter than 1.0 second and not longer than 10.0 seconds, and then cooling until the surface temperature of the film reaches 30 ° C or higher and 70 ° C or lower
  • the clip gripping part at both edges in the width direction of the film is cut and removed, and stretched at a magnification of 2.0 times or more and 5.5 times or less in the longitudinal direction at a temperature of Tg + 50 ° C or more and Tg + 80 ° C or less After that, the film is cooled at a cooling rate
  • the invention described in claim 7 is the invention described in any one of claims 1 to 6, wherein the heat-shrinkable film is a heat-shrinkable polyester film. It is.
  • the heat-shrinkable film used as a label for the package of the present invention has high mechanical strength in the width direction perpendicular to the main shrinkage direction, which is highly shrinkable in the longitudinal direction, which is the main shrinkage direction.
  • the produced roll-shaped film does not cause winding tightness, and the film roll has good openability so that wrinkles can hardly enter. Therefore, the heat-shrinkable polyester film can be suitably used as a label for a container such as a bottle, and can be attached to a container such as a bottle very efficiently within a short time. When it is later heat-shrinked, it can produce a good finish with very little shrinkage due to heat shrinkage. In addition, the attached label will exhibit very good openability. Therefore, the package of the present invention has good tearing of the coated label, and when the perforated line is provided in the direction perpendicular to the main shrinkage direction with a suitable force, the coated label is perforated. I can tear it cleanly along my eyes.
  • the package of the present invention is formed by covering at least a part of the outer periphery with a label based on a heat-shrinkable polyester film, and subjecting the package to heat shrinkage.
  • a label based on a heat-shrinkable polyester film is coated on the packaging object by heat-shrinking, the label is heat-shrinked by about 2 to 15% and packaged. Adhere to the body.
  • the label to be coated on the packaging object may be printed or may have a perforation in a direction perpendicular to the main shrinkage direction of the label. Also good.
  • annular body is formed in advance so that the main shrinkage direction is the circumferential direction, and the annular body is covered with the packaging object and thermally contracted.
  • the force that can be adopted in the method When forming an annular body like this, in addition to the method of bonding the heat-shrinkable film using various adhesives, the heat-shrinkable film using a high-temperature heating element It is also possible to use a method of fusing (melting sealing method) or the like.
  • a predetermined automatic bag making machine for example, Kyoei Printing Machinery Materials Co., Ltd.—RP500
  • the label is wound around the packaged object by fusing and sealing the overlapped part, and then the heat shrinks after the label is placed around the packaged object. It is also possible to adopt the method of making them.
  • the heat-shrinkable film for forming a label various plastics such as a heat-shrinkable polyester film, a heat-shrinkable polystyrene film, a heat-shrinkable polyolefin film, and a heat-shrinkable polyvinyl chloride film are used.
  • the heat shrinkable film can be listed as S.
  • the use of heat-shrinkable polyester film increases the heat resistance of the label and makes the label excellent in solvent resistance. This is preferable because it can be easily incinerated. Therefore, in the following explanation, the explanation will focus on the heat-shrinkable polyester film.
  • the package of the present invention has an Elmendorf tear load in a direction orthogonal to a main shrinkage direction and an Elmendorf tear load in a main shrinkage direction of a coated label (film substrate excluding a printing layer),
  • the Elmendorf ratio measured by the following method must be 0.5 or more and 2.0 or less.
  • a test piece was prepared by cutting from the edge in the center of the longitudinal direction. , Shimadzu Corp. Autograph) and gripping both ends of the test piece, and performing a tensile test at a specified tensile speed, the Elmendorf tear load in the direction perpendicular to the main shrinkage direction of the label (Measured as Elmendorf tear load of the film base excluding the printed layer of the label) is measured.
  • a test piece is prepared by cutting the label into a rectangular shape that is long in the direction perpendicular to the main shrinkage direction, and then making a cut from the edge in the center of the longitudinal direction.
  • the Elmendorf tearing load in the main shrinkage direction of the label Measure the weight (converted as the Elmendorf tear load of the film base excluding the printed layer of the label). After that, the Elmendorf ratio is calculated using Equation 6 below.
  • the Elmendorf ratio of the label is less than 0.5, it is not preferable that there is a perforation in a direction perpendicular to the main contraction direction, because it is difficult to tear straight along the perforation.
  • the Elmendorf ratio of the label exceeds 2.0, it is not preferable because it is easy to tear at a position shifted from the perforation.
  • the lower limit value of the Elmendorf ratio of the label is preferably 0.6 or more, more preferably 0.7 or more, and particularly preferably 0.8 or more.
  • the upper limit of the Elmendorf ratio of the film substrate excluding the printed layer of the label is preferably 1.8 or less, more preferably 1.6 or less, and particularly preferably 1.5 or less. .
  • the package of the present invention when the tensile fracture strength in the direction orthogonal to the main shrinkage direction of the coated label (film substrate excluding the printing layer) is measured by the following method, The tensile fracture strength must be lOOMPa or more and 300MPa or less.
  • the label is sampled to a predetermined size according to JIS-K-7127 to obtain a test piece, and both ends of the test piece (main shrinkage direction) using a universal tensile tester (for example, Autograph manufactured by Shimadzu Corporation) And tensile test at a tensile speed of 200 mm / min, and the stress value at break (converted as the stress value of the film substrate excluding the printed layer of the label) calculate.
  • a universal tensile tester for example, Autograph manufactured by Shimadzu Corporation
  • tensile test at a tensile speed of 200 mm / min
  • the tensile fracture strength in the direction perpendicular to the main shrinkage direction of the label is less than lOOMPa, when the label is torn along the perforation in the direction perpendicular to the main shrinkage direction, On the contrary, if the tensile fracture strength in the direction perpendicular to the main shrinkage direction of the label exceeds 300 MPa, the initial cut W will be poor when tearing. It is not preferable.
  • the lower limit of the tensile fracture strength is preferably 120 MPa or more, more preferably 140 MPa or more, and even more preferably 160 MPa or more.
  • the upper limit value of the tensile fracture strength is preferably 280 MPa or less, more preferably 260 MPa or less, and particularly preferably 240 MPa or less.
  • the package of the present invention preferably has a refractive index of 1.570 or more and 1.600 or less in the direction orthogonal to the main shrinkage direction of the coated label. If the refractive index in the direction perpendicular to the main shrinkage direction exceeds 1.600, the solvent adhesion deteriorates, which is not preferable. On the other hand, if it is less than 1.570, the cutting property is deteriorated, which is not preferable.
  • the upper limit of the refractive index in the direction perpendicular to the main contraction direction is preferably 1.595 or less, more preferably 1.590 or less.
  • the lower limit of the refractive index in the direction orthogonal to the main shrinkage direction is preferably 1.573 or more, and more preferably 1.575 or more.
  • the perpendicular tear strength in the direction perpendicular to the main shrinkage direction per unit thickness of the coated label (film substrate excluding the printing layer) was measured by the following method.
  • the right-angle tear strength must be 100N / mm or more and 300N / mm or less.
  • the label is sampled as a test piece of a predetermined size according to JIS-K-7128. After that, grip both ends of the test piece with a universal tensile tester (for example, Autograph manufactured by Shimadzu Corporation), and in a direction perpendicular to the main shrinkage direction of the label at a pulling speed of 200 mm / min. Measure the strength at tensile failure. Then, calculate the right-angle tear strength per unit thickness using Equation 2 below.
  • a universal tensile tester for example, Autograph manufactured by Shimadzu Corporation
  • a right-angled bow in the direction perpendicular to the main shrinkage direction of the label I If the crack strength is less than 1 OON / mm, there is a possibility that it may be easily broken by an impact such as a drop during transportation. On the other hand, if the right-angle tear strength in the direction perpendicular to the main shrinkage direction of the label exceeds 300 N / mm, it is not preferable because the cutting property (easy to tear) at the initial stage of tearing becomes poor.
  • the lower limit of the right angle tear strength is preferably 120 N / mm or more, more preferably 140 N / mm or more, and even more preferably 160 N / mm or more.
  • the upper limit of the right-angled tear strength is preferably 280 N / mm or less, more preferably 260 N / mm or less, and more preferably 240 N / mm or less.
  • the dicarboxylic acid component constituting the polyester used in the present invention includes terephthalol.
  • aromatic dicarboxylic acids such as acid, isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, and alicyclic dicarboxylic acids.
  • an aliphatic dicarboxylic acid for example, adipic acid, sebacic acid, decanedicarboxylic acid, etc.
  • the content is preferably less than 3 mol%.
  • a heat-shrinkable polyester film obtained by using a polyester containing 3 mol% or more of these aliphatic dicarboxylic acids has insufficient film stiffness at high speed.
  • Examples of the diol component constituting the polyester used in the present invention include aliphatic diols such as ethylene glycol, 13 propanediol, 14 butanediol, neopentino glycol, hexanediol, Examples include alicyclic diols such as 4-cyclohexanedimethanol, and aromatic diols such as bisphenol A.
  • the polyester used in the heat-shrinkable polyester film used as the label of the package of the present invention is a cyclic diol such as 1,4-cyclohexanedimethanol or a diol having 3 to 6 carbon atoms (for example, a polyester containing one or more of 13 propanediol, 14 butanediol, neopentyldaricol, hexanediol, etc.) and having a glass transition point (Tg) adjusted to 60 to 80 ° C Is preferred.
  • Tg glass transition point
  • the polyester used for the heat-shrinkable polyester film has a total of 10 mol% or more of one or more monomer components that can be an amorphous component in 100 mol% of the polyhydric alcohol component in all the polyester resins. It is preferably 15 mol% or more, more preferably 17 mol% or more.
  • monomers that can be an amorphous component include neopentyl glycol, 1,4-cyclohexanediol, and isophthalanolic acid.
  • a diol having 8 or more carbon atoms such as octanediol
  • a polyhydric alcohol having 3 or more valences for example, For example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.
  • a heat-shrinkable polyester film obtained by using a polyester containing these diols or polyhydric alcohols can achieve the necessary high shrinkage.
  • the polyester used for the heat-shrinkable polyester film preferably contains as little diethylene glycol, triethylene glycol, or polyethylene glycol as possible.
  • diethylene glycol is easily present because it is a by-product component during polyester polymerization, it is preferred that the polyester used in the present invention has a diethylene glycol content of less than 4 mol%! /.
  • a heat-shrinkable polyester-based film is a film length calculated by the following formula 1 from the length before and after shrinkage when treated for 10 seconds in 90 ° C warm water under no load.
  • the direction of heat shrinkage (that is, hot water heat shrinkage at 90 ° C) must be 40% or more and 80% or less.
  • Heat shrinkage rate ⁇ (length before shrinkage, length after shrinkage) / length before shrinkage ⁇ X 100 (%) ⁇ Equation 1
  • Longitudinal hot water thermal shrinkage at 90 ° C 40% If the temperature is below, the shrinkage amount is small, and the thermal shrinkage of the label after heat shrinkage will occur. Therefore, the hot water heat shrinkage in the longitudinal direction at 90 ° C is 80% or more. If it is used as a label, it is not preferable because the shrinkage tends to occur at the time of heat shrinkage, or so-called "jumping" occurs.
  • the lower limit value of the hot water thermal contraction rate in the longitudinal direction at 90 ° C is particularly preferably 45% or more, more preferably 50% or more, and more preferably 55% or more.
  • the upper limit value of the hot water heat shrinkage in the longitudinal direction at 90 ° C is particularly preferably 75% or less, preferably 70% or less, and more preferably 65% or less.
  • the heat-shrinkable polyester film is a film thickness calculated by the above equation 1 from the length before and after shrinkage when treated in 90 ° C warm water for 10 seconds under no load.
  • the hot water thermal contraction rate in the width direction must be 0% or more and 15% or less.
  • the hot water thermal shrinkage in the width direction at 90 ° C is less than 0%, a good shrinkage appearance cannot be obtained when used as a bottle label. If the hot-water heat shrinkage in the width direction exceeds 15%, it can be used as a label! / It is not preferred because sometimes the shrinkage tends to be distorted.
  • the lower limit value of the hot-water heat shrinkage in the width direction at 90 ° C. is particularly preferably 3% or more, more preferably 4% or more when 2% or more.
  • the upper limit value of the hot water thermal contraction rate in the width direction at 90 ° C is particularly preferably 13% or less, more preferably 11% or less, preferably 14% or less.
  • the heat shrinkable polyester film may have a natural shrinkage ratio of 0.05% or more and 1.5% or less after aging for 700 hours or more in an atmosphere of 40 ° C and 65% RH. is necessary.
  • the natural shrinkage rate can be calculated using the following equation 4.
  • Natural shrinkage rate ⁇ (length before aging) / length before aging ⁇ X 100 (%) ⁇ Formula 4
  • the natural shrinkage rate is 1.5% or less, when a product wound in a roll shape is stored, winding tightening occurs and the film roll is easily wrinkled, which is not preferable.
  • 0.05% is considered to be the lower limit.
  • the natural shrinkage rate is preferably 1.3% or less, more preferably 1.1% or less, and particularly preferably 1.0% or less.
  • the maximum heat shrinkage stress force in the longitudinal direction of the film is preferably not less than MPa and not more than 25 MPa.
  • Maximum heat shrinkage stress value in the longitudinal direction of the film ⁇ ⁇ If it is less than a, when the label is attached to a container such as a PET bottle and thermally contracted, the label is attached together with the cap when the PET bottle cap is opened. This is not preferable because it may cause a situation where the cap opens and deteriorates the opening of the cap.
  • the maximum heat shrinkage stress value in the longitudinal direction of the film exceeds 25 MPa, the sealed part may be removed or the appearance may deteriorate when the film is attached to a container such as a PET bottle as heat-condensed.
  • the lower limit of the maximum heat contraction stress value in the longitudinal direction of the film is more preferably 6 MPa or more, particularly preferably 7 MPa or more.
  • the upper limit of the maximum heat shrinkage stress value in the longitudinal direction of the film is more preferably 23 MPa or less, and particularly preferably 21 MPa or less.
  • the fusing seal strength of the film is preferably 8 N / 15 mm or more. If the fusing seal strength of the film is less than 8N / 15mm, It is not preferable because the fusing seal part is removed when it is heat-shrinked after being attached to a container such as a PET bottle, or when the container after heat-shrinking is dropped, the fusing seal part is removed. It should be noted that the higher the fusing seal strength of the film, the higher the preferred breaking strength of the film. Further, the fusing seal strength of the film is more preferably 10 N / 15 mm or more, further preferably 12 N / 15 mm or more, and particularly preferably 14 N / 15 mm or more.
  • the heat-shrinkable polyester film preferably has a solvent adhesive strength of 4 (N / 15mm) or more. If the solvent adhesive strength is less than 4 (N / l 5 mm), it is preferable because the label is easily peeled off from the solvent-adhered portion after heat shrinkage.
  • the solvent adhesive strength is more preferably 4.5 (N / l 5 mm) or more, particularly preferably 5 (N / l 5 mm) or more.
  • the heat-shrinkable polyester film preferably has a thickness unevenness of 10% or less in the longitudinal direction. If the thickness unevenness in the longitudinal direction is more than 10%, it is not preferable because printed spots are likely to occur during printing at the time of label production or shrinkage spots after heat shrinkage are likely to occur.
  • the longitudinal thickness unevenness is more preferably 8% or less, and more preferably 6% or less.
  • the heat-shrinkable polyester film does not detect the endothermic curve peak during the melting point measurement in differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the thickness of the heat-shrinkable polyester film is not particularly limited.
  • 00 ⁇ m force ⁇ preferably, 20 ⁇ ; more preferably 100 ⁇ m force.
  • the heat-shrinkable polyester film is obtained by using the above-described polyester raw material by an extruder.
  • the film can be obtained by melt extrusion to form an unstretched film, and then subjecting the unstretched film to a two-wheel drive and heat treatment by the method described below.
  • the polyester raw material is preferably dried using a dryer such as a hopper dryer or a pad dryer, or a vacuum dryer. After drying the polyester raw material in this way, it is melted at a temperature of 200 to 300 ° C and extruded into a film using an extruder.
  • a dryer such as a hopper dryer or a pad dryer, or a vacuum dryer.
  • any existing method such as T-die method or tubular method can be used.
  • an unstretched film by rapidly cooling the extruded sheet-like molten resin.
  • a method of rapidly cooling the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin on a rotating drum from a die and rapidly solidifying it can be suitably employed.
  • the obtained unstretched film was stretched in the width direction under predetermined conditions, and then heat-treated, and then stretched in the longitudinal direction under predetermined conditions, and then longitudinally stretched.
  • the preferred biaxial stretching / heat treatment method for obtaining the heat-shrinkable polyester film used in the package of the present invention is different from the conventional biaxial stretching of the heat-shrinkable polyester film. This will be described in detail in consideration of the above.
  • a normal heat-shrinkable polyester film is produced by stretching an unstretched film in the direction in which it is desired to shrink.
  • production is not possible because a wide film cannot be produced by simply stretching an unstretched film in the longitudinal direction.
  • the film cannot be produced with good thickness and unevenness.
  • a method of stretching in the longitudinal direction after previously stretching in the width direction is adopted, the amount of contraction in the longitudinal direction becomes insufficient, or the width direction shrinks unnecessarily.
  • 8-244114 discloses a method of stretching an unstretched film in the order of length, width, and length under predetermined conditions in order to improve the mechanical properties in the longitudinal direction.
  • Power S the inventors' pilot According to a follow-up test on a sheet machine, such a method cannot provide a film having sufficient shrinkage in the longitudinal direction, which is the main shrinkage direction, and the produced film roll is likely to be crushed in the width direction. Turned out to be.
  • increasing the draw ratio in the machine direction (the first draw ratio or the second draw ratio) in order to increase the shrinkability in the longitudinal direction will eventually increase the film when stretched in the longitudinal direction. It was also found that it was difficult to carry out continuous and stable production due to frequent fractures.
  • the film obtained by the above-described test had a longitudinal crease on a film roll produced with a high natural shrinkage rate, and the unsealing property was also poor.
  • the present inventors perform biaxial stretching in the longitudinal direction and width direction as in JP-A-8-244114, and then stretch in the longitudinal direction.
  • the method is disadvantageous and we thought that it would be advantageous to simply stretch in the width direction and then stretch in the longitudinal direction.
  • a transverse and longitudinal stretching method In such a method of stretching in the longitudinal direction after stretching in the width direction (hereinafter, simply referred to as a transverse and longitudinal stretching method), the hot water temperature shrinkage rate, the natural shrinkage rate in the longitudinal direction of the film, depending on the conditions in each stretching step, We studied earnestly how the openability changes.
  • the film used as a label of the package of the present invention is produced by the transverse and longitudinal stretching method.
  • the unstretched film is stretched in the width direction, it is heat-treated at a temperature of 100 ° C or higher and lower than 170 ° C for a time of 1.0 second or more and 10.0 seconds or less (hereinafter referred to as intermediate heat treatment).
  • intermediate heat treatment a temperature of 100 ° C or higher and lower than 170 ° C for a time of 1.0 second or more and 10.0 seconds or less.
  • the lower limit of the temperature of the heat treatment is preferably 110 ° C or higher, more preferably 115 ° C or higher.
  • the upper limit of the heat treatment temperature is preferably 165 ° C. or less, more preferably 160 ° C. or less.
  • the heat treatment time needs to be appropriately adjusted according to the raw material composition within a range of 1.0 second to 10.0 seconds.
  • the unstretched film is stretched in the width direction at a temperature of Tg + 5 ° C or higher and Tg + 40 ° C or lower with a clip held at both ends in the width direction in the tenter. It is necessary to make the magnification between 2 times and 6.0 times. If the stretching temperature is lower than Tg + 5 ° C, breakage is likely to occur during stretching. On the other hand, if it exceeds Tg + 40 ° C, thickness unevenness in the width direction is deteriorated.
  • the lower limit of the transverse stretching temperature is preferably Tg + 10 ° C. or more, more preferably Tg + 15 ° C. or more. Further, the upper limit of the transverse stretching temperature is preferably Tg + 35 ° C.
  • the lower limit of the transverse stretching ratio is preferably 3.0 times or more, more preferably 3.5 times or more.
  • the upper limit of the transverse stretching ratio is preferably 5.5 times or less, more preferably 5.0 times or less.
  • the laterally stretched film is led to the intermediate zone to be applied and allowed to pass through the intermediate zone over a predetermined time. If the time for passing through the intermediate zone is less than 0.5 seconds, the hot air in the transverse stretching zone flows into the heat setting zone due to the accompanying flow of the passing film, making it difficult to control the temperature of the intermediate heat treatment in the heat setting zone. I don't like it.
  • the time required to pass through the intermediate zone is sufficient if it is 3.0 seconds, and setting it longer than that is not preferable because it wastes equipment.
  • the lower limit of the time for passing through the intermediate zone is preferably 0.7 seconds or more, more preferably 0.9 seconds or more.
  • the upper limit of the time for passing through the intermediate zone is preferably 2.5 seconds or less, and more preferably 2.0 seconds or less.
  • the film subjected to the intermediate heat treatment is not sufficiently stretched at the edge of the film before stretching in the longitudinal direction.
  • trim the thick part mainly the clip gripping part during transverse stretching. More specifically, the thickness of the central part located at the edges of the left and right edges of the film is about 1.;! It is preferable to cut the thick portion and remove the thick portion, while stretching only the remaining portion in the longitudinal direction.
  • trimming of the film edge can be done using a normal cutter.
  • a round blade with a circumferential edge is used, the edge of the edge does not become dull locally, and the film edge can continue to be cut sharply over a long period of time. Since the situation which induces the fracture
  • the intermediate heat treatment is performed after the transverse stretching as described above, and then the film is stretched in the longitudinal direction, and then 30 ° C / second or more and 70 °
  • the film is preferably cooled at a cooling rate of C / sec or less until the surface temperature is 45 ° C or higher and 75 ° C or lower.
  • the natural shrinkage rate can be reduced only by cooling the film at an appropriate speed. If the cooling rate is lower than 30 ° C / sec or the surface temperature after cooling is higher than 75 ° C, a low natural shrinkage rate cannot be obtained.
  • the cooling rate is so rapid that the cooling rate exceeds 70 ° C / second, since the degree of shrinkage in the width direction of the film (so-called neck-in) increases and the film surface is easily damaged. Absent.
  • Tables 1 and 2 show the properties, compositions, examples, and film production conditions (stretching and heat treatment conditions, etc.) of the raw materials used in the examples and comparative examples, respectively.
  • the film evaluation method is as follows.
  • the film was sampled into a long roll of 30 m length x 40 mm width and measured at a speed of 5 (m / min) using a continuous contact thickness gauge manufactured by Micron Measuring Instruments Co., Ltd.
  • the length direction of the film sample was set as the main shrinkage direction of the film.
  • the maximum thickness at the time of measurement was Tmax.
  • the minimum thickness was Tmin.
  • the average thickness was Tave.
  • Thickness unevenness ⁇ (13 ⁇ 4 &. 13 ⁇ 4.) / Ding & 6. ⁇ 100 (%) ⁇ Formula 5
  • the stretched film was sealed by applying 1,3 dioxolan and pasting the two together. After that, the seal part is cut to a width of 15mm in the direction perpendicular to the main shrinkage direction of the film (hereinafter referred to as the orthogonal direction), and then set in the universal tension tester STM-50 manufactured by Baldwin Co., Ltd. A 180 ° peel test was performed at 200 mm / min. And the tensile strength at that time was made into solvent adhesive strength.
  • the cut film was set and the stress value was measured when held for 10 seconds.
  • each sample film was left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more, and measurement was performed.
  • the method for evaluating the coated label is as follows.
  • the label attached to the PET bottle is peeled off, and the label is tested in accordance with JIS-K-7127 in a rectangular shape with a length of 50mm perpendicular to the main shrinkage direction and a length of 20mm in the main shrinkage direction.
  • JIS-K-7127 JIS-K-7127
  • a universal tensile tester manufactured by Shimadzu Corp., Auto Draft
  • the stress value at break was calculated as the tensile fracture strength.
  • a test piece was prepared by peeling off the label attached to the PET bottle and sampling the label into the shape shown in Fig. 1 in accordance with JIS-K-7128. Is the perforation direction of the label). After a while Using a universal tensile tester (Autograph made by Shimadzu Corp.), hold both ends of the test piece and bow in a direction perpendicular to the main shrinkage direction of the label at a pulling speed of 200 mm / min. I measured the strength at the time of tensile fracture, and calculated the right-angled tear strength per unit thickness using Equation 2 above.
  • the label attached to the PET bottle is peeled off, and the label is cut to a size of 37.5 mm X 31.5 mm in the main shrinkage direction X in the direction perpendicular to the main shrinkage direction according to JIS-K-7128.
  • a test piece was prepared by making a 10 mm slit (cut) perpendicular to the edge from the center of the edge along the shrinkage direction. Then, using a universal tensile tester (Autograph manufactured by Shimadzu Corporation), both ends of the prepared test piece are grasped and a tensile test is performed at a tension speed of 200 mm / min. The Elmendorf tear load in the orthogonal direction was measured.
  • test pieces were produced by switching the direction perpendicular to the main shrinkage direction and the main shrinkage direction of the film, and the Elmendorf tear load in the direction perpendicular to the main shrinkage direction was measured. Then, the Elmendorf ratio was calculated using the above formula 6 from the obtained main contraction direction and the Elmendorf bow I crack load in the direction perpendicular to the main contraction direction.
  • the label attached to the PET bottle is peeled off, the printing on the surface of the label is removed with a solvent (ethyl acetate, methyl ethyl ketone, etc.), and the label is left in an atmosphere of 65% RH for 2 hours or more. Later, measurement was performed using an “Abbe refractometer 4T type” manufactured by Atago Co., Ltd. The refractive index was measured by the method described above.
  • the finished condition of the label attached around the PET bottle was visually evaluated according to the following criteria. ⁇ : No wrinkles, jumps, or insufficient shrinkage occurred, and no color spots were observed. ⁇ : No wrinkles, jumps, or insufficient shrinkage could be confirmed, but some color spots were observed. : Neither jumping up nor insufficient shrinkage has occurred, but spots on the neck are seen X: Wrinkles, jumping up, insufficient shrinkage occurred
  • Polyesters used in Examples and Comparative Examples are as follows.
  • Polyester 1 Ethylene glycol 70 mol 0/0, polyester consisting of neopentyl glycol 30 mol 0/0 and terephthalic acid (IV 0. 72dl / g)
  • Polyester 2 Polyethylene terephthalate (IV 0.775dl / g)
  • Polyester 3 terephthalic acid units as dicarboxylic acid component 82.5 mole 0/0, consists isophthalic acid unit 17.5 mole 0/0, consisting of ethylene glycol as the diol component.
  • the above polyester 1 and polyester 2 were mixed at a weight ratio of 90:10 and charged into an extruder. Thereafter, the mixed resin is melted at 280 ° C, extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C, and rapidly cooled to form an unstretched film having a thickness of 360 m. Obtained. At this time, the take-up speed of the unstretched film (rotation speed of the metal roll) was about 20 m / min. The Tg of the unstretched film was 67 ° C. Thereafter, the unstretched film was led to a tenter (first tenter) in which a transverse stretching zone, an intermediate zone, and an intermediate heat treatment zone were continuously provided.
  • first tenter first tenter
  • the length of the intermediate zone located between the transverse stretching zone and the intermediate heat treatment zone is set to about 40 cm.
  • the hot air from the stretching zone and the hot air from the heat treatment zone are blown so that the piece of paper hangs almost completely in the vertical direction. Blocked.
  • the edge of the lateral uniaxially stretched film center The portion of the film having a thickness of about 1 to 2 times the thickness of the film was cut, and the ends of the finolem located outside the cutting site were continuously removed.
  • the film with the end trimmed as described above was guided to a longitudinal stretching machine in which a plurality of roll groups were continuously arranged, and preheated on the preheating roll until the film temperature reached 70 ° C. Later, the film was stretched 3 times between stretching rolls set at a surface temperature of 95 ° C. Thereafter, the longitudinally stretched film was forcibly cooled by a cooling roll set at a surface temperature of 25 ° C.
  • the surface temperature of the film before cooling was about 70 ° C
  • the surface temperature of the film after cooling was about 25 ° C.
  • the time required for cooling from 70 ° C to 25 ° C was about 1.0 seconds, and the film cooling rate was 45 ° C / second.
  • the cooled film is guided to a tenter (second tenter), heat-treated in an atmosphere of 95 ° C for 2.0 seconds in the second tenter, cooled, and both edges are cut.
  • a biaxially stretched film of about 30 m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film.
  • the film roll obtained as described above is slit to a width of about 200 mm, and is then rolled into a predetermined length to create a small slit roll.
  • Label printing three-color printing was repeatedly performed using the grass “gold” white ink of Co., Ltd.
  • the longitudinal direction of the film roll and In the orthogonal direction two perforations (a perforation in which circles of about 1 mm diameter are continuous at intervals of about 4 mm) across the entire width of the film were formed in parallel at intervals of about 22 mm.
  • one end of the roll-shaped film on which printing for labeling was applied was applied to a part of the outer periphery of a 500 ml PET bottle (month diameter 62 mm, minimum neck diameter 25 mm).
  • the roll film was pulled out by a predetermined length and wound around the outer periphery of the PET bottle.
  • the outer periphery of the PET bottle was covered with a label by covering the outer periphery of the PET bottle by fusing and sealing with a fusing seal blade adjusted to about 240 ° C.
  • the PET bottle covered with the label was allowed to pass under the conditions of a passage time of 2.5 seconds and a zone temperature of 80 ° C.
  • Label attachment was completed by heat-shrinking the label around the outer periphery of the PET bottle, and the neck part was adjusted so that the 40 mm diameter part would be one end of the label.
  • the characteristics of the heat-shrinkable film, label (before and after mounting), and package (the PET bottle with the label) obtained as described above were evaluated by the method described above. Shown in
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that polyester 1 and polyester 2 were mixed at a weight ratio of 70:30 and charged into an extruder. Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. Then, the characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the transverse stretch ratio in the tenter (first tenter) was changed to 5.0 times.
  • the biaxially stretched heat-shrinkable polyester film had a thickness of about 24 m.
  • a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the pet bottle by the same method as in Example 1. And the obtained film, the label before and after mounting, and the package The characteristics were evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 3 and 4.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the intermediate heat treatment in the tenter (first tenter) was changed to 140 ° C.
  • the biaxially stretched heat-shrinkable polyester film had a thickness of about 24 m.
  • a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the pet bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the stretching roll in the longitudinal stretching machine was changed to 92 ° C and the stretching ratio in the longitudinal direction was changed to 5.0 times. .
  • the biaxially stretched heat-shrinkable polyester film had a thickness of about 18 m.
  • a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the stretching roll in the longitudinal stretching machine was changed to 92 ° C and the stretching ratio in the longitudinal direction was changed to 7.0 times. .
  • the biaxially stretched heat-shrinkable polyester film had a thickness of about 13 m.
  • a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
  • the above polyester 3 is put into an extruder, melted at 265 ° C, extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C, and rapidly cooled to give a thickness of 360 m.
  • An unstretched film was obtained.
  • the undrawn film take-off speed is Same as Example 1.
  • the unstretched film is led to a longitudinal stretching machine (first longitudinal stretching machine) in which a plurality of roll groups are continuously arranged, preheated on a preheating roll, and then set to a surface temperature of 88 ° C.
  • the drawn rolls were stretched 2.7 times.
  • the film stretched in the longitudinal direction is led to a tenter (first tenter) in which a transverse stretching zone and a heat treatment zone are continuously provided, and the transverse stretching zone is 97 ° C at a stretching temperature of 97 ° C. After being stretched by 3.5 times, it was heat treated at 125 ° C in a heat treatment zone. Thereafter, the heat-treated film was led to a longitudinal stretching machine (second longitudinal stretching machine) in which a plurality of roll groups were continuously arranged, preheated on a preheating roll, and then set to a surface temperature of 98 ° C. It was stretched again 1.5 times between the stretching rolls.
  • first tenter first tenter
  • second longitudinal stretching machine in which a plurality of roll groups were continuously arranged, preheated on a preheating roll, and then set to a surface temperature of 98 ° C. It was stretched again 1.5 times between the stretching rolls.
  • the film stretched again in the longitudinal direction is guided to a tenter (second tenter), heat-treated at 85 ° C, cooled, and both edges are cut and removed, so that about 35 111 biaxially stretched films are obtained.
  • a film was continuously formed over the length to obtain a heat-shrinkable polyester film roll.
  • a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. Then, the characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
  • a heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the intermediate heat treatment in the tenter (first tenter) was changed to 70 ° C. Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
  • a transversely uniaxially stretched film of about 45 Hm was continuously formed over a predetermined length to obtain a heat-shrinkable polyester film roll.
  • a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1.
  • the characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1.
  • the evaluation results are shown in Tables 3 and 4.
  • the width direction is the main shrinkage direction
  • the longitudinal direction is the direction orthogonal to the main shrinkage direction.
  • a heat-shrinkable film was continuously produced in the same manner as in Comparative Example 1 except that the draw ratio at the time of longitudinal stretching again with the second longitudinal stretching machine was 3.0 times. Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the pet bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
  • the films obtained in Example 16 were all not shrinkable in the width direction perpendicular to the main shrinkage direction, which is highly shrinkable in the longitudinal direction, which is the main shrinkage direction. It was always low. In addition, the films obtained in Example 16 all had high solvent adhesive strength, small thickness spots in the longitudinal direction, good label adhesion, and good shrink finish with no shrink spots. . In addition, the heat-shrinkable polyester film of Example 16 has a good perforation opening property, and has a film roll manufactured with a small natural shrinkage rate. None occurred.
  • the packaging body in which the label made of the heat-shrinkable polyester film obtained in each example is packaged has a good perforation-opening property of the label, and the label has a proper force along the perforation. It was possible to tear it cleanly.
  • the heat-shrinkable film obtained in Comparative Example 1 had an insufficient heat-shrinkage, poor label adhesion, and shrinkage spots.
  • the heat-shrinkable film obtained in Comparative Example 2 had shrinkage spots due to poor label adhesion with a high heat shrinkage rate in the film width direction.
  • the film obtained in Comparative Example 4 (the main shrinkage direction is the width direction) is produced with shrinkage spots having a large thermal shrinkage rate in the direction orthogonal to the main shrinkage direction and a large natural shrinkage rate. The film roll was wrinkled.
  • the package that wraps the label made of heat-shrinkable polyester film obtained in each comparative example has poor perforation of the label, so that the label can be cleaned with an appropriate force along the perforation. The percentage of those that could not be torn was high.
  • the package of the present invention has excellent characteristics as described above, it can be suitably used for packaging use for various articles.

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

[PROBLEMS] To provide a package covered with a label formed from a heat-shrinkable film and having satisfactory tearableness. [MEANS FOR SOLVING PROBLEMS] The heat-shrinkable polyester film for label formation shrinks mainly in the machine direction. It has been regulated so as to have the following properties in respective given ranges: the degree of machine-direction hot-water thermal shrinkage through 10-second immersion in 90°C water; degree of transverse-direction hot-water thermal shrinkage through 10-second immersion in 90°C water; transverse-direction angle tear strength after 10% machine-direction shrinkage through immersionin 80°C water; Elmemdorf ratio determined through an Elmendorf tear load measurement made after 10% machine-direction shrinkage in 80°C water; and degree of natural shrinkage through 700-hour or longer aging in an atmosphere of 40°C and 65% RH.

Description

明 細 書  Specification
包装体  Package
技術分野  Technical field
[0001] 本発明は、熱収縮性フィルムによって形成されたラベルを被覆した包装体に関する ものであり、詳しくは、被覆された熱収縮性フィルムからなるラベルの引き裂き具合が 良好な包装体に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a packaging body coated with a label formed of a heat-shrinkable film, and more particularly to a packaging body having a good tearing condition of a label made of a coated heat-shrinkable film. is there.
背景技術  Background art
[0002] 近年、ガラス瓶やプラスチックボトル等の容器の外側に、内容物の保護、外観向上 や内容物の表示の目的で、プラスチックフィルムからなるラベルを被覆して熱収縮さ せた包装体が多く見られるようになってきている。そして、そのようなラベル用の熱収 縮性プラスチックフィルムとしては、熱収縮性ポリエステル系フィルム、熱収縮性ポリス チレン系フィルム、熱収縮性ポリオレフイン系フィルム、熱収縮性ポリ塩化ビュル系フ イルム等が多く使用されて!/、る。  [0002] In recent years, many packagings have been heat-shrinked on the outside of containers such as glass bottles and plastic bottles by covering them with plastic film labels for the purpose of protecting the contents, improving the appearance, and displaying the contents. It is becoming visible. Examples of such heat-shrinkable plastic films for labels include heat-shrinkable polyester films, heat-shrinkable polystyrene films, heat-shrinkable polyolefin films, and heat-shrinkable poly (vinyl chloride) films. Many used!
[0003] また、通常の熱収縮性プラスチックフィルムとしては、幅方向に大きく収縮させるも のが広く利用されている。そのように幅方向が主収縮方向である熱収縮性プラスチッ クフィルムは、幅方向への収縮特性を発現させるために幅方向に高倍率の延伸が施 されているが、主収縮方向と直交する長手方向に関しては、低倍率の延伸が施され ているだけであることが多ぐ延伸されていないものもある。そのように、長手方向に低 倍率の延伸を施したのみのフィルムや、幅方向のみしか延伸されていないフィルムは 、長手方向の機械的強度が劣るという欠点がある。  [0003] Further, as a normal heat-shrinkable plastic film, a film that is greatly shrunk in the width direction is widely used. In such a heat-shrinkable plastic film whose width direction is the main shrinkage direction, the film is stretched at a high magnification in the width direction in order to develop shrinkage characteristics in the width direction, but is orthogonal to the main shrinkage direction. With respect to the longitudinal direction, there are some that are only stretched at a low magnification and that are often not stretched. As described above, a film that has been stretched at a low magnification in the longitudinal direction or a film that has been stretched only in the width direction has a drawback that the mechanical strength in the longitudinal direction is inferior.
[0004] また、ボトルのラベルは、環状にしてボトルに装着した後に周方向に熱収縮させな ければならないため、幅方向に熱収縮する熱収縮性フィルムをラベルとして装着する 際には、フィルムの幅方向が周方向となるように環状体を形成した上で、その環状体 を所定の長さ毎に切断してボトルに装着しなければならない。したがって、幅方向に 熱収縮する熱収縮性フィルムからなるラベルを高速でボトルに装着するのは困難で ある。それゆえ、最近では、フィルムロールから直接ボトルの周囲に装着することが可 能な長手方向に熱収縮するフィルムが求められている。さらに、近年では、お弁当等 の合成樹脂製の片開き容器の周囲を帯状のフィルムで覆うことによって容器を閉じた 状態で保持するラッピング方法が開発されており、長手方向に収縮するフィルムは、 そのような包装用途にも適している。したがって、長手方向に収縮するフィルムは、今 後、需要が飛躍的に増大するものと見込まれている。 [0004] In addition, since the label of the bottle has to be circularly attached to the bottle and then thermally shrunk in the circumferential direction, when a heat-shrinkable film that thermally shrinks in the width direction is attached as a label, An annular body must be formed so that the width direction of the ring is the circumferential direction, and the annular body must be cut into a predetermined length and attached to the bottle. Therefore, it is difficult to attach a label made of a heat-shrinkable film that shrinks in the width direction to the bottle at a high speed. Therefore, recently, there is a need for a film that thermally shrinks in the longitudinal direction that can be mounted directly from the film roll around the bottle. Furthermore, in recent years, lunch boxes, etc. A lapping method has been developed to hold the container in a closed state by covering the periphery of a single-open container made of synthetic resin with a belt-like film, and a film that shrinks in the longitudinal direction is suitable for such packaging applications. ing. Therefore, demand for films that shrink in the longitudinal direction is expected to increase dramatically in the future.
[0005] 上記したような主収縮方向と直交する方向における機械的強度の不具合を解消す るとともに、長手方向へ収縮する機能を発現させるベぐ未延伸フィルムを長手方向( 縦方向ともいう)、幅方向(横方向ともいう)にそれぞれ 2. 0〜5. 0倍延伸した後に長 手方向に 1. 1倍以上再延伸することによって、長手方向への収縮性を発現させると ともに、長手方向のヤング率および幅方向のヤング率をともに所定の値以上となるよ うに調整した熱収縮性ポリエステルフィルムが知られている(特許文献 1)。  [0005] A non-stretched film that eliminates the mechanical strength defect in the direction orthogonal to the main shrinkage direction as described above and develops a function of shrinking in the longitudinal direction is referred to as the longitudinal direction (also referred to as the longitudinal direction). Stretch in the longitudinal direction by stretching 2.0 to 5.0 times each in the width direction (also referred to as the transverse direction) and then re-stretching 1.1 times or more in the longitudinal direction. A heat-shrinkable polyester film is known in which both the Young's modulus and the Young's modulus in the width direction are adjusted to a predetermined value or more (Patent Document 1).
[0006] 特許文献 1 :特開平 8— 244114号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 8-244114
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]直角引裂強度の測定における試験片の形状を示す説明図である(なお、図中 における試験片の各部分の長さの単位は mmである)。  [0007] FIG. 1 is an explanatory view showing the shape of a test piece in the measurement of right-angled tear strength (the unit of length of each part of the test piece in the figure is mm).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかしながら、上記した特許文献 1の熱収縮性ポリエステルフィルムは、長手方向、 幅方向の機械的強度が良好であるものの、主収縮方向である長手方向への収縮性 が必ずしも十分であるとはいえない。すなわち、本発明者らが、特許文献 1の熱収縮 性ポリエステルフィルムを得るベぐパイロットプラント(フィルム幅 = 1 · 5m)で追試を 行ったところ、得られた特許文献 1の熱収縮性ポリエステルフィルムは、長手方向、幅 方向においてある程度の機械的強度を発現するものの、主収縮方向である長手方 向への収縮性が必ずしも十分であるとはいえず、長手方向の厚み斑が大きいことが 分かった。また、常温下で一定の時間に亘つて放置した場合の自然収縮率が大きい ため、製造されたロール状のフィルムにおいて巻き締まりが起こり、フィルムロールに シヮが入り易い、という不具合があることも分かった。さらに、上記追試により得られた 熱収縮性ポリエステルフィルムは、主収縮方向と直交する方向に沿って引き裂く場合 の引き裂き性(開封性)が悪い、ということも分かった。そして、そのような開封性の不 良な熱収縮性ポリエステルフィルムからなるラベルが被覆された包装体においては、 主収縮方向と直交する方向にラベルを引き裂く場合に抵抗が大きかったり、ラベルが 伸びて上手く引き裂くことができなかったり、ミシン目がある場合にはミシン目とは異な る位置で引き裂かれてしまったりする等の不具合が生じることが分力、つた。 [0008] However, although the heat-shrinkable polyester film of Patent Document 1 described above has good mechanical strength in the longitudinal direction and the width direction, the shrinkability in the longitudinal direction, which is the main shrinkage direction, is not necessarily sufficient. I can't say that. That is, the present inventors conducted a supplementary test at the Veg pilot plant (film width = 1 · 5 m) to obtain the heat-shrinkable polyester film of Patent Document 1, and obtained the heat-shrinkable polyester film of Patent Document 1. Although a certain degree of mechanical strength is exhibited in the longitudinal direction and the width direction, the shrinkage in the longitudinal direction, which is the main shrinkage direction, is not necessarily sufficient, and it is found that the thickness unevenness in the longitudinal direction is large. It was. In addition, since the natural shrinkage rate when left for a certain period of time at room temperature is large, there is a problem in that the roll-shaped film produced is tightly wound and the film roll is easily wrinkled. I understood. Furthermore, it was also found that the heat-shrinkable polyester film obtained by the above-described additional test has poor tearability (openability) when tearing along the direction perpendicular to the main shrinkage direction. And such unopenability In a package coated with a label made of a good heat-shrinkable polyester film, the resistance is high when the label is torn in the direction perpendicular to the main shrinkage direction, the label is stretched and cannot be torn well, When there is an eye, it is a component force that it causes a problem such as tearing at a position different from the perforation.
[0009] 本発明の目的は、上記特許文献 1の熱収縮性ポリエステルフィルムが有する問題 点を解消し、主収縮方向である長手方向への収縮性が高ぐ主収縮方向と直交する 幅方向における機械的強度が高い上、製造されたロール状のフィルムにおいて巻き 締まりが起こらず、フィルムロールにシヮが入りにくぐ開封性が良好な熱収縮性フィ ルムを提供するとともに、そのような熱収縮性フィルムからなるラベルが被覆されてお り、当該ラベルの弓 Iき裂き具合が良好な包装体を提供することにある。 [0009] An object of the present invention is to solve the problems of the heat-shrinkable polyester film of Patent Document 1 described above, and in the width direction orthogonal to the main shrinkage direction in which the shrinkage in the longitudinal direction, which is the main shrinkage direction, is high. In addition to providing a heat-shrinkable film that has high mechanical strength and does not cause winding and tightening in the roll film produced, and that has a good opening property that makes it difficult for paper rolls to enter the film roll. It is intended to provide a package in which a label made of an adhesive film is coated and the bow of the label is cracked well.
課題を解決するための手段  Means for solving the problem
[0010] 力、かる本発明のうち、請求項 1に記載された発明は、熱収縮性フィルムを基材とす るラベルを少なくとも外周の一部に被覆して熱収縮させてなる包装体であって、被覆 されているラベルの主収縮方向と直交する方向のエルメンドルフ引裂荷重および主 収縮方向のエルメンドルフ引裂荷重を測定した場合におけるエルメンドルフ比が 0. 5以上 2. 0以下であることを特徴とするものである。なお、本発明の熱収縮性フィルム としては、熱収縮性ポリエステル系フィルム、熱収縮性ポリスチレン系フィルム、熱収 縮性ポリオレフイン系フィルム、熱収縮性ポリ塩化ビュル系フィルム等を挙げることが できる。また、ミシン目とは、複数のスリットが直線状あるいは曲線状に連続して設けら れたものを言うが、 1つだけスリットが設けられたものも含まれる。さらに、ミシン目を構 成するスリットの形状は、特に限定されない。一方、ノッチとは、ラベルの端縁に設け られた切り込みのことを言い、その形状は、特に限定されない。また、被覆されている ラベルの主収縮方向と直交する方向あるいは主収縮方向のエルメンドルフ引裂荷重 とは、被覆されているラベルの印刷層を除いたフィルム基材の主収縮方向と直交する 方向あるいは主収縮方向のエルメンドルフ引裂荷重のことを言う。  [0010] Among the present inventions described above, the invention described in claim 1 is a package formed by heat-shrinking at least a part of the outer periphery with a label having a heat-shrinkable film as a base material. The Elmendorf ratio when measuring the Elmendorf tear load in the direction perpendicular to the main shrinkage direction of the coated label and the Elmendorf tear load in the main shrinkage direction is 0.5 or more and 2.0 or less. To do. Examples of the heat-shrinkable film of the present invention include a heat-shrinkable polyester film, a heat-shrinkable polystyrene film, a heat-shrinkable polyolefin film, and a heat-shrinkable polychlorinated butyl film. Further, the perforation means that a plurality of slits are continuously provided in a linear shape or a curved shape, but includes one in which only one slit is provided. Furthermore, the shape of the slit constituting the perforation is not particularly limited. On the other hand, the notch refers to a notch provided at the edge of the label, and its shape is not particularly limited. In addition, the Elmendorf tear load in the direction perpendicular to the main shrinkage direction of the coated label or in the main shrinkage direction is the direction perpendicular to the main shrinkage direction of the film substrate excluding the printed layer of the coated label or the main shrinkage direction. The Elmendorf tear load in the direction of contraction.
[0011] 請求項 2に記載された発明は、請求項 1に記載された発明において、被覆されてい るラベルの主収縮方向と直交する方向の引張破壊強さが lOOMPa以上 300MPa以 下であることを特徴とするものである。なお、被覆されているラベルの主収縮方向と直 交する方向の引張破壊強さとは、被覆されているラベルの印刷層を除いたフィルム 基材の主収縮方向と直交する方向の引張破壊強さのことを言う。 [0011] The invention described in claim 2 is the invention described in claim 1, wherein the tensile fracture strength in the direction perpendicular to the main shrinkage direction of the coated label is not less than lOOMPa and not more than 300 MPa. It is characterized by. Note that the main shrinkage direction of the coated label The tensile breaking strength in the intersecting direction refers to the tensile breaking strength in the direction orthogonal to the main shrinkage direction of the film substrate excluding the printed layer of the coated label.
[0012] 請求項 3に記載された発明は、請求項 1、または請求項 2に記載された発明におい て、被覆されているラベルの印刷層を除いたフィルム基材の主収縮方向と直交する 方向の屈折率が 1. 570以上 1. 600以下であることを特徴とするものである。  [0012] The invention described in claim 3 is orthogonal to the main shrinkage direction of the film substrate excluding the printed layer of the coated label in the invention described in claim 1 or claim 2. The refractive index in the direction is 1.570 or more and 1.600 or less.
[0013] 請求項 4に記載された発明は、請求項 1〜3のいずれかに記載された発明におい て、被覆されているラベルの単位厚み当たりの主収縮方向と直交する方向における 直角引裂強度が 100N/mm以上 300N/mm以下であることを特徴とするものであ る。なお、被覆されているラベルの単位厚み当たりの主収縮方向と直交する方向に おける直角引裂強度とは、被覆されているラベルの印刷層を除いたフィルム基材の 単位厚み当たりのミシン目主収縮方向と直交する方向における直角引裂強度のこと を言う。  [0013] The invention described in claim 4 is the invention described in any one of claims 1 to 3, wherein the right-angled tear strength in the direction perpendicular to the main shrinkage direction per unit thickness of the coated label. Is characterized by being 100 N / mm or more and 300 N / mm or less. The right-angle tear strength in the direction perpendicular to the main shrinkage direction per unit thickness of the coated label is the perforation main shrinkage per unit thickness of the film substrate excluding the printed layer of the coated label. This is the right-angle tear strength in the direction perpendicular to the direction.
[0014] 請求項 5に記載された発明は、請求項 1〜4のいずれかに記載された発明におい て、ラベルの主収縮方向と直交する方向に沿って、ミシン目あるいは一対のノッチが 設けられたことを特徴とするものである。  [0014] The invention described in claim 5 is the invention described in any one of claims 1 to 4, wherein a perforation or a pair of notches is provided along a direction orthogonal to the main contraction direction of the label. It is characterized by that.
[0015] 請求項 6に記載された発明は、請求項 1〜5のいずれかに記載された発明におい て、未延伸フィルムを、テンター内で幅方向の両端際をクリップによって把持した状態 で Tg+ 5°C以上 Tg + 40°C以下の温度で幅方向に 2. 5倍以上 6. 0倍以下の倍率で 延伸した後、積極的な加熱操作を実行しない中間ゾーンを通過させた後に、 100°C 以上 170°C以下の温度で 1. 0秒以上 10. 0秒以下の時間に亘つて熱処理し、しかる 後、フィルムの表面温度が 30°C以上 70°C以下となるまで冷却する工程とフィルムの 幅方向の両端縁のクリップ把持部分を切断除去した後、 Tg + 50°C以上 Tg + 80°C 以下の温度で長手方向に 2. 0倍以上 5. 5倍以下の倍率で延伸し、しかる後、 30°C /秒以上 70°C/秒以下の冷却速度でフィルムの表面温度が 45°C以上 75°C以下と なるまで冷却することによって、ラベルに成形する前の熱収縮性フィルムが製造され て!/、ることを特徴とするものである。  [0015] The invention described in claim 6 is the invention described in any one of claims 1 to 5, wherein the unstretched film is held in the tenter in a state where both ends in the width direction are held by clips. After stretching in the width direction at a temperature of 5 ° C or more and Tg + 40 ° C or less 2.5 times or more and 6.0 times or less, after passing through an intermediate zone where no aggressive heating operation is performed, 100 A process of heat treatment at a temperature not lower than 170 ° C and not higher than 170 ° C for a time not shorter than 1.0 second and not longer than 10.0 seconds, and then cooling until the surface temperature of the film reaches 30 ° C or higher and 70 ° C or lower And the clip gripping part at both edges in the width direction of the film is cut and removed, and stretched at a magnification of 2.0 times or more and 5.5 times or less in the longitudinal direction at a temperature of Tg + 50 ° C or more and Tg + 80 ° C or less After that, the film is cooled at a cooling rate of 30 ° C / second to 70 ° C / second until the surface temperature of the film reaches 45 ° C to 75 ° C. The heat-shrinkable film before forming the label is manufactured! /, It is characterized in Rukoto.
[0016] 請求項 7に記載された発明は、請求項 1〜6のいずれかに記載された発明におい て、熱収縮性フィルムが、熱収縮性ポリエステル系フィルムであることを特徴とするも のである。 [0016] The invention described in claim 7 is the invention described in any one of claims 1 to 6, wherein the heat-shrinkable film is a heat-shrinkable polyester film. It is.
発明の効果  The invention's effect
[0017] 本発明の包装体にラベルとして使用される熱収縮性フィルムは、主収縮方向である 長手方向への収縮性が高ぐ主収縮方向と直交する幅方向における機械的強度も 高い上、製造されたロール状のフィルムにおいて巻き締まりが起こらず、フィルムロー ルにシヮが入りにくぐ開封性が良好である。したがって、当該熱収縮性ポリエステル 系フィルムは、ボトル等の容器のラベルとして好適に用いることができ、ボトル等の容 器に短時間の内に非常に効率良く装着することが可能となる上、装着後に熱収縮さ せた場合に、熱収縮によるシヮゃ収縮不足のきわめて少ない良好な仕上がりを発現 させること力 Sできる。加えて、装着されたラベルは、非常に良好な目開封性を発現す るものとなる。したがって、本発明の包装体は、被覆されたラベルの引き裂き具合が 良好であり、被覆されたラベルを適度な力で、主収縮方向と直交する方向に、ミシン 目が設けられた場合にはミシン目に沿って綺麗に引き裂くことができる。  [0017] The heat-shrinkable film used as a label for the package of the present invention has high mechanical strength in the width direction perpendicular to the main shrinkage direction, which is highly shrinkable in the longitudinal direction, which is the main shrinkage direction. The produced roll-shaped film does not cause winding tightness, and the film roll has good openability so that wrinkles can hardly enter. Therefore, the heat-shrinkable polyester film can be suitably used as a label for a container such as a bottle, and can be attached to a container such as a bottle very efficiently within a short time. When it is later heat-shrinked, it can produce a good finish with very little shrinkage due to heat shrinkage. In addition, the attached label will exhibit very good openability. Therefore, the package of the present invention has good tearing of the coated label, and when the perforated line is provided in the direction perpendicular to the main shrinkage direction with a suitable force, the coated label is perforated. I can tear it cleanly along my eyes.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明の包装体は、熱収縮性ポリエステル系フィルムを基材とするラベルを少なく とも外周の一部に被覆して熱収縮させてなるものであり、包装体の対象物としては、 飲料用のペットボトルをはじめ、各種の瓶、缶、菓子や弁当等のプラスチック容器、紙 製の箱等を挙げることができる(以下、これらを総称して包装対象物という)。なお、通 常、それらの包装対象物に、熱収縮性ポリエステル系フィルムを基材とするラベルを 熱収縮させて被覆させる場合には、当該ラベルを約 2〜; 15 %程度熱収縮させて包装 体に密着させる。なお、包装対象物に被覆されるラベルには、印刷が施されていても 良いし、印刷が施されていなくても良ぐラベルの主収縮方向と直交する方向にミシン 目が設けられていてもよい。  [0018] The package of the present invention is formed by covering at least a part of the outer periphery with a label based on a heat-shrinkable polyester film, and subjecting the package to heat shrinkage. Examples include plastic bottles for beverages, various bottles, cans, plastic containers such as confectionery and lunch boxes, and paper boxes (hereinafter collectively referred to as packaging objects). In general, when a label based on a heat-shrinkable polyester film is coated on the packaging object by heat-shrinking, the label is heat-shrinked by about 2 to 15% and packaged. Adhere to the body. Note that the label to be coated on the packaging object may be printed or may have a perforation in a direction perpendicular to the main shrinkage direction of the label. Also good.
[0019] また、包装対象物にラベルを被覆させる場合には、予め、主収縮方向が周方向に なるように環状体を形成した上で、その環状体を包装対象物に被せて熱収縮させる 方法を採用することもできる力 そのように環状体を形成する場合には、各種の接着 剤を用いて熱収縮性フィルムを接着する方法の他に、高温発熱体を利用して熱収縮 性フィルムを融着する方法 (溶断シール法)等を利用することも可能である。なお、熱 収縮性フィルムを溶断シールする場合には、所定の自動製袋機械 (たとえば、共栄 印刷機械材料社製— RP500)を用いて、溶断刃の温度、角度を所定の条件 (たとえ ば、溶断刃の温度 = 240°C、刃角 = 70° )に調整した上で、所定の速度(たとえば、 100個/分)で環状体や袋を形成する方法等を採用することができる。加えて、包装 対象物にラベルを被覆させる場合には、包装対象物の周囲にラベルを捲回させて重 なった部分を溶断シールすることにより包装対象物の周囲にラベルを被せた後に熱 収縮させる方法を採用することも可能である。 [0019] Also, when the label is coated on the packaging object, an annular body is formed in advance so that the main shrinkage direction is the circumferential direction, and the annular body is covered with the packaging object and thermally contracted. The force that can be adopted in the method When forming an annular body like this, in addition to the method of bonding the heat-shrinkable film using various adhesives, the heat-shrinkable film using a high-temperature heating element It is also possible to use a method of fusing (melting sealing method) or the like. Heat When fusing and sealing shrinkable films, use a predetermined automatic bag making machine (for example, Kyoei Printing Machinery Materials Co., Ltd.—RP500) to set the temperature and angle of the fusing blade to the specified conditions (for example, A method of forming an annular body or a bag at a predetermined speed (for example, 100 pieces / min) after adjusting to a temperature = 240 ° C. and a blade angle = 70 ° can be employed. In addition, when a label is to be covered on a packaged object, the label is wound around the packaged object by fusing and sealing the overlapped part, and then the heat shrinks after the label is placed around the packaged object. It is also possible to adopt the method of making them.
[0020] 一方、ラベル形成用の熱収縮性フィルムとしては、熱収縮性ポリエステル系フィルム 、熱収縮性ポリスチレン系フィルム、熱収縮性ポリオレフイン系フィルム、熱収縮性ポリ 塩化ビュル系フィルム等の各種のプラスチックからなる熱収縮性フィルムを挙げること ができる力 S、その中でも、熱収縮性ポリエステル系フィルムを用いると、ラベルの耐熱 性が高くなり、ラベルが耐溶剤性に優れたものとなる上、ラベルが容易に焼却できる ものとなるので好ましい。それゆえ、以下の説明においては、熱収縮性ポリエステル 系フィルムを中心に説明する。  [0020] On the other hand, as the heat-shrinkable film for forming a label, various plastics such as a heat-shrinkable polyester film, a heat-shrinkable polystyrene film, a heat-shrinkable polyolefin film, and a heat-shrinkable polyvinyl chloride film are used. The heat shrinkable film can be listed as S. Among them, the use of heat-shrinkable polyester film increases the heat resistance of the label and makes the label excellent in solvent resistance. This is preferable because it can be easily incinerated. Therefore, in the following explanation, the explanation will focus on the heat-shrinkable polyester film.
[0021] また、本発明の包装体は、被覆されているラベル(印刷層を除いたフィルム基材)の 主収縮方向と直交する方向のエルメンドルフ引裂荷重および主収縮方向のエルメン ドルフ引裂荷重を、以下の方法で測定した場合におけるエルメンドルフ比が 0. 5以 上 2. 0以下であることが必要である。  [0021] Further, the package of the present invention has an Elmendorf tear load in a direction orthogonal to a main shrinkage direction and an Elmendorf tear load in a main shrinkage direction of a coated label (film substrate excluding a printing layer), The Elmendorf ratio measured by the following method must be 0.5 or more and 2.0 or less.
[0022] [エルメンドルフ比の測定方法]  [0022] [Measurement method of Elmendorf ratio]
JIS— K— 7128に準じて、ラベルを主収縮方向が長尺な長方形状に切断した後に 長手方向の中央に端縁から切り込みを入れることによって試験片を作製し、万能引 張試験機 (たとえば、(株)島津製作所製 オートグラフ)を利用して、その試験片の両 端を掴んで所定の引張速度にて引張試験を行うことによって、ラベルの主収縮方向 と直交する方向のエルメンドルフ引裂荷重(ラベルの印刷層を除いたフィルム基材の エルメンドルフ引裂荷重として換算したもの)を測定する。また、ラベルを主収縮方向 と直交する方向が長尺な長方形状に切断した後に長手方向の中央に端縁から切り 込みを入れることによって試験片を作製し、その試験片の両端を掴んで所定の引張 速度にて引張試験を行うことによって、ラベルの主収縮方向のエルメンドルフ引裂荷 重(ラベルの印刷層を除いたフィルム基材のエルメンドルフ引裂荷重として換算した もの)を測定する。しかる後、下式 6を用いてエルメンドルフ比を算出する。 In accordance with JIS-K-7128, after cutting the label into a rectangular shape with a long main shrinkage direction, a test piece was prepared by cutting from the edge in the center of the longitudinal direction. , Shimadzu Corp. Autograph) and gripping both ends of the test piece, and performing a tensile test at a specified tensile speed, the Elmendorf tear load in the direction perpendicular to the main shrinkage direction of the label (Measured as Elmendorf tear load of the film base excluding the printed layer of the label) is measured. In addition, a test piece is prepared by cutting the label into a rectangular shape that is long in the direction perpendicular to the main shrinkage direction, and then making a cut from the edge in the center of the longitudinal direction. The Elmendorf tearing load in the main shrinkage direction of the label Measure the weight (converted as the Elmendorf tear load of the film base excluding the printed layer of the label). After that, the Elmendorf ratio is calculated using Equation 6 below.
エルメンドルフ比 =主収縮方向と直交する方向のエルメンドルフ弓 I裂荷重 ÷主収 縮方向のエルメンドルフ引裂荷重 · ·式 6  Elmendorf ratio = Elmendorf bow in the direction perpendicular to the main contraction direction I crack load ÷ Elmendorf tear load in the main contraction direction · Equation 6
[0023] ラベルのエルメンドルフ比が 0. 5未満であると、主収縮方向と直交する方向に、ミシ ン目がある場合にはミシン目に沿って、真っ直ぐに引き裂きにくいので好ましくない。 反対にラベルのエルメンドルフ比が 2. 0を上回ると、ミシン目とずれた位置で裂け易 くなるので好ましくない。なお、ラベルのエルメンドルフ比の下限値は、 0. 6以上であ ると好ましく、 0. 7以上であるとより好ましぐ 0. 8以上であると特に好ましい。また、ラ ベルの印刷層を除いたフィルム基材のエルメンドルフ比の上限値は、 1. 8以下であ ると好ましく、 1. 6以下であるとより好ましく、 1. 5以下であると特に好ましい。  [0023] When the Elmendorf ratio of the label is less than 0.5, it is not preferable that there is a perforation in a direction perpendicular to the main contraction direction, because it is difficult to tear straight along the perforation. On the other hand, if the Elmendorf ratio of the label exceeds 2.0, it is not preferable because it is easy to tear at a position shifted from the perforation. The lower limit value of the Elmendorf ratio of the label is preferably 0.6 or more, more preferably 0.7 or more, and particularly preferably 0.8 or more. Further, the upper limit of the Elmendorf ratio of the film substrate excluding the printed layer of the label is preferably 1.8 or less, more preferably 1.6 or less, and particularly preferably 1.5 or less. .
[0024] また、本発明の包装体は、被覆されているラベル(印刷層を除いたフィルム基材)の 主収縮方向と直交する方向における引張破壊強さを以下の方法で測定した場合に、 当該引張破壊強さが lOOMPa以上 300MPa以下であることが必要である。  [0024] Further, the package of the present invention, when the tensile fracture strength in the direction orthogonal to the main shrinkage direction of the coated label (film substrate excluding the printing layer) is measured by the following method, The tensile fracture strength must be lOOMPa or more and 300MPa or less.
[0025] [引張破壊強さの測定方法]  [0025] [Measurement method of tensile fracture strength]
ラベルを JIS— K— 7127に準じて、所定の大きさにサンプリングして試験片とし、万 能引張試験機 (たとえば、(株)島津製作所製 オートグラフ)で試験片の両端 (主収 縮方向と直交する方向の両端)を掴み、引張速度 200mm/分の条件にて引張試験 を行い、破断時の応力値 (ラベルの印刷層を除いたフィルム基材の応力値として換 算したもの)を算出する。  The label is sampled to a predetermined size according to JIS-K-7127 to obtain a test piece, and both ends of the test piece (main shrinkage direction) using a universal tensile tester (for example, Autograph manufactured by Shimadzu Corporation) And tensile test at a tensile speed of 200 mm / min, and the stress value at break (converted as the stress value of the film substrate excluding the printed layer of the label) calculate.
[0026] ラベルの主収縮方向と直交する方向における引張破壊強さが lOOMPa未満である と、ラベルを主収縮方向と直交する方向に、ミシン目がある場合にはミシン目に沿つ て引き裂く際のカット性(引き裂き易さ)が悪くなるので好ましくなぐ反対に、ラベルの 主収縮方向と直交する方向における引張破壊強さが 300MPaを上回ると、引き裂く 際の初期のカツ W生が不良となるため好ましくない。なお、引張破壊強さの下限値は 、 120MPa以上であると好ましぐ 140MPa以上であるとより好ましぐ 160MPa以上 であると特に好ましい。また、引張破壊強さの上限値は、 280MPa以下であると好ま しぐ 260MPa以下であるとより好ましく、 240MPa以下であると特に好ましい。 [0027] また、本発明の包装体は、被覆されているラベルの主収縮方向と直交する方向の 屈折率が 1. 570以上 1. 600以下であると好ましい。主収縮方向と直交する方向の 屈折率が 1. 600を上回ると、溶剤接着性が悪くなるので好ましくない。反対に、 1. 5 70未満となると、カット性が悪くなるので好ましくない。なお、主収縮方向と直交する 方向の屈折率の上限値は、 1. 595以下であると好ましぐ 1. 590以下であるとより好 ましい。また、主収縮方向と直交する方向の屈折率の下限値は、 1. 573以上である と好ましく、 1. 575以上であるとより好ましい。 [0026] When the tensile fracture strength in the direction perpendicular to the main shrinkage direction of the label is less than lOOMPa, when the label is torn along the perforation in the direction perpendicular to the main shrinkage direction, On the contrary, if the tensile fracture strength in the direction perpendicular to the main shrinkage direction of the label exceeds 300 MPa, the initial cut W will be poor when tearing. It is not preferable. The lower limit of the tensile fracture strength is preferably 120 MPa or more, more preferably 140 MPa or more, and even more preferably 160 MPa or more. Further, the upper limit value of the tensile fracture strength is preferably 280 MPa or less, more preferably 260 MPa or less, and particularly preferably 240 MPa or less. [0027] The package of the present invention preferably has a refractive index of 1.570 or more and 1.600 or less in the direction orthogonal to the main shrinkage direction of the coated label. If the refractive index in the direction perpendicular to the main shrinkage direction exceeds 1.600, the solvent adhesion deteriorates, which is not preferable. On the other hand, if it is less than 1.570, the cutting property is deteriorated, which is not preferable. The upper limit of the refractive index in the direction perpendicular to the main contraction direction is preferably 1.595 or less, more preferably 1.590 or less. The lower limit of the refractive index in the direction orthogonal to the main shrinkage direction is preferably 1.573 or more, and more preferably 1.575 or more.
[0028] また、本発明の包装体は、被覆されているラベル(印刷層を除いたフィルム基材)の 単位厚み当たりの主収縮方向と直交する方向における直角引裂強度を以下の方法 で測定した場合に、当該直角引裂強度が 100N/mm以上 300N/mm以下である ことが必要である。  [0028] In the package of the present invention, the perpendicular tear strength in the direction perpendicular to the main shrinkage direction per unit thickness of the coated label (film substrate excluding the printing layer) was measured by the following method. In this case, the right-angle tear strength must be 100N / mm or more and 300N / mm or less.
[0029] [直角引裂強度の測定方法]  [0029] [Measurement method of right-angle tear strength]
ラベルを JIS— K— 7128に準じて所定の大きさの試験片としてサンプリングする。し 力、る後に、万能引張試験機 (たとえば、(株)島津製作所製 オートグラフ)で試験片 の両端を掴み、引張速度 200mm/分の条件にて、ラベルの主収縮方向と直交する 方向における引張破壊時の強度の測定を行う。そして、下式 2を用いて単位厚み当 たりの直角引裂強度を算出する。  The label is sampled as a test piece of a predetermined size according to JIS-K-7128. After that, grip both ends of the test piece with a universal tensile tester (for example, Autograph manufactured by Shimadzu Corporation), and in a direction perpendicular to the main shrinkage direction of the label at a pulling speed of 200 mm / min. Measure the strength at tensile failure. Then, calculate the right-angle tear strength per unit thickness using Equation 2 below.
直角引裂強度 =引張破壊時の強度 ÷厚み · ·式 2  Right angle tear strength = Strength at tensile failure ÷ Thickness · Equation 2
[0030] ラベルの主収縮方向と直交する方向における直角弓 I裂強度が 1 OON/mm未満で あると、運搬中の落下等の衝撃によって簡単に破れてしまう事態が生ずる可能性が あるので好ましくなぐ反対に、ラベルの方主収縮方向と直交する向における直角引 裂強度が 300N/mmを上回ると、引き裂く際の初期段階におけるカット性(引き裂き 易さ)が不良となるため好ましくない。なお、直角引裂強度の下限値は、 120N/mm 以上であると好ましぐ 140N/mm以上であるとより好ましぐ 160N/mm以上であ ると特に好ましい。また、直角引裂強度の上限値は、 280N/mm以下であると好ま しぐ 260N/mm以下であるとより好ましぐ 240N/mm以下であると特に好ましい  [0030] A right-angled bow in the direction perpendicular to the main shrinkage direction of the label I If the crack strength is less than 1 OON / mm, there is a possibility that it may be easily broken by an impact such as a drop during transportation. On the other hand, if the right-angle tear strength in the direction perpendicular to the main shrinkage direction of the label exceeds 300 N / mm, it is not preferable because the cutting property (easy to tear) at the initial stage of tearing becomes poor. The lower limit of the right angle tear strength is preferably 120 N / mm or more, more preferably 140 N / mm or more, and even more preferably 160 N / mm or more. Further, the upper limit of the right-angled tear strength is preferably 280 N / mm or less, more preferably 260 N / mm or less, and more preferably 240 N / mm or less.
[0031] 本発明で使用するポリエステルを構成するジカルボン酸成分としては、テレフタノレ 酸、イソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸 、アジピン酸、ァゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン 酸、および脂環式ジカルボン酸等を挙げることができる。 [0031] The dicarboxylic acid component constituting the polyester used in the present invention includes terephthalol. Examples thereof include aromatic dicarboxylic acids such as acid, isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, and alicyclic dicarboxylic acids.
[0032] 脂肪族ジカルボン酸(たとえば、アジピン酸、セバシン酸、デカンジカルボン酸等) を含有させる場合、含有率は 3モル%未満であることが好ましい。これらの脂肪族ジ カルボン酸を 3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステ ル系フィルムでは、高速装着時のフィルム腰が不十分である。  [0032] When an aliphatic dicarboxylic acid (for example, adipic acid, sebacic acid, decanedicarboxylic acid, etc.) is contained, the content is preferably less than 3 mol%. A heat-shrinkable polyester film obtained by using a polyester containing 3 mol% or more of these aliphatic dicarboxylic acids has insufficient film stiffness at high speed.
[0033] また、 3価以上の多価カルボン酸 (たとえば、トリメリット酸、ピロメリット酸およびこれら の無水物等)を含有させなレ、ことが好まし!/、。これらの多価カルボン酸を含有するポリ エステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達 成しに《なる。  [0033] In addition, it is preferable not to contain a trivalent or higher polyvalent carboxylic acid (for example, trimellitic acid, pyromellitic acid and anhydrides thereof)! The heat-shrinkable polyester film obtained by using the polyester containing these polyvalent carboxylic acids achieves the necessary high shrinkage rate.
[0034] 本発明で使用するポリエステルを構成するジオール成分としては、エチレングリコー ノレ、 1 3プロパンジォーノレ、 1 4ブタンジォーノレ、ネオペンチノレグリコーノレ、へキサ ンジオール等の脂肪族ジオール、 1 , 4ーシクロへキサンジメタノール等の脂環式ジ オール、ビスフエノール A等の芳香族系ジオール等を挙げることができる。  [0034] Examples of the diol component constituting the polyester used in the present invention include aliphatic diols such as ethylene glycol, 13 propanediol, 14 butanediol, neopentino glycol, hexanediol, Examples include alicyclic diols such as 4-cyclohexanedimethanol, and aromatic diols such as bisphenol A.
[0035] 本発明の包装体のラベルとして使用される熱収縮性ポリエステル系フィルムに用い るポリエステルは、 1 , 4ーシクロへキサンジメタノール等の環状ジオールや、炭素数 3 〜6個を有するジオール(たとえば、 1 3プロパンジオール、 1 4ブタンジオール、 ネオペンチルダリコール、へキサンジオール等)のうちの 1種以上を含有させて、ガラ ス転移点(Tg)を 60〜80°Cに調整したポリエステルが好ましい。  [0035] The polyester used in the heat-shrinkable polyester film used as the label of the package of the present invention is a cyclic diol such as 1,4-cyclohexanedimethanol or a diol having 3 to 6 carbon atoms ( For example, a polyester containing one or more of 13 propanediol, 14 butanediol, neopentyldaricol, hexanediol, etc.) and having a glass transition point (Tg) adjusted to 60 to 80 ° C Is preferred.
[0036] また、熱収縮性ポリエステル系フィルムに用いるポリエステルは、全ポリステル樹脂 中における多価アルコール成分 100モル%中の非晶質成分となりうる 1種以上のモノ マー成分の合計が 10モル%以上であることが好ましぐ 15モル%以上であることがよ り好ましぐ特に 17モル%以上であることが好ましい。ここで、非晶質成分となりうるモ ノマーとしては、たとえば、ネオペンチルグリコール、 1 , 4ーシクロへキサンジオール やイソフタノレ酸を挙げることカできる。  [0036] The polyester used for the heat-shrinkable polyester film has a total of 10 mol% or more of one or more monomer components that can be an amorphous component in 100 mol% of the polyhydric alcohol component in all the polyester resins. It is preferably 15 mol% or more, more preferably 17 mol% or more. Here, examples of monomers that can be an amorphous component include neopentyl glycol, 1,4-cyclohexanediol, and isophthalanolic acid.
[0037] 熱収縮性ポリエステル系フィルムに用いるポリエステル中には、炭素数 8個以上の ジオール(たとえばオクタンジオール等)、または 3価以上の多価アルコール(たとえ ば、トリメチロールプロパン、トリメチロールェタン、グリセリン、ジグリセリン等)を、含有 させないことが好ましい。これらのジオール、または多価アルコールを含有するポリエ ステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達 成しに《なる。 [0037] In the polyester used for the heat-shrinkable polyester film, a diol having 8 or more carbon atoms (such as octanediol) or a polyhydric alcohol having 3 or more valences (for example, For example, trimethylolpropane, trimethylolethane, glycerin, diglycerin, etc.) are preferably not contained. A heat-shrinkable polyester film obtained by using a polyester containing these diols or polyhydric alcohols can achieve the necessary high shrinkage.
[0038] また、熱収縮性ポリエステル系フィルムに用いるポリエステル中には、ジエチレング リコール、トリエチレングリコール、ポリエチレングリコールをできるだけ含有させないこ とが好ましい。特に、ジエチレングリコールは、ポリエステル重合時の副生成成分のた め、存在し易いが、本発明で使用するポリエステルでは、ジエチレングリコールの含 有率が 4モル%未満であることが好まし!/、。  [0038] The polyester used for the heat-shrinkable polyester film preferably contains as little diethylene glycol, triethylene glycol, or polyethylene glycol as possible. In particular, although diethylene glycol is easily present because it is a by-product component during polyester polymerization, it is preferred that the polyester used in the present invention has a diethylene glycol content of less than 4 mol%! /.
[0039] また、熱収縮性ポリエステル系フィルムは、 90°Cの温水中で無荷重状態で 10秒間 に亘つて処理したときに、収縮前後の長さから、下式 1により算出したフィルムの長手 方向の熱収縮率(すなわち、 90°Cの湯温熱収縮率)が、 40%以上 80%以下である ことが必要である。 [0039] A heat-shrinkable polyester-based film is a film length calculated by the following formula 1 from the length before and after shrinkage when treated for 10 seconds in 90 ° C warm water under no load. The direction of heat shrinkage (that is, hot water heat shrinkage at 90 ° C) must be 40% or more and 80% or less.
熱収縮率 = { (収縮前の長さ 収縮後の長さ)/収縮前の長さ } X 100 (%) · ·式 1 [0040] 90°Cにおける長手方向の湯温熱収縮率が 40%以下であると、収縮量が小さいた めに、熱収縮した後のラベルにシヮゃタルミが生じてしまうので好ましくなぐ反対に、 90°Cにおける長手方向の湯温熱収縮率が 80%以上であると、ラベルとして用いて 場合に熱収縮時に収縮に歪みが生じ易くなつたり、いわゆる"飛び上がり"が発生し てしまうので好ましくない。なお、 90°Cにおける長手方向の湯温熱収縮率の下限値 は、 45%以上であると好ましぐ 50%以上であるとより好ましぐ 55%以上であると特 に好ましい。また、 90°Cにおける長手方向の湯温熱収縮率の上限値は、 75%以下 であると好ましぐ 70%以下であるとより好ましぐ 65%以下であると特に好ましい。  Heat shrinkage rate = {(length before shrinkage, length after shrinkage) / length before shrinkage} X 100 (%) · Equation 1 [0040] Longitudinal hot water thermal shrinkage at 90 ° C is 40% If the temperature is below, the shrinkage amount is small, and the thermal shrinkage of the label after heat shrinkage will occur. Therefore, the hot water heat shrinkage in the longitudinal direction at 90 ° C is 80% or more. If it is used as a label, it is not preferable because the shrinkage tends to occur at the time of heat shrinkage, or so-called "jumping" occurs. The lower limit value of the hot water thermal contraction rate in the longitudinal direction at 90 ° C is particularly preferably 45% or more, more preferably 50% or more, and more preferably 55% or more. Further, the upper limit value of the hot water heat shrinkage in the longitudinal direction at 90 ° C is particularly preferably 75% or less, preferably 70% or less, and more preferably 65% or less.
[0041] また、熱収縮性ポリエステル系フィルムは、 90°Cの温水中で無荷重状態で 10秒 間に亘つて処理したときに、収縮前後の長さから、上式 1により算出したフィルムの幅 方向の湯温熱収縮率が、 0 %以上 15 %以下であることが必要である。 [0041] Further, the heat-shrinkable polyester film is a film thickness calculated by the above equation 1 from the length before and after shrinkage when treated in 90 ° C warm water for 10 seconds under no load. The hot water thermal contraction rate in the width direction must be 0% or more and 15% or less.
[0042] 90°Cにおける幅方向の湯温熱収縮率が 0%未満であると、ボトルのラベルとして使 用する際に良好な収縮外観を得ることができないので好ましくなぐ反対に、 90°Cに おける幅方向の湯温熱収縮率が 15 %を上回ると、ラベルとして用!/、た場合に熱収縮 時に収縮に歪みが生じ易くなるので好ましくない。なお、 90°Cにおける幅方向の湯 温熱収縮率の下限値は、 2%以上であると好ましぐ 3%以上であるとより好ましぐ 4 %以上であると特に好ましい。また、 90°Cにおける幅方向の湯温熱収縮率の上限値 は、 14%以下であると好ましぐ 13%以下であるとより好ましぐ 11 %以下であると特 に好ましい。 [0042] If the hot water thermal shrinkage in the width direction at 90 ° C is less than 0%, a good shrinkage appearance cannot be obtained when used as a bottle label. If the hot-water heat shrinkage in the width direction exceeds 15%, it can be used as a label! / It is not preferred because sometimes the shrinkage tends to be distorted. The lower limit value of the hot-water heat shrinkage in the width direction at 90 ° C. is particularly preferably 3% or more, more preferably 4% or more when 2% or more. Further, the upper limit value of the hot water thermal contraction rate in the width direction at 90 ° C is particularly preferably 13% or less, more preferably 11% or less, preferably 14% or less.
[0043] また、熱収縮性ポリエステル系フィルムは、 40°C65%RHの雰囲気下で 700時間 以上に亘つてエージングした後の自然収縮率が 0. 05%以上1. 5%以下であること が必要である。なお、自然収縮率は、下式 4を用いて算出することができる。  [0043] Further, the heat shrinkable polyester film may have a natural shrinkage ratio of 0.05% or more and 1.5% or less after aging for 700 hours or more in an atmosphere of 40 ° C and 65% RH. is necessary. The natural shrinkage rate can be calculated using the following equation 4.
自然収縮率 = { (エージング前の長さ エージング後の長さ)/エージング前の長 さ } X 100 (%) · ·式 4  Natural shrinkage rate = {(length before aging) / length before aging} X 100 (%) · Formula 4
[0044] 自然収縮率が 1. 5%以下であると、ロール状に巻き取られた製品を保管しておく場 合に、巻き締まりがおこり、フィルムロールにシヮが入り易いので好ましくない。なお、 自然収縮率は、小さいほど好ましいが、測定精度の面から、 0. 05%程度が下限であ ると考えている。また、自然収縮率は、 1. 3%以下であると好ましぐ 1. 1 %以下であ るとより好ましく、 1. 0%以下であると特に好ましい。  [0044] When the natural shrinkage rate is 1.5% or less, when a product wound in a roll shape is stored, winding tightening occurs and the film roll is easily wrinkled, which is not preferable. The smaller the natural shrinkage rate, the better. However, from the viewpoint of measurement accuracy, 0.05% is considered to be the lower limit. Further, the natural shrinkage rate is preferably 1.3% or less, more preferably 1.1% or less, and particularly preferably 1.0% or less.
[0045] 一方、本発明においてはフィルムの長手方向の最大熱収縮応力値力 MPa以上 2 5MPa以下であることが好ましい。フィルムの長手方向の最大熱収縮応力値力 ΜΡ a未満であると、 PETボトル等の容器にラベルとして装着して熱収縮させた場合に、 P ETボトルのキャップの開放時にキャップと一緒にラベルが回転してキャップの開封性 を悪化させる事態が生じ得るので好ましくない。反対にフィルムの長手方向の最大熱 収縮応力値が 25MPaを上回ると、 PETボトル等の容器にラベルとして装着して熱収 縮させる際に、シールした部分が外れてしまったり、外観が悪くなつたりする(すなわ ち、仕上力 Sり性が悪化する)ので好ましくない。なお、フィルムの長手方向の最大熱収 縮応力値の下限は、 6MPa以上であるとより好ましぐ 7MPa以上であると特に好まし い。また、フィルムの長手方向の最大熱収縮応力値の上限は、 23MPa以下であると より好ましく、 21MPa以下であると特に好ましい。  On the other hand, in the present invention, the maximum heat shrinkage stress force in the longitudinal direction of the film is preferably not less than MPa and not more than 25 MPa. Maximum heat shrinkage stress value in the longitudinal direction of the film 未 満 If it is less than a, when the label is attached to a container such as a PET bottle and thermally contracted, the label is attached together with the cap when the PET bottle cap is opened. This is not preferable because it may cause a situation where the cap opens and deteriorates the opening of the cap. On the other hand, if the maximum heat shrinkage stress value in the longitudinal direction of the film exceeds 25 MPa, the sealed part may be removed or the appearance may deteriorate when the film is attached to a container such as a PET bottle as heat-condensed. (That is, the finishing force S deteriorates). The lower limit of the maximum heat contraction stress value in the longitudinal direction of the film is more preferably 6 MPa or more, particularly preferably 7 MPa or more. Further, the upper limit of the maximum heat shrinkage stress value in the longitudinal direction of the film is more preferably 23 MPa or less, and particularly preferably 21 MPa or less.
[0046] 加えて、本発明においてはフィルムの溶断シール強度が 8N/15mm以上であるこ とが好ましい。フィルムの溶断シール強度が 8N/15mm未満であると、ラベルとして PETボトル等の容器に装着して熱収縮させる際に溶断シール部分が外れてしまった り、熱収縮後の容器を落下させた場合に溶断シール部分が外れてしまったりするの で好ましくない。なお、フィルムの溶断シール強度は高いほど好ましぐフィルムの引 張破断強さと略同じレベルまで高めることが可能である。また、フィルムの溶断シール 強度は、 10N/15mm以上であるとより好ましぐ 12N/15mm以上であるとさらに 好ましく、 14N/15mm以上であると特に好ましい。 [0046] In addition, in the present invention, the fusing seal strength of the film is preferably 8 N / 15 mm or more. If the fusing seal strength of the film is less than 8N / 15mm, It is not preferable because the fusing seal part is removed when it is heat-shrinked after being attached to a container such as a PET bottle, or when the container after heat-shrinking is dropped, the fusing seal part is removed. It should be noted that the higher the fusing seal strength of the film, the higher the preferred breaking strength of the film. Further, the fusing seal strength of the film is more preferably 10 N / 15 mm or more, further preferably 12 N / 15 mm or more, and particularly preferably 14 N / 15 mm or more.
[0047] さらに、熱収縮性ポリエステル系フィルムは、溶剤接着強度が 4 (N/15mm)以上 であることが好ましい。溶剤接着強度が 4 (N/l 5mm)未満であると、ラベルが熱収 縮した後に溶剤接着部から剥れ易くなるので好ましくな!/、。なお、溶剤接着強度は、 4. 5 (N/l 5mm)以上であるとより好ましぐ 5 (N/l 5mm)以上であると特に好まし い。 [0047] Further, the heat-shrinkable polyester film preferably has a solvent adhesive strength of 4 (N / 15mm) or more. If the solvent adhesive strength is less than 4 (N / l 5 mm), it is preferable because the label is easily peeled off from the solvent-adhered portion after heat shrinkage. The solvent adhesive strength is more preferably 4.5 (N / l 5 mm) or more, particularly preferably 5 (N / l 5 mm) or more.
[0048] 加えて、熱収縮性ポリエステル系フィルムは、長手方向の厚み斑が 10%以下であ ることが好ましい。長手方向の厚み斑が 10%を超える値であると、ラベル作成の際の 印刷時に印刷斑が発生し易くなつたり、熱収縮後の収縮斑が発生し易くなつたりする ので好ましくない。なお、長手方向の厚み斑は、 8 %以下であるとより好ましぐ 6%以 下であるとより好ましい。  [0048] In addition, the heat-shrinkable polyester film preferably has a thickness unevenness of 10% or less in the longitudinal direction. If the thickness unevenness in the longitudinal direction is more than 10%, it is not preferable because printed spots are likely to occur during printing at the time of label production or shrinkage spots after heat shrinkage are likely to occur. The longitudinal thickness unevenness is more preferably 8% or less, and more preferably 6% or less.
[0049] 上記の熱収縮フィルムの熱収縮率、最大熱収縮応力値、溶剤接着強度、フィルム の長手方向の厚み斑は、前述の好ましいフィルム組成を用いて、後述の好ましい製 造方法と組み合わせることにより達成することが可能となる。  [0049] The heat shrinkage rate, the maximum heat shrinkage stress value, the solvent adhesive strength, and the thickness variation in the longitudinal direction of the film are combined with the preferred production method described later using the preferred film composition described above. Can be achieved.
[0050] さらに、熱収縮性ポリエステル系フィルムは、示差走査熱量測定(DSC)において 融点測定時の吸熱曲線のピークが検出されないことが好ましい。フィルムを構成する ポリエステルを非晶性とすることで、融点測定時の吸熱曲線のピークはより発現しにく くなる。融点測定時の吸熱曲線のピークが発現しない程度まで高度に非晶化するこ とにより、溶剤接着強度が向上するとともに、熱収縮率や最大熱収縮応力値を高め て、前述の好ましい範囲内に制御することが容易となる。  [0050] Furthermore, it is preferable that the heat-shrinkable polyester film does not detect the endothermic curve peak during the melting point measurement in differential scanning calorimetry (DSC). By making the polyester constituting the film amorphous, the peak of the endothermic curve at the time of measuring the melting point becomes more difficult to express. By making it highly amorphous to the extent that the endothermic curve peak at the time of melting point measurement does not appear, the solvent adhesive strength is improved, and the heat shrinkage rate and the maximum heat shrinkage stress value are increased within the above-mentioned preferred range. It becomes easy to control.
[0051] 熱収縮性ポリエステル系フィルムの厚みは、特に限定するものではないが、 10〜2[0051] The thickness of the heat-shrinkable polyester film is not particularly limited.
00〃m力《好ましく、 20〜; 100〃 m力より好ましい。 00〃m force << preferably, 20 ~; more preferably 100〃m force.
[0052] また、熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押出機によ り溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを以下に示す方法 により、二車由延 ί申して熱処理することによって得ることカできる。 [0052] Further, the heat-shrinkable polyester film is obtained by using the above-described polyester raw material by an extruder. The film can be obtained by melt extrusion to form an unstretched film, and then subjecting the unstretched film to a two-wheel drive and heat treatment by the method described below.
[0053] 原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パド ルドライヤ一等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのよ うにポリエステル原料を乾燥させた後に、押出機を利用して、 200〜300°Cの温度で 溶融しフィルム状に押し出す。力、かる押し出しに際しては、 Tダイ法、チューブラー法 等、既存の任意の方法を採用することができる。  [0053] When the raw material resin is melt-extruded, the polyester raw material is preferably dried using a dryer such as a hopper dryer or a pad dryer, or a vacuum dryer. After drying the polyester raw material in this way, it is melted at a temperature of 200 to 300 ° C and extruded into a film using an extruder. For force and squeeze extrusion, any existing method such as T-die method or tubular method can be used.
[0054] そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを 得ること力 Sできる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金より回転 ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方 法を好適に採用することができる。  [0054] Then, it is possible to obtain an unstretched film by rapidly cooling the extruded sheet-like molten resin. As a method of rapidly cooling the molten resin, a method of obtaining a substantially unoriented resin sheet by casting the molten resin on a rotating drum from a die and rapidly solidifying it can be suitably employed.
[0055] さらに、得られた未延伸フィルムを、後述するように、所定の条件で幅方向に延伸し た後に、一旦、熱処理し、しかる後に所定の条件で長手方向に延伸し、その縦延伸 後のフィルムを急冷することによって、本発明の包装体にラベルとして使用される熱 収縮性ポリエステル系フィルムを得ることが可能となる。以下、本発明の包装体に使 用される熱収縮性ポリエステル系フィルムを得るための好ましい二軸延伸 ·熱処理方 法について、従来の熱収縮性ポリエステル系フィルムの二軸延伸.熱処理方法との 差異を考慮しつつ詳細に説明する。  [0055] Further, as will be described later, the obtained unstretched film was stretched in the width direction under predetermined conditions, and then heat-treated, and then stretched in the longitudinal direction under predetermined conditions, and then longitudinally stretched. By rapidly cooling the subsequent film, it becomes possible to obtain a heat-shrinkable polyester film used as a label for the package of the present invention. Hereinafter, the preferred biaxial stretching / heat treatment method for obtaining the heat-shrinkable polyester film used in the package of the present invention is different from the conventional biaxial stretching of the heat-shrinkable polyester film. This will be described in detail in consideration of the above.
[0056] 収縮性ポリエステル系フィルムの好まし!/、延伸'熱処理方法]  [0056] Preferred shrinkable polyester film! /, Stretching 'heat treatment method'
通常の熱収縮性ポリエステル系フィルムは、収縮させたい方向に未延伸フィルムを 延伸することによって製造される。従来から長手方向に収縮する熱収縮性ポリエステ ル系フィルムにつ!/、ての要求は高かったものの、未延伸フィルムを単純に長手方向 に延伸するだけでは、幅の広いフィルムが製造できないため生産性が悪い上、厚み 斑の良好なフィルムを製造することができない。また、予め幅方向に延伸した後に長 手方向に延伸する方法を採用すると、長手方向への収縮量が不十分となったり、幅 方向に不必要に収縮するものとなってしまう。また、上述したように、特開平 8— 2441 14号公報には、長手方向の機械的特性を向上させるために未延伸フィルムを所定 の条件下で縦 横 縦の順に延伸する方法が示されている力 S、発明者らのパイロッ ト機での追試によれば、かかる方法では、主収縮方向である長手方向への収縮性の 十分なフィルムを得ることができない上、製造されたフィルムロールに幅方向のシヮが 発生し易くなることが判明した。加えて、長手方向への収縮性を上げるべく縦方向の 延伸倍率(1段目の縦延伸倍率あるいは 2段目の縦延伸倍率)を増加させると、最終 的に長手方向に延伸する際にフィルムの破断が多発して連続的に安定した製造を 行うことが困難であることも判明した。また、上記追試によって得られたフィルムは、自 然収縮率が大きぐ製造されたフィルムロールに長手方向のシヮが発生し、開封性も 不良であった。 A normal heat-shrinkable polyester film is produced by stretching an unstretched film in the direction in which it is desired to shrink. Although there has been a high demand for heat-shrinkable polyester films that shrink in the longitudinal direction from the past, production is not possible because a wide film cannot be produced by simply stretching an unstretched film in the longitudinal direction. In addition, the film cannot be produced with good thickness and unevenness. In addition, if a method of stretching in the longitudinal direction after previously stretching in the width direction is adopted, the amount of contraction in the longitudinal direction becomes insufficient, or the width direction shrinks unnecessarily. Further, as described above, Japanese Patent Application Laid-Open No. 8-244114 discloses a method of stretching an unstretched film in the order of length, width, and length under predetermined conditions in order to improve the mechanical properties in the longitudinal direction. Power S, the inventors' pilot According to a follow-up test on a sheet machine, such a method cannot provide a film having sufficient shrinkage in the longitudinal direction, which is the main shrinkage direction, and the produced film roll is likely to be crushed in the width direction. Turned out to be. In addition, increasing the draw ratio in the machine direction (the first draw ratio or the second draw ratio) in order to increase the shrinkability in the longitudinal direction will eventually increase the film when stretched in the longitudinal direction. It was also found that it was difficult to carry out continuous and stable production due to frequent fractures. In addition, the film obtained by the above-described test had a longitudinal crease on a film roll produced with a high natural shrinkage rate, and the unsealing property was also poor.
[0057] 本発明者らは、最終的に長手方向の収縮量を大きくするためには、特開平 8— 24 4114号のように長手方向および幅方向に二軸延伸した後に長手方向に延伸する方 法は不利であり、単純に幅方向に延伸した後に長手方向に延伸する方が有利では ないかと考えた。そして、そのような幅方向の延伸後に長手方向に延伸する方法(以 下、単に、横 縦延伸法という)において、各延伸工程における条件によりフィルムの 長手方向の湯温収縮率、自然収縮率、開封性がどのように変化するかについて鋭意 検討した。その結果、横 縦延伸法によるフィルム製造の際に、以下の手段を講じる ことにより、長手方向の収縮量が高くなり、連続的に安定して製造することが可能とな ることを突き止めた。しかも、そればかりではなぐ以下の手段を講じた場合には、フィ ルムの自然収縮率が小さくなり、製造後のフィルムロールにシヮが入りにくくなるととも に、フィルムのミシン目開封性が飛躍的に良好なものとなる、という驚くべき副次的な 効果があることが判明した。そして、本発明者らは、それらの知見に基づいて本発明 を案出するに至った。  In order to finally increase the amount of contraction in the longitudinal direction, the present inventors perform biaxial stretching in the longitudinal direction and width direction as in JP-A-8-244114, and then stretch in the longitudinal direction. The method is disadvantageous and we thought that it would be advantageous to simply stretch in the width direction and then stretch in the longitudinal direction. In such a method of stretching in the longitudinal direction after stretching in the width direction (hereinafter, simply referred to as a transverse and longitudinal stretching method), the hot water temperature shrinkage rate, the natural shrinkage rate in the longitudinal direction of the film, depending on the conditions in each stretching step, We studied earnestly how the openability changes. As a result, it was found that the following measures were taken when the film was produced by the transverse and longitudinal stretching method, whereby the amount of shrinkage in the longitudinal direction was increased, and the film could be produced continuously and stably. In addition, if the following measures are taken, the film's natural shrinkage rate will be reduced, and it will be difficult for the film roll to be creased, and the perforation of the film will be dramatically improved. It has been found that there is a surprising side effect that it will be good. And the present inventors came to devise this invention based on those knowledge.
(1)幅方向への延伸後における収縮応力の制御  (1) Control of shrinkage stress after stretching in the width direction
(2)幅方向への延伸と中間熱処理とのとの間における加熱の遮断  (2) Interruption of heating between stretching in the width direction and intermediate heat treatment
(3)長手方向へ延伸する前のフィルム端部のトリミング  (3) Trimming of film edge before stretching in the longitudinal direction
(4)長手延伸後のフィルムの冷却速度の制御  (4) Control of film cooling rate after longitudinal stretching
以下、上記した各手段について順次説明する。  Hereinafter, each of the above-described means will be described sequentially.
[0058] (1)幅方向への延伸後における収縮応力の制御  [0058] (1) Control of shrinkage stress after stretching in the width direction
本発明の包装体のラベルとして使用するフィルムの横 縦延伸法による製造にお いては、未延伸フィルムを幅方向に延伸した後に、 100°C以上 170°C未満の温度で 1. 0秒以上 10. 0秒以下の時間に亘つて熱処理(以下、中間熱処理という)すること が必要である。力、かる中間熱処理を行うことによって、ラベルとした場合に主収縮方 向と直交する方向のカット性が良好で収縮斑が生じないフィルムを得ることが可能と なる。そのように横延伸後に特定の中間熱処理を施すことによりカット性が良好で収 縮斑が生じないフィルムを得ることが可能となる理由は明らかではないが、特定の中 間熱処理を施すことによって、幅方向への分子配向をある程度残存させつつ、幅方 向の収縮応力を低減させることが可能となるためではないかと考えている。なお、熱 処理の温度の下限は、 110°C以上であると好ましぐ 115°C以上であるとより好ましい 。また、熱処理の温度の上限は、 165°C以下であると好ましぐ 160°C以下であるとよ り好ましい。一方、熱処理の時間は、 1. 0秒以上 10. 0秒以下の範囲内で原料組成 に応じて適宜調整する必要がある。 The film used as a label of the package of the present invention is produced by the transverse and longitudinal stretching method. In this case, after the unstretched film is stretched in the width direction, it is heat-treated at a temperature of 100 ° C or higher and lower than 170 ° C for a time of 1.0 second or more and 10.0 seconds or less (hereinafter referred to as intermediate heat treatment). is required. By carrying out force and intermediate heat treatment, it is possible to obtain a film having good cutting properties in the direction perpendicular to the main shrinkage direction and no shrinkage spots when used as a label. The reason why it is possible to obtain a film with good cutability and no shrinkage spots by performing a specific intermediate heat treatment after transverse stretching is not clear, but by performing a specific intermediate heat treatment, We believe that it is possible to reduce the shrinkage stress in the width direction while leaving some molecular orientation in the width direction. The lower limit of the temperature of the heat treatment is preferably 110 ° C or higher, more preferably 115 ° C or higher. The upper limit of the heat treatment temperature is preferably 165 ° C. or less, more preferably 160 ° C. or less. On the other hand, the heat treatment time needs to be appropriately adjusted according to the raw material composition within a range of 1.0 second to 10.0 seconds.
[0059] また、未延伸フィルムの幅方向への延伸は、テンター内で幅方向の両端際をクリツ プによって把持した状態で、 Tg+ 5°C以上 Tg + 40°C以下の温度で 2. 5倍以上 6. 0 倍以下の倍率となるように行う必要がある。延伸温度が Tg+ 5°Cを下回ると、延伸時 に破断を起こし易くなるので好ましくなぐ反対に Tg + 40°Cを上回ると、幅方向の厚 み斑が悪くなるので好ましくない。なお、横延伸の温度の下限は、 Tg+ 10°C以上で あると好ましぐ Tg+ 15°C以上であるとより好ましい。また、横延伸の温度の上限は、 Tg + 35°C以下であると好ましぐ Tg+ 30°C以下であるとより好ましい。一方、幅方向 の延伸倍率が 2. 5倍を下回ると、生産性が悪いば力、りでなく幅方向の厚み斑が悪く なるので好ましくなぐ反対に 6. 0倍を上回ると、延伸時に破断を起こし易くなる上、 緩和させるのに多大なエネルギーと大掛力、りな装置が必要となり、生産性が悪くなる ので好ましくない。なお、横延伸の倍率の下限は、 3. 0倍以上であると好ましぐ 3. 5 倍以上であるとより好ましい。また、横延伸の倍率の上限は、 5. 5倍以下であると好ま しぐ 5. 0倍以下であるとより好ましい。  [0059] The unstretched film is stretched in the width direction at a temperature of Tg + 5 ° C or higher and Tg + 40 ° C or lower with a clip held at both ends in the width direction in the tenter. It is necessary to make the magnification between 2 times and 6.0 times. If the stretching temperature is lower than Tg + 5 ° C, breakage is likely to occur during stretching. On the other hand, if it exceeds Tg + 40 ° C, thickness unevenness in the width direction is deteriorated. The lower limit of the transverse stretching temperature is preferably Tg + 10 ° C. or more, more preferably Tg + 15 ° C. or more. Further, the upper limit of the transverse stretching temperature is preferably Tg + 35 ° C. or less, more preferably Tg + 30 ° C. or less. On the other hand, if the draw ratio in the width direction is less than 2.5 times, if the productivity is poor, the force and the thickness unevenness in the width direction are worsened. In addition, it is not preferable because a large amount of energy, a large force, and a large device are required for mitigation, and productivity is deteriorated. The lower limit of the transverse stretching ratio is preferably 3.0 times or more, more preferably 3.5 times or more. In addition, the upper limit of the transverse stretching ratio is preferably 5.5 times or less, more preferably 5.0 times or less.
[0060] (2)幅方向への延伸と中間熱処理との間における加熱の遮断  [0060] (2) Interruption of heating between stretching in the width direction and intermediate heat treatment
本発明の包装体のラベルとして使用するフィルムの横 縦延伸法による製造にお いては、上記の如ぐ横延伸後に中間熱処理を施す必要がある力 それらの横延伸 と中間熱処理との間において、 0. 5秒以上 3. 0秒以下の時間に亘つて、積極的な加 熱操作を実行しない中間ゾーンを通過させる必要がある。すなわち、製造コストを考 慮した場合、同一のテンター内で横延伸および中間熱処理を実施するのが好ましい 1S 本発明で使用するフィルムの製造においては、力、かるテンター内の横延伸ゾー ンと熱処理ゾーンとの間に中間ゾーンを設けることが好ましい。加えて、その中間ゾ ーンにお!/、ては、フィルムを通過させて!/、な!/、状態で短冊状の紙片を垂らしたときに 、その紙片がほぼ完全に鉛直方向に垂れ下がるように延伸ゾーンおよび熱処理ゾー ンからの熱風を遮断するのが好ましい。そして、本発明で使用するフィルムの製造に おいては、横延伸後のフィルムを力、かる中間ゾーンへ導き、所定時間をかけてその 中間ゾーンを通過させるのが好ましい。中間ゾーンを通過させる時間が 0. 5秒を下 回ると、通過するフィルムの随伴流により横延伸ゾーンの熱風が熱固定ゾーンに流れ 込み、熱固定ゾーンにおける中間熱処理の温度コントロールが困難となるので好まし くない。反対に中間ゾーンを通過させる時間は 3. 0秒もあれば十分であり、それ以上 の長さに設定しても、設備のムダとなるので好ましくない。なお、中間ゾーンを通過さ せる時間の下限は、 0. 7秒以上であると好ましぐ 0. 9秒以上であるとより好ましい。 また、中間ゾーンを通過させる時間の上限は、 2. 5秒以下であると好ましぐ 2. 0秒 以下であるとより好ましい。 In the production of the film used as the label of the package of the present invention by the transverse and longitudinal stretching method, it is necessary to perform an intermediate heat treatment after the transverse stretching as described above. And intermediate heat treatment, it is necessary to pass through an intermediate zone where no aggressive heating operation is performed for a time of 0.5 seconds or more and 3.0 seconds or less. That is, when considering the production cost, it is preferable to perform transverse stretching and intermediate heat treatment in the same tenter. 1S In the production of a film used in the present invention, force, transverse stretching zone in the tenter and heat treatment are used. It is preferable to provide an intermediate zone between the zones. In addition, when a strip-like piece of paper is hung in the middle zone! /, Let it pass through the film! / ,! Thus, it is preferable to block hot air from the stretching zone and the heat treatment zone. In the production of the film used in the present invention, it is preferable that the laterally stretched film is led to the intermediate zone to be applied and allowed to pass through the intermediate zone over a predetermined time. If the time for passing through the intermediate zone is less than 0.5 seconds, the hot air in the transverse stretching zone flows into the heat setting zone due to the accompanying flow of the passing film, making it difficult to control the temperature of the intermediate heat treatment in the heat setting zone. I don't like it. On the other hand, the time required to pass through the intermediate zone is sufficient if it is 3.0 seconds, and setting it longer than that is not preferable because it wastes equipment. Note that the lower limit of the time for passing through the intermediate zone is preferably 0.7 seconds or more, more preferably 0.9 seconds or more. The upper limit of the time for passing through the intermediate zone is preferably 2.5 seconds or less, and more preferably 2.0 seconds or less.
(3)長手方向へ延伸する前のフィルム端部のトリミング (3) Trimming of film edge before stretching in the longitudinal direction
本発明の包装体のラベルとして使用するフィルムの横 縦延伸法による製造にお いては、中間熱処理を施したフィルムを長手方向に延伸する前に、フィルム端縁際の 十分に横延伸されていない肉厚部分(主として横延伸時のクリップ把持部分)をトリミ ングするのが好ましい。より具体的には、フィルムの左右の端縁際に位置した中央部 分の厚みの約 1. ;!〜 1. 3倍の厚みの部分においてカッター等の工具を用いてフィル ム端縁際の肉厚部分を切断し、肉厚部分を除去しつつ、残りの部分のみを長手方向 に延伸するのが好ましい。なお、上記の如くフィルム端部をトリミングする際には、トリミ ングする前のフィルムの表面温度が 50°C以下となるように冷却しておくことが好まし い。そのようにフィルムを冷却することにより、切断面を乱すことなくトリミングすることが 可能となる。また、フィルム端部のトリミングは、通常のカッター等を用いて行うことがで きる力 周状の刃先を有する丸刃を用いると、局部的に刃先が鈍くなる事態が起こら ず、フィルム端部を長期間に亘つてシャープに切断し続けることができ、長手方向へ の延伸時における破断を誘発する事態が生じないので好ましい。 In the production of the film used as the label of the package of the present invention by the transverse and longitudinal stretching method, the film subjected to the intermediate heat treatment is not sufficiently stretched at the edge of the film before stretching in the longitudinal direction. It is preferable to trim the thick part (mainly the clip gripping part during transverse stretching). More specifically, the thickness of the central part located at the edges of the left and right edges of the film is about 1.;! It is preferable to cut the thick portion and remove the thick portion, while stretching only the remaining portion in the longitudinal direction. In addition, when trimming the film edge as described above, it is preferable to cool the film so that the surface temperature of the film before trimming is 50 ° C. or less. By cooling the film in this way, it is possible to perform trimming without disturbing the cut surface. Also, trimming of the film edge can be done using a normal cutter. When a round blade with a circumferential edge is used, the edge of the edge does not become dull locally, and the film edge can continue to be cut sharply over a long period of time. Since the situation which induces the fracture | rupture in does not arise, it is preferable.
[0062] 力、かる如ぐ長手方向への延伸前にフィルムの端部をトリミングすることによって、一 且熱固定したフィルムを均一に長手方向へ延伸することが可能となり、初めて破断の ない安定したフィルムの連続製造が可能となる。加えて、長手方向(主収縮方向)の 収縮量の大きなフィルムを得ることが可能となる。さらに、フィルムを均一に長手方向 延伸することが可能となるため、長手方向の厚み斑の小さなフィルムを得ることが できる。その上、フィルムの端部をトリミングすることによって、長手方向への延伸時に おけるボーイングが回避され、左右の物性差の小さなフィルムを得ることが可能となる [0062] By trimming the end of the film before stretching in the longitudinal direction, it was possible to stretch the heat-fixed film uniformly in the longitudinal direction, and it was stable for the first time without breaking. Continuous production of the film becomes possible. In addition, it is possible to obtain a film having a large shrinkage in the longitudinal direction (main shrinkage direction). Furthermore, since the film can be uniformly stretched in the longitudinal direction, a film having a small thickness unevenness in the longitudinal direction can be obtained. In addition, by trimming the edge of the film, bowing during stretching in the longitudinal direction can be avoided, and a film with a small difference in physical properties between the left and right can be obtained.
[0063] (4)長手延伸後のフィルムの冷却速度の制御 [0063] (4) Control of cooling rate of film after longitudinal stretching
本発明の包装体のラベルとして使用するフィルムの横 縦延伸法による製造にお いては、上記の如ぐ横延伸後に中間熱処理を施してから長手方向に延伸した後に 30°C/秒以上 70°C/秒以下の冷却速度で表面温度が 45°C以上 75°C以下となる までフィルムを冷却するのが好ましい。そのようにフィルムを適度な速さで冷却するこ とによって、初めて自然収縮率を低減することが可能となる。冷却速度が 30°C/秒を 下回ったり、冷却後の表面温度が 75°Cを上回ったりするような冷却であると低い自然 収縮率が得られないので好ましくない。反対に、冷却速度が 70°C/秒を上回るよう な急激な冷却であると、フィルムの幅方向への収縮(いわゆるネックイン)の度合いが 大きくなり、フィルム表面に傷が付き易くなるので好ましくない。  In the production of the film used as the label of the package of the present invention by the transverse and longitudinal stretching method, the intermediate heat treatment is performed after the transverse stretching as described above, and then the film is stretched in the longitudinal direction, and then 30 ° C / second or more and 70 ° The film is preferably cooled at a cooling rate of C / sec or less until the surface temperature is 45 ° C or higher and 75 ° C or lower. Thus, the natural shrinkage rate can be reduced only by cooling the film at an appropriate speed. If the cooling rate is lower than 30 ° C / sec or the surface temperature after cooling is higher than 75 ° C, a low natural shrinkage rate cannot be obtained. On the other hand, it is preferable that the cooling rate is so rapid that the cooling rate exceeds 70 ° C / second, since the degree of shrinkage in the width direction of the film (so-called neck-in) increases and the film surface is easily damaged. Absent.
[0064] なお、上記した(1)〜(4)の手段の内の特定の何れかのみが、フィルムの長手方向 における熱収縮性、ミシン目開封性、低い自然収縮率、安定した製膜性に有効に寄 与するものではなぐ(1)〜(4)の手段を組み合わせて用いることにより、非常に効率 的に、長手方向における熱収縮性、ミシン目開封性、低い自然収縮率、安定した製 膜性を発現させることが可能となるものと考えられる。  [0064] It should be noted that only one of the above-mentioned means (1) to (4) is the heat shrinkability in the longitudinal direction of the film, the perforation opening property, the low natural shrinkage rate, and the stable film forming property. By using a combination of the means (1) to (4) that do not contribute effectively to the heat, it is very efficient, heat shrinkability in the longitudinal direction, perforation opening, low natural shrinkage, stable It is thought that film-forming properties can be expressed.
実施例  Example
[0065] 以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例の 態様に何ら限定されるものではなぐ本発明の趣旨を逸脱しない範囲で、適宜変更 することが可能である。実施例、比較例で使用した原料の性状、組成、実施例、比較 例におけるフィルムの製造条件 (延伸 ·熱処理条件等)を、それぞれ表 1、表 2に示す [0065] Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the embodiment and can be appropriately changed without departing from the spirit of the present invention. Tables 1 and 2 show the properties, compositions, examples, and film production conditions (stretching and heat treatment conditions, etc.) of the raw materials used in the examples and comparative examples, respectively.
[表 1] [table 1]
Figure imgf000019_0001
Figure imgf000019_0001
[表 2] [Table 2]
Figure imgf000020_0001
Figure imgf000020_0001
[0068] フィルムの評価方法は下記の通りである。  [0068] The film evaluation method is as follows.
[0069] 収縮率 (湯温熱収縮率) ]  [0069] Shrinkage rate (hot water thermal shrinkage rate)]
フィルムを lOcm X 10cmの正方形に裁断し、所定温度 ± 0. 5°Cの温水中におい て、無荷重状態で 10秒間処理して熱収縮させた後、フィルムの縦および横方向の寸 法を測定し、上式 1にしたがって、それぞれ熱収縮率を求めた。当該熱収縮率の大き い方向を主収縮方向とした。 [0070] [Tg (ガラス転移点)] Cut the film into a square of lOcm x 10cm, heat-shrink it in warm water at the specified temperature ± 0.5 ° C for 10 seconds under no load condition, and then measure the vertical and horizontal dimensions of the film. Measured, and the thermal shrinkage rate was calculated according to the above formula 1. The direction in which the heat shrinkage rate is large was defined as the main shrinkage direction. [0070] [Tg (Glass transition point)]
セイコー電子工業株式会社製の示差走査熱量計 (型式: DSC220)を用いて、未 延伸フィルム 5mgを、 40°Cから 120°Cまで、昇温速度 10°C/分で昇温し、得られ た吸熱曲線より求めた。吸熱曲線の変曲点の前後に接線を引き、その交点を Tg (ガ ラス転移点)とした。  Using a differential scanning calorimeter (model: DSC220) manufactured by Seiko Denshi Kogyo Co., Ltd., it was obtained by heating 5mg of unstretched film from 40 ° C to 120 ° C at a heating rate of 10 ° C / min. Obtained from the endothermic curve. A tangent line was drawn before and after the inflection point of the endothermic curve, and the intersection was defined as Tg (glass transition point).
[0071] [Tm (融点)] [0071] [Tm (melting point)]
セイコー電子工業株式会社製の示差走査熱量計 (型式: DSC220)を用いて、未 延伸フィルム 5mgを採取し、室温より昇温速度 10°C/分で昇温した時の吸熱曲線の ピークの温度より求めた。  Using a differential scanning calorimeter (model: DSC220) manufactured by Seiko Denshi Kogyo Co., Ltd., the temperature at the peak of the endothermic curve when 5 mg of unstretched film was sampled and heated from room temperature at a heating rate of 10 ° C / min. I asked more.
[0072] [主収縮方向厚み斑] [0072] [Thickness unevenness in the main contraction direction]
フィルムを長さ 30m X幅 40mmの長尺なロール状にサンプリングし、ミクロン測定器 株式会社製の連続接触式厚み計を用いて、 5 (m/分)の速度で測定した。なお、上 記したロール状のフィルム試料のサンプリングにおいては、フィルム試料の長さ方向 をフィルムの主収縮方向とした。測定時の最大厚みを Tmax.、最小厚みを Tmin.、平 均厚みを Tave.とし、下式 5からフィルムの長手方向の厚み斑を算出した。  The film was sampled into a long roll of 30 m length x 40 mm width and measured at a speed of 5 (m / min) using a continuous contact thickness gauge manufactured by Micron Measuring Instruments Co., Ltd. In the above-described sampling of the roll-shaped film sample, the length direction of the film sample was set as the main shrinkage direction of the film. The maximum thickness at the time of measurement was Tmax., The minimum thickness was Tmin., And the average thickness was Tave.
厚み斑= { (1¾& . 1¾ .) /丁& 6. } 100 (%) · ·式 5  Thickness unevenness = {(1¾ &. 1¾.) / Ding & 6.} 100 (%) · Formula 5
[0073] [溶剤接着強度] [0073] [Solvent adhesive strength]
延伸したフィルムに 1 , 3 ジォキソランを塗布して 2枚を張り合わせることによつてシ ールを施した。しかる後、シール部をフィルムの主収縮方向と直交する方向(以下、 直交方向という)に 15mmの幅に切り取り、それを (株)ボールドウィン社製 万能引張 試験機 STM— 50にセットし、引張速度 200mm/分の条件で 180° ピール試験 を行った。そして、そのときの引張強度を溶剤接着強度とした。  The stretched film was sealed by applying 1,3 dioxolan and pasting the two together. After that, the seal part is cut to a width of 15mm in the direction perpendicular to the main shrinkage direction of the film (hereinafter referred to as the orthogonal direction), and then set in the universal tension tester STM-50 manufactured by Baldwin Co., Ltd. A 180 ° peel test was performed at 200 mm / min. And the tensile strength at that time was made into solvent adhesive strength.
[0074] [溶断シール強度] [0074] [Fusing seal strength]
共栄印刷機械材料社製の自動製袋機械 (型式: RP500)を用い、刃角 70度の溶 断刃を 240°Cに加熱製袋速度 100袋/分で製袋した。しかる後、その製袋品の溶断 シール部を幅 15mmの短冊状に切り出して試料片を作製し、東洋ボールドウィン社 製のテンシロン(型式: STM— T 50BP)を用いて、チャック間距離 50mm、引張速 度 200mm/分の条件で引張試験を行うことによって剥離強度を測定した。そして、 10個の試料片について求めた剥離強度の平均値を溶断シール強度とした。 Using an automatic bag making machine (model: RP500) manufactured by Kyoei Printing Machinery Materials Co., Ltd., a cutting blade with a blade angle of 70 degrees was heated to 240 ° C at a heating bag making speed of 100 bags / min. After that, the fusing seal part of the bag-made product is cut into a strip with a width of 15 mm to prepare a sample piece, and using Tensilon (model: STM-T 50BP) manufactured by Toyo Baldwin, the distance between chucks is 50 mm and the tension The peel strength was measured by conducting a tensile test at a speed of 200 mm / min. And The average value of the peel strengths obtained for 10 sample pieces was taken as the fusing seal strength.
[0075] [最大熱収縮応力値] [0075] [Maximum heat shrinkage stress value]
延伸したフィルムを、主収縮方向 X主収縮方向と直交する方向 = 200mm X 15m mのサイズにカットした。しかる後、(株)ボールドウィン社製 万能引張試験機 STM The stretched film was cut into a size of main shrinkage direction X direction perpendicular to the main shrinkage direction = 200 mm × 15 mm. After that, Universal Tensile Tester STM manufactured by Baldwin Co., Ltd.
—50を温度 90°Cに調整した上で、カットしたフィルムをセットし、 10秒間保持したとき の応力値を測定した。 After adjusting −50 to a temperature of 90 ° C, the cut film was set and the stress value was measured when held for 10 seconds.
[0076] [ヘイズ] [0076] [Haze]
JIS— K— 7136に準拠し、ヘイズメータ(日本電色工業株式会社製、 300A)を用 いて測定した。なお、測定は 2回行い、その平均値を求めた。  Based on JIS-K-7136, it was measured using a haze meter (Nippon Denshoku Industries Co., Ltd., 300A). The measurement was performed twice and the average value was obtained.
[0077] [屈折率] [0077] [Refractive index]
ァタゴ社製の「アッベ屈折計 4T型」を用いて、各試料フィルムを 23°C、 65%RHの 雰囲気中で 2時間以上放置した後に測定した。  Using an “Abbe Refractometer Model 4T” manufactured by ATAGO Co., Ltd., each sample film was left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more, and measurement was performed.
[0078] [自然収縮率] [0078] [Natural contraction rate]
得られたフィルムを、主収縮方向 X直交方向 = 200mm X 30mmのサイズに切り 取り、 40°C X 65%RHの雰囲気下で 4時間放置(エージング)した後、フィルムの主 収縮方向(実施例;!〜 6および比較例;!〜 3, 5では長手方向、比較例 4では幅方向) における収縮量を測定し、上式 4によって自然収縮率を算出した。  The resulting film was cut into a size of main shrinkage direction X orthogonal direction = 200 mm x 30 mm, and allowed to stand (aging) in an atmosphere of 40 ° C x 65% RH for 4 hours, and then the main shrinkage direction of the film (Examples; ! ~ 6 and comparative examples;! ~ 3, 5 were measured for shrinkage in the longitudinal direction, and comparative example 4 was in the width direction).
[0079] また、被覆後のラベルの評価方法は下記の通りである。 [0079] The method for evaluating the coated label is as follows.
[0080] [引張破壊強さの測定方法] [0080] [Measurement method of tensile fracture strength]
ペットボトルに装着されたラベルを引き剥がし、そのラベルを JIS—K— 7127に準じ て、主収縮方向と直交する方向の長さ 50mm X主収縮方向の長さ 20mmの長方形 状にサンプリングして試験片とし、万能引張試験機((株)島津製作所製 オートダラ フ)を利用して、試験片の両端 (長尺方向の両端)を掴み、引張速度 200mm/分の 条件にて引張試験を行い、破断時の応力値を引張破壊強さとして算出した。  The label attached to the PET bottle is peeled off, and the label is tested in accordance with JIS-K-7127 in a rectangular shape with a length of 50mm perpendicular to the main shrinkage direction and a length of 20mm in the main shrinkage direction. Using a universal tensile tester (manufactured by Shimadzu Corp., Auto Draft), hold both ends (both ends in the longitudinal direction) of the test piece and perform a tensile test at a tensile speed of 200 mm / min. The stress value at break was calculated as the tensile fracture strength.
[0081] [直角引裂強度] [0081] [Right-angle tear strength]
ペットボトルに装着されたラベルを引き剥がし、そのラベルを、 JIS— K— 7128に準 じて、図 1に示す形状にサンプリングすることによって試験片を作製した(なお、サン プリングにおいては、試験片の長手方向をラベルのミシン目方向とした)。しかる後に 、万能引張試験機((株)島津製作所製 オートグラフ)を利用して、試験片の両端を 掴み、引張速度 200mm/分の条件にて、ラベルの主収縮方向と直交する方向にお ける弓 I張破壊時の強度の測定を行い、上式 2を用レ、て単位厚み当たりの直角引裂強 度を算出した。 A test piece was prepared by peeling off the label attached to the PET bottle and sampling the label into the shape shown in Fig. 1 in accordance with JIS-K-7128. Is the perforation direction of the label). After a while Using a universal tensile tester (Autograph made by Shimadzu Corp.), hold both ends of the test piece and bow in a direction perpendicular to the main shrinkage direction of the label at a pulling speed of 200 mm / min. I measured the strength at the time of tensile fracture, and calculated the right-angled tear strength per unit thickness using Equation 2 above.
[0082] [エルメンドルフ比] [0082] [Elmendorf ratio]
ペットボトルに装着されたラベルを引き剥がし、そのラベルを、 JIS— K— 7128に準 じて、主収縮方向 X主収縮方向と直交する方向 = 37. 5mm X 31. 5mmのサイズに 切り取り、主収縮方向に沿った端縁の中央から当該端縁に直交するように 10mmの スリット (切り込み)を入れることによって試験片を作製した。そして、万能引張試験機 ( (株)島津製作所製 オートグラフ)を利用して、作製された試験片の両端を掴み、引 張速度 200mm/分の条件にて引張試験を行うことによってミシン目と直交する方向 のエルメンドルフ引裂荷重を測定した。また、フィルムの主収縮方向と直交する方向 と主収縮方向とを入れ替えて試験片を作製し、主収縮方向と直交する方向のエルメ ンドルフ引裂荷重を測定した。そして、得られた主収縮方向および主収縮方向と直 交する方向のエルメンドルフ弓 I裂荷重から上式 6を用レ、てエルメンドルフ比を算出し た。  The label attached to the PET bottle is peeled off, and the label is cut to a size of 37.5 mm X 31.5 mm in the main shrinkage direction X in the direction perpendicular to the main shrinkage direction according to JIS-K-7128. A test piece was prepared by making a 10 mm slit (cut) perpendicular to the edge from the center of the edge along the shrinkage direction. Then, using a universal tensile tester (Autograph manufactured by Shimadzu Corporation), both ends of the prepared test piece are grasped and a tensile test is performed at a tension speed of 200 mm / min. The Elmendorf tear load in the orthogonal direction was measured. In addition, test pieces were produced by switching the direction perpendicular to the main shrinkage direction and the main shrinkage direction of the film, and the Elmendorf tear load in the direction perpendicular to the main shrinkage direction was measured. Then, the Elmendorf ratio was calculated using the above formula 6 from the obtained main contraction direction and the Elmendorf bow I crack load in the direction perpendicular to the main contraction direction.
[0083] [屈折率]  [0083] [Refractive index]
ペットボトルに装着されたラベルを引き剥がし、そのラベルの表面に施された印刷を 溶剤(酢酸ェチル、メチルェチルケトン等)により取り除き、そのラベルを 65%RHの 雰囲気中で 2時間以上放置した後に、ァタゴ社製の「アッベ屈折計 4T型」を用いて 測定した。なお、上記した方法により屈折率を測定した。  The label attached to the PET bottle is peeled off, the printing on the surface of the label is removed with a solvent (ethyl acetate, methyl ethyl ketone, etc.), and the label is left in an atmosphere of 65% RH for 2 hours or more. Later, measurement was performed using an “Abbe refractometer 4T type” manufactured by Atago Co., Ltd. The refractive index was measured by the method described above.
[0084] [落体時の開封率] [0084] [Opening rate when falling down]
ラベルを装着したペットボトルに水を 500ml充填し、そのペットボトルを約 5°Cに調 整された冷蔵庫内で 8時間以上放置した後、 lmの高さからミシン目を設けた部分を 下にして落下させ、ミシン目が引き裂かれたものの割合(%)を算出した (n= 100)。  Fill the plastic bottle with the label with 500 ml of water, leave the plastic bottle in the refrigerator adjusted to about 5 ° C for 8 hours or more, and then place the perforated part downward from the height of the lm. The percentage of the perforations that were torn down was calculated (n = 100).
[0085] [収縮仕上り性] [0085] [Shrink finish]
ペットボトルの周囲に装着されたラベルの仕上がり状態を、 目視によって下記の基 準により評価した。 ◎:シヮ,飛び上り、収縮不足の何れも未発生で、かつ色の斑も見られない 〇:シヮ,飛び上り、または収縮不足が確認できないが、若干、色の斑が見られる △:飛び上り、収縮不足の何れも未発生だが、ネック部の斑が見られる X:シヮ、飛び上り、収縮不足が発生 The finished condition of the label attached around the PET bottle was visually evaluated according to the following criteria. ◎: No wrinkles, jumps, or insufficient shrinkage occurred, and no color spots were observed. ○: No wrinkles, jumps, or insufficient shrinkage could be confirmed, but some color spots were observed. : Neither jumping up nor insufficient shrinkage has occurred, but spots on the neck are seen X: Wrinkles, jumping up, insufficient shrinkage occurred
[0086] [ラベル密着性] [0086] [Label Adhesion]
装着されたラベルと PETボトルとを軽くねじったときのラベルのズレ具合を官能評価 した。ラベルが動かなければ〇、すり抜けたり、ラベルとボトルがずれたりした場合に は Xとした。  Sensory evaluation was performed on the degree of label displacement when the attached label and PET bottle were lightly twisted. X if the label does not move, X if it slips through or the label and bottle are misaligned.
[0087] [ミシン目開封性] [0087] [Perforation opening]
ラベルを装着したペットボトルに水を 500ml充填し、 5°Cに冷蔵し、冷蔵庫から取り 出した直後のボトルのラベルのミシン目を指先で引裂き、縦方向にミシン目に沿って 綺麗に裂け、ラベルをボトルから外すことができた本数を数え、全サンプル 50本に対 する割合(%)を算出した。  Fill the plastic bottle with the label with 500 ml of water, refrigerate to 5 ° C, tear the perforation on the label of the bottle immediately after taking out from the refrigerator with your fingertips, tear it cleanly along the perforation in the vertical direction, The number of labels that could be removed from the bottle was counted, and the percentage (%) for all 50 samples was calculated.
[0088] また、実施例および比較例に用いたポリエステルは以下の通りである。 [0088] Polyesters used in Examples and Comparative Examples are as follows.
[0089] ポリエステル 1 :エチレングリコール 70モル0 /0 ,ネオペンチルグリコール 30モル0 /0と テレフタル酸とからなるポリエステル(IV 0. 72dl/g) [0089] Polyester 1: Ethylene glycol 70 mol 0/0, polyester consisting of neopentyl glycol 30 mol 0/0 and terephthalic acid (IV 0. 72dl / g)
ポリエステル 2 :ポリエチレンテレフタレート(IV 0. 75dl/g)  Polyester 2: Polyethylene terephthalate (IV 0.775dl / g)
ポリエステル 3 :ジカルボン酸成分としてテレフタル酸単位 82. 5モル0 /0 ,イソフタル 酸単位 17. 5モル0 /0よりなり、ジオール成分としてエチレングリコールよりなる。 Polyester 3: terephthalic acid units as dicarboxylic acid component 82.5 mole 0/0, consists isophthalic acid unit 17.5 mole 0/0, consisting of ethylene glycol as the diol component.
[0090] [実施例 1] [0090] [Example 1]
<熱収縮性フィルムロールの作製〉  <Preparation of heat-shrinkable film roll>
上記したポリエステル 1とポリエステル 2とを重量比 90: 10で混合して押出機に投入 した。しかる後、その混合樹脂を 280°Cで溶融させて Tダイから押出し、表面温度 30 °Cに冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが 360 mの未延伸フィルムを得た。このときの未延伸フィルムの引取速度(金属ロールの回 転速度)は、約 20m/min.であった。また、未延伸フィルムの Tgは 67°Cであった。 しかる後、その未延伸フィルムを、横延伸ゾーン、中間ゾーン、中間熱処理ゾーンを 連続的に設けたテンター(第 1テンター)に導いた。なお、当該テンターにおいては、 横延伸ゾーンと中間熱処理ゾーンとの中間に位置した中間ゾーンの長さが、約 40cm に設定されている。また、中間ゾーンにおいては、フィルムを通過させていない状態 で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるよ うに、延伸ゾーンからの熱風および熱処理ゾーンからの熱風が遮断されている。 The above polyester 1 and polyester 2 were mixed at a weight ratio of 90:10 and charged into an extruder. Thereafter, the mixed resin is melted at 280 ° C, extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C, and rapidly cooled to form an unstretched film having a thickness of 360 m. Obtained. At this time, the take-up speed of the unstretched film (rotation speed of the metal roll) was about 20 m / min. The Tg of the unstretched film was 67 ° C. Thereafter, the unstretched film was led to a tenter (first tenter) in which a transverse stretching zone, an intermediate zone, and an intermediate heat treatment zone were continuously provided. In the tenter, The length of the intermediate zone located between the transverse stretching zone and the intermediate heat treatment zone is set to about 40 cm. In addition, in the intermediate zone, when a strip-shaped piece of paper is dropped without passing through the film, the hot air from the stretching zone and the hot air from the heat treatment zone are blown so that the piece of paper hangs almost completely in the vertical direction. Blocked.
[0091] そして、テンターに導かれた未延伸フィルムを、フィルム温度が 90°Cになるまで予 備加熱した後、横延伸ゾーンで横方向に 75°Cで 4倍に延伸し、中間ゾーンを通過さ せた後に(通過時間 =約 1. 2秒)、中間熱処理ゾーンへ導き、 130°Cの温度で 2. 0 秒間に亘つて熱処理することによって厚み 90 mの横一軸延伸フィルムを得た。し 力、る後、テンターの後方に設けられた左右一対のトリミング装置 (周状の刃先を有す る丸刃によって構成されたもの)を利用して、横一軸延伸フィルムの端縁際(中央のフ イルム厚みの約 1 · 2倍の厚みの部分)を切断し、切断部位の外側に位置したフィノレ ムの端部を連続的に除去した。  [0091] Then, after preheating the unstretched film guided to the tenter until the film temperature reaches 90 ° C, the unstretched film is stretched 4 times at 75 ° C in the transverse direction in the transverse stretching zone, After passing (passing time = approximately 1.2 seconds), the film was led to an intermediate heat treatment zone and heat treated at a temperature of 130 ° C for 2.0 seconds to obtain a transversely uniaxially stretched film having a thickness of 90 m. . Then, using a pair of left and right trimming devices (constituted by a round blade with a circumferential cutting edge) provided at the rear of the tenter, the edge of the lateral uniaxially stretched film (center The portion of the film having a thickness of about 1 to 2 times the thickness of the film was cut, and the ends of the finolem located outside the cutting site were continuously removed.
[0092] さらに、そのように端部をトリミングしたフィルムを、複数のロール群を連続的に配 置した縦延伸機へ導き、予熱ロール上でフィルム温度が 70°Cになるまで予備加熱し た後に、表面温度 95°Cに設定された延伸ロール間で 3倍に延伸した。しかる後、縦 延伸したフィルムを、表面温度 25°Cに設定された冷却ロールによって強制的に冷却 した。なお、冷却前のフィルムの表面温度は約 70°Cであり、冷却後のフィルムの表面 温度は約 25°Cであった。また、 70°Cから 25°Cに冷却するまでに要した時間は約 1. 0秒であり、フィルムの冷却速度は、 45°C/秒であった。  [0092] Further, the film with the end trimmed as described above was guided to a longitudinal stretching machine in which a plurality of roll groups were continuously arranged, and preheated on the preheating roll until the film temperature reached 70 ° C. Later, the film was stretched 3 times between stretching rolls set at a surface temperature of 95 ° C. Thereafter, the longitudinally stretched film was forcibly cooled by a cooling roll set at a surface temperature of 25 ° C. The surface temperature of the film before cooling was about 70 ° C, and the surface temperature of the film after cooling was about 25 ° C. The time required for cooling from 70 ° C to 25 ° C was about 1.0 seconds, and the film cooling rate was 45 ° C / second.
[0093] そして、冷却後のフィルムをテンター(第 2テンター)へ導き、当該第 2テンター内で 95°Cの雰囲気下で 2. 0秒間に亘つて熱処理した後に冷却し、両縁部を裁断除去す ることによって、約 30 mの二軸延伸フィルムを所定の長さに亘つて連続的に製膜し て熱収縮性ポリエステルフィルムからなるフィルムロールを得た。  [0093] Then, the cooled film is guided to a tenter (second tenter), heat-treated in an atmosphere of 95 ° C for 2.0 seconds in the second tenter, cooled, and both edges are cut. By removing, a biaxially stretched film of about 30 m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film.
[0094] <ラベルを装着した包装体の作製〉  [0094] <Production of package with label attached>
上記の如く得られたフィルムロールを、約 200mmの幅にスリットした上で、所定の 長さに分割して巻き取ることによって小型のスリットロールを作成し、そのスリットロー ノレに、予め東洋インキ製造 (株)の草 '金'白色のインキを用いて、ラベル用の印刷(3 色印刷)を繰り返し施した。また、各ラベル用印刷毎に、フィルムロールの長手方向と 直交する方向に、フィルム全幅に亘るミシン目(約 4mm間隔で約 lmm径の円が連続 するミシン目を)を、約 22mmの間隔で 2本平行に形成した。そして、ラベル用の印刷 が施されたロール状のフィルムの片方の端部を、 500mlの PETボトノレ(月同直径 62m m、ネック部の最小直径 25mm)の外周の一部に塗布した粘着剤の上に重ねること によって接着し、その状態で、ロール状のフィルムを所定の長さだけ引き出して、 PE Tボトルの外周に捲回させた。しかる後、ペットボトルの外周で重なり合った熱収縮性 フィルム同士を約 240°Cに調整した溶断シール刃によって溶断シールすることによつ て、ペットボトルの外周にラベルを被覆させた。そして、 Fuji Astec Inc製スチーム トンネル(型式; SH— 1500— Uを用い、ラベルを被覆させたペットボトルを、通過時 間 2. 5秒、ゾーン温度 80°Cの条件下で通過させ、 500mlの PETボトルの外周にお いてラベルを熱収縮させることによってラベルの装着を完了した。なお、装着の際に は、ネック部においては、直径 40mmの部分がラベルの一方の端になるように調整し た。そして、上記の如く得られた熱収縮性フィルム、ラベル (装着前後)、および包装 体 (ラベルを装着したペットボトル)の特性を上記した方法によって評価した。評価結 果を表 3, 4に示す。 The film roll obtained as described above is slit to a width of about 200 mm, and is then rolled into a predetermined length to create a small slit roll. Label printing (three-color printing) was repeatedly performed using the grass “gold” white ink of Co., Ltd. In addition, for each label printing, the longitudinal direction of the film roll and In the orthogonal direction, two perforations (a perforation in which circles of about 1 mm diameter are continuous at intervals of about 4 mm) across the entire width of the film were formed in parallel at intervals of about 22 mm. Then, one end of the roll-shaped film on which printing for labeling was applied was applied to a part of the outer periphery of a 500 ml PET bottle (month diameter 62 mm, minimum neck diameter 25 mm). The roll film was pulled out by a predetermined length and wound around the outer periphery of the PET bottle. Thereafter, the outer periphery of the PET bottle was covered with a label by covering the outer periphery of the PET bottle by fusing and sealing with a fusing seal blade adjusted to about 240 ° C. Then, using Fuji Astec Inc's steam tunnel (model: SH-1500-U), the PET bottle covered with the label was allowed to pass under the conditions of a passage time of 2.5 seconds and a zone temperature of 80 ° C. Label attachment was completed by heat-shrinking the label around the outer periphery of the PET bottle, and the neck part was adjusted so that the 40 mm diameter part would be one end of the label. The characteristics of the heat-shrinkable film, label (before and after mounting), and package (the PET bottle with the label) obtained as described above were evaluated by the method described above. Shown in
[0095] [実施例 2] [0095] [Example 2]
ポリエステル 1とポリエステル 2を重量比 70: 30で混合して押出機に投入した以外 は、実施例 1と同様の方法によって熱収縮性フィルムを連続的に製造した。また、実 施例 1と同様の方法によってラベルを作製し、そのラベルを実施例 1と同様の方法に よってペットボトルの外周に装着した。そして、得られたフィルム、装着前後のラベル、 および包装体の特性を実施例 1と同様の方法によって評価した。評価結果を表 3, 4 に示す。  A heat-shrinkable film was continuously produced in the same manner as in Example 1 except that polyester 1 and polyester 2 were mixed at a weight ratio of 70:30 and charged into an extruder. Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. Then, the characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
[0096] [実施例 3] [0096] [Example 3]
テンター(第 1テンター)における横方向の延伸倍率を 5. 0倍に変更した以外は、 実施例 1と同様の方法によって熱収縮性フィルムを連続的に製造した。なお、ニ軸延 伸熱収縮性ポリエステルフィルムの厚みは約 24 mであった。また、実施例 1と同様 の方法によってラベルを作製し、そのラベルを実施例 1と同様の方法によってペットボ トルの外周に装着した。そして、得られたフィルム、装着前後のラベル、および包装体 の特性を実施例 1と同様の方法によって評価した。評価結果を表 3, 4に示す。 A heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the transverse stretch ratio in the tenter (first tenter) was changed to 5.0 times. The biaxially stretched heat-shrinkable polyester film had a thickness of about 24 m. Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the pet bottle by the same method as in Example 1. And the obtained film, the label before and after mounting, and the package The characteristics were evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 3 and 4.
[0097] [実施例 4] [0097] [Example 4]
テンター(第 1テンター)における中間熱処理の温度を 140°Cに変更した以外は、 実施例 1と同様の方法によって熱収縮性フィルムを連続的に製造した。なお、ニ軸延 伸熱収縮性ポリエステルフィルムの厚みは約 24 mであった。また、実施例 1と同様 の方法によってラベルを作製し、そのラベルを実施例 1と同様の方法によってペットボ トルの外周に装着した。そして、得られたフィルム、装着前後のラベル、および包装体 の特性を実施例 1と同様の方法によって評価した。評価結果を表 3, 4に示す。  A heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the intermediate heat treatment in the tenter (first tenter) was changed to 140 ° C. The biaxially stretched heat-shrinkable polyester film had a thickness of about 24 m. Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the pet bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
[0098] [実施例 5] [Example 5]
縦延伸機における延伸ロールの温度を 92°Cに変更し、長手方向の延伸倍率を 5. 0倍に変更した以外は、実施例 1と同様の方法によって熱収縮性フィルムを連続的に 製造した。なお、二軸延伸熱収縮性ポリエステルフィルムの厚みは約 18 mであつ た。また、実施例 1と同様の方法によってラベルを作製し、そのラベルを実施例 1と同 様の方法によってペットボトルの外周に装着した。そして、得られたフィルム、装着前 後のラベル、および包装体の特性を実施例 1と同様の方法によって評価した。評価 結果を表 3, 4に示す。  A heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the stretching roll in the longitudinal stretching machine was changed to 92 ° C and the stretching ratio in the longitudinal direction was changed to 5.0 times. . The biaxially stretched heat-shrinkable polyester film had a thickness of about 18 m. Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
[0099] [実施例 6] [0099] [Example 6]
縦延伸機における延伸ロールの温度を 92°Cに変更し、長手方向の延伸倍率を 7. 0倍に変更した以外は、実施例 1と同様の方法によって熱収縮性フィルムを連続的に 製造した。なお、二軸延伸熱収縮性ポリエステルフィルムの厚みは約 13 mであつ た。また、実施例 1と同様の方法によってラベルを作製し、そのラベルを実施例 1と同 様の方法によってペットボトルの外周に装着した。そして、得られたフィルム、装着前 後のラベル、および包装体の特性を実施例 1と同様の方法によって評価した。評価 結果を表 3, 4に示す。  A heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the stretching roll in the longitudinal stretching machine was changed to 92 ° C and the stretching ratio in the longitudinal direction was changed to 7.0 times. . The biaxially stretched heat-shrinkable polyester film had a thickness of about 13 m. Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
[0100] [比較例 1] [0100] [Comparative Example 1]
上記したポリエステル 3を押出機に投入し、 265°Cで溶融させて Tダイから押出し、 表面温度 30°Cに冷却された回転する金属ロールに巻き付けて急冷することにより、 厚さが 360 mの未延伸フィルムを得た。なお、未延伸フィルムの引取速度は、実施 例 1と同様にした。しかる後、その未延伸フィルムを、複数のロール群を連続的に配 置した縦延伸機(第 1縦延伸機)へ導き、予熱ロール上で予備加熱した後に、表面温 度 88°Cに設定された延伸ロール間で 2. 7倍に延伸した。さらに、長手方向に延伸し たフィルムを横延伸ゾーンと熱処理ゾーンとを連続的に設けたテンター(第 1テンター )へ導き、横延伸ゾーンにて 97°Cの延伸温度で横方向に 97°Cで 3. 5倍延伸した後 に、熱処理ゾーンにて 125°Cで熱処理した。しかる後、熱処理後のフィルムを、複数 のロール群を連続的に配置した縦延伸機(第 2縦延伸機)へ導き、予熱ロール上で 予備加熱した後に、表面温度 98°Cに設定された延伸ロール間で 1. 5倍に再度縦延 伸した。さらに、再度縦延伸したフィルムをテンター(第 2テンター)へ導き、 85°Cの熱 処理した後に冷却し、両縁部を裁断除去することによって、約 35 111の二軸延伸フィ ルムを所定の長さに亘つて連続的に製膜して熱収縮性ポリエステル系フィルムロー ルを得た。なお、熱処理後冷却前のフィルムの表面温度は約 75°Cであり、約 2. 0秒 で約 25°Cまで冷却した (冷却速度 = 25°C/秒)。また、実施例 1と同様の方法によつ てラベルを作製し、そのラベルを実施例 1と同様の方法によってペットボトルの外周に 装着した。そして、得られたフィルム、装着前後のラベル、および包装体の特性を実 施例 1と同様の方法によって評価した。評価結果を表 3, 4に示す。 The above polyester 3 is put into an extruder, melted at 265 ° C, extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30 ° C, and rapidly cooled to give a thickness of 360 m. An unstretched film was obtained. The undrawn film take-off speed is Same as Example 1. After that, the unstretched film is led to a longitudinal stretching machine (first longitudinal stretching machine) in which a plurality of roll groups are continuously arranged, preheated on a preheating roll, and then set to a surface temperature of 88 ° C. The drawn rolls were stretched 2.7 times. Further, the film stretched in the longitudinal direction is led to a tenter (first tenter) in which a transverse stretching zone and a heat treatment zone are continuously provided, and the transverse stretching zone is 97 ° C at a stretching temperature of 97 ° C. After being stretched by 3.5 times, it was heat treated at 125 ° C in a heat treatment zone. Thereafter, the heat-treated film was led to a longitudinal stretching machine (second longitudinal stretching machine) in which a plurality of roll groups were continuously arranged, preheated on a preheating roll, and then set to a surface temperature of 98 ° C. It was stretched again 1.5 times between the stretching rolls. Furthermore, the film stretched again in the longitudinal direction is guided to a tenter (second tenter), heat-treated at 85 ° C, cooled, and both edges are cut and removed, so that about 35 111 biaxially stretched films are obtained. A film was continuously formed over the length to obtain a heat-shrinkable polyester film roll. The surface temperature of the film after the heat treatment and before cooling was about 75 ° C, and the film was cooled to about 25 ° C in about 2.0 seconds (cooling rate = 25 ° C / second). Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. Then, the characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
[0101] [比較例 2] [0101] [Comparative Example 2]
テンター(第 1テンター)における中間熱処理の温度を 70°Cに変更した以外は、実 施例 1と同様の方法によって熱収縮性フィルムを連続的に製造した。また、実施例 1 と同様の方法によってラベルを作製し、そのラベルを実施例 1と同様の方法によって ペットボトルの外周に装着した。そして、得られたフィルム、装着前後のラベル、およ び包装体の特性を実施例 1と同様の方法によって評価した。評価結果を表 3, 4に示 す。  A heat-shrinkable film was continuously produced in the same manner as in Example 1 except that the temperature of the intermediate heat treatment in the tenter (first tenter) was changed to 70 ° C. Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
[0102] [比較例 3]  [0102] [Comparative Example 3]
未延伸フィルムをテンターへ導き、フィルム温度が 90°Cになるまで予備加熱した後 に、 75°Cの延伸温度で横方向に 8. 0倍延伸して冷却し、両縁部を裁断除去すること によって、約 45 H mの横一軸延伸フィルムを所定の長さに亘つて連続的に製膜して 熱収縮性ポリエステル系フィルムロールを得た。なお、熱処理後冷却前のフィルムの 表面温度は約 75°Cであり、約 2. 0秒で約 35°Cまで冷却した (冷却速度 = 20°C/秒 )。また、実施例 1と同様の方法によってラベルを作製し、そのラベルを実施例 1と同 様の方法によってペットボトルの外周に装着した。そして、得られたフィルム、装着前 後のラベル、および包装体の特性を実施例 1と同様の方法によって評価した。評価 結果を表 3, 4に示す。なお、比較例 3のフィルムにおいては、幅方向が主収縮方向 になっており、長手方向が主収縮方向と直交する方向になっている。 Guide the unstretched film to the tenter, preheat it until the film temperature reaches 90 ° C, then cool it by stretching 8.0 times in the transverse direction at a stretching temperature of 75 ° C, and cut and remove both edges Thus, a transversely uniaxially stretched film of about 45 Hm was continuously formed over a predetermined length to obtain a heat-shrinkable polyester film roll. Note that the film after cooling and before cooling The surface temperature was about 75 ° C, and it was cooled to about 35 ° C in about 2.0 seconds (cooling rate = 20 ° C / second). Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the PET bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4. In the film of Comparative Example 3, the width direction is the main shrinkage direction, and the longitudinal direction is the direction orthogonal to the main shrinkage direction.
[0103] [比較例 4] [0103] [Comparative Example 4]
第 2縦延伸機で再度縦延伸する際の延伸倍率を 3. 0倍にした以外は、比較例 1と 同様の方法によって熱収縮性フィルムを連続的に製造した。また、実施例 1と同様の 方法によってラベルを作製し、そのラベルを実施例 1と同様の方法によってペットボト ルの外周に装着した。そして、得られたフィルム、装着前後のラベル、および包装体 の特性を実施例 1と同様の方法によって評価した。評価結果を表 3, 4に示す。  A heat-shrinkable film was continuously produced in the same manner as in Comparative Example 1 except that the draw ratio at the time of longitudinal stretching again with the second longitudinal stretching machine was 3.0 times. Further, a label was produced by the same method as in Example 1, and the label was attached to the outer periphery of the pet bottle by the same method as in Example 1. The characteristics of the obtained film, the label before and after mounting, and the package were evaluated by the same method as in Example 1. The evaluation results are shown in Tables 3 and 4.
[0104] [表 3] [0104] [Table 3]
Figure imgf000029_0001
Figure imgf000029_0001
[0105] [表 4] [0105] [Table 4]
Figure imgf000030_0001
Figure imgf000030_0001
表 3から明らかなように、実施例 1 6で得られたフィルムは、いずれも、主収縮方向 である長手方向への収縮性が高ぐ主収縮方向と直交する幅方向への収縮性は非 常に低かった。また、実施例 1 6で得られたフィルムは、いずれも、溶剤接着強度が 高ぐ長手方向の厚み斑が小さぐラベル密着性が良好で収縮斑もなぐ収縮仕上が り性が良好であった。さらに、実施例 1 6の熱収縮性ポリエステル系フィルムは、ミシ ン目開封性が良好である上、自然収縮率が小さぐ製造されたフィルムロールにシヮ が発生することがなかった。そして、各実施例で得られた熱収縮性ポリエステル系フ イルムからなるラベルを包装した包装体は、いずれもラベルのミシン目開封性が良好 であり、ラベルをミシン目に沿って適度な力で綺麗に引き裂くことが可能であった。 As is clear from Table 3, the films obtained in Example 16 were all not shrinkable in the width direction perpendicular to the main shrinkage direction, which is highly shrinkable in the longitudinal direction, which is the main shrinkage direction. It was always low. In addition, the films obtained in Example 16 all had high solvent adhesive strength, small thickness spots in the longitudinal direction, good label adhesion, and good shrink finish with no shrink spots. . In addition, the heat-shrinkable polyester film of Example 16 has a good perforation opening property, and has a film roll manufactured with a small natural shrinkage rate. Never occurred. In addition, the packaging body in which the label made of the heat-shrinkable polyester film obtained in each example is packaged has a good perforation-opening property of the label, and the label has a proper force along the perforation. It was possible to tear it cleanly.
[0107] それに対して、比較例 1で得られた熱収縮性フィルムは、熱収縮率が不十分であり 、ラベル密着性が不良で収縮斑が生じた。また、比較例 2で得られた熱収縮性フィル ムは、いずれもフィルム幅方向の熱収縮率が高ぐラベル密着性が不良で収縮斑が 生じた。また、比較例 4で得られたフィルム(主収縮方向が幅方向)は、主収縮方向と 直交する方向の熱収縮率が大きぐ収縮斑が生じた上、自然収縮率が大きぐ製造さ れたフィルムロールにシヮが発生した。また、各比較例で得られた熱収縮性ポリエス テル系フィルムからなるラベルを包装した包装体は、ラベルのミシン目開封性が不良 であり、ラベルをミシン目に沿って適度な力で綺麗に引き裂くことができなかったもの の比率が高かった。 [0107] On the other hand, the heat-shrinkable film obtained in Comparative Example 1 had an insufficient heat-shrinkage, poor label adhesion, and shrinkage spots. In addition, the heat-shrinkable film obtained in Comparative Example 2 had shrinkage spots due to poor label adhesion with a high heat shrinkage rate in the film width direction. In addition, the film obtained in Comparative Example 4 (the main shrinkage direction is the width direction) is produced with shrinkage spots having a large thermal shrinkage rate in the direction orthogonal to the main shrinkage direction and a large natural shrinkage rate. The film roll was wrinkled. In addition, the package that wraps the label made of heat-shrinkable polyester film obtained in each comparative example has poor perforation of the label, so that the label can be cleaned with an appropriate force along the perforation. The percentage of those that could not be torn was high.
産業上の利用可能性  Industrial applicability
[0108] 本発明の包装体は、上記の如く優れた特性を有しているので、各種の物品の包装 用用途に好適に用いることができる。 [0108] Since the package of the present invention has excellent characteristics as described above, it can be suitably used for packaging use for various articles.
符号の説明  Explanation of symbols
[0109] フィルム。 [0109] Film.

Claims

請求の範囲 The scope of the claims
[1] 熱収縮性フィルムを基材とするラベルを少なくとも外周の一部に被覆して熱収縮さ せてなる包装体であって、  [1] A package comprising a heat-shrinkable film-based label coated on at least a part of the outer periphery and heat-shrinked,
被覆されているラベルの主収縮方向と直交する方向のエルメンドルフ引裂荷重およ び主収縮方向のエルメンドルフ引裂荷重を測定した場合におけるエルメンドルフ比 が 0. 5以上 2. 0以下であることを特徴とする包装体。  The Elmendorf ratio when the Elmendorf tear load in the direction orthogonal to the main shrinkage direction of the coated label and the Elmendorf tear load in the main shrinkage direction is measured is 0.5 or more and 2.0 or less. Packaging body.
[2] 被覆されているラベルの主収縮方向と直交する方向の引張破壊強さが lOOMPa 以上 300MPa以下であることを特徴とする請求項 1に記載の包装体。  [2] The package according to claim 1, wherein the tensile strength in the direction perpendicular to the main shrinkage direction of the coated label is not less than lOOMPa and not more than 300 MPa.
[3] 被覆されているラベルの主収縮方向と直交する方向の屈折率が 1. 570以上 1. 60 0以下であることを特徴とする請求項 1、または請求項 2に記載の包装体。  [3] The package according to claim 1 or 2, wherein a refractive index in a direction orthogonal to a main shrinkage direction of the coated label is 1.570 or more and 1.600 or less.
[4] 被覆されているラベルの単位厚み当たりの主収縮方向と直交する方向における直 角引裂強度が 100N/mm以上 300N/mm以下であることを特徴とする請求項 1〜 3の!/、ずれかに記載の包装体。  [4] The straight tear strength in the direction perpendicular to the main shrinkage direction per unit thickness of the coated label is 100 N / mm or more and 300 N / mm or less, according to claims 1 to 3, Package according to any one of the above.
[5] 被覆されているラベルの主収縮方向と直交する方向に沿って、ミシン目あるいは一 対ノッチが設けられたことを特徴とする請求項 1〜4のいずれかに記載の包装体。  [5] The package according to any one of [1] to [4], wherein a perforation or a pair of notches is provided along a direction perpendicular to the main shrinkage direction of the coated label.
[6] 未延伸フィルムを、テンター内で幅方向の両端際をクリップによって把持した状態 で Tg+ 5°C以上 Tg + 40°C以下の温度で幅方向に 2. 5倍以上 6. 0倍以下の倍率で 延伸した後、積極的な加熱操作を実行しない中間ゾーンを通過させた後に、 100°C 以上 170°C以下の温度で 1. 0秒以上 10. 0秒以下の時間に亘つて熱処理し、しかる 後、フィルムの表面温度が 30°C以上 70°C以下となるまで冷却する工程とフィルムの 幅方向の両端縁のクリップ把持部分を切断除去した後、 Tg + 5°C以上 Tg + 80°C以 下の温度で長手方向に 2. 0倍以上 5. 5倍以下の倍率で延伸し、しかる後、 30°C/ 秒以上 70°C/秒以下の冷却速度でフィルムの表面温度が 45°C以上 75°C以下とな るまで冷却することによって、ラベルに成形する前の熱収縮性フィルムが製造されて V、ることを特徴とする請求項;!〜 5の!/、ずれかに記載の包装体。  [6] 2.5 times or more 6.0 times or less in the width direction at a temperature of Tg + 5 ° C or more and Tg + 40 ° C or less with the unstretched film held in the tenter by the clip at both ends in the width direction After stretching at a magnification of, passing through an intermediate zone where no aggressive heating operation is performed, heat treatment is performed at a temperature of 100 ° C to 170 ° C for 1.0 second to 10.0 seconds. After that, after cooling the film until the film surface temperature reaches 30 ° C or more and 70 ° C or less, and by cutting and removing the clip gripping portions at both edges in the width direction of the film, Tg + 5 ° C or more Tg + Stretch in the longitudinal direction at a temperature of 80 ° C or less 2.0 times or more and 5. 5 times or less, and then the film surface temperature at a cooling rate of 30 ° C / second or more and 70 ° C / second or less. The heat-shrinkable film before being formed into a label is manufactured by cooling until the temperature reaches 45 ° C or higher and 75 ° C or lower. That claim;! A ~ 5 / packaging body according to either shift.
[7] 熱収縮性フィルムが、熱収縮性ポリエステル系フィルムであることを特徴とする請求 項;!〜 6のいずれかに記載の包装体。  [7] The package according to any one of [6] to [6], wherein the heat-shrinkable film is a heat-shrinkable polyester film.
PCT/JP2007/065586 2006-08-09 2007-08-09 Package WO2008018528A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006217386 2006-08-09
JP2006-217386 2006-08-09
JP2007099028 2007-04-05
JP2007-099028 2007-04-05
JP2007-206372 2007-08-08
JP2007206372A JP2008273619A (en) 2006-08-09 2007-08-08 Package

Publications (1)

Publication Number Publication Date
WO2008018528A1 true WO2008018528A1 (en) 2008-02-14

Family

ID=39033057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065586 WO2008018528A1 (en) 2006-08-09 2007-08-09 Package

Country Status (1)

Country Link
WO (1) WO2008018528A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107591A1 (en) * 2008-02-27 2009-09-03 東洋紡績株式会社 Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
JP2009226935A (en) * 2008-02-27 2009-10-08 Toyobo Co Ltd Method for producing white heat-shrinkable polyester film, white heat-shrinkable polyester film, and package
JP2009226934A (en) * 2008-02-27 2009-10-08 Toyobo Co Ltd Method for producing white heat-shrinkable polyester film, white heat-shrinkable polyester film, and package
JP2009230120A (en) * 2008-02-27 2009-10-08 Toyobo Co Ltd Label
JP2009227337A (en) * 2008-02-29 2009-10-08 Toyobo Co Ltd Label
JP2009237561A (en) * 2008-03-03 2009-10-15 Toyobo Co Ltd Label
US8673414B2 (en) 2006-08-30 2014-03-18 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester film, process for production thereof, and package
US8685305B2 (en) 2007-09-25 2014-04-01 Toyo Boseki Kabushiki Kaisha Process for production of heat-shrinkable polyester film, heat-shrinkable polyester film and packages

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114475A (en) * 1975-04-02 1976-10-08 Asahi Chemical Ind Method of manufacturing polyamide film
JPH08244114A (en) * 1995-03-08 1996-09-24 Toray Ind Inc Polyester type shrinkable film
JP2005194466A (en) * 2004-01-09 2005-07-21 Toyobo Co Ltd Heat shrinkable polyester base film and heat shrinkable label
JP2005232435A (en) * 2004-01-20 2005-09-02 Mitsubishi Plastics Ind Ltd Heat-shrinkable film
JP2006045317A (en) * 2004-08-03 2006-02-16 Mitsubishi Plastics Ind Ltd Heat-shrinkable polyester film and formed piece and vessel produced by using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114475A (en) * 1975-04-02 1976-10-08 Asahi Chemical Ind Method of manufacturing polyamide film
JPH08244114A (en) * 1995-03-08 1996-09-24 Toray Ind Inc Polyester type shrinkable film
JP2005194466A (en) * 2004-01-09 2005-07-21 Toyobo Co Ltd Heat shrinkable polyester base film and heat shrinkable label
JP2005232435A (en) * 2004-01-20 2005-09-02 Mitsubishi Plastics Ind Ltd Heat-shrinkable film
JP2006045317A (en) * 2004-08-03 2006-02-16 Mitsubishi Plastics Ind Ltd Heat-shrinkable polyester film and formed piece and vessel produced by using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673414B2 (en) 2006-08-30 2014-03-18 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester film, process for production thereof, and package
US8685305B2 (en) 2007-09-25 2014-04-01 Toyo Boseki Kabushiki Kaisha Process for production of heat-shrinkable polyester film, heat-shrinkable polyester film and packages
WO2009107591A1 (en) * 2008-02-27 2009-09-03 東洋紡績株式会社 Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
JP2009226935A (en) * 2008-02-27 2009-10-08 Toyobo Co Ltd Method for producing white heat-shrinkable polyester film, white heat-shrinkable polyester film, and package
JP2009226934A (en) * 2008-02-27 2009-10-08 Toyobo Co Ltd Method for producing white heat-shrinkable polyester film, white heat-shrinkable polyester film, and package
JP2009230120A (en) * 2008-02-27 2009-10-08 Toyobo Co Ltd Label
US8728594B2 (en) 2008-02-27 2014-05-20 Toyo Boseki Kabushiki Kaisha Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
KR101491876B1 (en) * 2008-02-27 2015-02-09 도요보 가부시키가이샤 Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
JP2009227337A (en) * 2008-02-29 2009-10-08 Toyobo Co Ltd Label
JP2009237561A (en) * 2008-03-03 2009-10-15 Toyobo Co Ltd Label

Similar Documents

Publication Publication Date Title
JP4411556B2 (en) Heat-shrinkable polyester film and method for producing the same
JP5286829B2 (en) label
KR101491876B1 (en) Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
JP4882919B2 (en) Heat-shrinkable polyester film, method for producing the same, and package
JP6572907B2 (en) Heat-shrinkable polyester film, method for producing the same, and package
JP2007056156A (en) Thermally shrinkable polyester-based film and label and method for producing the same
JP2007016120A (en) Heat-shrinkable polyester film and label, and method for production thereof
WO2008018528A1 (en) Package
JP2009298161A (en) Heat-shrinkable polyester film
JP2009143043A (en) Heat-shrinkable polyester film and manufacturing method therefor
JP5868898B2 (en) Manufacturing method of package
JP2009202445A (en) Method for producing heat-shrinkable polyester film, heat-shrinkable polyester film and package
JP4957531B2 (en) Heat-shrinkable polyolefin film and method for producing the same
JP2009114422A (en) Heat-shrinkable polyester-based film and manufacturing method thereof
JP5380830B2 (en) Heat-shrinkable polyolefin film and method for producing the same
JP2009143605A (en) Package
JP2009143607A (en) Package
JP5200519B2 (en) Package
JP5895283B2 (en) label
JP5067473B2 (en) Heat-shrinkable polyester film, method for producing the same, and package
JP2008284794A (en) Heat shrinkable label and method for manufacturing the same
JP2009145649A (en) Label
JP2009143097A (en) Heat shrinkable label and manufacturing method therefor
JP2009230123A (en) Label
JP5637272B2 (en) label

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07805917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1642/CHENP/2009

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 07805917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)