WO2011070959A1 - Polyamide resin composition, and method for producing polyamide resin composition - Google Patents

Polyamide resin composition, and method for producing polyamide resin composition Download PDF

Info

Publication number
WO2011070959A1
WO2011070959A1 PCT/JP2010/071537 JP2010071537W WO2011070959A1 WO 2011070959 A1 WO2011070959 A1 WO 2011070959A1 JP 2010071537 W JP2010071537 W JP 2010071537W WO 2011070959 A1 WO2011070959 A1 WO 2011070959A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
resin composition
fibrous
monodispersed
mass
Prior art date
Application number
PCT/JP2010/071537
Other languages
French (fr)
Japanese (ja)
Inventor
辰典 正木
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2011545184A priority Critical patent/JP5832296B2/en
Publication of WO2011070959A1 publication Critical patent/WO2011070959A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a polyamide resin composition having a low density, excellent mechanical properties, and a simplified manufacturing process as compared with a polyamide resin reinforced with conventional fibers, and a method for producing the polyamide resin composition.
  • the polyamide resin is blended with a fiber such as glass fiber or carbon fiber or an inorganic filler such as calcium carbonate as a reinforcing material to form a resin composition. It has been.
  • the monomer constituting the polyamide resin is a starting material
  • a two-step process is required to obtain a reinforced polyamide resin composition as described above. That is, a step of polymerizing a polyamide monomer to obtain a polyamide resin and a step of mixing the polyamide resin obtained by polymerization and a reinforcing material are required. Therefore, from the viewpoint of simplifying the manufacturing process, there is a problem that it is industrially disadvantageous.
  • a method has been proposed in which a polyamide resin composition is obtained by polymerizing a layered silicate clay mineral represented by montmorillonite or mica in a polyamide monomer.
  • a resin composition in which both are finely and uniformly dispersed can be obtained by allowing the polyamide chain to penetrate between the layers of the layered silicate clay mineral.
  • JP62-74957A and Japanese Patent No. 2747019 describe a resin composition comprising a polyamide resin and montmorillonite and a method for producing the resin composition.
  • Japanese Patent No. 2941159 and Japanese Patent No. 3409921 describe a resin composition comprising a polyamide resin and mica and a method for producing the resin composition.
  • the polyamide resin composition obtained in the above-mentioned literature has a low density and excellent bending characteristics as compared with a polyamide resin composition reinforced with glass fibers and other inorganic fillers.
  • the impact resistance of the resulting polyamide resin composition is very low, and its usage is considerably limited.
  • JP2008-280376A describes a method for improving the impact resistance of a polyamide resin composition obtained by blending a swellable layered silicate previously treated with a coupling agent into a polyamide resin.
  • the impact resistance could not be improved to a level that can withstand practical use.
  • a polyamide resin composition using a clay mineral for example, fibrous viscosity mineral
  • a clay mineral that is not layered is used, it can be blended at a high concentration. For example, even when added at the time of polymerization of a polyamide resin, it is blended at a high concentration.
  • JP63-251461A and JP6-84435B describe a resin composition comprising a polyamide resin and a fibrous double-chain structure type clay mineral, and a method for producing the same.
  • the polyamide resin composition obtained by JP63-251461A and JP6-84435B it is possible to add a clay mineral at a higher concentration than when a layered silicate clay mineral is used.
  • polyamide resin composition obtained by using an untreated fibrous double-chain structure type clay mineral such as JP63-251461A, or a water suspension comprising a fibrous double-chain structure type clay mineral such as JP6-84435B. Even if it is a polyamide resin composition obtained by polymerizing with a nylon monomer after blending a coupling agent with the suspension, the dispersion state of the clay mineral in the polyamide resin is poor and the reinforcing effect is insufficient. Met. Furthermore, the impact resistance was not as high as that of polyamide resin reinforced with glass fiber or carbon fiber.
  • an object of the present invention is to solve the above-mentioned problems, a polyamide resin composition having a low density, excellent mechanical properties, and a simplified production process, and a method for producing the polyamide resin composition Is to provide.
  • the gist of the present invention is the following (1) to (8).
  • the fibrous crystals in which the clay clay mineral (B) is monodispersed and / or the aggregates in which the monodispersed fibrous crystals are aggregated are dispersed in the following states (I) and (II): Polyamide resin composition.
  • the fiber length of one monodispersed fibrous crystal is 0.01 to 40 ⁇ m, and the maximum outer size of the aggregate obtained by agglomerating monodispersed fibrous crystals is 0.01 to 40 ⁇ m.
  • the shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals The shortest distance between the aggregated aggregates is 1 to 100 nm.
  • (2) 0.05 to 5 parts by mass of the coupling agent (C) is contained with respect to 100 parts by mass in total of the polyamide resin (A) and the fibrous clay mineral (B) (1) Polyamide resin composition.
  • a process for producing a polyamide resin composition characterized in that (I) The fiber length of one monodispersed fibrous crystal is 0.01 to 40 ⁇ m, and the maximum outer diameter of the aggregate obtained by agglomerating monodispersed fibrous crystals is 0.01 to 40 ⁇ m.
  • step (II) The shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals The shortest distance between the aggregated aggregates is 1 to 100 nm.
  • step (i) 0.05 to 5 parts by mass of the coupling agent (C) is added to 100 parts by mass in total of the monomer constituting the polyamide resin (A) and the fibrous clay mineral (B).
  • the method for producing a polyamide resin composition according to (5) which comprises mixing.
  • step (ii) the coupling agent (C) is added in an amount of 0.05 to 5 masses with respect to a total of 100 mass parts of the monomer constituting the polyamide resin (A) and the fibrous clay mineral (B).
  • the manufacturing method of the polyamide resin composition characterized by including the process (iii) which melt-kneads by adding a part.
  • the mixing is carried out so that the rotational viscosity measured with a B-type viscometer at a temperature T after a mixing time of 0.5 hours or more is 1 to 500 Pa ⁇ s (5) )
  • To (7) A method for producing any one of the polyamide resin compositions.
  • the present invention it is possible to provide a polyamide resin composition having a low density, excellent mechanical properties, and a simplified manufacturing process. Furthermore, according to this invention, the manufacturing method of this polyamide resin composition can be provided.
  • the polyamide resin composition of the present invention contains a fibrous clay mineral (B) [hereinafter simply referred to as “component (B)” in the polyamide resin (A) [hereinafter sometimes simply referred to as “component (A)”]. May be referred to] are distributed.
  • component (B) fibrous clay mineral
  • component (A) component (A)
  • the component (A) in the present invention is a polymer having an amide bond in the main chain, with aminocarboxylic acid, lactam, or diamine and dicarboxylic acid as main raw materials.
  • aminocarboxylic acid examples include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like.
  • lactam examples include ⁇ -caprolactam, ⁇ -undecanolactam, and ⁇ -laurolactam.
  • diamine examples include tetramethylene diamine, hexamethylene diamine, undecamethylene diamine, and dodecamethylene diamine.
  • dicarboxylic acid examples include adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like. These diamines and dicarboxylic acids can also be used as a pair of salts.
  • component (A) examples include polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polycaproamide / polyhexamethylene adipamide Copolymer (nylon 6/66), polyundecamide (nylon 11), polycaproamide / polyundecamide copolymer (nylon 6/11), polydecamide (nylon 12), polycaproamide / polydodecamide copolymer (nylon 6) / 12), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyundecamethylene adipamide (nylon 116), and mixtures thereof, or polymers thereof. It is done.
  • nylon 6 and nylon 66 are particularly preferable from the viewpoint of excellent heat resistance and easy molding.
  • the component (B) in the present invention is preferably a fibrous hydrous magnesium silicate mineral.
  • sepiolite and palygorskite are particularly preferably used from the viewpoint of easy dispersion in the polyamide resin and easy control of the rise of the molten clay of the obtained polyamide resin composition.
  • Sepiolite is a natural mineral containing Mg 8 H 2 (SiO 4 O 11 ) ⁇ 3H 2 O as a main component, and palygorskite contains Mg 8 Al 2 Si 8 O 20 (OH 2 ) ⁇ 8H 2 O as a main component. Is a natural mineral. In the palygorskite, magnesium may be replaced with iron or aluminum.
  • the component (B) has a thermal weight loss rate of preferably 1 to 80% by mass, more preferably 2 to 55% by mass when the temperature is increased from 20 ° C. to 200 ° C. in a nitrogen atmosphere. It is particularly preferably 3 to 30% by mass. The reason will be described below.
  • component (B) components that decrease when the temperature is raised from 20 ° C. to 200 ° C. are mainly adsorbed water and zeolite water.
  • the monomer constituting the component (A) tends to enter the component (B) due to the hydrophilicity of the monomer itself.
  • the dispersion of the component (B) can be promoted. That is, the dispersibility is further improved when the thermal weight reduction rate when the temperature is raised from 20 ° C. to 200 ° C. is 1% by mass or more.
  • the component (B) becomes a gel and difficult to disperse in the monomer solution constituting the component (A) in step (i). This is not preferable.
  • component (B) The basic structure of component (B) will be described below.
  • Component (B) has a three-layer structure in which an octahedral magnesium oxide layer is a central layer and a tetrahedral silicate layer is disposed on both sides thereof. Since this three-layer structure extends along the X-axis direction (fiber length direction), the component (B) crystals are fibrous (fibrous crystals). Moreover, a some fibrous crystal may aggregate along a fiber direction.
  • the octahedral magnesium oxide layer becomes a discontinuous layer and forms zeolite pores in the fiber cross section.
  • the component (B) has a large number of silanol groups (Si—OH groups) along the X-axis direction. Therefore, it has a property that a highly polar substance such as water can easily enter the gap between the zeolite pores and the particles.
  • the component (B) in the present invention is porous while being fibrous as compared with other clay minerals. Therefore, while being bulky, it is excellent in affinity with the polyamide resin, can be blended in the resin composition without becoming high density, and the bending characteristics can be effectively improved.
  • the component (B) needs to be sufficiently dispersed in the component (A), and a fibrous crystal in which the component (B) is monodispersed in the component (A) or a plurality of fibrous crystals are bundled. It is dispersed in the form of aggregates.
  • the resin composition of the present invention has a low density and an excellent bending property.
  • the sufficiently dispersed state means that the component (B) in the component (A) is monodispersed fibrous crystals or monodispersed fibrous crystals as shown in FIG.
  • This is a state of agglomerated aggregates and satisfies the following (I) and (II) at the same time.
  • the fiber length of one monodispersed fibrous crystal is 0.01 to 40 ⁇ m, preferably 0.1 to 20 ⁇ m.
  • the maximum outer dimension of the aggregate obtained by agglomerating monodispersed fibrous crystals is 0.01 to 40 ⁇ m, preferably 0.1 to 20 ⁇ m.
  • the shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals is 1 to 100 nm, preferably 10 to 50 nm.
  • the fiber length of one monodispersed fibrous crystal and the maximum outer dimension of the aggregate of monodispersed fibrous crystals are determined by observing the inside of the resin composition with a transmission electron microscope. The measured value is referred to, and a detailed measuring method will be described later.
  • FIG. 2 shows the fiber length of one monodispersed fibrous crystal and the maximum outer size of the aggregate in which the monodispersed fibrous crystals are aggregated.
  • (a) shows the maximum outer dimension of the aggregate in which monodispersed fibrous crystals are aggregated.
  • (B) shows the fiber length of one monodispersed fibrous crystal.
  • the shortest distance between monodispersed fibrous crystals is less than 1 nm, there is a problem that the fluidity of the polyamide resin composition is extremely lowered and the molding process becomes difficult.
  • the reinforcing effect of the component (A) by the component (B) decreases, and sufficient bending characteristics cannot be imparted.
  • the shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of one monodispersed fibrous crystal, and one monodispersed fibrous crystal and monodispersed fibers The shortest distance between the aggregates of the aggregated crystals is the observation of the inside of the resin composition with a transmission electron microscope, and the aggregates of monodispersed fibrous crystals and aggregated monodispersed fibrous crystals , And an aggregate obtained by agglomerating one monodispersed fibrous crystal and a monodispersed fibrous crystal, which has the shortest distance, and a detailed measuring method will be described later.
  • FIG. 3 shows the shortest distance between monodispersed fibrous crystals in the present invention, the shortest distance between aggregates of one monodispersed fibrous crystal, and one monodispersed fibrous crystal and monodisperse. It shows the shortest distance between the aggregates of the aggregated fibrous crystals.
  • (c) shows the shortest distance between one monodispersed fibrous crystal and an aggregate obtained by agglomerating monodispersed fibrous crystals.
  • D shows the shortest distance between monodispersed fibrous crystals.
  • E shows the shortest distance between aggregates of one monodispersed fibrous crystal.
  • the mixing ratio of the component (A) and the component (B) in the resin composition needs to be 99.5 / 0.5 to 70/30 (parts by mass), preferably 96 / It is 4 to 75/25 (parts by mass), more preferably 93/7 to 80/20 (parts by mass).
  • strengthening effect of a component (A) becomes inadequate that the compounding quantity of a component (B) is less than 0.5 mass part.
  • it exceeds 30 mass parts there exists a problem that the obtained resin composition becomes weak.
  • a coupling agent (C) [hereinafter sometimes simply referred to as “component (C)”] may be contained.
  • the component (C) is a compound containing a functional group having affinity or reactivity with the component (A) and the component (B).
  • Component (C) suppresses interfacial breakage between component (A) and component (B) and improves impact resistance.
  • (B) since (B) has a large amount of Si—OH on its surface, the effect of improving impact resistance is very large compared to other inorganic fillers.
  • Examples of compounds that can be used as the component (C) include silane coupling agents and titanate coupling agents.
  • a silane coupling agent is preferable from a reactive viewpoint with a component (B).
  • an alkoxysilane compound is preferable from the viewpoint of reactivity with the component (B).
  • alkoxysilane compounds include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, Amino group-containing alkoxysilane compounds such as N-phenyl-3-aminopropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Methyldiethoxys
  • an epoxy group-containing alkoxysilane, a ureido group-containing alkoxysilane, and an isocyanate group-containing alkoxysilane are particularly preferable from the viewpoint of reactivity with the component (A).
  • the amount of component (C) is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 100 parts by mass in total of component (A) and component (B). -3 parts by mass, particularly preferably 0.5-2 parts by mass.
  • the blending amount increases and the impact resistance tends to improve, and the melt viscosity of the resulting resin composition tends to increase. If the amount of component (C) is less than 0.05 parts by mass, the effect of improving the interaction between component (A) and component (B) will be insufficient, and the impact resistance may not be improved.
  • the following method can be used as the method for producing the polyamide resin composition of the present invention.
  • the fibrous clay mineral (B) is further mixed at a shear rate of 1000 to 20000 sec ⁇ 1 . It includes a step (i) (that is, a mixing step) and a step (ii) (that is, a melt polymerization step) in which the mixture obtained in the step (i) is melt-polymerized. That is, it is a method in which a mixture of the monomer constituting component (A), component (B) and acid (D) is prepared to form a slurry, and the mixture is subjected to melt polymerization. According to this manufacturing method, the effect of (dispersing the fibrous clay mineral (B) sufficiently and obtaining a resin composition excellent in bending properties) can be achieved.
  • the blending ratio of component (A) to component (B) needs to be 99.5 / 0.5 to 70/30 (parts by mass), preferably 96/4 to 75/25 (parts by mass), more preferably 93/7 to 80/20 (parts by mass).
  • strengthening effect of a component (A) becomes inadequate that the compounding quantity of a component (B) is less than 0.5 mass part.
  • it exceeds 30 mass parts there exists a problem that the obtained resin composition becomes weak.
  • step (i) the acid (D) plays a role of acting as a catalyst when the monomer constituting the component (A) is polymerized.
  • component (B) is the above-mentioned sepiolite or palygorskite
  • acid (D) reacts with the monomer constituting component (A) in step (i), and the resulting reactant is It is possible to promote the dispersibility of the component (B) by penetrating into the component (B) having a large number of silanol groups.
  • the acid (D) may be either an inorganic acid or an organic acid as long as the pKa (25 ° C., value in water) is 6 or less.
  • the inorganic acid include phosphoric acid, phosphorous acid, hydrochloric acid, sulfuric acid, nitric acid and the like.
  • the organic acid include formic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, propionic acid, benzoic acid, p-toluenesulfonic acid, N-formyl- ⁇ -aminocaproic acid and the like.
  • phosphorous acid is preferable from the viewpoint of reactivity with the monomer constituting the component (A).
  • the amount of the acid (D) used must be 0.01 to 5 parts by mass, and 0.1 to 1 part by mass with respect to 100 parts by mass of the monomer constituting the component (A). preferable.
  • the amount of the acid (D) used is less than 0.01 parts by mass, the effect of promoting the dispersion of the component (B) may not be sufficiently exhibited. Moreover, the polymerization rate of a component (A) may become slow.
  • it exceeds 5 parts by mass a polyamide resin (A) having a high degree of polymerization cannot be obtained, and problems such as corrosion of the reaction vessel may occur.
  • step (i) it is preferable to mix the above-mentioned coupling agent (C) together with the fibrous clay mineral (B).
  • affinity or adhesion with the component (A) and the component (B) can be improved, and the component (A) and the component (B) can be improved by the component (C).
  • (B) since (B) has a large amount of Si—OH on its surface, the effect of improving impact resistance is very large compared to other inorganic fillers.
  • step (i) When component (C) is added in step (i), the reaction between component (C), component (A), and component (B) occurs sufficiently. Therefore, even if the compounding amount of the component (C) is small, the impact resistance can be sufficiently improved, and furthermore, the production process can be simplified, which is very useful industrially. However, if the amount of component (C) is large, caution must be exercised because thickening of the resin may occur during step (ii). In this case, the inside of the polymerization apparatus can be discharged from the polymerization apparatus by increasing the pressure.
  • the rotational viscosity measured with a B-type viscometer at a temperature T after the mixing time of 0.5 hours or more is preferably 1 to 500 Pa ⁇ s, more preferably 5 to 400 Pa ⁇ s, particularly The pressure is preferably 10 to 300 Pa ⁇ s.
  • rotational viscosity exceeds 500 Pa.s, the fluidity
  • it is less than 1 Pa ⁇ s the dispersion of the component (B) is deteriorated, so that the reinforcing effect of the component (A) may be insufficient.
  • step (i) when the rotational viscosity measured with a B-type viscometer at a temperature T after 0.5 hours or more of mixing time is 1 to 500 Pa ⁇ s, the component (B) in the component (A) This dispersion state satisfies the above conditions (I) and (II).
  • step (i) by adjusting the shear rate and mixing time, the rotational viscosity measured with a B-type viscometer at a temperature T after 0.5 hours or more of mixing time can be controlled within the above-mentioned range.
  • the shear rate is the distance (clearance) of a slight gap formed between the rotor / stator and the rotational speed of stirring of the rotor (stirring blade). It is a numerical value obtained by the following equation.
  • Shear rate (sec ⁇ 1 ) [stirring blade diameter (m) ⁇ ⁇ ⁇ stirring rotation speed (rpm) / 60] / clearance (m)
  • said shear rate can be calculated
  • the shape of the stirring tank is preferably a cylindrical shape in order to increase the stirring efficiency.
  • Shear rate in step (i) is required to be 1000 ⁇ 20000sec -1, preferably from 2000 ⁇ 17000sec -1, more preferably 3000 ⁇ 15000sec -1.
  • Shear rate is less than 1000 sec ⁇ 1 , there is a problem that the dispersion of the fibrous clay mineral (B) becomes insufficient.
  • it exceeds 20000 sec ⁇ 1 there is a problem that it is difficult to control the rotational viscosity because the shear is too strong.
  • step (i) in order to give the above-mentioned shear rate to the mixture, for example, it is preferable to use a stirrer capable of controlling the clearance in the range of 0.5 to 5 mm as a stirrer.
  • the rotation speed of the stirring in the step (i) in the range of 100 to 10,000 rpm.
  • the mixing time in step (i) is preferably 0.5 to 6 hours, and more preferably 1 to 4 hours, from the viewpoint of controlling the rotational viscosity within the above range.
  • the form when the component (B) is used in the step (i) is not particularly limited as long as the dispersibility in the monomer constituting the component (A) can be improved. Since it is easy to disperse if it is a powder form, it is especially preferable.
  • the mixing method in the step (i) is not particularly limited as long as the monomer constituting the component (A), the component (B) and the acid (D) are uniformly mixed.
  • the step (i) first, the monomer constituting the component (A) and the acid (D) are mixed in the molten state while the monomer constituting the component (A) is heated and stirred, and then the component (B) is mixed. It is preferable to do. By performing mixing in this way, the dispersibility of the component (B) is further improved.
  • the heating temperature in step (i) needs to be a temperature at which the monomer constituting component (A) melts, that is, a temperature equal to or higher than the melting point of the monomer constituting component (A).
  • a temperature at which the monomer constituting component (A) melts that is, a temperature equal to or higher than the melting point of the monomer constituting component (A).
  • ⁇ -caprolactam is used as the monomer constituting the polyamide resin
  • an equimolar salt of adipic acid / hexamethylenediamine it is preferable to melt at a heating temperature of 202 ° C. or higher.
  • the stirring conditions in step (i) the shape of the stirring blade, the number of rotations, and the like are not particularly limited.
  • a known mixing device can be used.
  • a stirrer such as a propeller mixer, a turbine mixer, or a homomixer can be used. Of these, it is preferable to use a homomixer in terms of handling.
  • Step (ii) is a step of melt polymerizing the mixture obtained in step (i).
  • the conditions for melt polymerization are not particularly limited, but from the viewpoint of improving the polymerization efficiency, the polymerization temperature is preferably 240 to 280 ° C. and the polymerization time is preferably 0.5 to 3 hours.
  • a step (iii) of adding a coupling agent (C) and melt-kneading that is, a melt-kneading step
  • a coupling agent (C) and melt-kneading that is, a melt-kneading step
  • the affinity or adhesion with the component (A) and the component (B) can be improved.
  • the component (C) suppresses the interface breakage between the component (A) and the component (B), and the impact resistance is improved.
  • (B) since (B) has a large amount of Si—OH on its surface, the effect of improving impact resistance is very large compared to other inorganic fillers.
  • step (iii) When component (C) is added in step (iii) to the polymer comprising component (A), component (B) and component (D) obtained in step (ii), it is not necessary to increase the pressure in the polymerization apparatus. Therefore, it can be handled under atmospheric pressure. Also, other additives can be used in combination during melt-kneading.
  • the compounding amount of component (C) is 0.05 to 100 parts by mass with respect to 100 parts by mass in total of component (A) and component (B).
  • the amount is preferably 5 parts by mass, more preferably 0.5 to 3 parts by mass. If the amount of component (C) is less than 0.05 parts by mass, the effect of improving the interaction between component (A) and component (B) will be insufficient, and the impact resistance may not be improved. On the other hand, when the amount exceeds 5 parts by mass, the thickening of the component (A) becomes remarkable and the productivity is lowered, which may not be preferable.
  • the component (B) in the component (A) is monodispersed fibrous crystals or monodispersed fibers. It is possible to obtain a polyamide resin composition dispersed in a mixture in a state where aggregated crystals are aggregated and the following (I) and (II) are satisfied at the same time.
  • the fiber length of one monodispersed fibrous crystal is 0.01 to 40 ⁇ m, preferably 0.1 to 20 ⁇ m.
  • the maximum outer dimension of the aggregate obtained by agglomerating monodispersed fibrous crystals is 0.01 to 40 ⁇ m, preferably 0.1 to 20 ⁇ m.
  • the shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals is 1 to 100 nm, preferably 10 to 50 nm.
  • step (ii) since a specific fibrous clay mineral is used, an increase in melt viscosity during step (ii) can be suppressed, and the melt viscosity can be controlled within a preferable range. Therefore, the amount of fibrous clay mineral added to the resin composition can be increased, and the strength improving effect can be sufficiently exhibited.
  • a heat stabilizer an antioxidant, a pigment, an anti-coloring agent, a weathering agent, a flame retardant, a plasticizer, a crystal nucleating agent
  • additives such as a mold release stabilizer
  • polymers can be blended as required as long as the characteristics are not significantly impaired.
  • Such polymers include polybutadiene, butadiene-styrene copolymer, acrylic rubber, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, natural rubber, chlorinated butyl rubber, elastomers such as chlorinated polyethylene, And acid-modified products thereof with maleic anhydride, styrene-maleic anhydride copolymer, styrene-phenylmaleimide copolymer, polyvinyl chloride, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyvinylidene fluoride, polysulfone, polyphenylene sulfide , Polyethersulfone, phenoxy resin, polyphenylene ether, polymethyl methacrylate, polyether ketone, polyarylate, polycarbonate, polytetrafluor
  • the desired molded product can be produced by subjecting the resin composition obtained in the present invention to a normal molding method.
  • a molded product can be obtained by using a hot melt molding method such as injection molding, extrusion molding, blow molding, or sintering molding.
  • a hot melt molding method such as injection molding, extrusion molding, blow molding, or sintering molding.
  • it can also be set as a thin film by melt
  • the resin composition of the present invention has a low density and excellent mechanical properties as compared with a polyamide resin reinforced with conventional fibers. Therefore, it can be used for automobile parts, electrical parts, household products, etc., and can be used as parts used for parts used around automobile transmissions and engines.
  • the base plate used for pedestals such as shift levers and gearboxes around the transmission of an automobile
  • the cylinder head cover engine mount, air intake manifold, throttle body, air intake pipe, radiator tank, radiator support around the engine , Water pump renlet, water pump outlet, thermostat housing, cooling fan, fan shroud, oil pan, oil filter housing, oil filter cap, oil level gauge, timing belt cover, engine cover, etc.
  • Raw material (1) Monomer component A-1 constituting the polyamide resin: ⁇ -caprolactam (manufactured by Ube Industries, Ltd .; melting point Tm: 69 ° C.) A-2: Adipic acid / hexamethylenediamine equimolar salt (melting point Tm: 202 ° C.) (2) Fibrous clay mineral B-1: Sepiolite (trade name “PANGEL HV” manufactured by TOLSA) 12% by mass B-2: (B-1) was vacuum-dried at 80 ° C. for 4 hours, and the thermogravimetric reduction rate was adjusted to obtain (B-2). The thermal weight loss rate of (B-2) was 2% by mass.
  • Monomer component A-1 constituting the polyamide resin ⁇ -caprolactam (manufactured by Ube Industries, Ltd .; melting point Tm: 69 ° C.)
  • A-2 Adipic acid / hexamethylenediamine equimolar salt (melting point Tm: 202
  • B-3 (B-1) was vacuum-dried at 80 ° C. for 48 hours, and the thermal weight reduction rate was adjusted to obtain (B-3). The thermal weight loss rate of (B-3) was 0.1% by mass.
  • B-4 Palygorskite (made by Showa KDE, trade name “POLEISY”) thermal weight loss rate 6 mass% (3)
  • Coupling agent C-1 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBM-403”)
  • C-2 3-Ureidopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBE-585”)
  • C-3 3-isocyanatopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBE-9007”)
  • C-4 3-aminopropyltrimethoxysilane (man
  • Test Method (1) The fiber length of one monodispersed fibrous crystal and the maximum outer dimension ( ⁇ m) of the aggregate in which the monodispersed fibrous crystals are aggregated
  • the molded product obtained by injection molding was cut using an ultramicrotome (manufactured by LEICA, trade name “EMUC6”) along a plane parallel to the flow direction, and the fibrous clay mineral on the cut surface was monodispersed.
  • the aggregates of the fibrous crystals or the aggregates of the monodispersed fibrous crystals were observed with a transmission electron microscope (trade name “LEM-1230” manufactured by JEOL) at a magnification of 800 times.
  • the observed fiber length of the monodispersed fibrous crystals of the fibrous clay mineral and all the maximum outer dimensions of the aggregates of the aggregated monodispersed fibrous crystals were measured. The largest number was adopted among them.
  • the shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and the aggregation of monodispersed one and monodispersed fibrous crystals The shortest distance between objects (adjacent ones closest to each other) was measured, and an average value of arbitrary 500 pieces of data was adopted.
  • Flexural modulus (GPa) The flexural modulus (GPa) of a test piece having a length of 100 mm, a width of 10 mm, and a thickness of 4 mm obtained by injection molding was measured according to ISO178. In the present invention, those with 3.5 GPa or more are assumed to be practically usable.
  • Charpy impact strength (kJ / m 2 ) Charpy impact strength (kJ / m 2 ) of a test piece having a length of 100 mm, a width of 10 mm and a thickness of 4 mm obtained by injection molding was measured according to ISO 179-1. In the present invention, those having 2.7 kJ / m 2 or more are assumed to be practically usable.
  • the resin composition using the component (C) it is preferably 3.3kJ / m 2 or more, more preferably 4.0 kJ / m 2 or more.
  • Rotational viscosity (Pa ⁇ s) The rotational viscosity at 80 ° C. and 0.3 rpm was measured using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.). In the measurement, the spindle No. 1 was used.
  • Thermal weight loss rate (mass%) 5 mg of a measurement sample was placed on a sample stage, heated from 20 ° C. to 500 ° C. at a temperature rising rate of 20 ° C./min in a nitrogen atmosphere, and the mass after heating was measured. The thermal weight reduction rate was calculated by the following formula.
  • Thermal weight loss rate 100 ⁇ (sample mass after heating) / (sample mass before heating) ⁇ 100 (9)
  • Content of fibrous clay mineral (B) (% by mass) The mass of the obtained polyamide resin composition was measured. Subsequently, this polyamide resin composition was heated at 500 degreeC for 3 hours, and the residue mass after a heating was measured. The content rate of fibrous clay mineral (B) was computed with the following formula
  • [Content of fibrous clay mineral (B)] (residue mass) / (mass of polyamide resin composition before heating) ⁇ 100
  • Example 1 Put 10 kg of ⁇ -caprolactam (A-1), 1.14 kg of sepiolite (B-1), and 20 g of phosphorous acid (D-1) in the same container. Using a mixer (manufactured by Primix Co., Ltd., trade name “TK homomixer MARKII20”, stirring blade diameter 44 mm, clearance 1 mm), the mixture was stirred and mixed at a rotational speed of 4000 rpm to prepare a mixture. The shear rate at this time was 9210 sec ⁇ 1 .
  • the polymer taken in the form of a strand from the bottom drain valve of the autoclave was cooled and solidified in a hot tub, and cut into pellets with a pelletizer.
  • the obtained pellets were refined with hot water at 95 ° C. for 24 hours to remove unreacted monomers and oligomers. Then, it was dried at 80 ° C. for 24 hours, and further vacuum dried at 80 ° C. for 48 hours.
  • the dried pellets are injection molded at a cylinder temperature of 250 ° C and a mold temperature of 80 ° C using an injection molding machine (trade name “EC-100” manufactured by Toshiba Machine Co., Ltd.) to produce a test piece (molded product). did.
  • Table 1 shows the composition of the obtained molded product.
  • stirring conditions, rotational viscosity, fiber length of one monodispersed fibrous crystal, and the maximum outer dimension (fiber length or maximum outer dimension) of the aggregate in which monodispersed fibrous crystals are aggregated monodispersed fibers Shortest distance between crystal-like crystals, shortest distance between aggregates of monodispersed fibrous crystals, and between a single monodispersed fibrous crystal and aggregates of monodispersed fibrous crystals
  • monodispersed fibers Shortest distance between crystal-like crystals, shortest distance between aggregates of monodispersed fibrous crystals, and between a single monodispersed fibrous crystal and aggregates of monodispersed fibrous crystals
  • Table 2 shows the shortest distance (shortest distance), density, bending strength, bending elastic modulus, and Charpy impact strength.
  • Example 2 Put 10 kg of ⁇ -caprolactam (A-1) and 20 g of phosphorous acid (D-1) in the same container and stir at a rotation speed of 4000 rpm using a homomixer until it becomes a homogeneous solution while heating at 80 ° C. Thereafter, 1.14 kg of sepiolite (B-1) was added and the mixture was stirred and mixed in the same manner until a uniform solution was obtained to obtain a polyamide resin composition in the same manner as in Example 1, The polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 1, and the evaluation results are shown in Table 2.
  • Examples 3 to 12 As shown in Table 1, the type of fibrous clay mineral and the blending amount of fibrous clay mineral were changed, and the stirring conditions in step (i) were changed, and a polyamide resin composition was prepared in the same manner as in Example 2. The polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 1, and the evaluation results are shown in Table 2. (Example 13) A polyamide resin composition was obtained in the same manner as in Example 2 except that phosphoric acid (D-2) was used instead of phosphorous acid (D-1), and the molded article was obtained by injection molding the polyamide resin composition. Obtained. Evaluation was performed about the obtained molded article.
  • D-2 phosphoric acid
  • D-1 phosphorous acid
  • Example 1 A polyamide resin composition was obtained in the same manner as in Example 2 except that the fibrous clay mineral was not used, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 1, and the evaluation results are shown in Table 2. (Comparative Examples 2 to 6) As shown in Table 1, the type of the reinforcing material and the blending amount of the reinforcing material were changed. Further, as shown in Table 2, the stirring conditions in step (ii) were changed, and the polyamide resin was changed in the same manner as in Example 2. A composition was obtained, and the polyamide resin composition was injection molded to obtain a molded product.
  • the polyamide resin compositions of Examples 1 to 5 and 10 to 13 were excellent in the balance of flexural strength, flexural modulus, and impact resistance because the content of the polyamide resin and the fibrous clay mineral was in a particularly preferred range. It became a thing.
  • the composition of the fibrous clay mineral was within the specified range and was in the vicinity of the upper limit value or was the upper limit value, so the rotational viscosity was high and the dispersibility was high. Declined. Therefore, the fiber length or the maximum outer dimension of the aggregate is large. However, since the amount of the fibrous clay mineral was sufficiently large, the bending strength and the bending elastic modulus were more excellent.
  • the polyamide resin composition of Comparative Example 1 was inferior in both bending strength and flexural modulus because no fibrous clay mineral was blended.
  • the polyamide resin composition of Comparative Example 3 had no reinforcing effect because the blending amount of the fibrous clay mineral was too small, and both the bending strength and the flexural modulus were inferior.
  • the polymer taken in the form of a strand from the bottom drain valve of the autoclave was cooled and solidified in a hot tub, and cut into pellets with a pelletizer.
  • the obtained pellets were refined with hot water at 95 ° C. for 24 hours to remove unreacted monomers and oligomers. Then, it was dried at 80 ° C. for 24 hours, and further vacuum dried at 80 ° C. for 48 hours.
  • the obtained polyamide resin composition pellets were injection molded at a cylinder temperature of 250 ° C. and a mold temperature of 80 ° C. using an injection molding machine (trade name “EC-100” manufactured by Toshiba Machine Co., Ltd.). Produced. Table 3 shows the composition of the obtained molded product.
  • stirring conditions, rotational viscosity, fiber length of one monodispersed fibrous crystal, and the maximum outer dimension (fiber length or maximum outer dimension) of the aggregate in which monodispersed fibrous crystals are aggregated monodispersed fibers Shortest distance between crystal-like crystals, shortest distance between aggregates of monodispersed fibrous crystals, and between a single monodispersed fibrous crystal and aggregates of monodispersed fibrous crystals
  • monodispersed fibers Shortest distance between crystal-like crystals, shortest distance between aggregates of monodispersed fibrous crystals, and between a single monodispersed fibrous crystal and aggregates of monodispersed fibrous crystals
  • Table 4 shows the shortest distance (shortest distance), density, bending strength, bending elastic modulus, and Charpy impact strength.
  • Example 15 to 29 As shown in Table 3, the type and blending amount of the fibrous clay mineral, the type and blending amount of the coupling agent were changed, and the stirring conditions were changed as shown in Table 4. A resin composition was obtained, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 3, and the evaluation results are shown in Table 4. (Example 30) Put 10 kg of ⁇ -caprolactam (A-1) and 20 g of phosphorous acid (D-1) in the same container, and heat at 80 ° C. until homogenous solution is obtained (product name “T” K.
  • the autoclave was pressurized with nitrogen so that the inside of the autoclave became 1 MPa, and the polymer taken in a strand shape from the bottom exhaust valve of the autoclave was cooled and solidified in a hot tub, and cut into pellets with a pelletizer.
  • the obtained pellets were refined with hot water at 95 ° C. for 24 hours to remove unreacted monomers and oligomers. Then, it was dried at 80 ° C. for 24 hours, and further vacuum dried at 80 ° C. for 48 hours.
  • Example 31 Homomixer until 10 kg of adipic acid / hexamethylenediamine equimolar salt (A-2) and 20 g of phosphorous acid (D-1) are placed in the same container and heated to 205 ° C. in a nitrogen atmosphere until a homogeneous solution is obtained.
  • the polymer taken on the strand from the low defecation of the autoclave was cooled and solidified in a hot tub, and cut into pellets with a pelletizer. Then, it was vacuum-dried at 80 ° C. for 48 hours.
  • test pieces were prepared in the same manner as in Example 14 except that the barrel temperature of the twin screw extruder was 270 to 290 ° C. and the cylinder temperature of the injection molding machine was 270 ° C. Evaluation was performed about the obtained molded article.
  • the composition is shown in Table 3, and the evaluation results are shown in Table 4. (Examples 32 to 37)
  • the type and amount of the reinforcing material, the amount of acid, the type and amount of the coupling agent were changed, and the stirring conditions were changed as shown in Table 4.
  • a polyamide resin composition was obtained, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article.
  • the composition is shown in Table 3, and the evaluation results are shown in Table 4.
  • Example 8 A polyamide resin composition was obtained in the same manner as in Example 14 except that the fibrous clay mineral was not used, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 3, and the evaluation results are shown in Table 4. (Comparative Examples 9-12) As shown in Table 3, the type and amount of the reinforcing material, the amount of acid, the type and amount of the coupling agent were changed, and the stirring conditions were changed as shown in Table 4. Thus, a polyamide resin composition was obtained, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
  • the polyamide resin compositions of Example 20 and Example 22 had a high rotational viscosity and reduced dispersibility because the composition of the fibrous clay mineral was within the specified range and was in the vicinity of the upper limit value or the upper limit value.
  • the fiber length or the maximum outer size of the agglomerates was large.
  • the amount of the fibrous clay mineral was sufficiently large, the bending strength and the bending elastic modulus were more excellent.
  • the polyamide resin composition of Example 32 had a room for improvement in impact resistance because the coupling agent content was excessive.
  • Example 33 The polyamide resin composition of Example 33 was superior in both bending strength and flexural modulus as compared with Comparative Example 1 in which no fibrous clay mineral was blended. However, since the content of the coupling agent was less than the preferred range of the present invention, no improvement in impact resistance was observed.
  • the polyamide resin composition of Comparative Example 8 was inferior in bending strength, bending elastic modulus, and bending elastic modulus because no fibrous clay mineral was blended.
  • the polyamide resin composition of Comparative Example 10 had no reinforcing effect because the blending amount of the fibrous clay mineral was too small, and the bending strength, bending elastic modulus, and impact resistance were all inferior.
  • Comparative Example 13 since glass fiber was used instead of fibrous clay mineral, the bending strength and the bending elastic modulus were inferior to those of the resin composition having the same density obtained in the present invention.
  • the polyamide resin composition of the present invention is useful because it has a low density, excellent mechanical properties, and a simplified manufacturing process as compared with a polyamide resin reinforced with conventional fibers.

Abstract

Disclosed is a polyamide resin composition containing 70 to 99.5 parts by mass of a polyamide resin (A) and 0.5 to 30 parts by mass of a fibrous clay mineral (B), which is characterized in that monodispersed fibrous crystals of the fibrous clay mineral (B) and/or aggregates of said monodispersed fibrous crystals are dispersed within the polyamide resin (A) in the following state (I) and state (II); state (I) being a state in which the fiber length of each monodispersed fibrous crystal is 0.01 to 40µm, and the maximum outer diameter of the aggregates of the monodispersed fibrous crystals is 0.01 to 40µm; and state (II) being a state in which the shortest distance between each monodispersed fibrous crystal, the shortest distance between each aggregate of the monodispersed fibrous crystals, and the shortest distance between one monodispersed fibrous crystal and the aggregates of the monodispersed fibrous crystals are all between 1 and 100nm.

Description

ポリアミド樹脂組成物、およびポリアミド樹脂組成物の製造方法Polyamide resin composition and method for producing polyamide resin composition
 本発明は、従来の繊維で強化されたポリアミド樹脂と比較して密度が低く、機械的特性に優れ、製造工程が簡略化されたポリアミド樹脂組成物、および該ポリアミド樹脂組成物の製造方法に関する。 The present invention relates to a polyamide resin composition having a low density, excellent mechanical properties, and a simplified manufacturing process as compared with a polyamide resin reinforced with conventional fibers, and a method for producing the polyamide resin composition.
 ポリアミド樹脂の機械的強度などを強化する方法として、該ポリアミド樹脂にガラス繊維や炭素繊維などの繊維や、炭酸カルシウムなどの無機充填材を強化材として配合し樹脂組成物とすることが既に広く知られている。 As a method for reinforcing the mechanical strength of a polyamide resin, it is already widely known that the polyamide resin is blended with a fiber such as glass fiber or carbon fiber or an inorganic filler such as calcium carbonate as a reinforcing material to form a resin composition. It has been.
 しかしながら、このような強化材はポリアミド樹脂との親和性に乏しいため、得られるポリアミド樹脂組成物の靭性が低下するという問題があった。さらに、繊維により強化されたポリアミド樹脂組成物を成形することにより得られる成形品は、そりが大きくなるという問題があった。また、無機充填材により強化されたポリアミド樹脂組成物においては、該無機充填材を多量に配合しないと機械的強度や耐熱性が向上しない。そのため、密度が著しく増加し、それにより得られる成形体の質量が増加するという問題があった。 However, since such a reinforcing material has poor affinity with the polyamide resin, there is a problem that the toughness of the obtained polyamide resin composition is lowered. Furthermore, a molded product obtained by molding a polyamide resin composition reinforced with fibers has a problem that warpage becomes large. Further, in a polyamide resin composition reinforced with an inorganic filler, mechanical strength and heat resistance are not improved unless a large amount of the inorganic filler is blended. Therefore, there has been a problem that the density is remarkably increased and the mass of the resulting molded body is increased.
 加えて、ポリアミド樹脂を構成するモノマーが出発原料であると考えた場合、上記のように強化されたポリアミド樹脂組成物を得るためには、2段階の工程が必要である。つまり、ポリアミドモノマーを重合させてポリアミド樹脂を得る工程と、重合により得られたポリアミド樹脂と強化材を混合する工程が必要となる。したがって、製造工程の簡略化という観点からは、工業的に不利であるという問題点があった。 In addition, when it is considered that the monomer constituting the polyamide resin is a starting material, a two-step process is required to obtain a reinforced polyamide resin composition as described above. That is, a step of polymerizing a polyamide monomer to obtain a polyamide resin and a step of mixing the polyamide resin obtained by polymerization and a reinforcing material are required. Therefore, from the viewpoint of simplifying the manufacturing process, there is a problem that it is industrially disadvantageous.
 上記の問題点を解決する試みとして、モンモリロナイトや雲母に代表される層状珪酸塩粘土鉱物をポリアミドモノマーに配合した状態で重合を行い、ポリアミド樹脂組成物を得る方法が提案されている。かかる場合においては、ポリアミド鎖を層状珪酸塩粘土鉱物の層間に侵入させることによって、両者が微細に均一分散した樹脂組成物を得ることができる。例えば、JP62-74957Aおよび特許第2747019号公報には、ポリアミド樹脂とモンモリロナイトからなる樹脂組成物および該樹脂組成物の製造方法が記載されている。また、特許第2941159号公報および特許第3409921号公報には、ポリアミド樹脂と雲母からなる樹脂組成物および該樹脂組成物の製造方法が記載されている。 As an attempt to solve the above problems, a method has been proposed in which a polyamide resin composition is obtained by polymerizing a layered silicate clay mineral represented by montmorillonite or mica in a polyamide monomer. In such a case, a resin composition in which both are finely and uniformly dispersed can be obtained by allowing the polyamide chain to penetrate between the layers of the layered silicate clay mineral. For example, JP62-74957A and Japanese Patent No. 2747019 describe a resin composition comprising a polyamide resin and montmorillonite and a method for producing the resin composition. Japanese Patent No. 2941159 and Japanese Patent No. 3409921 describe a resin composition comprising a polyamide resin and mica and a method for producing the resin composition.
 上記の文献において得られるポリアミド樹脂組成物は、ガラス繊維やその他の無機充填材により強化されたポリアミド樹脂組成物と比較して、密度が低く、かつ曲げ特性に優れるものである。しかし、これにより得られるポリアミド樹脂組成物の耐衝撃性は非常に低く、その使用用途がかなり限定される。 The polyamide resin composition obtained in the above-mentioned literature has a low density and excellent bending characteristics as compared with a polyamide resin composition reinforced with glass fibers and other inorganic fillers. However, the impact resistance of the resulting polyamide resin composition is very low, and its usage is considerably limited.
 これら層状珪酸塩粘土鉱物は劈開(結合力が小さいことにより発生する結晶の特定方向に沿った割れ)を起こしやすい。そのため、層状珪酸塩粘土鉱物が少量添加された場合であっても、上記の文献において得られるポリアミド樹脂組成物の溶融粘度が増加する。その結果、重合終了後の反応容器からのポリアミド樹脂組成物の払い出しが困難となる。よって、ポリアミド樹脂組成物を反応容器から高収率で回収するためには、実質的に、ポリアミド樹脂組成物中に層状珪酸塩粘土鉱物を数質量%しか配合できないという問題点があった。 These layered silicate clay minerals are prone to cleavage (cracking along a specific direction of crystals that occur due to low bonding strength). Therefore, even when a small amount of layered silicate clay mineral is added, the melt viscosity of the polyamide resin composition obtained in the above-mentioned literature increases. As a result, it becomes difficult to dispense the polyamide resin composition from the reaction vessel after completion of the polymerization. Therefore, in order to recover the polyamide resin composition from the reaction vessel in a high yield, there has been a problem that the layered silicate clay mineral can be blended in the polyamide resin composition only in a few mass%.
 一方、JP2008-280376Aには、ポリアミド樹脂に予めカップリング剤で処理をした膨潤性層状珪酸塩を配合することにより、得られるポリアミド樹脂組成物の耐衝撃性を改善する方法が記載されている。しかしながら、このような方法でも、実用に耐えうるレベルまで耐衝撃性を向上させることはできなかった。 On the other hand, JP2008-280376A describes a method for improving the impact resistance of a polyamide resin composition obtained by blending a swellable layered silicate previously treated with a coupling agent into a polyamide resin. However, even with such a method, the impact resistance could not be improved to a level that can withstand practical use.
 このような問題を解決するため、層状ではない粘土鉱物(例えば、繊維状粘度鉱物)を用いたポリアミド樹脂組成物が検討されている。層状ではない粘土鉱物を用いた場合は、高い濃度で配合されることが可能であり、例えば、ポリアミド樹脂の重合時に添加した場合であっても高濃度で配合される。 In order to solve such a problem, a polyamide resin composition using a clay mineral (for example, fibrous viscosity mineral) that is not layered has been studied. When a clay mineral that is not layered is used, it can be blended at a high concentration. For example, even when added at the time of polymerization of a polyamide resin, it is blended at a high concentration.
 例えば、JP63-251461AおよびJP6-84435Bには、ポリアミド樹脂と繊維状複鎖構造型粘土鉱物からなる樹脂組成物、およびその製造方法が記載されている。JP63-251461AおよびJP6-84435Bで得られるポリアミド樹脂組成物においては、層状珪酸塩粘土鉱物を用いた場合と比較して、高い濃度で粘土鉱物を配合させることが可能である。 For example, JP63-251461A and JP6-84435B describe a resin composition comprising a polyamide resin and a fibrous double-chain structure type clay mineral, and a method for producing the same. In the polyamide resin composition obtained by JP63-251461A and JP6-84435B, it is possible to add a clay mineral at a higher concentration than when a layered silicate clay mineral is used.
 しかしながら、JP63-251461Aのように未処理の繊維状複鎖構造型粘土鉱物を用いて得られるポリアミド樹脂組成物であったり、JP6-84435Bのように繊維状複鎖構造型粘土鉱物からなる水懸濁液に対しカップリング剤を配合した後、ナイロンモノマーとともに重合して得られるポリアミド樹脂組成物であったりしても、粘土鉱物のポリアミド樹脂中への分散状態が悪く、強化効果としては不十分であった。さらに、耐衝撃性に関してもガラス繊維や炭素繊維で強化されたポリアミド樹脂に到底及ばないものであった。 However, it is a polyamide resin composition obtained by using an untreated fibrous double-chain structure type clay mineral such as JP63-251461A, or a water suspension comprising a fibrous double-chain structure type clay mineral such as JP6-84435B. Even if it is a polyamide resin composition obtained by polymerizing with a nylon monomer after blending a coupling agent with the suspension, the dispersion state of the clay mineral in the polyamide resin is poor and the reinforcing effect is insufficient. Met. Furthermore, the impact resistance was not as high as that of polyamide resin reinforced with glass fiber or carbon fiber.
 従って、本発明の課題は、上記のような問題点を解決し、密度が低く、機械的特性に優れ、製造工程が簡略化されたポリアミド樹脂組成物、および該ポリアミド樹脂組成物の製造方法を提供することである。 Accordingly, an object of the present invention is to solve the above-mentioned problems, a polyamide resin composition having a low density, excellent mechanical properties, and a simplified production process, and a method for producing the polyamide resin composition Is to provide.
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、ポリアミド樹脂に繊維状粘土鉱物を特定の状態で分散させたポリアミド樹脂組成物は、上記目的を達成できることを見出し、本発明に到達した。さらに特定のカップリング剤を用いた場合には、耐衝撃性が向上することを見出し、本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventor has found that a polyamide resin composition in which a fibrous clay mineral is dispersed in a specific state in a polyamide resin can achieve the above object, and the present invention. Reached. Furthermore, when a specific coupling agent was used, it discovered that impact resistance improved and arrived at this invention.
 すなわち、本発明は、以下の(1)~(8)を要旨とするものである。
(1)ポリアミド樹脂(A)70~99.5質量部および繊維状粘土鉱物(B)0.5~30質量部を含有するポリアミド樹脂組成物であって、ポリアミド樹脂(A)中に、繊維状粘土鉱物(B)が単分散した繊維状結晶、および/または単分散した繊維状結晶が凝集した凝集物が、下記(I)および(II)の状態で分散していることを特徴とするポリアミド樹脂組成物。
(I)単分散した一本の繊維状結晶の繊維長が0.01~40μmであり、単分散した繊維状結晶が凝集した凝集物の最大外寸が0.01~40μmである。
(II)単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離がいずれも1~100nmである。
(2)ポリアミド樹脂(A)と繊維状粘土鉱物(B)との合計100質量部に対して、カップリング剤(C)を0.05~5質量部含有することを特徴とする(1)のポリアミド樹脂組成物。
(3)繊維状粘土鉱物(B)がセピオライトおよび/またはパリゴルスカイトであることを特徴とする(1)または(2)のポリアミド樹脂組成物。
(4)カップリング剤(C)がエポキシ基、ウレイド基、イソシアネート基から選ばれる反応性を有する基を含むシランカップリング剤であることを特徴とする(2)または(3)のポリアミド樹脂組成物。
(5)ポリアミド樹脂(A)を構成するモノマー70~99.5質量部および酸(D)0.01~5質量部を前記モノマーの融点以上の温度Tで溶融させた後、さらに繊維状粘土鉱物(B)0.5~30質量部をせん断速度1000~20000sec-1で混合する工程(i)と、該工程(i)で得られた混合物を溶融重合する工程(ii)とを含み、該繊維状粘土鉱物(B)の単分散した繊維状結晶、および/または単分散した繊維状結晶が凝集した凝集物が、下記(I)および(II)の状態で分散されたポリアミド樹脂組成物を得ることを特徴とするポリアミド樹脂組成物の製造方法。
(I)単分散した一本の繊維状結晶の繊維長が0.01~40μmであり、単分散した繊維状結晶が凝集した凝集物の最大外径が0.01~40μmである。
(II)単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離がいずれも1~100nmである。
(6)工程(i)において、ポリアミド樹脂(A)を構成するモノマーと繊維状粘土鉱物(B)との合計100質量部に対して、カップリング剤(C)0.05~5質量部を混合することを特徴とする(5)のポリアミド樹脂組成物の製造方法。
(7)工程(ii)の後に、さらにポリアミド樹脂(A)を構成するモノマーと繊維状粘土鉱物(B)との合計100質量部に対して、カップリング剤(C)0.05~5質量部を加えて溶融混練する工程(iii)を含むことを特徴とする(5)のポリアミド樹脂組成物の製造方法。
(8)工程(i)において、混合時間0.5時間以上経過後の温度TにおけるB型粘度計で測定した回転粘度が1~500Pa・sとなるように混合することを特徴とする(5)から(7)いずれかのポリアミド樹脂組成物の製造方法。
That is, the gist of the present invention is the following (1) to (8).
(1) A polyamide resin composition containing 70 to 99.5 parts by mass of polyamide resin (A) and 0.5 to 30 parts by mass of fibrous clay mineral (B), wherein the fibers are contained in the polyamide resin (A). The fibrous crystals in which the clay clay mineral (B) is monodispersed and / or the aggregates in which the monodispersed fibrous crystals are aggregated are dispersed in the following states (I) and (II): Polyamide resin composition.
(I) The fiber length of one monodispersed fibrous crystal is 0.01 to 40 μm, and the maximum outer size of the aggregate obtained by agglomerating monodispersed fibrous crystals is 0.01 to 40 μm.
(II) The shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals The shortest distance between the aggregated aggregates is 1 to 100 nm.
(2) 0.05 to 5 parts by mass of the coupling agent (C) is contained with respect to 100 parts by mass in total of the polyamide resin (A) and the fibrous clay mineral (B) (1) Polyamide resin composition.
(3) The polyamide resin composition according to (1) or (2), wherein the fibrous clay mineral (B) is sepiolite and / or palygorskite.
(4) The polyamide resin composition according to (2) or (3), wherein the coupling agent (C) is a silane coupling agent containing a reactive group selected from an epoxy group, a ureido group and an isocyanate group object.
(5) After melting 70 to 99.5 parts by mass of the monomer constituting the polyamide resin (A) and 0.01 to 5 parts by mass of the acid (D) at a temperature T equal to or higher than the melting point of the monomer, the fibrous clay is further added. A step (i) of mixing 0.5 to 30 parts by mass of the mineral (B) at a shear rate of 1000 to 20000 sec −1 , and a step (ii) of melt-polymerizing the mixture obtained in the step (i), Polyamide resin composition in which monodispersed fibrous crystals of fibrous clay mineral (B) and / or aggregates of monodispersed fibrous crystals are dispersed in the following states (I) and (II): A process for producing a polyamide resin composition, characterized in that
(I) The fiber length of one monodispersed fibrous crystal is 0.01 to 40 μm, and the maximum outer diameter of the aggregate obtained by agglomerating monodispersed fibrous crystals is 0.01 to 40 μm.
(II) The shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals The shortest distance between the aggregated aggregates is 1 to 100 nm.
(6) In step (i), 0.05 to 5 parts by mass of the coupling agent (C) is added to 100 parts by mass in total of the monomer constituting the polyamide resin (A) and the fibrous clay mineral (B). The method for producing a polyamide resin composition according to (5), which comprises mixing.
(7) After step (ii), the coupling agent (C) is added in an amount of 0.05 to 5 masses with respect to a total of 100 mass parts of the monomer constituting the polyamide resin (A) and the fibrous clay mineral (B). (5) The manufacturing method of the polyamide resin composition characterized by including the process (iii) which melt-kneads by adding a part.
(8) In the step (i), the mixing is carried out so that the rotational viscosity measured with a B-type viscometer at a temperature T after a mixing time of 0.5 hours or more is 1 to 500 Pa · s (5) ) To (7) A method for producing any one of the polyamide resin compositions.
 本発明によれば、密度が低く、機械的特性に優れ、製造工程が簡略化されたポリアミド樹脂組成物を提供することができる。さらに本発明によれば、該ポリアミド樹脂組成物の製造方法を提供することができる。 According to the present invention, it is possible to provide a polyamide resin composition having a low density, excellent mechanical properties, and a simplified manufacturing process. Furthermore, according to this invention, the manufacturing method of this polyamide resin composition can be provided.
本発明に用いられる繊維状粘土鉱物(B)の分散状態を示す概略図である。It is the schematic which shows the dispersion state of the fibrous clay mineral (B) used for this invention. 分散状態における繊維状粘土鉱物(B)の繊維長または最大外寸を示す概略図である。It is the schematic which shows the fiber length or maximum outer dimension of the fibrous clay mineral (B) in a dispersion state. 分散状態における繊維状粘土鉱物(B)の最短距離を示す概略図である。It is the schematic which shows the shortest distance of the fibrous clay mineral (B) in a dispersion state.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明のポリアミド樹脂組成物は、ポリアミド樹脂(A)[以下、単に「成分(A)」と称する場合がある]中に繊維状粘土鉱物(B)[以下、単に「成分(B)」と称する場合がある]が分散してなるものである。 The polyamide resin composition of the present invention contains a fibrous clay mineral (B) [hereinafter simply referred to as “component (B)” in the polyamide resin (A) [hereinafter sometimes simply referred to as “component (A)”]. May be referred to] are distributed.
 本発明における成分(A)とは、アミノカルボン酸、ラクタム、またはジアミンとジカルボン酸を主たる原料として、アミド結合を主鎖内に有する重合体である。 The component (A) in the present invention is a polymer having an amide bond in the main chain, with aminocarboxylic acid, lactam, or diamine and dicarboxylic acid as main raw materials.
 アミノカルボン酸としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等が挙げられる。ラクタムとしては、ε-カプロラクタム、ω-ウンデカノラクタム、ω-ラウロラクタム等が挙げられる。 Examples of the aminocarboxylic acid include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. Examples of the lactam include ε-caprolactam, ω-undecanolactam, and ω-laurolactam.
 ジアミンとしては、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等が挙げられる。ジカルボン酸としては、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等が挙げられる。なお、これらのジアミンとジカルボン酸は一対の塩として用いることもできる。 Examples of the diamine include tetramethylene diamine, hexamethylene diamine, undecamethylene diamine, and dodecamethylene diamine. Examples of the dicarboxylic acid include adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like. These diamines and dicarboxylic acids can also be used as a pair of salts.
 成分(A)の好ましい例としては、ポリカプロアミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリウンデカアミド(ナイロン11)、ポリカプロアミド/ポリウンデカミドコポリマー(ナイロン6/11)、ポリデカミド(ナイロン12)、ポリカプロアミド/ポリドデカミドコポリマー(ナイロン6/12)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチレンアジパミド(ナイロン116)、およびこれらの混合物、あるいはこれらの重合体等が挙げられる。 Preferred examples of component (A) include polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polycaproamide / polyhexamethylene adipamide Copolymer (nylon 6/66), polyundecamide (nylon 11), polycaproamide / polyundecamide copolymer (nylon 6/11), polydecamide (nylon 12), polycaproamide / polydodecamide copolymer (nylon 6) / 12), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyundecamethylene adipamide (nylon 116), and mixtures thereof, or polymers thereof. It is done.
 上記の中でも、耐熱性に優れ、成形加工が容易である観点から、ナイロン6、ナイロン66が特に好ましい。 Among these, nylon 6 and nylon 66 are particularly preferable from the viewpoint of excellent heat resistance and easy molding.
 本発明における成分(B)は、繊維状の含水マグネシウム珪酸塩鉱物であることが好ましい。なかでも、ポリアミド樹脂中への分散の容易性、得られたポリアミド樹脂組成物の溶融粘土の上昇を抑制しやすい観点から、特に、セピオライト、パリゴルスカイトが好ましく用いられる。 The component (B) in the present invention is preferably a fibrous hydrous magnesium silicate mineral. Among these, sepiolite and palygorskite are particularly preferably used from the viewpoint of easy dispersion in the polyamide resin and easy control of the rise of the molten clay of the obtained polyamide resin composition.
 セピオライトはMg(SiO11)・3HOを主成分として含有する天然鉱物であり、パリゴルスカイトはMgAlSi20(OH)・8HOを主成分として含有する天然鉱物である。なお、パリゴルスカイトにおいては、マグネシウムが鉄やアルミニウムによって置換されていてもよい。 Sepiolite is a natural mineral containing Mg 8 H 2 (SiO 4 O 11 ) · 3H 2 O as a main component, and palygorskite contains Mg 8 Al 2 Si 8 O 20 (OH 2 ) · 8H 2 O as a main component. Is a natural mineral. In the palygorskite, magnesium may be replaced with iron or aluminum.
 上述の成分(B)は、窒素雰囲気下における20℃から200℃に昇温したときの熱重量減少率が1~80質量%であることが好ましく、2~55質量%であることがより好ましく、3~30質量%であることが特に好ましい。その理由を下記に説明する。 The component (B) has a thermal weight loss rate of preferably 1 to 80% by mass, more preferably 2 to 55% by mass when the temperature is increased from 20 ° C. to 200 ° C. in a nitrogen atmosphere. It is particularly preferably 3 to 30% by mass. The reason will be described below.
 成分(B)において、20℃から200℃に昇温したときの減少する成分は、主に吸着水や沸石水である。吸着水や沸石水が成分(B)中に多く存在する場合、成分(A)を構成するモノマーが、該モノマー自身が有する親水性により成分(B)の中に侵入しやすくなる。その結果として、成分(B)の分散を促進することができる。すなわち、20℃から200℃に昇温したときの熱重量減少率が1質量%以上であると、分散性がより向上するのである。一方、吸着水や沸石水が多く、熱重量減少率が80質量%を超えると、成分(B)がゲル状となり、工程(i)において成分(A)を構成するモノマー溶液への分散が困難になることがあるため、好ましくはない。 In component (B), components that decrease when the temperature is raised from 20 ° C. to 200 ° C. are mainly adsorbed water and zeolite water. When a large amount of adsorbed water or zeolite water is present in the component (B), the monomer constituting the component (A) tends to enter the component (B) due to the hydrophilicity of the monomer itself. As a result, the dispersion of the component (B) can be promoted. That is, the dispersibility is further improved when the thermal weight reduction rate when the temperature is raised from 20 ° C. to 200 ° C. is 1% by mass or more. On the other hand, if there is a large amount of adsorbed water or zeolite water and the thermal weight loss rate exceeds 80% by mass, the component (B) becomes a gel and difficult to disperse in the monomer solution constituting the component (A) in step (i). This is not preferable.
 成分(B)の基本的な構造を以下に説明する。 The basic structure of component (B) will be described below.
 成分(B)は、八面体の酸化マグネシウム層を中心層として、その両側に正四面体の珪酸塩層が配された三層構造を有するものである。この三層構造はX軸方向(繊維長方向)に沿って伸びているため、成分(B)の結晶は繊維状(繊維状結晶)となる。また複数の繊維状結晶が繊維方向に沿って凝集することもある。 Component (B) has a three-layer structure in which an octahedral magnesium oxide layer is a central layer and a tetrahedral silicate layer is disposed on both sides thereof. Since this three-layer structure extends along the X-axis direction (fiber length direction), the component (B) crystals are fibrous (fibrous crystals). Moreover, a some fibrous crystal may aggregate along a fiber direction.
 また、正四面体の珪酸塩層は数単位ごとにZ軸上で反転して結合しているため、八面体の酸化マグネシウム層は不連続層となり、繊維断面にゼオライト孔を形成する。また、成分(B)は、X軸方向に沿って、多数のシラノール基(Si-OH基)を有している。そのため、前記ゼオライト孔と粒子間の空隙には水などの極性の高い物質が浸入しやすいという性質を有する。 Also, since the tetrahedral silicate layer is inverted and bonded on the Z axis every few units, the octahedral magnesium oxide layer becomes a discontinuous layer and forms zeolite pores in the fiber cross section. The component (B) has a large number of silanol groups (Si—OH groups) along the X-axis direction. Therefore, it has a property that a highly polar substance such as water can easily enter the gap between the zeolite pores and the particles.
 上記のように、本発明における成分(B)は、他の粘土鉱物と比較して繊維状でありながらも、多孔性である。そのため、嵩高い反面、ポリアミド樹脂との親和性に優れ、高密度となることなく樹脂組成物中に配合することができ、効果的に曲げ特性を向上させることができる。 As described above, the component (B) in the present invention is porous while being fibrous as compared with other clay minerals. Therefore, while being bulky, it is excellent in affinity with the polyamide resin, can be blended in the resin composition without becoming high density, and the bending characteristics can be effectively improved.
 すなわち、成分(B)は、成分(A)中に十分に分散することが必要であり、成分(A)中において成分(B)が単分散した繊維状結晶や、複数の繊維状結晶が束になった凝集物の状態で分散している。それにより、本発明の樹脂組成物は、密度が低く、かつ曲げ特性に優れるものとなる。 That is, the component (B) needs to be sufficiently dispersed in the component (A), and a fibrous crystal in which the component (B) is monodispersed in the component (A) or a plurality of fibrous crystals are bundled. It is dispersed in the form of aggregates. Thereby, the resin composition of the present invention has a low density and an excellent bending property.
 本発明において、十分に分散している状態とは、図1に示されたように、成分(A)中の成分(B)が、単分散した繊維状結晶、または単分散した繊維状結晶が凝集した凝集物の状態であり、かつ下記(I)および(II)を同時に満足する場合をいうものである。
(I)単分散した一本の繊維状結晶の繊維長が0.01~40μmであり、好ましくは0.1~20μmである。かつ単分散した繊維状結晶が凝集した凝集物の最大外寸が0.01~40μmであり、好ましくは0.1~20μmである。
(II)単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離がいずれも1~100nmであり、好ましくは10~50nmである。
In the present invention, the sufficiently dispersed state means that the component (B) in the component (A) is monodispersed fibrous crystals or monodispersed fibrous crystals as shown in FIG. This is a state of agglomerated aggregates and satisfies the following (I) and (II) at the same time.
(I) The fiber length of one monodispersed fibrous crystal is 0.01 to 40 μm, preferably 0.1 to 20 μm. The maximum outer dimension of the aggregate obtained by agglomerating monodispersed fibrous crystals is 0.01 to 40 μm, preferably 0.1 to 20 μm.
(II) The shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals The shortest distance between the agglomerated aggregates is 1 to 100 nm, preferably 10 to 50 nm.
 上記(I)において、繊維長が0.01μm未満であると、成分(A)の強化効果が不十分になるという問題がある。一方、40μmを超えるとポリアミド樹脂組成物としたときに、応力がかかる場合にクラックが生じやすくなり、機械強度が低下するため好ましくない。 In the above (I), if the fiber length is less than 0.01 μm, there is a problem that the reinforcing effect of the component (A) becomes insufficient. On the other hand, if it exceeds 40 μm, when a polyamide resin composition is used, cracks are likely to occur when stress is applied, and the mechanical strength is lowered, which is not preferable.
 上記(I)において、凝集物の最大外寸が0.01μm未満であると、成分(A)の強化効果が不十分になるという問題がある。一方、40μmを超えるとポリアミド樹脂組成物としたときに、応力がかかる場合にクラックが生じやすくなり、機械強度が低下するため好ましくない。 In the above (I), if the maximum outer dimension of the aggregate is less than 0.01 μm, there is a problem that the reinforcing effect of the component (A) becomes insufficient. On the other hand, if it exceeds 40 μm, when a polyamide resin composition is used, cracks are likely to occur when stress is applied, and the mechanical strength is lowered, which is not preferable.
 上記(I)において、単分散した一本の繊維状結晶の繊維長、および単分散した繊維状結晶が凝集した凝集物の最大外寸は、透過型電子顕微鏡で樹脂組成物の内部を観察し測定した値をいい、詳しい測定方法については後述する。 In the above (I), the fiber length of one monodispersed fibrous crystal and the maximum outer dimension of the aggregate of monodispersed fibrous crystals are determined by observing the inside of the resin composition with a transmission electron microscope. The measured value is referred to, and a detailed measuring method will be described later.
 図2に、単分散した一本の繊維状結晶の繊維長、および単分散した繊維状結晶が凝集した凝集物の最大外寸を示す。図2において、(a)は、単分散した繊維状結晶が凝集した凝集物の最大外寸を示す。(b)は単分散した一本の繊維状結晶の繊維長を示す。 FIG. 2 shows the fiber length of one monodispersed fibrous crystal and the maximum outer size of the aggregate in which the monodispersed fibrous crystals are aggregated. In FIG. 2, (a) shows the maximum outer dimension of the aggregate in which monodispersed fibrous crystals are aggregated. (B) shows the fiber length of one monodispersed fibrous crystal.
 上記(II)において、単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離が1nm未満であると、ポリアミド樹脂組成物の流動性が極端に低下し、成形加工が困難となるという問題がある。一方、100nmを超えると、成分(B)による成分(A)の強化効果が低下し、十分な曲げ特性を付与することができない。 In the above (II), the shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibers If the shortest distance between the aggregates of the aggregated crystals is less than 1 nm, there is a problem that the fluidity of the polyamide resin composition is extremely lowered and the molding process becomes difficult. On the other hand, when it exceeds 100 nm, the reinforcing effect of the component (A) by the component (B) decreases, and sufficient bending characteristics cannot be imparted.
 なお、本発明における単分散した繊維状結晶同士間の最短距離、単分散した一本の繊維状結晶の凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離とは、透過型電子顕微鏡で樹脂組成物の内部を観察し、単分散した繊維状結晶同士、単分散した繊維状結晶が凝集した凝集物同士、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物において最短距離のものをいい、詳しい測定方法については後述する。 In the present invention, the shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of one monodispersed fibrous crystal, and one monodispersed fibrous crystal and monodispersed fibers The shortest distance between the aggregates of the aggregated crystals is the observation of the inside of the resin composition with a transmission electron microscope, and the aggregates of monodispersed fibrous crystals and aggregated monodispersed fibrous crystals , And an aggregate obtained by agglomerating one monodispersed fibrous crystal and a monodispersed fibrous crystal, which has the shortest distance, and a detailed measuring method will be described later.
 図3に、本発明における単分散した繊維状結晶同士間の最短距離、単分散した一本の繊維状結晶の凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離を示す。図3において、(c)は単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離を示す。(d)は単分散した繊維状結晶同士間の最短距離を示す。(e)は単分散した一本の繊維状結晶の凝集物同士間の最短距離を示す。 FIG. 3 shows the shortest distance between monodispersed fibrous crystals in the present invention, the shortest distance between aggregates of one monodispersed fibrous crystal, and one monodispersed fibrous crystal and monodisperse. It shows the shortest distance between the aggregates of the aggregated fibrous crystals. In FIG. 3, (c) shows the shortest distance between one monodispersed fibrous crystal and an aggregate obtained by agglomerating monodispersed fibrous crystals. (D) shows the shortest distance between monodispersed fibrous crystals. (E) shows the shortest distance between aggregates of one monodispersed fibrous crystal.
 本発明において、樹脂組成物中、成分(A)と成分(B)の配合比率は、99.5/0.5~70/30(質量部)であることが必要であり、好ましくは96/4~75/25(質量部)であり、さらに好ましくは93/7~80/20(質量部)である。成分(B)の配合量が0.5質量部未満であると、成分(A)の強化効果が不十分となる。一方、30質量部を超えると、得られた樹脂組成物が脆くなるという問題がある。 In the present invention, the mixing ratio of the component (A) and the component (B) in the resin composition needs to be 99.5 / 0.5 to 70/30 (parts by mass), preferably 96 / It is 4 to 75/25 (parts by mass), more preferably 93/7 to 80/20 (parts by mass). The reinforcement | strengthening effect of a component (A) becomes inadequate that the compounding quantity of a component (B) is less than 0.5 mass part. On the other hand, when it exceeds 30 mass parts, there exists a problem that the obtained resin composition becomes weak.
 本発明においては、成分(A)および成分(B)に加えて、さらにカップリング剤(C)[以下、単に「成分(C)」と称する場合がある]が含有されていてもよい。成分(C)とは、成分(A)および成分(B)と親和性または反応性を有する官能基を含有する化合物である。成分(C)によって成分(A)と成分(B)の界面破壊が抑制され、耐衝撃性が向上する。特に(B)はその表面にSi-OHが多く存在しているため、他の無機充填材に比べて耐衝撃向上効果が非常に大きい。 In the present invention, in addition to the component (A) and the component (B), a coupling agent (C) [hereinafter sometimes simply referred to as “component (C)”] may be contained. The component (C) is a compound containing a functional group having affinity or reactivity with the component (A) and the component (B). Component (C) suppresses interfacial breakage between component (A) and component (B) and improves impact resistance. In particular, since (B) has a large amount of Si—OH on its surface, the effect of improving impact resistance is very large compared to other inorganic fillers.
 成分(C)として用いることのできる化合物としては、シランカップリング剤、チタネートカップリング剤が挙げられる。なかでも、成分(B)との反応性の観点からシランカップリング剤が好ましい。さらに、成分(B)との反応性の観点からアルコキシシラン化合物が好ましい。 Examples of compounds that can be used as the component (C) include silane coupling agents and titanate coupling agents. Especially, a silane coupling agent is preferable from a reactive viewpoint with a component (B). Furthermore, an alkoxysilane compound is preferable from the viewpoint of reactivity with the component (B).
 このようなアルコキシシラン化合物の具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、N-フェニルー3-アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシ基含有アルコキシシラン化合物、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル基含有アルコキシシラン化合物、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシランなどのアクリロキシ基含有アルコキシシラン化合物、3-ウレイドプロピルトリエトキシシランなどのウレイド基含有アルコキシシラン化合物、3-イソシアネートプロピルトリエトキシシランなどのイソシアネート基含有アルコキシシラン化合物などが挙げられる。これらの中で、成分(A)との反応性の観点からエポキシ基含有アルコキシシラン、ウレイド基含有アルコキシシラン、イソシアネート基含有アルコキシシランが特に好ましい。 Specific examples of such alkoxysilane compounds include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, Amino group-containing alkoxysilane compounds such as N-phenyl-3-aminopropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Methyldiethoxysilane, 3-glycidoxyp Epoxy group-containing alkoxysilane compounds such as pyrtriethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane compounds such as vinyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyl Acryloxy group-containing alkoxysilane compounds such as dimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, ureido group-containing alkoxysilane compounds such as 3-ureidopropyltriethoxysilane, 3-isocyanatopropyl Examples include isocyanate group-containing alkoxysilane compounds such as triethoxysilane. Among these, an epoxy group-containing alkoxysilane, a ureido group-containing alkoxysilane, and an isocyanate group-containing alkoxysilane are particularly preferable from the viewpoint of reactivity with the component (A).
 本発明において、成分(C)の配合量は、成分(A)と成分(B)との合計100質量部に対して0.05~5質量部であることが好ましく、より好ましくは0.1~3質量部であり、特に好ましくは0.5~2質量部である。上記配合の範囲において、配合量が増加するとともに耐衝撃性が向上する傾向があり、また得られる樹脂組成物の溶融粘度が増大する傾向がある。成分(C)の配合量が0.05質量部未満であると、成分(A)と成分(B)との相互作用向上効果が不十分となり、耐衝撃性が改善されない場合がある。一方、5質量部を超えると、成分(A)の溶融粘度の増大が顕著となり、生産性が低下するばかりでなく、得られる樹脂組成物の靭性が損なわれ耐衝撃性が低下してしまう場合がある。 In the present invention, the amount of component (C) is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 100 parts by mass in total of component (A) and component (B). -3 parts by mass, particularly preferably 0.5-2 parts by mass. Within the above range of blending, the blending amount increases and the impact resistance tends to improve, and the melt viscosity of the resulting resin composition tends to increase. If the amount of component (C) is less than 0.05 parts by mass, the effect of improving the interaction between component (A) and component (B) will be insufficient, and the impact resistance may not be improved. On the other hand, when the amount exceeds 5 parts by mass, the increase in melt viscosity of the component (A) becomes remarkable, not only the productivity is lowered, but also the toughness of the resulting resin composition is impaired and the impact resistance is lowered. There is.
 次に、本発明のポリアミド樹脂組成物の製造方法について説明する。 Next, a method for producing the polyamide resin composition of the present invention will be described.
 本発明のポリアミド樹脂組成物の製造方法は、以下の方法を用いることができる。 The following method can be used as the method for producing the polyamide resin composition of the present invention.
 すなわち、ポリアミド樹脂(A)を構成するモノマーおよび酸(D)を前記モノマーの融点以上の温度Tで溶融させた後、さらに繊維状粘土鉱物(B)をせん断速度1000~20000sec-1で混合する工程(i)(つまり、混合工程)と、該工程(i)で得られた混合物を溶融重合する工程(ii)(つまり、溶融重合工程)とを含むものである。すなわち、成分(A)を構成するモノマー、成分(B)および酸(D)の混合物を調製してスラリー状とし、該混合物を溶融重合に付する方法である。この製造方法によれば、(繊維状粘土鉱物(B)を十分に分散させ、曲げ特性に優れた樹脂組成物が得られる)という効果を奏することができる。 That is, after the monomer constituting the polyamide resin (A) and the acid (D) are melted at a temperature T equal to or higher than the melting point of the monomer, the fibrous clay mineral (B) is further mixed at a shear rate of 1000 to 20000 sec −1 . It includes a step (i) (that is, a mixing step) and a step (ii) (that is, a melt polymerization step) in which the mixture obtained in the step (i) is melt-polymerized. That is, it is a method in which a mixture of the monomer constituting component (A), component (B) and acid (D) is prepared to form a slurry, and the mixture is subjected to melt polymerization. According to this manufacturing method, the effect of (dispersing the fibrous clay mineral (B) sufficiently and obtaining a resin composition excellent in bending properties) can be achieved.
 本発明の製造方法において、成分(A)と成分(B)の配合比率は、99.5/0.5~70/30(質量部)であることが必要であり、好ましくは96/4~75/25(質量部)であり、さらに好ましくは93/7~80/20(質量部)である。成分(B)の配合量が0.5質量部未満であると、成分(A)の強化効果が不十分となる。一方、30質量部を超えると、得られた樹脂組成物が脆くなるという問題がある。 In the production method of the present invention, the blending ratio of component (A) to component (B) needs to be 99.5 / 0.5 to 70/30 (parts by mass), preferably 96/4 to 75/25 (parts by mass), more preferably 93/7 to 80/20 (parts by mass). The reinforcement | strengthening effect of a component (A) becomes inadequate that the compounding quantity of a component (B) is less than 0.5 mass part. On the other hand, when it exceeds 30 mass parts, there exists a problem that the obtained resin composition becomes weak.
 工程(i)について説明する。 Process (i) will be described.
 工程(i)において、酸(D)は、成分(A)を構成するモノマーを重合する際に、触媒として作用する役割を担う。加えて、成分(B)が、上記セピオライトやパリゴルスカイトである場合には、酸(D)は工程(i)において成分(A)を構成するモノマーと反応し、その結果得られた反応物が、シラノール基を多数有している成分(B)中に侵入することにより成分(B)の分散性を促進させることが可能である。 In step (i), the acid (D) plays a role of acting as a catalyst when the monomer constituting the component (A) is polymerized. In addition, when component (B) is the above-mentioned sepiolite or palygorskite, acid (D) reacts with the monomer constituting component (A) in step (i), and the resulting reactant is It is possible to promote the dispersibility of the component (B) by penetrating into the component (B) having a large number of silanol groups.
 酸(D)としては、pKa(25℃、水中での値)が6以下である酸であれば、無機酸、有機酸のいずれであってもよい。具体的には、無機酸として、リン酸、亜リン酸、塩酸、硫酸、硝酸等が挙げられる。有機酸として、ギ酸、酢酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、プロピオン酸、安息香酸、p-トルエンスルホン酸、N-ホルミル-ε-アミノカプロン酸等が挙げられる。上記の中でも、成分(A)を構成するモノマーとの反応性の観点から、亜リン酸が好ましい。 The acid (D) may be either an inorganic acid or an organic acid as long as the pKa (25 ° C., value in water) is 6 or less. Specific examples of the inorganic acid include phosphoric acid, phosphorous acid, hydrochloric acid, sulfuric acid, nitric acid and the like. Examples of the organic acid include formic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, propionic acid, benzoic acid, p-toluenesulfonic acid, N-formyl-ε-aminocaproic acid and the like. Among the above, phosphorous acid is preferable from the viewpoint of reactivity with the monomer constituting the component (A).
 酸(D)の使用量は、成分(A)を構成するモノマー100質量部に対して、0.01~5質量部であることが必要であり、0.1~1質量部であることが好ましい。酸(D)の使用量が0.01質量部未満であると、成分(B)の分散促進効果が十分発揮されない場合がある。また成分(A)の重合速度が遅くなる場合がある。一方、5質量部を超えると、高重合度のポリアミド樹脂(A)が得られないとともに、反応容器の腐食等の問題が起こる場合がある。 The amount of the acid (D) used must be 0.01 to 5 parts by mass, and 0.1 to 1 part by mass with respect to 100 parts by mass of the monomer constituting the component (A). preferable. When the amount of the acid (D) used is less than 0.01 parts by mass, the effect of promoting the dispersion of the component (B) may not be sufficiently exhibited. Moreover, the polymerization rate of a component (A) may become slow. On the other hand, when it exceeds 5 parts by mass, a polyamide resin (A) having a high degree of polymerization cannot be obtained, and problems such as corrosion of the reaction vessel may occur.
 工程(i)においては、繊維状粘土鉱物(B)とともに、上述のカップリング剤(C)を混合することが好ましい。工程(i)において成分(C)を混合することで、成分(A)および成分(B)と親和性または密着性を向上させることができ、成分(C)によって成分(A)と成分(B)の界面破壊が抑制され、耐衝撃性が向上する。特に(B)はその表面にSi-OHが多く存在しているため、他の無機充填材に比べて耐衝撃向上効果が非常に大きい。 In step (i), it is preferable to mix the above-mentioned coupling agent (C) together with the fibrous clay mineral (B). By mixing the component (C) in the step (i), affinity or adhesion with the component (A) and the component (B) can be improved, and the component (A) and the component (B) can be improved by the component (C). ) Is suppressed, and the impact resistance is improved. In particular, since (B) has a large amount of Si—OH on its surface, the effect of improving impact resistance is very large compared to other inorganic fillers.
 工程(i)で成分(C)を添加する場合は、成分(C)と成分(A)および成分(B)との反応が十分起きる。そのため、成分(C)の配合量が少量でも耐衝撃性の向上が十分見込め、さらには製造工程が簡略化できるために工業的に大いに有益である。しかしながら成分(C)の配合量が多いと工程(ii)中に樹脂の増粘が起きる場合があるため注意が必要である。この場合、重合装置内を高圧にすることで重合装置から払い出すことができる。 When component (C) is added in step (i), the reaction between component (C), component (A), and component (B) occurs sufficiently. Therefore, even if the compounding amount of the component (C) is small, the impact resistance can be sufficiently improved, and furthermore, the production process can be simplified, which is very useful industrially. However, if the amount of component (C) is large, caution must be exercised because thickening of the resin may occur during step (ii). In this case, the inside of the polymerization apparatus can be discharged from the polymerization apparatus by increasing the pressure.
 工程(i)において、混合時間0.5時間以上経過後の温度TにおけるB型粘度計で測定した回転粘度が1~500Pa・sであることが好ましく、より好ましくは5~400Pa・s、特に好ましくは10~300Pa・sである。上記工程(i)において、回転粘度が500Pa・sを超えると、混合物の流動性が極度に低下していることになる。よって、次の工程(ii)中において該混合物が均一な反応を起こすことが困難となり、重合が不十分となる場合がある。さらに、工程(i)から工程(ii)への移行も困難となり、生産性の低下を招く。一方、1Pa・s未満である場合には、成分(B)の分散が悪くなるため、成分(A)の補強効果が不十分となる場合がある。 In step (i), the rotational viscosity measured with a B-type viscometer at a temperature T after the mixing time of 0.5 hours or more is preferably 1 to 500 Pa · s, more preferably 5 to 400 Pa · s, particularly The pressure is preferably 10 to 300 Pa · s. In the said process (i), when rotational viscosity exceeds 500 Pa.s, the fluidity | liquidity of a mixture will fall extremely. Therefore, it becomes difficult for the mixture to cause a uniform reaction in the next step (ii), and the polymerization may be insufficient. Furthermore, the transition from the step (i) to the step (ii) becomes difficult, leading to a decrease in productivity. On the other hand, when it is less than 1 Pa · s, the dispersion of the component (B) is deteriorated, so that the reinforcing effect of the component (A) may be insufficient.
 つまり、工程(i)において、混合時間0.5時間以上経過後の温度TにおけるB型粘度計で測定した回転粘度が1~500Pa・sであると、成分(A)中の成分(B)の分散状態が、上記の(I)および(II)を同時に満足する状態となるのである。 That is, in the step (i), when the rotational viscosity measured with a B-type viscometer at a temperature T after 0.5 hours or more of mixing time is 1 to 500 Pa · s, the component (B) in the component (A) This dispersion state satisfies the above conditions (I) and (II).
 この混合物の粘度を制御するためには、成分(B)の配合量や、混合時間(処理時間)を適宜選択する必要がある。 In order to control the viscosity of this mixture, it is necessary to appropriately select the blending amount of component (B) and the mixing time (processing time).
 工程(i)において、せん断速度、混合時間を調整することにより、混合時間0.5時間以上経過後の温度TにおけるB型粘度計で測定した回転粘度を上述の範囲に制御することができる。 In step (i), by adjusting the shear rate and mixing time, the rotational viscosity measured with a B-type viscometer at a temperature T after 0.5 hours or more of mixing time can be controlled within the above-mentioned range.
 ここで、せん断速度とは、例えば、ホモミキサーのようなローター/ステーター型攪装置を用いる場合において、ローター/ステーター間にできる僅かな間隙の距離(クリアランス)とローター(攪拌翼)の攪拌回転数により求められる数値であり、次式により求められる。 Here, for example, when using a rotor / stator type stirrer such as a homomixer, the shear rate is the distance (clearance) of a slight gap formed between the rotor / stator and the rotational speed of stirring of the rotor (stirring blade). It is a numerical value obtained by the following equation.
 せん断速度(sec-1)=[攪拌翼直径(m)×π×攪拌回転数(rpm)/60]/クリアランス(m)
 また、攪拌装置自体にステーターを有しないプロペラミキサーを用いる場合は、プロペラ(攪拌翼)先端と攪拌槽との距離をクリアランスとして、上記のせん断速度を求めることができる。この場合、攪拌槽の形状としては、攪拌効率を高めるために円筒形が好ましい。また、攪拌に供した混合物の攪拌槽外への飛散を抑制するために、遮蔽板等によって適度に混合物の飛散を抑制できる構造を有することが好ましい。
Shear rate (sec −1 ) = [stirring blade diameter (m) × π × stirring rotation speed (rpm) / 60] / clearance (m)
Moreover, when using the propeller mixer which does not have a stator for stirring apparatus itself, said shear rate can be calculated | required by making into clearance the distance of a propeller (stirring blade) front-end | tip and a stirring tank. In this case, the shape of the stirring tank is preferably a cylindrical shape in order to increase the stirring efficiency. Moreover, in order to suppress scattering of the mixture subjected to stirring to the outside of the stirring tank, it is preferable to have a structure capable of appropriately suppressing scattering of the mixture by a shielding plate or the like.
 工程(i)におけるせん断速度は、1000~20000sec-1であることが必要であり、2000~17000sec-1であることが好ましく、3000~15000sec-1であることがより好ましい。せん断速度が1000sec-1未満であると、繊維状粘土鉱物(B)の分散が不十分になってしまうという問題がある。一方、20000sec-1を超えると、せん断が強すぎるために回転粘度の制御が難しくなるという問題がある。 Shear rate in step (i) is required to be 1000 ~ 20000sec -1, preferably from 2000 ~ 17000sec -1, more preferably 3000 ~ 15000sec -1. When the shear rate is less than 1000 sec −1 , there is a problem that the dispersion of the fibrous clay mineral (B) becomes insufficient. On the other hand, if it exceeds 20000 sec −1 , there is a problem that it is difficult to control the rotational viscosity because the shear is too strong.
 工程(i)において、混合物に対し上記せん断速度を与えるためには、一例として、攪拌装置として、クリアランスが0.5~5mmの範囲で制御できる攪拌装置を用いることが好ましい。 In step (i), in order to give the above-mentioned shear rate to the mixture, for example, it is preferable to use a stirrer capable of controlling the clearance in the range of 0.5 to 5 mm as a stirrer.
 また、工程(i)において、混合物に対して、上記範囲のせん断速度を与えるためには、工程(i)における攪拌回転数を、100~10000rpmの範囲で制御することが好ましい。 Further, in order to give the mixture a shear rate in the above range in the step (i), it is preferable to control the rotation speed of the stirring in the step (i) in the range of 100 to 10,000 rpm.
 工程(i)における混合時間は、回転粘度を上記の範囲に制御する観点から、0.5~6時間であることが好ましく、1~4時間であることがより好ましい。 The mixing time in step (i) is preferably 0.5 to 6 hours, and more preferably 1 to 4 hours, from the viewpoint of controlling the rotational viscosity within the above range.
 成分(B)を工程(i)で用いる際の形態は、成分(A)を構成するモノマー中における分散性を向上させることができれば特に制限されるものではない。粉末状であれば分散させやすいため、特に好ましい。 The form when the component (B) is used in the step (i) is not particularly limited as long as the dispersibility in the monomer constituting the component (A) can be improved. Since it is easy to disperse if it is a powder form, it is especially preferable.
 工程(i)における混合方法は、成分(A)を構成するモノマー、成分(B)および酸(D)が均一に混合されるものであれば特に限定されない。工程(i)としては、まず成分(A)を構成するモノマーと酸(D)とを加熱攪拌しながら成分(A)を構成するモノマーを溶融状態で混合させ、その後、成分(B)を混合することが好ましい。このように混合を行うことで、成分(B)の分散性がより向上する。 The mixing method in the step (i) is not particularly limited as long as the monomer constituting the component (A), the component (B) and the acid (D) are uniformly mixed. As the step (i), first, the monomer constituting the component (A) and the acid (D) are mixed in the molten state while the monomer constituting the component (A) is heated and stirred, and then the component (B) is mixed. It is preferable to do. By performing mixing in this way, the dispersibility of the component (B) is further improved.
 なお、工程(i)の加熱温度は、成分(A)を構成するモノマーが溶融する温度、すなわち、成分(A)を構成するモノマーの融点以上の温度である必要がある。例えば、ポリアミド樹脂を構成するモノマーとして、ε-カプロラクタムを用いた場合は,加熱温度を69℃以上にして溶融させることが好ましい。また、アジピン酸/ヘキサメチレンジアミンの等モル塩を用いた場合は、加熱温度を202℃以上にして溶融させることが好ましい。また、工程(i)の攪拌条件に関しても、攪拌翼の形状や回転数などは特に限定されるものではない。 The heating temperature in step (i) needs to be a temperature at which the monomer constituting component (A) melts, that is, a temperature equal to or higher than the melting point of the monomer constituting component (A). For example, when ε-caprolactam is used as the monomer constituting the polyamide resin, it is preferable to melt at a heating temperature of 69 ° C. or higher. Further, when an equimolar salt of adipic acid / hexamethylenediamine is used, it is preferable to melt at a heating temperature of 202 ° C. or higher. Further, regarding the stirring conditions in step (i), the shape of the stirring blade, the number of rotations, and the like are not particularly limited.
 工程(i)に用いる混合を行うための装置としては、公知の混合装置を用いることができる。そのような混合装置としては、プロペラミキサー、タービンミキサー、ホモミキサーのような攪拌機を用いることができる。なかでも、取扱いの点でホモミキサーを用いることが好ましい。 As a device for performing the mixing used in step (i), a known mixing device can be used. As such a mixing apparatus, a stirrer such as a propeller mixer, a turbine mixer, or a homomixer can be used. Of these, it is preferable to use a homomixer in terms of handling.
 工程(ii)について説明する。 Process (ii) will be described.
 工程(ii)は、工程(i)にて得られた混合物を溶融重合する工程である。溶融重合の条件は、特に制限されないが、重合効率を向上させる観点から、重合温度240~280℃で、重合時間0.5~3時間とすることが好ましい。 Step (ii) is a step of melt polymerizing the mixture obtained in step (i). The conditions for melt polymerization are not particularly limited, but from the viewpoint of improving the polymerization efficiency, the polymerization temperature is preferably 240 to 280 ° C. and the polymerization time is preferably 0.5 to 3 hours.
 本発明においては、上記の工程(ii)の後に、さらにカップリング剤(C)を加えて溶融混練する工程(iii)(つまり、溶融混練工程)を含んでいてもよい。工程(iii)において成分(C)を混合することで、成分(A)および成分(B)との親和性または密着性を向上させることができる。加えて、成分(C)によって成分(A)と成分(B)の界面破壊が抑制され、耐衝撃性が向上する。特に(B)はその表面にSi-OHが多く存在しているため、他の無機充填材に比べて耐衝撃向上効果が非常に大きい。 In the present invention, after the step (ii), a step (iii) of adding a coupling agent (C) and melt-kneading (that is, a melt-kneading step) may be included. By mixing the component (C) in the step (iii), the affinity or adhesion with the component (A) and the component (B) can be improved. In addition, the component (C) suppresses the interface breakage between the component (A) and the component (B), and the impact resistance is improved. In particular, since (B) has a large amount of Si—OH on its surface, the effect of improving impact resistance is very large compared to other inorganic fillers.
 工程(ii)で得られた成分(A)、成分(B)および成分(D)からなるポリマーに、成分(C)を工程(iii)によって添加すると、重合装置内を高圧にする必要がないため、大気圧下での取り扱いが可能である。また、溶融混練時に他の添加剤も併用することができる。 When component (C) is added in step (iii) to the polymer comprising component (A), component (B) and component (D) obtained in step (ii), it is not necessary to increase the pressure in the polymerization apparatus. Therefore, it can be handled under atmospheric pressure. Also, other additives can be used in combination during melt-kneading.
 工程(i)または工程(iii)で成分(C)を添加する場合における成分(C)の配合量は、成分(A)と成分(B)との合計100質量部に対して0.05~5質量部であることが好ましく、より好ましくは0.5~3質量部である。成分(C)の配合量が0.05質量部未満であると、成分(A)と成分(B)との相互作用向上効果が不十分となり、耐衝撃性が改善されない場合がある。一方、5質量部を超えると、成分(A)の増粘が顕著となり、生産性が低下してしまうため好ましくない場合がある。 When component (C) is added in step (i) or step (iii), the compounding amount of component (C) is 0.05 to 100 parts by mass with respect to 100 parts by mass in total of component (A) and component (B). The amount is preferably 5 parts by mass, more preferably 0.5 to 3 parts by mass. If the amount of component (C) is less than 0.05 parts by mass, the effect of improving the interaction between component (A) and component (B) will be insufficient, and the impact resistance may not be improved. On the other hand, when the amount exceeds 5 parts by mass, the thickening of the component (A) becomes remarkable and the productivity is lowered, which may not be preferable.
 本発明の製造方法によれば、良好な分散性の観点から、図1に示されたように、成分(A)中の成分(B)を、単分散した繊維状結晶、または単分散した繊維状結晶が凝集した凝集物の状態とさせ、かつ下記(I)および(II)を同時に満足する状態で、混合物中に分散させたポリアミド樹脂組成物を得ることができる。
(I)単分散した一本の繊維状結晶の繊維長が0.01~40μmであり、好ましくは0.1~20μmである。かつ単分散した繊維状結晶が凝集した凝集物の最大外寸が0.01~40μmであり、好ましくは0.1~20μmである。
(II)単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離がいずれも1~100nmであり、好ましくは10~50nmである。
According to the production method of the present invention, from the viewpoint of good dispersibility, as shown in FIG. 1, the component (B) in the component (A) is monodispersed fibrous crystals or monodispersed fibers. It is possible to obtain a polyamide resin composition dispersed in a mixture in a state where aggregated crystals are aggregated and the following (I) and (II) are satisfied at the same time.
(I) The fiber length of one monodispersed fibrous crystal is 0.01 to 40 μm, preferably 0.1 to 20 μm. The maximum outer dimension of the aggregate obtained by agglomerating monodispersed fibrous crystals is 0.01 to 40 μm, preferably 0.1 to 20 μm.
(II) The shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals The shortest distance between the agglomerated aggregates is 1 to 100 nm, preferably 10 to 50 nm.
 なお、前記工程(i)で成分(B)が成分(A)中に十分に分散されていると、通常のポリアミド樹脂の重合方法(溶融重合)で容易に重合することができるという利点がある。 In addition, when the component (B) is sufficiently dispersed in the component (A) in the step (i), there is an advantage that it can be easily polymerized by a normal polyamide resin polymerization method (melt polymerization). .
 上述の製造方法において、従来の充填材を用いた場合は、工程(ii)中で分散が起こるためポリマーの溶融粘度が増大するという問題があった。そのため、充填材の添加量を増やすことができず、補強効果を十分発現することができなかった。 In the above production method, when a conventional filler is used, there is a problem that the melt viscosity of the polymer increases because dispersion occurs in the step (ii). For this reason, the amount of filler added cannot be increased, and the reinforcing effect cannot be sufficiently exhibited.
 しかしながら、本発明においては、特定の繊維状粘土鉱物を用いているため、工程(ii)中の溶融粘度の増加を抑制することができ、溶融粘度を好ましい範囲に制御することができる。従って、繊維状粘土鉱物の樹脂組成物への添加量を多くすることができ、強度向上効果を十分に発現させることが可能である。 However, in the present invention, since a specific fibrous clay mineral is used, an increase in melt viscosity during step (ii) can be suppressed, and the melt viscosity can be controlled within a preferable range. Therefore, the amount of fibrous clay mineral added to the resin composition can be increased, and the strength improving effect can be sufficiently exhibited.
 本発明の樹脂組成物には、その特性を大きく損なわない限りにおいて、必要に応じて、熱安定剤、酸化防止剤、顔料、着色防止剤、耐候剤、難燃剤、可塑剤、結晶核剤、離型安定剤等の添加剤を添加してもよい。 In the resin composition of the present invention, as long as the characteristics are not significantly impaired, a heat stabilizer, an antioxidant, a pigment, an anti-coloring agent, a weathering agent, a flame retardant, a plasticizer, a crystal nucleating agent, You may add additives, such as a mold release stabilizer.
 本発明の樹脂組成物には、その特性を大きく損なわない限りにおいて、必要に応じて他の重合体を配合することも可能である。このような重合体としては、ポリブタジエン、ブタジエン-スチレン共重合体、アクリルゴム、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、天然ゴム、塩素化ブチルゴム、塩素化ポリエチレンなどのエラストマー、およびこれらの無水マレイン酸などによる酸変性物、スチレン-無水マレイン酸共重合体、スチレン-フェニルマレイミド共重合体、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアセタール、ポリフッ化ビニリデン、ポリスルホン、ポリフェニレンサルファイド、ポリエーテルスルホン、フェノキシ樹脂、ポリフェニレンエーテル、ポリメチルメタクリレート、ポリエーテルケトン、ポリアリレート、ポリカーボネート、ポリテトラフルオロエチレンなどが挙げられる。 In the resin composition of the present invention, other polymers can be blended as required as long as the characteristics are not significantly impaired. Such polymers include polybutadiene, butadiene-styrene copolymer, acrylic rubber, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, natural rubber, chlorinated butyl rubber, elastomers such as chlorinated polyethylene, And acid-modified products thereof with maleic anhydride, styrene-maleic anhydride copolymer, styrene-phenylmaleimide copolymer, polyvinyl chloride, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyvinylidene fluoride, polysulfone, polyphenylene sulfide , Polyethersulfone, phenoxy resin, polyphenylene ether, polymethyl methacrylate, polyether ketone, polyarylate, polycarbonate, polytetrafluoroethylene, etc. It is below.
 本発明で得られた樹脂組成物を通常の成形加工方法に付することにより、目的の成形品を作製することができる。例えば、射出成形、押出成形、吹き込み成形、焼結成形などの熱溶融成形法を用いて、成形品とすることができる。また、有機溶媒溶液に溶解させ、流延法に付することにより、薄膜とすることもできる。 The desired molded product can be produced by subjecting the resin composition obtained in the present invention to a normal molding method. For example, a molded product can be obtained by using a hot melt molding method such as injection molding, extrusion molding, blow molding, or sintering molding. Moreover, it can also be set as a thin film by melt | dissolving in an organic-solvent solution and attaching | subjecting to a casting method.
 本発明の樹脂組成物は、従来の繊維で強化されたポリアミド樹脂と比較して、密度が低く、かつ機械的特性に優れる。そのため、自動車用部品、電気部品、家庭用品等に用いることができ、自動車のトランスミッション周り、エンジン周りで使用される部品に用いる部品として使用できる。具体的には、自動車のトランスミッション周りとして、シフトレバー、ギアボックス等の台座に用いるベースプレート、エンジン周りとしては、シリンダーヘッドカバー、エンジンマウント、エアインテークマニホールド、スロットルボディ、エアインテークパイプ、ラジエータタンク、ラジエータサポート、ウォーターポンプレンレット、ウォーターポンプアウトレット、サーモスタットハウジング、クーリングファン、ファンシュラウド、オイルパン、オイルフィルターハウジング、オイルフィルターキャップ、オイルレベルゲージ、タイミングベルトカバー、エンジンカバー等に好適に用いられる。 The resin composition of the present invention has a low density and excellent mechanical properties as compared with a polyamide resin reinforced with conventional fibers. Therefore, it can be used for automobile parts, electrical parts, household products, etc., and can be used as parts used for parts used around automobile transmissions and engines. Specifically, the base plate used for pedestals such as shift levers and gearboxes around the transmission of an automobile, and the cylinder head cover, engine mount, air intake manifold, throttle body, air intake pipe, radiator tank, radiator support around the engine , Water pump renlet, water pump outlet, thermostat housing, cooling fan, fan shroud, oil pan, oil filter housing, oil filter cap, oil level gauge, timing belt cover, engine cover, etc.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
 実施例および比較例で用いた原料を示す。
1.原料
(1)ポリアミド樹脂を構成するモノマー成分
A-1:ε-カプロラクタム(宇部興産社製;融点Tm:69℃)
A-2:アジピン酸/ヘキサメチレンジアミン等モル塩(融点Tm:202℃)
(2)繊維状粘土鉱物
B-1:セピオライト(TOLSA社製、商品名「PANGEL HV」)熱重量減少率12質量%
B-2:(B-1)を80℃で4時間真空乾燥し、熱重量減少率の状態調整を行ない、(B-2)とした。(B-2)の熱重量減少率は2質量%であった。
B-3:(B-1)を80℃で48時間真空乾燥し、熱重量減少率の状態調整を行い、(B-3)とした。(B-3)の熱重量減少率は0.1質量%であった。
B-4:パリゴルスカイト(昭和KDE社製、商品名「POLEISY」)熱重量減少率6質量%
(3)カップリング剤
C-1:3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製、商品名「KBM-403」)
C-2:3-ウレイドプロピルトリエトキシシラン(信越化学工業社製、商品名「KBE-585」
C-3:3-イソシアネートプロピルトリエトキシシラン(信越化学工業社製、商品名「KBE-9007」)
C-4:3-アミノプロピルトリメトキシシラン(信越化学工業社製、商品名「KBM-903」)
(4)酸
D-1:亜リン酸(ナカライテスク社製)
D-2:リン酸(ナカライテスク社製)
(5)補強材
E:合成フッ素雲母(コープケミカル社製、商品名「ME-100」)
F:ガラス繊維(オーウェンスコーニング社製、商品名「MAFT692」)
G:タルク(日本タルク社製、商品名「K-1」)
 以下に実施例および比較例で用いた評価方法を示す。なお、(3)~(6)については、シリンダー温度270℃、金型温度80℃にて射出成形した試験片を用いて評価を行った。
2.試験方法
 (1)単分散した一本の繊維状結晶の繊維長、および単分散した繊維状結晶が凝集した凝集物の最大外寸(μm)
 射出成形により得られた成形品を、流動方向に平行な面に沿ってウルトラミクロトーム(LEICA社製、商品名「EMUC6」)を用いて切断し、該切断面の繊維状粘土鉱物の単分散した繊維状結晶か、または単分散した繊維状結晶が凝集した凝集物を透過型電子顕微鏡(JEOL社製、商品名「LEM-1230」)により、800倍で観察した。観察された繊維状粘土鉱物の単分散した繊維状結晶の繊維長、かつ単分散した繊維状結晶が凝集した凝集物の最大外寸をすべて測定した。それらの中で最大の数値を採用した。
The raw materials used in Examples and Comparative Examples are shown.
1. Raw material (1) Monomer component A-1 constituting the polyamide resin: ε-caprolactam (manufactured by Ube Industries, Ltd .; melting point Tm: 69 ° C.)
A-2: Adipic acid / hexamethylenediamine equimolar salt (melting point Tm: 202 ° C.)
(2) Fibrous clay mineral B-1: Sepiolite (trade name “PANGEL HV” manufactured by TOLSA) 12% by mass
B-2: (B-1) was vacuum-dried at 80 ° C. for 4 hours, and the thermogravimetric reduction rate was adjusted to obtain (B-2). The thermal weight loss rate of (B-2) was 2% by mass.
B-3: (B-1) was vacuum-dried at 80 ° C. for 48 hours, and the thermal weight reduction rate was adjusted to obtain (B-3). The thermal weight loss rate of (B-3) was 0.1% by mass.
B-4: Palygorskite (made by Showa KDE, trade name “POLEISY”) thermal weight loss rate 6 mass%
(3) Coupling agent C-1: 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBM-403”)
C-2: 3-Ureidopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBE-585”)
C-3: 3-isocyanatopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBE-9007”)
C-4: 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBM-903”)
(4) Acid D-1: Phosphorous acid (manufactured by Nacalai Tesque)
D-2: Phosphoric acid (Nacalai Tesque)
(5) Reinforcement material E: Synthetic fluorine mica (trade name “ME-100” manufactured by Coop Chemical Co., Ltd.)
F: Glass fiber (made by Owens Corning, trade name “MAFT692”)
G: Talc (Nippon Talc Co., Ltd., trade name “K-1”)
The evaluation methods used in the examples and comparative examples are shown below. Note that (3) to (6) were evaluated using test pieces injection-molded at a cylinder temperature of 270 ° C. and a mold temperature of 80 ° C.
2. Test Method (1) The fiber length of one monodispersed fibrous crystal and the maximum outer dimension (μm) of the aggregate in which the monodispersed fibrous crystals are aggregated
The molded product obtained by injection molding was cut using an ultramicrotome (manufactured by LEICA, trade name “EMUC6”) along a plane parallel to the flow direction, and the fibrous clay mineral on the cut surface was monodispersed. The aggregates of the fibrous crystals or the aggregates of the monodispersed fibrous crystals were observed with a transmission electron microscope (trade name “LEM-1230” manufactured by JEOL) at a magnification of 800 times. The observed fiber length of the monodispersed fibrous crystals of the fibrous clay mineral and all the maximum outer dimensions of the aggregates of the aggregated monodispersed fibrous crystals were measured. The largest number was adopted among them.
 (2)単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離(nm)
 射出成形により得られた成形品を、流動方向に平行な面に沿ってウルトラミクロトーム(LEICA社製、商品名「EMUC6」)を用いて切断し、該切断面の繊維状粘土鉱物の単分散した繊維状結晶か、または単分散した繊維状結晶が凝集した凝集物を透過型電子顕微鏡(JEOL社製、商品名「LEM-1230」)により10万倍で観察した。単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離(最も接近する隣接するもの同士)を測定し、任意の500個のデータの平均値を採用した。
(2) The shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals Minimum distance between aggregated aggregates (nm)
The molded product obtained by injection molding was cut using an ultramicrotome (manufactured by LEICA, trade name “EMUC6”) along a plane parallel to the flow direction, and the fibrous clay mineral on the cut surface was monodispersed. The aggregates of fibrous crystals or monodispersed fibrous crystals were observed with a transmission electron microscope (manufactured by JEOL, trade name “LEM-1230”) at a magnification of 100,000 times. The shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and the aggregation of monodispersed one and monodispersed fibrous crystals The shortest distance between objects (adjacent ones closest to each other) was measured, and an average value of arbitrary 500 pieces of data was adopted.
 (3)密度
 射出成形により得られた長さ100mm、幅10mm、厚さ4mmの試験片より、10mm角の切片を切り出し、ISO1183に準拠して測定した。
(4)曲げ強度(MPa)
 射出成形により得られた長さ100mm、幅10mm、厚さ4mmの試験片について、ISO178に準拠して、曲げ強度(MPa)を測定した。本発明においては、150MPa以上であるものを実用に耐えうるものとした。
(5)曲げ弾性率(GPa)
 射出成形により得られた長さ100mm、巾10mm、厚さ4mmの試験片について、ISO178に準拠して、曲げ弾性率(GPa)を測定した。本発明においては、3.5GPa以上であるものを実用に耐えうるものとした。
(6)シャルピー衝撃強度(kJ/m
 射出成形により得られた長さ100mm、巾10mm、厚さ4mmの試験片について、ISO179-1に準拠して、シャルピー衝撃強度(kJ/m)を測定した。本発明においては、2.7kJ/m以上であるものを実用に耐えうるものとした。
(3) Density A 10 mm square piece was cut out from a test piece having a length of 100 mm, a width of 10 mm, and a thickness of 4 mm obtained by injection molding, and measured according to ISO 1183.
(4) Bending strength (MPa)
The bending strength (MPa) of a test piece having a length of 100 mm, a width of 10 mm, and a thickness of 4 mm obtained by injection molding was measured according to ISO178. In the present invention, those having a pressure of 150 MPa or more are assumed to be practically usable.
(5) Flexural modulus (GPa)
The flexural modulus (GPa) of a test piece having a length of 100 mm, a width of 10 mm, and a thickness of 4 mm obtained by injection molding was measured according to ISO178. In the present invention, those with 3.5 GPa or more are assumed to be practically usable.
(6) Charpy impact strength (kJ / m 2 )
Charpy impact strength (kJ / m 2 ) of a test piece having a length of 100 mm, a width of 10 mm and a thickness of 4 mm obtained by injection molding was measured according to ISO 179-1. In the present invention, those having 2.7 kJ / m 2 or more are assumed to be practically usable.
 さらに、成分(C)を用いた樹脂組成物においては、3.3kJ/m以上であることが好ましく、4.0kJ/m以上であることがより好ましい。 Furthermore, in the resin composition using the component (C), it is preferably 3.3kJ / m 2 or more, more preferably 4.0 kJ / m 2 or more.
 (7)回転粘度(Pa・s)
 B型粘度計(東機産業社製)を用いて、80℃、0.3rpmにおける回転粘度を測定した。なお、測定に際して、スピンドルNo.1を使用した。
(8)熱重量減少率(質量%)
 測定試料5mgをサンプル台に載せ、窒素雰囲気下において昇温速度20℃/分で20℃から500℃まで加熱し、加熱後の質量を測定した。以下の式により、熱重量減少率を算出した。
(熱重量減少率)=100-(加熱後の試料質量)/(加熱前の試料質量)×100
(9)繊維状粘土鉱物(B)の含有率(質量%)
 得られたポリアミド樹脂組成物の質量を測定した。次いで、該ポリアミド樹脂組成物を500℃で3時間加熱し、加熱後の残渣質量を測定した。以下の式により、繊維状粘土鉱物(B)の含有率を算出した。
[繊維状粘土鉱物(B)の含有率]=(残渣質量)/(加熱前のポリアミド樹脂組成物の質量)×100
(実施例1)
 εーカプロラクタム(A-1)10kg、セピオライト(B-1)1.14kg、亜リン酸(D-1)20gを同一容器に入れ、80℃にて加熱しながら均一な溶液になるまで、ホモミキサー(プライミクス社製、商品名「T.K.ホモミクサーMARKII20」、攪拌翼直径44mm、クリアランス1mm)を用いて、4000rpmの回転数で攪拌混合して、混合物を作製した。このときのせん断速度は9210sec-1であった。
(7) Rotational viscosity (Pa · s)
The rotational viscosity at 80 ° C. and 0.3 rpm was measured using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.). In the measurement, the spindle No. 1 was used.
(8) Thermal weight loss rate (mass%)
5 mg of a measurement sample was placed on a sample stage, heated from 20 ° C. to 500 ° C. at a temperature rising rate of 20 ° C./min in a nitrogen atmosphere, and the mass after heating was measured. The thermal weight reduction rate was calculated by the following formula.
(Thermal weight loss rate) = 100− (sample mass after heating) / (sample mass before heating) × 100
(9) Content of fibrous clay mineral (B) (% by mass)
The mass of the obtained polyamide resin composition was measured. Subsequently, this polyamide resin composition was heated at 500 degreeC for 3 hours, and the residue mass after a heating was measured. The content rate of fibrous clay mineral (B) was computed with the following formula | equation.
[Content of fibrous clay mineral (B)] = (residue mass) / (mass of polyamide resin composition before heating) × 100
Example 1
Put 10 kg of ε-caprolactam (A-1), 1.14 kg of sepiolite (B-1), and 20 g of phosphorous acid (D-1) in the same container. Using a mixer (manufactured by Primix Co., Ltd., trade name “TK homomixer MARKII20”, stirring blade diameter 44 mm, clearance 1 mm), the mixture was stirred and mixed at a rotational speed of 4000 rpm to prepare a mixture. The shear rate at this time was 9210 sec −1 .
 ここまでは、工程(i)である。時間の経過とともに回転粘度は増大し、攪拌開始時の回転粘度は5Pa・sであったのが、2時間経過後の回転粘度は55Pa・sであった。次いで、上記工程(i)により得られた混合物を、次の工程(ii)において重合に付するため、オートクレーブに投入し、内温260℃で攪拌しながら、1時間重合させた。 So far, it is process (i). The rotational viscosity increased with time, and the rotational viscosity at the start of stirring was 5 Pa · s, but the rotational viscosity after 2 hours was 55 Pa · s. Next, the mixture obtained in the above step (i) was put into an autoclave to be polymerized in the next step (ii) and polymerized for 1 hour while stirring at an internal temperature of 260 ° C.
 重合終了後、オートクレーブの底排弁よりストランド状に引き取った重合体を温浴槽にて冷却固化し、ペレタイザーでペレット状に切断した。得られたペレットを95℃の熱水で24時間精錬処理をして、未反応のモノマーおよびオリゴマーを除去した。その後、80℃で24時間乾燥させ、さらに、80℃で48時間真空乾燥させた。 After completion of the polymerization, the polymer taken in the form of a strand from the bottom drain valve of the autoclave was cooled and solidified in a hot tub, and cut into pellets with a pelletizer. The obtained pellets were refined with hot water at 95 ° C. for 24 hours to remove unreacted monomers and oligomers. Then, it was dried at 80 ° C. for 24 hours, and further vacuum dried at 80 ° C. for 48 hours.
 乾燥後のペレットを、射出成形機(東芝機械社製、商品名「EC-100」)を用いて、シリンダー温度250℃、金型温度80℃で射出成形し、試験片(成形品)を作製した。得られた成形品について、その組成を表1に示す。また、攪拌条件、回転粘度、単分散した一本の繊維状結晶の繊維長、かつ単分散した繊維状結晶が凝集した凝集物の最大外寸(繊維長または最大外寸)、単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離(最短距離)、密度、曲げ強度、曲げ弾性率およびシャルピー衝撃強度を表2に示す。 The dried pellets are injection molded at a cylinder temperature of 250 ° C and a mold temperature of 80 ° C using an injection molding machine (trade name “EC-100” manufactured by Toshiba Machine Co., Ltd.) to produce a test piece (molded product). did. Table 1 shows the composition of the obtained molded product. In addition, stirring conditions, rotational viscosity, fiber length of one monodispersed fibrous crystal, and the maximum outer dimension (fiber length or maximum outer dimension) of the aggregate in which monodispersed fibrous crystals are aggregated, monodispersed fibers Shortest distance between crystal-like crystals, shortest distance between aggregates of monodispersed fibrous crystals, and between a single monodispersed fibrous crystal and aggregates of monodispersed fibrous crystals Table 2 shows the shortest distance (shortest distance), density, bending strength, bending elastic modulus, and Charpy impact strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 ε-カプロラクタム(A-1)10kg、亜リン酸(D-1)20gを同一容器に入れ、80℃にて加熱しながら均一な溶液になるまで、ホモミキサーを用いて4000rpmの回転数で攪拌し、その後セピオライト(B-1)1.14kgを添加して均一な溶液になるまで同様に攪拌混合して混合物を作製した以外は、実施例1と同様にしてポリアミド樹脂組成物を得、該ポリアミド樹脂組成物を射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表1に、評価結果を表2に示す。
(実施例3~12)
 表1に示すように繊維状粘土鉱物の種類、繊維状粘土鉱物の配合量を変更し、さらに、工程(i)での攪拌条件を変更し、実施例2と同様にしてポリアミド樹脂組成物を得、該ポリアミド樹脂組成物を射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表1に、評価結果を表2に示す。
(実施例13)
 亜リン酸(D-1)の代わりにリン酸(D-2)を用いた以外は、実施例2と同様にしてポリアミド樹脂組成物を得、該ポリアミド樹脂組成物を射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表1に、評価結果を表2に示す。
(比較例1)
 繊維状粘土鉱物を用いなかった以外は、実施例2と同様にしてポリアミド樹脂組成物を得、該ポリアミド樹脂組成物を射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表1に、評価結果を表2に示す。
(比較例2~6)
 表1に示すように、補強材の種類、補強材の配合量を変更し、さらに表2に示すように、工程(ii)での攪拌条件を変更し、実施例2と同様にしてポリアミド樹脂組成物を得、該ポリアミド樹脂組成物を射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表1に、評価結果を表2に示す。
(比較例7)
 ε-カプロラクタム(A)10kgとセピオライト(B-1)1.14kgを同一反応容器内に入れ、予備攪拌混合した後、容器内に窒素ガスを流しながら容器内混合物を攪拌混合した。次いで、攪拌しながら反応容器を220℃に加温し、1時間攪拌させた。その後、反応容器を260℃に加温し、ポリアミド樹脂を重合した。得られたポリアミド樹脂組成物を実施例2と同様に射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表1に、評価結果を表2に示す。
(Example 2)
Put 10 kg of ε-caprolactam (A-1) and 20 g of phosphorous acid (D-1) in the same container and stir at a rotation speed of 4000 rpm using a homomixer until it becomes a homogeneous solution while heating at 80 ° C. Thereafter, 1.14 kg of sepiolite (B-1) was added and the mixture was stirred and mixed in the same manner until a uniform solution was obtained to obtain a polyamide resin composition in the same manner as in Example 1, The polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 1, and the evaluation results are shown in Table 2.
(Examples 3 to 12)
As shown in Table 1, the type of fibrous clay mineral and the blending amount of fibrous clay mineral were changed, and the stirring conditions in step (i) were changed, and a polyamide resin composition was prepared in the same manner as in Example 2. The polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 1, and the evaluation results are shown in Table 2.
(Example 13)
A polyamide resin composition was obtained in the same manner as in Example 2 except that phosphoric acid (D-2) was used instead of phosphorous acid (D-1), and the molded article was obtained by injection molding the polyamide resin composition. Obtained. Evaluation was performed about the obtained molded article. The composition is shown in Table 1, and the evaluation results are shown in Table 2.
(Comparative Example 1)
A polyamide resin composition was obtained in the same manner as in Example 2 except that the fibrous clay mineral was not used, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 1, and the evaluation results are shown in Table 2.
(Comparative Examples 2 to 6)
As shown in Table 1, the type of the reinforcing material and the blending amount of the reinforcing material were changed. Further, as shown in Table 2, the stirring conditions in step (ii) were changed, and the polyamide resin was changed in the same manner as in Example 2. A composition was obtained, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 1, and the evaluation results are shown in Table 2.
(Comparative Example 7)
10 kg of ε-caprolactam (A) and 1.14 kg of sepiolite (B-1) were put in the same reaction vessel, pre-stirred and mixed, and then the mixture in the vessel was stirred and mixed while flowing nitrogen gas into the vessel. Next, while stirring, the reaction vessel was heated to 220 ° C. and stirred for 1 hour. Thereafter, the reaction vessel was heated to 260 ° C. to polymerize the polyamide resin. The obtained polyamide resin composition was injection molded in the same manner as in Example 2 to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 1, and the evaluation results are shown in Table 2.
 表1および表2から明らかなように、実施例1~13のポリアミド樹脂組成物は、繊維状粘土鉱物が配合されていない比較例1と比較すると、曲げ強度、曲げ弾性率ともに優れていた。 As is clear from Tables 1 and 2, the polyamide resin compositions of Examples 1 to 13 were superior in both bending strength and flexural modulus as compared with Comparative Example 1 in which no fibrous clay mineral was blended.
 特に、実施例1~5、10~13のポリアミド樹脂組成物は、ポリアミド樹脂と繊維状粘土鉱物の含有量が特に好ましい範囲であったため、曲げ強度、曲げ弾性率および耐衝撃性のバランスに優れたものとなった。 In particular, the polyamide resin compositions of Examples 1 to 5 and 10 to 13 were excellent in the balance of flexural strength, flexural modulus, and impact resistance because the content of the polyamide resin and the fibrous clay mineral was in a particularly preferred range. It became a thing.
 実施例6および実施例8のポリアミド樹脂組成物は、繊維状粘土鉱物の配合が規定の範囲内であって、上限値近傍であるか、または上限値であったため、回転粘度が高く分散性が低下した。そのため、繊維長、または凝集物の最大外寸は大きいものとなった。しかしながら、繊維状粘土鉱物の配合が十分に多かったため、曲げ強度および曲げ弾性率がより優れたものとなった。 In the polyamide resin compositions of Example 6 and Example 8, the composition of the fibrous clay mineral was within the specified range and was in the vicinity of the upper limit value or was the upper limit value, so the rotational viscosity was high and the dispersibility was high. Declined. Therefore, the fiber length or the maximum outer dimension of the aggregate is large. However, since the amount of the fibrous clay mineral was sufficiently large, the bending strength and the bending elastic modulus were more excellent.
 比較例1のポリアミド樹脂組成物は、繊維状粘土鉱物が配合されていなかったため、曲げ強度、曲げ弾性率のいずれにおいても劣る結果となった。 The polyamide resin composition of Comparative Example 1 was inferior in both bending strength and flexural modulus because no fibrous clay mineral was blended.
 比較例2のポリアミド樹脂組成物は、せん断速度の値が過小であったため、繊維状粘土鉱物の繊維長または最大外径、および最短距離が過大であったため、繊維状粘土鉱物の分散が不十分となり、曲げ強度に劣る結果となった。 Since the polyamide resin composition of Comparative Example 2 had an excessively low shear rate, the fiber length or maximum outer diameter and the shortest distance of the fibrous clay mineral were excessive, and therefore the fibrous clay mineral was not sufficiently dispersed. As a result, the bending strength was inferior.
 比較例3のポリアミド樹脂組成物は、繊維状粘土鉱物の配合量が過少であったため強化効果が無く、曲げ強度および曲げ弾性率のいずれにおいても劣る結果となった。 The polyamide resin composition of Comparative Example 3 had no reinforcing effect because the blending amount of the fibrous clay mineral was too small, and both the bending strength and the flexural modulus were inferior.
 比較例4においては、繊維状粘土鉱物の配合量が過多であったため混合物の回転粘度が高くなった。そのため、重合の際の攪拌が困難で、その後の重合が不十分となり、ポリアミド樹脂組成物を得ることができなかった。 In Comparative Example 4, the rotational viscosity of the mixture increased because the amount of fibrous clay mineral was excessive. Therefore, stirring at the time of polymerization is difficult, subsequent polymerization becomes insufficient, and a polyamide resin composition cannot be obtained.
 比較例5においては、繊維状粘土鉱物ではない層状粘土鉱物を用いたため、工程(ii)で得られたポリアミド樹脂組成物の溶融粘度が過大となり、オートクレーブから払い出すことが不可能だった。 In Comparative Example 5, since a layered clay mineral that is not a fibrous clay mineral was used, the polyamide resin composition obtained in step (ii) had an excessively high melt viscosity and could not be dispensed from the autoclave.
 比較例6においては、繊維状粘土鉱物ではなくガラス繊維を用いたため、本発明で得られる密度が同程度の樹脂組成物よりも曲げ強度、曲げ弾性率が劣った。 In Comparative Example 6, since glass fibers were used instead of fibrous clay minerals, the bending strength and the bending elastic modulus were inferior to those of the resin compositions having the same density obtained in the present invention.
 比較例7においては、酸の配合を行わないでポリアミド樹脂組成物を得た。そのため、用いた繊維状粘土鉱物の単分散した一本の繊維状結晶の繊維長、および単分散した繊維状結晶が凝集した凝集物の最大外寸が過大となり、曲げ強度、曲げ弾性率のいずれもが劣る結果となった。
(実施例14)
 ε-カプロラクタム(A-1)10kg、亜リン酸(D-1)20gを同一容器に入れ、80℃にて加熱しながら均一な溶液になるまで、ホモミキサー(プライミクス社製、商品名「T.K.ホモミクサーMARKII20」、攪拌翼直径44mm、クリアランス1mm)を用いて、4000rpmの回転数で攪拌混合して、その後攪拌しながらセピオライト(B-1)1.14kgを添加して、均一な混合物を作製した。このときのせん断速度は9210sec-1であった。ここまでは、工程(i)である。時間の経過とともに回転粘度は増大し、攪拌開始時の回転粘度は5Pa・sであったのが、422時間経過後の回転粘度は55Pa・sであった。次いで、上記工程(i)により得られた混合物を、次の工程(ii)において重合に付するため、オートクレーブに投入し、内温260℃で攪拌しながら、1時間重合させた。
In Comparative Example 7, a polyamide resin composition was obtained without blending acid. Therefore, the fiber length of one monodispersed fibrous crystal of the used fibrous clay mineral and the maximum outer dimension of the aggregate in which the monodispersed fibrous crystals are aggregated are excessive, and either the bending strength or the flexural modulus is exceeded. The result was inferior.
(Example 14)
Put 10 kg of ε-caprolactam (A-1) and 20 g of phosphorous acid (D-1) in the same container, and heat at 80 ° C. until homogenous solution is obtained (product name “T” K. Homomixer MARK II 20 ”, stirring blade diameter 44 mm, clearance 1 mm), stirring and mixing at a rotation speed of 4000 rpm, and then adding 1.14 kg of sepiolite (B-1) with stirring to obtain a uniform mixture Was made. The shear rate at this time was 9210 sec −1 . So far, it is process (i). The rotational viscosity increased with time, and the rotational viscosity at the start of stirring was 5 Pa · s, but the rotational viscosity after 422 hours was 55 Pa · s. Next, the mixture obtained in the above step (i) was put into an autoclave to be polymerized in the next step (ii) and polymerized for 1 hour while stirring at an internal temperature of 260 ° C.
 重合終了後、オートクレーブの底排弁よりストランド状に引き取った重合体を温浴槽にて冷却固化し、ペレタイザーでペレット状に切断した。得られたペレットを95℃の熱水で24時間精錬処理をして、未反応のモノマーおよびオリゴマーを除去した。その後、80℃で24時間乾燥させ、さらに、80℃で48時間真空乾燥させた。 After completion of the polymerization, the polymer taken in the form of a strand from the bottom drain valve of the autoclave was cooled and solidified in a hot tub, and cut into pellets with a pelletizer. The obtained pellets were refined with hot water at 95 ° C. for 24 hours to remove unreacted monomers and oligomers. Then, it was dried at 80 ° C. for 24 hours, and further vacuum dried at 80 ° C. for 48 hours.
 二軸押出機(東芝機械社製、商品名「TEM37BS型」)を用い、乾燥後のペレット3kgとカップリング剤(C-1)30gをドライブレンドして押出機の根元供給口からトップフィードし、バレル温度250~270℃、スクリュー回転数200rpm、吐出15kg/hの条件で、ベントを効かせながら押出しを実施した。押出機先端から吐出された溶融樹脂をストランド状に引き取り、冷却水で満たしたバットを通過させて冷却固化した後、ペレット状にカッティングしてポリアミド樹脂組成物を得た。 Using a twin-screw extruder (trade name “TEM37BS type” manufactured by Toshiba Machine Co., Ltd.), dry-blend 3 kg of dried pellets and 30 g of coupling agent (C-1), and top feed from the root supply port of the extruder. Extrusion was carried out while venting under the conditions of a barrel temperature of 250 to 270 ° C., a screw speed of 200 rpm, and a discharge of 15 kg / h. The molten resin discharged from the tip of the extruder was drawn into a strand shape, passed through a vat filled with cooling water, cooled and solidified, and then cut into a pellet shape to obtain a polyamide resin composition.
 得られたポリアミド樹脂組成物のペレットを、射出成形機(東芝機械社製、商品名「EC-100」)を用いて、シリンダー温度250℃、金型温度80℃で射出成形し、試験片を作製した。得られた成形品について、その組成を表3に示す。また、攪拌条件、回転粘度、単分散した一本の繊維状結晶の繊維長、かつ単分散した繊維状結晶が凝集した凝集物の最大外寸(繊維長または最大外寸)、単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離(最短距離)、密度、曲げ強度、曲げ弾性率、シャルピー衝撃強度を表4に示す。 The obtained polyamide resin composition pellets were injection molded at a cylinder temperature of 250 ° C. and a mold temperature of 80 ° C. using an injection molding machine (trade name “EC-100” manufactured by Toshiba Machine Co., Ltd.). Produced. Table 3 shows the composition of the obtained molded product. In addition, stirring conditions, rotational viscosity, fiber length of one monodispersed fibrous crystal, and the maximum outer dimension (fiber length or maximum outer dimension) of the aggregate in which monodispersed fibrous crystals are aggregated, monodispersed fibers Shortest distance between crystal-like crystals, shortest distance between aggregates of monodispersed fibrous crystals, and between a single monodispersed fibrous crystal and aggregates of monodispersed fibrous crystals Table 4 shows the shortest distance (shortest distance), density, bending strength, bending elastic modulus, and Charpy impact strength.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例15~29)
 表3に示すように、繊維状粘土鉱物の種類と配合量、カップリング剤の種類と配合量を変更し、さらに表4に示すように攪拌条件を変更し、実施例14と同様にしてポリアミド樹脂組成物を得、該ポリアミド樹脂組成物を射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表3に、評価結果を表4に示す。
(実施例30)
 ε-カプロラクタム(A-1)10kg、亜リン酸(D-1)20gを同一容器に入れ、80℃にて加熱しながら均一な溶液になるまで、ホモミキサー(プライミクス社製、商品名「T.K.ホモミクサーMARKII20」)を用いて、4000rpmの回転数で攪拌混合して、その後攪拌しながらセピオライト(B-1)1.14kg、カップリング剤(C-1)111gを添加して均一な混合物を作製した。ここまでは、工程(ii)である。時間の経過とともに回転粘度は増大し、攪拌開始時の回転粘度は5Pa・sであったのが、2時間経過後の回転粘度は65Pa・sであった。次いで、上記工程(i)により得られた混合物を工程(ii)における重合に付するため、オートクレーブに投入し、内温260℃で攪拌しながら、1時間重合させた。
(Examples 15 to 29)
As shown in Table 3, the type and blending amount of the fibrous clay mineral, the type and blending amount of the coupling agent were changed, and the stirring conditions were changed as shown in Table 4. A resin composition was obtained, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
(Example 30)
Put 10 kg of ε-caprolactam (A-1) and 20 g of phosphorous acid (D-1) in the same container, and heat at 80 ° C. until homogenous solution is obtained (product name “T” K. Homomixer MARK II 20 ") and stirring and mixing at a rotational speed of 4000 rpm, and then adding 1.14 kg of sepiolite (B-1) and 111 g of coupling agent (C-1) while stirring. A mixture was made. So far, it is process (ii). The rotational viscosity increased with time, and the rotational viscosity at the start of stirring was 5 Pa · s, but the rotational viscosity after 2 hours was 65 Pa · s. Next, in order to subject the mixture obtained in the step (i) to polymerization in the step (ii), the mixture was put into an autoclave and polymerized for 1 hour while stirring at an internal temperature of 260 ° C.
 重合終了後、オートクレーブ内が1MPaになるよう窒素で加圧し、オートクレーブの底排弁よりストランド状に引き取った重合体を温浴槽にて冷却固化し、ペレタイザーでペレット状に切断した。得られたペレットを95℃の熱水で24時間精錬処理をして、未反応のモノマーおよびオリゴマーを除去した。その後、80℃で24時間乾燥させ、さらに、80℃で48時間真空乾燥させた。 After completion of the polymerization, the autoclave was pressurized with nitrogen so that the inside of the autoclave became 1 MPa, and the polymer taken in a strand shape from the bottom exhaust valve of the autoclave was cooled and solidified in a hot tub, and cut into pellets with a pelletizer. The obtained pellets were refined with hot water at 95 ° C. for 24 hours to remove unreacted monomers and oligomers. Then, it was dried at 80 ° C. for 24 hours, and further vacuum dried at 80 ° C. for 48 hours.
 乾燥後のペレットを実施例14と同様に射出成形し、試験片を作製した。得られた成形品について評価を実施した。その組成を表3に、評価結果を表4に示す。
(実施例31)
 アジピン酸/ヘキサメチレンジアミン等モル塩(A-2)10kg、亜リン酸(D-1)20gを同一容器に入れ、窒素雰囲気下205℃にて加熱しながら均一な溶液になるまで、ホモミキサー(プライミクス社製、商品名「T.K.ホモミクサーMARKII20」)を用いて、4000rpmの回転数で攪拌混合して、その後攪拌しながらセピオライト(B-1)1.14kgを添加して、均一な混合物を作製した。ここまでは、工程(i)である。攪拌0.5時間経過後の回転粘度は35Pa・sであった。次いで、上記工程(i)により得られた混合物を工程(ii)における重合に付するため、オートクレーブに投入した。内温230℃で攪拌しながら、内圧が18MPaになるまで加熱し、その圧力に到達後、徐々に圧力を抜きつつ、加熱して280℃に達した時点で、常圧まで放圧し、2時間重合を行った。
The dried pellets were injection molded in the same manner as in Example 14 to prepare test pieces. Evaluation was performed about the obtained molded article. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
(Example 31)
Homomixer until 10 kg of adipic acid / hexamethylenediamine equimolar salt (A-2) and 20 g of phosphorous acid (D-1) are placed in the same container and heated to 205 ° C. in a nitrogen atmosphere until a homogeneous solution is obtained. (Product name “TK homomixer MARKII20” manufactured by Primix Co., Ltd.) was stirred and mixed at a rotational speed of 4000 rpm, and then 1.14 kg of sepiolite (B-1) was added while stirring. A mixture was made. So far, it is process (i). The rotational viscosity after stirring for 0.5 hours was 35 Pa · s. Next, the mixture obtained in the step (i) was put into an autoclave in order to be subjected to polymerization in the step (ii). While stirring at an internal temperature of 230 ° C., heating is performed until the internal pressure reaches 18 MPa. After reaching that pressure, the pressure is gradually released, and when the heating reaches 280 ° C., the pressure is released to normal pressure and 2 hours. Polymerization was performed.
 重合終了後、オートクレーブの低排便よりストランド上に引き取った重合体を温浴槽にて冷却固化し、ペレタイザーでペレット状に切断した。その後、80℃で48時間真空乾燥させた。 After completion of the polymerization, the polymer taken on the strand from the low defecation of the autoclave was cooled and solidified in a hot tub, and cut into pellets with a pelletizer. Then, it was vacuum-dried at 80 ° C. for 48 hours.
 これ以降、二軸押出機のバレル温度を270~290℃、射出成形機のシリンダー温度を270℃とした以外は実施例14と同様にし、試験片を作製した。得られた成形品について評価を実施した。その組成を表3に、評価結果を表4に示す。
(実施例32~37)
 表3に示すように補強材の種類と配合量、酸の配合量、カップリング剤の種類と配合量を変更し、さらに表4に示すように攪拌条件を変更し、実施例14と同様にしてポリアミド樹脂組成物を得、該ポリアミド樹脂組成物を射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表3に、評価結果を表4に示す。
(比較例8)
 繊維状粘土鉱物を用いなかった以外は、実施例14と同様にしてポリアミド樹脂組成物を得、該ポリアミド樹脂組成物を射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表3に、評価結果を表4に示す。
(比較例9~12)
 表3に示すように補強材の種類と配合量、酸の配合量、カップリング剤の種類と配合量を変更し、さらに表4に示すように攪拌条件を変更し、実施例14と同様にしてポリアミド樹脂組成物を得、該ポリアミド樹脂組成物を射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表3に、評価結果を表4に示す。
(比較例13~15)
 補強材としてガラス繊維、またはタルクを用いた以外は、実施例14と同様にしてポリアミド樹脂組成物を得、該ポリアミド樹脂組成物を射出成形し成形品を得た。得られた成形品について評価を実施した。その組成を表3に、評価結果を表4に示す。
(比較例16)
 セピオライト(B-1)1.14kgと水1.14kgをホモミキサー(プライミクス社製、商品名「T.K.ホモミクサーMARKII20」)を用い、20℃で液温を保ちながら、4000rpmの回転数で攪拌混合して水懸濁液を調製した。次に、この水懸濁液にカップリング剤(C-1)111gを添加し、攪拌を続けた。2時間攪拌後、ε-カプロラクタム(A-1)10kgを添加し、さらに攪拌を続け、均一な混合物を作製した。ここまでは、工程(ii)である。時間の経過とともに回転粘度は増大し、攪拌開始時の回転粘度は50Pa・sであったのが、30分経過後の回転粘度は850Pa・sであった。次いで、上記工程(i)により得られた混合物を工程(ii)において重合に付するため、オートクレーブに投入し、内温260℃で系内の水を除去しながら攪拌し、1時間重合させた。重合体の払い出し以降は実施例14と同様にして、各種評価を行った。その組成を表3に、評価結果を表4に示す。
(比較例17)
 ε-カプロラクタム(A-1)10kg添加時に、亜リン酸(D-1)20gを添加した以外は比較例19と同様にして、各種評価を行った。その組成を表3に、評価結果を表4に示す。
(比較例18)
 ホモミキサーによる攪拌時の回転数を12000rpmとした以外は、実施例1と同様にして、各種評価を行った。その組成を表3に、評価結果を表4に示す。
Thereafter, test pieces were prepared in the same manner as in Example 14 except that the barrel temperature of the twin screw extruder was 270 to 290 ° C. and the cylinder temperature of the injection molding machine was 270 ° C. Evaluation was performed about the obtained molded article. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
(Examples 32 to 37)
As shown in Table 3, the type and amount of the reinforcing material, the amount of acid, the type and amount of the coupling agent were changed, and the stirring conditions were changed as shown in Table 4. Thus, a polyamide resin composition was obtained, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
(Comparative Example 8)
A polyamide resin composition was obtained in the same manner as in Example 14 except that the fibrous clay mineral was not used, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
(Comparative Examples 9-12)
As shown in Table 3, the type and amount of the reinforcing material, the amount of acid, the type and amount of the coupling agent were changed, and the stirring conditions were changed as shown in Table 4. Thus, a polyamide resin composition was obtained, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
(Comparative Examples 13 to 15)
A polyamide resin composition was obtained in the same manner as in Example 14 except that glass fiber or talc was used as the reinforcing material, and the polyamide resin composition was injection molded to obtain a molded product. Evaluation was performed about the obtained molded article. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
(Comparative Example 16)
Sepiolite (B-1) 1.14 kg and 1.14 kg of water were used at a rotational speed of 4000 rpm while maintaining the liquid temperature at 20 ° C. using a homomixer (trade name “TK homomixer MARKII20” manufactured by PRIMIX Corporation). A water suspension was prepared by stirring and mixing. Next, 111 g of coupling agent (C-1) was added to this aqueous suspension, and stirring was continued. After stirring for 2 hours, 10 kg of ε-caprolactam (A-1) was added, and stirring was continued to prepare a uniform mixture. So far, it is process (ii). The rotational viscosity increased with time, and the rotational viscosity at the start of stirring was 50 Pa · s, but the rotational viscosity after 30 minutes was 850 Pa · s. Subsequently, in order to subject the mixture obtained in the step (i) to polymerization in the step (ii), the mixture was put into an autoclave, stirred while removing water in the system at an internal temperature of 260 ° C., and polymerized for 1 hour. . After the polymer was dispensed, various evaluations were performed in the same manner as in Example 14. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
(Comparative Example 17)
Various evaluations were performed in the same manner as Comparative Example 19 except that 20 g of phosphorous acid (D-1) was added when 10 kg of ε-caprolactam (A-1) was added. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
(Comparative Example 18)
Various evaluations were performed in the same manner as in Example 1 except that the number of rotations during stirring by the homomixer was 12000 rpm. The composition is shown in Table 3, and the evaluation results are shown in Table 4.
 表3および表4から明らかなように、実施例14~34のポリアミド樹脂組成物は、繊維状粘土鉱物が配合されていない比較例8と比較すると、曲げ強度、曲げ弾性率ともに優れていた。 As is clear from Tables 3 and 4, the polyamide resin compositions of Examples 14 to 34 were superior in both bending strength and flexural modulus compared to Comparative Example 8 in which no fibrous clay mineral was blended.
 特に、実施例20および実施例22のポリアミド樹脂組成物は、繊維状粘土鉱物の配合が規定の範囲内であって、上限値近傍、または上限値であったため、回転粘度が高く分散性が低下し、繊維長、または凝集物の最大外寸は大きいものとなった。しかしながら、繊維状粘土鉱物の配合が十分に多かったため、曲げ強度および曲げ弾性率がより優れたものとなった。 In particular, the polyamide resin compositions of Example 20 and Example 22 had a high rotational viscosity and reduced dispersibility because the composition of the fibrous clay mineral was within the specified range and was in the vicinity of the upper limit value or the upper limit value. However, the fiber length or the maximum outer size of the agglomerates was large. However, since the amount of the fibrous clay mineral was sufficiently large, the bending strength and the bending elastic modulus were more excellent.
 実施例32のポリアミド樹脂組成物は、カップリング剤の含有量が過多であったため耐衝撃性に改善の余地を残す結果となった。 The polyamide resin composition of Example 32 had a room for improvement in impact resistance because the coupling agent content was excessive.
 実施例33のポリアミド樹脂組成物は、繊維状粘土鉱物が配合されていない比較例1と比較すると、曲げ強度、曲げ弾性率ともに優れていた。しかしながら、カップリング剤の含有量が、本発明の好ましい範囲よりも過少であったため、耐衝撃性の向上がみられなかった。 The polyamide resin composition of Example 33 was superior in both bending strength and flexural modulus as compared with Comparative Example 1 in which no fibrous clay mineral was blended. However, since the content of the coupling agent was less than the preferred range of the present invention, no improvement in impact resistance was observed.
 比較例8のポリアミド樹脂組成物は、繊維状粘土鉱物が配合されていなかったため、曲げ強度、曲げ弾性率、曲げ弾性率のいずれも劣る結果となった。 The polyamide resin composition of Comparative Example 8 was inferior in bending strength, bending elastic modulus, and bending elastic modulus because no fibrous clay mineral was blended.
 比較例9においては、せん断速度の値が過小であったため、繊維状粘土鉱物の繊維長または最大外径、および最短距離が過大となり、繊維状粘土鉱物の分散が不十分となり、耐衝撃性は高いが曲げ強度に劣る結果となった。 In Comparative Example 9, since the value of the shear rate was too small, the fiber length or the maximum outer diameter and the shortest distance of the fibrous clay mineral were excessive, the dispersion of the fibrous clay mineral was insufficient, and the impact resistance was The result was high but inferior in bending strength.
 比較例10のポリアミド樹脂組成物は、繊維状粘土鉱物の配合量が過少であったため強化効果が無く、曲げ強度、曲げ弾性率、耐衝撃性のいずれも劣る結果となった。 The polyamide resin composition of Comparative Example 10 had no reinforcing effect because the blending amount of the fibrous clay mineral was too small, and the bending strength, bending elastic modulus, and impact resistance were all inferior.
 比較例11のポリアミド樹脂組成物は、繊維状粘土鉱物の配合量が過多であったため重合の際の攪拌が困難で、その後の重合が不十分となり、ポリアミド樹脂組成物を得ることができなかった。 In the polyamide resin composition of Comparative Example 11, since the amount of the fibrous clay mineral was excessive, stirring during the polymerization was difficult, the subsequent polymerization was insufficient, and a polyamide resin composition could not be obtained. .
 比較例12においては、酸の配合を行わないでポリアミド樹脂組成物を得たため、用いた繊維状粘土鉱物の単分散した一本の繊維状結晶の繊維長、および単分散した繊維状結晶が凝集した凝集物の最大外寸が過大となり、曲げ強度、曲げ弾性率、耐衝撃性のいずれもが劣る結果となった。 In Comparative Example 12, since the polyamide resin composition was obtained without blending the acid, the fiber length of one monodispersed fibrous crystal of the used fibrous clay mineral and the monodispersed fibrous crystals aggregated. The maximum outer dimension of the agglomerated material was excessive, resulting in poor bending strength, flexural modulus, and impact resistance.
 比較例13においては、繊維状粘土鉱物ではなくガラス繊維を用いたため、本発明で得られる密度が同程度の樹脂組成物よりも曲げ強度、曲げ弾性率が劣った。 In Comparative Example 13, since glass fiber was used instead of fibrous clay mineral, the bending strength and the bending elastic modulus were inferior to those of the resin composition having the same density obtained in the present invention.
 比較例14および15においては、繊維状粘土鉱物ではなくタルクを用いたため、本発明で得られる樹脂組成物よりも曲げ特性、耐衝撃性に劣った。 In Comparative Examples 14 and 15, since talc was used instead of fibrous clay mineral, the bending properties and impact resistance were inferior to the resin composition obtained in the present invention.
 比較例16および17においては、セピオライトと水を混合して得た水分散液に対し、ε-カプロラクタムを投入してポリアミド樹脂組成物を得たため、回転粘度が高く、重合の際の攪拌が不十分であった。そのため、繊維状粘土鉱物間の最短距離が過少であり、曲げ弾性率および耐衝撃性に劣った。 In Comparative Examples 16 and 17, since a polyamide resin composition was obtained by adding ε-caprolactam to an aqueous dispersion obtained by mixing sepiolite and water, the rotational viscosity was high and stirring during polymerization was not performed. It was enough. Therefore, the shortest distance between the fibrous clay minerals is too short, and the flexural modulus and impact resistance are poor.
 比較例18においては、ホモミキサーによるせん断速度が上限を超えたため、繊維状粘土鉱物の分散が進み過ぎた。その結果、繊維状粘土鉱物間の最短距離が過少となり、曲げ特性に劣った。 In Comparative Example 18, since the shear rate by the homomixer exceeded the upper limit, the dispersion of the fibrous clay mineral progressed too much. As a result, the shortest distance between the fibrous clay minerals was too short and the bending properties were poor.
 本発明のポリアミド樹脂組成物は、従来の繊維で強化されたポリアミド樹脂と比較して、密度が低く、機械的特性に優れ、製造工程が簡略化されているため有用である。 The polyamide resin composition of the present invention is useful because it has a low density, excellent mechanical properties, and a simplified manufacturing process as compared with a polyamide resin reinforced with conventional fibers.

Claims (8)

  1.  ポリアミド樹脂(A)70~99.5質量部および繊維状粘土鉱物(B)0.5~30質量部を含有するポリアミド樹脂組成物であって、ポリアミド樹脂(A)中に、繊維状粘土鉱物(B)が単分散した繊維状結晶、および/または単分散した繊維状結晶が凝集した凝集物が、下記(I)および(II)の状態で分散していることを特徴とするポリアミド樹脂組成物。
    (I)単分散した一本の繊維状結晶の繊維長が0.01~40μmであり、単分散した繊維状結晶が凝集した凝集物の最大外寸が0.01~40μmである。
    (II)単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離がいずれも1~100nmである。
    A polyamide resin composition comprising 70 to 99.5 parts by mass of a polyamide resin (A) and 0.5 to 30 parts by mass of a fibrous clay mineral (B), the fibrous clay mineral in the polyamide resin (A) A polyamide resin composition, wherein (B) monodispersed fibrous crystals and / or aggregates of monodispersed fibrous crystals are dispersed in the following states (I) and (II): object.
    (I) The fiber length of one monodispersed fibrous crystal is 0.01 to 40 μm, and the maximum outer size of the aggregate obtained by agglomerating monodispersed fibrous crystals is 0.01 to 40 μm.
    (II) The shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals The shortest distance between the aggregated aggregates is 1 to 100 nm.
  2.  ポリアミド樹脂(A)と繊維状粘土鉱物(B)との合計100質量部に対して、カップリング剤(C)を0.05~5質量部含有することを特徴とする請求項1に記載のポリアミド樹脂組成物。 The coupling agent (C) is contained in an amount of 0.05 to 5 parts by mass with respect to a total of 100 parts by mass of the polyamide resin (A) and the fibrous clay mineral (B). Polyamide resin composition.
  3.  繊維状粘土鉱物(B)がセピオライトおよび/またはパリゴルスカイトであることを特徴とする請求項1または2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, wherein the fibrous clay mineral (B) is sepiolite and / or palygorskite.
  4.  カップリング剤(C)がエポキシ基、ウレイド基、イソシアネート基から選ばれる反応性を有する基を含むシランカップリング剤であることを特徴とする請求項2または3に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 2 or 3, wherein the coupling agent (C) is a silane coupling agent containing a reactive group selected from an epoxy group, a ureido group and an isocyanate group.
  5.  ポリアミド樹脂(A)を構成するモノマー70~99.5質量部および酸(D)0.01~5質量部を前記モノマーの融点以上の温度Tで溶融させた後、さらに繊維状粘土鉱物(B)0.5~30質量部をせん断速度1000~20000sec-1で混合する工程(i)と、該工程(i)で得られた混合物を溶融重合する工程(ii)とを含み、該繊維状粘土鉱物(B)の単分散した繊維状結晶、および/または単分散した繊維状結晶が凝集した凝集物が、下記(I)および(II)の状態で分散されたポリアミド樹脂組成物を得ることを特徴とするポリアミド樹脂組成物の製造方法。
    (I)単分散した一本の繊維状結晶の繊維長が0.01~40μmであり、単分散した繊維状結晶が凝集した凝集物の最大外径が0.01~40μmである。
    (II)単分散した繊維状結晶同士間の最短距離、単分散した繊維状結晶が凝集した凝集物同士間の最短距離、および単分散した一本の繊維状結晶と単分散した繊維状結晶が凝集した凝集物との間の最短距離がいずれも1~100nmである。
    After melting 70 to 99.5 parts by mass of the monomer constituting the polyamide resin (A) and 0.01 to 5 parts by mass of the acid (D) at a temperature T equal to or higher than the melting point of the monomer, the fibrous clay mineral (B A step (i) of mixing 0.5 to 30 parts by mass at a shear rate of 1000 to 20000 sec −1 and a step (ii) of melt-polymerizing the mixture obtained in the step (i). To obtain a polyamide resin composition in which monodispersed fibrous crystals of clay mineral (B) and / or aggregates of aggregated monodispersed fibrous crystals are dispersed in the following states (I) and (II): A process for producing a polyamide resin composition characterized by the above.
    (I) The fiber length of one monodispersed fibrous crystal is 0.01 to 40 μm, and the maximum outer diameter of the aggregate obtained by agglomerating monodispersed fibrous crystals is 0.01 to 40 μm.
    (II) The shortest distance between monodispersed fibrous crystals, the shortest distance between aggregates of monodispersed fibrous crystals, and one monodispersed fibrous crystal and monodispersed fibrous crystals The shortest distance between the aggregated aggregates is 1 to 100 nm.
  6.  工程(i)において、ポリアミド樹脂(A)を構成するモノマーと繊維状粘土鉱物(B)との合計100質量部に対して、カップリング剤(C)0.05~5質量部を混合することを特徴とする請求項5に記載のポリアミド樹脂組成物の製造方法。 In step (i), 0.05 to 5 parts by mass of the coupling agent (C) is mixed with 100 parts by mass of the monomer constituting the polyamide resin (A) and the fibrous clay mineral (B). The manufacturing method of the polyamide resin composition of Claim 5 characterized by these.
  7.  工程(ii)の後に、さらにポリアミド樹脂(A)を構成するモノマーと繊維状粘土鉱物(B)との合計100質量部に対して、カップリング剤(C)0.05~5質量部を加えて溶融混練する工程(iii)を含むことを特徴とする請求項5に記載のポリアミド樹脂組成物の製造方法。 After step (ii), 0.05 to 5 parts by mass of the coupling agent (C) is added to 100 parts by mass of the monomer constituting the polyamide resin (A) and the fibrous clay mineral (B). The method for producing a polyamide resin composition according to claim 5, further comprising a step (iii) of melt kneading.
  8.  工程(i)において、混合時間0.5時間以上経過後の温度TにおけるB型粘度計で測定した回転粘度が1~500Pa・sとなるように混合することを特徴とする請求項5から7のいずれかに記載のポリアミド樹脂組成物の製造方法。 In the step (i), the mixing is carried out so that the rotational viscosity measured by a B-type viscometer at a temperature T after a mixing time of 0.5 hours or more is 1 to 500 Pa · s. The manufacturing method of the polyamide resin composition in any one of.
PCT/JP2010/071537 2009-12-09 2010-12-02 Polyamide resin composition, and method for producing polyamide resin composition WO2011070959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011545184A JP5832296B2 (en) 2009-12-09 2010-12-02 Polyamide resin composition and method for producing polyamide resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-279011 2009-12-09
JP2009279011 2009-12-09
JP2010-183673 2010-08-19
JP2010183673 2010-08-19

Publications (1)

Publication Number Publication Date
WO2011070959A1 true WO2011070959A1 (en) 2011-06-16

Family

ID=44145504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071537 WO2011070959A1 (en) 2009-12-09 2010-12-02 Polyamide resin composition, and method for producing polyamide resin composition

Country Status (3)

Country Link
JP (1) JP5832296B2 (en)
TW (1) TW201130918A (en)
WO (1) WO2011070959A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043895A (en) * 2011-08-22 2013-03-04 Unitika Ltd Polyamide resin composition for expansion molding, and expansion-molded product obtained from the same
CN103146186A (en) * 2013-02-28 2013-06-12 金发科技股份有限公司 Nylon modified material and preparation method thereof
CN103614804A (en) * 2013-11-22 2014-03-05 东华大学 Preparation method of nylon 66/attapulgite clay nano-composite fiber
JP2018518562A (en) * 2015-05-12 2018-07-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Caprolactam formulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684435B2 (en) * 1988-09-22 1994-10-26 宇部興産株式会社 Method for producing clay mineral-nylon composite
JPH10237298A (en) * 1997-02-24 1998-09-08 Unitika Ltd Chip comprising polyamide resin composition and its production
WO1998049235A1 (en) * 1997-04-25 1998-11-05 Unitika Ltd. Polyamide resin composition and process for producing the same
JPH11315204A (en) * 1998-03-03 1999-11-16 Unitika Ltd Polyamide composite material
JP2001152012A (en) * 1999-11-25 2001-06-05 Sumitomo Rubber Ind Ltd Fiber-reinforced resin product, tennis racket and method for producing fiber-reinforced resin product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100487053C (en) * 2003-12-04 2009-05-13 华东理工大学 Composite material of fibrous nanometer clay and high viscosity polyamide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684435B2 (en) * 1988-09-22 1994-10-26 宇部興産株式会社 Method for producing clay mineral-nylon composite
JPH10237298A (en) * 1997-02-24 1998-09-08 Unitika Ltd Chip comprising polyamide resin composition and its production
WO1998049235A1 (en) * 1997-04-25 1998-11-05 Unitika Ltd. Polyamide resin composition and process for producing the same
JPH11315204A (en) * 1998-03-03 1999-11-16 Unitika Ltd Polyamide composite material
JP2001152012A (en) * 1999-11-25 2001-06-05 Sumitomo Rubber Ind Ltd Fiber-reinforced resin product, tennis racket and method for producing fiber-reinforced resin product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043895A (en) * 2011-08-22 2013-03-04 Unitika Ltd Polyamide resin composition for expansion molding, and expansion-molded product obtained from the same
CN103146186A (en) * 2013-02-28 2013-06-12 金发科技股份有限公司 Nylon modified material and preparation method thereof
CN103614804A (en) * 2013-11-22 2014-03-05 东华大学 Preparation method of nylon 66/attapulgite clay nano-composite fiber
JP2018518562A (en) * 2015-05-12 2018-07-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Caprolactam formulation
JP2021169612A (en) * 2015-05-12 2021-10-28 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Caprolactam formulations
JP7418946B2 (en) 2015-05-12 2024-01-22 ビーエーエスエフ ソシエタス・ヨーロピア caprolactam preparations

Also Published As

Publication number Publication date
TW201130918A (en) 2011-09-16
JP5832296B2 (en) 2015-12-16
JPWO2011070959A1 (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5981532B2 (en) Thermoplastic resin composite material containing hollow glass microspheres
JP5086619B2 (en) Functionally enhanced boron nitride composition and compositions made therefrom
JP2013071994A (en) Polyamide resin composition, and molded product
JP5911426B2 (en) Polyamide resin composition and molded product obtained therefrom
JP5832296B2 (en) Polyamide resin composition and method for producing polyamide resin composition
CN103772973B (en) A kind of high abrasion silicon nitride/nylon 6 nano-composite and preparation method thereof
JP2013053244A (en) Polyamide resin composition, and molding made by molding the same
JP4949913B2 (en) Long glass fiber reinforced polyamide resin pellets and molded articles thereof
JP2011208105A (en) Polyamide resin composition, method for producing the polyamide resin composition, and molded article made of the polyamide resin composition
JP5503379B2 (en) Fiber reinforced polyamide resin composition
JP5669491B2 (en) Polyamide resin composition, method for producing the polyamide resin composition, and molded article using the polyamide resin composition
CN104761886B (en) Amilan polyamide resin composition and formed products
JP5730284B2 (en) Polyamide resin composition, method for producing the polyamide resin composition, and molded article using the polyamide resin composition
WO2022095360A1 (en) Self-assembled network polyamide composition and preparation method therefor and application thereof
JP5502570B2 (en) Fiber reinforced polyamide resin composition
JP5644263B2 (en) Underhood parts for automobiles
JP6545442B2 (en) Polyamide resin composition and molded article comprising the same
JP2013100391A (en) Method for producing polyamide resin composition, and polyamide resin composition
JP6968321B1 (en) Method for Producing Polyarylene Sulfide Resin Composition
JP5791519B2 (en) Polyamide resin composition, method for producing the polyamide resin composition, and molded product obtained from the polyamide resin composition
JP2013072019A (en) Polyamide resin composition and manufacturing method of the polyamide resin composition
KR100604749B1 (en) Polyamide resin composition for microcellular forming process
KR100607291B1 (en) Polyamide resin composition that use to radiator head tank of automobile
KR100622718B1 (en) The composition of polyamide resin for micrcellular foaming prcess
CN115651351A (en) ABS composite material for 3D printing of guitar and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545184

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835880

Country of ref document: EP

Kind code of ref document: A1