WO2011070869A1 - Mobile body system - Google Patents

Mobile body system Download PDF

Info

Publication number
WO2011070869A1
WO2011070869A1 PCT/JP2010/069058 JP2010069058W WO2011070869A1 WO 2011070869 A1 WO2011070869 A1 WO 2011070869A1 JP 2010069058 W JP2010069058 W JP 2010069058W WO 2011070869 A1 WO2011070869 A1 WO 2011070869A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
transfer
interference
crane
mobile system
Prior art date
Application number
PCT/JP2010/069058
Other languages
French (fr)
Japanese (ja)
Inventor
順 太田
寿人 日野
俊光 東
由昌 小林
Original Assignee
国立大学法人東京大学
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 村田機械株式会社 filed Critical 国立大学法人東京大学
Priority to JP2011545146A priority Critical patent/JPWO2011070869A1/en
Publication of WO2011070869A1 publication Critical patent/WO2011070869A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0407Storage devices mechanical using stacker cranes
    • B65G1/0421Storage devices mechanical using stacker cranes with control for stacker crane operations

Definitions

  • the present invention relates to a mobile system, and more particularly, to a mobile system in which a plurality of mobile bodies can move within a plane range.
  • a conventional automatic warehouse includes, for example, a pair of racks, a stacker crane, a warehouse station, and a warehouse station.
  • the pair of racks are provided at a predetermined interval in the front-rear direction.
  • the stacker crane is provided so as to be movable in the left-right direction between the front and rear racks.
  • the warehousing station is arranged on the side of one rack.
  • the delivery station is arranged on the side of the other rack.
  • the rack has a large number of article storage shelves arranged vertically and horizontally.
  • the stacker crane has a traveling carriage, a lifting platform that can be raised and lowered by a mast provided therein, and an article transfer device (for example, a slide fork that is slidable in the front-rear direction). is doing.
  • a conveyor is used to transport the articles.
  • an automatic warehouse in which, for example, two stacker cranes can pass between the front and rear racks.
  • a pair of racks and two stacker cranes that can run in parallel are arranged between them.
  • the article transfer device of the stacker crane can carry in / out goods for any of the front and rear racks.
  • each set of two stacker crane elevators and article transfer devices interferes with each other in a two-dimensional plane. It can be grasped as two moving bodies that move in a state where there is a possibility of being. These two moving bodies can be freely moved in a plane by a combination of the traveling operation of the traveling carriage and the lifting operation of the lifting device. Therefore, in order to prevent interference between the two moving bodies, it is necessary to appropriately control the movement of the moving body.
  • a technique for preventing the interference of a plurality of moving bodies is required not only in an automatic warehouse but also in a transport cart system.
  • the transport cart transmits the current position to the network at predetermined time intervals, intercepts the positions of other transport carts, and determines the position after a predetermined time based on the speed. Estimate and feed back to the running speed of the aircraft.
  • a route map is used in which two travel routes after the branching and before joining are overlapped. Thereby, a conveyance trolley can drive autonomously, and it is not necessary to stop at a branching part or a joining part waiting for driving permission.
  • An object of the present invention is to reduce the processing load related to route search for preventing interference between a plurality of moving objects.
  • a mobile body system includes a plurality of mobile bodies and a control unit.
  • the plurality of moving bodies are arranged so as to be movable in a plane.
  • the control unit checks the interference with the other moving body on the planned moving path before the moving body starts moving, and if it determines that there is an interference, the control unit selects a point on the normal line on the line connecting the starting position and the target position.
  • a detour route having as a waypoint is generated.
  • One point for drawing the normal line may be an intermediate point of a straight line connecting the starting position and the target position. This shortens the time required for route search.
  • One point for drawing the normal may be a point where interference with another moving body is predicted on the planned movement route. This shortens the time required for route search.
  • the bisection method may be used for setting the waypoints. This shortens the time required for route search.
  • the first set point may be set at a position farthest possible on the layout from one point for drawing the normal. Thereby, interference between moving bodies is prevented more reliably.
  • the via point may be set in an area on the opposite side to the position of the other moving body in the area divided by the line connecting the starting position and the target position. Thereby, interference of a moving body is prevented more reliably.
  • a mobile system includes a plurality of mobile bodies and a control unit.
  • the plurality of moving bodies are arranged so as to be movable in a plane.
  • the control unit confirms interference with another moving body on the planned movement path before one of the plurality of moving bodies starts moving, and delays the start of moving the one moving body and / or determines that interference occurs.
  • a detour route having a point on the normal line at a point on the line connecting the starting position and the target position as a via point is generated.
  • This system uses two methods to avoid interference by correcting the moving conditions of the moving body. Therefore, the moving condition of the moving body can be preferably corrected.
  • the control unit may calculate a scheduled travel time for a method for delaying the start of movement and a method for generating a detour route, and may employ a method for shortening the planned travel time. In this system, since only one of the two methods is used, the amount of calculation is reduced.
  • the mobile system according to the present invention it is possible to reduce the processing load in route search for preventing interference between a plurality of mobile bodies.
  • FIG. 1 is a schematic plan view of an automatic warehouse in which an embodiment of the present invention is adopted. It is II arrow directional view of FIG. 1, and is a figure for demonstrating a rack and a stacker crane. It is a partially omitted side view of the automatic warehouse, and is a diagram for explaining a rack and a stacker crane.
  • the functional block diagram which shows the automatic warehouse control structure as 1st Example.
  • the functional block diagram which shows the automatic warehouse control structure as 2nd Example.
  • the flowchart which shows the track determination / movement process of a crane controller.
  • FIG. 3 is a schematic diagram showing two trajectories between a starting position and a target position.
  • the flowchart which shows the process which determines the optimal value by a bisection method. Time axis from 0 with interference to t max without interference.
  • the schematic diagram which shows the process which determines the viapoint which left
  • the schematic diagram which shows the operation
  • the mimetic diagram showing standby operation when two transfer parts try to access the same article storage shelf.
  • the flowchart which shows the interference avoidance process before the transfer operation of a crane controller.
  • FIG. 1 is a schematic plan view of an automatic warehouse in which an embodiment of the present invention is adopted.
  • FIG. 2 is a view taken in the direction of arrow II in FIG. 1 and is a view for explaining a rack and a stacker crane.
  • FIG. 3 is a partially omitted side view of the automatic warehouse and is a view for explaining a rack and a stacker crane.
  • the left-right direction in FIGS. 1 and 2 is the front-rear direction X of the automatic warehouse 1, and the up-down direction in FIG. 1 and the left-right direction in FIG.
  • the automatic warehouse 1 mainly includes a pair of racks 2 (first rack 2A and second rack 2B) and a pair of stacker cranes 3 (first stacker crane 3A and second stacker crane 3B).
  • the first rack 2A and the second rack 2B are arranged so as to sandwich the stacker crane passage 5 extending in the left-right direction Y of the automatic warehouse 1.
  • the first rack 2A and the second rack 2B include a large number of front struts 7 arranged along the left-right direction Y at a predetermined interval, and rear struts 9 arranged behind the front strut 7 with a predetermined interval therebetween, A number of article support members 11 provided on the front column 7 and the rear column 9 are provided.
  • An article storage shelf 13 is constituted by a pair of left and right article support members 11, and a fork passage gap 15 that allows the slide fork 31 described later to move in the vertical direction is formed between them.
  • each article storage shelf 13 is arranged in a large number on the left, right, top and bottom, and an article W can be placed on each.
  • Each article W is placed on the pallet P (see FIG. 2) and moved together with the pallet P.
  • a warehouse station 17 is disposed on one side of the second rack 2B, and a warehouse station 19 is disposed on one side of the first rack 2A.
  • the first stacker crane 3A and the second stacker crane 3B travel in parallel in the vicinity of the rack 2 and can transfer the article W to and from the rack 2.
  • the stacker crane will be described in more detail.
  • a first traveling rail 21A and a second traveling rail 21B arranged in the front-rear direction X of the automatic warehouse 1 along the stacker crane passage 5 are provided.
  • Each of the first traveling rail 21A and the second traveling rail 21B has a pair of upper and lower rails 26, by which the first stacker crane 3A and the second stacker crane 3B are moved in the left-right direction Y of the automatic warehouse 1. It is guided to be movable.
  • the first stacker crane 3A and the second stacker crane 3B mainly include a traveling carriage 22, a pair of masts 23 (left mast 23A, right mast 23B) provided on the traveling carriage 22, a left mast 23A, and a right mast 23B.
  • An upper frame 25 that connects the upper ends of the two, a traveling wheel 27 provided on the traveling carriage 22, a lifting platform 29 that is mounted on the left mast 23A and the right mast 23B so as to be movable up and down, and an advance / retreat mechanism (see FIG. And a slide fork 31 slidably provided in the front-rear direction X.
  • the lifting platform 29 has a lifting guide roller 34 guided by the left mast 23A and the right mast 23B.
  • the slide fork 31 Since the slide fork 31 is slidable on both sides in the front-rear direction X, it can access both the first rack 2A and the second rack 2B. That is, the slide fork 31 can transfer the article W between the rack adjacent to the traveling rail on which the own machine travels and the rack adjacent to the traveling rail on which the other apparatus travels.
  • the pallet P and the article W are placed on the slide fork 31 of the lifting platform 29.
  • the lifting platform 29 and the slide fork 31 are collectively described as the transfer unit 32. There are a case where the article W and the pallet P are mounted on the transfer unit 32 and a case where it is not mounted.
  • the transfer unit 32 moves in and out of the article W by moving in a two-dimensional plane (YZ plane in FIG. 3) formed in the horizontal and vertical directions.
  • the transfer unit 32 is freely movable in a plane by a combination of the traveling operation of the traveling carriage 22 and the lifting operation of the lifting device.
  • the transfer parts 32 are arranged at positions overlapping in the front-rear direction Y. Therefore, only when the transfer parts 32 are completely displaced in the vertical direction, the first stacker crane is arranged. 3A and the second stacker crane 3B can pass each other.
  • the first stacker crane 3A and the second stacker crane 3B have a control panel 33, a travel motor 35, and a lifting motor 37.
  • the control panel 33 is provided on the further rear side of the right mast 23B.
  • the travel motor 35 is provided on the left mast 23A.
  • the elevating motor 37 is provided on the left mast 23A.
  • the control panel 33 has electrical equipment such as an inverter, a converter, and a breaker for the traveling motor 35 and the lifting motor 37 inside.
  • the control panel 33 houses a crane controller which will be described later.
  • the elevating motor 37 can drive the drum 41 as shown in FIG.
  • a wire 43 extends from the drum 41.
  • the wire 43 is wound around a roller 44 provided on the upper frame 25, and is further connected to the lifting platform 29.
  • FIG. 4 is a functional block diagram showing an automatic warehouse control configuration as the first embodiment.
  • FIG. 5 is a functional block diagram showing an automatic warehouse control configuration as the second embodiment.
  • FIG. 4 a system controller 45, a first crane controller 47A, and a second crane controller 47B are shown.
  • the first crane controller 47A is mounted on the first stacker crane 3A and controls the operation of the first stacker crane 3A.
  • the second crane controller 47B is mounted on the second stacker crane 3B and controls the operation of the second stacker crane 3B.
  • the system controller 45 is a controller higher than the first crane controller 47A and the second crane controller 47B, and can communicate with the first crane controller 47A and the second crane controller 47B.
  • the first crane controller 47 ⁇ / b> A and the second crane controller 47 ⁇ / b> B communicate with each other only via the system controller 45.
  • the first crane controller 47 ⁇ / b> A and the second crane controller 47 ⁇ / b> B can communicate directly without going through the system controller 45.
  • the data transmitted and received between the first crane controller 47A and the second crane controller 47B include state data for notifying normality / abnormality, conveyance data being executed, and the current position.
  • FIG. 6 is a functional block diagram of the control unit of the stacker crane. Since the second crane controller 47B is the same as the first crane controller 47A, the description thereof is omitted. Further, the first crane controller 47A and the second crane controller 47B may not be mounted on the stacker crane.
  • the first crane controller 47 ⁇ / b> A includes a main controller 53, a travel control unit 55, a lift control unit 57, and a transfer control unit 59.
  • These control units include computer hardware such as a CPU and a memory.
  • these control units are expressed as functional blocks realized by the cooperation of the computer hardware and software. These control units may be realized by a single computer having a plurality of functions.
  • the main controller 53 can communicate with the travel control unit 55, the elevation control unit 57, and the transfer control unit 59. Further, the main controller 53 can communicate with the system controller 45 and the second crane controller 47B. Communication occurs regularly or as needed.
  • the traveling control unit 55 is a control unit for controlling traveling / stopping of the traveling wheel 27, and is connected to the traveling motor 35 and the rotary encoder 63.
  • the lifting control unit 57 is a control unit for moving the lifting platform 29 up and down along the left mast 23 ⁇ / b> A and the right mast 23 ⁇ / b> B, and is connected to the lifting motor 37 and the rotary encoder 65.
  • the transfer control unit 59 is a control unit for moving the slide fork 31 in the front-rear direction X, and is connected to the transfer motor 67 and the rotary encoder 69.
  • FIG. 7 is a state transition diagram of the stacker crane.
  • idle there are four types of states: idle (idle state), move (moving state), transfer (transfer state), and wait (standby state). Transition from one state to another state is performed after monitoring at a certain time interval and waiting for a condition to be met.
  • idle a movement or transfer operation plan is performed.
  • the transfer unit 32 In the move, the transfer unit 32 is caused to travel to the target position.
  • transfer the transfer unit 32 transfers the article W to and from the rack 2.
  • wait the transfer unit 32 enters a standby state and waits until it does not interfere with other transfer units 32.
  • the wait is a state waiting for a change in the status with another device, and does not generate an operation. If the other device generates an action, the wait is canceled.
  • findTransjectory is a function for motion planning when moving. While waiting, the status of other stacker cranes is monitored periodically, and if it is a wait, it is shifted to idle.
  • a case where the state of the stacker crane is idle will be described. If migration is planned, execute findTransject () to move to move. If the transfer part 32 arrives at a target position, it will transfer from move to idle. If transfer is planned, execute findWaitTimeforTransfer () to move to transfer. When the transfer of the article W is completed, the transfer moves from idle to idle. idle executes findTransjectory () or findWaitTimeForTransfer () and shifts to wait. When the state of the stacker crane is wait, the process shifts to idle periodically or by another machine.
  • the transfer unit decelerates and stops and shifts from move to wait. This is interference avoidance at the time of movement, and is executed only when the other transfer unit 32 is urgently stopped. More specifically, monitoring is performed at a certain time interval, and when the other transfer unit 32 is stopped urgently, if it is determined that the own device interferes with the movement, the own device is decelerated and stopped.
  • FIG. 8 is a flowchart showing the track determination / movement process by the crane controller.
  • the transfer unit 32 of the first stacker crane 3A will be described as a movement target.
  • step S1 the first crane controller 47A determines whether or not the transfer unit 32 of the own machine can avoid interference with other transfer units 32 by selecting a track before starting the movement. If it is determined that the interference can be avoided by selecting the trajectory, the process proceeds to step S2. In step S2, the first crane controller 47A selects a track (described later), and then the process proceeds to step S3. In step S3, the first crane controller 47A causes the transfer unit 32 to travel along the selected track. That is, the state of the first stacker crane 3A shifts from idle to move.
  • step S4 the first crane controller 47A determines whether or not interference can be avoided by correcting the track condition of the selected track. Therefore, interference between the transfer parts 32 is more reliably prevented. If it is determined that the interference can be avoided by correcting the orbital condition, the process proceeds to step S5. In step S5, the first crane controller 47A adopts the shorter one of the two avoidance methods (described later), and then the process proceeds to step S6. Thereby, although the optimal trajectory is not guaranteed, the transfer unit 32 can reach the target position earlier under the conditions. In step S6, the first crane controller 47A causes the transfer unit 32 to travel based on the corrected track condition.
  • step S4 the determination in step S4 may be completed when at least one avoidance path without interference is found. Further, in step S4, the calculation may be performed by the same procedure as in step S5, and the information may be used in step S5.
  • step S7 the first crane controller 47A determines whether or not it is in a deadlock state. If it is determined that there is a partner in the traveling direction of each other and it is determined that the deadlock state exists, the process proceeds to step S8. In step S8, the first crane controller 47A generates a retreat path (described later), and then the process proceeds to step S6. In step S6, the first crane controller 47A causes the transfer unit 32 to travel on the retreat path. In other words, the state of the first stacker crane 3A shifts from idle to move.
  • step S7 If it is determined in step S7 that it is not in a deadlock state, the process proceeds to step S9.
  • step S9 the first crane controller 47A places the transfer unit 32 in a standby state (described later). That is, the state of the first stacker crane 3A shifts from idle to wait.
  • FIG. 9 is a flowchart showing the trajectory selection process of the crane controller.
  • FIG. 10 is a schematic diagram showing a plurality of trajectories between the starting position and the target position.
  • FIG. 11 is a schematic diagram showing two trajectories between the starting position and the target position.
  • the first crane controller 47 ⁇ / b> A and the second crane controller 47 ⁇ / b> B search for the shortest time path that can avoid interference with other transfer parts 32 from among the plurality of shortest time paths before the transfer part 32 starts to move.
  • the shortest time paths to be selected are only the two shortest time paths (first trajectory 81 and second trajectory 82) that form the boundary lines of the upper, lower, left, and right regions diagonally from the starting position to the target position. .
  • the transfer part 32 is movable in any direction of running and raising / lowering.
  • the control in the running / lifting direction is independent, and a trapezoidal approximate speed table is given according to the moving distance of each axis.
  • a plurality of tracks (first track 81, second track 82, third track 83, and fourth track 84) are shown between the starting position 91 and the target position 93.
  • the traveling time in the traveling direction is longer than the traveling time in the ascending / descending direction.
  • Each of these tracks has a constant time in the traveling direction, and is different by changing only the start timing of the up / down direction operation or the start timing and speed of the up / down direction operation. Specifically, the trajectory gradually shifts to the right by delaying the start of movement in the vertical axis direction. This means that the trajectory with the shortest time can be selected from a plurality of candidates by adjusting the travel start time of the travel or lift within the range of the travel time of the travel axis minus the travel time of the lift axis.
  • the two shortest time paths are, in other words, the first trajectory when the shorter start time is the earliest compared to the longer time by comparing the traveling time from the starting position to the target position and the ascending / descending time, This is the second trajectory when it is slowest.
  • the first crane controller 47A actually considers the selection in the first outermost region of the quadrangular (or parallelogram) region formed by the set of tracks from the starting position to the target position.
  • the first track 81 and the fourth track 84 are a combination of two tracks that are farthest apart from each other as a set of two tracks. Therefore, when interference occurs in both of the trajectories, there is no trajectory that can avoid the interference. That is, from the viewpoint of trajectory selection, it is sufficient to select either the first trajectory 81 or the fourth trajectory 84.
  • the first crane controller 47A searches only two shortest time paths as avoidance paths. Therefore, the amount of calculation required for the avoidance route search process is reduced. As a result, the first crane controller 47A can determine the avoidance route in a short period.
  • the number of trajectories is usually two. However, for example, when moving in the horizontal direction or the vertical direction, the number of trajectories is one.
  • step S11 of FIG. 9 the first crane controller 47A determines whether or not the first track 81 is safe. If it is determined to be safe, the process proceeds to step S12. In step S12, the first crane controller 47A selects the first track 81 as the track.
  • step S11 If it is determined in step S11 that the first track 81 is not safe, the process proceeds to step S13. In step S13, it is determined whether or not the fourth track 84 is safe. If it is determined that the fourth track 84 is safe, the process proceeds to step S12. In step S12, the first crane controller 47A selects the fourth track 84 as the track.
  • step S13 If it is determined in step S13 that the fourth track 84 is not safe, the process proceeds to step S14.
  • step S14 the first crane controller 47A determines not to select a track.
  • FIG. 12 is a schematic diagram for explaining a method of delaying the travel start timing of one transfer unit when there is a possibility that the transfer units interfere with each other.
  • FIG. 13 is a schematic diagram for explaining a method in which one transfer unit travels a detour route when there is a possibility that the transfer units interfere with each other.
  • FIG. 14 is a flowchart showing the avoidance technique selection process by changing the orbital condition.
  • the scheduled traveling tracks of the first transfer unit 101 and the second transfer unit 102 partially overlap, but there are also portions that do not overlap each other. More specifically, the first transfer unit 101 has a position opposite to the second transfer unit 102 as a target position, and travels toward the second transfer unit 102. The second transfer unit 102 sets the position on the lateral side of the first transfer unit 101 as a target position, and initially travels toward the first transfer unit 101 and deviates from the middle to the upper side in the drawing. However, it is predicted that the first transfer unit 101 and the second transfer unit 102 will collide at the collision position 95. In this embodiment, considering the movement of the first transfer unit 101, the first transfer unit 101 travels the detour route 100 passing through the route point 99 or the first transfer unit 101 sends the travel start timing. Any of the techniques can avoid interference.
  • the planned traveling track of the fourth transfer unit 104 is included in the planned traveling track of the third transfer unit 103. More specifically, the third transfer unit 103 has a target position behind the fourth transfer unit 104 and travels toward the fourth transfer unit 104. The fourth transfer unit 104 has a target position in front of the third transfer unit 103 and travels toward the third transfer unit 103. However, it is predicted that the third transfer unit 103 and the fourth transfer unit 104 will collide at the collision position 97. In this embodiment, considering the movement of the third transfer unit 103, interference cannot be avoided even if the travel start time is delayed. Therefore, a method in which the third transfer unit 103 travels on the detour route 121 passing through the waypoint 120 is used. adopt.
  • the first crane controller 47A executes an avoidance technique selection process by changing the track condition.
  • step S21 the first crane controller 47A determines whether or not interference can be avoided by a method of delaying the travel start timing. If it is determined that interference cannot be avoided, the process proceeds to step S25.
  • step S25 the first crane controller 47A determines to use a method for generating a detour route.
  • step S21 the process proceeds in the order of step S22, step S23, step S24, and step S25.
  • step S22 the first crane controller 47A calculates a travel start delay time when a method of delaying the travel start timing of the transfer unit 32 is adopted.
  • step S ⁇ b> 23 the first crane controller 47 ⁇ / b> A calculates the extra time when the transfer unit 32 adopts the method of traveling on the detour route.
  • step S24 the first crane controller 47A selects the shorter method by comparing the travel start delay time and the time taken by the detour route.
  • step S25 the first crane controller 47A determines to adopt the selected method.
  • FIG. 15 is a flowchart showing a process for determining the optimum value by the bisection method.
  • the bisection method is applicable to both setting of the departure start delay time and setting of a detour route via point.
  • step S31 the first crane controller 47A sets a maximum value.
  • step S32 the first crane controller 47A searches for an intermediate point.
  • step S33 the first crane controller 47A determines whether or not there is interference between the transfer units 32 when traveling under the condition of the intermediate point. If it is determined that there is interference, the process proceeds to step S34, and the first crane controller 47A searches for an intermediate point in a region having a larger value as viewed from the reference intermediate point. If it is determined that there is no interference, the process proceeds to step S35. In step S35, the first crane controller 47A determines whether or not the post-division length (search step size) by the immediately preceding division is equal to or less than a predetermined value. If it is determined that it is below the predetermined value, the process ends.
  • search step size search step size
  • step S36 the first crane controller 47A searches for an intermediate point in a region having a smaller value when viewed from the reference intermediate point. After step S34 or step S36, the process returns to step S33.
  • FIG. 16 is a time axis from 0 with interference to t max without interference.
  • step S31 the first crane controller 47A sets t max in FIG. 16 as the maximum value.
  • t max is set to twice the scheduled movement time.
  • t max may be a time until the movement of the other transfer unit 32 is completed.
  • step S32 the first crane controller 47A searches for an intermediate point of the entire time axis 71.
  • the intermediate point is indicated by (1).
  • step S33 the first crane controller 47A determines whether there is interference between the transfer units 32 when the traveling is delayed by the time of the first intermediate point (1). In this case, since there is no interference, the process proceeds to step S35, and the first crane controller 47A determines whether or not the length after division by the immediately preceding division is equal to or less than a predetermined value.
  • the predetermined value is, for example, 0.1 seconds. In this case, since the predetermined value is exceeded, the process proceeds to step S36.
  • step S36 the first crane controller 47A searches for an intermediate point in a region having a smaller value when viewed from the intermediate point searched immediately before. In this case, the second intermediate point (2) is selected.
  • step S34 it is determined in step S33 that there is no interference, and in step S35, the length between the intermediate points (4) and (5) is equal to or less than a predetermined value.
  • the value of the fifth intermediate point (5) is set as the travel start delay time in step S37. This value is a time in which the delay time is shortened as much as possible within a range where no interference occurs.
  • the first crane controller 47A uses the bisection method to determine the time for delaying the start of movement, the time required for the route search is shortened.
  • FIG. 17 is a schematic diagram illustrating a process for determining a waypoint away from the planned traveling track.
  • the first crane controller 47A of the fifth transfer unit 105 sets d as the maximum value in the direction in which the normal 78 of the intermediate point 77 in the vector 76 connecting the starting position 73 and the target position 75 of the fifth transfer unit 105 extends.
  • Set max . d max is the maximum distance possible on the layout, and the direction thereof is the region where the sixth transfer unit 106 does not exist or the influence of the sixth transfer unit 106 is small in the two regions divided by the vector 76.
  • d max may be 3000 mm as a sufficiently large fixed value, for example. As described above, since the point that draws the normal line for obtaining the waypoint is the midpoint of the straight line connecting the starting position and the target position, the time required for the route search is shortened.
  • step S32 the first crane controller 47A searches for an intermediate point.
  • the intermediate point is indicated by (1).
  • step S33 the first crane controller 47A determines whether or not there is interference between the fifth transfer unit 105 and the sixth transfer unit 106 when the first crane controller 47A travels a distance of the first intermediate point (1). To do. In this case, since there is no interference, the process proceeds to step S35, and the first crane controller 47A determines whether or not the length after division by the immediately preceding division is equal to or less than a predetermined value.
  • the predetermined value is, for example, 10 mm. In this case, since the predetermined value is exceeded, the process proceeds to step S36.
  • step S36 the first crane controller 47A searches for an intermediate point in a region having a smaller value as viewed from the intermediate point searched immediately before. In this case, the second intermediate point (2) is selected.
  • step S34 it is determined in step S33 that there is no interference
  • step S35 it is determined that the length after division by the immediately preceding division is equal to or less than a predetermined value.
  • the value of the third intermediate point (3) is set as a waypoint in step S37.
  • the position of the via point is closest to the planned traveling track within a range where no interference occurs. As a result, the travel route can be set short.
  • two trajectories that constitute the boundary of the shortest time movable area can be selected as the trajectory from the starting point to the waypoint, and the shortest time as the trajectory from the waypoint to the target position can be selected.
  • Two trajectories constituting the boundary of the movable region can be selected.
  • the via point may be obtained on each side of the normal direction from the selected point, and the shorter one may be adopted.
  • the waypoint of the detour route only needs to be on one normal line on the line formed between the starting position and the target position. Therefore, for example, the first crane controller 47A may set a via point on the normal line at the collision position of the vector connecting the departure position and the collision position, starting from the collision point when the movement starts without delay. Such a case will be described with reference to FIG. FIG. 18 is a schematic diagram showing a process for determining a waypoint away from the planned traveling track.
  • step S31 in FIG. 18, the first crane controller 47A causes the collision on the vector connecting the starting position and the collision position at the collision position 122 where the seventh transfer unit 107 and the eighth transfer unit 108 are expected to interfere.
  • D max as a maximum value is set in the direction in which the normal line 123 extends in a direction orthogonal to the position 122.
  • d max is the same as in the previous embodiment.
  • step S32 the first crane controller 47A searches for an intermediate point.
  • the intermediate point is indicated by (1).
  • step S33 the first crane controller 47A determines whether or not there is interference between the seventh transfer unit 107 and the eighth transfer unit 108 when the first crane controller 47A travels a distance of the first intermediate point (1). to decide. In this case, since there is no interference, the process proceeds to step S35, and the first crane controller 47A determines whether or not the length after division by the immediately preceding division is equal to or less than a predetermined value.
  • the predetermined value is, for example, 10 mm. In this case, since the predetermined value is exceeded, the process proceeds to step S36.
  • step S36 the first crane controller 47A searches for an intermediate point in a region having a smaller value as viewed from the intermediate point searched immediately before. In this case, the second intermediate point (2) is selected.
  • step S34 it is determined in step S33 that there is no interference
  • step S35 it is determined that the length after division by the immediately preceding division is equal to or less than a predetermined value.
  • the value of the third intermediate point (3) is set as a waypoint in step S37.
  • the position of the via point is closest to the planned traveling track within a range where no interference occurs. As a result, the travel route can be set short.
  • FIG. 19 is a schematic diagram illustrating an operation in which the transfer unit retracts in a deadlock state.
  • the 9th transfer part 109 and the 10th transfer part 110 have a target position on the back side of each other, and run toward each other.
  • the operation of the ninth transfer unit 109 will be described in the deadlock state in which both transfer units are in the standby state.
  • the first crane controller 47A of the ninth transfer unit 109 moves the ninth transfer unit 109 in the normal direction with respect to the planned travel path.
  • the first crane controller 47A determines the evacuation distance d avoid by a bisection method.
  • description of the bisection method is omitted.
  • the initial value of the evacuation distance is 3000 mm
  • the end condition is that the step size of the search is set to 10 mm or less.
  • d avoid having the shortest moving distance in a range where interference can be avoided is determined.
  • the escape route may be set with a fixed value in the normal direction, or may be set with a fixed value on either side along the planned traveling direction.
  • FIG. 20 is a schematic diagram showing a standby operation when two transfer units try to access an article storage shelf where the same or interference occurs.
  • the eleventh transfer unit 111 and the twelfth transfer unit 112 are approaching the article storage shelf 13 at the target position.
  • the eleventh transfer unit 111 is traveling at a position closer to the target position than the twelfth transfer unit 112.
  • the first crane controller 47A of the twelfth transfer unit 112 will be described.
  • the first crane controller 47A Before the movement of the twelfth transfer unit 112, the first crane controller 47A performs the following control. If the 11th transfer part 111 judges that the 11th transfer part 111 reaches
  • the standby point is a position near the target position and does not interfere with the eleventh transfer unit 111. This standby point is preferably at the shortest distance from the target position. In this embodiment, the standby point is the article storage shelf 13B next to the article storage shelf 13A at the target position.
  • the first crane controller 47A continues until both transfer parts do not interfere even if the eleventh transfer part 111 moves to another position and the twelfth transfer part 112 moves to the article storage shelf 13A at the target position. wait. Specifically, after receiving information notifying that the eleventh transfer unit 111 has started moving, the twelfth transfer unit 112 starts moving.
  • FIG. 21 is a flowchart showing the interference avoidance process before the transfer operation of the crane controller.
  • findWaitTimeTransfer () is executed in the idle will be described with reference to FIG.
  • FIG. 21 is a flowchart showing the interference avoidance process before the transfer operation of the crane controller.
  • the operation of the first stacker crane 3A will be described.
  • step S41 when the first crane controller 47A starts the transfer, does the extended slide fork 31 interfere with the transfer unit 32 or the mast 23 of the other stacker crane (second stacker crane 3B) when the transfer is started? Judge whether or not. If it is determined that interference occurs, the process proceeds to step S42 and waits for the second stacker crane 3B to leave the interference position.
  • step S41 If it is determined in step S41 that there is no interference, the process proceeds to step S43.
  • step S43 the first crane controller 47A determines whether or not the second stacker crane 3B passes through the second traveling rail 21B on the side where the slide fork 31 extends before the transfer operation is completed. If it is determined not to pass, the process moves to step S45, and the transfer operation is disclosed. That is, the state of the first stacker crane 3A shifts from idle to transfer.
  • step S44 the process proceeds to step S44. More specifically, this step is executed when the slide fork 31 is transferring an article W between the second rack 2B (a rack far from the first stacker crane 3A). It is.
  • the first crane controller 47A determines whether or not interference occurs when an abnormality occurs in the second stacker crane 3B during transfer. Specifically, it is determined whether the distance between the first stacker crane 3A and the second stacker crane 3B is shorter than the distance from the first stacker crane 3A to the emergency stop position when the transfer is completed.
  • step S42 If it is determined that there is interference, the process proceeds to step S42. If it is determined that there is no interference, the process proceeds to step S45.
  • the present invention can be widely applied to a moving body system in which a plurality of moving bodies can move within a plane range.

Abstract

An automated warehouse (1) is provided with a plurality of transfer units (32) and a first crane controller (47A). The transfer units (32) are disposed so as to be movable in a plane. Before a transfer unit (32) initiates movement, the first crane controller (47A) checks a planned movement path for interference from other transfer units (32) and if interference is detected, the first crane controller (47A) generates an alternative path having a point (3) on a normal (78) of a vector (76), which connects a departure position (73) and a target position (75), at the midpoint (77) thereof as a via point.

Description

移動体システムMobile system
 本発明は、移動体システムに関し、特に、複数の移動体が平面範囲内で移動可能な移動体システムに関する。 The present invention relates to a mobile system, and more particularly, to a mobile system in which a plurality of mobile bodies can move within a plane range.
 従来の自動倉庫は、例えば、一対のラックと、スタッカクレーンと、入庫ステーションと、出庫ステーションとを備えている。一対のラックは、前後方向に所定間隔をあけるようにして設けられている。スタッカクレーンは、前後のラック間において左右方向に移動自在に設けられている。入庫ステーションは、一方のラックの側方に配置されている。出庫ステーションは、他方のラックの側方に配置されている。ラックは、上下・左右に並んだ多数の物品収納棚を有する。スタッカクレーンは、走行台車と、それに設けられたマストに昇降自在となされた昇降台と、それに設けられた物品移載装置(例えば、前後方向に摺動自在に設けられたスライドフォーク)とを有している。入出庫ステーションにおいては、物品を搬送するのにコンベアが用いられる。 A conventional automatic warehouse includes, for example, a pair of racks, a stacker crane, a warehouse station, and a warehouse station. The pair of racks are provided at a predetermined interval in the front-rear direction. The stacker crane is provided so as to be movable in the left-right direction between the front and rear racks. The warehousing station is arranged on the side of one rack. The delivery station is arranged on the side of the other rack. The rack has a large number of article storage shelves arranged vertically and horizontally. The stacker crane has a traveling carriage, a lifting platform that can be raised and lowered by a mast provided therein, and an article transfer device (for example, a slide fork that is slidable in the front-rear direction). is doing. In the loading / unloading station, a conveyor is used to transport the articles.
 近年は、物品収納作業の効率化を図るため、前後のラック間に例えば2台のスタッカクレーンをすれ違い走行可能とする自動倉庫が提案されている。この自動倉庫は、一対のラックと、その間に平行に並んで走行可能な2台のスタッカクレーンが配置されている。この場合は、スタッカクレーンの物品移載装置は、前後のラックのいずれに対しても物品の入出庫作業が可能である。 Recently, in order to improve the efficiency of the article storage work, an automatic warehouse has been proposed in which, for example, two stacker cranes can pass between the front and rear racks. In this automatic warehouse, a pair of racks and two stacker cranes that can run in parallel are arranged between them. In this case, the article transfer device of the stacker crane can carry in / out goods for any of the front and rear racks.
 この自動倉庫を側方から見ると、2台のスタッカクレーンの昇降台および物品移載装置からなる各組(以下、この組を「移載部」という。)は、2次元平面内を互いに干渉する可能性がある状態で移動する2つの移動体として把握できる。これら2つの移動体は、走行台車の走行動作と昇降装置の昇降動作の組み合わせによって、平面内で自由に移動可能である。そこで、2つの移動体の干渉を防止するためには移動体の移動を適切に制御する必要がある。 When this automatic warehouse is viewed from the side, each set of two stacker crane elevators and article transfer devices (hereinafter referred to as “transfer section”) interferes with each other in a two-dimensional plane. It can be grasped as two moving bodies that move in a state where there is a possibility of being. These two moving bodies can be freely moved in a plane by a combination of the traveling operation of the traveling carriage and the lifting operation of the lifting device. Therefore, in order to prevent interference between the two moving bodies, it is necessary to appropriately control the movement of the moving body.
 一般に、複数の移動体の干渉を防止するための技術は、自動倉庫のみならず、搬送台車システムでも求められている。例えば、特許文献1に記載の搬送台車システムでは、搬送台車が所定の時間間隔で現在位置をネットワークに送信し、他の搬送台車の位置を傍受し、その速度を元に所定時間後の位置を推定して、自機の走行速度にフィードバックする。また、分岐部や合流部では、分岐後や合流前の2股の走行ルートを1本に重ねたルートマップを使用する。これにより、搬送台車が自律的に走行でき、また分岐部や合流部で走行許可待ちで停止する必要がなくなる。 Generally, a technique for preventing the interference of a plurality of moving bodies is required not only in an automatic warehouse but also in a transport cart system. For example, in the transport cart system described in Patent Document 1, the transport cart transmits the current position to the network at predetermined time intervals, intercepts the positions of other transport carts, and determines the position after a predetermined time based on the speed. Estimate and feed back to the running speed of the aircraft. Further, at the branching part and the joining part, a route map is used in which two travel routes after the branching and before joining are overlapped. Thereby, a conveyance trolley can drive autonomously, and it is not necessary to stop at a branching part or a joining part waiting for driving permission.
特開2005-301364号公報JP 2005-301364 A
 一般に、複数の移動体の干渉を防止するためには、複数の移動体の経路探索処理を行う必要があり、最適な経路探索を行うためには制御装置内の演算部に大きな負荷がかかってしまう。 Generally, in order to prevent the interference of a plurality of moving bodies, it is necessary to perform a route search process for a plurality of moving bodies, and in order to perform an optimum route search, a large load is applied to the calculation unit in the control device. End up.
 本発明の課題は、複数の移動体の干渉を防止するための経路探索に関する演算処理の負荷を減らすことにある。 An object of the present invention is to reduce the processing load related to route search for preventing interference between a plurality of moving objects.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係る移動体システムは、複数の移動体と、制御部とを備えている。複数の移動体は、平面内を移動可能に配置されている。制御部は、移動体が移動を開始する前に移動予定経路における他の移動体との干渉を確認し、干渉すると判断すれば出発位置と目標位置とを結ぶ線上の一点における法線上の点を経由点として有する迂回経路を生成する。
Hereinafter, a plurality of modes will be described as means for solving the problems. These aspects can be arbitrarily combined as necessary.
A mobile body system according to an aspect of the present invention includes a plurality of mobile bodies and a control unit. The plurality of moving bodies are arranged so as to be movable in a plane. The control unit checks the interference with the other moving body on the planned moving path before the moving body starts moving, and if it determines that there is an interference, the control unit selects a point on the normal line on the line connecting the starting position and the target position. A detour route having as a waypoint is generated.
 このシステムでは、移動体が経由する経由点を出発位置と目標位置とを結ぶ線上の一点における法線上の点とすることで、制御部における経路探索に関する演算処理の負荷が少なくなる。したがって、経路探索にかかる時間が短縮される。 In this system, by setting the waypoint through which the moving body passes as a point on the normal line on the line connecting the starting position and the target position, the processing load on the route search in the control unit is reduced. Therefore, the time required for route search is shortened.
 法線を引くための一点は、出発位置と目標位置とを結ぶ直線の中間点であってもよい。これにより、経路探索にかける時間が短縮される。 One point for drawing the normal line may be an intermediate point of a straight line connecting the starting position and the target position. This shortens the time required for route search.
 法線を引くための一点は、移動予定経路において他の移動体との干渉が予測される地点であってもよい。これにより、経路探索にかける時間が短縮される。 One point for drawing the normal may be a point where interference with another moving body is predicted on the planned movement route. This shortens the time required for route search.
 経由点の設定には二分法が用いられてもよい。これにより、経路探索にかける時間が短縮される。 The bisection method may be used for setting the waypoints. This shortens the time required for route search.
 二分法において、最初の設定ポイントは、法線を引くための一点からレイアウト上可能な最も離れた位置に設定されてもよい。これにより、移動体同士の干渉がより確実に防止される。 In the bisection method, the first set point may be set at a position farthest possible on the layout from one point for drawing the normal. Thereby, interference between moving bodies is prevented more reliably.
 経由点は、出発位置と目標位置とを結ぶ線によって二分される領域のうち他の移動体の位置と反対側の領域に設定されてもよい。これにより、移動体の干渉がより確実に防止される。 The via point may be set in an area on the opposite side to the position of the other moving body in the area divided by the line connecting the starting position and the target position. Thereby, interference of a moving body is prevented more reliably.
 本発明の他の見地に係る移動体システムは、複数の移動体と、制御部とを備えている。複数の移動体は、平面内を移動可能に配置されている。制御部は、複数の移動体の1つが移動を開始する前に移動予定経路における他の移動体との干渉を確認し、干渉すると判断すれば、前記1つの移動体移動開始を遅らすおよび/または出発位置と目標位置とを結ぶ線上の一点における法線上の点を経由点として有する迂回経路を生成する。 A mobile system according to another aspect of the present invention includes a plurality of mobile bodies and a control unit. The plurality of moving bodies are arranged so as to be movable in a plane. The control unit confirms interference with another moving body on the planned movement path before one of the plurality of moving bodies starts moving, and delays the start of moving the one moving body and / or determines that interference occurs. A detour route having a point on the normal line at a point on the line connecting the starting position and the target position as a via point is generated.
 このシステムでは、移動体の移動条件を修正することで干渉を回避するために、2つの方法を用いる。したがって、移動体の移動条件を好ましく修正できる。 This system uses two methods to avoid interference by correcting the moving conditions of the moving body. Therefore, the moving condition of the moving body can be preferably corrected.
 制御部は、移動開始を遅らす方法と、迂回経路を生成する方法の走行予定時間をそれぞれ計算して、走行予定時間が短い方法を採用してもよい。
 このシステムでは、2つの方法のいずれか一方のみを用いるので、演算量が少なくなる。
The control unit may calculate a scheduled travel time for a method for delaying the start of movement and a method for generating a detour route, and may employ a method for shortening the planned travel time.
In this system, since only one of the two methods is used, the amount of calculation is reduced.
 本発明に係る移動体システムでは、複数の移動体の干渉を防止するための経路探索において演算処理の負荷を減らすことができる。 In the mobile system according to the present invention, it is possible to reduce the processing load in route search for preventing interference between a plurality of mobile bodies.
本発明の一実施形態が採用された自動倉庫の概略平面図。1 is a schematic plan view of an automatic warehouse in which an embodiment of the present invention is adopted. 図1のII矢視図であり、ラックとスタッカクレーンを説明するための図。It is II arrow directional view of FIG. 1, and is a figure for demonstrating a rack and a stacker crane. 自動倉庫の一部省略側面図であり、ラックとスタッカクレーンを説明するための図。It is a partially omitted side view of the automatic warehouse, and is a diagram for explaining a rack and a stacker crane. 第1実施例としての自動倉庫制御構成を示す機能ブロック図。The functional block diagram which shows the automatic warehouse control structure as 1st Example. 第2実施例としての自動倉庫制御構成を示す機能ブロック図。The functional block diagram which shows the automatic warehouse control structure as 2nd Example. スタッカクレーンの制御部の機能ブロック図。The functional block diagram of the control part of a stacker crane. スタッカクレーンの状態遷移図。The state transition diagram of a stacker crane. クレーンコントローラの軌道決定・移動処理を示すフローチャート。The flowchart which shows the track determination / movement process of a crane controller. クレーンコントローラの軌道選択処理を示すフローチャート。The flowchart which shows the track | orbit selection process of a crane controller. 出発位置と目標位置との間にある複数の軌道を示す模式図。The schematic diagram which shows the some track | orbit between a starting position and a target position. 出発位置と目標位置との間にある2つの軌道を示す模式図。FIG. 3 is a schematic diagram showing two trajectories between a starting position and a target position. 移載部同士が干渉する可能性がある場合に一方の移載部の走行開始タイミングを遅らせる手法を説明するための模式図。The schematic diagram for demonstrating the method of delaying the travel start timing of one transfer part, when transfer parts may interfere. 移載部同士が干渉する可能性がある場合に一方の移載部が迂回経路を走行する手法を説明するための模式図。The schematic diagram for demonstrating the method in which one transfer part drive | works a detour path | route, when transfer parts may interfere. 軌道条件の変更による回避手法の選択処理を示すフローチャート。The flowchart which shows the selection process of the avoidance method by the change of a track condition. 二分法による最適値を決定する処理を示すフローチャート。The flowchart which shows the process which determines the optimal value by a bisection method. 干渉ありの0から干渉なしのtmaxまでの時間軸。Time axis from 0 with interference to t max without interference. 走行予定軌道から離れた経由点を決定するプロセスを示す模式図。The schematic diagram which shows the process which determines the viapoint which left | separated from the driving planned track. 走行予定軌道から離れた経由点を決定するプロセスを示す模式図。The schematic diagram which shows the process which determines the viapoint which left | separated from the driving planned track. デッドロック状態で移載部が退避する動作を示す模式図。The schematic diagram which shows the operation | movement which a transfer part evacuates in a deadlock state. 2つの移載部が同一の物品収納棚にアクセスしようとした場合の待機動作を示す模式図。The mimetic diagram showing standby operation when two transfer parts try to access the same article storage shelf. クレーンコントローラの移載動作前の干渉回避処理を示すフローチャート。The flowchart which shows the interference avoidance process before the transfer operation of a crane controller.
(1)自動倉庫全体
 図1~図3を用いて、本発明に係る一実施形態としての自動倉庫1を説明する。図1は、本発明の一実施形態が採用された自動倉庫の概略平面図である。図2は、図1のII矢視図であり、ラックとスタッカクレーンを説明するための図である。図3は、自動倉庫の一部省略側面図であり、ラックとスタッカクレーンを説明するための図である。この実施形態において、図1および図2の左右方向が自動倉庫1の前後方向Xであり、図1の上下方向および図3の左右方向が自動倉庫1の左右方向Yである。
(1) Overall Automated Warehouse An automated warehouse 1 as an embodiment according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic plan view of an automatic warehouse in which an embodiment of the present invention is adopted. FIG. 2 is a view taken in the direction of arrow II in FIG. 1 and is a view for explaining a rack and a stacker crane. FIG. 3 is a partially omitted side view of the automatic warehouse and is a view for explaining a rack and a stacker crane. In this embodiment, the left-right direction in FIGS. 1 and 2 is the front-rear direction X of the automatic warehouse 1, and the up-down direction in FIG. 1 and the left-right direction in FIG.
 自動倉庫1は、主に、一対のラック2(第1ラック2A、第2ラック2B)と、一対のスタッカクレーン3(第1スタッカクレーン3A、第2スタッカクレーン3B)とから構成されている。 The automatic warehouse 1 mainly includes a pair of racks 2 (first rack 2A and second rack 2B) and a pair of stacker cranes 3 (first stacker crane 3A and second stacker crane 3B).
(2)ラック
 第1ラック2A、第2ラック2Bは、自動倉庫1の左右方向Yに延びるスタッカクレーン通路5を挟むように配置されている。第1ラック2A、第2ラック2Bは、所定間隔で左右方向Yに沿って並ぶ多数の前側支柱7と、前側支柱7の後方にそれとの間に所定間隔をあけて並ぶ後側支柱9と、前側支柱7および後側支柱9に設けられた多数の物品支承部材11とを有している。左右一対の物品支承部材11によって、物品収納棚13が構成されており、それらの間は後述のスライドフォーク31の上下方向の移動を許容するフォーク通過間隙15となっている。各物品収納棚13には、図から明らかなように、左右上下に多数配置されており、それぞれに物品Wを載置可能である。各物品Wは、パレットP(図2を参照。)上に載置され、パレットPと共に移動させられる。
 なお、第2ラック2Bの片側に入庫ステーション17が配置され、第1ラック2Aの片側に出庫ステーション19が配置されている。
(2) Rack The first rack 2A and the second rack 2B are arranged so as to sandwich the stacker crane passage 5 extending in the left-right direction Y of the automatic warehouse 1. The first rack 2A and the second rack 2B include a large number of front struts 7 arranged along the left-right direction Y at a predetermined interval, and rear struts 9 arranged behind the front strut 7 with a predetermined interval therebetween, A number of article support members 11 provided on the front column 7 and the rear column 9 are provided. An article storage shelf 13 is constituted by a pair of left and right article support members 11, and a fork passage gap 15 that allows the slide fork 31 described later to move in the vertical direction is formed between them. As is apparent from the drawing, each article storage shelf 13 is arranged in a large number on the left, right, top and bottom, and an article W can be placed on each. Each article W is placed on the pallet P (see FIG. 2) and moved together with the pallet P.
A warehouse station 17 is disposed on one side of the second rack 2B, and a warehouse station 19 is disposed on one side of the first rack 2A.
(3)スタッカクレーン
 次に、図1~図3を用いて、第1スタッカクレーン3A、第2スタッカクレーン3Bについて説明する。なお、図1および図2では、第1スタッカクレーン3A、第2スタッカクレーン3Bの構造は簡略化されている。
(3) Stacker crane Next, the first stacker crane 3A and the second stacker crane 3B will be described with reference to FIGS. In FIGS. 1 and 2, the structures of the first stacker crane 3A and the second stacker crane 3B are simplified.
 第1スタッカクレーン3Aと、第2スタッカクレーン3Bは、ラック2の近傍を平行して走行するともに物品Wをラック2との間で移載可能である。以下、スタッカクレーンについてより詳細に説明する。第1ラック2A、第2ラック2Bの間に、スタッカクレーン通路5に沿って、自動倉庫1の前後方向Xに並んだ第1走行レール21A、第2走行レール21Bが設けられている。第1走行レール21A、第2走行レール21Bは、それぞれ上下一対のレール26を有しており、これらレール26によって、第1スタッカクレーン3Aおよび第2スタッカクレーン3Bが自動倉庫1の左右方向Yに移動可能に案内されている。 The first stacker crane 3A and the second stacker crane 3B travel in parallel in the vicinity of the rack 2 and can transfer the article W to and from the rack 2. Hereinafter, the stacker crane will be described in more detail. Between the first rack 2A and the second rack 2B, a first traveling rail 21A and a second traveling rail 21B arranged in the front-rear direction X of the automatic warehouse 1 along the stacker crane passage 5 are provided. Each of the first traveling rail 21A and the second traveling rail 21B has a pair of upper and lower rails 26, by which the first stacker crane 3A and the second stacker crane 3B are moved in the left-right direction Y of the automatic warehouse 1. It is guided to be movable.
 第1スタッカクレーン3A、第2スタッカクレーン3Bは、主に、走行台車22と、走行台車22に設けられた一対のマスト23(左側マスト23A、右側マスト23B)と、左側マスト23Aおよび右側マスト23Bの上端を連結する上側フレーム25と、走行台車22に設けられた走行車輪27と、左側マスト23Aおよび右側マスト23Bに昇降自在に装着された昇降台29と、昇降台29に進退機構(図6の移載モータ67を含む)によって前後方向Xに摺動自在に設けられたスライドフォーク31とを有している。昇降台29は、左側マスト23Aおよび右側マスト23Bにガイドされる昇降ガイドローラ34を有する。 The first stacker crane 3A and the second stacker crane 3B mainly include a traveling carriage 22, a pair of masts 23 (left mast 23A, right mast 23B) provided on the traveling carriage 22, a left mast 23A, and a right mast 23B. An upper frame 25 that connects the upper ends of the two, a traveling wheel 27 provided on the traveling carriage 22, a lifting platform 29 that is mounted on the left mast 23A and the right mast 23B so as to be movable up and down, and an advance / retreat mechanism (see FIG. And a slide fork 31 slidably provided in the front-rear direction X. The lifting platform 29 has a lifting guide roller 34 guided by the left mast 23A and the right mast 23B.
 スライドフォーク31は、前後方向Xの両側にスライド可能であるので、第1ラック2Aおよび第2ラック2Bの両方にアクセス可能である。つまり、スライドフォーク31は自機が走行する走行レールに隣接するラックと、他機が走行する走行レールに隣接するラックのいずれとの間で物品Wを移載可能である。 Since the slide fork 31 is slidable on both sides in the front-rear direction X, it can access both the first rack 2A and the second rack 2B. That is, the slide fork 31 can transfer the article W between the rack adjacent to the traveling rail on which the own machine travels and the rack adjacent to the traveling rail on which the other apparatus travels.
 なお、図2および図3において、昇降台29のスライドフォーク31の上には、パレットPと物品Wが載っている。 2 and 3, the pallet P and the article W are placed on the slide fork 31 of the lifting platform 29.
 以下の説明では、昇降台29とスライドフォーク31をまとめて、移載部32として説明する。移載部32には、物品WおよびパレットPが搭載されている場合と、搭載されていない場合とがある。 In the following description, the lifting platform 29 and the slide fork 31 are collectively described as the transfer unit 32. There are a case where the article W and the pallet P are mounted on the transfer unit 32 and a case where it is not mounted.
 移載部32は、水平・昇降方向により形成される二次元平面(図3のY-Z平面)内を移動して、物品Wの搬出入を行っている。移載部32は、走行台車22の走行動作と昇降装置の昇降動作の組み合わせによって、平面内で自由に移動可能である。図2から明らかなように、移載部32同士は前後方向Yに重なる位置に配置されており、そのため、移載部32同士が上下方向に完全にずれている場合にのみ、第1スタッカクレーン3Aと第2スタッカクレーン3Bはすれ違い走行が可能である。 The transfer unit 32 moves in and out of the article W by moving in a two-dimensional plane (YZ plane in FIG. 3) formed in the horizontal and vertical directions. The transfer unit 32 is freely movable in a plane by a combination of the traveling operation of the traveling carriage 22 and the lifting operation of the lifting device. As apparent from FIG. 2, the transfer parts 32 are arranged at positions overlapping in the front-rear direction Y. Therefore, only when the transfer parts 32 are completely displaced in the vertical direction, the first stacker crane is arranged. 3A and the second stacker crane 3B can pass each other.
 第1スタッカクレーン3A、第2スタッカクレーン3Bは、図3に詳細に示すように(図1および図2では省略)、制御盤33と、走行モータ35と、昇降モータ37とを有している。制御盤33は、右側マスト23Bのさらに後側に設けられている。走行モータ35は、左側マスト23Aに設けられている。昇降モータ37は、左側マスト23Aに設けられている。 As shown in detail in FIG. 3 (not shown in FIGS. 1 and 2), the first stacker crane 3A and the second stacker crane 3B have a control panel 33, a travel motor 35, and a lifting motor 37. . The control panel 33 is provided on the further rear side of the right mast 23B. The travel motor 35 is provided on the left mast 23A. The elevating motor 37 is provided on the left mast 23A.
 制御盤33は、内部に、走行モータ35や昇降モータ37用のインバータ、コンバータ、ブレーカ等の電装機器を有している。制御盤33には、後述するクレーンコントローラが収納されている。 The control panel 33 has electrical equipment such as an inverter, a converter, and a breaker for the traveling motor 35 and the lifting motor 37 inside. The control panel 33 houses a crane controller which will be described later.
 昇降モータ37は、図3に示すように、ドラム41を駆動可能である。ドラム41からは、ワイヤ43が延びている。ワイヤ43は、上側フレーム25に設けられたローラ44に掛け回され、さらに昇降台29に連結されている。 The elevating motor 37 can drive the drum 41 as shown in FIG. A wire 43 extends from the drum 41. The wire 43 is wound around a roller 44 provided on the upper frame 25, and is further connected to the lifting platform 29.
(4)スタッカクレーンの制御構成
 次に、図4および図5を用いて、自動倉庫1の制御構成を説明する。図4は、第1実施例としての自動倉庫制御構成を示す機能ブロック図である。図5は、第2実施例としての自動倉庫制御構成を示す機能ブロック図である。
(4) Stacker Crane Control Configuration Next, the control configuration of the automatic warehouse 1 will be described with reference to FIGS. 4 and 5. FIG. 4 is a functional block diagram showing an automatic warehouse control configuration as the first embodiment. FIG. 5 is a functional block diagram showing an automatic warehouse control configuration as the second embodiment.
 図4では、システムコントローラ45、第1クレーンコントローラ47A、第2クレーンコントローラ47Bが示されている。第1クレーンコントローラ47Aは、第1スタッカクレーン3Aに搭載されおり、第1スタッカクレーン3Aの動作を制御する。第2クレーンコントローラ47Bは、第2スタッカクレーン3Bに搭載されており、第2スタッカクレーン3Bの動作を制御する。システムコントローラ45は、第1クレーンコントローラ47A、第2クレーンコントローラ47Bより上位のコントローラであり、第1クレーンコントローラ47A、第2クレーンコントローラ47Bと交信可能である。図4に示す第1実施例では、第1クレーンコントローラ47A、第2クレーンコントローラ47Bはシステムコントローラ45を介してのみ互いに交信する。図5に示す第2実施例では、第1クレーンコントローラ47A、第2クレーンコントローラ47Bは、システムコントローラ45を介さずに直接交信可能である。
 なお、第1クレーンコントローラ47Aと第2クレーンコントローラ47Bが互いに送受信するデータには、正常・異常を知らせる状態データ、実行中の搬送データ、現在位置が含まれている。
In FIG. 4, a system controller 45, a first crane controller 47A, and a second crane controller 47B are shown. The first crane controller 47A is mounted on the first stacker crane 3A and controls the operation of the first stacker crane 3A. The second crane controller 47B is mounted on the second stacker crane 3B and controls the operation of the second stacker crane 3B. The system controller 45 is a controller higher than the first crane controller 47A and the second crane controller 47B, and can communicate with the first crane controller 47A and the second crane controller 47B. In the first embodiment shown in FIG. 4, the first crane controller 47 </ b> A and the second crane controller 47 </ b> B communicate with each other only via the system controller 45. In the second embodiment shown in FIG. 5, the first crane controller 47 </ b> A and the second crane controller 47 </ b> B can communicate directly without going through the system controller 45.
Note that the data transmitted and received between the first crane controller 47A and the second crane controller 47B include state data for notifying normality / abnormality, conveyance data being executed, and the current position.
 次に、図6を用いて、制御盤33内に配置された第1クレーンコントローラ47Aについて説明する。図6は、スタッカクレーンの制御部の機能ブロック図である。なお、第2クレーンコントローラ47Bは、第1クレーンコントローラ47Aと同様であるので、説明を省略する。また、第1クレーンコントローラ47A、第2クレーンコントローラ47Bは、スタッカクレーンに搭載されていなくてもよい。 Next, the first crane controller 47A disposed in the control panel 33 will be described with reference to FIG. FIG. 6 is a functional block diagram of the control unit of the stacker crane. Since the second crane controller 47B is the same as the first crane controller 47A, the description thereof is omitted. Further, the first crane controller 47A and the second crane controller 47B may not be mounted on the stacker crane.
 第1クレーンコントローラ47Aは、メインコントローラ53と、走行制御部55と、昇降制御部57と、移載制御部59とを有している。これら制御部は、CPUやメモリ等のコンピュータ・ハードウェアを含んでおり、図4においてはコンピュータ・ハードウェアとソフトウェアの協働によって実現される機能ブロックとして表現されている。なお、これら制御部は、複数の機能を持つ単独のコンピュータによって実現されてもよい。 The first crane controller 47 </ b> A includes a main controller 53, a travel control unit 55, a lift control unit 57, and a transfer control unit 59. These control units include computer hardware such as a CPU and a memory. In FIG. 4, these control units are expressed as functional blocks realized by the cooperation of the computer hardware and software. These control units may be realized by a single computer having a plurality of functions.
 メインコントローラ53は、走行制御部55,昇降制御部57および移載制御部59と交信可能である。さらに、メインコントローラ53は、システムコントローラ45および第2クレーンコントローラ47Bとも交信可能である。交信は定期的にまたは必要に応じて行われる。 The main controller 53 can communicate with the travel control unit 55, the elevation control unit 57, and the transfer control unit 59. Further, the main controller 53 can communicate with the system controller 45 and the second crane controller 47B. Communication occurs regularly or as needed.
 走行制御部55は、走行車輪27の走行・停止を制御するための制御部であり、走行モータ35と、ロータリエンコーダ63に接続されている。昇降制御部57は、昇降台29を左側マスト23Aおよび右側マスト23Bに沿って上下動させるための制御部であり、昇降モータ37と、ロータリエンコーダ65に接続されている。移載制御部59は、スライドフォーク31を前後方向Xに移動させるための制御部であり、移載モータ67と、ロータリエンコーダ69に接続されている。 The traveling control unit 55 is a control unit for controlling traveling / stopping of the traveling wheel 27, and is connected to the traveling motor 35 and the rotary encoder 63. The lifting control unit 57 is a control unit for moving the lifting platform 29 up and down along the left mast 23 </ b> A and the right mast 23 </ b> B, and is connected to the lifting motor 37 and the rotary encoder 65. The transfer control unit 59 is a control unit for moving the slide fork 31 in the front-rear direction X, and is connected to the transfer motor 67 and the rotary encoder 69.
(5)スタッカクレーンの状態遷移
 図7を用いて第1スタッカクレーン3Aおよび第2スタッカクレーン3Bの状態遷移について説明する。図7は、スタッカクレーンの状態遷移図である。
(5) State Transition of Stacker Crane State transitions of the first stacker crane 3A and the second stacker crane 3B will be described with reference to FIG. FIG. 7 is a state transition diagram of the stacker crane.
 状態としては、idle(アイドル状態)、move(移動状態)、transfer(移載状態)、wait(待機状態)の4種類がある。ある状態から他の状態への移行は、ある時間間隔で監視して条件が一致するのを待って行われる。idleでは、移動または移載の動作計画を行う。moveでは、移載部32を目標位置まで走行させる。transferでは、移載部32がラック2との間で物品Wを移載する。waitでは、移載部32は待機状態になり、他の移載部32と干渉しない状態になるまで待つ。なお、waitは、他機との状況が変化するのを待っている状態であり、動作生成を行わない。他機が動作生成を行えば、waitは解除される。 There are four types of states: idle (idle state), move (moving state), transfer (transfer state), and wait (standby state). Transition from one state to another state is performed after monitoring at a certain time interval and waiting for a condition to be met. In idle, a movement or transfer operation plan is performed. In the move, the transfer unit 32 is caused to travel to the target position. In transfer, the transfer unit 32 transfers the article W to and from the rack 2. In wait, the transfer unit 32 enters a standby state and waits until it does not interfere with other transfer units 32. The wait is a state waiting for a change in the status with another device, and does not generate an operation. If the other device generates an action, the wait is canceled.
 スタッカクレーンの状態がidleの場合は、findTrajectory()または、findWaitTimeforTransfer()を実行して、move、tranfer、またはwaitに移行するのを待つ。findTrajectory()は、移動に際しての動作計画のための関数である。待っている間に定期的に他のスタッカクレーンの状態を監視して、それがwaitであればidleに移行させる。 If the state of the stacker crane is idle, execute findTransjectory () or findWaitTimeforTransfer () and wait for transition to move, transfer, or wait. findTransjectory () is a function for motion planning when moving. While waiting, the status of other stacker cranes is monitored periodically, and if it is a wait, it is shifted to idle.
 スタッカクレーンの状態がidleの場合について説明する。移動を計画している場合は、findTrajectory()を実行してmoveへ移行する。移載部32が目標位置に到着すれば、moveからidleに移行する。
 移載を計画している場合は、findWaitTimeforTransfer()を実行してtransferへ移行する。物品Wの移載が完了すれば、tranferからidleに移行する。idleは、findTrajectory()またはfindWaitTimeforTransfer()を実行してwaitに移行する。スタッカクレーンの状態がwaitの場合は、周期的にまたは他機により、idleへ移行する。
A case where the state of the stacker crane is idle will be described. If migration is planned, execute findTransject () to move to move. If the transfer part 32 arrives at a target position, it will transfer from move to idle.
If transfer is planned, execute findWaitTimeforTransfer () to move to transfer. When the transfer of the article W is completed, the transfer moves from idle to idle. idle executes findTransjectory () or findWaitTimeForTransfer () and shifts to wait. When the state of the stacker crane is wait, the process shifts to idle periodically or by another machine.
 さらに、DetectCollisionOnUnusual()=NGの場合、移載部は減速停止して、moveからwaitに移行する。これは移動時の干渉回避であり、他の移載部32が緊急停止した場合にのみ実行される。より詳細には、ある時間間隔で監視して、他の移載部32が緊急停止した際に、そのまま自機が移動を継続すると干渉すると判断すると、自機を減速停止する。 Furthermore, when DetectCollationOnUnusual () = NG, the transfer unit decelerates and stops and shifts from move to wait. This is interference avoidance at the time of movement, and is executed only when the other transfer unit 32 is urgently stopped. More specifically, monitoring is performed at a certain time interval, and when the other transfer unit 32 is stopped urgently, if it is determined that the own device interferes with the movement, the own device is decelerated and stopped.
(6)軌道決定・移動処理の概要説明
 図8を用いて、idleにおいて、findTrajectory()が実行されたときの動作を説明する。図8は、クレーンコントローラによる軌道決定・移動処理を示すフローチャートである。
 なお、以下の説明では、第1スタッカクレーン3Aの移載部32を移動対象として説明する。
(6) Outline Description of Trajectory Determination / Movement Processing The operation when findTransjectory () is executed in idle will be described with reference to FIG. FIG. 8 is a flowchart showing the track determination / movement process by the crane controller.
In the following description, the transfer unit 32 of the first stacker crane 3A will be described as a movement target.
 最初に、各ステップの流れの概要を説明して、その後に各ステップを詳細に説明する。
 ステップS1では、第1クレーンコントローラ47Aは、移動開始前に、自機の移載部32が軌道の選択で他の移載部32と干渉を回避可能か否かを判断する。軌道の選択で干渉を回避可能であると判断されれば、プロセスはステップS2に移行する。ステップS2では、第1クレーンコントローラ47Aは軌道を選択して(後述)、その後プロセスはステップS3に移行する。ステップS3では、第1クレーンコントローラ47Aは、選択された軌道に沿って移載部32を走行させる。つまり、第1スタッカクレーン3Aの状態がidleからmoveに移行する。
First, an outline of the flow of each step will be described, and then each step will be described in detail.
In step S1, the first crane controller 47A determines whether or not the transfer unit 32 of the own machine can avoid interference with other transfer units 32 by selecting a track before starting the movement. If it is determined that the interference can be avoided by selecting the trajectory, the process proceeds to step S2. In step S2, the first crane controller 47A selects a track (described later), and then the process proceeds to step S3. In step S3, the first crane controller 47A causes the transfer unit 32 to travel along the selected track. That is, the state of the first stacker crane 3A shifts from idle to move.
 ステップS1で軌道の選択で他の移載部32と干渉を回避不可能であると判断されれば、プロセスはステップS4へ移行する。ステップS4では、第1クレーンコントローラ47Aは、選択した軌道の軌道条件の修正によって干渉を回避可能か否かを判断する。したがって、移載部32同士の干渉がより確実に防止される。軌道条件の修正によって干渉を回避可能であると判断されれば、プロセスはステップS5に移行する。ステップS5では、第1クレーンコントローラ47Aが2つの回避方法のうち所要時間が短い方を採用して(後述)、その後プロセスはステップS6に移行する。これにより、最適な軌道は保証されないものの、その条件の下で移載部32がより早く目標位置に到達できるようになる。ステップS6では、第1クレーンコントローラ47Aは、修正された軌道条件に基づいて移載部32を走行させる。つまり、第1スタッカクレーン3Aの状態がidleからmoveに移行する。
 なお、ステップS4では、干渉がない回避軌道を1つでも見付けた時点で、ステップS4の判断が終了したとしてもよい。また、また、ステップS4では、ステップS5と同じ手順で演算を行い判断した上で、その情報をステップS5でも使用することにしてもよい。
If it is determined in step S1 that the interference with other transfer units 32 cannot be avoided by selecting the trajectory, the process proceeds to step S4. In step S4, the first crane controller 47A determines whether or not interference can be avoided by correcting the track condition of the selected track. Therefore, interference between the transfer parts 32 is more reliably prevented. If it is determined that the interference can be avoided by correcting the orbital condition, the process proceeds to step S5. In step S5, the first crane controller 47A adopts the shorter one of the two avoidance methods (described later), and then the process proceeds to step S6. Thereby, although the optimal trajectory is not guaranteed, the transfer unit 32 can reach the target position earlier under the conditions. In step S6, the first crane controller 47A causes the transfer unit 32 to travel based on the corrected track condition. That is, the state of the first stacker crane 3A shifts from idle to move.
In step S4, the determination in step S4 may be completed when at least one avoidance path without interference is found. Further, in step S4, the calculation may be performed by the same procedure as in step S5, and the information may be used in step S5.
 ステップS4で軌道条件の修正によって干渉を回避不可能であると判断されれば、プロセスはステップS7に移行する。ステップS7では、第1クレーンコントローラ47Aは、デッドロック状態であるか否かを判断する。互いの進行方向に相手先があることを検出してデッドロック状態であると判断されれば、プロセスはステップS8に移行する。ステップS8では、第1クレーンコントローラ47Aは退避経路を生成して(後述)、その後プロセスはステップS6に移行する。ステップS6では、第1クレーンコントローラ47Aは、退避経路上に移載部32を走行させる。つまり、つまり、第1スタッカクレーン3Aの状態がidleからmoveに移行する。 If it is determined in step S4 that the interference cannot be avoided by correcting the orbital conditions, the process proceeds to step S7. In step S7, the first crane controller 47A determines whether or not it is in a deadlock state. If it is determined that there is a partner in the traveling direction of each other and it is determined that the deadlock state exists, the process proceeds to step S8. In step S8, the first crane controller 47A generates a retreat path (described later), and then the process proceeds to step S6. In step S6, the first crane controller 47A causes the transfer unit 32 to travel on the retreat path. In other words, the state of the first stacker crane 3A shifts from idle to move.
 ステップS7でデッドロック状態ではないと判断されれば、プロセスはステップS9に移行する。ステップS9では、第1クレーンコントローラ47Aは、移載部32を待機状態にする(後述)。つまり、第1スタッカクレーン3Aの状態がidleからwaitに移行する。 If it is determined in step S7 that it is not in a deadlock state, the process proceeds to step S9. In step S9, the first crane controller 47A places the transfer unit 32 in a standby state (described later). That is, the state of the first stacker crane 3A shifts from idle to wait.
(7)軌道選択動作(図8のステップS2)
 図9~図11を用いて、図8のステップS2の軌道選択動作について詳細に説明する。図9は、クレーンコントローラの軌道選択処理を示すフローチャートである。図10は、出発位置と目標位置との間にある複数の軌道を示す模式図である。図11は、出発位置と目標位置との間にある2つの軌道を示す模式図である。
(7) Trajectory selection operation (step S2 in FIG. 8)
The trajectory selection operation in step S2 of FIG. 8 will be described in detail with reference to FIGS. FIG. 9 is a flowchart showing the trajectory selection process of the crane controller. FIG. 10 is a schematic diagram showing a plurality of trajectories between the starting position and the target position. FIG. 11 is a schematic diagram showing two trajectories between the starting position and the target position.
 第1クレーンコントローラ47A、第2クレーンコントローラ47Bは、移載部32の移動開始前に、複数の最短時間経路の中から、他の移載部32との干渉を回避できる最短時間経路を探索する。選択の対象となる最短時間経路は、出発位置から目標位置までを対角とする上下左右の領域の境界ラインを構成する2つの最短時間経路(第1軌道81、第2軌道82)のみである。 The first crane controller 47 </ b> A and the second crane controller 47 </ b> B search for the shortest time path that can avoid interference with other transfer parts 32 from among the plurality of shortest time paths before the transfer part 32 starts to move. . The shortest time paths to be selected are only the two shortest time paths (first trajectory 81 and second trajectory 82) that form the boundary lines of the upper, lower, left, and right regions diagonally from the starting position to the target position. .
 以下、選択処理について詳細に説明する。移載部32は、走行・昇降のいずれの方向に移動可能である。走行・昇降方向の制御は独立しており、台形近似された速度テーブルが各軸の移動距離に応じて与えられる。図10では、出発位置91から目標位置93までの間に、複数の軌道(第1軌道81、第2軌道82、第3軌道83、第4軌道84)が示されている。この場合、走行方向の距離が昇降方向の距離に比べて長いので、走行方向の移動時間が昇降方向の移動時間より長くなっている。これら軌道は、いずれも、走行方向にかかる時間が一定であり、昇降方向動作の開始タイミングのみまたは昇降方向動作の開始タイミングおよび速度を変更することで異なるものになっている。具体的には、昇降軸方向の移動開始を遅らせていくことで、軌道はだんだんと右側にシフトしていく。このことは、走行軸の移動時間-昇降軸の移動時間の範囲内では走行または昇降の移動開始時刻を調整することで、最短時間が保証された軌道を複数の候補から選択できることを意味する。
 前述の2つの最短時間経路は、言い換えると、出発位置から目標位置までの走行時間と昇降時間を比較して長い方の時間に対する短い方の開始時間を最も早くした場合の第1の軌道と、最も遅くした場合の第2の軌道である。
Hereinafter, the selection process will be described in detail. The transfer part 32 is movable in any direction of running and raising / lowering. The control in the running / lifting direction is independent, and a trapezoidal approximate speed table is given according to the moving distance of each axis. In FIG. 10, a plurality of tracks (first track 81, second track 82, third track 83, and fourth track 84) are shown between the starting position 91 and the target position 93. In this case, since the distance in the traveling direction is longer than the distance in the ascending / descending direction, the traveling time in the traveling direction is longer than the traveling time in the ascending / descending direction. Each of these tracks has a constant time in the traveling direction, and is different by changing only the start timing of the up / down direction operation or the start timing and speed of the up / down direction operation. Specifically, the trajectory gradually shifts to the right by delaying the start of movement in the vertical axis direction. This means that the trajectory with the shortest time can be selected from a plurality of candidates by adjusting the travel start time of the travel or lift within the range of the travel time of the travel axis minus the travel time of the lift axis.
In other words, the two shortest time paths are, in other words, the first trajectory when the shorter start time is the earliest compared to the longer time by comparing the traveling time from the starting position to the target position and the ascending / descending time, This is the second trajectory when it is slowest.
 これら複数の軌道の中で実際に第1クレーンコントローラ47Aが選択において考慮するのは、出発位置から目標位置までの軌道の集合が構成する四角形(または平行四辺形)の領域の最も外側を通る第1軌道81および第4軌道84だけである。これら第1軌道81と第4軌道84は、2つの軌道の組としては最も離れた2つの軌道からなる組み合わせである。したがって、両方の軌道のいずれにおいても干渉が発生する場合には、干渉を回避できる軌道は存在しない。つまり、軌道選択という観点では、第1軌道81または第4軌道84のいずれかを選択すれば十分である。 Of these plural tracks, the first crane controller 47A actually considers the selection in the first outermost region of the quadrangular (or parallelogram) region formed by the set of tracks from the starting position to the target position. There are only one track 81 and a fourth track 84. The first track 81 and the fourth track 84 are a combination of two tracks that are farthest apart from each other as a set of two tracks. Therefore, when interference occurs in both of the trajectories, there is no trajectory that can avoid the interference. That is, from the viewpoint of trajectory selection, it is sufficient to select either the first trajectory 81 or the fourth trajectory 84.
 この自動倉庫1では、第1クレーンコントローラ47Aは2つの最短時間経路のみを回避経路として探索する。したがって、回避経路探索処理にかかる演算量が少なくなる。その結果、第1クレーンコントローラ47Aは短期間で回避経路を決定できる。
 なお、軌道の数は通常は2つであるが、例えば水平方向または垂直方向に移動する場合は、軌道は1つになる。
In the automatic warehouse 1, the first crane controller 47A searches only two shortest time paths as avoidance paths. Therefore, the amount of calculation required for the avoidance route search process is reduced. As a result, the first crane controller 47A can determine the avoidance route in a short period.
The number of trajectories is usually two. However, for example, when moving in the horizontal direction or the vertical direction, the number of trajectories is one.
 図9のステップS11では、第1クレーンコントローラ47Aは第1軌道81が安全であるか否かを判断する。安全であると判断されれば、プロセスはステップS12に移行する。ステップS12では、第1クレーンコントローラ47Aは第1軌道81を軌道として選択する。 In step S11 of FIG. 9, the first crane controller 47A determines whether or not the first track 81 is safe. If it is determined to be safe, the process proceeds to step S12. In step S12, the first crane controller 47A selects the first track 81 as the track.
 ステップS11で第1軌道81が安全ではないと判断されれば、プロセスはステップS13に移行する。ステップS13では、第4軌道84が安全であるか否かを判断する。第4軌道84が安全であると判断されれば、プロセスはステップS12に移行する。ステップS12では、第1クレーンコントローラ47Aは第4軌道84を軌道として選択する。 If it is determined in step S11 that the first track 81 is not safe, the process proceeds to step S13. In step S13, it is determined whether or not the fourth track 84 is safe. If it is determined that the fourth track 84 is safe, the process proceeds to step S12. In step S12, the first crane controller 47A selects the fourth track 84 as the track.
 ステップS13で第4軌道84が安全ではないと判断されれば、プロセスはステップS14に移行する。ステップS14では、第1クレーンコントローラ47Aは軌道選択を行わないことを決定する。 If it is determined in step S13 that the fourth track 84 is not safe, the process proceeds to step S14. In step S14, the first crane controller 47A determines not to select a track.
(8)軌道条件の変更による回避手法の選択(図8のステップS5)
 図12~図14を用いて、ステップS5の軌道条件の変更による回避手法の選択を説明する。図12は、移載部同士が干渉する可能性がある場合に一方の移載部の走行開始タイミングを遅らせる手法を説明するための模式図である。図13は、移載部同士が干渉する可能性がある場合に一方の移載部が迂回経路を走行する手法を説明するための模式図である。図14は、軌道条件の変更による回避手法の選択処理を示すフローチャートである。
(8) Selection of avoidance method by changing orbital conditions (step S5 in FIG. 8)
The selection of the avoidance method by changing the orbital condition in step S5 will be described with reference to FIGS. FIG. 12 is a schematic diagram for explaining a method of delaying the travel start timing of one transfer unit when there is a possibility that the transfer units interfere with each other. FIG. 13 is a schematic diagram for explaining a method in which one transfer unit travels a detour route when there is a possibility that the transfer units interfere with each other. FIG. 14 is a flowchart showing the avoidance technique selection process by changing the orbital condition.
 図12の実施例において、第1移載部101と第2移載部102の走行予定軌道は、一部重なっているが、互いに重なっていない部分もある。より具体的には、第1移載部101は、第2移載部102の反対側の位置を目標位置にしており、第2移載部102に向かって走行する。第2移載部102は、第1移載部101の横側の位置を目標位置にしており、最初は第1移載部101に向かって走行して途中から図上側にそれていく。ただし、第1移載部101と第2移載部102は、衝突位置95において衝突することが予測されている。この実施例では、第1移載部101の移動を考えると、第1移載部101の走行開始タイミングを送らせる手法かまたは第1移載部101が経由点99を通る迂回経路100を走行する手法のいずれでも干渉を回避できる。 In the embodiment of FIG. 12, the scheduled traveling tracks of the first transfer unit 101 and the second transfer unit 102 partially overlap, but there are also portions that do not overlap each other. More specifically, the first transfer unit 101 has a position opposite to the second transfer unit 102 as a target position, and travels toward the second transfer unit 102. The second transfer unit 102 sets the position on the lateral side of the first transfer unit 101 as a target position, and initially travels toward the first transfer unit 101 and deviates from the middle to the upper side in the drawing. However, it is predicted that the first transfer unit 101 and the second transfer unit 102 will collide at the collision position 95. In this embodiment, considering the movement of the first transfer unit 101, the first transfer unit 101 travels the detour route 100 passing through the route point 99 or the first transfer unit 101 sends the travel start timing. Any of the techniques can avoid interference.
 図13の実施例において、第4移載部104の走行予定軌道は、第3移載部103の走行予定軌道に含まれている。より具体的には、第3移載部103は、目標位置は第4移載部104の後側にあり、第4移載部104に向かって走行する。第4移載部104は、目標位置が第3移載部103の前側にあり、第3移載部103に向かって走行する。ただし、第3移載部103と第4移載部104は、衝突位置97において衝突することが予測されている。この実施例では、第3移載部103の移動を考えると、走行開始時間を遅らせても干渉を回避できないので、第3移載部103が経由点120を通る迂回経路121を走行する手法を採用する。 In the example of FIG. 13, the planned traveling track of the fourth transfer unit 104 is included in the planned traveling track of the third transfer unit 103. More specifically, the third transfer unit 103 has a target position behind the fourth transfer unit 104 and travels toward the fourth transfer unit 104. The fourth transfer unit 104 has a target position in front of the third transfer unit 103 and travels toward the third transfer unit 103. However, it is predicted that the third transfer unit 103 and the fourth transfer unit 104 will collide at the collision position 97. In this embodiment, considering the movement of the third transfer unit 103, interference cannot be avoided even if the travel start time is delayed. Therefore, a method in which the third transfer unit 103 travels on the detour route 121 passing through the waypoint 120 is used. adopt.
 第1クレーンコントローラ47Aは、軌道条件の変更による回避手法の選択処理を実行する。図14において、ステップS21では、第1クレーンコントローラ47Aは、走行開始タイミングを遅らす手法で干渉回避できるか否かを判断する。干渉回避できないと判断されれば、プロセスはステップS25に移行する。ステップS25では、第1クレーンコントローラ47Aは、迂回経路を生成する手法を用いることを決定する。 The first crane controller 47A executes an avoidance technique selection process by changing the track condition. In FIG. 14, in step S21, the first crane controller 47A determines whether or not interference can be avoided by a method of delaying the travel start timing. If it is determined that interference cannot be avoided, the process proceeds to step S25. In step S25, the first crane controller 47A determines to use a method for generating a detour route.
 ステップS21で干渉回避できると判断されれば、プロセスはステップS22、ステップS23、ステップS24、ステップS25の順番で移行する。ステップS22では、第1クレーンコントローラ47Aは、移載部32の走行開始タイミングを遅らせる手法を採用した場合の走行開始遅れ時間を計算する。ステップS23では、第1クレーンコントローラ47Aは移載部32が迂回経路を走行する手法を採用した場合の余計にかかった時間を計算する。ステップS24では、第1クレーンコントローラ47Aは、走行開始遅れ時間と迂回経路によって余計にかかった時間を比較して、短い方の手法を選択する。ステップS25では、第1クレーンコントローラ47Aは、選択された手法を採用することを決定する。 If it is determined in step S21 that interference can be avoided, the process proceeds in the order of step S22, step S23, step S24, and step S25. In step S22, the first crane controller 47A calculates a travel start delay time when a method of delaying the travel start timing of the transfer unit 32 is adopted. In step S <b> 23, the first crane controller 47 </ b> A calculates the extra time when the transfer unit 32 adopts the method of traveling on the detour route. In step S24, the first crane controller 47A selects the shorter method by comparing the travel start delay time and the time taken by the detour route. In step S25, the first crane controller 47A determines to adopt the selected method.
(9)二分法
 次に、図15を用いて、二分法を説明する。図15は、二分法による最適値を決定する処理を示すフローチャートである。二分法は、出発開始遅れ時間の設定および迂回経路の経由点設定の両方に適用可能である。
(9) Bisection method Next, the bisection method will be described with reference to FIG. FIG. 15 is a flowchart showing a process for determining the optimum value by the bisection method. The bisection method is applicable to both setting of the departure start delay time and setting of a detour route via point.
 最初に、一般的な二分法の処理について説明する。
 ステップS31では、第1クレーンコントローラ47Aは、最大値を設定する。
 ステップS32では、第1クレーンコントローラ47Aは、中間点を探索する。
First, a general bisection method will be described.
In step S31, the first crane controller 47A sets a maximum value.
In step S32, the first crane controller 47A searches for an intermediate point.
 ステップS33では、第1クレーンコントローラ47Aは、中間点の条件で走行させた場合に移載部32同士の干渉があるか否かを判断する。干渉があると判断されればプロセスはステップS34に移行して、第1クレーンコントローラ47Aは基準の中間点から見て値が大きい側の領域の中間点を探索する。干渉がないと判断されればプロセスはステップS35に移行する。ステップS35では、第1クレーンコントローラ47Aは、直前の分割による分割後長さ(探索の刻み幅)が所定値以下であるか否かを判断する。所定値以下であると判断されれば、プロセスは終了する。所定値を超えると判断されれば、プロセスはステップS36に移行して、第1クレーンコントローラ47Aは基準の中間点から見て値が小さい側の領域の中間点を探索する。
 ステップS34またはステップS36の終了後、プロセスはステップS33に戻る。
In step S33, the first crane controller 47A determines whether or not there is interference between the transfer units 32 when traveling under the condition of the intermediate point. If it is determined that there is interference, the process proceeds to step S34, and the first crane controller 47A searches for an intermediate point in a region having a larger value as viewed from the reference intermediate point. If it is determined that there is no interference, the process proceeds to step S35. In step S35, the first crane controller 47A determines whether or not the post-division length (search step size) by the immediately preceding division is equal to or less than a predetermined value. If it is determined that it is below the predetermined value, the process ends. If it is determined that the predetermined value is exceeded, the process proceeds to step S36, and the first crane controller 47A searches for an intermediate point in a region having a smaller value when viewed from the reference intermediate point.
After step S34 or step S36, the process returns to step S33.
(9-1)出発開始遅れ時間の設定
 次に、図16を用いて、出発開始遅れ時間の設定に二分法を用いた場合を説明する。図16は、干渉ありの0から干渉なしのtmaxまでの時間軸である。
(9-1) Setting of departure start delay time Next, the case where the bisection method is used for setting the departure start delay time will be described with reference to FIG. FIG. 16 is a time axis from 0 with interference to t max without interference.
 時間軸71に基づいて説明する。ステップS31では、第1クレーンコントローラ47Aは、最大値として図16のtmaxを設定する。tmaxは、例えば、移動予定時間の2倍に設定される。tmaxは、他の移載部32の移動が完了するまでの時間であってもよい。 A description will be given based on the time axis 71. In step S31, the first crane controller 47A sets t max in FIG. 16 as the maximum value. For example, t max is set to twice the scheduled movement time. t max may be a time until the movement of the other transfer unit 32 is completed.
 ステップS32では、第1クレーンコントローラ47Aは、時間軸71全体の中間点を探索する。図16では、中間点は(1)で示されている。 In step S32, the first crane controller 47A searches for an intermediate point of the entire time axis 71. In FIG. 16, the intermediate point is indicated by (1).
 ステップS33では、第1クレーンコントローラ47Aは、第1中間点(1)の時間だけ走行を遅らせた場合に移載部32同士の干渉があるか否かを判断する。この場合は、干渉はないので、プロセスはステップS35に移行して、第1クレーンコントローラ47Aは、直前の分割による分割後長さが所定値以下であるか否かを判断する。所定値は、例えば0.1秒である。この場合は所定値を超えているので、プロセスはステップS36に移行する。ステップS36では、第1クレーンコントローラ47Aは、直前に探索した中間点から見て値が小さい側の領域の中間点を探索する。この場合は、第2中間点(2)が選択される。 In step S33, the first crane controller 47A determines whether there is interference between the transfer units 32 when the traveling is delayed by the time of the first intermediate point (1). In this case, since there is no interference, the process proceeds to step S35, and the first crane controller 47A determines whether or not the length after division by the immediately preceding division is equal to or less than a predetermined value. The predetermined value is, for example, 0.1 seconds. In this case, since the predetermined value is exceeded, the process proceeds to step S36. In step S36, the first crane controller 47A searches for an intermediate point in a region having a smaller value when viewed from the intermediate point searched immediately before. In this case, the second intermediate point (2) is selected.
 以下、ステップS33~S36の流れを繰り返して、中間点は(1)、(2)、(3)、(4)、(5)と移動していく。そして、ステップS34で第5中間点(5)が探索されると、ステップS33で干渉がないと判断され、さらにステップS35で中間点(4)、(5)の間の長さが所定値以下になると判断され、その結果、ステップS37で第5中間点(5)の値が走行開始遅れ時間に設定される。この値は、干渉が起こらない範囲で遅延時間を可能な限り短くした時間となっている。
 以上に述べたように、第1クレーンコントローラ47Aは移動開始を遅らす時間を決定するのに二分法を用いるので、経路探索にかける時間が短縮される。
Thereafter, the flow of steps S33 to S36 is repeated, and the intermediate point moves to (1), (2), (3), (4), and (5). When the fifth intermediate point (5) is searched in step S34, it is determined in step S33 that there is no interference, and in step S35, the length between the intermediate points (4) and (5) is equal to or less than a predetermined value. As a result, the value of the fifth intermediate point (5) is set as the travel start delay time in step S37. This value is a time in which the delay time is shortened as much as possible within a range where no interference occurs.
As described above, since the first crane controller 47A uses the bisection method to determine the time for delaying the start of movement, the time required for the route search is shortened.
(9-2)迂回経路の経由点の設定
 次に、図17を用いて、迂回経路の経由点の設定に二分法を用いた場合を説明する。図17は、走行予定軌道から離れた経由点を決定するプロセスを示す模式図である。
(9-2) Setting of detour route route point Next, the case where the bisection method is used for setting the detour route route point will be described with reference to FIG. FIG. 17 is a schematic diagram illustrating a process for determining a waypoint away from the planned traveling track.
 以下、第5移載部105の第1クレーンコントローラ47Aについて説明する。ステップS31では、図17において、第1クレーンコントローラ47Aは、第5移載部105の出発位置73と目標位置75を結ぶベクトル76における中間点77の法線78の延びる方向に最大値としてのdmaxを設定する。dmaxは、レイアウト上で可能な最大距離であり、その方向はベクトル76で分割された2つの領域のうち第6移載部106が存在しないまたは第6移載部106の影響が少ない領域側に設定される。これにより、第5移載部105と第6移載部106の干渉がより確実に防止される。dmaxは、十分大きな固定値として例えば3000mmでもよい。
 以上に述べたように、経由点を求めるための法線を引く点が出発位置と目標位置とを結ぶ直線の中間点であるので、経路探索にかける時間が短縮される。
Hereinafter, the first crane controller 47A of the fifth transfer unit 105 will be described. In step S31, in FIG. 17, the first crane controller 47A sets d as the maximum value in the direction in which the normal 78 of the intermediate point 77 in the vector 76 connecting the starting position 73 and the target position 75 of the fifth transfer unit 105 extends. Set max . d max is the maximum distance possible on the layout, and the direction thereof is the region where the sixth transfer unit 106 does not exist or the influence of the sixth transfer unit 106 is small in the two regions divided by the vector 76. Set to Thereby, interference of the 5th transfer part 105 and the 6th transfer part 106 is prevented more reliably. d max may be 3000 mm as a sufficiently large fixed value, for example.
As described above, since the point that draws the normal line for obtaining the waypoint is the midpoint of the straight line connecting the starting position and the target position, the time required for the route search is shortened.
 ステップS32では、第1クレーンコントローラ47Aは、中間点を探索する。図17では、中間点は(1)で示されている。 In step S32, the first crane controller 47A searches for an intermediate point. In FIG. 17, the intermediate point is indicated by (1).
 ステップS33では、第1クレーンコントローラ47Aは、第1中間点(1)の距離だけ離れて走行させた場合に第5移載部105と第6移載部106の干渉があるか否かを判断する。この場合は、干渉はないので、プロセスはステップS35に移行して、第1クレーンコントローラ47Aは、直前の分割による分割後長さが所定値以下であるか否かを判断する。所定値は、例えば10mmである。この場合は所定値を超えるので、プロセスはステップS36に移行する。ステップS36では、第1クレーンコントローラ47Aは直前に探索した中間点から見て値が小さい側の領域の中間点を探索する。この場合は、第2中間点(2)が選択される。 In step S33, the first crane controller 47A determines whether or not there is interference between the fifth transfer unit 105 and the sixth transfer unit 106 when the first crane controller 47A travels a distance of the first intermediate point (1). To do. In this case, since there is no interference, the process proceeds to step S35, and the first crane controller 47A determines whether or not the length after division by the immediately preceding division is equal to or less than a predetermined value. The predetermined value is, for example, 10 mm. In this case, since the predetermined value is exceeded, the process proceeds to step S36. In step S36, the first crane controller 47A searches for an intermediate point in a region having a smaller value as viewed from the intermediate point searched immediately before. In this case, the second intermediate point (2) is selected.
 以下、ステップS33~S36の流れを繰り返して、中間点は(1)、(2)、(3)と移動していく。そして、ステップS34で第3中間点(3)が探索されると、ステップS33で干渉がないと判断され、さらにステップS35で直前の分割による分割後長さが所定値以下になると判断され、その結果、ステップS37で第3中間点(3)の値が経由点に設定される。経由点の位置は、干渉が起こらない範囲で走行予定軌道から最も近くなっている。その結果、移動経路を短く設定できる。 Hereinafter, the flow of steps S33 to S36 is repeated, and the intermediate point moves to (1), (2), and (3). When the third intermediate point (3) is searched in step S34, it is determined in step S33 that there is no interference, and in step S35, it is determined that the length after division by the immediately preceding division is equal to or less than a predetermined value. As a result, the value of the third intermediate point (3) is set as a waypoint in step S37. The position of the via point is closest to the planned traveling track within a range where no interference occurs. As a result, the travel route can be set short.
 経由点が定まると、出発点から経由点までの軌道として前述のように最短時間移動可能領域の境界を構成する2つの軌道を選択可能であり、さらに経由点から目標位置までの軌道として最短時間移動可能領域の境界を構成する2つの軌道を選択可能である。
 なお、経由点の方向を決定するときには、選択した点から法線方向両側にそれぞれ経由点を求めて、距離が短い方を採用してもよい。
When the waypoint is determined, two trajectories that constitute the boundary of the shortest time movable area can be selected as the trajectory from the starting point to the waypoint, and the shortest time as the trajectory from the waypoint to the target position can be selected. Two trajectories constituting the boundary of the movable region can be selected.
When determining the direction of the via point, the via point may be obtained on each side of the normal direction from the selected point, and the shorter one may be adopted.
 なお、迂回経路の経由点は、出発位置と目標位置との間に形成される線上の一点の法線上にあればよい。したがって、例えば、第1クレーンコントローラ47Aは、遅れなしで移動開始した場合の衝突地点を始点として、出発位置と衝突位置とを結ぶベクトルの衝突位置における法線上に経由点を設定してもよい。そのような場合を、図18を用いて、説明する。図18は、走行予定軌道から離れた経由点を決定するプロセスを示す模式図である。 It should be noted that the waypoint of the detour route only needs to be on one normal line on the line formed between the starting position and the target position. Therefore, for example, the first crane controller 47A may set a via point on the normal line at the collision position of the vector connecting the departure position and the collision position, starting from the collision point when the movement starts without delay. Such a case will be described with reference to FIG. FIG. 18 is a schematic diagram showing a process for determining a waypoint away from the planned traveling track.
 以下、第7移載部107の第1クレーンコントローラ47Aについて説明する。ステップS31では、図18において、第1クレーンコントローラ47Aは、第7移載部107と第8移載部108が干渉すると予想される衝突位置122において出発位置と衝突位置とを結ぶベクトル上の衝突位置122に直交する方向に法線123の延びる方向に最大値としてのdmaxを設定する。dmaxは前述の実施例と同様である。
 以上に述べたように、経由点を求めるための法線を引く点が衝突地点であるので、経路探索にかける時間が短縮される。
Hereinafter, the first crane controller 47A of the seventh transfer unit 107 will be described. In step S31, in FIG. 18, the first crane controller 47A causes the collision on the vector connecting the starting position and the collision position at the collision position 122 where the seventh transfer unit 107 and the eighth transfer unit 108 are expected to interfere. D max as a maximum value is set in the direction in which the normal line 123 extends in a direction orthogonal to the position 122. d max is the same as in the previous embodiment.
As described above, since the point that draws the normal for obtaining the waypoint is the collision point, the time required for the route search is shortened.
 ステップS32では、第1クレーンコントローラ47Aは、中間点を探索する。図18では、中間点は(1)で示されている。 In step S32, the first crane controller 47A searches for an intermediate point. In FIG. 18, the intermediate point is indicated by (1).
 ステップS33では、第1クレーンコントローラ47Aは、第1中間点(1)の距離だけ離れて走行させた場合に第7移載部107と第8移載部108同士の干渉があるか否かを判断する。この場合は、干渉はないので、プロセスはステップS35に移行して、第1クレーンコントローラ47Aは、直前の分割による分割後長さが所定値以下であるか否かを判断する。所定値は、例えば10mmである。この場合は所定値を超えるので、プロセスはステップS36に移行する。ステップS36では、第1クレーンコントローラ47Aは直前に探索した中間点から見て値が小さい側の領域の中間点を探索する。この場合は、第2中間点(2)が選択される。 In step S33, the first crane controller 47A determines whether or not there is interference between the seventh transfer unit 107 and the eighth transfer unit 108 when the first crane controller 47A travels a distance of the first intermediate point (1). to decide. In this case, since there is no interference, the process proceeds to step S35, and the first crane controller 47A determines whether or not the length after division by the immediately preceding division is equal to or less than a predetermined value. The predetermined value is, for example, 10 mm. In this case, since the predetermined value is exceeded, the process proceeds to step S36. In step S36, the first crane controller 47A searches for an intermediate point in a region having a smaller value as viewed from the intermediate point searched immediately before. In this case, the second intermediate point (2) is selected.
 以下、ステップS33~S36の流れを繰り返して、中間点は(1)、(2)、(3)と移動していく。そして、ステップS34で第3中間点(3)が探索されると、ステップS33で干渉がないと判断され、さらにステップS35で直前の分割による分割後長さが所定値以下になると判断され、その結果、ステップS37で第3中間点(3)の値が経由点に設定される。経由点の位置は、干渉が起こらない範囲で走行予定軌道から最も近くなっている。その結果、移動経路を短く設定できる。 Hereinafter, the flow of steps S33 to S36 is repeated, and the intermediate point moves to (1), (2), and (3). When the third intermediate point (3) is searched in step S34, it is determined in step S33 that there is no interference, and in step S35, it is determined that the length after division by the immediately preceding division is equal to or less than a predetermined value. As a result, the value of the third intermediate point (3) is set as a waypoint in step S37. The position of the via point is closest to the planned traveling track within a range where no interference occurs. As a result, the travel route can be set short.
 経由点が定まったあとの軌道の選択は前記実施例と同様である。 The selection of the trajectory after the via point is determined is the same as in the above embodiment.
 この自動倉庫1では、移載部が経由する経由点を選択した最短時間経路の一点の法線上の点とすることで、クレーンコントローラにおける経路探索に関する演算処理の負荷が少なくなる。したがって、経路探索にかかる時間が短縮される。 In this automatic warehouse 1, by setting the waypoint through which the transfer unit passes as a point on the normal line of one point of the shortest time route, the processing load on the route search in the crane controller is reduced. Therefore, the time required for route search is shortened.
(10)デッドロック状態の退避路形成(図8のステップS8)
 図19を用いて、デッドロック状態の退避路形成について説明する。図19は、デッドロック状態で移載部が退避する動作を示す模式図である。
(10) Formation of retreat path in deadlock state (step S8 in FIG. 8)
The formation of the retreat path in the deadlock state will be described with reference to FIG. FIG. 19 is a schematic diagram illustrating an operation in which the transfer unit retracts in a deadlock state.
 図19に示すように、第9移載部109と第10移載部110は、目標位置が互いの後ろ側にあり、互いに向かって走行するようになっている。このよう両移載部が待機状態になるデッドロック状態において、第9移載部109の動作について説明する。第9移載部109の第1クレーンコントローラ47Aは、第9移載部109を走行予定軌道に対して法線方向に移動させる。このとき、第1クレーンコントローラ47Aは、退避距離davoidを二分法で決定する。ここでは、二分法については説明を省略する。例えば、待避距離の初期値は3000mmであり、終了条件は探索の刻み幅が10mm以下に設定されている。最終的に、干渉を回避できる範囲で最も移動距離が短いdavoidが決定される。
 なお、待避経路は、法線方向に固定値で設定されてもよいし、さらには走行予定方向に沿っていずれかの側に固定値で設定されてもよい。
As shown in FIG. 19, the 9th transfer part 109 and the 10th transfer part 110 have a target position on the back side of each other, and run toward each other. The operation of the ninth transfer unit 109 will be described in the deadlock state in which both transfer units are in the standby state. The first crane controller 47A of the ninth transfer unit 109 moves the ninth transfer unit 109 in the normal direction with respect to the planned travel path. At this time, the first crane controller 47A determines the evacuation distance d avoid by a bisection method. Here, description of the bisection method is omitted. For example, the initial value of the evacuation distance is 3000 mm, and the end condition is that the step size of the search is set to 10 mm or less. Finally, d avoid having the shortest moving distance in a range where interference can be avoided is determined.
The escape route may be set with a fixed value in the normal direction, or may be set with a fixed value on either side along the planned traveling direction.
(11)待機状態への移行(図8のステップS9)
 図20を用いて、図8のステップS9での待機状態への移行について説明する。図20は、2つの移載部が同一または干渉が生じる物品収納棚にアクセスしようとした場合の待機動作を示す模式図である。
(11) Transition to the standby state (step S9 in FIG. 8)
The transition to the standby state in step S9 in FIG. 8 will be described with reference to FIG. FIG. 20 is a schematic diagram showing a standby operation when two transfer units try to access an article storage shelf where the same or interference occurs.
 図20において、目標位置の物品収納棚13に対して、第11移載部111と、第12移載部112が接近しようとしている。この場合、第11移載部111は第12移載部112より目標位置に近い位置を走行中である。以下、第12移載部112の第1クレーンコントローラ47Aについて説明する。 In FIG. 20, the eleventh transfer unit 111 and the twelfth transfer unit 112 are approaching the article storage shelf 13 at the target position. In this case, the eleventh transfer unit 111 is traveling at a position closer to the target position than the twelfth transfer unit 112. Hereinafter, the first crane controller 47A of the twelfth transfer unit 112 will be described.
 第12移載部112の移動前に、第1クレーンコントローラ47Aは、以下の制御を行う。第1クレーンコントローラ47Aは、第11移載部111が先に目標位置に到達すると判断すれば、自機の待機ポイントを設定する。待機ポイントは目標位置の近傍であって第11移載部111に干渉しない位置である。この待機ポイントは目標位置に対して最短の距離にあることが好ましい。この実施例では、待機ポイントは、目標位置の物品収納棚13Aの一つ横にある物品収納棚13Bである。 Before the movement of the twelfth transfer unit 112, the first crane controller 47A performs the following control. If the 11th transfer part 111 judges that the 11th transfer part 111 reaches | attains a target position previously, the 1st crane controller 47A will set the standby point of an own machine. The standby point is a position near the target position and does not interfere with the eleventh transfer unit 111. This standby point is preferably at the shortest distance from the target position. In this embodiment, the standby point is the article storage shelf 13B next to the article storage shelf 13A at the target position.
 第1クレーンコントローラ47Aは、第11移載部111が他の位置に移動して、第12移載部112が目標位置の物品収納棚13Aに移動しても両移載部が干渉しなくなるまで待つ。具体的には、第11移載部111が移動開始したことを知らせる情報を受信してから、第12移載部112は移動を開始する。 The first crane controller 47A continues until both transfer parts do not interfere even if the eleventh transfer part 111 moves to another position and the twelfth transfer part 112 moves to the article storage shelf 13A at the target position. wait. Specifically, after receiving information notifying that the eleventh transfer unit 111 has started moving, the twelfth transfer unit 112 starts moving.
(12)移載動作時の干渉回避処理
 図21を用いて、idleにおいて、findWaitTimeforTransfer()が実行されたときの動作を説明する。図21は、クレーンコントローラの移載動作前の干渉回避処理を示すフローチャートである。以下、第1スタッカクレーン3Aの動作を説明する。
(12) Interference avoidance process during transfer operation The operation when findWaitTimeTransfer () is executed in the idle will be described with reference to FIG. FIG. 21 is a flowchart showing the interference avoidance process before the transfer operation of the crane controller. Hereinafter, the operation of the first stacker crane 3A will be described.
 ステップS41では、第1クレーンコントローラ47Aは、移載開始時に、移載を開始すると伸びたスライドフォーク31が他のスタッカクレーン(第2スタッカクレーン3B)の移載部32やマスト23に干渉するか否かを判断する。干渉すると判断すれば、プロセスはステップS42に移行して、第2スタッカクレーン3Bが干渉位置から離れるのを待つ。 In step S41, when the first crane controller 47A starts the transfer, does the extended slide fork 31 interfere with the transfer unit 32 or the mast 23 of the other stacker crane (second stacker crane 3B) when the transfer is started? Judge whether or not. If it is determined that interference occurs, the process proceeds to step S42 and waits for the second stacker crane 3B to leave the interference position.
 ステップS41で干渉しないと判断されれば、プロセスはステップS43に移行する。ステップS43では、第1クレーンコントローラ47Aは、移載動作完了までに第2スタッカクレーン3Bがスライドフォーク31の伸びる側の第2走行レール21Bを通過するか否かを判断する。通過しないと判断されれば、プロセスはステップS45に移行し、移載動作が開示される。つまり、第1スタッカクレーン3Aの状態がidleからtransferに移行する。 If it is determined in step S41 that there is no interference, the process proceeds to step S43. In step S43, the first crane controller 47A determines whether or not the second stacker crane 3B passes through the second traveling rail 21B on the side where the slide fork 31 extends before the transfer operation is completed. If it is determined not to pass, the process moves to step S45, and the transfer operation is disclosed. That is, the state of the first stacker crane 3A shifts from idle to transfer.
 ステップS43で第2スタッカクレーン3Bが通過すると判断されれば、プロセスはステップS44に移行する。このステップが実行されるのは、具体的には、スライドフォーク31が、第2ラック2B(第1スタッカクレーン3Aから見て遠い側のラック)との間で物品Wを移載している場合である。ステップS44では、第1クレーンコントローラ47Aは、移載中に第2スタッカクレーン3Bに異常が発生した場合に干渉するか否かを判断する。具体的には、移載完了時に第1スタッカクレーン3Aと第2スタッカクレーン3Bとの距離が第1スタッカクレーン3Aから緊急停止位置までの距離よりも短いか否かが判断される。つまり、移載完了時に第1スタッカクレーン3Aと第2スタッカクレーン3Bとの距離が第1スタッカクレーン3Aから緊急停止位置までの距離よりも短ければ、第2スタッカクレーン3Bに異常が生じた場合に第2スタッカクレーン3Bが第1スタッカクレーン3Aに干渉する可能性がある。他方、移載完了時に第1スタッカクレーン3Aと第2スタッカクレーン3Bとの距離が第1スタッカクレーン3Aから緊急停止位置までの距離よりも長ければ、第2スタッカクレーン3Bに異常が生じた場合でも第2スタッカクレーン3Bが第1スタッカクレーン3Aに干渉する可能性がない。干渉すると判断されれば、プロセスはステップS42に移行する。干渉しないと判断されれば、プロセスはステップS45に移行する。 If it is determined in step S43 that the second stacker crane 3B passes, the process proceeds to step S44. More specifically, this step is executed when the slide fork 31 is transferring an article W between the second rack 2B (a rack far from the first stacker crane 3A). It is. In step S44, the first crane controller 47A determines whether or not interference occurs when an abnormality occurs in the second stacker crane 3B during transfer. Specifically, it is determined whether the distance between the first stacker crane 3A and the second stacker crane 3B is shorter than the distance from the first stacker crane 3A to the emergency stop position when the transfer is completed. That is, if the distance between the first stacker crane 3A and the second stacker crane 3B is shorter than the distance from the first stacker crane 3A to the emergency stop position when the transfer is completed, an abnormality occurs in the second stacker crane 3B. There is a possibility that the second stacker crane 3B interferes with the first stacker crane 3A. On the other hand, if the distance between the first stacker crane 3A and the second stacker crane 3B is longer than the distance from the first stacker crane 3A to the emergency stop position when the transfer is completed, even if an abnormality occurs in the second stacker crane 3B. There is no possibility that the second stacker crane 3B interferes with the first stacker crane 3A. If it is determined that there is interference, the process proceeds to step S42. If it is determined that there is no interference, the process proceeds to step S45.
(13)他の実施形態
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組合せ可能である。
 前記実施形態では、軌道選択動作、迂回路形成動作、走行開始時間遅延動作、待避動作、待機動作を一定の組み合わせで実現しているが、これら動作は個々別々に実現されてもよいし、他の組み合わせで実現されてもよい。
 前記実施形態では、移動体システムとして移載部が走行・昇降動作を行う自動倉庫を採用したが、本発明はそれに限定されない。
 例えば、地面を複数の搬送車が走行する搬送車システムにも本発明を適用できる。その場合は、搬送車同士の水平面内での干渉防止制御が行われる。
(13) Other Embodiments Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. In particular, a plurality of embodiments and modifications described in this specification can be arbitrarily combined as necessary.
In the above embodiment, the trajectory selection operation, the detour formation operation, the travel start time delay operation, the save operation, and the standby operation are realized in a certain combination, but these operations may be realized individually or in other ways. It may be realized by a combination of
In the said embodiment, although the automatic warehouse where a transfer part carries out driving | running / lifting operation | movement was employ | adopted as a mobile body system, this invention is not limited to it.
For example, the present invention can be applied to a transport vehicle system in which a plurality of transport vehicles travel on the ground. In that case, the interference prevention control in the horizontal plane of conveyance vehicles is performed.
 本発明は、複数の移動体が平面範囲内で移動可能な移動体システムに広く適用できる。 The present invention can be widely applied to a moving body system in which a plurality of moving bodies can move within a plane range.
1    自動倉庫
2    ラック
2A   第1ラック
2B   第2ラック
3    スタッカクレーン
3A   第1スタッカクレーン
3B   第2スタッカクレーン
5    スタッカクレーン通路
7    前側支柱
9    後側支柱
11   物品支承部材
13   物品収納棚
15   フォーク通過間隙
17   入庫ステーション
19   出庫ステーション
21A  第1走行レール
21B  第2走行レール
22   走行台車
23   マスト
23A  左側マスト
23B  前側マスト
25   上側フレーム
26   レール
27   走行車輪   
29   昇降台
31   スライドフォーク
32   移載部(移動体)
33   制御盤
34   昇降ガイドローラ
35   走行モータ
37   昇降モータ
41   ドラム
43   ワイヤ
44   ローラ
45   システムコントローラ
47A  第1クレーンコントローラ(制御部)
47B  第2クレーンコントローラ(制御部)
53   メインコントローラ
55   走行制御部
57   昇降制御部
59   移載制御部
63   ロータリエンコーダ
65   ロータリエンコーダ
67   移載モータ
69   ロータリエンコーダ
71   時間軸
73   出発位置
75   目標位置
76   ベクトル
77   中間点
78   法線
81   第1軌道
82   第2軌道
83   第3軌道
84   第4軌道
91   出発位置
93   目標位置
95   衝突位置
97   衝突位置
99   経由点
101  第1移載部
102  第2移載部
103  第3移載部
104  第4移載部
105  第5移載部
106  第6移載部
107  第7移載部
108  第8移載部
P    パレット
W    物品
DESCRIPTION OF SYMBOLS 1 Automatic warehouse 2 Rack 2A 1st rack 2B 2nd rack 3 Stacker crane 3A 1st stacker crane 3B 2nd stacker crane 5 Stacker crane passage 7 Front support 9 Rear support 11 Article support member 13 Article storage shelf 15 Fork passage gap 17 Warehousing station 19 Unloading station 21A First traveling rail 21B Second traveling rail 22 Traveling carriage 23 Mast 23A Left mast 23B Front mast 25 Upper frame 26 Rail 27 Traveling wheel
29 Lifting table 31 Slide fork 32 Transfer section (moving body)
33 Control panel 34 Elevating guide roller 35 Traveling motor 37 Elevating motor 41 Drum 43 Wire 44 Roller 45 System controller 47A First crane controller (control unit)
47B 2nd crane controller (control part)
53 Main controller 55 Travel controller 57 Elevator controller 59 Transfer controller 63 Rotary encoder 65 Rotary encoder 67 Transfer motor 69 Rotary encoder 71 Time axis 73 Start position 75 Target position 76 Vector 77 Intermediate point 78 Normal line 81 First trajectory 82 Second track 83 Third track 84 Fourth track 91 Starting position 93 Target position 95 Collision position 97 Collision position 99 Via point 101 First transfer unit 102 Second transfer unit 103 Third transfer unit 104 Fourth transfer Part 105 fifth transfer part 106 sixth transfer part 107 seventh transfer part 108 eighth transfer part P pallet W article

Claims (13)

  1.  平面内を移動可能に配置された複数の移動体と、
     前記移動体が移動を開始する前に移動予定経路における他の移動体との干渉を確認し、干渉すると判断すれば出発位置と目標位置とを結ぶ線上の一点における法線上の点を経由点として有する迂回経路を生成する制御部と、
    を備えた移動体システム。
    A plurality of movable bodies arranged to be movable in a plane;
    Before the moving body starts moving, it confirms interference with other moving bodies on the planned movement route, and if it is determined to interfere, a point on the normal line on the line connecting the starting position and the target position is used as a via point. A control unit for generating a detour route having;
    Mobile system with
  2.  前記法線を引くための一点は、前記出発位置と前記目標位置とを結ぶ直線の中間点である、請求項1に記載の移動体システム。 The mobile system according to claim 1, wherein one point for drawing the normal is an intermediate point of a straight line connecting the starting position and the target position.
  3.  前記法線を引くための一点は、前記移動予定経路において前記他の移動体との干渉が予測される地点である、請求項1に記載の移動体システム。 The mobile system according to claim 1, wherein the one point for drawing the normal is a point where interference with the other mobile body is predicted in the planned movement route.
  4.  前記経由点の設定には二分法が用いられる、請求項1に記載の移動体システム。 The mobile system according to claim 1, wherein a bisection method is used for setting the waypoint.
  5.  前記経由点の設定には二分法が用いられる、請求項2に記載の移動体システム。 The mobile system according to claim 2, wherein a bisection method is used for setting the waypoint.
  6.  前記経由点の設定には二分法が用いられる、請求項3に記載の移動体システム。 The mobile system according to claim 3, wherein a bisection method is used for setting the waypoint.
  7.  前記二分法において、最初の設定ポイントは、前記法線を引くための一点から所定のレイアウト上可能な最も離れた位置に設定される、請求項4に記載の移動体システム。 The mobile system according to claim 4, wherein, in the bisection method, the first set point is set at a position farthest possible on a predetermined layout from a point for drawing the normal line.
  8.  前記二分法において、最初の設定ポイントは、前記法線を引くための一点からレイアウト上可能な最も離れた位置に設定される、請求項5に記載の移動体システム。 The mobile system according to claim 5, wherein, in the bisection method, the first set point is set at a position farthest possible on the layout from one point for drawing the normal line.
  9.  前記二分法において、最初の設定ポイントは、前記法線を引くための一点からレイアウト上可能な最も離れた位置に設定される、請求項6に記載の移動体システム。 The mobile system according to claim 6, wherein in the bisection method, the first set point is set at a position farthest possible on the layout from one point for drawing the normal line.
  10.  前記経由点は、前記出発位置と前記目標位置とを結ぶ線によって二分される領域のうち前記他の移動体の位置と反対側の領域に設定される、請求項4に記載の移動体システム。 The mobile system according to claim 4, wherein the via point is set in a region opposite to the position of the other mobile body in a region divided by a line connecting the starting position and the target position.
  11.  前記経由点は、前記出発位置と前記目標位置とを結ぶ線によって二分される領域のうち前記他の移動体の位置と反対側の領域に設定される、請求項7に記載の移動体システム。 The mobile system according to claim 7, wherein the via point is set in a region opposite to a position of the other mobile body in a region divided by a line connecting the starting position and the target position.
  12.  平面内を移動可能に配置された複数の移動体と、
     前記複数の移動体の1つがが移動を開始する前に移動予定経路における他の移動体との干渉を確認し、干渉すると判断すれば、前記1つの移動体の移動開始を遅らすおよび/または出発位置と目標位置とを結ぶ線上の一点における法線上の点を経由点として有する迂回経路を生成する、制御部と、
    を備えた、移動体システム。
    A plurality of movable bodies arranged to be movable in a plane;
    If one of the plurality of moving bodies confirms interference with another moving body on the planned moving path before one of the moving bodies starts moving, and delays the start of movement of the one moving body and / or starts. A control unit that generates a detour path having a point on the normal line at one point on the line connecting the position and the target position as a waypoint;
    Mobile system with
  13.  前記制御部は、移動開始を遅らす方法と、前記迂回経路を生成する方法の走行予定時間をそれぞれ計算して、前記走行予定時間が短い方法を採用する、請求項12に記載の移動体システム。 The mobile system according to claim 12, wherein the control unit employs a method of calculating a scheduled traveling time of a method of delaying the start of movement and a method of generating the detour route, and adopting a method of shortening the scheduled traveling time.
PCT/JP2010/069058 2009-12-07 2010-10-27 Mobile body system WO2011070869A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011545146A JPWO2011070869A1 (en) 2009-12-07 2010-10-27 Mobile system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-277702 2009-12-07
JP2009277702 2009-12-07

Publications (1)

Publication Number Publication Date
WO2011070869A1 true WO2011070869A1 (en) 2011-06-16

Family

ID=44145422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069058 WO2011070869A1 (en) 2009-12-07 2010-10-27 Mobile body system

Country Status (3)

Country Link
JP (1) JPWO2011070869A1 (en)
TW (1) TW201134737A (en)
WO (1) WO2011070869A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022037191A (en) * 2017-04-12 2022-03-08 ボストン ダイナミクス,インコーポレイテッド Road map annotation for multi-agent navigation devoid of deadlock
JP7462457B2 (en) 2020-03-30 2024-04-05 株式会社熊谷組 Autonomous driving method for transport vehicles

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186385A (en) * 1984-10-03 1986-05-01 株式会社東芝 Controller for overhead travelling crane
JPS61254494A (en) * 1985-04-27 1986-11-12 株式会社東芝 Crane controller
JPS62277287A (en) * 1986-05-21 1987-12-02 三菱電機株式会社 Off-line programming device for robot
JPS63225005A (en) * 1987-03-11 1988-09-20 Hitachi Ltd Operating method for cargo handling self-propelled device
JPH01167104A (en) * 1987-12-23 1989-06-30 Hitachi Ltd Operating method for cargo-handling self-advancing device
JPH08208183A (en) * 1995-02-03 1996-08-13 Sumitomo Metal Ind Ltd Control method of conveying equipment and device therefor
JPH0934524A (en) * 1995-07-18 1997-02-07 Kobe Steel Ltd Automatic generation method for moving path of robot manipulator
JPH10333746A (en) * 1997-05-28 1998-12-18 Shinryo Corp Route generating method for moving robot
JP2000001290A (en) * 1998-06-17 2000-01-07 Nkk Corp Setting method for carrying route of crane
JP2000174092A (en) * 1998-12-02 2000-06-23 Dainippon Screen Mfg Co Ltd Substrate carry-in/out device and carrying system
JP2003029839A (en) * 2001-07-13 2003-01-31 Nippon Steel Corp Bypass setting method for automatic carrying device
JP2005242489A (en) * 2004-02-24 2005-09-08 Matsushita Electric Works Ltd System and program of operation control for autonomous mobile body
JP2006048372A (en) * 2004-08-04 2006-02-16 Toyota Motor Corp Path-planning method
JP2008065755A (en) * 2006-09-11 2008-03-21 Hitachi Ltd Mobile device
JP2009172721A (en) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp Robot track control device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511843A (en) * 1991-07-05 1993-01-22 Fujitsu Ltd Track generating method for robot
JP3359008B2 (en) * 1999-08-20 2002-12-24 三菱重工業株式会社 Travel control system for automatic guided vehicles
JP2003187399A (en) * 2001-12-13 2003-07-04 Mitsubishi Heavy Ind Ltd System and method for changing course plan of mobile object

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186385A (en) * 1984-10-03 1986-05-01 株式会社東芝 Controller for overhead travelling crane
JPS61254494A (en) * 1985-04-27 1986-11-12 株式会社東芝 Crane controller
JPS62277287A (en) * 1986-05-21 1987-12-02 三菱電機株式会社 Off-line programming device for robot
JPS63225005A (en) * 1987-03-11 1988-09-20 Hitachi Ltd Operating method for cargo handling self-propelled device
JPH01167104A (en) * 1987-12-23 1989-06-30 Hitachi Ltd Operating method for cargo-handling self-advancing device
JPH08208183A (en) * 1995-02-03 1996-08-13 Sumitomo Metal Ind Ltd Control method of conveying equipment and device therefor
JPH0934524A (en) * 1995-07-18 1997-02-07 Kobe Steel Ltd Automatic generation method for moving path of robot manipulator
JPH10333746A (en) * 1997-05-28 1998-12-18 Shinryo Corp Route generating method for moving robot
JP2000001290A (en) * 1998-06-17 2000-01-07 Nkk Corp Setting method for carrying route of crane
JP2000174092A (en) * 1998-12-02 2000-06-23 Dainippon Screen Mfg Co Ltd Substrate carry-in/out device and carrying system
JP2003029839A (en) * 2001-07-13 2003-01-31 Nippon Steel Corp Bypass setting method for automatic carrying device
JP2005242489A (en) * 2004-02-24 2005-09-08 Matsushita Electric Works Ltd System and program of operation control for autonomous mobile body
JP2006048372A (en) * 2004-08-04 2006-02-16 Toyota Motor Corp Path-planning method
JP2008065755A (en) * 2006-09-11 2008-03-21 Hitachi Ltd Mobile device
JP2009172721A (en) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp Robot track control device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022037191A (en) * 2017-04-12 2022-03-08 ボストン ダイナミクス,インコーポレイテッド Road map annotation for multi-agent navigation devoid of deadlock
US11709502B2 (en) 2017-04-12 2023-07-25 Boston Dynamics, Inc. Roadmap annotation for deadlock-free multi-agent navigation
JP7462457B2 (en) 2020-03-30 2024-04-05 株式会社熊谷組 Autonomous driving method for transport vehicles

Also Published As

Publication number Publication date
JPWO2011070869A1 (en) 2013-04-22
TW201134737A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
JP4666213B2 (en) Goods storage equipment
JP4273423B2 (en) Transport device
TWI380939B (en) Article transport facility
JP4756371B2 (en) Goods storage equipment
KR102569190B1 (en) Article transport facility
WO2010026842A1 (en) Article storage facility and method of operating the same
US9086697B2 (en) Processing facility
JP6652106B2 (en) Goods transport equipment
JP2008214072A (en) Article processing installation
JP2016175711A (en) Lifting transport device
JP5572104B2 (en) Mobile system
JP5288167B2 (en) Goods storage equipment
WO2011070869A1 (en) Mobile body system
JP5487218B2 (en) Automatic warehouse
JP6627677B2 (en) Goods storage equipment
JPS61217404A (en) Automatic storehouse system
JP5617868B2 (en) Transport device
JP7069789B2 (en) Transport system
JP6424705B2 (en) Carrier system
JP4203825B2 (en) Article conveying device
JP5257668B2 (en) Goods storage equipment
KR20220106040A (en) Article transport facility
WO2018042951A1 (en) Traveling truck system and traveling control method
TW202319856A (en) Conveyance system
JP4858757B2 (en) Goods transport equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835791

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545146

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835791

Country of ref document: EP

Kind code of ref document: A1