WO2011070697A1 - Light-emitting module and method for manufacturing same - Google Patents

Light-emitting module and method for manufacturing same Download PDF

Info

Publication number
WO2011070697A1
WO2011070697A1 PCT/JP2010/005858 JP2010005858W WO2011070697A1 WO 2011070697 A1 WO2011070697 A1 WO 2011070697A1 JP 2010005858 W JP2010005858 W JP 2010005858W WO 2011070697 A1 WO2011070697 A1 WO 2011070697A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
substrate
mounting substrate
light emitting
light
Prior art date
Application number
PCT/JP2010/005858
Other languages
French (fr)
Japanese (ja)
Inventor
和之 岡野
杉浦 健二
堀内 誠
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011070697A1 publication Critical patent/WO2011070697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2054Light-reflecting surface, e.g. conductors, substrates, coatings, dielectrics

Definitions

  • the present invention relates to a light emitting module in which semiconductor light emitting elements such as a plurality of LED (Light Emitting Diode) chips are mounted on a mounting substrate.
  • semiconductor light emitting elements such as a plurality of LED (Light Emitting Diode) chips are mounted on a mounting substrate.
  • LED modules light emitting modules
  • a semiconductor light emitting element such as an LED (Light Emitting Diode) chip is mounted on a mounting substrate
  • LED Light Emitting Diode
  • a wiring pattern is formed of Ag, Ag-Pt, Ag-Pd, etc. on the surface (mounting surface) which is one main surface of an insulating mounting substrate, and current is generated by the wiring pattern.
  • a plurality of LED chips are mounted to be supplied.
  • Each LED chip is sealed with a phosphor-containing resin, and when an electric current is supplied, each LED chip generates light, and light is emitted from a light emitting surface opposite to the mounting surface side of each LED chip. Is done. The emitted light is irradiated to the outside through the phosphor-containing resin.
  • an alumina substrate having a thickness of about 0.1 mm to 1.0 mm is often used.
  • the alumina substrate is excellent in heat dissipation, and the outer surface is white.
  • a part of the light emitted from the LED chip is reflected and refracted by the phosphor-containing resin to irradiate the mounting surface of the alumina substrate. Further, light emitted from the surface of the LED chip opposite to the light emitting surface is also irradiated onto the mounting surface of the alumina substrate.
  • the outer surface of the alumina substrate is white, it can reflect a part of the light irradiated to the mounting surface where the wiring pattern is not provided, but the remaining light is incident on the inside of the alumina substrate. To do. In this case, as the area of the wiring pattern on the mounting surface of the alumina substrate decreases, the amount of light incident on the alumina substrate increases.
  • the alumina substrate having a thickness of 1.0 mm or less is light transmissive, the light incident on the alumina substrate is emitted from the back surface of the alumina substrate. Since the light emitted from the back surface of the alumina substrate is not used as the original irradiation light of the LED module, the amount of light irradiated from the entire LED module is reduced.
  • Such a problem is not limited to the case where an alumina substrate is used as a mounting substrate, but may occur even if a substrate of another material is light transmissive.
  • Patent Document 1 discloses a light emitting element mounting substrate in which an aluminum plate is bonded to the back surface of the ceramic substrate made of alumina opposite to the light emitting element mounting surface. .
  • the light emitting element mounting substrate having such a configuration can reflect light emitted from the light emitting element mounted on the mounting surface to the ceramic substrate by an aluminum plate bonded to the back surface of the ceramic substrate.
  • an aluminum plate is placed on a ceramic substrate made of alumina and heated to a first temperature (660 to 680 ° C.) that is equal to or higher than the melting point of aluminum. After pressing against the ceramic substrate, it is cooled to a predetermined temperature, and then heat-treated at a second temperature (600 to 650 ° C.) lower than the first temperature, whereby an aluminum plate, a ceramic substrate made of alumina, Are configured to be joined.
  • a first temperature 660 to 680 ° C.
  • a second temperature 600 to 650 ° C.
  • the aluminum plate bonded to the ceramic substrate has a thickness of about 0.2 mm, there is a problem that the light emitting element mounting substrate becomes thick and the overall weight increases.
  • a ceramic substrate having a predetermined size corresponding to the size of the light emitting module is prepared, and an aluminum plate is bonded to each prepared ceramic substrate. It has a configuration to let you. Therefore, an aluminum plate must be bonded to each ceramic substrate having a predetermined size, and there is a problem that many light emitting element mounting substrates cannot be efficiently manufactured.
  • the aluminum plate is heated to a first temperature equal to or higher than the melting point of aluminum, then cooled once, and thereafter, from the melting point of aluminum. It is necessary to carry out heat treatment to a lower second temperature. For this reason, it is necessary to precisely control the temperature, and there is a possibility that the light emitting element mounting substrate cannot be efficiently manufactured.
  • the present invention has been made in view of such a problem, and an object of the present invention is to efficiently emit light emitted from a semiconductor light emitting element mounted on one main surface of a substrate on the other main surface of the substrate. Another object of the present invention is to provide a light emitting module that can be reflected, and that can suppress an increase in the overall thickness and weight, and that is excellent in production efficiency, and a method for manufacturing the same.
  • a light emitting module is a semiconductor in which a wiring pattern is formed on one main surface of a light-transmitting mounting substrate and electrically connected to the wiring pattern.
  • the reflective film comprised by these is provided, It is characterized by the above-mentioned.
  • the method for manufacturing a light emitting module according to the present invention is a method in which each mounting is performed on one main surface of a mother board that is divided into a plurality of mounting boards and has light transmittance.
  • each mounting is performed on one main surface of a mother board that is divided into a plurality of mounting boards and has light transmittance.
  • the method for manufacturing a light emitting module according to the present invention is a method in which each mounting is performed on one main surface of a mother board that is divided into a plurality of mounting boards and has light transmittance.
  • a wiring pattern for each region corresponding to the substrate for use and mixing or kneading a powder of a substance that generates white powder with glass frit for each region corresponding to each mounting substrate on the other main surface of the mother substrate.
  • Each of the divided mounting substrate a step of forming a reflective film by applying or printing the dried paste and drying and then baking, a step of dividing the mother substrate into a plurality of mounting substrates, And a step of mounting a semiconductor light emitting element on the surface and electrically connecting to the wiring pattern.
  • the reflective film provided on the other main surface of the light-transmitting mounting substrate mixes powder of a substance that produces white powder, such as titanium oxide, zinc oxide, and alumina, with glass frit.
  • a substance that produces white powder such as titanium oxide, zinc oxide, and alumina
  • the paste is formed by applying or printing and baking it, the paste is thin and lightweight, and light can be efficiently reflected. Therefore, an increase in the thickness and weight of the light emitting module is suppressed, and light incident on the mounting substrate can be efficiently reflected.
  • the method for manufacturing a light emitting module of the present invention can manufacture such a light emitting module efficiently, and the productivity is improved.
  • FIGS. 4A to 4C are cross-sectional views taken along line BB in FIG. 4 at the end of steps 1 to 3 when manufacturing the LED module, respectively.
  • FIG. 1 is a plan view of a light emitting module (LED module) according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • the LED module 10 of this embodiment includes a strip-like mounting substrate 11 that extends long along one direction, and a surface (mounting) that is one main surface of the mounting substrate 11.
  • the mounting substrate 11 is formed of, for example, an alumina substrate that is a ceramic substrate and has a length of 54 mm, a width of 10 mm, and a thickness of 0.8 mm.
  • the four LED chips 12 of each set are mounted along the longitudinal direction in a region excluding one end in the longitudinal direction of the mounting substrate 11.
  • a first wiring pattern 14 and a second wiring pattern 15 for supplying current to all the LED chips 12 are provided on the mounting surface 11a of the mounting substrate 11, as shown in FIG. 1, a first wiring pattern 14 and a second wiring pattern 15 for supplying current to all the LED chips 12 are provided.
  • three first land patterns 16a, second land patterns 16b, and third land patterns 16c are provided for each group.
  • all the wiring patterns are composed of Ag-Pt.
  • the first wiring pattern 14 and the second wiring pattern 15 include main wiring portions 14a and 15a that are linearly formed along side edges along the longitudinal direction of the mounting substrate 11, and main wiring portions 14a and 15a. From each of the terminal portions 14b and 15b provided at one end of each of the first wiring portions 14a and 15a and the main wiring portions 14a and 15a, each set of four LED chips 12 faces the central portion in the width direction of the mounting substrate 11. Branch portions 14c and 15c extending respectively.
  • the terminal portions 14b and 15b of the first wiring pattern 14 and the second wiring pattern 15 are disposed at the longitudinal ends of the mounting substrate 11 on which the LED chip 12 is not mounted. It is formed in a rectangular shape along the longitudinal direction.
  • a power line (not shown) is connected to each of the terminal portions 14b and 15b, and current is supplied to the main wiring portions 14a and 15a by each power line.
  • each branch portion 14c extending from the main wiring portion 14a toward the center portion in the width direction in the first wiring pattern 14, a portion close to the center portion in the width direction of each mounting substrate 11 is parallel to the main wiring portion 14a. So as to be away from the terminal portion 14c, and the width of the front end portion is widened to the main wiring portion 14a side.
  • Each branch portion 15 c of the second wiring pattern 15 has a constant width and is in a state perpendicular to the main wiring portion 15 a, and each tip portion is a central portion in the width direction of the mounting substrate 11. Is close to.
  • Each first land pattern 16a provided for each set of four LED chips 12 is arranged farther from the terminal portion 14b than the branch portion 14c of the first wiring pattern 14, and the branch portion 14c.
  • the width of the portion adjacent to the narrow portion is narrow, and the width of the portion located on the far side of the branching portion 14 c is widened toward the center portion in the width direction of the mounting substrate 11.
  • the second land pattern 16b of each set is disposed on the main wiring portion 15a side of the second wiring pattern 15 with respect to the widened portion of the first land pattern 16a, and is close to the first land pattern 16a.
  • the width of the portion that is close to the main wiring portion 15a is widened toward the terminal portion 15b side of the second wiring pattern 15.
  • the third land pattern 16c of each set is adjacent to the terminal portion 15 side with respect to the widened portion of the second land pattern 16b and between the branch portions 15c of the second wiring pattern 15 of each set. Has been placed.
  • the width of the portion close to the second land pattern 16b is narrow, and the width of the portion close to the branch portion 15c is widened toward the center in the width direction of the mounting substrate 11.
  • Each of the first wiring pattern 14, the second wiring pattern 15, and each set of the first land pattern 16a, the second land pattern 16b, and the third land pattern 16c is formed by, for example, printing a wiring paste composed of Ag-Pt.
  • the gold (Au) plating layer 18 is formed over the entire surface of the surface, as shown in FIG. 2, after being applied to a predetermined pattern and dried. By forming such a gold plating layer 18, the amount of current flowing along the wiring pattern can be increased, and the reliability of the connection between the LED chip 12 and the wiring can be increased.
  • Each of the four LED chips 12 in each group has a position between the tip of the branching portion 14c in the first wiring pattern 14 and the first land pattern 16a, and the first land pattern 16a and the second land pattern 16b.
  • the position between the second land pattern 16b and the third land pattern 16c, the position adjacent to the central portion side in the width direction of the mounting substrate 11 with respect to the widened portion of the third land pattern 16c, Has been placed.
  • Each LED chip 12 is die-bonded on the mounting surface 11a of the mounting substrate 11 with a die attach agent (not shown).
  • Each LED chip 12 is, for example, a light emitting diode that emits blue light in which a GaN-based compound semiconductor layer is formed on a light-transmitting substrate, and the light emitting surface (light emitting surface) of each LED chip 12 has a first One electrode and a second electrode (not shown) are provided.
  • the first electrode and the second electrode of the LED chip 12 disposed between the front end portion of the branch portion 14c and the first land pattern 16a in the first wiring pattern 14 are respectively connected to the branch portion 14c and the first land pattern 16a.
  • the first electrode and the second electrode of the LED chip 12 disposed between the first land pattern 16a and the second land pattern 16b are respectively connected to the first land pattern 16a and the second land pattern 16b by a gold wire 17. Electrically connected.
  • the first electrode and the second electrode of the LED chip 12 disposed between the second land pattern 16b and the third land pattern 16c are respectively connected to the second land pattern 16b and the third land pattern 16c by a gold wire 17. Electrically connected. Further, the first electrode and the second electrode of the LED chip 12 disposed adjacent to the widened portion of the third land pattern 16 c are the main wiring portions 15 a of the third land pattern 16 c and the second wiring pattern 15. Are electrically connected to each of them by a gold wire 17.
  • all the LED chips 12 mounted on the mounting substrate 11 have the first wiring pattern 14 and the second wiring pattern 15 except for the terminal portions 14b and 15b, and all the gold wires 17, It is sealed with a phosphor-containing resin 19.
  • the phosphor-containing resin 19 is configured by, for example, phosphor particles being dispersed in a translucent material such as a silicone resin.
  • the phosphor particles for example, convert part of blue light emitted from the LED chip 12 into light having a longer wavelength than the blue light by the phosphor particles.
  • the light on the long wavelength side converted by the phosphor particles is converted into white light by mixing with the blue light whose wavelength has not been converted by the phosphor particles, and this white light is irradiated from the phosphor-containing resin 19 to the outside.
  • examples of the phosphor particles include a mixture of a red phosphor and a green phosphor made of silicon nitride, a YAG phosphor, and the like.
  • the reflective film 13 (see FIG. 2) provided on the back surface 11b of the mounting substrate 11 is formed by applying or printing a paste of a highly reflective material and baking it.
  • a paste produced by mixing or mixing titanium oxide (rutile, anatase) with glass frit is applied to the entire back surface 11b of the mounting substrate 11 by screen printing and dried, followed by firing.
  • rutile, anatase titanium oxide
  • glass frit glass frit
  • the LED module 10 having such a configuration is mounted on a heat sink made of aluminum so that the reflective film 13 provided on the back surface 11b of the mounting substrate 11 is in contact with the heat sink.
  • Current is supplied from the power lines connected to the terminal portions 14b and 15b of the 14 and second wiring patterns 15, respectively. Thereby, light is emitted from all the LED chips 12 mounted on the mounting surface 11 a of the mounting substrate 11.
  • each LED chip 12 Most of the light emitted from each LED chip 12 is irradiated in a direction away from the mounting substrate 11 at a predetermined beam angle from the light emitting surface of each LED chip 12, but a part of the light is emitted from the mounting substrate 11.
  • the surface of the mounting surface 11a and the wiring pattern are irradiated.
  • the mounting surface 11a is directly irradiated with light from the surface of the LED chip 12 facing the mounting surface 11a. Since the mounting substrate 11 is composed of a white alumina substrate, a part of the light irradiated to the mounting surface 11a is reflected, but the remaining light passes through the mounting surface 11a. Incident inside.
  • the mounting substrate 11 is light transmissive because it is as thin as 0.8 mm. However, since the reflective film 13 is provided on the back surface 11 b of the mounting substrate 11, the inside of the mounting substrate 11. The light that has passed through is reflected by the reflective film 13 and emitted from the portion of the mounting surface 11a of the mounting substrate 11 where the wiring pattern is not formed.
  • the amount of light reflected from the mounting surface 11a of the mounting substrate 11 is added to the amount of light reflected by the reflective film 13 and emitted from the mounting surface 11a of the mounting substrate 11, and irradiated from the mounting surface 11a.
  • the amount of light emitted will increase. Therefore, the amount of light emitted from the LED module 10 can be increased without increasing the amount of current supplied to each LED chip 12.
  • the reflective film 13 formed by baking a paste in which titanium oxide is mixed or mixed with glass frit can efficiently reflect light even if it has a thickness of about 40 ⁇ m.
  • the reflective film 13 is coated on the back surface 11b of the mounting substrate 11, there is no possibility that an air layer is interposed between the reflective film 13 and the back surface 11b. improves.
  • the reflective film 13 is thin and lightweight, it is possible to suppress an increase in the overall thickness and weight of the LED module 10.
  • FIG. 3 is a process diagram for explaining the manufacturing method of the LED module according to the present embodiment.
  • an alumina mother substrate 11A (see FIG. 4) to be divided into a plurality of mounting substrates 11 is prepared (see step S11 in FIG. 3, the same applies hereinafter).
  • the mother substrate 11A has a size of 120 mm in length, 125 mm in width, and 0.8 mm in thickness, and is light transmissive.
  • a wiring paste to be a wiring pattern is prepared (step S12).
  • the wiring paste is an Ag—Pt paste.
  • the first wiring pattern 14 and the second wiring are formed on the surface of each region corresponding to each mounting substrate 11 in the mother substrate 11A.
  • Pattern 15 and four sets of first land pattern 16a, second land pattern 16b, and third land pattern 16c are formed (step 1).
  • the first wiring pattern 14 and the second A wiring paste is screen-printed so as to be a pattern corresponding to each of the wiring pattern 15 and the four sets of the first land pattern 16a, the second land pattern 16b, and the third land pattern 16c (step S13).
  • the wiring patterns for 60 mounting boards 11 can be screen printed per hour.
  • the printed wiring paste is dried for 30 minutes at a temperature of, for example, 150 ° C. (step S14), and then, for example, as shown in FIG. Heating is performed for 1 hour so as to be baked at a temperature of ° C for about 10 minutes (step S15).
  • the first wiring pattern 14 having the predetermined shape, the second wiring pattern 15, and the four sets of first land patterns are provided for each region corresponding to each mounting board 11 in the mother board 11 ⁇ / b> A. 16a, a second land pattern 16b, and a third land pattern 16c are formed.
  • FIG. 6A shows a cross section taken along line BB in FIG. 4 in this case.
  • the reflector paste is a paste in which titanium oxide (rutile, anatase) and glass frit are mixed or mixed.
  • the reflector paste is composed of 24 parts by weight of ZnO—B 2 O 3 —SiO 2 glass frit having a softening point of 620 ° C. with respect to 100 parts by weight of rutile titanium oxide powder having an average particle size of 0.25 ⁇ m, ethyl cellulose. 3 parts by weight and 60 parts by weight of terpineol are mixed or kneaded.
  • the reflective material paste 13A is applied by screen printing over the entire area of the back surface of the mother substrate 11A corresponding to the back surface 11b of each mounting substrate 11 (step S17).
  • the reflector paste can be screen-printed on 60 mounting substrates 11 per hour.
  • the printed reflector paste is dried for 30 minutes at a temperature of, for example, 150 ° C. (step S18), and then, for example, as shown in FIG.
  • the paste is heated for 1 hour so that the paste is baked at a temperature of 700 ° C. for about 10 minutes (step S19).
  • FIG. 6B which is a cross section taken along line BB in FIG. 4, the reflective film is formed on the entire surface of the area corresponding to the back surface 11b of all the mounting substrates 11 on the back surface of the mother substrate 11A. 13 is formed.
  • Step 1 for forming the wiring pattern and the step 2 for forming the reflective film may be reversed if possible. Further, in Step 1, only drying is performed without firing, and then, in Step 2, after the reflective film is printed and dried, the wiring pattern and the reflective film may be collectively fired with the same temperature profile. .
  • Step 3 of forming a gold (Au) plating layer 18 on the entire surface of the second land pattern 16b and the third land pattern 16c is performed (step S20).
  • the formation of the gold plating layer 18 in the step 3 is a process similar to a normal gold plating process.
  • FIG. 6C which is a cross section taken along the line BB in FIG. 4, the first wiring pattern 14, the second wiring pattern 15, the four first land patterns 16a, A gold (Au) plating layer 18 is formed on the entire surface of the second land pattern 16b and the third land pattern 16c.
  • nickel or the like may be plated on the wiring pattern prior to the gold plating.
  • Step 4 for dividing the mother board 11A into the mounting boards 11 is performed.
  • cutting grooves 11B (indicated by broken lines in FIG. 4) corresponding to the size of each mounting substrate 11 are formed on the front surface or the back surface of the mother substrate 11A (step S21), and the formed cutting grooves 11B are formed.
  • the mother substrate is divided along the line (step S22).
  • a groove for dividing in advance may be provided in the mother substrate, or it may be cut by laser dicing after step 3.
  • the mother substrate 11A can be easily divided for each mounting substrate 11. Can do.
  • the mounting surface 11a has the first wiring pattern 14, the second wiring pattern 15, and the four sets of the first land pattern 16a, the second land pattern 16b, A plurality of mounting substrates 11 are obtained in which three land patterns 16c are formed and the reflective film 13 is formed on the entire back surface 11b.
  • the production efficiency can be improved.
  • Each formed mounting substrate 11 is inspected for the conductive state of the wiring pattern in the inspection process (step S23).
  • the mounting substrate 11 that has passed the inspection in the inspection step is subjected to the step 5 for mounting the LED chip 12 (step S24).
  • the LED chip 12 is die-bonded at a predetermined position on the mounting substrate 11 with a die attach agent, and each of the LED chips 12 that have been die-bonded and, as described above, a predetermined wiring pattern and Are bonded by the gold wire 17.
  • the LED module 10 shown in FIG. 1 and FIG. 2 is obtained.
  • YAG doped with cerium was used as the phosphor, and an LED module having a color temperature of 6500K was obtained.
  • FIG. 9 shows the reflectance of the mounting surface 11a of the mounting substrate 11 (including the amount of light reflected by the back surface 11b of the mounting substrate 11) when light is irradiated from each LED chip 12 in the LED module 10 of the present embodiment. Is a graph showing for each wavelength. In the graph of FIG. 9, the dotted line indicates the reflectance of the mounting surface 11 a when the reflective film 13 is not provided on the back surface 11 b of the mounting substrate 11.
  • the reflectance of light having a wavelength of 450 nm or more is 90% or more, whereas when the reflective film 13 is not provided, the reflectance of light having a wavelength of 450 nm or more. Is less than 85%. Therefore, by providing the reflective film 13 on the back surface 11b of the mounting substrate 11, the reflectance of the light in the wavelength region used as a normal illumination light source on the mounting surface 11a is improved.
  • the total luminous flux when the LED module of this embodiment is lit at a rating of 1.8 W and all of the LED modules of the conventional configuration in which the reflective film as in this embodiment is not provided on the back surface 11b of the mounting substrate 11 When compared with the luminous flux, the LED module of the conventional configuration without the reflective film was 92 lm, whereas the LED module of the present invention was 101 lm, and the amount of irradiation light increased.
  • an alumina substrate having a thickness of 0.8 mm is used as the mounting substrate 11.
  • the material and thickness Is not particularly limited.
  • the thickness may be 0.1 mm to 1.0 mm. With such a thickness, light passes through the alumina substrate.
  • the mounting substrate 11 is not limited to an alumina substrate, but may be a ceramic substrate such as aluminum nitride having optical transparency, a resin substrate, a glass substrate, a flexible substrate, or the like.
  • the reflective film 13 provided on the back surface 11b of the mounting substrate 11 is formed by baking a paste, it is necessary to have heat resistance against the baking temperature.
  • the reflective film 13 is not particularly limited as long as a high reflectance can be obtained.
  • the reflective film 13 may be formed by applying or printing a paste in which zinc oxide or alumina is mixed or kneaded with glass frit, printing and drying, followed by baking.
  • the reflective film 13 baked after applying and drying a reflector paste prepared by mixing or kneading titanium oxide and glass frit is particularly suitable because it has a high reflectance. It is.
  • the thickness of the reflective film 13 is not particularly limited, it is better to reduce the thickness and weight of the LED module 10, and considering the reflectance, economics, etc. of the reflective film 13,
  • the thickness is preferably 15 ⁇ m to 100 ⁇ m.
  • the reflective film 13 is not necessarily provided on the entire surface of the back surface 11b of the mounting substrate 11 and is selectively applied to a portion where light incident from the mounting surface 11a of the mounting substrate 11 is intensively irradiated. It is good also as a structure which does not provide the reflecting film 13 in the structure provided, or the part with little irradiation light quantity of the light which injects from the mounting surface 11a of the mounting substrate 11.
  • the LED chip 12 mounted on the mounting substrate 11 may be a surface mounting type (SMD).
  • SMD surface mounting type
  • the present invention is useful as a technique for improving the amount of light emitted from the surface of a mounting substrate in a light emitting module in which a wiring pattern is formed on the surface of the mounting substrate and a plurality of semiconductor light emitting elements are mounted. is there.

Abstract

Disclosed is a light-emitting module wherein the reflection amount of light irradiated upon a mounting substrate from an LED chip that is mounted on the mounting substrate is increased. Specifically disclosed is a light-emitting module wherein a first wiring pattern (14), a second wiring pattern (15), a first land pattern (16a), a second land pattern (16b) and a third land pattern (16c) are formed on a mounting surface (11a) of a mounting substrate (11) that is a light-transmitting alumina substrate. A plurality of LED chips (12) are mounted on the mounting surface (11a) of the mounting substrate (11). The entire surface of a back surface (11b) of the mounting substrate (11) is provided with a reflective film (13). The reflective film (13) is formed by coating the back surface (11b) of the mounting substrate (11) with a paste by printing, and drying and then firing the coated paste, said paste being obtained by mixing or kneading titanium oxide and glass frit.

Description

発光モジュールおよびその製造方法Light emitting module and manufacturing method thereof
 本発明は、複数のLED(Light Emitting Diode)チップ等の半導体発光素子が実装用基板上に実装された発光モジュールに関する。 The present invention relates to a light emitting module in which semiconductor light emitting elements such as a plurality of LED (Light Emitting Diode) chips are mounted on a mounting substrate.
 各種照明器具に装着して使用される光源装置の光源として、近年、LED(Light Emitting Diode)チップ等の半導体発光素子が実装用基板上に実装されたLEDモジュール(発光モジュール)が使用されるようになっている。 In recent years, LED modules (light emitting modules) in which a semiconductor light emitting element such as an LED (Light Emitting Diode) chip is mounted on a mounting substrate have been used as a light source of a light source device used by being mounted on various lighting fixtures. It has become.
 LEDモジュールとしては、例えば、絶縁性の実装用基板の一方の主面である表面(実装面)に、Ag、Ag-Pt、Ag-Pd等によって配線パターンが形成されて、配線パターンによって電流が供給されるように、複数のLEDチップが実装されている。各LEDチップは、蛍光体含有樹脂によって封止されており、電流が供給されることにより各LEDチップは光を生成し、各LEDチップにおける実装面側とは反対側の発光面から光が出射される。出射された光は、蛍光体含有樹脂を通って外部に照射される。 As an LED module, for example, a wiring pattern is formed of Ag, Ag-Pt, Ag-Pd, etc. on the surface (mounting surface) which is one main surface of an insulating mounting substrate, and current is generated by the wiring pattern. A plurality of LED chips are mounted to be supplied. Each LED chip is sealed with a phosphor-containing resin, and when an electric current is supplied, each LED chip generates light, and light is emitted from a light emitting surface opposite to the mounting surface side of each LED chip. Is done. The emitted light is irradiated to the outside through the phosphor-containing resin.
 LEDモジュールの実装用基板としては、0.1mm~1.0mm程度の厚さのアルミナ基板が多用されている。アルミナ基板は放熱性に優れており、また、外面が白色になっている。LEDチップから出射される光の一部は、蛍光体含有樹脂によって反射、屈折されることによりアルミナ基板の実装面に照射される。また、LEDチップにおける発光面とは反対側の面から出射される光も、アルミナ基板の実装面に照射される。 As the LED module mounting substrate, an alumina substrate having a thickness of about 0.1 mm to 1.0 mm is often used. The alumina substrate is excellent in heat dissipation, and the outer surface is white. A part of the light emitted from the LED chip is reflected and refracted by the phosphor-containing resin to irradiate the mounting surface of the alumina substrate. Further, light emitted from the surface of the LED chip opposite to the light emitting surface is also irradiated onto the mounting surface of the alumina substrate.
 アルミナ基板は、外面が白色になっているために、配線パターンが設けられていない実装面に照射される光の一部を反射することができるが、残りの光は、アルミナ基板の内部に入射する。この場合、アルミナ基板の実装面における配線パターンの面積が小さくなるほど、アルミナ基板の内部に入射する光量は増加することになる。 Since the outer surface of the alumina substrate is white, it can reflect a part of the light irradiated to the mounting surface where the wiring pattern is not provided, but the remaining light is incident on the inside of the alumina substrate. To do. In this case, as the area of the wiring pattern on the mounting surface of the alumina substrate decreases, the amount of light incident on the alumina substrate increases.
 1.0mm以下の厚さのアルミナ基板は光透過性になっているために、アルミナ基板の内部に入射した光は、アルミナ基板の裏面から出射される。アルミナ基板の裏面から出射される光は、LEDモジュールの本来の照射光として供されないために、LEDモジュール全体から照射される光の光量が低下することになる。 Since the alumina substrate having a thickness of 1.0 mm or less is light transmissive, the light incident on the alumina substrate is emitted from the back surface of the alumina substrate. Since the light emitted from the back surface of the alumina substrate is not used as the original irradiation light of the LED module, the amount of light irradiated from the entire LED module is reduced.
 このような問題は、実装用基板としてアルミナ基板を使用する場合に限らず、他の材質の基板であっても、光透過性になっていれば生じることになる。 Such a problem is not limited to the case where an alumina substrate is used as a mounting substrate, but may occur even if a substrate of another material is light transmissive.
 このような問題を解決するために、特許文献1には、アルミナからなるセラミック基板における発光素子の実装面とは反対側の裏面に、アルミニウム板を接合した発光素子実装用基板が開示されている。このような構成の発光素子実装用基板は、実装面に実装された発光素子からセラミック基板に照射される光を、セラミック基板の裏面に接合されたアルミニウム板によって反射させることができる。 In order to solve such problems, Patent Document 1 discloses a light emitting element mounting substrate in which an aluminum plate is bonded to the back surface of the ceramic substrate made of alumina opposite to the light emitting element mounting surface. . The light emitting element mounting substrate having such a configuration can reflect light emitted from the light emitting element mounted on the mounting surface to the ceramic substrate by an aluminum plate bonded to the back surface of the ceramic substrate.
特開2009-206200号公報JP 2009-206200 A
 特許文献1に開示された発光素子実装用基板は、アルミナからなるセラミック基板上にアルミニウム板を載置して、アルミニウムの融点以上の第1温度(660~680℃)に加熱してアルミニウム板をセラミック基板に押し付けた後に、所定温度にまで冷却し、さらにその後に、第1温度よりも低温の第2温度(600~650℃)で熱処理することによって、アルミニウム板と、アルミナからなるセラミック基板とを接合する構成になっている。 In the substrate for mounting a light emitting element disclosed in Patent Document 1, an aluminum plate is placed on a ceramic substrate made of alumina and heated to a first temperature (660 to 680 ° C.) that is equal to or higher than the melting point of aluminum. After pressing against the ceramic substrate, it is cooled to a predetermined temperature, and then heat-treated at a second temperature (600 to 650 ° C.) lower than the first temperature, whereby an aluminum plate, a ceramic substrate made of alumina, Are configured to be joined.
 しかしながら、セラミック基板に接合されるアルミニウム板は、0.2mm程度の厚さになっているために、発光素子実装用基板が厚くなり、しかも、全体の重量が増加するという問題がある。 However, since the aluminum plate bonded to the ceramic substrate has a thickness of about 0.2 mm, there is a problem that the light emitting element mounting substrate becomes thick and the overall weight increases.
 また、特許文献1に記載された発光素子実装用基板の製造方法では、発光モジュールの大きさに対応した所定の大きさのセラミック基板を準備して、準備されたセラミック基板毎にアルミニウム板を接合させる構成になっている。従って、所定の大きさになった1枚のセラミック基板毎に、アルミニウム板を接合させなければならず、多くの発光素子実装用基板を効率よく製造することができないという問題もある。 In the method for manufacturing a light emitting element mounting substrate described in Patent Document 1, a ceramic substrate having a predetermined size corresponding to the size of the light emitting module is prepared, and an aluminum plate is bonded to each prepared ceramic substrate. It has a configuration to let you. Therefore, an aluminum plate must be bonded to each ceramic substrate having a predetermined size, and there is a problem that many light emitting element mounting substrates cannot be efficiently manufactured.
 しかも、セラミック基板とアルミニウム板とを所定の接合状態とするためには、アルミニウム板を、アルミニウムの融点以上の第1温度にまでに加熱した後に、一旦冷却し、さらにその後に、アルミニウムの融点よりも低い第2温度にまで加熱処理する必要がある。このために、温度を精密に管理しなければならず、そのことによっても、発光素子実装用基板を効率よく製造することができないおそれがある。 Moreover, in order to bring the ceramic substrate and the aluminum plate into a predetermined bonding state, the aluminum plate is heated to a first temperature equal to or higher than the melting point of aluminum, then cooled once, and thereafter, from the melting point of aluminum. It is necessary to carry out heat treatment to a lower second temperature. For this reason, it is necessary to precisely control the temperature, and there is a possibility that the light emitting element mounting substrate cannot be efficiently manufactured.
 本発明は、このような問題に鑑みてなされたものであり、その目的は、基板の一方の主面に実装された半導体発光素子から照射される光を、基板の他方の主面において効率よく反射させることができ、しかも、全体の厚さおよび重量が増加することを抑制することができ、さらには、生産効率に優れた発光モジュールおよびその製造方法を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to efficiently emit light emitted from a semiconductor light emitting element mounted on one main surface of a substrate on the other main surface of the substrate. Another object of the present invention is to provide a light emitting module that can be reflected, and that can suppress an increase in the overall thickness and weight, and that is excellent in production efficiency, and a method for manufacturing the same.
 上記目的を達成するため、本発明に係る発光モジュールは、光透過性を有する実装用基板の一方の主面上に、配線パターンが形成されるとともに、当該配線パターンに電気的に接続された半導体発光素子が搭載された発光モジュールであって、前記実装用基板の他方の主面に、白色粉末を生成する物質の粉末をガラスフリットと混合または混練したペーストを,塗布または印刷して焼成することによって構成された反射膜が設けられていることを特徴とする。 In order to achieve the above object, a light emitting module according to the present invention is a semiconductor in which a wiring pattern is formed on one main surface of a light-transmitting mounting substrate and electrically connected to the wiring pattern. A light emitting module having a light emitting element mounted thereon, wherein a paste obtained by mixing or kneading a powder of a substance that generates a white powder with glass frit is applied or printed on the other main surface of the mounting substrate and fired. The reflective film comprised by these is provided, It is characterized by the above-mentioned.
 上記目的を達成するため、本発明に係る前記発光モジュールの製造方法は、複数の実装用基板に分断される大きさであって光透過性を有するマザー基板の一方の主面上に、各実装用基板に対応した領域毎に配線パターンを形成するとともに、前記マザー基板の他方の主面における各実装用基板に対応した領域毎に、白色粉末を生成する物質の粉末をガラスフリットと混合または混練したペーストを塗布または印刷して乾燥させた後に焼成することにより反射膜を形成する工程と、次いで、前記マザー基板を複数の実装用基板に分断する工程と、分断された実装用基板のそれぞれの表面に、半導体発光素子を搭載して配線パターンと電気的に接続する工程と、を包含することを特徴とする。 In order to achieve the above object, the method for manufacturing a light emitting module according to the present invention is a method in which each mounting is performed on one main surface of a mother board that is divided into a plurality of mounting boards and has light transmittance. In addition to forming a wiring pattern for each region corresponding to the substrate for use, and mixing or kneading a powder of a substance that generates white powder with glass frit for each region corresponding to each mounting substrate on the other main surface of the mother substrate. Each of the divided mounting substrate, a step of forming a reflective film by applying or printing the dried paste and drying and then baking, a step of dividing the mother substrate into a plurality of mounting substrates, And a step of mounting a semiconductor light emitting element on the surface and electrically connecting to the wiring pattern.
 本発明の発光モジュールでは、光透過性を有する実装用基板の他方の主面に設けられた反射膜が、酸化チタン、酸化亜鉛、アルミナなど、白色粉末を生成する物質の粉末をガラスフリットと混合または混連したペーストを、塗布または印刷して焼成することによって構成されているために、薄くて軽量であり、しかも、光を効率よく反射することができる。従って、発光モジュールの厚さおよび重量が増加することが抑制され、しかも、実装用基板内に入射した光を効率よく反射させることができる。 In the light emitting module of the present invention, the reflective film provided on the other main surface of the light-transmitting mounting substrate mixes powder of a substance that produces white powder, such as titanium oxide, zinc oxide, and alumina, with glass frit. In addition, since the paste is formed by applying or printing and baking it, the paste is thin and lightweight, and light can be efficiently reflected. Therefore, an increase in the thickness and weight of the light emitting module is suppressed, and light incident on the mounting substrate can be efficiently reflected.
 本発明の発光モジュールの製造方法は、このような発光モジュールを効率よく製造することができ、生産性が向上する。 The method for manufacturing a light emitting module of the present invention can manufacture such a light emitting module efficiently, and the productivity is improved.
本発明の実施形態に係るLEDモジュールの平面図The top view of the LED module which concerns on embodiment of this invention 図1のA-A線に沿った断面図Sectional view along the line AA in FIG. 本発明の実施形態に係るLEDモジュールの製造方法を説明するための工程図Process drawing for demonstrating the manufacturing method of the LED module which concerns on embodiment of this invention LEDモジュールを製造する際の工程1の終了時における実装用基板の平面図The top view of the board | substrate for mounting at the time of completion | finish of the process 1 at the time of manufacturing an LED module 本実施形態に係るLEDモジュールの製造方法における配線パターンの加熱工程を説明するためのグラフThe graph for demonstrating the heating process of the wiring pattern in the manufacturing method of the LED module which concerns on this embodiment (a)~(c)は、それぞれ、LEDモジュールを製造する際の工程1~工程3の終了時における図4のB-B線における断面図FIGS. 4A to 4C are cross-sectional views taken along line BB in FIG. 4 at the end of steps 1 to 3 when manufacturing the LED module, respectively. LEDモジュールを製造する際の工程2の終了時の実装用基板の裏面図Rear view of the mounting board at the end of step 2 when manufacturing the LED module 本実施形態に係るLEDモジュールの製造方法における反射膜の加熱工程を説明するためのグラフThe graph for demonstrating the heating process of the reflecting film in the manufacturing method of the LED module which concerns on this embodiment 本実施形態のLEDモジュールにおける実装用基板の実装面の反射率を波長毎に示したグラフThe graph which showed the reflectance of the mounting surface of the mounting board in the LED module of this embodiment for every wavelength
 以下、本発明の実施形態について説明する。図1は、本発明の実施形態に係る発光モジュール(LEDモジュール)の平面図、図2は、図1のA-A線に沿った断面図である。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a plan view of a light emitting module (LED module) according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG.
 図1および図2に示すように、本実施形態のLEDモジュール10は、一方向に沿って長く延びる帯板状の実装用基板11と、実装用基板11における一方の主面である表面(実装面)11a上に搭載された複数個のLEDチップ(半導体発光素子)12と、図2に示すように、実装用基板11の他方の主面である裏面11bに設けられた反射膜13とを備えている。 As shown in FIG. 1 and FIG. 2, the LED module 10 of this embodiment includes a strip-like mounting substrate 11 that extends long along one direction, and a surface (mounting) that is one main surface of the mounting substrate 11. A plurality of LED chips (semiconductor light emitting elements) 12 mounted on the surface 11a, and a reflective film 13 provided on the back surface 11b, which is the other main surface of the mounting substrate 11, as shown in FIG. I have.
 実装用基板11は、例えば、セラミック基板であるアルミナ基板によって、長さ54mm、幅10mm、厚さ0.8mmに形成されている。実装用基板11の実装面11a上には、例えば4個を1組として全部で4組(16個)のLEDチップ(ベアチップ)12が実装されている。各組の4個のLEDチップ12は、実装用基板11における長手方向の一方の端部を除いた領域に、長手方向に沿ってそれぞれ実装されている。 The mounting substrate 11 is formed of, for example, an alumina substrate that is a ceramic substrate and has a length of 54 mm, a width of 10 mm, and a thickness of 0.8 mm. On the mounting surface 11 a of the mounting substrate 11, for example, four sets (16 pieces) of LED chips (bear chips) 12 are mounted in a total of four sets. The four LED chips 12 of each set are mounted along the longitudinal direction in a region excluding one end in the longitudinal direction of the mounting substrate 11.
 また、実装用基板11の実装面11a上には、図1に示すように、全てのLEDチップ12に対して電流を供給するための第1配線パターン14および第2配線パターン15が設けられるとともに、各組の4個のLEDチップ12を直列接続するために各組毎に3つの第1ランドパターン16a、第2ランドパターン16b、第3ランドパターン16cが設けられている。本実施形態では、全ての配線パターンが、Ag-Ptによって構成されている。 On the mounting surface 11a of the mounting substrate 11, as shown in FIG. 1, a first wiring pattern 14 and a second wiring pattern 15 for supplying current to all the LED chips 12 are provided. In order to connect the four LED chips 12 of each group in series, three first land patterns 16a, second land patterns 16b, and third land patterns 16c are provided for each group. In this embodiment, all the wiring patterns are composed of Ag-Pt.
 第1配線パターン14および第2配線パターン15は、実装用基板11における長手方向に沿った各側縁部に沿って直線状に形成された主配線部14aおよび15aと、主配線部14aおよび15aのそれぞれの一方の端部に設けられた端子部14bおよび15bと、主配線部14aおよび15aのそれぞれから、4個のLEDチップ12の各組毎に実装用基板11の幅方向中央部に向ってそれぞれ延びる分岐部14cおよび15cとを有している。 The first wiring pattern 14 and the second wiring pattern 15 include main wiring portions 14a and 15a that are linearly formed along side edges along the longitudinal direction of the mounting substrate 11, and main wiring portions 14a and 15a. From each of the terminal portions 14b and 15b provided at one end of each of the first wiring portions 14a and 15a and the main wiring portions 14a and 15a, each set of four LED chips 12 faces the central portion in the width direction of the mounting substrate 11. Branch portions 14c and 15c extending respectively.
 第1配線パターン14および第2配線パターン15の端子部14bおよび15bは、LEDチップ12が実装されていない実装用基板11の長手方向の端部に配置されており、それぞれが、実装用基板11の長手方向に沿った長方形状に形成されている。各端子部14bおよび15bには、電力線(図示せず)がそれぞれ接続されて、各電力線によって主配線部14aおよび15aに電流が供給されるようになっている。 The terminal portions 14b and 15b of the first wiring pattern 14 and the second wiring pattern 15 are disposed at the longitudinal ends of the mounting substrate 11 on which the LED chip 12 is not mounted. It is formed in a rectangular shape along the longitudinal direction. A power line (not shown) is connected to each of the terminal portions 14b and 15b, and current is supplied to the main wiring portions 14a and 15a by each power line.
 第1配線パターン14における主配線部14aから幅方向の中央部に向って延びる各分岐部14cは、それぞれの実装用基板11の幅方向の中央部に近接した部分が、主配線部14aに平行になるように、端子部14cから離れる方向に向って屈曲されており、その先端部の幅が主配線部14a側に広がっている。 In each branch portion 14c extending from the main wiring portion 14a toward the center portion in the width direction in the first wiring pattern 14, a portion close to the center portion in the width direction of each mounting substrate 11 is parallel to the main wiring portion 14a. So as to be away from the terminal portion 14c, and the width of the front end portion is widened to the main wiring portion 14a side.
 第2配線パターン15のそれぞれの分岐部15cは、一定の幅であって、主配線部15aに対して垂直な状態になっており、それぞれの先端部が実装用基板11の幅方向の中央部に近接している。 Each branch portion 15 c of the second wiring pattern 15 has a constant width and is in a state perpendicular to the main wiring portion 15 a, and each tip portion is a central portion in the width direction of the mounting substrate 11. Is close to.
 4個のLEDチップ12の各組毎に設けられたそれぞれの第1ランドパターン16aは、第1配線パターン14の分岐部14cに対して端子部14bから遠方側に配置されており、分岐部14cに近接した部分の幅が狭く、分岐部14cの遠方側に位置する部分の幅が、実装用基板11の幅方向中央部側に広がっている。 Each first land pattern 16a provided for each set of four LED chips 12 is arranged farther from the terminal portion 14b than the branch portion 14c of the first wiring pattern 14, and the branch portion 14c. The width of the portion adjacent to the narrow portion is narrow, and the width of the portion located on the far side of the branching portion 14 c is widened toward the center portion in the width direction of the mounting substrate 11.
 各組の第2ランドパターン16bは、第1ランドパターン16aにおける幅が広くなった部分に対して、第2配線パターン15の主配線部15a側に配置されており、第1ランドパターン16aに近接した部分の幅が狭く、主配線部15aに近接した部分の幅が、第2配線パターン15の端子部15b側に広がっている。 The second land pattern 16b of each set is disposed on the main wiring portion 15a side of the second wiring pattern 15 with respect to the widened portion of the first land pattern 16a, and is close to the first land pattern 16a. The width of the portion that is close to the main wiring portion 15a is widened toward the terminal portion 15b side of the second wiring pattern 15.
 各組の第3ランドパターン16cは、第2ランドパターン16bにおける幅が広くなった部分に対して端子部15側に隣接して、各組の第2配線パターン15における分岐部15cとの間に配置されている。第3ランドパターン16cは、第2ランドパターン16bに近接した部分の幅が狭く、分岐部15cに近接した部分の幅が実装用基板11の幅方向中央部側に広がっている。 The third land pattern 16c of each set is adjacent to the terminal portion 15 side with respect to the widened portion of the second land pattern 16b and between the branch portions 15c of the second wiring pattern 15 of each set. Has been placed. In the third land pattern 16c, the width of the portion close to the second land pattern 16b is narrow, and the width of the portion close to the branch portion 15c is widened toward the center in the width direction of the mounting substrate 11.
 第1配線パターン14、第2配線パターン15、各組の第1ランドパターン16a、第2ランドパターン16b、第3ランドパターン16cのそれぞれは、例えば、Ag-Ptによって構成された配線ペーストを印刷により所定のパターンに塗布して乾燥させた後に焼成することによって形成されており、図2に示すように、それらの表面の全面にわたって金(Au)メッキ層18が形成されている。このような金メッキ層18が形成されていることにより、配線パターンに沿って流れる電流量を増加させることができると共に、LEDチップ12と配線との接続の信頼性を高めることができる。 Each of the first wiring pattern 14, the second wiring pattern 15, and each set of the first land pattern 16a, the second land pattern 16b, and the third land pattern 16c is formed by, for example, printing a wiring paste composed of Ag-Pt. The gold (Au) plating layer 18 is formed over the entire surface of the surface, as shown in FIG. 2, after being applied to a predetermined pattern and dried. By forming such a gold plating layer 18, the amount of current flowing along the wiring pattern can be increased, and the reliability of the connection between the LED chip 12 and the wiring can be increased.
 各組の4個のLEDチップ12のそれぞれは、第1配線パターン14における分岐部14cの先端部と第1ランドパターン16aとの間の位置、第1ランドパターン16aと第2ランドパターン16bとの間の位置、第2ランドパターン16bと第3ランドパターン16cとの間、第3ランドパターン16cにおける幅が広くなった部分に対して実装用基板11の幅方向中央部側に隣接する位置に、配置されている。 Each of the four LED chips 12 in each group has a position between the tip of the branching portion 14c in the first wiring pattern 14 and the first land pattern 16a, and the first land pattern 16a and the second land pattern 16b. The position between the second land pattern 16b and the third land pattern 16c, the position adjacent to the central portion side in the width direction of the mounting substrate 11 with respect to the widened portion of the third land pattern 16c, Has been placed.
 各LEDチップ12は、それぞれ、ダイアタッチ剤(図示せず)によって、実装用基板11の実装面11a上にダイボンディングされている。 Each LED chip 12 is die-bonded on the mounting surface 11a of the mounting substrate 11 with a die attach agent (not shown).
 各LEDチップ12は、例えば、光透過性の基板上にGaN系化合物半導体層が形成された青色光を発する発光ダイオードであり、各LEDチップ12における発光側の表面(発光面)には、第1電極および第2電極(図示せず)がそれぞれ設けられている。 Each LED chip 12 is, for example, a light emitting diode that emits blue light in which a GaN-based compound semiconductor layer is formed on a light-transmitting substrate, and the light emitting surface (light emitting surface) of each LED chip 12 has a first One electrode and a second electrode (not shown) are provided.
 第1配線パターン14における分岐部14cの先端部と第1ランドパターン16aとの間に配置されたLEDチップ12の第1電極および第2電極は、分岐部14cおよび第1ランドパターン16aのそれぞれに、金ワイヤー17によって電気的に接続されている。第1ランドパターン16aと第2ランドパターン16bとの間に配置されたLEDチップ12の第1電極および第2電極は、第1ランドパターン16aおよび第2ランドパターン16bのそれぞれに、金ワイヤー17によって電気的に接続されている。 The first electrode and the second electrode of the LED chip 12 disposed between the front end portion of the branch portion 14c and the first land pattern 16a in the first wiring pattern 14 are respectively connected to the branch portion 14c and the first land pattern 16a. Are electrically connected by a gold wire 17. The first electrode and the second electrode of the LED chip 12 disposed between the first land pattern 16a and the second land pattern 16b are respectively connected to the first land pattern 16a and the second land pattern 16b by a gold wire 17. Electrically connected.
 第2ランドパターン16bと第3ランドパターン16cとの間に配置されたLEDチップ12の第1電極および第2電極は、第2ランドパターン16bおよび第3ランドパターン16cのそれぞれに、金ワイヤー17によって電気的に接続されている。また、第3ランドパターン16cにおける幅が広くなった部分に隣接して配置されたLEDチップ12の第1電極および第2電極は、第3ランドパターン16cおよび第2配線パターン15の主配線部15aのそれぞれに、金ワイヤー17によって電気的に接続されている。 The first electrode and the second electrode of the LED chip 12 disposed between the second land pattern 16b and the third land pattern 16c are respectively connected to the second land pattern 16b and the third land pattern 16c by a gold wire 17. Electrically connected. Further, the first electrode and the second electrode of the LED chip 12 disposed adjacent to the widened portion of the third land pattern 16 c are the main wiring portions 15 a of the third land pattern 16 c and the second wiring pattern 15. Are electrically connected to each of them by a gold wire 17.
 図1に示すように、実装用基板11に実装された全てのLEDチップ12は、各端子部14bおよび15bを除く第1配線パターン14および第2配線パターン15と、全ての金ワイヤー17とともに、蛍光体含有樹脂19によって封止されている。蛍光体含有樹脂19は、例えば、シリコーン樹脂などの透光性材料に蛍光体粒子が分散されて構成されている。 As shown in FIG. 1, all the LED chips 12 mounted on the mounting substrate 11 have the first wiring pattern 14 and the second wiring pattern 15 except for the terminal portions 14b and 15b, and all the gold wires 17, It is sealed with a phosphor-containing resin 19. The phosphor-containing resin 19 is configured by, for example, phosphor particles being dispersed in a translucent material such as a silicone resin.
 蛍光体粒子は、例えば、LEDチップ12により発せられる青色光の一部を、蛍光体粒子によって前記青色光より長波長側の光に変換する。蛍光体粒子によって変換された長波長側の光は、蛍光体粒子により波長の変換がされなかった青色光との混色によって白色光とされ、この白色光が蛍光体含有樹脂19から外部に照射される。 The phosphor particles, for example, convert part of blue light emitted from the LED chip 12 into light having a longer wavelength than the blue light by the phosphor particles. The light on the long wavelength side converted by the phosphor particles is converted into white light by mixing with the blue light whose wavelength has not been converted by the phosphor particles, and this white light is irradiated from the phosphor-containing resin 19 to the outside. The
 なお、蛍光体粒子としては、珪窒化物よりなる赤色蛍光体および緑色蛍光体の混合物、YAG蛍光体等が挙げられる。 In addition, examples of the phosphor particles include a mixture of a red phosphor and a green phosphor made of silicon nitride, a YAG phosphor, and the like.
 実装用基板11の裏面11bに設けられた反射膜13(図2参照)は、高反射材料のペーストを塗布または印刷して焼成することによって形成されている。本実施形態では、酸化チタン(ルチル、アナターゼ)をガラスフリットと混合または混連して製造したペーストを、実装用基板11の裏面11bに、スクリーン印刷により全面にわたって塗布して乾燥させた後に焼成することにより、例えば40μm程度の厚さで形成されており、裏面11bを全面にわたってコーティングしている。 The reflective film 13 (see FIG. 2) provided on the back surface 11b of the mounting substrate 11 is formed by applying or printing a paste of a highly reflective material and baking it. In the present embodiment, a paste produced by mixing or mixing titanium oxide (rutile, anatase) with glass frit is applied to the entire back surface 11b of the mounting substrate 11 by screen printing and dried, followed by firing. Thus, for example, a thickness of about 40 μm is formed, and the back surface 11b is coated over the entire surface.
 このような構成のLEDモジュール10は、例えば、アルミニウムによって構成されたヒートシンク上に、実装用基板11の裏面11bに設けられた反射膜13がヒートシンクに接触するように搭載されて、第1配線パターン14および第2配線パターン15のそれぞれの端子部14bおよび15bに接続された電力線から電流が供給される。これにより、実装用基板11の実装面11aに実装された全てのLEDチップ12から光が出射される。 For example, the LED module 10 having such a configuration is mounted on a heat sink made of aluminum so that the reflective film 13 provided on the back surface 11b of the mounting substrate 11 is in contact with the heat sink. Current is supplied from the power lines connected to the terminal portions 14b and 15b of the 14 and second wiring patterns 15, respectively. Thereby, light is emitted from all the LED chips 12 mounted on the mounting surface 11 a of the mounting substrate 11.
 各LEDチップ12から出射された光の大部分は、各LEDチップ12の発光面から所定のビーム角度で実装用基板11から離れる方向に照射されるが、光の一部は、実装用基板11の実装面11aの表面および配線パターンに照射される。また、LEDチップ12における実装面11aに対向する面から、直接、実装面11aにも光が照射される。実装用基板11は、白色のアルミナ基板によって構成されているために、実装面11aに照射される光の一部は反射されるものの、残りの光は、実装面11aを通って実装用基板11の内部に入射する。 Most of the light emitted from each LED chip 12 is irradiated in a direction away from the mounting substrate 11 at a predetermined beam angle from the light emitting surface of each LED chip 12, but a part of the light is emitted from the mounting substrate 11. The surface of the mounting surface 11a and the wiring pattern are irradiated. In addition, the mounting surface 11a is directly irradiated with light from the surface of the LED chip 12 facing the mounting surface 11a. Since the mounting substrate 11 is composed of a white alumina substrate, a part of the light irradiated to the mounting surface 11a is reflected, but the remaining light passes through the mounting surface 11a. Incident inside.
 実装用基板11は、厚さが0.8mmと薄いために光透過性になっているが、実装用基板11の裏面11bに反射膜13が設けられているために、実装用基板11の内部を透過した光は反射膜13によって反射されて、実装用基板11の実装面11aにおける配線パターンが形成されていない部分から出射される。 The mounting substrate 11 is light transmissive because it is as thin as 0.8 mm. However, since the reflective film 13 is provided on the back surface 11 b of the mounting substrate 11, the inside of the mounting substrate 11. The light that has passed through is reflected by the reflective film 13 and emitted from the portion of the mounting surface 11a of the mounting substrate 11 where the wiring pattern is not formed.
 これにより、実装用基板11の実装面11aによって反射される光の光量に、反射膜13によって反射されて実装用基板11の実装面11aから出射される光の光量が加わり、実装面11aから照射される光の光量が増加することになる。従って、各LEDチップ12に供給される電流量を増加させることなく、LEDモジュール10から照射される光量を増加させることができる。 As a result, the amount of light reflected from the mounting surface 11a of the mounting substrate 11 is added to the amount of light reflected by the reflective film 13 and emitted from the mounting surface 11a of the mounting substrate 11, and irradiated from the mounting surface 11a. The amount of light emitted will increase. Therefore, the amount of light emitted from the LED module 10 can be increased without increasing the amount of current supplied to each LED chip 12.
 酸化チタンをガラスフリットと混合または混連したペーストの焼成によって形成された反射膜13は、40μm程度の厚さであっても光を効率よく反射させることができる。しかも、反射膜13は、実装用基板11の裏面11bにコーティングされているために、裏面11bとの間に空気層が介在するおそれがなく、これによっても、反射膜13による光の反射効率が向上する。さらには、反射膜13は薄くて軽量であるために、LEDモジュール10全体の厚さおよび全体の重量が増加することを抑制することができる。 The reflective film 13 formed by baking a paste in which titanium oxide is mixed or mixed with glass frit can efficiently reflect light even if it has a thickness of about 40 μm. In addition, since the reflective film 13 is coated on the back surface 11b of the mounting substrate 11, there is no possibility that an air layer is interposed between the reflective film 13 and the back surface 11b. improves. Furthermore, since the reflective film 13 is thin and lightweight, it is possible to suppress an increase in the overall thickness and weight of the LED module 10.
 図3は、本実施形態に係るLEDモジュールの製造方法を説明するための工程図である。まず、複数の実装用基板11に分断されるアルミナのマザー基板11A(図4参照)を準備する(図3のステップS11参照、以下同様)。マザー基板11Aは、例えば、縦120mm、横125mm、厚さ0.8mmの大きさになっており、光透過性になっている。 FIG. 3 is a process diagram for explaining the manufacturing method of the LED module according to the present embodiment. First, an alumina mother substrate 11A (see FIG. 4) to be divided into a plurality of mounting substrates 11 is prepared (see step S11 in FIG. 3, the same applies hereinafter). For example, the mother substrate 11A has a size of 120 mm in length, 125 mm in width, and 0.8 mm in thickness, and is light transmissive.
 また、配線パターンとされる配線ペーストを準備する(ステップS12)。本実施形態では、配線ペーストは、Ag-Ptペーストである。 Also, a wiring paste to be a wiring pattern is prepared (step S12). In the present embodiment, the wiring paste is an Ag—Pt paste.
 マザー基板11Aおよび配線ペーストが準備されると、図4に示すように、マザー基板11Aにおけるそれぞれの実装用基板11に対応した各領域の表面に対して、第1配線パターン14と、第2配線パターン15と、4組の第1ランドパターン16a、第2ランドパターン16b、第3ランドパターン16cをそれぞれ形成する(工程1)。 When the mother substrate 11A and the wiring paste are prepared, as shown in FIG. 4, the first wiring pattern 14 and the second wiring are formed on the surface of each region corresponding to each mounting substrate 11 in the mother substrate 11A. Pattern 15 and four sets of first land pattern 16a, second land pattern 16b, and third land pattern 16c are formed (step 1).
 この工程1では、まず、マザー基板11Aの一面におけるそれぞれの実装用基板11に対応した領域(各実装用基板11の実装面11aに対応した領域)毎に、第1配線パターン14と、第2配線パターン15と、4組の第1ランドパターン16a、第2ランドパターン16b、第3ランドパターン16cとのそれぞれに対応したパターンになるように、配線ペーストをスクリーン印刷する(ステップS13)。なお、本実施形態では、1時間当たり、60枚の実装用基板11に対する配線パターンをスクリーン印刷することができる。 In this step 1, first, for each region corresponding to each mounting substrate 11 (region corresponding to the mounting surface 11a of each mounting substrate 11) on one surface of the mother substrate 11A, the first wiring pattern 14 and the second A wiring paste is screen-printed so as to be a pattern corresponding to each of the wiring pattern 15 and the four sets of the first land pattern 16a, the second land pattern 16b, and the third land pattern 16c (step S13). In the present embodiment, the wiring patterns for 60 mounting boards 11 can be screen printed per hour.
 配線ペーストによるスクリーン印刷が終了すると、印刷された配線ペーストを、例えば、150℃の温度で30分にわたって乾燥させ(ステップS14)、さらにその後に、例えば、図8に示すように、配線ペーストが850℃の温度で10分程度の時間にわたって焼成されるように、1時間にわたって加熱する(ステップS15)。これにより、図4に示すように、マザー基板11Aにおける各実装用基板11に対応した領域毎に、所定形状の第1配線パターン14と、第2配線パターン15と、4組の第1ランドパターン16a、第2ランドパターン16b、第3ランドパターン16cとが、それぞれ形成される。なお、この場合の図4のB-B線に沿った断面を、図6(a)に示す。 When the screen printing with the wiring paste is completed, the printed wiring paste is dried for 30 minutes at a temperature of, for example, 150 ° C. (step S14), and then, for example, as shown in FIG. Heating is performed for 1 hour so as to be baked at a temperature of ° C for about 10 minutes (step S15). As a result, as shown in FIG. 4, the first wiring pattern 14 having the predetermined shape, the second wiring pattern 15, and the four sets of first land patterns are provided for each region corresponding to each mounting board 11 in the mother board 11 </ b> A. 16a, a second land pattern 16b, and a third land pattern 16c are formed. FIG. 6A shows a cross section taken along line BB in FIG. 4 in this case.
 このようにして配線パターンが形成されると、予め準備された反射材ペースト(ステップS16)による反射膜13の形成が実施される(工程2)。反射材ペーストは、酸化チタン(ルチル、アナターゼ)とガラスフリットとを混合または混連したペーストである。具体的には、反射材ペーストは、平均粒子径0.25μmのルチル型酸化チタン粉末100重量部に対し、軟化点620℃のZnO-B-SiO系ガラスフリット24重量部,エチルセルロース3重量部,テルピネオール60重量部を混合または混練したものである。 When the wiring pattern is formed in this way, the reflection film 13 is formed by using a reflector paste prepared in advance (step S16) (step 2). The reflector paste is a paste in which titanium oxide (rutile, anatase) and glass frit are mixed or mixed. Specifically, the reflector paste is composed of 24 parts by weight of ZnO—B 2 O 3 —SiO 2 glass frit having a softening point of 620 ° C. with respect to 100 parts by weight of rutile titanium oxide powder having an average particle size of 0.25 μm, ethyl cellulose. 3 parts by weight and 60 parts by weight of terpineol are mixed or kneaded.
 この工程2では、図7に示すように、マザー基板11Aの裏面における各実装用基板11の裏面11bに対応する領域の全面にわたって、反射材ペースト13Aをスクリーン印刷によって塗布する(ステップS17)。なお、この場合も、1時間当たり、60枚の実装用基板11に対して反射材ペーストをスクリーン印刷することができる。 In this step 2, as shown in FIG. 7, the reflective material paste 13A is applied by screen printing over the entire area of the back surface of the mother substrate 11A corresponding to the back surface 11b of each mounting substrate 11 (step S17). In this case as well, the reflector paste can be screen-printed on 60 mounting substrates 11 per hour.
 反射材ペーストのスクリーン印刷が終了すると、印刷された反射材ペーストを、例えば、150℃の温度で30分にわたって乾燥させ(ステップS18)、さらにその後に、例えば、図8に示すように、反射材ペーストが700℃の温度で約10分にわたって焼成されるように、1時間にわたって加熱する(ステップS19)。これにより、図4のB-B線に沿った断面である図6(b)に示すように、マザー基板11Aの裏面における全ての実装用基板11の裏面11bに対応する領域の全面に反射膜13が形成される。 When the screen printing of the reflector paste is completed, the printed reflector paste is dried for 30 minutes at a temperature of, for example, 150 ° C. (step S18), and then, for example, as shown in FIG. The paste is heated for 1 hour so that the paste is baked at a temperature of 700 ° C. for about 10 minutes (step S19). As a result, as shown in FIG. 6B, which is a cross section taken along line BB in FIG. 4, the reflective film is formed on the entire surface of the area corresponding to the back surface 11b of all the mounting substrates 11 on the back surface of the mother substrate 11A. 13 is formed.
 なお、配線パターンを形成する工程1と、反射膜を形成する工程2とは、可能であれば、順番を逆にしてもよい。また,工程1では、焼成を行わずに乾燥だけ行い、次いで、工程2において、反射膜の印刷および乾燥を行なった後に、配線パターンと反射膜とを、同じ温度プロファイルで一括焼成してもよい。 Note that the order of the step 1 for forming the wiring pattern and the step 2 for forming the reflective film may be reversed if possible. Further, in Step 1, only drying is performed without firing, and then, in Step 2, after the reflective film is printed and dried, the wiring pattern and the reflective film may be collectively fired with the same temperature profile. .
 このようにして、マザー基板11Aの裏面11bに反射膜13が形成されると、マザー基板11Aの表面に第1配線パターン14と、第2配線パターン15と、4組の第1ランドパターン16a、第2ランドパターン16b、第3ランドパターン16cとの表面の全面に金(Au)メッキ層18を形成する工程3が実施される(ステップS20)。この工程3における金メッキ層18の形成は、通常の金メッキ処理と同様の処理である。これにより、図4のB-B線に沿った断面である図6(c)に示すように、第1配線パターン14と、第2配線パターン15と、4組の第1ランドパターン16a、第2ランドパターン16b、第3ランドパターン16cとの表面の全面に金(Au)メッキ層18が形成される。 Thus, when the reflective film 13 is formed on the back surface 11b of the mother substrate 11A, the first wiring pattern 14, the second wiring pattern 15, and the four sets of first land patterns 16a, Step 3 of forming a gold (Au) plating layer 18 on the entire surface of the second land pattern 16b and the third land pattern 16c is performed (step S20). The formation of the gold plating layer 18 in the step 3 is a process similar to a normal gold plating process. Thus, as shown in FIG. 6C, which is a cross section taken along the line BB in FIG. 4, the first wiring pattern 14, the second wiring pattern 15, the four first land patterns 16a, A gold (Au) plating layer 18 is formed on the entire surface of the second land pattern 16b and the third land pattern 16c.
 なお、密着性、2次実装時のハンダ付けに対する信頼性等を向上させるために、金メッキに先立って、ニッケル等を配線パターン上にメッキする構成としてもよい。 In addition, in order to improve the adhesiveness, the reliability with respect to soldering at the time of secondary mounting, etc., nickel or the like may be plated on the wiring pattern prior to the gold plating.
 このような状態になると、マザー基板11Aを各実装用基板11に分断する工程4が実施される。この工程4では、各実装用基板11の大きさに対応した切断溝11B(図4に破線で示す)を、マザー基板11Aの表面または裏面に形成し(ステップS21)、形成された切断溝11Bに沿ってマザー基板を分断する(ステップS22)。 In this state, Step 4 for dividing the mother board 11A into the mounting boards 11 is performed. In this step 4, cutting grooves 11B (indicated by broken lines in FIG. 4) corresponding to the size of each mounting substrate 11 are formed on the front surface or the back surface of the mother substrate 11A (step S21), and the formed cutting grooves 11B are formed. The mother substrate is divided along the line (step S22).
 また,マザー基板に、予め分断するための溝を設けておいてもよいし,工程3の後にレーザーダイシング等で切断してもよい。 Further, a groove for dividing in advance may be provided in the mother substrate, or it may be cut by laser dicing after step 3.
 この場合、切断溝11Bは、マザー基板11Aの裏面における反射膜13が形成されていない部分に対応して形成されるために、マザー基板11Aをそれぞれの実装用基板11毎に容易に分断することができる。 In this case, since the cutting groove 11B is formed corresponding to a portion where the reflective film 13 is not formed on the back surface of the mother substrate 11A, the mother substrate 11A can be easily divided for each mounting substrate 11. Can do.
 これにより、実装面11aには、それぞれの表面に金メッキ層18が形成された第1配線パターン14と、第2配線パターン15と、4組の第1ランドパターン16a、第2ランドパターン16b、第3ランドパターン16cとが形成され、裏面11bに反射膜13が全面にわたって形成された複数の実装用基板11が得られる。 As a result, the mounting surface 11a has the first wiring pattern 14, the second wiring pattern 15, and the four sets of the first land pattern 16a, the second land pattern 16b, A plurality of mounting substrates 11 are obtained in which three land patterns 16c are formed and the reflective film 13 is formed on the entire back surface 11b.
 このように、本実施形態では、マザー基板11Aを用いて、配線パターンおよび反射膜13をそれぞれ有する複数の実装用基板11を同時に製造することができるために、生産効率を向上させることができる。 Thus, in the present embodiment, since the plurality of mounting substrates 11 each having the wiring pattern and the reflective film 13 can be simultaneously manufactured using the mother substrate 11A, the production efficiency can be improved.
 形成された各実装用基板11は、検査工程において、配線パターンの導電状態等について検査される(ステップS23)。 Each formed mounting substrate 11 is inspected for the conductive state of the wiring pattern in the inspection process (step S23).
 検査工程における検査をパスした実装用基板11は、LEDチップ12を実装する工程5に供される(ステップS24)。この工程5では、実装用基板11における所定の位置に、LEDチップ12が、ダイアタッチ剤によってそれぞれダイボンディングされて、ダイボンディングされた各LEDチップ12と、前述したように、所定の配線パターンとが、金ワイヤー17によってワイヤーボンディングされる。 The mounting substrate 11 that has passed the inspection in the inspection step is subjected to the step 5 for mounting the LED chip 12 (step S24). In this step 5, the LED chip 12 is die-bonded at a predetermined position on the mounting substrate 11 with a die attach agent, and each of the LED chips 12 that have been die-bonded and, as described above, a predetermined wiring pattern and Are bonded by the gold wire 17.
 そして、実装用基板11の表面における全てのLEDチップ12、金ワイヤー17、および配線パターン(端子部14bおよび15bを除く)を、蛍光体含有樹脂19によって封止する。これにより、図1および図2に示すLEDモジュール10が得られる。この場合、蛍光体としてセリウムをドープしたYAGを用い、色温度6500KのLEDモジュールとした。 Then, all the LED chips 12, gold wires 17, and wiring patterns (except for the terminal portions 14b and 15b) on the surface of the mounting substrate 11 are sealed with the phosphor-containing resin 19. Thereby, the LED module 10 shown in FIG. 1 and FIG. 2 is obtained. In this case, YAG doped with cerium was used as the phosphor, and an LED module having a color temperature of 6500K was obtained.
 図9は、本実施形態のLEDモジュール10において、各LEDチップ12から光を照射した場合における実装用基板11の実装面11aの反射率(実装用基板11の裏面11bにおいて反射した光量を含む)を波長毎に示したグラフである。なお、図9のグラフにおいて、点線は、実装用基板11の裏面11bに反射膜13を設けない場合における実装面11aの反射率を示している。 FIG. 9 shows the reflectance of the mounting surface 11a of the mounting substrate 11 (including the amount of light reflected by the back surface 11b of the mounting substrate 11) when light is irradiated from each LED chip 12 in the LED module 10 of the present embodiment. Is a graph showing for each wavelength. In the graph of FIG. 9, the dotted line indicates the reflectance of the mounting surface 11 a when the reflective film 13 is not provided on the back surface 11 b of the mounting substrate 11.
 本実施形態のLEDモジュール10では、波長450nm以上の光の反射率が90%以上になっているのに対して、反射膜13が設けられていない場合には、波長450nm以上の光の反射率は85%未満である。従って、実装用基板11の裏面11bに反射膜13を設けることによって、通常の照明光源として使用される波長領域の光の実装面11aでの反射率が向上している。 In the LED module 10 of the present embodiment, the reflectance of light having a wavelength of 450 nm or more is 90% or more, whereas when the reflective film 13 is not provided, the reflectance of light having a wavelength of 450 nm or more. Is less than 85%. Therefore, by providing the reflective film 13 on the back surface 11b of the mounting substrate 11, the reflectance of the light in the wavelength region used as a normal illumination light source on the mounting surface 11a is improved.
 なお、本実施形態のLEDモジュールを定格1.8Wで点灯させた場合の全光束と、実装用基板11の裏面11bに本実施形態のような反射膜を設けていない従来構成のLEDモジュールの全光束とを比較した場合,反射膜を設けていない従来構成のLEDモジュールでは92lmであったのに対し,本発明のLEDモジュールでは101lmになっており、照射光量が増加していた。 It should be noted that the total luminous flux when the LED module of this embodiment is lit at a rating of 1.8 W and all of the LED modules of the conventional configuration in which the reflective film as in this embodiment is not provided on the back surface 11b of the mounting substrate 11 When compared with the luminous flux, the LED module of the conventional configuration without the reflective film was 92 lm, whereas the LED module of the present invention was 101 lm, and the amount of irradiation light increased.
 なお、上記実施形態においては、実装用基板11として、0.8mmの厚さのアルミナ基板を使用する構成であったが、実装用基板11が光透過性になっていれば、材質、厚さについては特に限定されない。例えば、実装用基板11としてアルミナ基板を使用する場合には、0.1mm~1.0mmの厚さであればよい。このような厚さであれば、アルミナ基板内を光が透過する。 In the above embodiment, an alumina substrate having a thickness of 0.8 mm is used as the mounting substrate 11. However, if the mounting substrate 11 is light transmissive, the material and thickness Is not particularly limited. For example, when an alumina substrate is used as the mounting substrate 11, the thickness may be 0.1 mm to 1.0 mm. With such a thickness, light passes through the alumina substrate.
 また、実装用基板11としては、アルミナ基板に限らず、光透過性を有する窒化アルミニウム等のセラミック基板、樹脂基板、ガラス基板、フレキシブル基板等であってもよい。ただし、実装用基板11の裏面11bに設けられる反射膜13をペーストの焼成によって形成する場合には、その焼成温度に対する耐熱性を有している必要がある。 Further, the mounting substrate 11 is not limited to an alumina substrate, but may be a ceramic substrate such as aluminum nitride having optical transparency, a resin substrate, a glass substrate, a flexible substrate, or the like. However, when the reflective film 13 provided on the back surface 11b of the mounting substrate 11 is formed by baking a paste, it is necessary to have heat resistance against the baking temperature.
 反射膜13も、高反射率が得られるものであれば、材料等については特に限定されない。例えば、酸化亜鉛またはアルミナをガラスフリットと混合または混練したペーストを塗布または印刷して乾燥させた後に焼成することにより、反射膜13を形成してもよい。ただし、図9に示すように、酸化チタンとガラスフリットとを混合または混練して製造した反射材ペーストを塗布して乾燥させた後に焼成した反射膜13は高反射率であることから、特に好適である。 The reflective film 13 is not particularly limited as long as a high reflectance can be obtained. For example, the reflective film 13 may be formed by applying or printing a paste in which zinc oxide or alumina is mixed or kneaded with glass frit, printing and drying, followed by baking. However, as shown in FIG. 9, the reflective film 13 baked after applying and drying a reflector paste prepared by mixing or kneading titanium oxide and glass frit is particularly suitable because it has a high reflectance. It is.
 反射膜13の厚さも特に限定されるものではないが、LEDモジュール10の厚さおよび重量の増加を抑制するためには薄い方がよく、反射膜13の反射率、経済性等を考慮すると、15μm~100μmの厚さになっていることが好ましい。 Although the thickness of the reflective film 13 is not particularly limited, it is better to reduce the thickness and weight of the LED module 10, and considering the reflectance, economics, etc. of the reflective film 13, The thickness is preferably 15 μm to 100 μm.
 また、反射膜13は、必ずしも、実装用基板11の裏面11bの全面に設ける必要はなく、実装用基板11の実装面11aから入射する光が集中的に照射される部分に対して選択的に設ける構成、あるいは、実装用基板11の実装面11aから入射する光の照射光量が少ない部分には反射膜13を設けない構成としてもよい。 Further, the reflective film 13 is not necessarily provided on the entire surface of the back surface 11b of the mounting substrate 11 and is selectively applied to a portion where light incident from the mounting surface 11a of the mounting substrate 11 is intensively irradiated. It is good also as a structure which does not provide the reflecting film 13 in the structure provided, or the part with little irradiation light quantity of the light which injects from the mounting surface 11a of the mounting substrate 11. FIG.
 さらに、実装用基板11に実装されるLEDチップ12は、表面実装タイプ(SMD)であってもよい。 Further, the LED chip 12 mounted on the mounting substrate 11 may be a surface mounting type (SMD).
 本発明は、実装用基板の表面上に配線パターンが形成されるとともに複数の半導体発光素子が実装された発光モジュールにおいて、実装用基板の表面から照射される光の光量を向上させる技術として有用である。 INDUSTRIAL APPLICABILITY The present invention is useful as a technique for improving the amount of light emitted from the surface of a mounting substrate in a light emitting module in which a wiring pattern is formed on the surface of the mounting substrate and a plurality of semiconductor light emitting elements are mounted. is there.
   10    LEDモジュール
   11    実装用基板
   11a   実装面
   11b   裏面
   12    LEDチップ
   13    反射膜
   14    第1配線パターン
   14a   主配線部
   14b   端子部
   14c   分岐部
   15    第2配線パターン
   15a   主配線部
   15b   端子部
   15c   分岐部
   16a   第1ランドパターン
   16b   第2ランドパターン
   16c   第3ランドパターン
   17    金ワイヤー
   18    金メッキ層
   19    蛍光体含有樹脂
DESCRIPTION OF SYMBOLS 10 LED module 11 Mounting board 11a Mounting surface 11b Back surface 12 LED chip 13 Reflective film 14 1st wiring pattern 14a Main wiring part 14b Terminal part 14c Branch part 15 2nd wiring pattern 15a Main wiring part 15b Terminal part 15c Branch part 16a First 1 land pattern 16b second land pattern 16c third land pattern 17 gold wire 18 gold plating layer 19 phosphor-containing resin

Claims (5)

  1.  光透過性を有する実装用基板の一方の主面上に、配線パターンが形成されるとともに、当該配線パターンに電気的に接続された半導体発光素子が搭載された発光モジュールであって、
     前記実装用基板の他方の主面に、白色粉末を生成する物質の粉末をガラスフリットと混合または混練したペーストを,塗布または印刷して焼成することによって構成された反射膜が設けられていることを特徴とする発光モジュール。
    A light emitting module in which a wiring pattern is formed on one main surface of a mounting substrate having light transmittance and a semiconductor light emitting element electrically connected to the wiring pattern is mounted,
    The other main surface of the mounting substrate is provided with a reflective film formed by applying or printing a paste obtained by mixing or kneading a powder of a substance that generates a white powder with glass frit and baking it. A light emitting module characterized by.
  2.  前記白色粉末を生成する物質が、酸化チタン,酸化亜鉛,アルミナのいずれかであることを特徴とする請求項1に記載の発光モジュール。 The light emitting module according to claim 1, wherein the substance that generates the white powder is any one of titanium oxide, zinc oxide, and alumina.
  3.  前記実装用基板が、アルミナ基板であることを特徴とする請求項1または2に記載の発光モジュール。 The light emitting module according to claim 1 or 2, wherein the mounting substrate is an alumina substrate.
  4.  前記配線パターンが、Ag、Ag-PtまたはAg-Pdによって構成されており、その表面に金メッキ層が形成されていることを特徴とする請求項1に記載の発光モジュール。 The light emitting module according to claim 1, wherein the wiring pattern is made of Ag, Ag-Pt, or Ag-Pd, and a gold plating layer is formed on a surface thereof.
  5.  請求項1に記載の発光モジュールの製造方法であって、
     複数の実装用基板に分断される大きさであって光透過性を有するマザー基板の一方の主面上に、各実装用基板に対応した領域毎に配線パターンを形成するとともに、前記マザー基板の他方の主面における各実装用基板に対応した領域毎に、白色粉末を生成する物質の粉末をガラスフリットと混合または混練したペーストを塗布または印刷して乾燥させた後に焼成することにより反射膜を形成する工程と、
     次いで、前記マザー基板を複数の実装用基板に分断する工程と、
     分断された実装用基板のそれぞれの表面に、半導体発光素子を搭載して配線パターンに電気的に接続する工程と、
     を包含することを特徴とする発光モジュールの製造方法。
    It is a manufacturing method of the light emitting module according to claim 1,
    A wiring pattern is formed for each region corresponding to each mounting board on one main surface of the mother board having a size that is divided into a plurality of mounting boards and having light transmission properties. For each region corresponding to each mounting substrate on the other main surface, a reflecting film is formed by applying or printing a paste obtained by mixing or kneading a powder of a substance that generates a white powder with glass frit, and then baking the reflecting film. Forming, and
    Next, the step of dividing the mother substrate into a plurality of mounting substrates;
    Mounting a semiconductor light emitting element on each surface of the divided mounting substrate and electrically connecting to the wiring pattern;
    A method for manufacturing a light emitting module comprising:
PCT/JP2010/005858 2009-12-07 2010-09-29 Light-emitting module and method for manufacturing same WO2011070697A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-277582 2009-12-07
JP2009277582 2009-12-07

Publications (1)

Publication Number Publication Date
WO2011070697A1 true WO2011070697A1 (en) 2011-06-16

Family

ID=44145266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005858 WO2011070697A1 (en) 2009-12-07 2010-09-29 Light-emitting module and method for manufacturing same

Country Status (2)

Country Link
TW (1) TW201133960A (en)
WO (1) WO2011070697A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115271A (en) * 2011-11-29 2013-06-10 Toyoda Gosei Co Ltd Light emitting device
JP2014131084A (en) * 2014-04-07 2014-07-10 Nichia Chem Ind Ltd Light-emitting device
US9209364B2 (en) 2012-07-09 2015-12-08 Nichia Corporation Light emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252406A (en) * 1999-02-26 2000-09-14 Kyocera Corp Electronic circuit device
JP2004302087A (en) * 2003-03-31 2004-10-28 Sankyo Kk Flat-panel type picture display device
JP2008244285A (en) * 2007-03-28 2008-10-09 Denka Agsp Kk Light-emitting element mounting substrate and manufacturing method therefor
JP2008251663A (en) * 2007-03-29 2008-10-16 Sharp Corp Light-emitting device and illumination apparatus
JP2009081151A (en) * 2009-01-23 2009-04-16 Hitachi Ltd Plasma display panel, and plasma display device utilizing same
JP2009170847A (en) * 2008-01-21 2009-07-30 Toyoda Gosei Co Ltd Backlighting device and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252406A (en) * 1999-02-26 2000-09-14 Kyocera Corp Electronic circuit device
JP2004302087A (en) * 2003-03-31 2004-10-28 Sankyo Kk Flat-panel type picture display device
JP2008244285A (en) * 2007-03-28 2008-10-09 Denka Agsp Kk Light-emitting element mounting substrate and manufacturing method therefor
JP2008251663A (en) * 2007-03-29 2008-10-16 Sharp Corp Light-emitting device and illumination apparatus
JP2009170847A (en) * 2008-01-21 2009-07-30 Toyoda Gosei Co Ltd Backlighting device and display device
JP2009081151A (en) * 2009-01-23 2009-04-16 Hitachi Ltd Plasma display panel, and plasma display device utilizing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115271A (en) * 2011-11-29 2013-06-10 Toyoda Gosei Co Ltd Light emitting device
US9209364B2 (en) 2012-07-09 2015-12-08 Nichia Corporation Light emitting device
US9590152B2 (en) 2012-07-09 2017-03-07 Nichia Corporation Light emitting device
US9799807B2 (en) 2012-07-09 2017-10-24 Nichia Corporation Light emitting device
JP2014131084A (en) * 2014-04-07 2014-07-10 Nichia Chem Ind Ltd Light-emitting device

Also Published As

Publication number Publication date
TW201133960A (en) 2011-10-01

Similar Documents

Publication Publication Date Title
JP5079932B2 (en) Mounting board, method for manufacturing the same, light emitting module, and lighting device
JP4699681B2 (en) LED module and lighting device
JP7208536B2 (en) light emitting device
WO2013168802A1 (en) Led module
JPWO2005031882A1 (en) Light emitting device
US9196584B2 (en) Light-emitting device and lighting apparatus using the same
JP2007517378A (en) Semiconductor light emitting device, lighting module, lighting device, display element, and method for manufacturing semiconductor light emitting device
JPWO2005043637A1 (en) Light emitting device
JP2011129646A (en) Wiring board for led module, led module, and method of manufacturing wiring board for led module
JP2011040495A (en) Light emitting module
EP2360417A2 (en) Light-emitting device and illumination device
JP4116960B2 (en) Semiconductor light emitting device, light emitting module, lighting device, and method for manufacturing semiconductor light emitting device
JP2017011259A (en) Light-emitting device
KR20130017331A (en) Lighting emitting diode package and method for manufacturing the same
CN109616567A (en) Light emitting device
JP2012222011A (en) Led light-emitting module and luminaire using the same
US8872300B2 (en) Light emitting device module
US10700245B2 (en) Light-emitting device
WO2011070697A1 (en) Light-emitting module and method for manufacturing same
JP2005191192A (en) Substrate for mounting light emitting element and light emitting device
CN111009603A (en) Light emitting device
JP2014042074A (en) Light emitting module
JP2014049625A (en) Led module
JP5681963B2 (en) Light emitting device and lamp
US9761766B2 (en) Chip on board type LED module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP