WO2011070681A1 - Organic el panel and method for manufacturing same - Google Patents

Organic el panel and method for manufacturing same Download PDF

Info

Publication number
WO2011070681A1
WO2011070681A1 PCT/JP2009/070774 JP2009070774W WO2011070681A1 WO 2011070681 A1 WO2011070681 A1 WO 2011070681A1 JP 2009070774 W JP2009070774 W JP 2009070774W WO 2011070681 A1 WO2011070681 A1 WO 2011070681A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
coating material
organic
insulating wall
material layer
Prior art date
Application number
PCT/JP2009/070774
Other languages
French (fr)
Japanese (ja)
Inventor
尾越 国三
一弘 竹田
渡辺 輝一
正宣 赤木
竜一 佐藤
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2011545039A priority Critical patent/JPWO2011070681A1/en
Priority to CN2009801624669A priority patent/CN102612858A/en
Priority to PCT/JP2009/070774 priority patent/WO2011070681A1/en
Publication of WO2011070681A1 publication Critical patent/WO2011070681A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention

Definitions

  • the present invention relates to an organic EL panel and a manufacturing method thereof.
  • An organic EL element has a structure in which an organic layer including a light emitting layer is laminated between a pair of electrodes, and an organic EL panel in which one or a plurality of organic EL elements are arranged on a substrate is structurally or It has an insulating structure that partitions electrically.
  • the insulating structure include an insulating film that partitions an electrode formed on a substrate for each pixel, a partition for separating an electrode formed on an organic layer, and the like.
  • the surface state of the electrode which is the film formation surface of the organic layer, has a great influence on the quality of the light emission characteristics. If the surface of the electrode is uneven, the film thickness of the organic layer deposited thereon is not uniform, and light emission defects such as leakage are likely to occur in the organic EL element.
  • a technique has been developed in which a wet organic layer (conductive polymer or the like) is applied on an electrode, and a light emitting layer or the like is formed on the planarized organic layer.
  • Patent Document 1 describes an organic EL panel having an insulating wall as shown in FIG.
  • a first electrode J2 corresponding to a plurality of pixels is provided on an insulating surface of a substrate J1
  • an insulating wall J3 is provided so as to surround the first electrode J2
  • the insulating wall J3 and the first electrode J2 are provided on the insulating surface J3.
  • a conductive polymer layer J4 is formed
  • an organic layer J5 including a light emitting layer is formed on the conductive polymer layer J4
  • a second electrode J6 is formed on the organic layer J5.
  • the coating material layer such as the conductive polymer layer fills the unevenness of the electrode surface and flattens its surface, it becomes possible to make the film laminated thereon uniform and resistant. It is possible to improve the light emission performance and durability performance, such as improving leakage.
  • an acceptor dopant
  • the charge injection efficiency is improved, and a low voltage can be realized.
  • the coating material layer is formed in the region surrounded by the insulating wall as shown in FIG. 1, the surface of the coating material layer formed on the electrode by the surface tension of the coating material adhering to the side surface of the insulating wall J3. Is not flat, and the film thickness (evaporated film, etc.) formed thereon differs between the central part and the peripheral part, and uniform light emission cannot be obtained over the entire pixel region surrounded by the insulating wall. Occurs.
  • the present invention is an example of a problem to deal with such a problem. That is, the surface of the coating material layer formed on the electrode is flattened, and at the same time, appropriate patterning is performed, and the light emitting characteristics of the organic EL element are improved by making the film formed thereon uniform.
  • the organic EL panel and the manufacturing method thereof according to the present invention have at least the following configuration.
  • a substrate a first electrode formed directly on the substrate or via another layer, a coating material layer coated on the first electrode, an insulating wall for patterning the coating material layer,
  • An organic EL panel having an overhang portion that suppresses sag and an inclined surface or a curved surface that ensures continuity of the second electrode above the coating material layer.
  • an organic EL panel manufacturing method is characterized in that a portion of the insulating wall above the coating material layer is deformed to form an inclined surface or a curved surface that ensures the continuity of the second electrode.
  • FIG. 1 is an explanatory diagram for explaining the configuration of an organic EL panel according to an embodiment of the present invention
  • FIG. 1A is a sectional view taken along line XX in FIG. 1B
  • FIG. 1B is a plan view
  • FIG. 2 is an explanatory diagram for explaining the configuration of an organic EL panel according to an embodiment of the present invention
  • FIG. 2A is a sectional view taken along line XX in FIG. 2B
  • FIG. 2B is a plan view.
  • An organic EL panel 100 according to an embodiment of the present invention is obtained by forming an organic EL element 1 in which an organic layer 13 including a light emitting layer is laminated between a first electrode 11 and a second electrode 12 on a substrate 10.
  • the substrate 10, the first electrode 11 formed on the substrate 10 directly or via another layer, the coating material layer 14 applied and formed on the first electrode 11, and the coating material layer 14 are patterned.
  • the insulating wall 20 is formed along the side portion of the first electrode 11, and an opening pattern 20 ⁇ / b> A is formed on the first electrode 11.
  • the pattern of the insulating wall 20 is not limited to the opening pattern 20A and can be formed in various forms, and the coating material layer 14 can be patterned into a free shape according to the form of this pattern.
  • the insulating wall 20 has an overhang portion 20B in which the side surface 21 in contact with the coating material layer 14 suppresses the spread of the coating material layer 14, and the inclined surface 22 that ensures the continuity of the second electrode 12 above the coating material layer 14. Or it has a curved surface. That is, the insulating wall 20 has a shape in which a side surface 21 in contact with the coating material layer 14 and a portion above the coating material layer 14 are different, and in the illustrated example, the side surface 21 is inclined to be inclined toward the coating material layer 14 side.
  • the inclined surface 22 is inclined to the opposite side to the side surface 21.
  • the surface of the coating material layer 14 formed on the first electrode 11 is flattened, and at the same time, appropriate patterning is performed, and the organic layer 13 formed thereon is uniformly formed.
  • the emission characteristics of the organic EL element 1 can be made uniform over the entire opening pattern 20A.
  • FIG. 3 is an explanatory diagram for explaining a method of manufacturing an organic EL panel according to an embodiment of the present invention.
  • the first electrode 11 is formed on the substrate 10 directly or through another layer (see FIG. 1A), and the first electrode 11 on the substrate 10 is covered.
  • Step 2 of forming the pattern of the insulating wall 20 so as to surround the coating surface see FIG.
  • an insulating wall 20 is formed along the side of the first electrode 11 on the substrate 10 to form an opening pattern 20A on the first electrode 11, and the inside of the opening pattern 20A is covered with a coating material. The coated surface.
  • a conductive film is formed by, for example, vapor deposition or sputtering on the substrate 10 using glass, plastic, metal having an insulating film formed on the surface, etc., and the first is performed by a pattern forming step such as a photolithography step. A pattern of the electrode 11 is formed.
  • the insulating wall 20 is pre-baked by spin-coating, for example, a lift-off negative photoresist whose UV light transmission is intentionally lowered. And it exposes by irradiating UV light through the hard chrome mask provided with the light transmission slit. At this time, since the above-described photoresist has a low transmittance of UV light, a difference in solubility in a developing solution occurs in the depth direction. Therefore, the insulating wall 20 having the overhang portion 20B as shown in FIG. 4B is formed by the difference in developability by spray showering the alkaline developer on the substrate 10.
  • the vertical cross-sectional shape of the insulating wall 20 is a substantially inverted isosceles trapezoidal shape.
  • the coating material is applied using the coating apparatus 14A.
  • coating here includes spray application
  • a coating material a polymer material or a polymer material containing a low-molecular material is suitable.
  • a polyalkylthiophene derivative, a polyaniline derivative, triphenylamine, an inorganic compound sol-gel film, an organic compound film containing a Lewis acid A conductive polymer can be used.
  • the overhang portion 20B is formed on the insulating wall 20, the spread of the coating material layer 14 is suppressed, and the coating material layer 14 forms a layer on the first electrode 11 substantially flat.
  • step 4 described above after the coating material layer 14 is formed, the substrate 10 on which the first electrode 11, the insulating wall 20, and the coating material layer 14 are formed is placed in the heating tank M and subjected to heat melting treatment.
  • the upper portion of the insulating wall 20 (the portion above the coating material layer 14) is deformed to form the inclined surface 22 shown in FIG. 2 or the curved surface 22A as shown in FIG.
  • the insulating wall 20 has an overhang portion 20B in which the side surface 21 in contact with the coating material layer 14 suppresses the spread of the coating material layer 14, and ensures the continuity of the second electrode 12 above the coating material layer 14. It has the inclined surface 22 or the curved surface 22B.
  • the organic layer 13 including the light emitting layer is formed by vacuum deposition or the like.
  • An example of forming the organic layer 13 formed on the coating material layer 14 will be described.
  • NPB N, N-di (naphtalence) -N, N-dipheneyl-benzidene
  • the hole transport layer has a function of transporting holes injected from the lower electrode line 2 to the light emitting layer.
  • the hole transport layer may be a single layer or a stack of two or more layers.
  • the hole transport layer is not formed by a single material, but a single layer may be formed by a plurality of materials, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. Doping may be performed.
  • red (R), green (G), and blue (B) light-emitting layers are formed in respective film formation regions by using a resistance heating vapor deposition method using a coating mask.
  • red (R) an organic material that emits red light such as a styryl dye such as DCM1 (4- (dicyanomethylene) -2-methyl-6- (4′-dimethylaminostyryl) -4H-pyran) is used.
  • An organic material that emits green light such as an aluminum quinolinol complex (Alq 3 ) is used as green (G).
  • an organic material emitting blue light such as a distyryl derivative or a triazole derivative is used.
  • a distyryl derivative or a triazole derivative is used.
  • other materials or a host-guest layer structure may be used, and the light emission form may be a fluorescent light emitting material or a phosphorescent light emitting material.
  • the electron transport layer formed on the light emitting layer is formed by using various materials such as an aluminum quinolinol complex (Alq 3 ) by various film forming methods such as resistance heating vapor deposition.
  • the electron transport layer has a function of transporting electrons injected from the upper electrode line 3 to the light emitting layer.
  • This electron transport layer may have a multilayer structure in which only one layer is stacked or two or more layers are stacked.
  • the electron transport layer may be formed of a plurality of materials instead of a single material, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. It may be formed by doping.
  • the second electrode 12 is formed by vacuum deposition or the like.
  • One of the first electrode 11 and the second electrode 12 functions as an anode and the other functions as a cathode.
  • the first electrode 11 employs a transparent conductive film such as ITO in the case of a top emission method in which light is extracted from the substrate side.
  • the cathode uses a material having a work function lower than that of the anode.
  • a magnesium alloy such as aluminum (Al) or Mg—Al can be used as the cathode.
  • the overhang portion 20B formed on the insulating wall 20 refers to a shape covering the end portion of the coating material layer 14, and is not limited to the shape of the side surface 21 shown in FIG. It may include a form.
  • a protruding portion 21a that protrudes toward the coating material layer 14 is formed on the side surface 21 of the insulating wall 20, and the cross-sectional shape of the insulating wall 20 before heat forming is substantially T-shaped. ing. It changes from the state before heating and melting in (a1) to the state after heating (a2). In the state (a2), the insulating wall 20 covers the side surface and part of the upper surface of the coating material layer 14 to form an overhang portion 20B. A curved surface 22 ⁇ / b> A is formed on the coating material layer 14.
  • a protruding portion 21a1 protruding toward the coating material layer 14 is formed on the side surface 21 of the insulating wall 20, and the protruding portion 21a1 has a corner. It changes from the state before heating and melting in (b1) to the state after heating (b2). In the state (b2), the insulating wall 20 covers the side surface and part of the upper surface of the coating material layer 14 to form an overhang portion 20B. A curved surface 22 ⁇ / b> A is formed on the coating material layer 14.
  • the cross-sectional shape of the insulating wall 20 does not have to be symmetrical, and the overhang portion 20B may be formed only on one side.
  • the side surface 21 has an inclined surface 21a2 on only one side. It changes from the state before heating and melting in (c1) to the state after heating (c2).
  • the insulating wall 20 covers the side surface and part of the upper surface of the coating material layer 14 to form an overhang portion 20B.
  • a curved surface 22 ⁇ / b> A is formed on the coating material layer 14.
  • FIG. 5 shows various cross-sectional shapes of the insulating wall 20 before heating and melting.
  • a plurality of protrusions 21 b 1 and 21 b 2 are formed from the side surface 21.
  • the protruding widths of the protruding portion 21c1 on one side and the protruding portion 21c2 on the opposite side are different.
  • inclined surfaces 21 d 1 and 21 d 2 with different angles are formed on one side surface 21, and inclined surfaces 21 d 3 and 21 d 4 with different angles are also formed on the other side surface 21.
  • the protruding portion 21e is formed only on one side surface 21.
  • the protruding portion 21d is formed only on one side surface 21, and the protruding portion 21d has a corner.
  • 6 to 9 are explanatory views showing examples of forming the organic EL panel according to the embodiment of the present invention. Portions common to the above description are denoted by the same reference numerals, and a part of overlapping description is omitted.
  • FIG. 6 shows a plan view of the single panel excluding the second electrode
  • FIG. 6 (b) shows a plan view of a plurality of panels formed on a large substrate before division. .
  • the coating material layer 14 is patterned by the insulating wall 20.
  • a wiring region 10F is formed outside the light emitting region 10E on the substrate 10, and a wiring 30 connected to the first electrode 11 or the second electrode 12 is formed in the wiring region 10F.
  • a plurality of panels are simultaneously formed on a large substrate as shown in FIG. 6B, and a plurality of panels are formed in a series of steps by dividing along the dividing lines C1 to C4. be able to.
  • FIG. 7 is a plan view excluding the second electrode
  • FIG. 7 (b) is an XX sectional view of FIG. 7 (a) including the second electrode
  • the insulating wall 20 is formed along the outer edge of the pixel 1G on the substrate 10 in 100.
  • a pixel 1G is formed by the organic EL element 1 described above, and an insulating wall 20 is formed along the outer edge of the pixel 1G.
  • the second electrode 12 is formed across the plurality of pixels 1G, and the end portion is connected to the wiring 30 by the contact portion 12S.
  • FIG. 8 is a plan view excluding the second electrode
  • FIG. 8B is an XX sectional view of FIG. 8A including the second electrode
  • an insulating wall 20 is formed along the outer edge of the pixel 1G on the substrate 10 in 100
  • an electrode separation partition wall 30 having a function of separating the second electrode 12 is formed on the insulating wall 20.
  • FIG. 9 shows another example of the insulating wall 20.
  • the opening pattern 20A of the insulating wall 20 can take various forms. Since the insulating wall 20 can be patterned in various shapes, it can be in the form of numeric segments, icons, or the like shown in FIG.
  • the coating material layer 14 is formed on the first electrode 11 so that the coating material layer 14 fills the unevenness of the electrode surface and flattens its surface. Therefore, the organic layer 13 laminated thereon can be made uniform, and the light emission performance and durability performance can be improved, such as improving the leak resistance. Further, by adding an acceptor (dopant) to the coating material applied on the electrode, the charge injection efficiency is improved, and a low voltage can be realized.
  • the overhang portion 20B is formed on the inner side surface of the insulating wall 20 surrounding the periphery of the coating material layer 14, the surface of the coating material layer 14 formed on the first electrode 11 is planarized and at the same time appropriate patterning. Further, the organic layer 13 formed thereon can be made more uniform to improve the light emission characteristics of the organic EL element. In particular, uniform light emission characteristics can be obtained over the entire area of the opening pattern 20A, and the quality of the organic EL panel 100 can be improved.
  • the insulating wall 20 has an inclined surface 22 or a curved surface 22A that ensures the continuity of the second electrode 12, the organic layer 13 is laminated on the coating material layer 14.
  • the second electrode 12 without disconnection can be formed, and the highly reliable organic EL panel 100 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The surface of a coat material layer formed on an electrode is planarized, and at the same time, correct patterning is performed so as to uniformly form a film thereon. In an organic EL panel (100), a first electrode (11) is formed on a substrate (10), a pattern (20A) of an insulating wall (20) is formed on the substrate (10) so as to surround the surface to be coated on the first electrode (11), a coat material layer (14) is formed by applying a coat material onto the surface to be coated within the pattern (20A) of the insulating wall (20), an organic layer (13) including a light emitting layer is laminated on the coat material layer (14), and a second electrode (12) is formed on the organic layer (13). The insulating wall (20) has, on the inner surface of the pattern (20A), an overhung section (20B) which suppresses expansion of the coat material layer (14), an insulating wall (20) portion above the coat material layer (14) is deformed by heating and melting the insulating wall (20) after forming the coat material layer (14), and a tilted surface (22) or a curved surface (22A) which ensures continuity of the second electrode (12) is formed.

Description

有機ELパネル及びその製造方法Organic EL panel and manufacturing method thereof
 本発明は、有機ELパネル及びその製造方法に関するものである。 The present invention relates to an organic EL panel and a manufacturing method thereof.
 有機EL素子は一対の電極間に発光層を含む有機層を積層した構造を有しており、この有機EL素子を基板上に単数又は複数配置した有機ELパネルは、有機EL素子を構造的又は電気的に区画する絶縁構造物を備えている。絶縁構造物としては、基板上に形成された電極を画素毎に区画する絶縁膜や、有機層上に成膜される電極を分離するための隔壁等がある。 An organic EL element has a structure in which an organic layer including a light emitting layer is laminated between a pair of electrodes, and an organic EL panel in which one or a plurality of organic EL elements are arranged on a substrate is structurally or It has an insulating structure that partitions electrically. Examples of the insulating structure include an insulating film that partitions an electrode formed on a substrate for each pixel, a partition for separating an electrode formed on an organic layer, and the like.
 このような有機EL素子では、有機層の被成膜面になる電極の表面状態が発光特性の良否に大きな影響を及ぼす。電極の表面に凹凸があると、その上に蒸着される有機層の膜厚が均一にならず、有機EL素子にリーク等の発光不良が生じやすくなる。これを解消するために、電極上に湿式の有機層(導電性ポリマーなど)を塗布し、平坦化された有機層の上に発光層等を成膜する技術が開発されている。 In such an organic EL element, the surface state of the electrode, which is the film formation surface of the organic layer, has a great influence on the quality of the light emission characteristics. If the surface of the electrode is uneven, the film thickness of the organic layer deposited thereon is not uniform, and light emission defects such as leakage are likely to occur in the organic EL element. In order to solve this problem, a technique has been developed in which a wet organic layer (conductive polymer or the like) is applied on an electrode, and a light emitting layer or the like is formed on the planarized organic layer.
 例えば、下記特許文献1には、図1に示すような絶縁壁を備える有機ELパネルが記載されている。この従来技術は、基板J1の絶縁表面上に複数の画素に対応する第1電極J2を設け、第1電極J2を囲むように絶縁壁J3を設け、絶縁壁J3及び第1電極J2の上に導電性ポリマー層J4を形成し、その導電性ポリマー層J4の上に発光層を含む有機層J5を形成して、その有機層J5の上に第2電極J6を形成したものである。 For example, the following Patent Document 1 describes an organic EL panel having an insulating wall as shown in FIG. In this prior art, a first electrode J2 corresponding to a plurality of pixels is provided on an insulating surface of a substrate J1, an insulating wall J3 is provided so as to surround the first electrode J2, and the insulating wall J3 and the first electrode J2 are provided on the insulating surface J3. A conductive polymer layer J4 is formed, an organic layer J5 including a light emitting layer is formed on the conductive polymer layer J4, and a second electrode J6 is formed on the organic layer J5.
特開2004-145244号公報JP 2004-145244 A
 このような従来技術によると導電性ポリマー層のような塗布材料層が電極表面の凹凸を埋めて自身の表面を平坦化するので、その上に積層される膜の均一化が可能になり、耐リーク性を向上させる等、発光性能や耐久性能を向上させることが可能になる。また、電極上に成膜される湿式成膜にアクセプタ(ドーパント)を添加させることによって、電荷注入効率が向上して、低電圧化の実現が可能になる。 According to such a conventional technique, since the coating material layer such as the conductive polymer layer fills the unevenness of the electrode surface and flattens its surface, it becomes possible to make the film laminated thereon uniform and resistant. It is possible to improve the light emission performance and durability performance, such as improving leakage. In addition, by adding an acceptor (dopant) to the wet film-forming film formed on the electrode, the charge injection efficiency is improved, and a low voltage can be realized.
 しなしながら、図1に示すように絶縁壁で囲まれた領域に塗布材料層を形成すると、絶縁壁J3の側面に付着する塗布材料の表面張力によって電極上に形成される塗布材料層の表面が平坦にならず、その上に形成される膜(蒸着膜など)の膜厚が中心部と周辺部で異なってしまい、絶縁壁で囲まれた画素領域全体で均一な発光が得られない問題が生じる。 However, when the coating material layer is formed in the region surrounded by the insulating wall as shown in FIG. 1, the surface of the coating material layer formed on the electrode by the surface tension of the coating material adhering to the side surface of the insulating wall J3. Is not flat, and the film thickness (evaporated film, etc.) formed thereon differs between the central part and the peripheral part, and uniform light emission cannot be obtained over the entire pixel region surrounded by the insulating wall. Occurs.
 また、絶縁壁J3における側面の内側傾斜角θが図1に示すように小さい(直角より小さい)と、第1電極J2上にのみ形成されればよい塗布材料層が不要な箇所にまで形成されてしまい、塗布材料層のパターニングを適正に行うことができない問題が生じる。 Further, when the inner side inclination angle θ of the side surface of the insulating wall J3 is small as shown in FIG. Therefore, there arises a problem that the coating material layer cannot be properly patterned.
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、電極上に形成される塗布材料層の表面を平坦化させると同時に適正なパターニングを行い、その上に形成される膜の均一化を図ることで有機EL素子の発光特性を改善すること、等が本発明の目的である。 The present invention is an example of a problem to deal with such a problem. That is, the surface of the coating material layer formed on the electrode is flattened, and at the same time, appropriate patterning is performed, and the light emitting characteristics of the organic EL element are improved by making the film formed thereon uniform. These are the objects of the present invention.
 このような目的を達成するために、本発明による有機ELパネル及びその製造方法は、以下の構成を少なくとも具備するものである。 In order to achieve such an object, the organic EL panel and the manufacturing method thereof according to the present invention have at least the following configuration.
 基板と、該基板上に直接又は他の層を介して形成された第1電極と、前記第1電極上に塗布形成される塗布材料層と、前記塗布材料層をパターニングする絶縁壁と、前記塗布材料層上に積層される発光層を含む有機層と、該有機層上に形成される第2電極とを備え、前記絶縁壁は、前記塗布材料層に接する側面が当該塗布材料層の広がりを抑えるオーバーハング部を有すると共に、前記塗布材料層の上方では前記第2電極の連続性を確保する傾斜面又は曲面を有することを特徴とする有機ELパネル。 A substrate, a first electrode formed directly on the substrate or via another layer, a coating material layer coated on the first electrode, an insulating wall for patterning the coating material layer, An organic layer including a light-emitting layer laminated on the coating material layer and a second electrode formed on the organic layer, and the insulating wall has a side surface in contact with the coating material layer spreading the coating material layer An organic EL panel having an overhang portion that suppresses sag and an inclined surface or a curved surface that ensures continuity of the second electrode above the coating material layer.
 基板上に直接又は他の層を介して第1電極を形成する工程と、前記基板上に前記第1電極上の被塗布面を囲むように絶縁壁のパターンを形成する工程と、前記絶縁壁のパターン内の前記被塗布面上に塗布材料を塗布して塗布材料層を形成する工程と、前記塗布材料層上に発光層を含む有機層を積層する工程と、前記有機層上に第2電極を形成する工程とを有し、前記絶縁壁は、前記パターンの内面に前記塗布材料層の広がりを抑えるオーバーハング部を有し、前記塗布材料層の形成後に、当該絶縁壁を加熱溶融することで、当該絶縁壁における前記塗布材料層の上方の部分を変形させ、前記第2電極の連続性を確保する傾斜面又は曲面を形成することを特徴とする有機ELパネルの製造方法。 Forming a first electrode on the substrate directly or via another layer, forming a pattern of an insulating wall on the substrate so as to surround a surface to be coated on the first electrode, and the insulating wall A step of applying a coating material on the surface to be coated in the pattern of forming a coating material layer, a step of laminating an organic layer including a light emitting layer on the coating material layer, and a second step on the organic layer. Forming an electrode, and the insulating wall has an overhang portion that suppresses the spreading of the coating material layer on the inner surface of the pattern, and the insulating wall is heated and melted after the coating material layer is formed. Thus, an organic EL panel manufacturing method is characterized in that a portion of the insulating wall above the coating material layer is deformed to form an inclined surface or a curved surface that ensures the continuity of the second electrode.
従来技術の説明図である。It is explanatory drawing of a prior art. 本発明の一実施形態に係る有機ELパネルの構成を説明する説明図(同図(a)が同図(b)におけるX-X断面図、同図(b)が平面図)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for explaining the configuration of an organic EL panel according to an embodiment of the present invention (FIG. 1A is a sectional view taken along line XX in FIG. 1B, and FIG. 1B is a plan view). 本発明の実施形態に係る有機ELパネルの製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the organic electroluminescent panel which concerns on embodiment of this invention. 絶縁壁の各種形態例を示した説明図である。It is explanatory drawing which showed the example of various forms of the insulating wall. 絶縁壁の各種形態例を示した説明図である。It is explanatory drawing which showed the example of various forms of the insulating wall. 本発明の実施形態に係る有機ELパネルの形成例を示した説明図である。It is explanatory drawing which showed the example of formation of the organic electroluminescent panel which concerns on embodiment of this invention. 本発明の実施形態に係る有機ELパネルの形成例を示した説明図である。It is explanatory drawing which showed the example of formation of the organic electroluminescent panel which concerns on embodiment of this invention. 本発明の実施形態に係る有機ELパネルの形成例を示した説明図である。It is explanatory drawing which showed the example of formation of the organic electroluminescent panel which concerns on embodiment of this invention. 本発明の実施形態に係る有機ELパネルの形成例を示した説明図である。It is explanatory drawing which showed the example of formation of the organic electroluminescent panel which concerns on embodiment of this invention.
 以下、図面を参照しながら本発明の実施形態を説明する。本発明の実施形態は図示の内容を含むがこれのみに限定されるものではない。図2は本発明の一実施形態に係る有機ELパネルの構成を説明する説明図(同図(a)が同図(b)におけるX-X断面図、同図(b)が平面図)である。本発明の実施形態に係る有機ELパネル100は、基板10上に、第1電極11と第2電極12との間に発光層を含む有機層13を積層した有機EL素子1を形成したものであって、基板10と、基板10上に直接又は他の層を介して形成された第1電極11と、第1電極11上に塗布形成される塗布材料層14と、塗布材料層14をパターニングする絶縁壁20と、塗布材料層14上に積層される発光層を含む有機層13と、有機層13上に形成される第2電極12とを備える。図示の例では、絶縁壁20は、第1電極11の側部に沿って形成され、第1電極11上に開口パターン20Aを形成している。絶縁壁20のパターンはこの開口パターン20Aに限らず各種の形態に形成でき、このパターンの形態によって塗布材料層14を自由な形状にパターニングできる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment of the present invention includes the contents shown in the drawings, but is not limited thereto. FIG. 2 is an explanatory diagram for explaining the configuration of an organic EL panel according to an embodiment of the present invention (FIG. 2A is a sectional view taken along line XX in FIG. 2B, and FIG. 2B is a plan view). is there. An organic EL panel 100 according to an embodiment of the present invention is obtained by forming an organic EL element 1 in which an organic layer 13 including a light emitting layer is laminated between a first electrode 11 and a second electrode 12 on a substrate 10. The substrate 10, the first electrode 11 formed on the substrate 10 directly or via another layer, the coating material layer 14 applied and formed on the first electrode 11, and the coating material layer 14 are patterned. An insulating wall 20, an organic layer 13 including a light emitting layer stacked on the coating material layer 14, and a second electrode 12 formed on the organic layer 13. In the illustrated example, the insulating wall 20 is formed along the side portion of the first electrode 11, and an opening pattern 20 </ b> A is formed on the first electrode 11. The pattern of the insulating wall 20 is not limited to the opening pattern 20A and can be formed in various forms, and the coating material layer 14 can be patterned into a free shape according to the form of this pattern.
 絶縁壁20は、塗布材料層14に接する側面21が塗布材料層14の広がりを抑えるオーバーハング部20Bを有すると共に、塗布材料層14の上方では第2電極12の連続性を確保する傾斜面22又は曲面を有する。すなわち、絶縁壁20は、塗布材料層14に接する側面21と塗布材料層14の上方の部分とが異なる形状を有しており、図示の例では、側面21は塗布材料層14側に傾く傾斜面を有し、傾斜面22は側面21とは逆側に傾斜している。 The insulating wall 20 has an overhang portion 20B in which the side surface 21 in contact with the coating material layer 14 suppresses the spread of the coating material layer 14, and the inclined surface 22 that ensures the continuity of the second electrode 12 above the coating material layer 14. Or it has a curved surface. That is, the insulating wall 20 has a shape in which a side surface 21 in contact with the coating material layer 14 and a portion above the coating material layer 14 are different, and in the illustrated example, the side surface 21 is inclined to be inclined toward the coating material layer 14 side. The inclined surface 22 is inclined to the opposite side to the side surface 21.
 このような構造を有する有機ELパネル100は、第1電極11上に形成される塗布材料層14の表面を平坦化させると同時に適正なパターニングを行い、その上に形成される有機層13の均一化を図ることができ、これによって有機EL素子1の発光特性を開口パターン20Aの全体で均一化することができる。 In the organic EL panel 100 having such a structure, the surface of the coating material layer 14 formed on the first electrode 11 is flattened, and at the same time, appropriate patterning is performed, and the organic layer 13 formed thereon is uniformly formed. As a result, the emission characteristics of the organic EL element 1 can be made uniform over the entire opening pattern 20A.
 図3は、本発明の実施形態に係る有機ELパネルの製造方法を説明する説明図である。有機ELパネル100の製造方法は、基板10上に直接又は他の層を介して第1電極11を形成する工程1(同図(a)参照)、基板10上に第1電極11上の被塗布面を囲むように絶縁壁20のパターンを形成する工程2(同図(b)参照)、絶縁壁20のパターン内の第1電極11上の被塗布面に塗布材料を塗布して塗布材料層14を形成する工程3(同図(c)参照)、絶縁壁20を加熱溶融処理(キュア処理)する工程4(同図(d)参照)、塗布材料層14上に発光層を含む有機層13を積層する工程5(同図(e)参照)、有機層13上に第2電極12を形成する工程6(同図(f)参照)を有する。図示の例では、基板10上に第1電極11の側部に沿って絶縁壁20を形成して第1電極11上に開口パターン20Aを形成して、この開口パターン20A内を塗布材料の被塗布面としている。 FIG. 3 is an explanatory diagram for explaining a method of manufacturing an organic EL panel according to an embodiment of the present invention. In the method of manufacturing the organic EL panel 100, the first electrode 11 is formed on the substrate 10 directly or through another layer (see FIG. 1A), and the first electrode 11 on the substrate 10 is covered. Step 2 of forming the pattern of the insulating wall 20 so as to surround the coating surface (see FIG. 2B), coating the coating material on the coated surface on the first electrode 11 in the pattern of the insulating wall 20 Step 3 for forming the layer 14 (see (c) in the same figure), Step 4 for heating and melting the insulating wall 20 (curing treatment) (see (d) in the same figure), an organic layer including a light emitting layer on the coating material layer 14 Step 5 (see FIG. 5E) for laminating layer 13 and Step 6 for forming second electrode 12 on organic layer 13 (see FIG. 5F) are included. In the example shown in the drawing, an insulating wall 20 is formed along the side of the first electrode 11 on the substrate 10 to form an opening pattern 20A on the first electrode 11, and the inside of the opening pattern 20A is covered with a coating material. The coated surface.
 前述した工程1では、ガラス、プラスチック、表面に絶縁膜を形成した金属などが用いられる基板10の上に、例えば蒸着,スパッタリングなどで導電膜を形成し、フォトリソ工程などのパターン形成工程によって第1電極11のパターンを形成する。 In step 1 described above, a conductive film is formed by, for example, vapor deposition or sputtering on the substrate 10 using glass, plastic, metal having an insulating film formed on the surface, etc., and the first is performed by a pattern forming step such as a photolithography step. A pattern of the electrode 11 is formed.
 前述した工程2では、絶縁壁20の開口パターン20Aを形成するだけでなく、絶縁壁20にオーバーハング部を形成する。絶縁壁20は、例えば、故意にUV光の透過性を低くしたリフトオフ用ネガ形フォトレジストをスピンコーティングし、プリベークする。そして、光透過スリットを備えたハードクロムマスクを介してUV光を照射し露光する。この際、前記したフォトレジストはUV光の透過率が低いため、深さ方向で現像液に対する溶解性の差が生ずる。したがって、基板10にアルカリ現像液をスプレーシャワーすることにより現像性の差によって、同図(b)に示すようなオーバーハング部20Bを有する絶縁壁20が形成される。図示の例では、絶縁壁20における縦断面形状は、ほぼ逆等脚台形の形状になっている。 In step 2 described above, not only the opening pattern 20A of the insulating wall 20 is formed, but also an overhang portion is formed in the insulating wall 20. The insulating wall 20 is pre-baked by spin-coating, for example, a lift-off negative photoresist whose UV light transmission is intentionally lowered. And it exposes by irradiating UV light through the hard chrome mask provided with the light transmission slit. At this time, since the above-described photoresist has a low transmittance of UV light, a difference in solubility in a developing solution occurs in the depth direction. Therefore, the insulating wall 20 having the overhang portion 20B as shown in FIG. 4B is formed by the difference in developability by spray showering the alkaline developer on the substrate 10. In the illustrated example, the vertical cross-sectional shape of the insulating wall 20 is a substantially inverted isosceles trapezoidal shape.
 前述した工程3では、塗布装置14Aを用いて塗布材料が塗布される。ここでいう塗布は、スプレー塗布、ディスペンサー塗布、インクジェット、印刷などを含んでいる。塗布材料としては、高分子材料,高分子材料中に低分子材料を含んだものなどが適し、ポリアルキルチオフェン誘導体、ポリアニリン誘導体、トリフェニルアミン、無機化合物のゾルゲル膜、ルイス酸を含む有機化合物膜、導電性高分子などを利用することができる。この工程3では、絶縁壁20にオーバーハング部20Bが形成されていることで、塗布材料層14の広がりが抑えられ、塗布材料層14はほぼ平坦に第1電極11上に層を形成する。 In step 3 described above, the coating material is applied using the coating apparatus 14A. Application | coating here includes spray application | coating, dispenser application | coating, inkjet, printing, etc. As a coating material, a polymer material or a polymer material containing a low-molecular material is suitable. A polyalkylthiophene derivative, a polyaniline derivative, triphenylamine, an inorganic compound sol-gel film, an organic compound film containing a Lewis acid A conductive polymer can be used. In Step 3, since the overhang portion 20B is formed on the insulating wall 20, the spread of the coating material layer 14 is suppressed, and the coating material layer 14 forms a layer on the first electrode 11 substantially flat.
 前述した工程4では、塗布材料層14の形成後に、第1電極11,絶縁壁20,塗布材料層14が形成された基板10を加熱槽M内に入れ、加熱溶融処理を施す。これによって、絶縁壁20の上部(塗布材料層14の上方の部分)が変形し、図2に示した傾斜面22或いは図3(d)に示すような曲面22Aが形成される。これによって、絶縁壁20は、塗布材料層14に接する側面21が塗布材料層14の広がりを抑えるオーバーハング部20Bを有すると共に、塗布材料層14の上方では第2電極12の連続性を確保する傾斜面22又は曲面22Bを有することになる。 In step 4 described above, after the coating material layer 14 is formed, the substrate 10 on which the first electrode 11, the insulating wall 20, and the coating material layer 14 are formed is placed in the heating tank M and subjected to heat melting treatment. As a result, the upper portion of the insulating wall 20 (the portion above the coating material layer 14) is deformed to form the inclined surface 22 shown in FIG. 2 or the curved surface 22A as shown in FIG. As a result, the insulating wall 20 has an overhang portion 20B in which the side surface 21 in contact with the coating material layer 14 suppresses the spread of the coating material layer 14, and ensures the continuity of the second electrode 12 above the coating material layer 14. It has the inclined surface 22 or the curved surface 22B.
 前述した工程5では、真空蒸着などで発光層を含む有機層13が形成される。塗布材料層14上に形成する有機層13の形成例を説明する。例えば先ず、NPB(N,N-di(naphtalence)-N,N-dipheneyl-benzidene)を正孔輸送層として成膜する。この正孔輸送層は、下部電極線2から注入される正孔を発光層に輸送する機能を有する。この正孔輸送層は、1層だけ積層したものでも2層以上積層したものであってもよい。また正孔輸送層は、単一の材料による成膜ではなく、複数の材料により一つの層を形成しても良く、電荷輸送能力の高いホスト材料に電荷供与(受容)性の高いゲスト材料をドーピングしてもよい。 In step 5 described above, the organic layer 13 including the light emitting layer is formed by vacuum deposition or the like. An example of forming the organic layer 13 formed on the coating material layer 14 will be described. For example, first, NPB (N, N-di (naphtalence) -N, N-dipheneyl-benzidene) is formed as a hole transport layer. The hole transport layer has a function of transporting holes injected from the lower electrode line 2 to the light emitting layer. The hole transport layer may be a single layer or a stack of two or more layers. In addition, the hole transport layer is not formed by a single material, but a single layer may be formed by a plurality of materials, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. Doping may be performed.
 次に、正孔輸送層の上に発光層を成膜する。一例としては、抵抗加熱蒸着法により、赤(R)、緑(G)、青(B)の発光層を、塗分け用マスクを利用してそれぞれの成膜領域に成膜する。赤(R)としてDCM1(4-(ジシアノメチレン)-2-メチル-6-(4’-ジメチルアミノスチリル)-4H-ピラン)等のスチリル色素等の赤色を発光する有機材料を用いる。緑(G)としてアルミキノリノール錯体(Alq3) 等の緑色を発光する有機材料を用いる。青(B)としてジスチリル誘導体、トリアゾール誘導体等の青色を発光する有機材料を用いる。勿論、他の材料でも、ホスト‐ゲスト系の層構成でも良く、発光形態も蛍光発光材料を用いてもりん光発光材料を用いたものであってもよい。 Next, a light emitting layer is formed on the hole transport layer. As an example, red (R), green (G), and blue (B) light-emitting layers are formed in respective film formation regions by using a resistance heating vapor deposition method using a coating mask. As the red (R), an organic material that emits red light such as a styryl dye such as DCM1 (4- (dicyanomethylene) -2-methyl-6- (4′-dimethylaminostyryl) -4H-pyran) is used. An organic material that emits green light such as an aluminum quinolinol complex (Alq 3 ) is used as green (G). As the blue (B), an organic material emitting blue light such as a distyryl derivative or a triazole derivative is used. Of course, other materials or a host-guest layer structure may be used, and the light emission form may be a fluorescent light emitting material or a phosphorescent light emitting material.
 発光層の上に成膜される電子輸送層は、抵抗加熱蒸着法等の各種成膜方法により、例えばアルミキノリノール錯体(Alq3 )等の各種材料を用いて成膜する。電子輸送層は、上部電極線3から注入される電子を発光層に輸送する機能を有する。この電子輸送層は、1層だけ積層したものでも2層以上積層した多層構造を有してもよい。また、電子輸送層は、単一の材料による成膜ではなく、複数の材料により一つの層を形成しても良く、電荷輸送能力の高いホスト材料に電荷供与(受容)性の高いゲスト材料をドーピングして形成してもよい。 The electron transport layer formed on the light emitting layer is formed by using various materials such as an aluminum quinolinol complex (Alq 3 ) by various film forming methods such as resistance heating vapor deposition. The electron transport layer has a function of transporting electrons injected from the upper electrode line 3 to the light emitting layer. This electron transport layer may have a multilayer structure in which only one layer is stacked or two or more layers are stacked. In addition, the electron transport layer may be formed of a plurality of materials instead of a single material, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. It may be formed by doping.
 前述した工程6では、真空蒸着などで第2電極12が形成される。第1電極11及び第2電極12は、一方が陽極として機能し他方が陰極として機能するものである。第1電極11は、基板側から光を取り出すトップエミッション方式にする場合にはITOなどの透明導電膜を採用する。陰極は陽極より仕事関数の低い材料を用いる、陽極としてITOを用いる場合には、陰極としてはアルミニウム(Al)やMg-Alなどのマグネシウム合金を用いることができる。 In step 6 described above, the second electrode 12 is formed by vacuum deposition or the like. One of the first electrode 11 and the second electrode 12 functions as an anode and the other functions as a cathode. The first electrode 11 employs a transparent conductive film such as ITO in the case of a top emission method in which light is extracted from the substrate side. The cathode uses a material having a work function lower than that of the anode. When ITO is used as the anode, a magnesium alloy such as aluminum (Al) or Mg—Al can be used as the cathode.
 図4及び図5は、絶縁壁20の各種形態例を示した説明図である。絶縁壁20に形成されるオーバーハング部20Bとは、塗布材料層14の端部上に覆い被さる形状のことを指し、図2に示した側面21の形状に限定されるものではなく、様々な形態を含みうる。 4 and 5 are explanatory views showing various forms of the insulating wall 20. The overhang portion 20B formed on the insulating wall 20 refers to a shape covering the end portion of the coating material layer 14, and is not limited to the shape of the side surface 21 shown in FIG. It may include a form.
 図4(a)に示した例は、絶縁壁20の側面21に塗布材料層14側に突出する突出部21aが形成され、加熱成形前の絶縁壁20の断面形状は略T字形状になっている。(a1)の加熱溶融前の状態から、加熱後(a2)の状態に変化する。(a2)の状態では、絶縁壁20は、塗布材料層14の側面と上面の一部を覆ってオーバーハング部20Bが形成される。そして、塗布材料層14の上には曲面22Aが形成される。 In the example shown in FIG. 4A, a protruding portion 21a that protrudes toward the coating material layer 14 is formed on the side surface 21 of the insulating wall 20, and the cross-sectional shape of the insulating wall 20 before heat forming is substantially T-shaped. ing. It changes from the state before heating and melting in (a1) to the state after heating (a2). In the state (a2), the insulating wall 20 covers the side surface and part of the upper surface of the coating material layer 14 to form an overhang portion 20B. A curved surface 22 </ b> A is formed on the coating material layer 14.
 図4(b)に示した例は、絶縁壁20の側面21に塗布材料層14側に突出する突出部21a1が形成されており、この突出部21a1が角部を有している。(b1)の加熱溶融前の状態から、加熱後(b2)の状態に変化する。(b2)の状態では、絶縁壁20は、塗布材料層14の側面と上面の一部を覆ってオーバーハング部20Bが形成される。そして、塗布材料層14の上には曲面22Aが形成される。 In the example shown in FIG. 4B, a protruding portion 21a1 protruding toward the coating material layer 14 is formed on the side surface 21 of the insulating wall 20, and the protruding portion 21a1 has a corner. It changes from the state before heating and melting in (b1) to the state after heating (b2). In the state (b2), the insulating wall 20 covers the side surface and part of the upper surface of the coating material layer 14 to form an overhang portion 20B. A curved surface 22 </ b> A is formed on the coating material layer 14.
 絶縁壁20の断面形状は左右対称である必要はなく、オーバーハング部20Bが片側だけに形成されていても良い。図4(c)は側面21が片側のみに傾斜面21a2を有している。(c1)の加熱溶融前の状態から、加熱後(c2)の状態に変化する。(c2)の状態では、絶縁壁20は、塗布材料層14の側面と上面の一部を覆ってオーバーハング部20Bが形成される。そして、塗布材料層14の上には曲面22Aが形成される。 The cross-sectional shape of the insulating wall 20 does not have to be symmetrical, and the overhang portion 20B may be formed only on one side. In FIG. 4C, the side surface 21 has an inclined surface 21a2 on only one side. It changes from the state before heating and melting in (c1) to the state after heating (c2). In the state (c2), the insulating wall 20 covers the side surface and part of the upper surface of the coating material layer 14 to form an overhang portion 20B. A curved surface 22 </ b> A is formed on the coating material layer 14.
 図5には、加熱溶融前の絶縁壁20の各種断面形状を示している。同図(a)の例は、側面21から複数の突出部21b1,21b2が形成されている。同図(b)に示した例は、片側の突出部21c1と逆側の突出部21c2の突出幅が異なっている。同図(c)に示した例は、一方の側面21に異なる角度の傾斜面21d1,21d2が形成されており、他方の側面21にも異なる角度の傾斜面21d3,21d4が形成されている。同図(d)に示した例では、一方の側面21のみに突出部21eが形成されている。同図(e)に示した例では、一方の側面21のみに突出部21dが形成され、突出部21dは角部を有している。 FIG. 5 shows various cross-sectional shapes of the insulating wall 20 before heating and melting. In the example of FIG. 5A, a plurality of protrusions 21 b 1 and 21 b 2 are formed from the side surface 21. In the example shown in FIG. 5B, the protruding widths of the protruding portion 21c1 on one side and the protruding portion 21c2 on the opposite side are different. In the example shown in FIG. 2C, inclined surfaces 21 d 1 and 21 d 2 with different angles are formed on one side surface 21, and inclined surfaces 21 d 3 and 21 d 4 with different angles are also formed on the other side surface 21. In the example shown in FIG. 4D, the protruding portion 21e is formed only on one side surface 21. In the example shown in FIG. 5E, the protruding portion 21d is formed only on one side surface 21, and the protruding portion 21d has a corner.
 図6~図9は、本発明の実施形態に係る有機ELパネルの形成例を示した説明図である。前述の説明と共通する箇所には同じ符号を付して重複説明を一部省略する。 6 to 9 are explanatory views showing examples of forming the organic EL panel according to the embodiment of the present invention. Portions common to the above description are denoted by the same reference numerals, and a part of overlapping description is omitted.
 図6(同図(a)が単体のパネルの第2電極を除いた平面図を示しており、同図(b)が大判基板に形成された分割前の複数パネルの平面図を示している。)に示す例は、有機ELパネル100における基板10上の発光領域10Eの外縁に沿って絶縁壁20のパターンを形成した例である。この絶縁壁20によって塗布材料層14がパターニングされる。基板10における発光領域10Eの外側には配線領域10Fが形成されており、この配線領域10Fに第1電極11又は第2電極12に接続される配線30が形成されている。有機ELパネル100は、図6(b)に示すように大判基板上に複数のパネルを同時に形成し、分割線C1~C4に沿って分断することで多数個のパネルを一連の工程で形成することができる。 FIG. 6 (FIG. 6 (a) shows a plan view of the single panel excluding the second electrode, and FIG. 6 (b) shows a plan view of a plurality of panels formed on a large substrate before division. .) Is an example in which the pattern of the insulating wall 20 is formed along the outer edge of the light emitting region 10E on the substrate 10 in the organic EL panel 100. The coating material layer 14 is patterned by the insulating wall 20. A wiring region 10F is formed outside the light emitting region 10E on the substrate 10, and a wiring 30 connected to the first electrode 11 or the second electrode 12 is formed in the wiring region 10F. In the organic EL panel 100, a plurality of panels are simultaneously formed on a large substrate as shown in FIG. 6B, and a plurality of panels are formed in a series of steps by dividing along the dividing lines C1 to C4. be able to.
 図7(同図(a)が第2電極を除いた平面図、同図(b)が第2電極を含めた同図(a)のX-X断面図)に示す例は、有機ELパネル100における基板10上の画素1Gの外縁に沿って絶縁壁20を形成した例である。前述した有機EL素子1によって画素1Gが形成され、その画素1Gの外縁に沿って絶縁壁20が形成されている。第2電極12は複数の画素1Gに跨って形成され、端部が配線30にコンタクト部12Sで接続されている。 The example shown in FIG. 7 (FIG. 7 (a) is a plan view excluding the second electrode, FIG. 7 (b) is an XX sectional view of FIG. 7 (a) including the second electrode) is an organic EL panel. In this example, the insulating wall 20 is formed along the outer edge of the pixel 1G on the substrate 10 in 100. A pixel 1G is formed by the organic EL element 1 described above, and an insulating wall 20 is formed along the outer edge of the pixel 1G. The second electrode 12 is formed across the plurality of pixels 1G, and the end portion is connected to the wiring 30 by the contact portion 12S.
 図8(同図(a)が第2電極を除いた平面図、同図(b)が第2電極を含めた同図(a)のX-X断面図)に示す例は、有機ELパネル100における基板10上の画素1Gの外縁に沿って絶縁壁20を形成し、絶縁壁20の上部に第2電極12を分離する機能を有する電極分離隔壁30を形成した例である。 The example shown in FIG. 8 (FIG. 8A is a plan view excluding the second electrode, and FIG. 8B is an XX sectional view of FIG. 8A including the second electrode) is an organic EL panel. In this example, an insulating wall 20 is formed along the outer edge of the pixel 1G on the substrate 10 in 100, and an electrode separation partition wall 30 having a function of separating the second electrode 12 is formed on the insulating wall 20.
 図9は、絶縁壁20の他の形態例を示している。絶縁壁20の開口パターン20Aは各種の形態例をとりうる。絶縁壁20は様々な形状にパターン形成できるので、同図に示した数字のセグメントや、アイコンなどの形態にすることができる。 FIG. 9 shows another example of the insulating wall 20. The opening pattern 20A of the insulating wall 20 can take various forms. Since the insulating wall 20 can be patterned in various shapes, it can be in the form of numeric segments, icons, or the like shown in FIG.
 このような本発明の実施形態に係る有機ELパネルは、第1電極11上に塗布材料層14を形成することで、塗布材料層14が電極表面の凹凸を埋めて自身の表面を平坦化するので、その上に積層される有機層13の均一化が可能になり、耐リーク性を向上させる等、発光性能や耐久性能を向上させることが可能になる。また、電極上に塗布される塗布材料にアクセプタ(ドーパント)を添加させることによって、電荷注入効率が向上して、低電圧化の実現が可能になる。 In such an organic EL panel according to the embodiment of the present invention, the coating material layer 14 is formed on the first electrode 11 so that the coating material layer 14 fills the unevenness of the electrode surface and flattens its surface. Therefore, the organic layer 13 laminated thereon can be made uniform, and the light emission performance and durability performance can be improved, such as improving the leak resistance. Further, by adding an acceptor (dopant) to the coating material applied on the electrode, the charge injection efficiency is improved, and a low voltage can be realized.
 また、塗布材料層14の周囲を囲む絶縁壁20の内側面にオーバーハング部20Bを形成するので、第1電極11上に形成される塗布材料層14の表面を平坦化させると同時に適正なパターニングを行うことができ、その上に形成される有機層13の更に均一化させることで有機EL素子の発光特性を改善することができる。特に、開口パターン20A内の全域で均一な発光特性を得ることができ、有機ELパネル100の品質を高めることができる。 Further, since the overhang portion 20B is formed on the inner side surface of the insulating wall 20 surrounding the periphery of the coating material layer 14, the surface of the coating material layer 14 formed on the first electrode 11 is planarized and at the same time appropriate patterning. Further, the organic layer 13 formed thereon can be made more uniform to improve the light emission characteristics of the organic EL element. In particular, uniform light emission characteristics can be obtained over the entire area of the opening pattern 20A, and the quality of the organic EL panel 100 can be improved.
 更に、絶縁壁20は、塗布材料層14の上の部分が第2電極12の連続性を確保する傾斜面22又は曲面22Aになっているので、塗布材料層14上に有機層13を積層し、その上に第2電極12を成膜する際に、断線のない第2電極12を形成することができ、信頼性の高い有機ELパネル100を得ることができる。 Furthermore, since the insulating wall 20 has an inclined surface 22 or a curved surface 22A that ensures the continuity of the second electrode 12, the organic layer 13 is laminated on the coating material layer 14. When the second electrode 12 is formed thereon, the second electrode 12 without disconnection can be formed, and the highly reliable organic EL panel 100 can be obtained.
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.

Claims (8)

  1.  基板と、
     該基板上に直接又は他の層を介して形成された第1電極と、
     前記第1電極上に塗布形成される塗布材料層と、
     前記塗布材料層をパターニングする絶縁壁と、
     前記塗布材料層上に積層される発光層を含む有機層と、
     該有機層上に形成される第2電極とを備え、
     前記絶縁壁は、前記塗布材料層に接する側面が当該塗布材料層の広がりを抑えるオーバーハング部を有すると共に、前記塗布材料層の上方では前記第2電極の連続性を確保する傾斜面又は曲面を有することを特徴とする有機ELパネル。
    A substrate,
    A first electrode formed directly or via another layer on the substrate;
    A coating material layer coated on the first electrode;
    An insulating wall for patterning the coating material layer;
    An organic layer including a light emitting layer laminated on the coating material layer;
    A second electrode formed on the organic layer,
    The insulating wall has an overhang portion whose side surface in contact with the coating material layer suppresses the spreading of the coating material layer, and an inclined surface or curved surface that ensures the continuity of the second electrode above the coating material layer. An organic EL panel comprising:
  2.  前記オーバーハング部は、前記塗布材料層側に傾いた傾斜面であることを特徴とする請求項1記載の有機ELパネル。 2. The organic EL panel according to claim 1, wherein the overhang portion is an inclined surface inclined toward the coating material layer.
  3.  前記絶縁壁は、前記塗布材料層の側面と上面の一部を覆っていることを特徴とする請求項1又は2記載の有機ELパネル。 The organic EL panel according to claim 1 or 2, wherein the insulating wall covers a part of a side surface and an upper surface of the coating material layer.
  4.  前記絶縁壁は、パネルの発光領域の外縁に沿って形成されることを特徴とする請求項1~3のいずれかに記載された有機ELパネル。 The organic EL panel according to any one of claims 1 to 3, wherein the insulating wall is formed along an outer edge of a light emitting region of the panel.
  5.  前記絶縁壁は、パネルの画素の外縁に沿って形成されることを特徴とする請求項1~3のいずれかに記載された有機ELパネル。 The organic EL panel according to any one of claims 1 to 3, wherein the insulating wall is formed along an outer edge of a pixel of the panel.
  6.  前記絶縁壁の上部に前記第2電極を分離する機能を有する電極分離隔壁を形成することを特徴とする請求項5に記載された有機ELパネル。 6. The organic EL panel according to claim 5, wherein an electrode separation partition having a function of separating the second electrode is formed on the insulating wall.
  7.  基板上に直接又は他の層を介して第1電極を形成する工程と、
     前記基板上に前記第1電極上の被塗布面を囲むように絶縁壁のパターンを形成する工程と、
     前記絶縁壁のパターン内の前記被塗布面上に塗布材料を塗布して塗布材料層を形成する工程と、
     前記塗布材料層上に発光層を含む有機層を積層する工程と、
     前記有機層上に第2電極を形成する工程とを有し、
     前記絶縁壁は、前記パターンの内面に前記塗布材料層の広がりを抑えるオーバーハング部を有し、前記塗布材料層の形成後に、当該絶縁壁を加熱溶融することで、当該絶縁壁における前記塗布材料層の上方の部分を変形させ、前記第2電極の連続性を確保する傾斜面又は曲面を形成することを特徴とする有機ELパネルの製造方法。
    Forming a first electrode on the substrate directly or via another layer;
    Forming an insulating wall pattern on the substrate so as to surround a surface to be coated on the first electrode;
    Applying a coating material on the coated surface in the pattern of the insulating wall to form a coating material layer;
    Laminating an organic layer including a light emitting layer on the coating material layer;
    Forming a second electrode on the organic layer,
    The insulating wall has an overhang portion that suppresses spreading of the coating material layer on the inner surface of the pattern, and the coating material on the insulating wall is heated and melted after the coating material layer is formed. A method of manufacturing an organic EL panel, comprising deforming a portion above the layer to form an inclined surface or a curved surface that ensures the continuity of the second electrode.
  8.  前記絶縁壁の変形前の断面形状は略逆台形形状又は略T字形状であることを特徴とする請求項7に記載の有機ELパネルの製造方法。 The method for manufacturing an organic EL panel according to claim 7, wherein the cross-sectional shape of the insulating wall before deformation is a substantially inverted trapezoidal shape or a substantially T-shape.
PCT/JP2009/070774 2009-12-11 2009-12-11 Organic el panel and method for manufacturing same WO2011070681A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011545039A JPWO2011070681A1 (en) 2009-12-11 2009-12-11 Organic EL panel and manufacturing method thereof
CN2009801624669A CN102612858A (en) 2009-12-11 2009-12-11 Organic el panel and method for manufacturing same
PCT/JP2009/070774 WO2011070681A1 (en) 2009-12-11 2009-12-11 Organic el panel and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/070774 WO2011070681A1 (en) 2009-12-11 2009-12-11 Organic el panel and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2011070681A1 true WO2011070681A1 (en) 2011-06-16

Family

ID=44145250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070774 WO2011070681A1 (en) 2009-12-11 2009-12-11 Organic el panel and method for manufacturing same

Country Status (3)

Country Link
JP (1) JPWO2011070681A1 (en)
CN (1) CN102612858A (en)
WO (1) WO2011070681A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752617B (en) * 2015-04-14 2017-10-31 京东方科技集团股份有限公司 A kind of passive type organic electroluminescence device and preparation method thereof
CN104882466A (en) * 2015-05-27 2015-09-02 深圳市华星光电技术有限公司 Organic luminescence display device
CN108305891A (en) * 2018-02-12 2018-07-20 上海天马微电子有限公司 A kind of display panel and its manufacturing method, display device
US10581011B2 (en) * 2018-06-01 2020-03-03 Int Tech Co., Ltd. Light emitting device with different light emitting material overlapping width

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189290A (en) * 2000-09-29 2002-07-05 Nippon Zeon Co Ltd Radiation sensitive resin composition for forming insulating film and insulating film for organic electroluminescent element
JP2005174907A (en) * 2003-11-11 2005-06-30 Seiko Epson Corp Electro-optical device and electronic apparatus
JP2007095342A (en) * 2005-09-27 2007-04-12 Toppan Printing Co Ltd Organic electroluminescent element and its manufacturing method
JP2007095606A (en) * 2005-09-30 2007-04-12 Seiko Epson Corp Organic el device, its manufacturing method, and electronics device
JP2007227289A (en) * 2006-02-27 2007-09-06 Seiko Epson Corp Electrooptic device, method of manufacturing same and electronic device
JP2008192384A (en) * 2007-02-02 2008-08-21 Fuji Electric Holdings Co Ltd Manufacturing method of organic el display

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192935A (en) * 2002-12-11 2004-07-08 Hitachi Displays Ltd Organic el (electro-luminescence) display
JP4170138B2 (en) * 2003-04-28 2008-10-22 三菱電機株式会社 Organic electroluminescent device and manufacturing method thereof
JP2005196130A (en) * 2003-12-12 2005-07-21 Hitachi Cable Ltd Photosensitive polyimide resin composition, insulating film using the same, process for producing insulating film, and electronic component using the insulating film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189290A (en) * 2000-09-29 2002-07-05 Nippon Zeon Co Ltd Radiation sensitive resin composition for forming insulating film and insulating film for organic electroluminescent element
JP2005174907A (en) * 2003-11-11 2005-06-30 Seiko Epson Corp Electro-optical device and electronic apparatus
JP2007095342A (en) * 2005-09-27 2007-04-12 Toppan Printing Co Ltd Organic electroluminescent element and its manufacturing method
JP2007095606A (en) * 2005-09-30 2007-04-12 Seiko Epson Corp Organic el device, its manufacturing method, and electronics device
JP2007227289A (en) * 2006-02-27 2007-09-06 Seiko Epson Corp Electrooptic device, method of manufacturing same and electronic device
JP2008192384A (en) * 2007-02-02 2008-08-21 Fuji Electric Holdings Co Ltd Manufacturing method of organic el display

Also Published As

Publication number Publication date
CN102612858A (en) 2012-07-25
JPWO2011070681A1 (en) 2013-04-22

Similar Documents

Publication Publication Date Title
KR100804921B1 (en) Organic electroluminescent display panel and method of manufacturing the same
US8907358B2 (en) Organic light-emitting panel, manufacturing method thereof, and organic display device
JP6519933B2 (en) Organic light emitting device and method of manufacturing the same
US8604492B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness and organic display device
US8604495B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness and organic display device
US8604494B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness, and organic display device
US8624275B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness and organic display device
US8604493B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness and organic display device
US8901546B2 (en) Organic light-emitting panel, manufacturing method thereof, and organic display device
WO2015155971A1 (en) Organic light emitting device and method for manufacturing same
JP2010118509A (en) Light-emitting element
JP2000231994A (en) Organic thin film electroluminescence panel and manufacture thereof
US10826027B2 (en) Organic light-emitting diode component and manufacturing method thereof
WO2011070681A1 (en) Organic el panel and method for manufacturing same
KR20080003079A (en) Organic light emitting display device and and method for fabricating the same
JP4457697B2 (en) Manufacturing method of organic EL element
US20110284889A1 (en) Organic el panel and method for manufacturing the same
JP3652136B2 (en) Organic EL display panel and manufacturing method thereof
WO2014041614A1 (en) Organic el device
WO2014049875A1 (en) Organic el panel and method for manufacturing same
WO2011070680A1 (en) Organic el panel and method for manufacturing same
WO2007142603A1 (en) An integrated shadow mask and method of fabrication thereof
JP5622854B2 (en) Organic EL panel and panel junction type light emitting device
JP2005093280A (en) Organic el display
WO2012095962A1 (en) Organic el device and method for manufacturing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162466.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545039

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852077

Country of ref document: EP

Kind code of ref document: A1