WO2011070272A1 - Composition d'acide polylactique - Google Patents

Composition d'acide polylactique Download PDF

Info

Publication number
WO2011070272A1
WO2011070272A1 PCT/FR2010/052596 FR2010052596W WO2011070272A1 WO 2011070272 A1 WO2011070272 A1 WO 2011070272A1 FR 2010052596 W FR2010052596 W FR 2010052596W WO 2011070272 A1 WO2011070272 A1 WO 2011070272A1
Authority
WO
WIPO (PCT)
Prior art keywords
pla
composition
block copolymer
temperature
copolymer
Prior art date
Application number
PCT/FR2010/052596
Other languages
English (en)
Inventor
Christophe Navarro
Isabelle Boue
Sébastien QUINEBECHE
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2011070272A1 publication Critical patent/WO2011070272A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a composition based on poly lactic acid (PLA), to its preparation process, to its shaping process, as well as to its uses, especially in the manufacture of various objects, such as goods consumer goods such as electrical, electronic or automotive equipment, surgical equipment, packaging or sporting goods, membranes for example for the treatment of effluents.
  • PLA poly lactic acid
  • the invention relates more particularly to a composition
  • a composition comprising a lactic acid polyacid, and a block copolymer of which at least one of the blocks is predominantly constituted by poly lactic acid L or lactic polyacid D.
  • This composition has crystallization characteristics allowing advantageous molding, especially at low temperature, but also a particularly high load deflection temperature compared to PLA.
  • This composition is further composed entirely of renewable materials, is biodegradable and contains no catalytic residues of the family of metals which makes it interesting in areas where these residues are undesirable, for example when the use concerns a contact with foodstuffs or living tissues.
  • This composition is also transparent which allows uses in areas where transparency is necessary.
  • PLA is a polymer whose interest continues to grow due to its properties, including mechanical properties but also its compatibility with living tissues. It is also biodegradable and comes from renewable resources.
  • PLA ability to retain its mechanical properties from a certain temperature, typically above 50 ° C while retaining where necessary good biodegradability and good compatibility with living tissues. Regarding this last point the PLA must generally be purified because it contains metal catalytic residues involving additional costs.
  • Another limitation relates to the molding conditions, in particular the temperature which is not always as low as one would like to minimize the energy consumption necessary for shaping by molding.
  • the so-called stereocomplex technique described in WO2008057214 consists in mixing a poly (lactic acid) homopolymer mainly consisting of one L enantiomer to a lactic acid homopolymer predominantly consisting of one D enantiomer.
  • the melt temperature of the stereocomplex is 230. ° C against 170 ° C for the PLA from a mixture of enantiomers L and D.
  • the synthesis of PLLA and PDLA is expensive because it supposes to isolate at previously enantiomerically pure monomers and thus synthesize two polymers. It is also necessary to intimately mix the two polymers to obtain the stereocomplex.
  • Another technique for improving the temperature of deflection under charges described in WO 2003016015 consists of heat treatments which improve the crystallinity of the composition and therefore the temperature of deflection under charges.
  • a nucleating agent is jointly used in the heat treatment. This nucleating agent however disturbs the transparency and can sometimes compromise the compatibility with living tissues or the biodegradability of the composition.
  • Other techniques for improving the temperature of deflection under charges consist of mixing the PLA with another polymer, such as polycarbonate or ABS. Note that these solutions lead to compositions that are not from fully renewable materials. Their biodegradability and their compatibility with living tissues are also generally no longer assured.
  • the application JP2005035134 A2 considers the addition of natural fibers to the PLA and claims by these compositions an improved thermal resistance. These composite compositions, although interesting do not allow the development of transparent materials.
  • composition comprising a lactic acid polyacid and a block copolymer of which at least one of the blocks is predominantly constituted by lactic polyacid L or poly lactic acid D has crystallization characteristics which allow advantageous molding conditions, in particular at low temperature, but also a particularly high load deflection temperature compared to PLA while remaining transparent.
  • the object of the present invention is therefore to provide a composition of renewable origin comprising PLA entities, having a high temperature of deflection under load, biodegradable, compatible with living tissue, transparent, and the least expensive possible with respect to its synthesis and its transformation, in particular mild temperature conditions, both for synthesis only during molding conditions (mold temperature).
  • the present invention relates to a transparent composition
  • a transparent composition comprising a polyacid lactic homopolymer of enantiomeric purity L or D greater than 75% and a block copolymer of which at least one of the blocks is a lactic polyacid of enantiomeric purity greater than 75% and of which 1 '
  • the majority enantiomer is of enantiomeric form opposite to that constituting the lactic polyacid homopolymer.
  • PLA L is meant a PLA of which the enantiomer L is more than 75% predominant. More particularly, the enantiomer L is greater than 90% and more preferably more than 98%.
  • PLA D is meant a PLA of which the enantiomer D is more than 75% majority. More particularly, the enantiomer D is greater than 90% and even more preferably greater than 98%.
  • PLA (D or L) is meant a PLA L or a PLA D.
  • the PLA (D or L) homopolymer used in the invention may be a PLA (D or L) synthesized by any synthetic route described in the literature. However, in order to confer good compatibility with living tissues and to minimize the energy required during the synthesis, it will be preferable to prepare it according to a method described in application WO2008104724 of the Applicant, ie mild conditions of temperature and the absence of metals avoiding a polymer washing step. It has the following characteristics:
  • Mw g / mol greater than or equal to 10000 and preferably greater than 80000, even more preferably greater than 100000. Its polydispersity index is preferably less than 1.5 and even more preferably less than 1.2.
  • the block copolymer comprising at least one PLA entity (D or L) has the following structure:
  • PLA (D or L) n -R, where n is an integer between 1 and 10, preferably 1 and 2, and more particularly 1, R is chosen from the following groups:
  • -PLA (D or L), of enantiomeric purity greater than 75%, preferably greater than 90% and even more preferably SUpG .L " ⁇ ⁇ ⁇ cL 98" 6 r of which the majority enantiomer is of opposite configuration to at least one of the PLA blocks (D or L) n .
  • R must contain at least one entity capable of reacting on a hydroxyl function by polycondensation such as acid, anhydride, acid chloride, epoxy, etc.
  • R is not a PLA (L or D). Any method of synthesis known to those skilled in the art may be used to provide this functionality to R such as grafting a functional monomer on a polymer trunk, copolymerization of a functional monomer, telomerization with a telogen carrying the appropriate functionality, oxidation .
  • the PLA block copolymer (D or L) n -R can be prepared by reacting the two functional entities PLA (D or L) and R separately or during mixing in the state. melted with PLA (D or L) ie "in situ synthesis of the block copolymer".
  • R is multifunctional (n> 1), the copolymer can be triblock, starred, connected.
  • diblock copolymer PLA D-PLA L will be considered, but it is not excluded in the context of the invention the synthesis and the use of multiblock copolymers of alternating structure PLA L and PLA D .
  • the block copolymer is present in the composition in mass proportions ranging from 0.01 to 50%, preferably 0.1 to 15% and more particularly from 0.1 to 10%, inclusive.
  • the compositions of the present invention may further contain one or more additives such as impact modifiers, external or internal lubricants, UV stabilizers, heat, flame retardants. These additives represent less than 50% by weight of the composition, preferably less than 30% by weight.
  • impact modifiers, external or internal lubricants, and UV stabilizers, heat the content is less than 20% and preferably less than 10% by weight.
  • fillers such as talc, chalk, kaolin, mica, carbon black, the content by weight of which will be less than 50% of the composition, preferably less than 50% by weight. 20% and more preferably less than 10%, these fillers may act as a nucleating agent together with the block copolymer.
  • composition of the invention may contain fibers, natural or otherwise, in contents ranging from 1 to 60%, preferably ranging from 5 to 40% and more preferably from 5 to 20%, as well as nanotubes, carbon or not, in proportions ranging from 0.01 to 10%, and more particularly from 0.01 to 5%.
  • composition of the invention may be prepared by a tool known to those skilled in the art, operating in the molten state of the polymeric entities in the presence, such as an extruder, or a kneader.
  • the compositions can also be obtained by dissolving the polymeric entities in a suitable solvent such as dichloromethane, chloroform, toluene, aromatic solvents generally, and then precipitated in a non-solvent such as water, heptane, aliphatic solvents in general, or evaporation of the solvent.
  • a suitable solvent such as dichloromethane, chloroform, toluene, aromatic solvents generally, and then precipitated in a non-solvent such as water, heptane, aliphatic solvents in general, or evaporation of the solvent.
  • the invention also includes objects shaped typically by a molding injection method as well as the use of these objects.
  • the invention also comprises the fibers obtained by spinning, in the melt or not, of the compositions of the invention, as well as the tissues obtained with these fibers, and using these fabrics derived from these fibers.
  • the copolymer is prepared according to a method described in the application WO2008104724 of the applicant.
  • the synthesis is carried out in a 2 L jacketed reactor, inerted and maintained under a nitrogen sweep, provided with mechanical stirring (500 rpm), and connected to a temperature control group allowing regulation between 0 ° C. and 250 ° C. Are successively introduced into the reactor controlled at 80 ° C, under nitrogen, with stirring at 500 rev / min:
  • the reaction medium is stirred under nitrogen at 80 ° C. until complete conversion of the monomer established from gravimetric measurements by taking samples of the reaction medium over time, ie 4 hours (100% conversion).
  • the toluene is then evaporated and the polymer is washed with 1 L of acetone and then dried under vacuum at 30 ° C for 24 h.
  • the gravimetric measurements to determine the solids content of the reaction medium indicate the amount of polymer present in the medium (the solvent and the monomer being removed by vacuum and temperature).
  • the samples are previously neutralized with Di-isopropylethylamine to block any reaction and introduced into an aluminum cup placed in an oven at 200 ° C for 30 minutes, under 10 mbar.
  • the resulting polymer is characterized by DSC on a TA Instrument DSC 2910 ⁇ equipped with Thermal Advantage and data collection and universal analysis software 2000 for analysis.
  • the TA Instrument DSC 2910 ⁇ is connected to a cylinder containing liquid nitrogen which allows the cooling of the DSC oven to -120 ° C.
  • the reference is an empty aluminum capsule.
  • the mass of product used to perform the DSC measurement is between 5.0 mg and 20.0 mg.
  • the sample is introduced into an aluminum capsule.
  • the sample is cooled to -110 ° C. and then heated to 250 ° C. at 10 ° C./min under a flow of air (10 ml / min) and then cooled again to 40 ° C. under air.
  • the method is applied twice successively to each sample to ensure the removal of any traces of residual solvent and to be certain that the transition temperatures obtained are not due to artifacts.
  • the polymer obtained has a melting temperature of 204 ° C., which is characteristic of a Poly (lactic acid) stereoblock and a degree of crystallinity (area under the melting curve) estimated at 83% (referring to the melting enthalpy of a lactic acid polyactide 100 of 93.1 Jg-1).
  • the copolymer prepared as described in Example 1A was mixed with polylactic acid (PLA) (2002 D from Nature Works) in a weight ratio copolymer: PLA 40:60, in a 220 BUSS co-kneader. ° C.
  • PLA polylactic acid
  • the mixture is injected in a closed loop on a BILLION injection press with 70 tons of closing force.
  • the injection temperature is 210 ° C and the mold temperature is 20 ° C.
  • Example 1B The composition of Example 1B was subjected to various tests carried out under the operating conditions detailed in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

La présente invention se rapporte à une composition à base de polyacide lactique (PLA), à son procédé de préparation, à son procédé de mise en forme, ainsi qu'à ses utilisations, notamment dans la fabrication d'objets divers, comme des biens de consommation courante tels que des équipements électriques, électroniques ou automobiles, du matériel chirurgical, de l'emballage ou des articles de sport, des membranes par exemple pour le traitement d'effluents ou encore des fibres et tissus.

Description

COMPOSITION D'ACIDE POLYLACTIQUE
La présente invention se rapporte à une composition à base de polyacide lactique (PLA) , à son procédé de préparation, à son procédé de mise en forme, ainsi qu'à ses utilisations, notamment dans la fabrication d'objets divers, comme des biens de consommation courante tels que des équipements électriques, électroniques ou automobiles, du matériel chirurgical, de l'emballage ou encore des articles de sport, des membranes par exemple pour le traitement d'effluents.
L'invention se rapporte plus particulièrement à une composition comprenant un polyacide lactique, et un copolymère à bloc dont au moins un des blocs est majoritairement constitué de polyacide lactique L ou de polyacide lactique D. Cette composition présente des caractéristiques de cristallisation autorisant des conditions de moulage avantageuses, en particulier à basse température, mais également une température de fléchissement sous charge particulièrement élevée comparée au PLA. Cette composition est en outre composée en totalité de matières renouvelables, est biodégradable et ne contient pas de résidus catalytiques de la famille des métaux ce qui la rend intéressante dans des domaines ou ces résidus ne sont pas souhaitables, par exemples lorsque l'utilisation concerne un contact avec des denrées alimentaires ou encore des tissus vivants. Cette composition est en outre transparente ce qui permet des utilisations dans des domaines ou la transparence est nécessaire . Le PLA est un polymère dont l'intérêt ne cesse de croître de part ses propriétés, notamment mécaniques mais également sa compatibilité avec les tissus vivants. Il est de plus biodégradable et est issu de ressources renouvelables.
Une des limitations à l'utilisation du PLA est son aptitude à conserver ses propriétés mécaniques à partir d'une certaine température, typiquement supérieure à 50 °C tout en conservant lorsque cela est nécessaire une bonne biodégradabilité et une bonne compatibilité avec les tissus vivants. Concernant ce dernier point le PLA doit généralement être purifié car il contient des résidus catalytiques métalliques impliquant des coûts supplémentaires. Une autre limitation concerne les conditions de moulage, en particulier la température qui n'est pas toujours aussi basse que l'on souhaiterait pour minimiser la consommation d'énergie nécessaire à la mise en forme par moulage.
Art antérieur.
Plusieurs solutions permettant d'améliorer la température de fléchissement sous charges sont connues de la littérature. La technique dite des stéréocomplexes décrite dans WO2008057214 consiste à mélanger un homopolymère poly (acide lactique) majoritairement constitué de 1 ' énantiomère L à un homopolymère acide lactique majoritairement constitué de 1 ' énantiomère D. dans ce cas la température de fusion du stéréocomplexe est de 230°C contre 170°C pour le PLA issu d'un mélange des énantiomères L et D. Malheureusement la synthèse de PLLA et PDLA est coûteuse car elle suppose d' isoler au préalable les monomères énantiomèrement purs et à synthétiser donc deux polymères. Il est de plus nécessaire de mélanger intimement les deux polymères pour obtenir le stéréocomplexe .
En 1990, (Yui et al, Makrol.chem. 191 :481) a montré que des stéréocomplexes pouvaient être observé sur des copolymères diblocs PLLA-PDLA obtenus pas catalyse métallique, avec une température de fusion associée supérieure à 200°C. Cependant l'utilisation de copolymères diblocs PLLA-PDLA purs est coûteuse et peut nécessiter des étapes de précipitation.
Une autre technique permettant d'améliorer la température de fléchissement sous charges décrite dans WO 2003016015 consiste en des traitements thermiques qui améliorent la cristallinité de la composition et donc la température de fléchissement sous charges. Dans cette demande, un agent nucléant est conjointement utilisé au traitement thermique. Cet agent nucléant perturbe cependant la transparence et peut parfois compromettre la compatibilité avec les tissus vivants voir la biodégradabilité de la composition. D'autres techniques permettant d'améliorer la température de fléchissement sous charges consistent à mélanger le PLA avec un autre polymère, tel le Polycarbonate ou encore l'ABS. On notera que ces solutions conduisent à des compositions qui ne sont pas issues de matières entièrement renouvelables. Leur biodégradabilité et leur compatibilité avec les tissus vivant ne sont par ailleurs généralement plus assurée. La demande JP2005035134 A2 considère l'addition de fibres naturelles au PLA et revendique par ces compositions une résistance thermique améliorée. Ces compositions composites, bien qu'intéressantes ne permettent pas l'élaboration de matériaux transparents.
Dans la revue Polymer, vol 47, 3826-3837 (2006), Tsuji et al montrent que de faibles quantités de PDLA rajoutées à un PLLA conduisent à une composition présentant une amélioration des comportements de cristallisation et une température de fusion plus élevée. Mais jusqu'à 40% de PDLA sont nécessaires à une composition PLLA/PDLA pour observer une température de fusion significativement plus élevée que pour le PLLA.
La demanderesse a maintenant montré qu'une composition comprenant un polyacide lactique et un copolymère à blocs dont au moins un des blocs est majoritairement constitué de polyacide lactique L ou de polyacide lactique D présente des caractéristiques de cristallisation autorisant des conditions de moulage avantageuses, en particulier à basse température, mais également une température de fléchissement sous charge particulièrement élevée comparée au PLA tout en restant transparente.
Le but de la présente invention est donc de proposer une composition d'origine renouvelable comprenant des entités PLA, possédant une haute température de fléchissement sous charge, biodégradable, compatible avec les tissus vivants, transparente, et la moins onéreuse possible en ce qui concerne sa synthèse et sa transformation, en particulier des conditions douces de température, tant pour la synthèse que lors des conditions de moulage (température du moule) .
Résumé de l'invention.
La présente invention concerne une composition transparente comprenant un polyacide lactique homopolymère de pureté énantiomérique L ou D supérieure à 75 % et d'un copolymère à bloc dont au moins un des blocs est un polyacide lactique de pureté énantiomérique supérieure à 75 % et dont 1 ' énantiomère majoritaire est de forme énantiomérique opposée à celle constituant le polyacide lactique homopolymère. Description détaillée.
Par PLA L, on entend un PLA dont 1 ' énantiomère L est majoritaire à plus de 75%. Plus particulièrement 1 ' énantiomère L est majoritaire à plus de 90% et encore mieux à plus de 98%.
Par PLA D, on entend un PLA dont 1 ' énantiomère D est majoritaire à plus de 75%. Plus particulièrement 1 ' énantiomère D est majoritaire à plus de 90% et encore mieux à plus de 98%. Par PLA (D ou L) on entend un PLA L ou un PLA D.
Le PLA (D ou L) homopolymère utilisé dans l'invention peut être un PLA (D ou L) synthétisé par n'importe quelle voie de synthèse décrite dans la litérature. Cependant de manière à conférer une bonne compatibilité avec les tissus vivants et minimiser l'énergie nécessaire durant la synthèse on préférera le préparer selon une méthode décrite dans la demande WO2008104724 de la demanderesse, c'est à dire des conditions douces de température et l'absence de métaux évitant une étape de lavage du polymère. Il présente les caractéristiques suivantes :
Masse moléculaire en poids, Mw g/mole, supérieure ou égale à 10000 et de préférence supérieure à 80000, encore plus préférentiellement supérieure à 100000. Son indice de polydispersité est de préférence inférieur à 1.5 et encore mieux inférieur à 1.2.
Le copolymère à blocs comprenant au moins une entité PLA (D ou L) présente la structure suivante :
PLA (D ou L)n-R, où n est un nombre entier compris entre 1 et 10, de préférence 1 et 2, et plus particulièrement 1, R est choisi parmi les groupements suivants :
-PLA (D ou L) , de pureté énantiomérique supérieure à 75 %, de préférence supérieure à 90% et encore plus préférentielement SUpG .L" ï ΘΙΙ Θ cL 98 "6 r dont 1 ' énantiomère majoritaire est de configuration opposée à au moins un des blocs PLA (D ou L)n.
-PMMA (polymétacrylate de méthyle)
-PEG (polyéthylene glycol)
-PTMG (polytétraméthylène glycol)
-les polyoléfines fonctionnalisées
-Le polybutadiène,
-le poly (diméthyl siloxane)
La méthode de synthèse des PLA décrite dans WO2008104724 conduisant à une terminaison hydroxyle ou plus selon nombre de fonction hydroxyle contenue dans l'amorceur, R devra contenir au moins une entité capable de réagir sur une fonction hydroxyle par polycondensation telle que acide, anhydride, chlorure d'acide, époxy...
Lorsque R n'est pas un PLA (L ou D) . Toute méthode de synthèse connue de l'homme du métier pourra être utilisé pour procurer cette fonctionnalité à R telle que greffage d'un monomère fonctionnel sur un tronc polymère, copolymérisation d'un monomère fonctionnel, télomérisation avec un télogène portant la fonctionnalité adéquate, oxydation.
Lorsque R n'est pas une entité PLA, le copolymère à bloc PLA (D ou L)n-R pourra être préparé en faisant réagir les deux entités fonctionnelles PLA(D ou L) et R séparément ou durant le mélange à l'état fondu avec le PLA (D ou L) ie « synthèse in situ du copolymère à bloc ». Lorsque R est multifonctionnel (n>l), le copolymère pourra être tribloc, étoilé, branché.
Dans le cas d'un copolymère multibloc PLA D-PLA L, la synthèse s'effectuera en addition séquentielle des monomères des 2 configurations énantiomériques différentes selon la méthode décrite dans WO2008104724.
De préférence, on considérera la synthèse et l'utilisation de copolymère dibloc PLA D-PLA L mais il n'est pas exclu dans le cadre de l'invention la synthèse et l'utilisation de copolymères multiblocs de structure alternée PLA L et PLA D.
Le copolymère à bloc est présent dans la composition dans des proportions massiques allant de 0.01 à 50 %, de préférence 0.1 à 15 % et plus particulièrement de 0.1 à 10%, bornes incluses. Les compositions de la présente invention pourront en outre contenir un ou plusieurs additifs tels que modifiants chocs, lubrifiants externes ou internes, stabilisants aux UV, à la chaleur, ignifugeants. Ces additifs représentent moins de 50% en poids de la composition, de préférence moins de 30% en poids. Pour les modifiants chocs, lubrifiants externes ou internes, et stabilisants aux UV, à la chaleur, la teneur est inférieure à 20% et de préférence inférieure à 10% en poids.
On ne sortirait pas du cadre de l'invention en ajoutant des charges telles que le talc, la craie, le kaolin, le mica, le noir de carbone, dont la teneur en poids sera inférieure à 50 % de la composition de préférence inférieure à 20 % et plus préférentiellement inférieure à 10%, ces charges pouvant agir comme agent nucléant conjointement au copolymère à bloc.
Enfin, la composition de l'invention pourra contenir des fibres, naturelles ou non, dans des teneurs allant de 1 à 60 %, de préférence allant de 5 à 40 % et encore mieux de 5 à 20%, ainsi que des nanotubes, de carbone ou non, dans des proportions allant de 0.01 à 10 %, et plus particulièrement de 0.01 à 5%.
La composition de l'invention peut être préparée par un outil connu de l'homme de métier, opérant à l'état fondu des entités polymériques mises en présence, tel qu'une extrudeuse, ou un malaxeur. Les compositions peuvent également être obtenues par dissolution des entités polymériques dans un solvant adéquat tel que le dichlorométhane, le chloroforme, le toluène, les solvants aromatiques de façon générale, puis précipitées dans un non solvant tel que l'eau, l'heptane, les solvants aliphatiques d'une façon générale, ou encore évaporation du solvant. L'invention comprend également les objets mis en forme typiquement par un procédé d'injection moulage ainsi que l'utilisation de ces objets.
De tels objets concernent des biens de consommation courante tels que des équipements électriques, électroniques ou automobiles, du matériel chirurgical, de l'emballage, des articles de sport ou encore des membranes par exemple pour le traitement d' effluents. L' invention comprend également les fibres obtenues par filage, à l'état fondu ou non, des compositions de l'invention, ainsi que les tissus obtenus avec ces fibres, et utilisation de ces tissus issus de ces fibres.
EXEMPLES
Exemple 1 : Préparation d'une composition selon 1 ' invention
1A - Préparation du copolymère à blocs PLA(D)-b- PLA(L)
Le copolymère est préparé selon une méthode décrite dans la demande WO2008104724 de la demanderesse.
La synthèse est réalisée dans un réacteur double enveloppe de 2 L, inerté et maintenu sous un balayage d'azote, pourvu d'une agitation mécanique (500 rpm) , et connecté à un groupe de régulation de température permettant de réguler entre 0°C et 250°C. Sont successivement introduits dans le réacteur régulé à 80°C, sous azote, sous agitation à 500 tour/min :
765 g de toluène, préalablement passé sur tamis d'alumine pour le sécher.
135 g de Lactide D (0, 8366 mol) (Puralact D provenant de la société Purac) .
Puis après 30 min :
6,08 g d'acide trifluorométhanesulfonique anhydre
(0,0405 mol)
1,76 g de n-octanol anhydre (0,0135 mol) .
Le milieu réactionnel est agité sous azote à 80°C jusqu'à conversion totale du monomère établie à partir de mesures gravimétriques par prélèvement d'échantillons du milieu réactionnel au cours du temps, soit 4 h (conversion 100 %) ·
Après s'être assuré que la conversion du lactide D en polymère est quantitative, on ajoute ensuite 135 g de Lactide L (0, 8366 mol) (Puralact L provenant de la société Purac) .
Après 2h de polymérisation, est ensuite ajouté dans le milieu réactionnel 15,73 g de Di-isopropyléthylamine (source Aldrich) (0,1215 mol) pour s'assurer que la réaction est terminée .
Le toluène est ensuite évaporé et le polymère est lavé avec 1 L d'acétone puis séché sous vide à 30°C pendant 24 h. Les mesures gravimétriques pour déterminer l'extrait sec du contenu du milieu réactionnel nous indiquent la quantité de polymère présent dans le milieu (le solvant et le monomère étant enlevés par le vide et la température) . Les échantillons sont préalablement neutralisés avec de la Di-isopropyléthylamine pour bloquer toute réaction et introduits dans une coupelle en aluminium mise dans un four à 200°C pendant 30 minutes, sous 10 mbars .
Le polymère obtenu est caractérisé par DSC sur un appareil TA Instrument DSC 2910© équipés de thermique Advantage et de logiciels de collecte de données et d'analyse universelle 2000 pour les analyser. Le TA Instrument DSC 2910© est relié à un cylindre contenant de l'azote liquide qui permet le refroidissement du four DSC à -120 ° C. La référence est une capsule en aluminium vide .
La masse de produit utilisé pour effectuer la mesure DSC est comprise entre 5,0 mg et 20,0 mg. L'échantillon est introduit dans une capsule en aluminium.
L'échantillon est refroidi à - 110°C puis chauffé à 250°C à 10°C/min sous débit d'air (10 mL/min) puis refroidi à nouveau à 40°C sous air. La méthode est appliquée 2 fois successivement sur chaque échantillon pour s'assurer de l'élimination de toute traces de solvant résiduel et être certain que les températures de transition obtenues ne sont pas dues à des artefacts.
Le polymère obtenu présente une température de fusion de 204 °C, caractéristique d'un stéréobloc de Poly(acide lactique) et un taux de cristallinité (aire sous la courbe de fusion) estimée à 83 % (en se référant l'enthalpie de fusion d'un polyacide lactique 100 cristallin de 93,1 J.g-1).
Figure imgf000013_0001
1B - Mélange du copolymère à blocs avec 1 ' homopolymère d'acide lactique
Le copolymère préparé comme décrit à l'Exemple 1A a été mélangé à de l'acide de polylactique (PLA) (2002 D de NATURE WORKS) dans une proportion pondérale copolymère : PLA de 40:60, dans un co-malaxeur BUSS à 220°C. Le mélange est injecté en boucle fermée sur une presse d'injection BILLION de 70 tonnes de force de fermeture. La température d'injection est de 210°C et la température du moule est de 20°C.
Exemple 2 : Evaluation des propriétés optiques et mécaniques de la composition selon 1 ' invention
2A - Protocoles des tests réalisés
La composition de l'Exemple 1B été soumise à différents tests effectués dans les conditions opératoires détaillées dans le Tableau 1 ci-dessous.
Tableau 1
Test réalisé sur la composition PLA/copolymère à blocs
Figure imgf000014_0001
2B - Résultats des tests
Les résultats des tests réalisés sur la composition de l'Exemple 1B sont donnés dans les Tableaux 2 et 3 ci- dessous . Tableau 2
Propriétés mécaniques de la composition selon l'invention
Figure imgf000015_0001
Tableau 3
Propriétés optiques de la composition selon l'invention
Figure imgf000015_0002
Du point de vue de ses propriétés mécaniques, la température de fléchissement sous charge est nettement améliorée et les propriétés optiques conservées.

Claims

REVENDICATIONS
1. Composition transparente comprenant un polyacide lactique homopolymère de pureté énantiomérique L ou D supérieure à 75 % et un copolymère à bloc constitué des entités PLA L et PLA D.
2. Composition selon la revendication 1 dans laquelle le copolymère à bloc est un copolymère tribloc.
3. Composition selon la revendication 1 dans laquelle le copolymère à bloc est un copolymère dibloc.
4. Composition selon la revendication 1 dans laquelle le copolymère à bloc est présent dans des proportions allant de 0.01 à 50%.
5. Procédé de mise en forme par injection d'une composition selon les revendications 1 à 4.
6. Fibres dont la composition correspond à l'une des revendications 1 à 4.
7. Objet mis en forme selon le procédé de la revendication 5.
8. Utilisation d'un objet selon la revendication 7 comme biens de consommation courante tels que des équipements électriques, électroniques ou automobiles, du matériel chirurgical, de l'emballage, des articles de sport ou encore des membranes par exemple pour traitement d'eff luents.
PCT/FR2010/052596 2009-12-02 2010-12-02 Composition d'acide polylactique WO2011070272A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0905821A FR2953218A1 (fr) 2009-12-02 2009-12-02 Composition de polyacide lactique
FR0905821 2009-12-02

Publications (1)

Publication Number Publication Date
WO2011070272A1 true WO2011070272A1 (fr) 2011-06-16

Family

ID=42338264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052596 WO2011070272A1 (fr) 2009-12-02 2010-12-02 Composition d'acide polylactique

Country Status (2)

Country Link
FR (1) FR2953218A1 (fr)
WO (1) WO2011070272A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459570A (zh) * 2014-04-29 2017-02-22 道达尔研究技术弗吕公司 基于聚丙交酯的组合物
CN106459569A (zh) * 2014-04-29 2017-02-22 道达尔研究技术弗吕公司 包括基于聚丙交酯‑聚丁二烯的嵌段共聚物的聚合物组合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498650A (en) * 1995-02-24 1996-03-12 Ecological Chemical Products Poly(lactic acid) composition having improved physical properties
US20020198332A1 (en) * 2000-07-17 2002-12-26 Tomoyuki Kasemura Lactic-acid base resin composition and molded articles made therefor
WO2003016015A1 (fr) 2001-08-20 2003-02-27 Cargill Dow Llc Procede de production d'articles semi-cristallins en acide polylactique
JP2005035134A (ja) 2003-07-18 2005-02-10 Toray Ind Inc 樹脂組成物の製造方法
EP1514902A1 (fr) * 2002-06-20 2005-03-16 Toray Industries, Inc. Composition polymerique a base d'acide polylactique, son procede de moulage et film obtenu
WO2008057214A2 (fr) 2006-10-26 2008-05-15 Natureworks Llc Compositions stéréocomplexes d'acide polylactique et procédés de production et d'utilisation correspondants
WO2008104724A1 (fr) 2007-02-16 2008-09-04 Arkema France Procédé de préparation d'un copolymère d'au moins un monomère cyclique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498650A (en) * 1995-02-24 1996-03-12 Ecological Chemical Products Poly(lactic acid) composition having improved physical properties
US20020198332A1 (en) * 2000-07-17 2002-12-26 Tomoyuki Kasemura Lactic-acid base resin composition and molded articles made therefor
WO2003016015A1 (fr) 2001-08-20 2003-02-27 Cargill Dow Llc Procede de production d'articles semi-cristallins en acide polylactique
EP1514902A1 (fr) * 2002-06-20 2005-03-16 Toray Industries, Inc. Composition polymerique a base d'acide polylactique, son procede de moulage et film obtenu
JP2005035134A (ja) 2003-07-18 2005-02-10 Toray Ind Inc 樹脂組成物の製造方法
WO2008057214A2 (fr) 2006-10-26 2008-05-15 Natureworks Llc Compositions stéréocomplexes d'acide polylactique et procédés de production et d'utilisation correspondants
WO2008104724A1 (fr) 2007-02-16 2008-09-04 Arkema France Procédé de préparation d'un copolymère d'au moins un monomère cyclique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYMER, POLYMER, vol. 47, 2006, pages 3826 - 3837
YUI ET AL., MAKROL.CHEM., vol. 191, 1990, pages 481

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459570A (zh) * 2014-04-29 2017-02-22 道达尔研究技术弗吕公司 基于聚丙交酯的组合物
CN106459569A (zh) * 2014-04-29 2017-02-22 道达尔研究技术弗吕公司 包括基于聚丙交酯‑聚丁二烯的嵌段共聚物的聚合物组合物
CN106459569B (zh) * 2014-04-29 2018-10-19 道达尔研究技术弗吕公司 包括基于聚丙交酯-聚丁二烯的嵌段共聚物的聚合物组合物

Also Published As

Publication number Publication date
FR2953218A1 (fr) 2011-06-03

Similar Documents

Publication Publication Date Title
Gardella et al. PLA maleation: an easy and effective method to modify the properties of PLA/PCL immiscible blends
Pracella et al. Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc
EP2115022B1 (fr) Materiau polymere de type styrene / anhydride, greffe ayant des proprietes ameliorees
BE1019340A3 (fr) Procede pour nucleer et accelerer la cristallisation du polylactide.
FR2466482A1 (fr) Materiau polymerique thermoplastique et procede pour sa preparation
WO2003051998A9 (fr) Composition polymere thermoplastique comprenant un polymere hyperbranche, et articles realises a partir de cette composition
FR2912752A1 (fr) Procede de preparation d'un copolymere d'au moins un monomere cyclique
EP2831136B1 (fr) Polymères, leur procédé de synthèse et compositions les comprenant
Iqbal et al. A preliminary study on the development and characterisation of enzymatically grafted P (3HB)-ethyl cellulose based novel composites
EP2401317A1 (fr) Procédé de production de stéréocomplexes plla/pdla
Zhou et al. Preparation and characteristic of PC/PLA/TPU blends by reactive extrusion
Jubinville et al. Synergistic thermo-oxidative maleation of PA11 as compatibilization strategy for PA6 and PBT blend
Jeong et al. In situ formation of PLA-grafted alkoxysilanes for toughening a biodegradable PLA stereocomplex thin film
Chen et al. Hybrid networks based on poly (styrene-co-maleic anhydride) and N-phenylaminomethyl POSS
JPWO2008143322A1 (ja) セルロース誘導体、セルロース誘導体−ポリ乳酸グラフト共重合体及びその製造方法、並びに、ポリ乳酸系樹脂組成物
FR2953523A1 (fr) Procede de preparation d'un polymere d'au moins un monomere cyclique
Jeon et al. Compatibilizing Effect of Poly (methyl methacrylate-co-maleic anhydride) on the Morphology and Mechanical Properties of Polyketone/Polycarbonate Blends
Doganci et al. Effects of hetero‐armed star‐shaped PCL‐PLA polymers with POSS core on thermal, mechanical, and morphological properties of PLA
US20100099830A1 (en) Resin composition, method for producing thereof, and copolymer
EP2190923B1 (fr) Composition renfermant un homopolymere d'acide lactique et un copolymere a blocs
Trinh et al. Robust and high barrier thermoplastic starch–PLA blend films using starch-graft-poly (lactic acid) as a compatibilizer
Dominici et al. Improving the flexibility and compostability of starch/poly (butylene cyclohexanedicarboxylate)-based blends
EP2432813B1 (fr) Stereocomplexes de poly-l-lactide urethane et de poly-d-lactide urethane et procede d'obtention
WO2011070272A1 (fr) Composition d'acide polylactique
Wang et al. Synthesis, characterization and degradation of biodegradable thermoplastic elastomers from poly (ester urethane) s and renewable soy protein isolate biopolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807454

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10807454

Country of ref document: EP

Kind code of ref document: A1