WO2011070163A1 - Amplificateur optique bidirectionnel - Google Patents

Amplificateur optique bidirectionnel Download PDF

Info

Publication number
WO2011070163A1
WO2011070163A1 PCT/EP2010/069402 EP2010069402W WO2011070163A1 WO 2011070163 A1 WO2011070163 A1 WO 2011070163A1 EP 2010069402 W EP2010069402 W EP 2010069402W WO 2011070163 A1 WO2011070163 A1 WO 2011070163A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical amplifier
amplifier
downstream
bidirectional
Prior art date
Application number
PCT/EP2010/069402
Other languages
English (en)
Inventor
Christian Simonneau
Dominique Chiaroni
Gema Buforn Santamaria
Sophie Etienne
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Priority to JP2012542564A priority Critical patent/JP5506946B2/ja
Priority to CN201080056364.1A priority patent/CN102783056B/zh
Priority to US13/513,957 priority patent/US8848284B2/en
Priority to KR1020127017759A priority patent/KR101391265B1/ko
Publication of WO2011070163A1 publication Critical patent/WO2011070163A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/297Bidirectional amplification
    • H04B10/2972Each direction being amplified separately

Definitions

  • An aspect of the invention relates to a bidirectional optical amplifier.
  • the bidirectional optical amplifier may be used in an optical communication network using optical fibers.
  • the optical communication network may be a passive optical network PON, more particularly a hybrid wavelength division multiplexed and time division multiplexed passive optical network WDM-TDM PON.
  • FIG. 1 is a block diagram illustrating a passive optical network WDM-TDM PON.
  • a passive optical network PON has a point-to-multipoint network architecture. It comprises an optical line terminal OLT 20 connected to a plurality of optical network units ONU 30 through a plurality of optical splitters or multiplexers 31 and optical fiber portions 22, 32.
  • the optical line terminal 20 comprises a receiver 23 and a transmitter 24 located at a central office of a service provider, and serves the plurality of optical network units 30 located near end users.
  • the receiver 23 and the transmitter 24 are connected to the optical fiber portion 22 through a circulator 21 .
  • the transmitter 24 of the optical line terminal 20 transmits optical signals towards the optical network units 30.
  • the receiver 23 of the optical line terminal 20 receives optical signals sent by the optical network units 30. These downstream and upstream signals using different wavelength bands share the same optical fiber portions 22, 32. Generally, due to the attenuation of the optical signals travelling in long optical fiber portions, the passive optical network PON further comprises a bidirectional optical amplifier 1 .
  • FIG. 2 is a block diagram illustrating the bidirectional optical amplifier 1 .
  • the bidirectional optical amplifier 1 is passed through in one direction by a downstream optical signal SDS and in an opposite direction by an upstream optical signal Sus- It comprises a first optical circulator 2 and a second optical circulator 3, both having three ports P1 , P2, P3.
  • a first port P1 of the first optical circulator 2 defines a first connector 8 at one end of the bidirectional optical amplifier.
  • a first port P1 of the second optical circulator 3 defines a second connector 9 at an opposite end of the bidirectional optical amplifier.
  • the first connector 8 is connected to an optical fiber portion 32.
  • the second connector 9 is connected to another optical fiber portion 22.
  • a downstream amplification path 5 for the downstream optical signal SDS is defined between a second port P2 of the first optical circulator 2 and a second port P2 of the second optical circulator 3.
  • a downstream unidirectional optical amplifier 4 is connected between said ports in the downstream amplification path 5.
  • An upstream amplification path 7 for the upstream optical signal Sus is defined between a third port P3 of the first optical circulator 2 and a third port P3 of the second optical circulator 3.
  • An upstream unidirectional optical amplifier 6 is connected between said ports in the upstream amplification path 7 for the upstream optical signal.
  • such a bidirectional optical amplifier comprises rare earth doped fiber amplifiers DFA as unidirectional optical amplifiers 4, 6.
  • a rare earth doped fiber amplifier comprises a rare earth doped optical fiber as a gain medium to amplify the optical signal.
  • the rare earth doped fiber amplifier may be an Erbium doped fiber amplifier EDFA.
  • the bidirectional optical amplifier 1 as depicted in Figure 2 is not satisfactory because of instability caused by the imperfect isolation between the second P2 and third P3 port of each optical circulator. The effects of imperfect isolation on the downstream signal SDS (full line arrows) and the upstream signal Sus (broken line arrows) at the different amplification stages are depicted in small frames. More precisely, a part of the output power 1 1 of the upstream unidirectional optical amplifier 6 is re-injected at the input of the downstream unidirectional optical amplifier 4.
  • bidirectional optical amplifier 1 As a consequence, such a bidirectional optical amplifier 1 is not stable, namely the output power of the bidirectional optical amplifier in both directions varies erratically over the time.
  • bidirectional optical amplifiers comprising unidirectional optical amplifiers having low output power, or comprising circulators having increased isolation ratio. However, these solutions do not satisfactorily prevent oscillation of the bidirectional optical amplifier output signal.
  • a circulator having an isolation ratio of 35dB requires the output power of the unidirectional optical amplifiers to be limited to 16dBm in order to prevent oscillation. This is not acceptable because it reduces the reach (distance between OLT and ONU) and splitting ratio (number of ONU per OLT) of the passive optical network.
  • a bidirectional optical amplifier arranged to be passed through in one direction by a downstream optical signal and in an opposite direction by an upstream optical signal, comprising: [0012] - a first optical circulator having three ports,
  • the waveband separator may be waveband splitter or a de-interleaver.
  • the unidirectional optical amplifier may be a rare earth doped fiber amplifier or a semiconductor optical amplifier or a lumped Raman amplifier.
  • the downstream optical signal may transport continuous traffic.
  • the upstream optical signal may transport burst traffic.
  • a passive optical network comprising an optical line terminal connected to a plurality of optical network units through a plurality of optical splitters or multiplexers and optical fiber portions.
  • the passive optical network further comprises a bidirectional optical amplifier of the invention.
  • the bidirectional optical amplifier of the invention offers greater stability even with high output power and over a wide range of operating conditions. Further, the bidirectional optical amplifier, in particular the upstream unidirectional amplifier has improved burst mode capability, upstream signal being efficiently amplified in the burst mode of operation. Other advantages will become apparent from the hereinafter description of the invention.
  • FIG. 1 is a block diagram illustrating a passive optical network WDM-TDM PON
  • Figure 2 is a block diagram illustrating a bidirectional optical amplifier according to the prior art
  • Figure 3 is a block diagram illustrating a bidirectional optical amplifier according to the invention.
  • Figures 4 and 5 show examples of a waveband separator implementation used in the bidirectional optical amplifier of the invention.
  • FIG. 3 is a block diagram illustrating a bidirectional optical amplifier of the invention.
  • the bidirectional optical amplifier 1 comprises a first optical circulator 2 and a second optical circulator 3, a downstream unidirectional optical amplifier 4, an upstream unidirectional optical amplifier 6 and a waveband separator 10.
  • the waveband separator 10 is connected between the second port P2 of the first optical circulator 2 and the input of the downstream unidirectional optical amplifier 4.
  • the unidirectional optical amplifiers 4, 6 may be Erbium doped fiber amplifier EDFA. Alternatively, it may also be any rare earth doped fiber amplifier (e.g. rare earth being thulium, praseodymium, etc .), or a lumped Raman amplifier, or a semiconductor optical amplifier SOA.
  • the bidirectional optical amplifier 1 may be connected to the optical fiber portion 32 by a first connector 8 defined by the first port P1 of the first optical circulator 2 at one end of the bidirectional optical amplifier.
  • the bidirectional optical amplifier 1 may be further connected to the optical fiber portion 22 by a second connector 9 defined by the first port P1 of the second optical circulator 3 at an opposite end of the bidirectional optical amplifier.
  • the path between the second port P2 of the first optical circulator 2, the waveband separator 10, the downstream unidirectional optical amplifier 4 and the second port P2 of the second optical circulator 3 defines a downstream amplification path 5 for amplifying the downstream optical signal S D s- Typically, the downstream optical signal SDS transports continuous traffic.
  • the path between the third port P3 of the second optical circulator 3, the upstream unidirectional optical amplifier 6 and the third port P3 of the first optical circulator 2 defines an upstream amplification path 7 for amplifying the upstream optical signal Sus- Typically, the upstream optical signal Sus transports burst traffic.
  • the waveband separator 10 is designed such as to take into consideration the different wavelength bands used for the downstream optical signal S D s transporting continuous traffic and the upstream optical signal Sus transporting burst traffic.
  • the waveband separator 10 rejects the totality of the wavelength band corresponding to the upstream optical signal Sus-
  • the downstream unidirectional optical amplifier 4 only amplifies the downstream optical signal S D s-
  • the output power of the downstream unidirectional optical amplifier 4 and, thus, of the bidirectional optical amplifier at connector 9 becomes stable over the time.
  • the upstream amplification path 7 does not comprise any waveband separator. Due to the imperfect isolation of the second circulator 3, a part of the output power 12 of the downstream unidirectional optical amplifier 4 is reinjected in the upstream amplification path 7. As a consequence, the upstream amplification path 7 and in particular the upstream unidirectional optical amplifier 6 is always loaded with a continuous optical signal. Due to the nature of the upstream optical signal Sus that transports burst traffic, this enables maintaining the upstream unidirectional optical amplifier 6 loaded and thus reducing the power variation at the input of the upstream unidirectional optical amplifier 6 due to the burst traffic.
  • waveband separator 10 that efficiently prevents the optical power of the upstream optical signal Sus from re- circulating in the downstream amplification path 5.
  • the waveband separator is chosen with respect of the wavelength allocation plan of the passive optical network WDM- TDM PON.
  • FIG 4 illustrates an example of waveband separator implementation.
  • the waveband separator 10 is a waveband splitter.
  • the downstream optical signal SDS is comprised in a wavelength band [ ⁇ 0 ; b ], while the upstream optical signal Sus is above the wavelength X b .
  • the transmission T as a function of the wavelength ⁇ of the waveband splitter is such that only the optical signals having a wavelength comprised in said band [ ⁇ 0 ; b ] are totally or at least partially transmitted.
  • Figure 5 illustrates another example of waveband separator implementation.
  • the waveband separator 10 is a de-interleaver.
  • the downstream optical signal SDS is imbricated in the upstream optical signal Sus-
  • the de-interleaver is a passive fiber-optic device having one input port and two output ports.
  • the de-interleaver is used to separates the imbricated signal into odd channels (first output port) and even channels (second output port).
  • the input of the de- interleaver is connected to the second port P2 of the first circulator 2.
  • the first output port is connected to the input of the downstream unidirectional optical amplifier 4.
  • the second output port (not shown) is not connected, for example it may stay in the air.
  • the transmission T as a function of the wavelength ⁇ of the de-interleaver is such that only the downstream optical signal S D s delivered by the corresponding output port is injected into the downstream unidirectional optical amplifier 4.
  • the bidirectional optical amplifier of the invention may be applied in various passive optical network PON, for example asynchronous transfer mode ATM passive optical network APON, broadband passive optical network BPON, Ethernet passive optical network EPON or GEPON, Gigabit passive optical network GPON, 10 Gigabit Ethernet passive optical network 10G-EPON.
  • passive optical network PON for example asynchronous transfer mode ATM passive optical network APON, broadband passive optical network BPON, Ethernet passive optical network EPON or GEPON, Gigabit passive optical network GPON, 10 Gigabit Ethernet passive optical network 10G-EPON.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

L'invention concerne un amplificateur optique bidirectionnel (1) qui est agencé pour être traversé dans une première direction par un signal optique descendant (SDS) et dans une direction opposée par un signal optique montant (SUS) et qui comprend : un premier circulateur optique (2) ayant trois ports, un premier port du premier circulateur optique définissant un premier connecteur (8) à l'une des extrémités de l'amplificateur optique bidirectionnel, un deuxième circulateur optique (3) ayant trois ports, un premier port du deuxième circulateur optique définissant un deuxième connecteur (9) à une extrémité opposée de l'amplificateur optique bidirectionnel, un amplificateur optique unidirectionnel descendant (4) connecté entre un deuxième port du premier circulateur optique et un deuxième port du deuxième circulateur optique afin de former un trajet d'amplification descendant (5) pour le signal optique descendant et un amplificateur optique unidirectionnel montant (6) connecté entre un troisième port du premier circulateur optique et un troisième port du deuxième circulateur optique afin de définir un trajet d'amplification montant (7) pour le signal optique montant. L'amplificateur optique bidirectionnel (1) comprend en outre un séparateur de gamme d'ondes (10) connecté entre le deuxième port du premier circulateur optique (2) et une entrée de l'amplificateur optique unidirectionnel descendant (4).
PCT/EP2010/069402 2009-12-11 2010-12-10 Amplificateur optique bidirectionnel WO2011070163A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012542564A JP5506946B2 (ja) 2009-12-11 2010-12-10 双方向光増幅器
CN201080056364.1A CN102783056B (zh) 2009-12-11 2010-12-10 双向光放大器和无源光网络
US13/513,957 US8848284B2 (en) 2009-12-11 2010-12-10 Bidirectional optical amplifier
KR1020127017759A KR101391265B1 (ko) 2009-12-11 2010-12-10 양방향 광학 증폭기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09306219.8 2009-12-11
EP09306219.8A EP2333991B1 (fr) 2009-12-11 2009-12-11 Amplificateur optique bidirectionnel

Publications (1)

Publication Number Publication Date
WO2011070163A1 true WO2011070163A1 (fr) 2011-06-16

Family

ID=42146135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/069402 WO2011070163A1 (fr) 2009-12-11 2010-12-10 Amplificateur optique bidirectionnel

Country Status (6)

Country Link
US (1) US8848284B2 (fr)
EP (1) EP2333991B1 (fr)
JP (1) JP5506946B2 (fr)
KR (1) KR101391265B1 (fr)
CN (1) CN102783056B (fr)
WO (1) WO2011070163A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237932B (zh) * 2010-04-30 2016-07-06 中兴通讯股份有限公司 长距光放大装置、无源光网络和光信号传输方法
WO2013036945A1 (fr) * 2011-09-08 2013-03-14 Ofs Fitel, Llc Agencement pour déployer des systèmes de communication optiques gpon et xgpon coexistants
US9611734B2 (en) * 2013-05-21 2017-04-04 Hallitburton Energy Services, Inc. Connecting fiber optic cables
US9606234B2 (en) 2013-10-18 2017-03-28 Tramontane Technologies, Inc. Amplified optical circuit
CN104270199B (zh) * 2014-10-20 2017-01-18 国家电网公司 一种应用于千兆以太网无源光网络的光放大设备
US20170272197A1 (en) * 2016-03-17 2017-09-21 Telekom Malaysia Berhad Extender For Optical Access Communication Network
US11502770B2 (en) 2017-01-20 2022-11-15 Cox Communications, Inc. Optical communications module link extender, and related systems and methods
US10516922B2 (en) 2017-01-20 2019-12-24 Cox Communications, Inc. Coherent gigabit ethernet and passive optical network coexistence in optical communications module link extender related systems and methods
US10205552B2 (en) 2017-01-20 2019-02-12 Cox Communications, Inc. Optical communications module link, systems, and methods
US10153842B2 (en) * 2017-02-21 2018-12-11 Verizon Patent And Licensing Inc. Emulating rogue optical network unit behavior in a passive optical network
US10993003B2 (en) * 2019-02-05 2021-04-27 Cox Communications, Inc. Forty channel optical communications module link extender related systems and methods
US10999658B2 (en) 2019-09-12 2021-05-04 Cox Communications, Inc. Optical communications module link extender backhaul systems and methods
US11317177B2 (en) 2020-03-10 2022-04-26 Cox Communications, Inc. Optical communications module link extender, and related systems and methods
CN112217570B (zh) * 2020-10-29 2021-12-14 电信科学技术第五研究所有限公司 一种应用于光纤时间传递网络的光放大传输装置及方法
US11146350B1 (en) * 2020-11-17 2021-10-12 Cox Communications, Inc. C and L band optical communications module link extender, and related systems and methods
US11271670B1 (en) 2020-11-17 2022-03-08 Cox Communications, Inc. C and L band optical communications module link extender, and related systems and methods
CN112688736B (zh) * 2020-12-10 2021-12-21 中国计量科学研究院 一种自适应分时传输双向对称光放大装置
US11523193B2 (en) 2021-02-12 2022-12-06 Cox Communications, Inc. Optical communications module link extender including ethernet and PON amplification
US11323788B1 (en) 2021-02-12 2022-05-03 Cox Communications, Inc. Amplification module
US11689287B2 (en) 2021-02-12 2023-06-27 Cox Communications, Inc. Optical communications module link extender including ethernet and PON amplification
CN114006245A (zh) * 2021-10-13 2022-02-01 天津弘毅光技术有限公司 一种用于信号收发一体化的光纤放大器
CN114243437B (zh) * 2021-12-08 2023-12-22 武汉邮电科学研究院有限公司 基于集中式拉曼光纤放大器的pon系统及光放大方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022871A1 (fr) * 1999-01-20 2000-07-26 Nortel Networks Corporation Système de transmission optique en duplex
US6392790B1 (en) * 2001-04-04 2002-05-21 Redfern Broadband Networks Inc. Bi-directional amplifier
US6697575B1 (en) * 2000-06-30 2004-02-24 Tyco Telecommunications (Us) Inc. System and method for increasing capacity of long-haul optical transmission systems
WO2009055984A1 (fr) * 2007-10-31 2009-05-07 Zte Corporation Système reseau a acces multiple à répartition en longueur d'onde et procédé associé

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280549A (en) * 1993-02-05 1994-01-18 National Research Council Of Canada Frequency dependent optical isolator
GB2327546A (en) * 1997-07-18 1999-01-27 Northern Telecom Ltd Optical frequency channel assignment plan and filtering technique to support it
DE10004435A1 (de) * 2000-02-02 2001-08-30 Siemens Ag Rauscharmer bidirektionaler optischer Verstärker
DE10055477A1 (de) * 2000-11-09 2002-05-29 Siemens Ag Betrieb mit einem Verstärker pro Band für optische Übertragungssysteme mit bidirektional abwechselnder Kanalbelegung
KR100387072B1 (ko) * 2001-02-23 2003-06-12 삼성전자주식회사 양방향 광증폭 모듈
US6819481B2 (en) * 2001-06-04 2004-11-16 Lucent Technologies Inc. Bidirectional wave division multiplex systems
JP3967198B2 (ja) * 2002-05-31 2007-08-29 三菱電機株式会社 伝送装置及び伝送システム及び伝送方法及び伝送プログラム及び伝送プログラムを記録したコンピュータ読み取り可能な記録媒体
DE102006010147A1 (de) * 2006-03-06 2007-09-13 Siemens Ag Bidirektionale optische Verstärkeranordnung
KR100948831B1 (ko) * 2007-10-19 2010-03-22 한국전자통신연구원 시분할 다중 및 파장 분할 다중 접속 수동형 광 네트워크장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022871A1 (fr) * 1999-01-20 2000-07-26 Nortel Networks Corporation Système de transmission optique en duplex
US6697575B1 (en) * 2000-06-30 2004-02-24 Tyco Telecommunications (Us) Inc. System and method for increasing capacity of long-haul optical transmission systems
US6392790B1 (en) * 2001-04-04 2002-05-21 Redfern Broadband Networks Inc. Bi-directional amplifier
WO2009055984A1 (fr) * 2007-10-31 2009-05-07 Zte Corporation Système reseau a acces multiple à répartition en longueur d'onde et procédé associé

Also Published As

Publication number Publication date
EP2333991B1 (fr) 2014-02-19
KR20120104301A (ko) 2012-09-20
US8848284B2 (en) 2014-09-30
CN102783056B (zh) 2015-04-22
US20130057948A1 (en) 2013-03-07
KR101391265B1 (ko) 2014-05-02
CN102783056A (zh) 2012-11-14
JP5506946B2 (ja) 2014-05-28
JP2013513984A (ja) 2013-04-22
EP2333991A1 (fr) 2011-06-15

Similar Documents

Publication Publication Date Title
EP2333991B1 (fr) Amplificateur optique bidirectionnel
US8644707B2 (en) Bidirectional optical amplifier arrangement
US8594502B2 (en) Method and apparatus using distributed raman amplification and remote pumping in bidirectional optical communication networks
Nesset et al. Raman extended GPON using 1240 nm semiconductor quantum-dot lasers
US20120057876A1 (en) Method for amplifying a burst optical signal, burst optical amplifier and system, and communications system
Zhu et al. GPON reach extension to 60 km with entirely passive fibre plant using Raman amplification
Spiekman et al. Semiconductor optical amplifiers for FTTx
Suzuki et al. 128× 8 split and 80 km long-reach dual-rate 10G-EPON transmission using ALC hybrid burst-mode optical fiber amplifier and SOA pre-amplifier
US9509430B2 (en) Apparatus for optical signal amplification
JP4911922B2 (ja) 光増幅器
CN114243437B (zh) 基于集中式拉曼光纤放大器的pon系统及光放大方法
Suzuki et al. 60 km, 256-split Optically-amplified PON Repeatered Transmission using 1.24 Gbit/s Upstream and 2.5 Gbit/s Downstream PON system
Appathurai et al. Measurement of tolerance to non-uniform burst powers in SOA amplified GPON systems
JP2000077757A (ja) 光増幅器、光伝送装置および光伝送システム
Lee et al. A bidirectional SOA-Raman hybrid amplifier shared by 2.5 Gb/s, 60 km long-reach WDM-TDM PON
JP2009010080A (ja) 光増幅器ゲインクランプ化アダプタ装置
US10299021B2 (en) Optical signal amplification
EP1976158A1 (fr) Procédé et amplificateur optique pour amplifier un signal de données optique en mode rafale
Marazzi et al. 80-Gb/s conventional hybrid TDM/WDM PON with 256-split based on remotely-pumped network-embedded self-tuning transmitter
JP2014165858A (ja) 光増幅器、光中継伝送装置及び光中継伝送システム
Suzuki et al. 60 km optically-amplified PON repeatered transmission: 1.24 Gbit/s upstream and 2.5 Gbit/s downstream PON system with 128x splitter
Fujiwara et al. 1G/10G coexistence long-reach PON system using ALC burst-mode SOAs
JPH03252627A (ja) 光ファイバ増幅器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056364.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790434

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012542564

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5079/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127017759

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13513957

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10790434

Country of ref document: EP

Kind code of ref document: A1