WO2011069954A1 - Dichtstoffe - Google Patents

Dichtstoffe Download PDF

Info

Publication number
WO2011069954A1
WO2011069954A1 PCT/EP2010/068952 EP2010068952W WO2011069954A1 WO 2011069954 A1 WO2011069954 A1 WO 2011069954A1 EP 2010068952 W EP2010068952 W EP 2010068952W WO 2011069954 A1 WO2011069954 A1 WO 2011069954A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkoxysilane
mixture
modified polyurethanes
mol
several
Prior art date
Application number
PCT/EP2010/068952
Other languages
English (en)
French (fr)
Inventor
Evelyn Peiffer
Mathias Matner
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to US13/514,742 priority Critical patent/US8981030B2/en
Priority to JP2012542488A priority patent/JP2013513674A/ja
Priority to CN2010800562013A priority patent/CN102741308A/zh
Priority to EP10790748A priority patent/EP2510029A1/de
Publication of WO2011069954A1 publication Critical patent/WO2011069954A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/718Monoisocyanates or monoisothiocyanates containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Definitions

  • the present invention relates to polyoxysilane-modified polyurethanes and their use as binders for sealants.
  • Alkoxysilane-functional polyurethanes which crosslink via a silane polycondensation have long been known. A review on this topic can be found eg in "Adhesives Age” 4/1995, page 30 ff. (Authors: Ta-Min Feng, BA Waldmann). Such alkoxysilane-terminated, moisture-curing, one-component polyurethanes are increasingly being used as soft-elastic coating, sealing and adhesive compounds in construction and in the automotive industry. Preparation processes for such alkoxysilane-functional polyurethanes are described in various publications, inter alia in US Pat. No. 3,627,722 or US Pat. No. 3,632,557.
  • a disadvantage of these methods is the high resulting viscosity, which requires the use of solvents or, at low viscosity, the poor suitability for use in low-modulus sealants.
  • various approaches are described, for example, in US Pat. No. 3,627,722 and EP-A 0 596 360, all of which have the disadvantage that in the preparation of the alkoxysilane-functional polyurethanes, intermediates are passed through which are very unstable and thus pose a high safety risk and severely limit the reproducibility of the reactions.
  • prepolymers having the required properties can be prepared by reacting polyethers having a number-average molecular weight of> 20,000 g / mol with OH-reactive silane building blocks.
  • the invention therefore relates to polyurethanes modified with alkoxysilane groups, which are obtainable by reacting the components A and B in the sense of a urethanization:
  • X, Y, Z are independently linear, cyclic or branched Ci-Cg-alkyl or Ci-C 8 alkoxy, wherein at least one of Radicals is a C 1 -C 8 -alkoxy group and X, Y or Z can also be bridged independently of one another,
  • R is any at least difunctional organic radical, preferably a straight-chain, branched or cyclic Alkylenradical having 1 to 8 carbon atoms.
  • X, Y, and Z in formula (I) are independently methoxy or ethoxy.
  • radical R a methylene or propylene radical is particularly preferred.
  • component A) has a number average molecular weight of 21,000 g / mol to 25,000 g / mol.
  • the invention further provides sealants based on the alkoxysilane-modified polyurethanes according to the invention which have a modulus at 100% elongation of not more than 0.4 N / mm 2 (according to ISO 11600) and a maximum of 30% by weight of plasticizer, preferably at most Contain 25 wt .-% plasticizer, more preferably at most 20 wt .-% plasticizer.
  • Polyol component A) which can be used according to the invention are the polyether polyols customary in polyurethane chemistry. These are accessible in a manner known per se by alkoxylation of suitable starter molecules with base catalysis or use of double metal cyanide compounds (DMC compounds).
  • suitable starter molecules for the preparation of polyether polyols are molecules having at least 2 element-hydrogen bonds which are reactive toward epoxides or any mixtures of such starter molecules.
  • Suitable starter molecules for the preparation of polyether polyols are, for example, simple, low molecular weight polyols, water, ethylene glycol, propanediol 1, 2, 2,2-bis (4-hydroxyphenyl) propane, Propylene glycol-1,3- and 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 2-ethylhexanediol-1, 3, trimethylolpropane, glycerol, pentaerythritol, sorbitol, organic polyamines having at least two NH bonds such as triethanolamine, ammonia , Methylamine or ethylenediamine or any mixtures of such starter molecules.
  • Alkylene oxide suitable for the alkoxylation is in particular propylene oxide.
  • propylene oxide polyethers having from 1.5 to 3.5 hydroxyl groups, more preferably from 1.8 to 2.5.
  • Polyethers prepared by double metal cyanide catalysis generally have a particularly low content of unsaturated end groups of less than or equal to 0.02 meq / gram of polyol (meq / g), preferably less than or equal to 0.015 meq / g, more preferably less than or equal to 0, 01 meq / g (method of determination ASTM D2849-69), contain significantly fewer monols and usually have a low polydispersity of less than 1.5.
  • polyethers prepared by double metal cyanide catalysis.
  • Particularly preferred are polyethers which have a polydispersity of 1.0-1.5; most preferably a polydispersity of 1.0 to 1.3.
  • Such polyethers are e.g. in US Pat. No. 5,158,922 and EP-A 0 654 302.
  • polyoxyalkylene polyols can be used in pure form or as a mixture of different polyethers.
  • isocyanate- and alkoxysilane-containing compounds B all alkoxysilane-containing monoisocyanates are suitable in principle.
  • Examples of such compounds are isocyanatomethyltrimethoxysilane, isocyanatomethyltriethoxysilane, (isocyanatomethyl) methyldimethoxysilane, (isocyanatomethyl) methyldiethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanato propyltriethoxysilane and 3-isocyanatopropylmethyldiethoxysilane.
  • Preferred here is the use of 3-isocyanatopropyltrimethoxysilane.
  • isocyanate-functional silanes prepared by reacting a diisocyanate with an amino or thiosilane, as described in US Pat. No. 4,146,585 or EP-A 1 136 495.
  • the urethanization of components A) and B) may optionally be carried out using a catalyst.
  • Suitable catalytically active compounds which are known to the person skilled in the art are known urethanization catalysts such as organotin compounds or amine catalysts.
  • organotin compounds are: dibutyltin diacetate, dibutyltin dilaurate, dibutyltin bis-acetoacetonate and tin carboxylates such as, for example, tin octoate.
  • the said tin catalysts may optionally be used in combination with amine catalysts such as aminosilanes or 1,4-diazabicyclo [2.2.2] octane.
  • Dibutyltin dilaurate is particularly preferably used as the urethanization catalyst.
  • the course of the urethanization reaction can be monitored by suitable measuring devices installed in the reaction vessel and / or by analyzes on samples taken. Suitable methods are known to the person skilled in the art. These are, for example, viscosity measurements, measurements of the NCO content, the refractive index, the OH content, gas chromatography (GC), nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR) and near near-infrared spectroscopy (NIR).
  • the NCO content of the mixture is determined titrimetrically.
  • the urethanization of components A) and B) is continued until a complete conversion of the OH groups of the compounds of component A) is reached.
  • the first possibility involves the addition of a further NCO-reactive component, which in a subsequent Reaction step is reacted with the remaining NCO groups.
  • a further NCO-reactive component which in a subsequent Reaction step is reacted with the remaining NCO groups.
  • These may be, for example, low molecular weight alcohols.
  • the second possibility for the further reduction of the NCO content of the reaction product of components A) and B) is an allophanatization reaction.
  • the remaining NCO groups are reacted with the previously formed urethane groups, preferably by adding a catalyst which promotes allophanatization.
  • the alkoxysilane-group-modified polyurethanes of the invention generally have a viscosity of less than 200,000 mPas, preferably less than 100,000 mPas, in each case measured at 23 ° C.
  • the compounds according to the invention are very suitable as binders for the preparation of low-modulus elastic sealants, preferably for vehicle construction and construction. These adhesives crosslink under the action of atmospheric moisture via a silanol polycondensation.
  • the polymers obtained by this crosslinking are also an object of the present invention, their chemical and physical properties are responsible for the outstanding quality of the seals produced.
  • the polyurethanes of the invention modified with alkoxysilane groups may be used together with the customary fillers, pigments, plasticizers, drying agents, additives, light stabilizers, antioxidants, thixotropic agents, catalysts, adhesion promoters and optionally other auxiliaries and additives are formulated by known methods of sealant production.
  • Suitable basic fillers used are precipitated or ground chalks, metal oxides, sulfates, silicates, hydroxides, carbonates and bicarbonates. Further fillers are e.g. reinforcing and non-reinforcing fillers such as carbon black, precipitated silicas, fumed silicas, quartz powder or various fibers. Both the basic fillers and the further reinforcing or non-reinforcing fillers may optionally be surface-modified. Particular preference is given to using as basic fillers precipitated or ground chalks and pyrogenic silicic acids. Mixtures of fillers can also be used.
  • plasticizers examples include phthalic acid esters, adipic acid esters, alkylsulfonic acid esters of phenol or phosphoric acid esters. Long-chain hydrocarbons, polyethers and vegetable oils can also be used as plasticizers. Due to the special properties of the polymer according to the invention, the proportion of plasticizer in the sealant formulation can be limited to ⁇ 30% by weight, preferably to ⁇ 25% by weight, particularly preferably to ⁇ 20% by weight.
  • thixotropic agents which may be mentioned are pyrogenic silicic acids, polyamides, hydrogenated castor oil derived products or else polyvinyl chloride.
  • suitable catalysts for curing it is possible to use all organometallic compounds and amine catalysts which, as is known, promote silane polycondensation.
  • Particularly suitable organometallic compounds are especially compounds of tin and titanium.
  • Preferred tin compounds are, for example: dibutyltin diacetate, dibutyltin dilaurate, dioctyltin methyl acetate and tin carboxylates such as stannous octoate or dibutyltin-bis-acetoacetonate.
  • the said tin catalysts may optionally be used in combination with amine catalysts such as aminosilanes or 1,4-diazabicyclo [2.2.2] octane.
  • amine catalysts such as aminosilanes or 1,4-diazabicyclo [2.2.2] octane.
  • Preferred titanium compounds are, for example, alkyl titanates, such as diisobutyl-bisacetoacetic acid ethyl ester titanate.
  • amine catalysts are particularly suitable those having a particularly high base strength, such as amines with amidine structure.
  • Preferred amine catalysts are therefore, for example, l, 8-diazabicyclo [5.4.0] undec-7-ene or 1, 5-diazabicyclo [4.3.0] non-5-ene.
  • drying agents include alkoxysilyl compounds such as vinyl trimethoxysilane, methyltrimethoxysilane, z '-Butyltrimethoxysilan, Hexadecyltrimeth- oxysilane.
  • Adhesion promoters used are the known functional silanes, such as, for example, amino silanes, epoxysilanes and / or mercaptosilanes or mixtures of functional silanes.
  • the viscosity measurements were carried out according to ISO / DIS 3219: 1990 at a constant temperature of 23 ° C. and a constant shear rate of 250 / sec using a Physica MCR disk-viscous rotational viscometer (Anton Paar Germany GmbH, Ostfildern, DE) of the measuring cone CP 25-1 (25mm diameter, 1 ° cone angle).
  • RT The ambient temperature of 23 ° C prevailing at the time of the experiment.
  • Example 1 (according to the invention):
  • a film is applied to a previously cleaned with ethyl acetate glass plate and immediately loaded into the Drying Recorder.
  • the needle is loaded with 10 g and moves over a period of 24 hours over a distance of 35 cm.
  • the Drying Recorder is located in a climate room at 23 ° C and 50% rel. Humidity.
  • the skin-forming time is the time at which the permanent trace of the needle disappears from the film.
  • the binder with filler Socal ® UiS 2
  • plasticizer DINP Jayfiex TM
  • desiccant Desiccant
  • the adhesion promoter (Dynasylan ® 1146) is added and stirred in within 5 min at 1000 U / min.
  • the catalyst (Lupragen ® N700) is stirred at 1000 U / min and, finally, the finished mixture in vacuo tet deaerated.
  • the level of plasticizer was classified below 20% by weight:
  • the sealant obtained with this low-softening formulation exhibits the following mechanical properties:

Abstract

Die vorliegende Erfindung betrifft Alkoxysilangruppen aufweisende Prepolymere sowie ihre Anwendung als Bindemittel für Dichtstoffe.

Description

Dichtstoffe
Die vorliegende Erfindung betrifft mit Alkoxysilangruppen modifizierte Polyurethane und ihre Anwendung als Bindemittel für Dichtstoffe.
Alkoxysilanfunktionelle Polyurethane, die über eine Silanpolykondensation vernetzen, sind lange bekannt. Ein Übersichtsartikel zu dieser Thematik findet sich z.B. in "Ad- hesives Age" 4/1995, Seite 30 ff. (Autoren: Ta-Min Feng, B. A. Waldmann). Derartige alkoxysilan-terminierte, feuchtigkeitshärtende Einkomponenten-Polyurethane werden in zunehmendem Maße als weichelastische Beschichtungs-, Dichtungs- und Klebemassen im Bauwesen und in der Automobilindustrie verwendet. Herstellverfahren für solche alkoxysilanfunktionellen Polyurethane werden in verschiedenen Publikationen beschrieben, u. a. in US-A 3,627,722 oder US-A 3,632,557. Nachteilig bei diesen Verfahren ist aber die hohe resultierende Viskosität, die eine Verwendung von Lösemitteln erfordert oder, bei niedriger Viskosität, die schlechte Eignung für die Anwendung in niedermoduligen Dichtstoffen. Zur Reduktion der Viskosität werden beispielsweise in US-A 3,627,722 und EP-A 0 596 360 verschiedene Ansätze beschrieben, die jedoch alle den Nachteil haben, dass bei der Herstellung der alkoxysilanfunktionellen Polyurethane Zwischenstufen durchlaufen werden, die sehr instabil sind und somit ein hohes Sicherheitsrisiko darstellen und die Reproduzierbarkeit der Reaktionen stark einschränken. Diese Nachteile werden durch das in EP-A 1 924 621 beschriebene Verfahren vermieden, jedoch sind die dort beschriebenen Produkte nur bedingt als niedermoduliger Dichtstoff formulierbar. Durch die relativ hohen Moduli ist man bei der Formulierung stark eingeschränkt und muss auf große Mengen an Weichmacher und spezielle Ami- nosilane zurückgreifen, um einen niedermoduligen Dichtstoff formulieren zu können. Ähnliche Systeme werden auch in der EP-A 1 591 464 beschrieben, die dort gezeigten Beispiele erreichen aber einen relativ hohen 100 %-Modulus von 0,85 MPa (Bsp. 8) bei 30 Gew.-% Weichmacher bzw. 0,41 MPa in Beispiel 23, wobei aber neben 23 Gew.-% Weichmacher zusätzlich ein monofunktionelles Polymer als Reaktivweichmacher notwendig ist. Allen diesen Beispielen ist gemein, dass die Anforderung der ISO 1 1600 für nieder- modulige Dichtstoffe (100 %-Modulus von max. 0,4 MPa) nicht erfüllt werden oder zur Erfüllung der Norm große Mengen Weichmacher notwendig sind. Dadurch erhöht sich aber die Gefahr einer Fugenrandverschmutzung durch Wanderung des Weichmachers in die Randzonen der verfugten Substrate (Praxishandbuch Dichtstoffe, IVK, 4. Auflage, S. 139f).
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, mit Alkoxysilangruppen modifizierte Polyurethane bereitzustellen, die auch bei Einsatz geringer Mengen Weichmacher eine breite Formulierbarkeit von niedermoduligen Dichtstoffen ermöglichen.
Es wurde nun gefunden, dass sich Prepolymere mit den geforderten Eigenschaften herstellen lassen, indem man Polyether mit einem zahlenmittleren Molekulargewicht von > 20.000 g/mol mit OH-reaktiven Silanbausteinen umsetzt.
Gegenstand der Erfindung sind daher mit Alkoxysilangruppen modifizierte Polyurethane, die durch Umsetzung der Komponenten A und B im Sinne einer Urethanisie- rung erhältlich sind:
A) 1 ,0 val einer Polyolkomponente mit einem zahlenmittleren Molekulargewicht von > 20.000 g/mol bis 30.000 g/mol, enthaltend ein oder mehrere Polyoxyal- kylenpolyole oder Polyoxyalkylenpolyolprepolymere und
B) 0,80 bis 1 ,20 val einer isocyanat- und alkoxysilangruppenaufweisenden Verbindung der Formel (I)
X
OCN-R-Si-Y
^ζ (I) in welcher
X, Y, Z unabhängig voneinander lineare, cyclische oder verzweigte Ci-Cg- Alkyl- oder Ci-C8-Alkoxyreste sind, wobei mindestens einer der Reste eine Ci-C8-Alkoxygruppe ist und X, Y oder Z auch unabhängig voneinander verbrückt sein können,
R ein beliebiger wenigstens difunktioneller organischer Rest ist, bevorzugt ein geradkettiges, verzweigtes oder cyclisches Alkylenra- dikal mit 1 bis 8 Kohlenstoffatomen.
Bevorzugt sind X, Y, und Z in Formel (I) unabhängig voneinander Methoxy oder Ethoxy.
Für den Rest R ist ein Methylen- oder Propylenradikal besonders bevorzugt. Bevorzugt weist die Komponente A) ein zahlenmittleres Molekulargewicht von 21.000 g/mol bis 25.000 g/mol auf.
Ein weiterer Gegenstand der Erfindung sind auf den erfindungsgemäßen alkoxysilan- modifizierten Polyurethanen basierende Dichtstoffe, die einen Modulus bei 100 % Dehnung von maximal 0,4 N/mm2 (gemäß ISO 11600) aufweisen und die maximal 30 Gew.-% Weichmacher, bevorzugt maximal 25 Gew.-% Weichmacher, besonders bevorzugt maximal 20 Gew.-% Weichmacher enthalten.
Als Polyolkomponente A) erfindungsgemäß einsetzbare Polyoxyalkylenpolyole sind die in der Polyurethan-Chemie üblichen Polyetherpolyole. Diese sind in an sich bekannter Weise durch Alkoxylierung von geeigneten Starter-Molekülen unter Basenkatalyse oder Einsatz von Doppelmetallcyanidverbindungen (DMC-Verbindungen) zugänglich. Geeignete Starter-Moleküle für die Herstellung von Polyetherpolyolen sind Moleküle mit mindestens 2 gegenüber Epoxiden reaktiven Element- Wasserstoffbindungen oder be- liebige Gemische derartiger Starter-Moleküle. Geeignete Starter-Moleküle für die Herstellung von Polyetherpolyolen sind beispielsweise einfache, niedermolekulare Polyole, Wasser, Ethylenglykol, Propandiol-1 ,2, 2,2-Bis(4-hydroxyphenyl)propan, Propylenglykol-1,3- und Butandiol-1,4, Hexandiol-1,6, Neopentylglykol, 2- Ethylhexandiol-1 ,3, Trimethylolpropan, Glyzerin, Pentaerythrit, Sorbit, organische Polyamine mit mindestens zwei N-H-Bindungen wie z.B. Triethanolamin, Ammoniak, Methylamin oder Ethylendiamin oder beliebige Gemische derartiger Starter-Moleküle. Für die Alkoxylierung geeignetes Alkylenoxid ist insbesondere Propylenoxid.
Bevorzugt sind im Durchschnitt 1,5 bis 3,5 Hydroxylgruppen aufweisende Propylen- oxidpolyether, besonders bevorzugt 1,8 bis 2,5. Durch Doppelmetallcyanid-Katalyse hergestellte Polyether haben in der Regel einen besonders niedrigen Gehalt an ungesättigten Endgruppen von kleiner oder gleich 0,02 Milliäquivalenten pro Gramm Polyol (meq/g), bevorzugt kleiner oder gleich 0,015 meq/g, besonders bevorzugt kleiner oder gleich 0,01 meq/g (Bestimmungsmethode ASTM D2849-69), enthalten deutlich weniger Monole und haben in der Regel eine geringe Polydispersität von weniger als 1,5. Die Polydispersität kann nach einer dem Fachmann an sich bekannten Methode ermittelt werden, indem durch Gelpermeationschromatographie (GPC) sowohl das zahlenmittlere Molekulargewicht (Mn) wie auch das gewichtsmittlere Molekulargewicht (Mw) bestimmt werden. Die Polydispersität ergibt sich als PD = Mw/Mn.
Es ist bevorzugt, erfindungsgemäß solche, durch Doppelmetallcyanid-Katalyse hergestellte Polyether zu verwenden. Besonders bevorzugt sind dabei Polyether, die eine Polydispersität von 1,0-1,5 aufweisen; ganz besonders bevorzugt ist eine Polydispersität von 1,0 bis 1,3.
Derartige Polyether werden z.B. in der US-A 5,158,922 und der EP-A 0 654 302 beschrieben.
Diese Polyoxyalkylenpolyole können in Reinform oder als Mischung aus verschiedenen Polyethern eingesetzt werden. Als isocyanat- und alkoxysilangruppenaufweisende Verbindungen B) sind grundsätzlich alle alkoxysilangruppenhaltigen Monoisocyanate geeignet. Beispiele für solche Verbindungen sind Isocyanatomethyltrimethoxysilan, Isocyanatomethyltriethoxysilan, (Isocyanatomethyl)methyldimethoxysilan, (Isocyanatomethyl)-methyldiethoxysilan, 3-Iso- cyanato-propyltrimethoxysilan, 3-Isocyanatopropylmethyl-dimethoxysilan, 3-Isocyanato- propyltriethoxysilan und 3-Isocyanatopropylmethyldiethoxysilan. Bevorzugt ist hier die Verwendung von 3-Isocyanatopropyltrimethoxysilan.
Es ist auch möglich, isocyanatfunktionelle Silane zu verwenden, die durch Umsetzung eines Diisocyanates mit einem Amino- oder Thiosilan hergestellt wurden, wie sie in der US-A 4,146,585 oder der EP-A 1 136 495 beschrieben werden.
Die Urethanisierung der Komponenten A) und B) kann gegebenenfalls unter Verwendung eines Katalysators durchgeführt werden. Als derartige katalytisch wirksame Verbindungen kommen dem Fachmann an sich bekannte Urethanisierungskatalysato- ren wie Organozinnverbindungen oder aminische Katalysatoren in Frage. Als Organo- zinnverbindungen seien beispielhaft genannt: Dibutylzinndiacetat, Dibutylzinndilaurat, Dibutylzinn-bis-acetoacetonat und Zinncarboxylate wie beispielsweise Zinnoctoat. Die genannten Zinnkatalysatoren können gegebenenfalls in Kombination mit aminischen Katalysatoren wie Aminosilanen oder l,4-Diazabicyclo[2.2.2]octan verwendet werden. Besonders bevorzugt wird Dibutylzinndilaurat als Urethanisierungskatalysator eingesetzt.
Der Verlauf der Urethanisierungsreaktion kann durch geeignete im Reaktionsgefäß installierte Messgeräte und/oder anhand von Analysen an entnommenen Proben verfolgt werden. Geeignete Verfahren sind dem Fachmann bekannt. Es handelt sich bei- spielsweise um Viskositätsmessungen, Messungen des NCO-Gehalts, des Brechungsindex, des OH-Gehalts, Gaschromatographie (GC), kernmagnetische Resonanzspektroskopie (NMR), Infrarotspektroskopie (IR) und nahe Nahinfrarotspektroskopie (NIR). Vorzugsweise wird der NCO-Gehalt der Mischung titrimetrisch bestimmt.
Wird ein Uberschuss der Komponente A) eingesetzt, so wird die Urethanisierung der Komponenten A) und B) bis zum vollständigen Umsatz der NCO-Gruppen der Komponente B) durchgeführt.
Bei Verwendung eines Unterschusses der Komponente A) wird die Urethanisierung der Komponenten A) und B) fortgeführt, bis ein vollständiger Umsatz der OH- Gruppen der Verbindungen der Komponente A) erreicht ist. Um den vollständigem Umsatz aller OH-Gruppen zu gewährleisten, ist es bevorzugt, auch nach Erreichen des theoretischen NCO-Gehalts die Reaktionsbedingungen beizubehalten bis eine Konstanz des NCO-Gehalts beobachtet wird.
Für den weiteren Abbau des NCO-Gehalts des Reaktionsproduktes der Komponenten A) und B) sind, wie in EP-A 1 924 621 beschrieben, zwei Wege möglich: Die erste Möglichkeit beinhaltet die Zugabe einer weiteren NCO-reaktiven Komponente, die in einem anschließenden Reaktionsschritt mit den verbleibenden NCO-Gruppen zur Reaktion gebracht wird. Dies können beispielsweise niedermolekulare Alkohole sein.
Die zweite Möglichkeit für den weiteren Abbau des NCO-Gehaltes des Reaktionspro- duktes der Komponenten A) und B) ist eine Allophanatisierungsreaktion. Dabei werden die verbleibenden NCO-Gruppen mit den zuvor gebildeten Urethan-Gruppen, bevorzugt durch Zugabe eines die Allophanatisierung fördernden Katalysators, zur Reaktion gebracht.
Die erfindungsgemäßen Alkoxysilangruppen-modifizierten Polyurethane besitzen all- gemein eine Viskosität von weniger als 200.000 mPas, vorzugsweise von weniger als 100.000 mPas, jeweils gemessen bei 23 °C.
Die erfindungsgemäßen Verbindungen eignen sich sehr gut als Bindemittel zur Herstellung von niedermoduligen elastischen Dichtstoffen, vorzugsweise für den Fahr- zeugbau und Baubereich. Diese Klebstoffe vernetzen unter Einwirkung von Luftfeuchtigkeit über eine Silanolpolykondensation. Die durch diese Vernetzung erhaltenen Polymere sind ebenfalls Gegenstand der vorliegenden Erfindung, ihre chemischen und physikalischen Eigenschaften sind für die herausragende Qualität der erzeugten Abdichtungen verantwortlich. Zur Herstellung solcher Dichtstoffe können die erfindungsgemäßen, mit Alkoxysi- langruppen modifizierten Polyurethane zusammen mit den dabei üblichen Füllstoffen, Pigmenten, Weichmachern, Trockenmitteln, Additiven, Lichtschutzmitteln, Antioxidantien, Thixotropiermitteln, Katalysatoren, Haftvermittlern und gegebenenfalls weiteren Hilfs- und Zusatzstoffen nach bekannten Verfahren der Dichtstoffherstellung formuliert werden.
Als geeignete basische Füllstoffe einsetzbar sind gefällte oder gemahlene Kreiden, Metalloxide, -Sulfate, -Silicate , -hydroxide, -carbonate und -hydrogencarbonate. Wei- tere Füllstoffe sind z.B. verstärkende und nichtverstärkende Füllstoffe wie Ruß, Fällungskieselsäuren, pyrogene Kieselsäuren, Quarzmehl oder diverse Fasern. Sowohl die basischen Füllstoffe als auch die weiteren verstärkenden oder nichtverstärkenden Füllstoffe können gegebenenfalls oberflächenmodifiziert sein. Besonders bevorzugt einsetzbar sind als basische Füllstoffe gefällte oder gemahlene Kreiden sowie pyroge- ne Kieselsäuren. Auch Gemische von Füllstoffen können eingesetzt werden.
Als geeignete Weichmacher seien beispielhaft Phthalsäureester, Adipinsäureester, Al- kylsulfonsäureester des Phenols oder Phosphorsäureester genannt. Auch langkettige Kohlenwasserstoffe, Polyether und pflanzliche Öle können als Weichmacher verwendet werden. Aufgrund der besonderen Eigenschaften der erfindungsgemäßen Polyme- re kann der Anteil an Weichmacher in der Dichtstoffformulierung auf < 30 Gew.-%, bevorzugt auf < 25 Gew.-%, besonders bevorzugt auf < 20 Gew.-% beschränkt werden.
Als Thixotropiermittel seien beispielhaft pyrogene Kieselsäuren, Polyamide, hydrierte Rizinusöl-Folgeprodukte oder auch Polyvinylchlorid genannt. Als geeignete Katalysatoren zur Aushärtung können alle metallorganischen Verbindungen und aminischen Katalysatoren eingesetzt werden, die bekanntermaßen die Silanpolykondensation fördern. Beshonders geeignete metallorganische Verbindungen sind insbesondere Verbindungen des Zinns und des Titans. Bevorzugte Zinnverbindungen sind beispielsweise: Dibutylzinndiacetat, Dibutylzinndilaurat, Dioctylzinnma- leat und Zinncarboxylate wie beispielsweise Zinn(II)octoat oder Dibutylzinn-bis- acetoacetonat. Die genannten Zinnkatalysatoren können gegebenenfalls in Kombination mit aminischen Katalysatoren wie Aminosilanen oder l,4-Diazabicyclo[2.2.2]- octan verwendet werden. Bevorzugte Titanverbindungen sind beispielsweise Alkylti- tanate, wie Diisobutyl-bisacetessigsäureethylester-titanat. Für die alleinige Verwen- dung von aminischen Katalysatoren sind insbesondere solche geeignet, die eine besonders hohe Basenstärke aufweisen, wie Amine mit Amidin-Struktur. Bevorzugte aminische Katalysatoren sind daher beispielsweise l,8-Diazabicyclo[5.4.0]undec-7-en oder 1 ,5 -Diazabicyclo [4.3.0]non-5 -en. Als Trockenmittel seien insbesondere Alkoxysilylverbindungen genannt wie Vinyl- trimethoxysilan, Methyltrimethoxysilan, z'-Butyltrimethoxysilan, Hexadecyltrimeth- oxysilan.
Als Haftvermittler werden die bekannten funktionellen Silane wie beispielsweise Ami- nosilane, Epoxysilane und/oder Mercaptosilane oder Mischungen funktioneller Silane eingesetzt.
Die nachfolgenden Beispiele veranschaulichen die vorliegende Erfindung ohne sie zu beschränken.
Beispiele
Alle Prozentangaben beziehen sich sofern nicht abweichend angegeben auf Gewichtsprozent.
Die Viskositätsmessungen wurden nach ISO/DIS 3219: 1990 bei einer konstanten Temperatur von 23 °C und einer konstanten Scherrate von 250/sec mit einem Platte- Kegel Rotationsviskosimeter des Typs Physica MCR (Fa. Anton Paar Germany GmbH, Ostfildern, DE) unter Verwendung des Messkegels CP 25-1 ( 25mm Durchmesser , 1° Kegelwinkel ) durchgeführt.
Die zur Zeit der Versuchsdurchführung herrschende Umgebungstemperatur von 23 °C wird als RT bezeichnet.
Eingesetzte Handelsprodukte:
Figure imgf000010_0001
Beispiel 1 ( erfindungsgemäß):
In einem 2L-Sulfierbecher mit Deckel, Rührer, Thermometer und Stickstoffdurchfluss wurde eine Mischung aus 977,9 g Polypropylenglykol mit einer Hydroxylzahl von 5,5 mg KOH/g und 0,05 g Dibutylzinndilaurat (Desmorapid® Z) auf 60 °C erwärmt. Anschließend wurden 22,1 g Isocyanatopropyltrimethoxysilan (Geniosil® GF40) zugege- ben und bis zum Erreichen des theoretischen NCO-Gehaltes von 0,05 % prepoly- merisiert. Anschließend wurden 0,4 g Methanol zugegeben, um die überschüssigen NCO-Gruppen abzufangen. Es wurde gerührt, bis titrimetrisch kein NCO-Gehalt mehr nachzuweisen war. Das erhaltene alkoxysilanendgruppenaufweisende Poly- urethanprepolymer hatte eine Viskosität von 53 Pas (23 °C).
Beispiel 2 ( erfindungsgemäß):
In einem 2L-Sulfierbecher mit Deckel, Rührer, Thermometer und Stickstoffdurchfluss wurde eine Mischung aus 979,3 g Polypropylenglykol mit einer Hydroxylzahl von 5,1 mg KOH/g und 0,05 g Dibutylzinndilaurat (Desmorapid® Z) auf 60 °C erwärmt. An- schließend wurden 20,8 g Isocyanatopropyltrimethoxysilan (Geniosil® GF40) zugegeben und bis zum Erreichen des theoretischen NCO-Gehaltes von 0,05 % prepoly- merisiert. Anschließend wurden 0,4 g Methanol zugegeben, um die überschüssigen NCO-Gruppen abzufangen. Es wurde gerührt, bis titrimetrisch kein NCO-Gehalt mehr nachzuweisen war. Das erhaltene alkoxysilanendgruppenaufweisende Poly- urethanprepolymer hatte eine Viskosität von 105 Pas (23 °C).
Vergleichsbeispiel 1 (nicht erfindungsgemäß):
In einem 2L-Sulfierbecher mit Deckel, Rührer, Thermometer und Stickstoffdurchfluss wurde eine Mischung aus 975,5 g Polypropylenglykol mit einer Hydroxylzahl von 6,2 mg KOH/g und 0,05 g Dibutylzinndilaurat (Desmorapid® Z) auf 60 °C erwärmt. An- schließend wurden 24,5 g Isocyanatopropyltrimethoxysilan (Geniosil® GF40) zugegeben und bis zum Erreichen des theoretischen NCO-Gehaltes von 0,05 % prepoly- merisiert. Anschließend wurden 0,4 g Methanol zugegeben, um die überschüssigen NCO-Gruppen abzufangen. Es wurde gerührt, bis titrimetrisch kein NCO-Gehalt mehr nachzuweisen war. Das erhaltene alkoxysilanendgruppenaufweisende Poly- urethanprepolymer hatte eine Viskosität von 35 Pas (23 °C).
Bestimmung der Hautbildezeit
Mittels eines Rakels (200 μιη) wird ein Film auf eine vorher mit Ethylacetat gereinigte Glasplatte aufgetragen und sofort in den Drying Recorder eingelegt. Die Nadel wird mit 10 g belastet und bewegt sich über eine Zeitraum von 24 Stunden über eine Stre- cke von 35 cm. Der Drying Recorder befindet sich in einem Klimaraum bei 23 °C und 50 % rel. Luftfeuchte.
Als Hautbildezeit wird der Zeitpunkt des Verschwindens der permanenten Spur der Nadel aus dem Film angegeben. Anwendungstechnische Beispiele
Zur Beurteilung der anwendungstechnischen Eigenschaften der verschiedenen Polymere wurden diese in folgender Formulierung verarbeitet:
Figure imgf000012_0001
Zur Herstellung der Formulierung wird das Bindemittel mit Füllstoff (Socal® UiS2), Weichmacher (Jayfiex™ DINP) und Trocknungsmittel (Dynasylan® VTMO) versetzt und in einem Vakuumdissolver mit Wandabstreifer bei 3000 U/min vermischt. Anschließend wird der Haftvermittler (Dynasylan® 1146) hinzugefügt und innerhalb von 5 min bei 1000 U/min untergerührt. Zuletzt wird der Katalysator (Lupragen® N700) bei 1000 U/min eingerührt und abschließend die fertige Mischung im Vakuum entlüf- tet.
Zur Messung der physikalischen Eigenschaften werden sowohl Membranen von 2 mm Dicke, als auch Probenkörper auf Glassubstrat gemäß DIN EN ISO 11600 hergestellt. Die Prüfung der shore-Härte erfolgt an den Membranen gemäß DIN 53505. Der Mo- dulus bei 100 % Dehnung wird entsprechend DIN EN ISO 1 1600 bei 23 °C gemes- sen. Die folgende Tabelle zeigt die erhaltenen Ergebnisse:
Figure imgf000013_0001
In einem weiteren Beispiel wurde der Anteil an Weichmacher auf unter 20 Gew.-% eingeteilt:
Beispiel 6 ( erfindungsgemäß):
Figure imgf000013_0002
Der mit dieser weichmacherarmen Formulierung erhaltene Dichtstoff zeigt folgende mechanische Eigenschaften:
Beispiel Nr. 6
Shore A Härte 19
100 %-Modulus [N/mm2] 0,4
Hautbildezeit [min] 70

Claims

Alkoxysilangruppen-modifizierte Polyurethane, erhältlich durch Umsetzung von
A) 1 ,0 val einer Polyolkomponente mit einem zahlenmittleren Molekulargewicht von > 20.000 g/mol bis 30.000 g/mol, enthaltend ein oder mehrere Polyoxy- alkylenpolyole oder Polyoxyalkylenpolyolprepolymere und
B) 0,80 bis 1 ,20 val einer isocyanat- und alkoxysilangruppenaufweisenden Verbindung der Formel (I)
X
OCN- R-Si -Y
"z (I) in welcher
X, Y, Z unabhängig voneinander lineare, cyclische oder verzweigte Ci-Cg- Alkyl- oder Ci-C8-Alkoxyreste sind, wobei mindestens einer der Reste eine Ci-C8-Alkoxygruppe ist und X, Y oder Z gegebenenfalls unabhängig voneinander verbrückt sein können, und
R ein beliebiger wenigstens difunktioneller organischer Rest, bevorzugt ein geradkettiges, verzweigtes oder cyclisches Alkylenradikal mit 1 bis 8 Kohlenstoffatomen, ist.
Alkoxysilangruppen-modifizierte Polyurethane gemäß Anspruch 1 , dadurch gekennzeichnet, dass X, Y, und Z in Formel (I) unabhängig voneinander eine Me- thoxy- oder Ethoxygruppe und R ist ein Methylen- oder Propylenradikal ist.
Alkoxysilangruppen-modifizierte Polyurethane gemäß Ansprüchen 1 und 2, dadurch gekennzeichnet, dass in A) nur Polyoxyalkylenpolyole mit einem zahlenmittleren Molekulargewicht von 21.000 g/mol bis 25.000 g/mol eingesetzt werden.
Alkoxysilangruppen-modifizierte Polyurethane gemäß Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die in A) eingesetzten Polyether einen Gehalt an terminaler Unsättigung von weniger als 0,02 meq/g und eine Polydispersität von weniger als 1,5 aufweisen. Alkoxysilangruppen-modifizierte Polyurethane gemäß Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass 0,90 bis 1 ,10 val der Komponente B) eingesetzt werden.
Alkoxysilangruppen modifizierte Polyurethane gemäß Ansprüchen 1 bis 5 , dadurch gekennzeichne, dass die verbliebenen freien NCO-Gruppen durch eine Al- lophanatisierung weiter umgesetzt werden.
Verwendung Alkoxysilangruppen-modifizierte Polyurethane gemäß Ansprüchen 1 bis 6 zur Herstellung niedermoduliger Dichtstoffe.
Durch Vernetzung der Alkoxysilangruppen der Polyurethane gemäß Ansprüchen 1 bis 6 erhaltene Polymere.
Zubereitungen enthaltend
10 Gew.-% bis 100 Gew.-% eines Alkoxysilangruppen modifizierten Polyurethans nach einem der Ansprüche 1 bis 9 oder eines Gemischs aus zwei oder mehr solcher Alkoxysilangruppen modifizierten Polyurethane,
0 Gew.-% bis 30 Gew.-% eines Weichmachers oder eines Gemischs mehrerer Weichmacher,
0 Gew.-% bis 5 Gew.-% eines Feuchtigkeits-Stabilisators oder eines Gemischs mehrerer Feuchtigkeits-Stabilisatoren,
0 Gew.-% bis 5 Gew.-% eines UV-Stabilisators oder eines Gemischs mehrerer UV- Stabilisatoren,
0 Gew.-% bis 5 Gew.-% eines Katalysators oder eines Gemischs mehrerer Katalysatoren,
0 Gew.-% bis 80 Gew.-% eines Füllstoffs oder eines Gemischs mehrerer Füllstoffe.
10. Zubereitung gemäß Anspruch 10, dadurch gekennzeichnet, dass maximal 30 Gew.-%, bevorzugt maximal 25 Gew.-%, besonders bevorzugt maximal 20 Gew.- % Weichmacher enthalten sind.
PCT/EP2010/068952 2009-12-09 2010-12-06 Dichtstoffe WO2011069954A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/514,742 US8981030B2 (en) 2009-12-09 2010-12-06 Sealants
JP2012542488A JP2013513674A (ja) 2009-12-09 2010-12-06 シーラント
CN2010800562013A CN102741308A (zh) 2009-12-09 2010-12-06 密封剂
EP10790748A EP2510029A1 (de) 2009-12-09 2010-12-06 Dichtstoffe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009057599.5 2009-12-09
DE200910057599 DE102009057599A1 (de) 2009-12-09 2009-12-09 Dichtstoffe

Publications (1)

Publication Number Publication Date
WO2011069954A1 true WO2011069954A1 (de) 2011-06-16

Family

ID=43585709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068952 WO2011069954A1 (de) 2009-12-09 2010-12-06 Dichtstoffe

Country Status (6)

Country Link
US (1) US8981030B2 (de)
EP (1) EP2510029A1 (de)
JP (1) JP2013513674A (de)
CN (1) CN102741308A (de)
DE (1) DE102009057599A1 (de)
WO (1) WO2011069954A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014101949A1 (de) * 2014-02-17 2015-08-20 Franken Systems Gmbh Verfahren zur druckwasserfesten Abdichtung von Bauwerken
US20160244549A1 (en) * 2015-02-25 2016-08-25 Bayer Materialscience Llc Alkoxysilane-group modified polyurethanes and low modulus sealants formed therefrom
KR101901020B1 (ko) * 2016-10-25 2018-11-08 한국타이어 주식회사 공명음 저감 타이어
DE102020117919A1 (de) * 2020-07-07 2022-01-13 Franken Systems Gmbh 2-Komponenten-Beschichtungszusammensetzung zur Bauwerksabdichtung

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3627722A (en) 1970-05-28 1971-12-14 Minnesota Mining & Mfg Polyurethane sealant containing trialkyloxysilane end groups
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
US4146585A (en) 1977-03-02 1979-03-27 Union Carbide Corporation Process for preparing silane grafted polymers
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
EP0596360A1 (de) 1992-11-06 1994-05-11 Bayer Ag Alkoxysilian- und Aminogruppen aufweisende Verbindungen
EP0654302A1 (de) 1993-11-23 1995-05-24 ARCO Chemical Technology, L.P. Verbesserte Doppelmetallcyanidkatalysatoren
EP1136495A2 (de) 2000-03-18 2001-09-26 Degussa AG 1:1-Monoaddukte aus sekundären Aminoalkylalkoxysilanen und Diisocyanaten sowie ein Verfahren zu ihrer Herstellung
EP1591464A1 (de) 2004-04-28 2005-11-02 Bayer MaterialScience LLC Wasserhärtbare Polyether-urethane sowie ihre Verwendung zur Herstellung von Dichtstoffen, Klebemassen und Beschichtungen
WO2007025668A1 (de) * 2005-09-03 2007-03-08 Bayer Materialscience Ag Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
WO2008036364A1 (en) * 2006-09-21 2008-03-27 Momentive Performance Materials Inc. Process for preparing a curable silylated polyurethane resin
WO2009071542A1 (de) * 2007-12-04 2009-06-11 Henkel Ag & Co. Kgaa Härtbare zusammensetzungen enthaltend silylierte polyurethane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833423B2 (en) * 2002-06-18 2004-12-21 Bayer Polymers Llc Moisture-curable, polyether urethanes with reactive silane groups and their use as sealants, adhesives and coatings
WO2004092270A1 (ja) * 2003-04-11 2004-10-28 Kaneka Corporation 硬化性組成物
WO2009011329A1 (ja) * 2007-07-19 2009-01-22 Kaneka Corporation 硬化性組成物
DE102007039648A1 (de) * 2007-08-22 2009-02-26 Sustech Gmbh & Co. Kg Mischungen, multifunktioneller sternförmiger Präpolymere, deren Herstellung und Verwendung sowie Beschichtungen daraus
CN101888774A (zh) 2007-12-07 2010-11-17 三得利控股株式会社 能够在低照度下开花的转基因植物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
US3627722A (en) 1970-05-28 1971-12-14 Minnesota Mining & Mfg Polyurethane sealant containing trialkyloxysilane end groups
US4146585A (en) 1977-03-02 1979-03-27 Union Carbide Corporation Process for preparing silane grafted polymers
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
EP0596360A1 (de) 1992-11-06 1994-05-11 Bayer Ag Alkoxysilian- und Aminogruppen aufweisende Verbindungen
EP0654302A1 (de) 1993-11-23 1995-05-24 ARCO Chemical Technology, L.P. Verbesserte Doppelmetallcyanidkatalysatoren
EP1136495A2 (de) 2000-03-18 2001-09-26 Degussa AG 1:1-Monoaddukte aus sekundären Aminoalkylalkoxysilanen und Diisocyanaten sowie ein Verfahren zu ihrer Herstellung
EP1591464A1 (de) 2004-04-28 2005-11-02 Bayer MaterialScience LLC Wasserhärtbare Polyether-urethane sowie ihre Verwendung zur Herstellung von Dichtstoffen, Klebemassen und Beschichtungen
WO2007025668A1 (de) * 2005-09-03 2007-03-08 Bayer Materialscience Ag Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
EP1924621A1 (de) 2005-09-03 2008-05-28 Bayer MaterialScience AG Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
WO2008036364A1 (en) * 2006-09-21 2008-03-27 Momentive Performance Materials Inc. Process for preparing a curable silylated polyurethane resin
WO2009071542A1 (de) * 2007-12-04 2009-06-11 Henkel Ag & Co. Kgaa Härtbare zusammensetzungen enthaltend silylierte polyurethane

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADHESIVES AGE, April 1995 (1995-04-01), pages 30
See also references of EP2510029A1 *

Also Published As

Publication number Publication date
US8981030B2 (en) 2015-03-17
DE102009057599A1 (de) 2011-06-16
US20120245279A1 (en) 2012-09-27
EP2510029A1 (de) 2012-10-17
CN102741308A (zh) 2012-10-17
JP2013513674A (ja) 2013-04-22

Similar Documents

Publication Publication Date Title
EP2744842B1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
EP1924621B1 (de) Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
EP2268650B1 (de) Härtbare zusammensetzungen enthaltend silylierte polyurethane
EP1474460B1 (de) Alkoxysilan- und oh-endgruppen aufweisende polyurethanprepolymere mit erniedrigter funktionalität, ein verfahren zu ihrer herstellung sowie ihre verwendung
EP1995261B1 (de) Polyester-prepolymere
EP2510027B1 (de) Polyurethan-prepolymere
DE102009057597A1 (de) Polyrethan-Prepolymere
EP0807649A1 (de) Alkoxysilan- und Hydantoingruppen aufweisende Polyurethanprepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Dichtstoffen
EP3008105B1 (de) Härtbare zusammensetzung auf basis von silangruppen-haltigen polymeren und einem zinkkatalysator
EP2473545B1 (de) Isocyanatfreie silanvernetzende zusammensetzungen
EP2510030B1 (de) Polyurethan-prepolymere
EP2718345B1 (de) Polyurethan-polymere
EP2510029A1 (de) Dichtstoffe
EP2718346B1 (de) Polyurethan-polymere
EP3131993B1 (de) Zusammensetzung auf basis von silanterminierten polymeren mit carbodiimid-additiven zur verbesserung der mechanischen eigenschaften
EP1431328A1 (de) 3-(N-Silyalkyl)-amino-propenat-Gruppen enthaltendes Polymer und dessen Verwendung
EP2477737B1 (de) Silangruppenhaltige reaktivverdünner
DE102011077200A1 (de) Klebstoffe
EP3501641A1 (de) Feuchtigkeitshärtende zusammensetzungen
EP3613786A1 (de) Trocknungsmittel für feuchtigkeitshärtende zusammensetzungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056201.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010790748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012542488

Country of ref document: JP

Ref document number: 13514742

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE