WO2011067901A1 - 通信システム - Google Patents

通信システム Download PDF

Info

Publication number
WO2011067901A1
WO2011067901A1 PCT/JP2010/006782 JP2010006782W WO2011067901A1 WO 2011067901 A1 WO2011067901 A1 WO 2011067901A1 JP 2010006782 W JP2010006782 W JP 2010006782W WO 2011067901 A1 WO2011067901 A1 WO 2011067901A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
route
request
signaling
node
Prior art date
Application number
PCT/JP2010/006782
Other languages
English (en)
French (fr)
Inventor
洋平 飯澤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2011067901A1 publication Critical patent/WO2011067901A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/724Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/78Architectures of resource allocation
    • H04L47/782Hierarchical allocation of resources, e.g. involving a hierarchy of local and centralised entities

Definitions

  • the present invention relates to a communication system, and more particularly to a communication system for setting a communication line by signaling.
  • a technique called signaling in setting a communication line (path) (see Patent Document 1). ).
  • path setting by signaling according to the path of the path to be set up, by exchanging signaling messages based on a signaling protocol such as “RSVP-TE (Resource ReSerVation Protocol with Traffic Extensions)” from the source node to the destination node. Set up the path, hop by hop.
  • RSVP-TE Resource ReSerVation Protocol with Traffic Extensions
  • the communication system of FIG. 1 is composed of domains 201 to 203, and nodes 211, 212, 218, and 219 are domains 201, 213, 214, 215, 220, 221, 222 are domains 202, node 216, 217, 223, and 224 belong to the domain 203, respectively. And each node is mutually connected by the link shown by the continuous line of the figure. Further, it is assumed that the path requester 260 requests a path along the path 301 from the node 211 to the node 217.
  • FIG. 2 is a diagram showing a sequence of message exchange of signaling by “RSVP-TE” in the communication system of FIG. The operation of signaling message exchange will be described with reference to FIG.
  • the path requester 260 sends a path setting instruction message (Path Cmd) to the start point node 211 of the path to be set.
  • a path setting instruction message (Path Cmd)
  • the network of the communication system is a network in which optical communication signals are transmitted transparently without performing optical-electrical-optical conversion at each node, and the path to be set is a specific wavelength between the ends.
  • the message may include resource information indicating which wavelength to use.
  • the start point node 211 When the start point node 211 receives the path setup instruction message from the path requester 260, if the message includes the information of the node connected to itself, the path path information included in the message, and the resource information, From the resource information, the node that will be the next hop and the link (resource) to set the path are specified, the resource is reserved, and the path message (RSVP Path) of “RSVP-TE” is sent to the next node.
  • an identifier for uniquely identifying a path to be set in the entire communication system identifiers of start and end nodes of the path, and path route information in which identifiers of interfaces through which the path passes are arranged in order; And information of a resource reserved by the start node (link identifier, wavelength, etc.).
  • the node 212 that has received the RSVP-TE path message from the start node 211 identifies and reserves the resource to be reserved with the start node 211 from the reservation resource information included in the message, and then, similar to the next start node, A hop node and a resource to set a path are specified, the resource is reserved, and an RSVP-TE path message is sent to the next node, node 213.
  • the information contained in this message is the same as that sent from the source node 211 to the node 212, but for the path information of the path, the path of the entire path excluding the interface identifier indicating the hop to the node 212
  • the reserved resource information of each node up to that point is arranged in order, and here, reserved resource information of the start point node 211 and the node 212 is included.
  • the RSVP-TE path message reaches the end node 217 of the path through the same procedure at the nodes 213 214 215 216.
  • the end point node 217 that has received the RSVP-TE path message specifies and reserves a resource to be reserved with the node 216 as well as other nodes. Then, from the identifier of the end node of the path included in the message, it recognizes that it is the end node of the path. After that, the switch inside the node is switched (resource reservation) so that communication can be performed, and the RSVP-TE reserve message (RSVP Resv) is transmitted to the node 216 which is the previous hop in the path.
  • the RSVP-TE reserve message includes an identifier for uniquely identifying a path to be set in the entire communication system, identifiers of start and end nodes of the path, and resource information secured by the end node 217. .
  • the node 216 that has received the RSVP-TE reserve message uses the identifier of the start node and the end node of the path and the identifier for uniquely identifying the path included in the message to which path of the RSVP-TE path message received earlier. Identify if it corresponds. Then, the switch in the node is switched according to the information of the resource reserved upon reception of the RSVP-TE message, and the RSVP-TE reserve message is transmitted to the node 215.
  • the information contained in this message is the same as that sent from the end point node 217 to the node 216, but for the secured resource information, the information of the reserved resource information of each node up to that point in order, here Reserved resource information of the node 216 and the end point node 217 is included.
  • the RSVP-TE reserve message arrives at the start node 211 through the same procedure at the nodes 215 214 213 212.
  • the source node 211 that has received the RSVP-TE reserve message switches the switch in the node according to the resource information reserved with the node 212 as with other nodes. Then, since it is the start point of the path, it recognizes that the setting of the entire path is completed, and sends a path setting completion message (Resv Reply) to the path requester 260.
  • This message includes an identifier for uniquely identifying a path set in the entire communication system, identifiers of start and end nodes of the path, and resource information secured by each node from the start node 211 to the end node 217. included.
  • the path requester 260 recognizes that the path setting is completed, and the path setting process is completed.
  • RSVP-TE Internet Engineering Task Force
  • an object of the present invention is to provide a communication system that solves the above-mentioned problem, that is, an increase in path setting time by signaling.
  • a communication device which is an aspect of the present invention is: Among the node devices installed on the network, an upper level signaling device that performs connection control in a specific network configuration configured by a predetermined node device, Request route dividing means for dividing a request route representing a route of a communication line passing through a specific node device requested to be set by signaling, based on a specific network configuration boundary that the upper signaling device performs connection control And.
  • the upper signaling apparatus further includes division path setting means for performing connection control to set a division path divided by the request path division means included in the network configuration in which the own device performs connection control. Take the composition.
  • a communication control method is: Dividing a request route representing a route of a communication line passing through a specific node device requested to be set up by signaling based on a predetermined network configuration boundary predetermined to perform connection control by the upper layer signaling device; The upper level signaling apparatus performs connection control to set the divided path divided in the network configuration in which the own apparatus controls connection. Take the composition.
  • a program which is another embodiment of the present invention is Among the node devices installed on the network, an upper signaling device that performs connection control in a specific network configuration configured by a predetermined node device, Request route dividing means for dividing a request route representing a route of a communication line passing through a specific node device requested to be set by signaling, based on a specific network configuration boundary in which the upper layer signaling device performs connection control; A division route setting unit that performs connection control to set a division route divided by the request route division unit included in the network configuration in which the own device performs connection control; Is a program for realizing
  • a program which is another embodiment of the present invention is Among the node devices installed on the network, an upper signaling device that performs connection control in a specific network configuration configured by a predetermined node device, Information associated with the time required for connection control of a predetermined route stored in advance and the number of node devices passed at this time, and a communication line via a specific node device requested to be set by signaling
  • the request route representing the route is connected to the connection control of the divided route based on the number of node devices passing through the divided route divided based on the specific network configuration boundary that the upper-level signaling apparatus performs connection control.
  • Prediction time calculation means for calculating the required prediction time; Path re-division means for further dividing the divided path according to the prediction time calculated by the prediction time calculation means; Division route setting means for performing connection control so as to set the division route or the re-divided re-division route included in the network configuration in which the own device performs connection control; Is a program for realizing
  • the configuration of the communication circuit by signaling can be performed at high speed by being configured as described above.
  • FIG. 1 is a block diagram for explaining a configuration of a communication system in Embodiment 1. It is a functional block diagram explaining the structure of the upper level signaling apparatus disclosed in FIG.
  • FIG. 6 is a sequence diagram for explaining the operation of the communication system disclosed in FIG. 3;
  • FIG. 7 is a first half of a flowchart illustrating the operation of the upper signaling apparatus disclosed in FIG. 3;
  • FIG. 7 is a second half of the flowchart explaining the operation of the upper signaling apparatus disclosed in FIG. 3;
  • FIG. FIG. 14 is a functional block diagram for explaining the configuration of the upper signaling apparatus in the second embodiment.
  • FIG. 16 is a functional block diagram for explaining the configuration of a path requester in the second embodiment.
  • FIG. 10 is a sequence diagram for explaining the operation of the communication system in the second embodiment. It is a flowchart explaining operation
  • FIG. 9 is a front half of a flowchart illustrating the operation of the upper signaling apparatus disclosed in FIG. 8;
  • FIG. 9 is a second half of the flowchart explaining the operation of the upper signaling apparatus disclosed in FIG. 8;
  • FIG. FIG. 13 is a block diagram for explaining the configuration of a communication system in the third embodiment.
  • FIG. 18 is a block diagram for explaining a modification of the configuration of the communication system in the third embodiment.
  • FIG. 18 is a block diagram for explaining a modification of the configuration of the communication system in the third embodiment.
  • FIG. 3 is a block diagram for explaining the configuration of the communication system
  • FIG. 4 is a functional block diagram for explaining the configuration of the upper signaling apparatus included in the communication system
  • FIG. 5 is a sequence diagram for explaining the operation of the communication system
  • FIGS. 6 and 7 are flowcharts for explaining the operation of the upper signaling apparatus.
  • the communication system in the present embodiment includes a plurality of nodes 11 and the like installed on the network, an upper signaling apparatus 41 and the like that performs connection control between the nodes, and a path requester 60 that is an apparatus that requests setting of communication lines. And have.
  • the communication system shown in FIG. 1 is composed of domains 1, 2, 3, nodes 11, 12, 18, 19 in domain 1, nodes 13, 14, 15, 20, 21, 22 Nodes 16, 17, 23 and 24 belong to domain 2 and domain 3 respectively. And each node is mutually connected by the link shown by the continuous line of the figure.
  • the upper signaling devices 41, 42, 43 perform connection control between the respective nodes installed in the corresponding range, with the network configurations in the domains 1, 2, 3 as the respective range in charge. Further, the upper signaling devices 41, 42, 43 have topology information (network configuration information) representing a network configuration within the assigned range, and history information of time required for past signaling. Further, it is assumed that the path requester 60 requests the setting of the path along the path 31 from the node 11 to the node 17.
  • the upper level signaling device 40 is configured by a computer including an arithmetic device and a storage device, and operates to set a path of the node 11 or the like as described later. Then, as shown in FIG. 4, the upper signaling apparatus 40 controls the entire apparatus, and the other apparatus communication section 52 performs communication with the path requester, the other upper signaling apparatus, and the node. And a path division unit 53 for dividing and managing the path of the path received from the path requester or another higher-level signaling apparatus, and a signaling time management unit 54 for managing the time required for signaling. Each of the units 51 to 54 is constructed by incorporating a program into an arithmetic unit provided in the upper level signaling unit 40.
  • the higher-level signaling device 40 has a topology information DB (database) 55 that holds topology information (network configuration information) representing a network configuration within its assigned range, and a signaling time history DB (which holds time taken for past signaling).
  • Database) 56 an adjacent upper signaling apparatus, a boundary node of its assigned range, and an adjacent upper signaling apparatus DB (database) 57 holding an identifier of a link connected to the node.
  • Each of the databases 55 to 57 is formed in, for example, a storage device equipped in the upper level signaling device 40. The function of each configuration will be described in the following operation description.
  • FIG. 5 is a diagram showing a sequence of message exchange of path setting in the communication system shown in FIG.
  • the path requester 60 sends an upper path setting instruction message (Higher Path Cmd) to the upper signaling device 41 that includes the start point node of the path to be set up in its assigned range. That is, the path requester 60 requests the higher level signaling device 41 to set the path to be set (requested path) by signaling.
  • Higher Path Cmd an upper path setting instruction message
  • the upper path setting instruction message “an identifier for uniquely specifying a path to be set in the entire communication system”, “an identifier of a start node and an end node of a path”, “an interface through which a path passes”
  • the path routing information in which the identifiers are arranged in order, and the “path setting request time and the time when the path setting instruction message was sent” are included.
  • “request time for path setting” is “1 second”
  • time for transmitting a path setting instruction message” is “00:00:00”.
  • the network of the communication system is a network in which optical communication signals are transmitted transparently without performing optical-electrical-optical conversion at each node, and the path to be set is a specific wavelength between the ends.
  • the upper path setting instruction message may include resource information indicating which wavelength to use.
  • the upper signaling apparatus 41 that has received the path setting instruction message causes the path division unit 53 (requested path division means) to handle a range in which the upper signaling apparatus 41 serving as the own apparatus is in the received path 31.
  • the path division unit 31 divides the path 31 in accordance with the boundary of its own range, and identifies and extracts a partial path (division path) which it is in charge of.
  • the received path 31 (requested path) is compared with topology information of its own, and a partial path included in the assigned range of the received path 31 is specified.
  • the partial route 32 handled by the nodes 11, 12, and 13 corresponds to the partial route that the higher level signaling device 41 is in charge of.
  • the higher-level signaling device 41 when the higher-level signaling device 41 specifies a partial route included in its own assigned range, it determines a route obtained by removing the partial route included in its own assigned range from the route 31 received from path requester 60, that is, FIG.
  • an upper path message (Higher Path) including the path from the node 13 to the node 17 as path information is transmitted from the node 13 to the upper signaling apparatus 42 in which the previous path is in charge.
  • the path information included in the upper path message may be the path 31 itself received from the path requester 60.
  • an identifier for uniquely identifying a path to be set in the entire communication system as well as the message received from the path requester 60 in addition to the above-described path information, and a path start point In addition to the identifiers of the nodes 11 and 17, the identifier of the end node 13 of the partial route 32 in the range of the upper signaling apparatus 41, and the path setting instruction message, when the resource information is included, , A path setting request time from the path requester 60 and a path setting instruction message transmission time.
  • the signaling time management unit (estimated time calculation means) 54 calculates the time required for the past signaling.
  • the prediction time of signaling is calculated from the history information and the number of passing nodes of the route in the assigned range. Specifically, here, it is assumed that the past signaling time of the upper signaling apparatus 41 is 400 milliseconds per one transit node number (one hop) on average. At this time, since the path 32 in the area to which the upper level signaling device 41 is in charge is two hops, the time required for signaling (predicted time) is estimated to be 800 milliseconds.
  • the remaining time is the path setting request time. It is 950 milliseconds. If this time is compared with the predicted time calculated earlier, it can be predicted that the signaling can be completed by the path setup request time.
  • the estimated time (850 milliseconds) actually required for setting the path which is the time taken from the transmission of the path setting instruction message (50 milliseconds) and the time required for signaling (800 milliseconds), is from the path setting request time
  • the upper signaling apparatus 41 can complete the path setting of the path 32 by the path setting request time. Therefore, the upper level signaling apparatus 41 transmits a path setting instruction message (Path Cmd) to the start point node 11 of the path 32.
  • the path setup instruction message transmitted from the upper signaling apparatus 41 to the node 11 includes an identifier for uniquely identifying a path to be set up in the entire communication system, and the start point node 11 and the end point node 17 of the entire path.
  • the higher level signaling apparatus 41 stores the time when the path setting instruction message was transmitted.
  • the node 11 that has received the path setup instruction message from the higher level signaling apparatus 41 sets up the node and the path to be the next hop, as in the case of the start point node 211 described with reference to FIGS.
  • the resource to be identified is specified, the resource is reserved, and the RSVP-TE path message is sent to the next node 12.
  • the information included in this message is the same as the RSVP-TE path message transmitted by the start node 211 to the node 212 in the background art except that the information of the path 32 is included as path information.
  • the subsequent operation of the node 12 is the same as in the background art, and transmits an RSVP-TE path message to the node 13.
  • the node 13 having received the RSVP-TE path message receives the path setting instruction message (Path Cmd) along the path 33 from the upper signaling device 42 as described later, and the information included in the message And from the information of the RSVP-TE path message, it identifies that the two messages correspond to the same path. Also, since the path setting instruction message from the upper signaling apparatus 42 includes the identifier of the start point node 13 of the route 33 and the identifier of the end point node 13 of the route 32, the node 13 is a division point of the route and received It recognizes that it is an end point node about the signaling of an RSVP-TE path
  • node 13 can exchange communication data among the resources after reserving resources to be reserved with node 12 and resources reserved with node 13 as resources for the same path. Switch the switch inside the node. Then, an RSVP-TE reserve message corresponding to the received RSVP-TE path message is transmitted to the node 12. In this message, an identifier for uniquely identifying a path to be set in the entire communication system, an identifier of the start node 11 of the path and an identifier of the end node 17 as well as the background node transmitted to the node 216 in the background art And reserved resource information of the node 13.
  • RSVP-TE reserve message arrives at the node 11 and the signaling along the path 32 is completed, it is similar to the operation of RSVP-TE of the background art described above.
  • the node 11 transmits a path setting completion message (Resv Reply) to the upper level signaling apparatus 41.
  • a path setting completion message (Resv Reply)
  • an identifier for uniquely specifying a path to be set in the entire communication system identifiers of the start node 11 and the end node 17 of the entire path, and each node from the start node 11 to the node 13 The reserved resource information is included.
  • the upper signaling apparatus 41 that has received this path setup completion message calculates the time taken for signaling from the message reception time and the path setup instruction message transmission time stored earlier, and the node via route 32
  • the number of hops corresponding to the number is stored in the signaling time history database 56 (route setting time storage means) as history information of the time required for past signaling.
  • the path requester Reply since the upper path message is sent to the upper signaling device 42 for this path, it is checked whether a response to it has been received, and if it has not been received, it is waited, and if it is received, the path requester Reply to Here, it is assumed that the response to the upper path message to the upper signaling device 42 has not been received.
  • the upper signaling device 42 that has received the upper path message from the upper signaling device 41 described above performs the same processing as the upper signaling device 41 and transmits the same upper path message to the upper signaling device 43. That is, the upper signaling apparatus 42 divides the path information received from the other upper signaling apparatus 41 according to the boundary of its own assigned range from the routing information received from the other upper signaling apparatus 41, and identifies and extracts the partial route (division route) that it handles. In the example of FIG. 3, partial paths 33 and 34 of the nodes 13, 14, 15, and 16 correspond to the partial paths that the higher level signaling device 42 is in charge of. Note that the upper level signaling device 43 searches for a route included in its own assigned range as with the other upper level signaling devices, but does not transmit the upper level path message because the end point node 17 is included in the assigned range. Become.
  • the upper-level signaling device 42 performs route search of the assigned range and upper-layer message transmission, like the upper-level signaling device 41, the history information of the time taken for the past signaling and the route of the assigned range
  • the prediction time of signaling is calculated from the number of nodes.
  • an average of 400 milliseconds per hop is taken as the past signaling time of the upper signaling apparatus 42, that is, the time required to set up the route passing through the unit number of nodes (unit node number setting time). Since the route from the node 13 to the node 16 which is a route in the coverage area of the upper signaling apparatus 42 is three hops, the time required for signaling is predicted to be “1200 milliseconds”.
  • the time when the upper-level signaling device 42 receives the upper-level path message from the upper-level signaling device 41 is “00: 00: 00.10 seconds” (100 milliseconds after the path setting instruction message transmission of the path requester 60). It is 900 milliseconds remaining until the request time. If this time is compared with 1200 ms, which is the predicted time calculated earlier, it can be predicted that signaling will not be completed by the path setup request time.
  • the estimated time (1300 milliseconds) actually required for setting the path which is the time required for transmitting the path setting instruction message (100 milliseconds) and the time required for signaling (1200 milliseconds), is from the path setting request time It can be determined that the upper level signaling apparatus 41 can not complete the path setting of the path 32 by the path setting request time. Therefore, the higher level signaling apparatus 42 further divides the route in the route division unit 53 (route re-division unit).
  • the higher-level signaling apparatus 42 goes from node 13 to node 16 Is subdivided into a path 33 from the node 13 to the node 15 and a path 34 from the node 15 to the node 16. That is, the actual path obtained by adding the time taken from the path setup indication message transmission (100 ms) and each time required for signaling in the paths 33 and 34 (800 ms or 400 ms) to be subdivided respectively. Subdivide the route from node 13 to node 16 into route 33 and route 34 so that each predicted time (900 milliseconds or 500 milliseconds) required for setting is shorter than the path setting request time .
  • the upper level signaling device 42 transmits a path setting instruction message (Path Cmd) to each of the start point nodes 13 and 15 of each of the paths 33 and 34.
  • the information contained in this message is, in addition to the one sent by the upper signaling apparatus 41 to the node 11, the identifier of the end node of the partial path located one position earlier in the whole path. It is different. That is, the message to the node 13 includes the identifier of the node 13, and the message to the node 15 includes the identifier of the node 15. As described above, the node 13 recognizes from this information that it is the end node of the previous route 32, and the node 15 similarly recognizes that it is the end node of the previous route 33. .
  • the subsequent signaling processing for the route 33 and the route 34 is the same as that for the route 32 by the upper signaling apparatus 41 described above, and the upper signaling apparatus 42 sends a path setting completion message (Resv Reply) from the node 13 and the node 15, respectively. , And calculate the signaling time and store information as the path 33 and the path 34 are respectively different signaling. After that, similarly to the case of the upper signaling apparatus 41, it waits for a response to the upper path message transmitted to the upper signaling apparatus 43.
  • the upper level signaling apparatus 43 performs route search of the assigned range, like the upper signaling apparatuses 41 and 42, based on the history information of the time required for past signaling, and the number of transit nodes of the route of the assigned range , Calculate the prediction time of signaling.
  • the past signaling time of the upper signaling apparatus 43 is 400 milliseconds per hop on average.
  • the time required for signaling is estimated to be 400 milliseconds.
  • the path is set. It is the remaining 850 milliseconds until the request time. If this time is compared with the predicted time calculated earlier, it can be predicted that signaling can be completed by the path setting request time, so the upper signaling device 43 sends a path setting instruction message (Path Cmd) to the start node 16 of the path 35. Send Thereafter, it is the same as other upper signaling devices until the upper signaling device 43 receives a path setup complete message (Resv Reply), calculates and stores the signaling time.
  • a path setting instruction message Path Cmd
  • the upper level signaling apparatus 43 since the upper level signaling apparatus 43 does not transmit the upper level path message to the other upper level signaling apparatus, when receiving the path setting completion message from the node 16, it transmits the upper level reserve message (Higher Resv) to the upper level signaling apparatus 42. .
  • the information contained in this message includes an identifier for uniquely identifying a path set in the entire communication system, identifiers of start point node 11 and end point node 17 of the path, and resource information secured by each node along the route 35 included.
  • the upper signaling device 42 When the upper signaling device 42 receives the upper reserve message from the upper signaling device 43, it checks whether or not all path setup complete messages have been received from the node for signaling of its own assigned range, and if it has not received it yet, that message Wait for Here, as described above, since the upper signaling apparatus 42 has already received the path setting completion message (Resv Reply) from the nodes 12 and 15, the upper signaling apparatus 42 transmits the upper reserve message to the upper signaling apparatus 41.
  • the information contained in this message is an identifier for uniquely identifying a path established in the entire communication system, identifiers of the start node 11 and the end node 17 of the path, and securing of each node along the path 33, 34, 35 Resource information is included.
  • the upper signaling device 41 When the upper signaling device 41 receives the upper reserve message from the upper signaling device 42, it checks whether or not all path setting completion messages have arrived from the node for signaling of its own assigned range, and if it has not received it yet, that message Wait for
  • the upper signaling apparatus 41 since the upper signaling apparatus 41 has already received the path setting completion message (Resv Reply) from the node 11, the upper path setting completion message (Higher Resv Reply) to the path requester 60 Send
  • the information contained in this message is an identifier for uniquely identifying a path established in the entire communication system, identifiers of start node 11 and end node 17 of the path, and each node along the path 32, 33, 34, 35. That is, resource information secured by each node along the path 31 is included.
  • the path requester 60 recognizes that the path setting is completed by receiving the upper path setting completion message (Higher Resv Reply) from the upper signaling apparatus 41, and the path setting process is completed.
  • the configuration of the communication system in the first embodiment of the present invention is not necessarily limited to the configuration of FIG.
  • the coverage area of the upper-level signaling device does not match the domain boundary, or if the domain configuration of the network or the topology configuration in the domain is different, the path setting does not deviate from the operation of the communication system described here. It may be a configuration of a communication system that can be performed.
  • FIG. 6 and FIG. 6 and 7 are flowcharts for explaining the operation of the upper signaling apparatus in the first embodiment having the configuration shown in FIG.
  • the other apparatus communication unit 52 of the upper signaling apparatus 40 receives an upper path setting instruction message (Higher Path Cmd) from the path requester 60 or an upper path message (Higher Path) from another upper signaling apparatus (Step S1); The message is sent to the upper signaling apparatus control unit 51, and the upper signaling apparatus control unit 51 transfers the message to the path division unit 53.
  • an upper path setting instruction message Higher Path Cmd
  • an upper path message Higher Path
  • the path division unit 53 searches the path of the received message with reference to the topology information database 65 and the adjacent upper signaling device database 57, and searches for a part included in its own assigned range (step S2). Then, when it is necessary to transmit a higher-level path message to a path included in the assigned range and another higher-level signaling device, the identifier of the higher-level signaling device is returned to the higher-level signaling device control unit 51.
  • the upper level signaling apparatus control section 51 transfers the upper level path message to the upper level signaling apparatus through the other apparatus communication section 52 (step S4).
  • the path of the upper path message received earlier is the one excluding the path included in its own assigned range sent from the path division unit 53.
  • the identifier of the other upper signaling apparatus is not sent from the path division unit 53 (step S3: No)
  • the upper path message transfer is not performed.
  • the higher-level signaling apparatus control unit 51 inquires of the path division unit 53 whether it is necessary to divide a path within its own assigned range.
  • the route division unit 53 that has received the inquiry first sends the hop count of the route within its assigned range to the signaling time management unit 54 to request calculation of the predicted time required for signaling.
  • the signaling time management unit 54 refers to the signaling time history database 56 to calculate an estimated time required for signaling (step S5), and returns the estimated time to the path division unit 53.
  • the method of calculating the predicted time is as described in the operation of the communication system of this embodiment.
  • the path division unit 53 uses the time when the upper-level signaling apparatus control unit 51 receives the upper-level path setting instruction message or the upper-level path message, and the upper-level path setting instruction message transmission time of the path requester included in the message. The time is calculated (step S6). Then, the remaining time and the prediction time are compared, and if the prediction time is larger (step S7: No), the route is divided (step S8), and each route information is sent to the upper signaling apparatus control unit 51.
  • the method of route division is as described in the operation of the communication system of the present embodiment described above. If the remaining time is larger (step S7: Yes), the route division is not performed, and the route as it is is sent to the upper signaling apparatus control unit 51.
  • the upper level signaling apparatus control unit 51 transmits a path setting instruction message (Path Cmd) to the start point node of each path through the other apparatus communication unit 52 (step S9). Also, at this time, the upper level signaling apparatus control unit 51 stores the transmission time of the path setting instruction message.
  • the upper signaling apparatus control unit 51 receives the path setup completion message (Resv Reply) from the start point node or the upper reserve message (Higher Resv) from the upper signaling apparatus through the other apparatus communication unit 52 (step S10).
  • the upper signaling device control unit 51 calculates the time required for signaling from the path setting instruction message transmission time and the path setting completion message reception time, The path division unit 53 is sent together with each information of the received path setting completion message.
  • the route division unit 53 identifies which route among the divided routes managed by itself, the number of hops of the route, and the signaling time sent from the upper-level signaling device control unit 51. Send to section 54.
  • the signaling time management unit 54 stores the received information in the signaling time history database 56 as it is or by processing it into a signaling time per one hop (step S12).
  • Step S11 Higher Resv
  • the upper signaling apparatus control unit 51 sends only the information of the received message to the path division unit 53, and the signaling time calculation and storage are not performed.
  • the path division unit 53 checks whether the reception of all path setting completion messages and upper reserve messages related to the path is completed (step S13). If there is a message that has not been received yet (step S13: No), it notifies that it is necessary to wait for a message as a response to the upper-level signaling apparatus control unit 51. If all the messages have been received (step S13: Yes), the secured resource information in its own assigned range is added to the secured resource information included in the upper reserve message received from the other upper signaling apparatus, and the response is sent. It returns as a response to the upper signaling apparatus control unit 51 together with the information on the destination apparatus of the message.
  • the upper signaling device control unit 51 that has received the response of completion of receiving all messages completes the upper reserve message when the destination of the response message is another upper signaling device, and the upper path setting is completed when the path requester is A message (Higher Resv Reply) is transmitted through the other device communication unit 52 (step S14).
  • the path of the path to be set is divided into a plurality of paths, and the upper signaling apparatus performs the signaling processing in parallel for each divided path, so path setting by signaling is performed. It can be done at high speed. Also, the path setting by signaling is requested by the path requester in order to divide the path of the path appropriately and perform the signaling process in parallel from the requested path setting time and the signaling completion prediction time based on the past history. It can be completed within the pass setup time.
  • FIG. 8 is a block diagram showing the configuration of the high-order signaling apparatus
  • FIG. 9 is a block diagram showing the configuration of the path requester 60. As shown in FIG.
  • the upper layer signaling devices do not exchange upper path messages and upper reserve messages, but the path requester 60 And the upper-layer signaling devices 40 (41 and so on) directly exchange upper-layer path setting instruction messages and upper-layer path setting completion messages, unlike the first embodiment.
  • the other operations are the same as in the first embodiment.
  • FIG. 8 shows the configuration of the upper signaling apparatus in the present embodiment.
  • the configuration of the upper signaling apparatus 40 shown in FIG. 8 is almost the same as that of the upper signaling apparatus 40 of FIG. 4, but the communication counterpart of the other apparatus communication unit 52 is only the path requester 60 and the node 11 etc.
  • the configuration of the other apparatus communication unit 52 is different. Moreover, it differs in the point which does not have the adjacent upper level signaling apparatus database 57 shown in FIG.
  • the other configuration is the same as that of the first embodiment, so the description will be omitted.
  • the configuration of the path requester 60 in this embodiment will be described with reference to FIG.
  • the path requester 60 is configured by a computer provided with an arithmetic unit and a storage unit, and requests the higher level signaling unit 40 (41 or the like) to set a path as described later. Then, as shown in FIG. 9, the path requester 60 divides the path of the path by the path requester device control unit 61 that controls the entire device, the other device communication unit 62 that communicates with the upper signaling device, and And a route division unit 63 (request route division means) for managing, and a route setting request unit 64 for making a request for a route to the upper level signaling apparatus 40.
  • Each of the units 61 to 64 is constructed by incorporating a program into an arithmetic unit provided in the path requester 60.
  • the path requester 60 includes a topology information database 65 that holds topology information (network configuration information) representing a network configuration within the coverage of each upper signaling device 40 (41 or the like).
  • topology information network configuration information
  • the topology information may not be stored in the path requester 60, and may be acquired from each higher level signaling device 40. The function of each configuration will be described in the following operation description.
  • FIG. 10 is a diagram showing a sequence of message exchange of path setting in the communication system of the present embodiment shown in FIG.
  • the path division unit 63 of the path requester 60 divides the path of the path to be set up based on the coverage area of the upper signaling apparatus. Since this requires an identifier of the upper-level signaling device that has a route through which the path passes in its coverage area and information on the boundaries of each coverage area, for example, it is divided based on the information stored in the topology information database 65 in advance. Do. However, the method of setting these pieces of information by the path requester 60 is arbitrary, and may be used if it is included in the route, for example, acquired from the upper signaling apparatus 40 at the time of routing. . Here, the path requester 60 divides the paths of the nodes 11 to 17 into the paths of the nodes 11 to 13, the paths of the nodes 13 to 16, and the paths of the nodes 16 to 17, respectively. Is assigned to
  • the path setting request unit 64 of the path requester 60 transmits an upper path setting instruction message (Higher Path Cmd) for each path to each upper signaling apparatus 40 (41 or the like).
  • the information contained in these messages is transmitted to the upper signaling apparatus 41 by the path requester 60 in the communication system of the first embodiment described above, except that the path information is the path previously assigned to each upper signaling apparatus. It is similar to the information of the upper path setting instruction message.
  • the upper signaling apparatus 41 that has received the upper path setting instruction message from the path requester 60 calculates an estimated signaling time from the history information of the time taken for the past signaling and the number of transit nodes of the route in charge, Signaling along the path 32 is instructed to the node 11, and after signaling, a path setup complete message is received, and a history of signaling time is stored. This operation is similar to that of the first embodiment described above.
  • the upper signaling apparatus 41 transmits an upper path setting completion message (Higher Resv Reply) to the path requester 60.
  • the upper path setting completion for the upper signaling apparatus 41 to transmit to the path requester 60 is completed except that the information included in this message is that the secured resource information is for the node along the route 32. Similar to the message information.
  • the upper signaling device 42 that has received the upper path setting instruction message from the path requester 60 calculates the predicted time of signaling from the history information of the time taken for the past signaling and the number of transit nodes in the range of responsibility.
  • the route from the node 13 to the node 16 is divided into a route 33 and a route 34, and for each of them, a signaling instruction, a path setting completion message reception, and a signaling time storage are performed. This operation is similar to that of the first embodiment described above.
  • the upper signaling device 42 transmits an upper path setup completion message (Higher Resv Reply) to the path requester 60.
  • the information included in this message is the upper path setting that the upper signaling apparatus 41 transmits to the path requester 60 in the present embodiment, except that the secured resource information is for nodes along the paths 33 and 34. It is similar to the information of the completion message.
  • the upper signaling apparatus 43 which has received the upper path setting instruction message from the path requester 60 calculates the prediction time of signaling from the history information of the time taken for the past signaling and the number of transit nodes of the route in charge; Signaling along the path 35 is instructed to the node 16, and after signaling, a path setup complete message is received, and a history of signaling time is stored. This operation is similar to that of the first embodiment described above.
  • the upper level signaling apparatus 43 transmits an upper level path setup completion message (Higher Resv Reply) to the path requester 60.
  • the information included in this message is the upper path setting completion message transmitted by the upper signaling apparatus 41 to the path requester 60, except that the secured resource information is for the node along the route 35. The same as the information in
  • the path requester 60 When the path requester 60 receives the upper path setting completion message (Higher Resv Reply) from all the upper signaling devices 41 to 43, it recognizes that the path setting is completed, and the path setting process is completed.
  • the structure of the communication system in this embodiment is not necessarily limited to the structure of FIG. 3 like the structure of the communication system of Embodiment 1 mentioned above.
  • the path requester 60 divides the path of the path to be set up based on the coverage range of each upper signaling apparatus (step S21). At this time, since the identifier of the upper signaling apparatus having a route through which the path passes is required and the information on the boundary of each assigned range, the topology information registered in advance is used or acquired from each upper signaling apparatus. Use information. Then, the path requester 60 transmits an upper path setting instruction message (Higher Path Cmd) for each path to each upper signaling apparatus (step S22). Thereafter, when the path requester 60 receives an upper path setting completion message (Higher Resv Reply) from all the upper signaling devices 41 to 43 (step S23), it recognizes that the path setting is completed, and the path setting process It will be completed.
  • an upper path setting instruction message Higher Path Cmd
  • the other apparatus communication unit 52 of the upper signaling apparatus 40 sends a message to the upper signaling apparatus control unit 51 when receiving the upper path setting instruction message (Higher Path Cmd) from the path requester 60 (step S31).
  • the upper-level signaling device control unit 51 transfers the message to the path division unit 53, and inquires whether it is necessary to divide a path within its own assigned range.
  • the route division unit 53 that has received the inquiry first sends the hop count of the route within its assigned range to the signaling time management unit 54 to request calculation of the predicted time required for signaling.
  • the signaling time management unit 54 refers to the signaling time history database 56 to calculate an estimated time required for signaling (step S32), and returns the predicted time to the path division unit 53.
  • the method of calculating the predicted time is as described in the operation of the communication system of the present embodiment described above.
  • the path division unit 53 calculates the remaining time for path setting from the time when the upper-level signaling apparatus control unit 51 receives the upper-level path setting instruction message and the upper-level path setting instruction message transmission time of the path requester included in the message. (Step S33). Then, the remaining time is compared with the predicted time, and if the predicted time is larger (step S34: No), the route is divided (step S35), and each route information is sent to the upper signaling apparatus control unit 51.
  • the method of route division is as described in the operation of the communication system of the present embodiment described above. When the remaining time is larger (step S34: Yes), the route division is not performed, and the route as it is is sent to the upper signaling apparatus control unit 51.
  • the upper level signaling apparatus control unit 51 transmits a path setting instruction message (Path Cmd) to the start point node of each path through the other apparatus communication unit 52 (step S36). At this time, the upper level signaling apparatus control unit 51 stores the transmission time of the path setting instruction message.
  • the upper level signaling apparatus control unit 51 receives a path setting completion message (Resv Reply) from the start point node through the other apparatus communication unit 52 (step S37).
  • the upper signaling apparatus control unit 51 calculates the time required for signaling from the path setting instruction message transmission time and the path setting completion message reception time, and sends it to the path division unit 53 together with each information of the received path setting completion message.
  • the route division unit 53 identifies which route among the divided routes managed by itself, the number of hops of the route, and the signaling time sent from the upper-level signaling device control unit 51. Send to section 54.
  • the signaling time management unit 54 stores the received information in the signaling time history database 56 as it is or by processing it into the signaling time per hop, etc. (step S38).
  • the path division unit 53 checks whether the reception of all path setting completion messages related to the path is completed (step S39). If there is a path setting completion message that has not been received yet (step S39: No), it notifies that it is necessary to wait for a message as a response to the upper signaling apparatus control unit 51. If reception of all path setting completion messages has been completed (step S39: Yes), the upper layer signaling apparatus control unit 51 is provided with secured resource information in its assigned range and information of the path requester who is the destination apparatus of the response message.
  • the path of the path to be set is divided into a plurality of paths, and the upper signaling apparatus performs signaling processing in parallel for each divided path. Therefore, path setting by signaling can be performed at high speed. Also, the path setting by signaling is requested by the path requester in order to divide the path of the path appropriately and perform the signaling process in parallel from the requested path setting time and the signaling completion prediction time based on the past history. It can be completed within the pass setup time.
  • Embodiment 3 A third embodiment of the present invention will be described with reference to FIGS. 14-16.
  • an outline of the configuration of the above-described communication system is shown.
  • the communication system which is an embodiment of the present invention is An upper signaling apparatus 140 for controlling connection in a specific network configuration 101 composed of predetermined node apparatuses 111, 112, 113, and 114 among node apparatuses installed on the network; Request route division for dividing a request route representing a route of a communication line via a specific node device requested to be set by signaling based on the boundary of a specific network configuration 101 where the upper signaling device 140 performs connection control And means 153.
  • the upper level signaling apparatus 140 is provided with a division path setting means 151 which performs connection control to set a division path divided by the request path division means 153 included in the network configuration 101 in which the own apparatus performs connection control. , Take the composition.
  • the upper level signaling apparatus 140 includes the request route dividing means 153 and stores network configuration information for specifying a network configuration that the apparatus itself performs connection control,
  • the request path division means 153 included in the upper level signaling device 140 identifies a portion of the request path requested from the path request device 160 that includes the network configuration information stored in the own device, and Split as split path, Take the composition.
  • the request path dividing unit 153 of the upper signaling apparatus 140 has a function of transferring the request path to another upper signaling apparatus, and is stored in the own apparatus among the request paths received from the other upper signaling apparatus. Identify the part including the network configuration information and divide it as the division path, Take the composition.
  • a route request device 160 that requests the upper level signaling device 140 to set the request route by signaling is provided, and the route request device 160 includes the request route division means 153. Then, the request route dividing means 153 provided in the route request device 160 divides the request route based on the network configuration information representing a specific network configuration 101 that the upper signaling device 140 performs connection control, and the division. Requesting the upper signaling apparatus 140 to set up the divided route Take the composition.
  • the request route requested from the route request device is divided based on the boundary of each network configuration that each upper signaling device performs connection control.
  • the request route is divided by the route request device or each upper signaling device.
  • each upper signaling apparatus performs connection control of the divided path divided as described above.
  • the connection of the request route is established in each divided route established in each upper signaling apparatus.
  • the request route setting process can be realized at high speed.
  • the upper signaling device is A route setting time storage unit that associates and stores the time required for setting a route for which connection control was performed in the past, and the number of node devices passed at this time; Predicted time calculation means for calculating predicted time required for connection control of the divided path from the information stored in the path setting time storage means based on the number of node devices via the divided path; And route re-division means for further dividing the division path according to the prediction time calculated by the prediction time calculation means.
  • the division path setting means included in the upper signaling apparatus performs connection control so as to set a redivision path divided by the path redivision means. Take the composition.
  • the route re-dividing means compares the predicted time calculated by the predicted time calculating means with the preset setting request time requested from the route request device, from the setting request time. Also split the split path if the forecast time is long, Take the composition.
  • the route re-dividing unit sets unit node number setting time representing a time required for setting a route passing through a node device of a preset unit number calculated from the information stored in the route setting storage unit. Based on the division path being divided so that the time estimated to be required when performing connection control of the redivision path does not exceed the setting request time, and the redivision path is determined Take the composition.
  • the upper level signaling apparatus first associates and stores the time required for setting the route for which connection control has already been performed and the number of node apparatuses passed at this time. Then, based on the information of the time taken for the past route setting, the predicted time expected to be required to control the connection of the divided path is calculated, and the divided path is further added according to the value of the predicted time. To divide. For example, if the predicted time is longer than the setting request time requested from the route request device, the split path is further divided. At this time, in particular, the division paths are divided so that connection control of each redivision path can be performed within the setting request time. Thereafter, the upper signaling apparatus performs connection control of the repartitioned path. As a result, since it is possible to control the connection of more paths in parallel by the higher-level signaling apparatus, it is possible to further reduce the time required for the request path signaling.
  • a communication control method that is executed by the above-described communication system, Dividing a request route representing a route of a communication line passing through a specific node device requested to be set up by signaling based on a predetermined network configuration boundary predetermined to perform connection control by the upper layer signaling device;
  • the upper level signaling apparatus performs connection control to set the divided path divided in the network configuration in which the own apparatus controls connection. Take the composition.
  • the route request device requests the upper signaling device to set the request route by signaling
  • the upper layer signaling apparatus transfers the request route to another upper layer signaling apparatus, and the request route requested from the route request apparatus based on the network configuration information specifying the network configuration to which the own apparatus performs connection control Among the request paths transferred from the other higher-level signaling apparatus, a portion including the network configuration information stored in the own apparatus is specified and divided as the division path. Take the composition.
  • the route request device divides the request route based on the network configuration information representing a specific network configuration that the upper layer signaling device performs connection control, and requests the upper layer signaling device to set up the divided route. , Take the composition.
  • a program which is another embodiment of the present invention is Among the node devices installed on the network, an upper signaling device that performs connection control in a specific network configuration configured by a predetermined node device, Request route dividing means for dividing a request route representing a route of a communication line passing through a specific node device requested to be set by signaling, based on a specific network configuration boundary in which the upper layer signaling device performs connection control; A division route setting unit that performs connection control to set a division route divided by the request route division unit included in the network configuration in which the own device performs connection control; Is a program for realizing
  • a program which is another embodiment of the present invention is Among the node devices installed on the network, an upper signaling device that performs connection control in a specific network configuration configured by a predetermined node device, Information associated with the time required for connection control of a predetermined route stored in advance and the number of node devices passed at this time, and a communication line via a specific node device requested to be set by signaling
  • the request route representing the route is connected to the connection control of the divided route based on the number of node devices passing through the divided route divided based on the specific network configuration boundary that the upper-level signaling apparatus performs connection control.
  • Prediction time calculation means for calculating the required prediction time; Path re-division means for further dividing the divided path according to the prediction time calculated by the prediction time calculation means; Division route setting means for performing connection control so as to set the division route or the re-divided re-division route included in the network configuration in which the own device performs connection control; Is a program for realizing
  • the present invention is applicable to communication systems that require real-time setting of a path passing through many nodes, such as providing a Bandwidth on Demand (BoD) service in a global network, and is industrially applicable. Have sex.
  • BoD Bandwidth on Demand

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 ネットワーク上に設置されたノード装置のうち、予め定められたノード装置により構成される特定のネットワーク構成内の接続制御を行う上位シグナリング装置と、シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路を、上記上位シグナリング装置が接続制御を行う特定のネットワーク構成の境界に基づいて分割する要求経路分割手段と、を備える。そして、上記上位シグナリング装置は、自装置が接続制御するネットワーク構成に含まれる上記要求経路分割手段にて分割された分割経路を設定するよう接続制御を行う分割経路設定手段を備える。

Description

通信システム
 本発明は、通信システムにかかり、特に、シグナリングにより通信回線を設定する通信システムに関する。
 MPLS(Multi-Protocol Label Switching)やGMPLS(Generalized Multi-Protocol Label Switching)により制御されるネットワークでは、通信回線(パス)の設定において、シグナリングという技術を用いるのが一般的である(特許文献1参照)。シグナリングによるパス設定においては、設定しようとするパスの経路に従って、始点ノードから終点ノードまで、「RSVP-TE(Resource ReSerVation Protocol with Traffic Extensions)」などのシグナリングプロトコルに基づいたシグナリングメッセージをやりとりすることにより、ホップバイホップでパスを設定する。
 ここで、一般的な通信システムの構成および「RSVP-TE」によるシグナリングの動作を、図1及び図2を参照して説明する。
 図1の通信システムは、ドメイン201~203から構成されており、ノード211,212,218,219はドメイン201に、ノード213,214,215,220,221,222はドメイン202に、ノード216,217,223,224はドメイン203に、それぞれ所属している。そして、各ノード同士は、図の実線で示したリンクにより互いに接続されている。また、パス要求者260は、ノード211からノード217まで、経路301に沿ったパスを要求しているものとする。
 そして、図2は、図1の通信システムにおける「RSVP-TE」によるシグナリングのメッセージのやり取りのシーケンスを示した図である。図2を参照して、シグナリングのメッセージやり取りの動作を説明する。
 まず、パス要求者260は、設定しようとするパスの始点ノード211に対して、パス設定指示メッセージ(Path Cmd)を送る。このメッセージには、通信システム全体で設定しようとするパスを一意に特定するための識別子、パスの始点ノードと終点ノードの識別子、およびパスの通過するインターフェースの識別子を順に並べたパスの経路情報、が含まれる。また、通信システムのネットワークが、各ノードにて光-電気-光変換を行わず、光通信信号がトランスペアレントに伝送されるようなネットワークであり、設定するパスがエンド間で特定の1つの波長を使用する波長パスの場合は、メッセージには、どの波長を使用するかというリソース情報が含まれることもある。
 パス要求者260からパス設定指示メッセージを受信した始点ノード211は、当該メッセージに、自身に接続しているノードの情報とメッセージに含まれるパスの経路情報、およびリソース情報が含まれる場合には、当該リソース情報から次のホップとなるノードおよびパスを設定すべきリンク(リソース)を特定してそのリソースを予約し、次のノードに「RSVP-TE」のパスメッセージ(RSVP Path)を送る。このメッセージには、通信システム全体で設定しようとするパスを一意に特定するための識別子、パスの始点ノードと終点ノードの識別子、およびパスの通過するインターフェースの識別子を順に並べたパスの経路情報、および始点ノードが予約したリソースの情報(リンクの識別子、波長など)、が含まれる。
 始点ノード211からRSVP-TEパスメッセージを受信したノード212は、メッセージに含まれる予約リソース情報から、始点ノード211との間で予約すべきリソースを識別して予約した後、始点ノード同様、次のホップとなるノードおよびパスを設定すべきリソースを特定してそのリソースを予約し、次のノードであるノード213にRSVP-TEパスメッセージを送る。このメッセージに含まれる情報は、始点ノード211からノード212に送られるものと同様であるが、パスの経路情報については、パス全体の経路から、ノード212へのホップを示すインターフェース識別子を除いたものが含まれ、また予約したリソースの情報には、それまでの各ノードの予約したリソース情報を順に並べたものであり、ここでは始点ノード211およびノード212の予約リソース情報が含まれる。
 その後、ノード213,214,215,216において同様の手順を経て、RSVP-TEパスメッセージが、パスの終点ノード217へ到達する。
 RSVP-TEパスメッセージを受信した終点ノード217は、他のノード同様、ノード216との間で予約すべきリソースを特定して予約する。そして、メッセージに含まれるパスの終点ノードの識別子から、自身がパスの終点ノードであることを認識する。その後、通信ができるよう、ノード内部のスイッチを切り替え(リソース確保)、RSVP-TEリザーブメッセージ(RSVP Resv)をパスにおける前のホップであるノード216へ送信する。このRSVP-TEリザーブメッセージには、通信システム全体で設定しようとするパスを一意に特定するための識別子、パスの始点ノードと終点ノードの識別子、および終点ノード217の確保したリソース情報、が含まれる。
 RSVP-TEリザーブメッセージを受信したノード216は、メッセージに含まれる、パスの始点ノードと終点ノードの識別子およびパスの一意特定のための識別子から、以前に受信したRSVP-TEパスメッセージのどのパスに対応するものかを識別する。そして、RSVP-TEメッセージ受信の際に予約したリソースの情報に従って、ノード内部のスイッチを切り替え、RSVP-TEリザーブメッセージをノード215へ送信する。このメッセージに含まれる情報は、終点ノード217からノード216に送信されるものと同様であるが、確保リソース情報については、それまでの各ノードの確保したリソース情報を順に並べたもの、ここではノード216および終点ノード217の確保リソース情報が含まれる。
 その後、ノード215,214,213,212において同様の手順を経て、RSVP-TEリザーブメッセージが、始点ノード211へ到達する。
 RSVP-TEリザーブメッセージを受信した始点ノード211は、他のノード同様、ノード212との間で予約したリソース情報に従ってノード内部のスイッチを切り替える。そして、自身がパスの始点であることから、パス全体の設定が完了したことを認識し、パス設定完了メッセージ(Resv Reply)をパス要求者260へ送る。このメッセージには、通信システム全体で設定したパスを一意に特定するための識別子、パスの始点ノードと終点ノードの識別子、および始点ノード211から終点ノード217までの各ノードの確保したリソース情報、が含まれる。
 このパス設定完了メッセージを受信することにより、パス要求者260はパスの設定が完了したことを認識し、パス設定処理が完了となる。
 なお、上述した「RSVP-TE」の仕様は、IETF(Internet Engineering Task Force)により標準化されており、例えば、GMPLSにより制御されるネットワークのためのRSVP-TEの各メッセージの情報が、非特許文献1に記載されている。
特開2003-224586号公報
L.Berger、「アール・エフ・シー3473(RFC3473: "Generalized Multi-Protocol Label Switching (GMPLS) SignalingResource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions")」、2003年1月、セクション10
 しかしながら、上述した通信回線(パス)の設定方法では、シグナリングによるパス設定時間が経由するノード数(パスのホップ数)に比例して増大してしまうという問題があった。これは、始点ノードから終点ノードまで、シグナリングによるパス設定をシーケンシャルに行っていくためである。
 このため、本発明の目的は、上述した課題である、シグナリングによるパス設定時間の増大、ということを解決する通信システムを提供することにある。
 かかる目的を達成するため本発明の一形態である通信装置は、
 ネットワーク上に設置されたノード装置のうち、予め定められたノード装置により構成される特定のネットワーク構成内の接続制御を行う上位シグナリング装置と、
 シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路を、上記上位シグナリング装置が接続制御を行う特定のネットワーク構成の境界に基づいて分割する要求経路分割手段と、を備える。
 そして、上記上位シグナリング装置は、自装置が接続制御するネットワーク構成に含まれる上記要求経路分割手段にて分割された分割経路を設定するよう接続制御を行う分割経路設定手段を備えた、
という構成をとる。
 また、本発明の他の形態である通信制御方法は、
 シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路を、上位シグナリング装置が接続制御を行うよう予め定められた特定のネットワーク構成の境界に基づいて分割し、
 上記上位シグナリング装置が、自装置が接続制御するネットワーク構成に含まれる上記分割された分割経路を設定するよう接続制御を行う、
という構成をとる。
 また、本発明の他の形態であるプログラムは、
 ネットワーク上に設置されたノード装置のうち、予め定められたノード装置により構成される特定のネットワーク構成内の接続制御を行う上位シグナリング装置に、
 シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路を、上位シグナリング装置が接続制御を行う特定のネットワーク構成の境界に基づいて分割する要求経路分割手段と、
 自装置が接続制御するネットワーク構成に含まれる上記要求経路分割手段にて分割された分割経路を設定するよう接続制御を行う分割経路設定手段と、
を実現させるためのプログラムである。
 また、本発明の他の形態であるプログラムは、
 ネットワーク上に設置されたノード装置のうち、予め定められたノード装置により構成される特定のネットワーク構成内の接続制御を行う上位シグナリング装置に、
 予め記憶された所定の経路の接続制御に要した時間と、このとき経由したノード装置の数と、が関連付けられた情報と、シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路が上位シグナリング装置が接続制御を行う特定のネットワーク構成の境界に基づいて分割された分割経路にて経由するノード装置の数と、に基づいて、当該分割経路の接続制御に要する予測時間を算出する予測時間算出手段と、
 上記予測時間算出手段にて算出した予測時間に応じて、上記分割経路をさらに分割する経路再分割手段と、
 自装置が接続制御するネットワーク構成に含まれる上記分割経路あるいは上記再分割された再分割経路を設定するよう接続制御を行う分割経路設定手段と、
を実現させるためのプログラムである。
 本発明は、以上のように構成されることにより、シグナリングによる通信回路の設定を、高速に行うことができる。
本発明に関連する通信システムの構成を説明するブロック図である。 本発明に関連する通信システムの動作を説明するシーケンス図である。 実施形態1における通信システムの構成を説明するブロック図である。 図3に開示した上位シグナリング装置の構成を説明する機能ブロック図である。 図3に開示した通信システムの動作を説明するシーケンス図である。 図3に開示した上位シグナリング装置の動作を説明するフローチャートの前半部分である。 図3に開示した上位シグナリング装置の動作を説明するフローチャートの後半部分である。 実施形態2における上位シグナリング装置の構成を説明する機能ブロック図である。 実施形態2におけるパス要求者の構成を説明する機能ブロック図である。 実施形態2における通信システムの動作を説明するシーケンス図である。 図9に開示したパス要求者の動作を説明するフローチャートである。 図8に開示した上位シグナリング装置の動作を説明するフローチャートの前半部分である。 図8に開示した上位シグナリング装置の動作を説明するフローチャートの後半部分である。 実施形態3における通信システムの構成を説明するブロック図である。 実施形態3における通信システムの構成の変形例を説明するブロック図である。 実施形態3における通信システムの構成の変形例を説明するブロック図である。
 <実施形態1>
 本発明の第1の実施形態を、図3乃至図7を参照して説明する。図3は、通信システムの構成を説明するブロック図であり、図4は、通信システムに含まれる上位シグナリング装置の構成を説明する機能ブロック図である。図5は、通信システムの動作を説明するシーケンス図であり、図6及び図7は、上位シグナリング装置の動作を説明するフローチャートである。
 [構成]
 本実施形態における通信システムは、ネットワーク上に設置された複数のノード11等と、これらノード間の接続制御を行う上位シグナリング装置41等と、通信回線の設定を要求する装置であるパス要求者60と、を備えている。具体的に、図1に示す通信システムは、ドメイン1,2,3から構成されており、ノード11,12,18,19はドメイン1に、ノード13,14,15,20,21,22はドメイン2に、ノード16,17,23,24はドメイン3に、それぞれ所属している。そして、各ノード同士は、図の実線で示したリンクにより、互いに接続されている。
 また、上位シグナリング装置41,42,43は、それぞれドメイン1,2,3内のネットワーク構成を担当範囲として、当該担当範囲内に設置された各ノード間の接続制御を行う。また、上位シグナリング装置41,42,43は、担当範囲内のネットワーク構成を表すトポロジ情報(ネットワーク構成情報)と、過去のシグナリングに要した時間の履歴情報と、を持つ。また、パス要求者60は、ノード11からノード17まで、経路31に沿ったパスの設定を要求しているものとする。
 次に、上記上位シグナリング装置40の構成を、図4を参照して説明する。上位シグナリング装置40は、演算装置と記憶装置とを備えたコンピュータにて構成されており、後述するように、ノード11等の経路を設定するよう作動する。そして、図4に示すように、上位シグナリング装置40は、装置全体の制御を行う上位シグナリング装置制御部51と、パス要求者、他の上位シグナリング装置およびノードとの通信を行う他装置通信部52と、パス要求者または他の上位シグナリング装置から受信したパスの経路の分割および管理をする経路分割部53と、シグナリングに要した時間の管理を行うシグナリング時間管理部54と、を備えている。なお、上記各部51~54は、上位シグナリング装置40が備える演算装置にプログラムが組み込まれることによって構築される。
 また、上位シグナリング装置40は、担当範囲内のネットワーク構成を表すトポロジ情報(ネットワーク構成情報)を保持するトポロジ情報DB(データベース)55と、過去のシグナリングに要した時間を保持するシグナリング時間履歴DB(データベース)56と、隣接する上位シグナリング装置およびその担当範囲の境界ノードとそのノードに接続するリンクの識別子を保持する隣接上位シグナリング装置DB(データベース)57と、を備える。これら各データベース55~57は、例えば、上位シグナリング装置40に装備された記憶装置に形成されている。なお、各構成が有する機能については、以下の動作説明にて説明する。
 [動作]
 次に、上述した通信システムの動作を、図3及び図5を参照して説明する。図5は、図3に示す通信システムにおけるパス設定のメッセージのやり取りのシーケンスを示した図である。
 まず、パス要求者60(経路要求装置)は、設定しようとするパスの始点ノードを担当範囲に含む上位シグナリング装置41に対して、上位パス設定指示メッセージ(Higher Path Cmd)を送る。つまり、パス要求者60は、上位シグナリング装置41に対して、設定しようとするパス(要求経路)をシグナリングにより設定するよう要求する。
 そして、上記上位パス設定指示メッセージには、「通信システム全体で設定しようとするパスを一意に特定するための識別子」、「パスの始点ノードと終点ノードの識別子」、「パスの通過するインターフェースの識別子を順に並べたパスの経路情報」、「パス設定の要求時間とパス設定指示メッセージを送信した時刻」が含まれる。ここでは、「パス設定の要求時間」は「1秒」、「パス設定指示メッセージ送信時刻」が「00時00分00秒」であるとする。また、通信システムのネットワークが、各ノードにて光-電気-光変換を行わず、光通信信号がトランスペアレントに伝送されるようなネットワークであり、設定するパスがエンド間で特定の1つの波長を使用する波長パスの場合は、上記上位パス設定指示メッセージに、どの波長を使用するかというリソース情報が含まれることもある。
 また、上記パス設定指示メッセージを受信した上位シグナリング装置41は、経路分割部53(要求経路分割手段)にて、受信した経路31に自装置である上位シグナリング装置41の担当範囲が存在する場合には、当該経路31を自身の担当範囲の境界に従って分割して、自身が担当する部分経路(分割経路)を特定して抜き出す。具体的には、受信した経路31(要求経路)と、自身の持つトポロジ情報と、を比較し、受信した経路31のうち自身の担当範囲に含まれる部分経路を特定する。図3の例では、上位シグナリング装置41が担当する部分経路は、ノード11,12,13の部分経路32が該当する。
 そして、上位シグナリング装置41は、自身の担当範囲に含まれる部分経路を特定すると、パス要求者60から受信した経路31から、自身の担当範囲に含まれる部分経路を取り除いた経路、すなわち、図3の例では、ノード13~ノード17までの経路を経路情報として含む上位パスメッセージ(Higher Path)を、ノード13から先の経路を担当範囲とする上位シグナリング装置42に送信する。但し、上位パスメッセージに含まれる経路情報は、パス要求者60から受信した経路31そのものであってもよい。
 なお、上記上位パスメッセージには、上述の経路情報の他に、パス要求者60から受信したメッセージと同様の、通信システム全体で設定しようとするパスを一意に特定するための識別子、パスの始点ノード11と終点ノード17の識別子、上位シグナリング装置41の担当範囲の部分経路32の終点ノード13の識別子、およびパス設定指示メッセージにリソース情報が含まれていた場合にはそのリソース情報、それに加えて、パス要求者60からのパス設定要求時間とパス設定指示メッセージ送信時刻、が含まれる。
 そして、上位シグナリング装置41は、上述したように、担当範囲の経路検索と上位パスメッセージ送信を行った後に、シグナリング時間管理部(予測時間算出手段)54にて、過去のシグナリングに要した時間の履歴情報と、担当範囲の経路の経由ノード数とから、シグナリングの予測時間を計算する。具体的に、ここでは、上位シグナリング装置41の過去のシグナリング時間としては、平均で1つの経由ノード数(1ホップ)当たり400ミリ秒であったとする。このとき、上位シグナリング装置41の担当範囲の経路32は2ホップであるため、シグナリングに要する時間(予測時間)は800ミリ秒と予測算出される。
 また、上位シグナリング装置41がパス要求者60からパス設定指示メッセージを受信した時刻を「00時00分00.05秒」(パス設定指示メッセージ送信から50ミリ秒後)とすると、パス設定要求時間まで残り950ミリ秒である。この時間と先ほど計算した予測時間を比較すると、パス設定要求時間までにシグナリングを完了できると予測できる。つまり、パス設定指示メッセージ送信からかかった時間(50ミリ秒)とシグナリングに要する時間(800ミリ秒)を加算した実際にパスの設定に要する予測時間(850ミリ秒)が、パス設定要求時間よりも短いため、上位シグナリング装置41がパス設定要求時間までに経路32のパス設定を完了できると判断できる。このため、上位シグナリング装置41は、経路32の始点ノード11に対してパス設定指示メッセージ(Path Cmd)を送信する。
 上位シグナリング装置41からノード11に対して送信された上記パス設定指示メッセージには、通信システム全体で設定しようとするパスを一意に特定するための識別子、パス全体の始点ノード11と終点ノード17の識別子、経路32の始点ノード11と終点ノード13の識別子、およびパス設定指示メッセージにリソース情報が含まれていた場合にはそのリソース情報、そしてこれが並列シグナリングであることを示す情報(フラグなど)、が含まれる。また、上位シグナリング装置41は、このパス設定指示メッセージを送信した時刻を記憶しておく。
 また、上位シグナリング装置41からパス設定指示メッセージを受信したノード11は、上記背景技術で図1,2を参照して説明した始点ノード211と同様に、次のホップとなるノードおよびパスを設定すべきリソースを特定してそのリソースを予約し、次のノード12にRSVP-TEパスメッセージを送る。このメッセージに含まれる情報は、経路情報として経路32の情報が入る点以外は、背景技術において始点ノード211がノード212に送信したRSVP-TEパスメッセージと同様である。また、その後のノード12の動作は背景技術と同様であり、ノード13にRSVP-TEパスメッセージを送信する。
 その後、RSVP-TEパスメッセージを受信したノード13は、後述するように、上位シグナリング装置42から、経路33に沿ったパス設定指示メッセージ(Path Cmd)を受信しており、そのメッセージに含まれる情報と、RSVP-TEパスメッセージの情報から、2つのメッセージが同一のパスに対応するものであることを識別する。また、上位シグナリング装置42からのパス設定指示メッセージには、経路33の始点ノード13の識別子および経路32の終点ノード13の識別子が含まれることから、ノード13は経路の分割点であり、受信したRSVP-TEパスメッセージのシグナリングについては自身が終点ノードであることを認識する。
 このため、ノード13は、ノード12との間で予約すべきリソースとノード13との間で予約したリソースとを同じパスに対するリソースとして予約した後、それらのリソースの間で通信データをやりとりできるよう、ノード内部のスイッチを切り替える。そして、受信したRSVP-TEパスメッセージに対応するRSVP-TEリザーブメッセージをノード12へ送信する。このメッセージには、背景技術において終点ノード217がノード216へ送信したもの同様、通信システム全体で設定しようとするパスを一意に特定するための識別子、パスの始点ノード11と終点ノード17の識別子、およびノード13の確保リソース情報、が含まれる。
 その後、ノード11へRSVP-TEリザーブメッセージが届き、経路32に沿ったシグナリングが完了するまでは、上述した背景技術のRSVP-TEの動作と同様である。
 そして、上述したように経路32に沿ったシグナリングが完了すると、ノード11は上位シグナリング装置41に対してパス設定完了メッセージ(Resv Reply)を送信する。このパス設定完了メッセージには、通信システム全体で設定しようとするパスを一意に特定するための識別子、パス全体の始点ノード11と終点ノード17の識別子、および始点ノード11からノード13までの各ノードの確保したリソース情報、が含まれる。
 このパス設定完了メッセージを受信した上位シグナリング装置41は、メッセージ受信時刻と、先に記憶しておいたパス設定指示メッセージ送信時刻とから、シグナリングにかかった時間を計算し、経路32で経由したノード数に対応するホップ数と共に、過去のシグナリングに要した時間の履歴情報として、シグナリング時間履歴データベース56(経路設定時間記憶手段)に保存する。また、このパスについて上位シグナリング装置42へ上位パスメッセージを送っているため、それに対する応答を受信したかどうかをチェックし、まだ受信していなければそれを待ち、受信している場合はパス要求者へ応答を返す。ここでは、上位シグナリング装置42への上位パスメッセージに対する応答は受信していないものとする。
 続いて、上述した上位シグナリング装置41から上位パスメッセージを受信した上位シグナリング装置42は、上記上位シグナリング装置41と同様の処理を行い、上位シグナリング装置43へ同様の上位パスメッセージを送信する。つまり、上位シグナリング装置42は、他の上位シグナリング装置41から受信した経路情報から自身の担当範囲の境界に従って分割して、自身が担当する部分経路(分割経路)を特定して抜き出す。図3の例では、上位シグナリング装置42が担当する部分経路は、ノード13,14,15,16の部分経路33,34が該当する。なお、上位シグナリング装置43は、他の上位シグナリング装置同様、自身の担当範囲に含まれる経路の検索を行うが、その担当範囲に終点ノード17を含むため、上位パスメッセージの送信は行わないこととなる。
 そして、上記上位シグナリング装置42は、担当範囲の経路検索と上位パスメッセージ送信を行った後、上位シグナリング装置41と同様に、過去のシグナリングに要した時間の履歴情報と、担当範囲の経路の経由ノード数とから、シグナリングの予測時間を計算する。ここでは、上位シグナリング装置42の過去のシグナリング時間、つまり、単位数のノードを経由する経路の設定に要する時間(単位ノード数設定時間)として、平均で1ホップ当たり400ミリ秒であったとする。上位シグナリング装置42の担当範囲の経路であるノード13からノード16までの経路は3ホップであるため、シグナリングに要する時間は「1200ミリ秒」と予測される。
 そして、上位シグナリング装置42が上位シグナリング装置41から上位パスメッセージを受信した時刻を「00時00分00.10秒」(パス要求者60のパス設定指示メッセージ送信から100ミリ秒後)とすると、パス設定要求時刻まで残り900ミリ秒である。この時間と先ほど計算した予測時間である1200ミリ秒を比較すると、パス設定要求時間までにシグナリングは完了しないと予測できる。つまり、パス設定指示メッセージ送信からかかった時間(100ミリ秒)とシグナリングに要する時間(1200ミリ秒)を加算した実際にパスの設定に要する予測時間(1300ミリ秒)が、パス設定要求時間よりも長いため、上位シグナリング装置41がパス設定要求時間までに経路32のパス設定を完了できないと判断できる。このため、上位シグナリング装置42は、経路分割部53(経路再分割手段)にて経路をさらに分割する。
 このとき、900ミリ秒以内でパスを設定するための最大ホップ数は2ホップ(400ミリ秒×2=800ミリ秒)であることがわかるため、上位シグナリング装置42は、ノード13からノード16までの経路を、ノード13からノード15までの経路33と、ノード15からノード16までの経路34と、に再分割する。つまり、パス設定指示メッセージ送信からかかった時間(100ミリ秒)とそれぞれ再分割される経路33,34でシグナリングに要する各時間(800ミリ秒、または、400ミリ秒)とを加算した実際にパスの設定に要する各予測時間(900ミリ秒、または、500ミリ秒)が、パス設定要求時間よりも短くなるよう、ノード13からノード16までの経路を、経路33と経路34とに再分割する。
 そして、上位シグナリング装置42は、各経路33,34の各始点ノード13,15に対して、パス設定指示メッセージ(Path Cmd)をそれぞれ送信する。このメッセージに含まれる情報は、上位シグナリング装置41がノード11に送ったものと同様のものに加えて、全体経路の中で1つ前に位置する部分経路の終点ノードの識別子が含まれる点が異なる。すなわち、ノード13へのメッセージにはノード13の識別子が、ノード15へのメッセージにはノード15の識別子が含まれる。上述したように、ノード13は、この情報から、自身が前の経路32の終点ノードであることを認識し、ノード15も同様に、自身が前の経路33の終点ノードであることを認識する。
 その後の経路33と経路34に対するシグナリング処理は、上述した上位シグナリング装置41による経路32に対するものと同様であり、上位シグナリング装置42は、ノード13とノード15とからそれぞれパス設定完了メッセージ(Resv Reply)を受信し、経路33と経路34とをそれぞれを別のシグナリングとして、シグナリング時間の計算と情報保存を行う。その後、上位シグナリング装置41の場合同様、上位シグナリング装置43へ送信した上位パスメッセージに対する応答を待つ。
 そして、上位シグナリング装置43は、担当範囲の経路検索を行った後、上位シグナリング装置41,42と同様に、過去のシグナリングに要した時間の履歴情報と、担当範囲の経路の経由ノード数とから、シグナリングの予測時間を計算する。ここでは、上位シグナリング装置43の過去のシグナリング時間としては、平均で1ホップ当たり400ミリ秒であったとする。そして、上位シグナリング装置43の担当範囲の経路35は1ホップであるため、シグナリングに要する時間は400ミリ秒と予測される。このとき、上位シグナリング装置43が上位シグナリング装置42から上位パスメッセージを受信した時刻を「00時00分00.15秒」(パス要求者のパス設定指示メッセージ送信から150ミリ秒後)とすると、パス設定要求時刻まで残り850ミリ秒である。この時間と先ほど計算した予測時間を比較すると、パス設定要求時刻までにシグナリングを完了できると予測できるため、上位シグナリング装置43は、経路35の始点ノード16に対してパス設定指示メッセージ(Path Cmd)を送信する。その後、上位シグナリング装置43がパス設定完了メッセージ(Resv Reply)を受信し、シグナリング時間を計算、保存するまでは他の上位シグナリング装置と同様である。
 また、上位シグナリング装置43は、他の上位シグナリング装置に上位パスメッセージを送信していないため、ノード16からパス設定完了メッセージを受信すると、上位シグナリング装置42へ上位リザーブメッセージ(Higher Resv)を送信する。このメッセージに含まれる情報は、通信システム全体で設定したパスを一意に特定するための識別子、パスの始点ノード11と終点ノード17の識別子、および経路35に沿った各ノードの確保したリソース情報が含まれる。
 上位シグナリング装置42は、上位シグナリング装置43から上位リザーブメッセージを受信すると、自身の担当範囲のシグナリングについて、全てのパス設定完了メッセージがノードから届いているかをチェックし、まだ受信していなければそのメッセージを待つ。ここでは、先に述べたように、上位シグナリング装置42は、すでにノード12,15からパス設定完了メッセージ(Resv Reply)を受信しているため、上位シグナリング装置41へ上位リザーブメッセージを送信する。このメッセージに含まれる情報は、通信システム全体で設定したパスを一意に特定するための識別子、パスの始点ノード11と終点ノード17の識別子、および経路33,34,35に沿った各ノードの確保したリソース情報が含まれる。
 上位シグナリング装置41は、上位シグナリング装置42から上位リザーブメッセージを受信すると、自身の担当範囲のシグナリングについて、全てのパス設定完了メッセージがノードから届いているかをチェックし、まだ受信していなければそのメッセージを待つ。ここでは、先に述べたように、上位シグナリング装置41は、すでにノード11からパス設定完了メッセージ(Resv Reply)を受信しているため、パス要求者60へ上位パス設定完了メッセージ(Higher Resv Reply)を送信する。このメッセージに含まれる情報は、通信システム全体で設定したパスを一意に特定するための識別子、パスの始点ノード11と終点ノード17の識別子、および経路32,33,34,35に沿った各ノード、すなわち経路31に沿った各ノードの確保したリソース情報が含まれる。
 パス要求者60は、上位シグナリング装置41から上位パス設定完了メッセージ(Higher Resv Reply)を受信することにより、パスの設定が完了したことを認識し、パス設定処理が完了となる。
 なお、本発明の実施形態1における通信システムの構成は、必ずしも図3の構成に限定されるものではない。例えば、上位シグナリング装置の担当範囲がドメイン境界と一致しない場合や、ネットワークのドメイン構成やドメイン内のトポロジ構成などが異なる場合など、ここで説明した通信システムの動作を逸脱しない範囲でパスの設定が行える通信システムの構成であればよい。
 次に、上述した上位シグナリング装置40(41,42,43)の具体的な動作を、図4、図6、図7を参照して説明する。なお、図6、図7は、図4に示した構成である実施形態1における上位シグナリング装置の動作を説明するフローチャートである。
 上位シグナリング装置40の他装置通信部52は、パス要求者60から上位パス設定指示メッセージ(Higher Path Cmd)または他の上位シグナリング装置から上位パスメッセージ(Higher Path)を受信する(ステップS1)と、メッセージを上位シグナリング装置制御部51へ送り、当該上位シグナリング装置制御部51は、経路分割部53にメッセージを転送する。
 経路分割部53は、トポロジ情報データベース65と隣接上位シグナリング装置データベース57を参照して、受信したメッセージの経路から、自身の担当範囲に含まれる部分を検索する(ステップS2)。そして、担当範囲に含まれる経路、および他の上位シグナリング装置へ上位パスメッセージを送信する必要がある場合はその上位シグナリング装置の識別子を、上位シグナリング装置制御部51へ返す。
 上位シグナリング装置制御部51は、他の上位シグナリング装置の識別子が送られてきた場合は(ステップS3:Yes)、他装置通信部52を通して、その上位シグナリング装置へ上位パスメッセージを転送する(ステップS4)。この上位パスメッセージには、先に受信した上位パスメッセージの経路より、経路分割部53の送ってきた自身の担当範囲に含まれる経路を除いたものを入れる。経路分割部53から他の上位シグナリング装置の識別子が送られてこない場合は(ステップS3:No)、上位パスメッセージ転送は行わない。
 次に、上位シグナリング装置制御部51は、経路分割部53に対して、自身の担当範囲内の経路の分割が必要かを問い合わせる。問い合わせを受けた経路分割部53は、まずシグナリング時間管理部54に対して、自身の担当範囲内の経路のホップ数を送ってシグナリングに要する予測時間の算出を依頼する。シグナリング時間管理部54は、シグナリング時間履歴データベース56を参照して、シグナリングに要する予測時間を算出し(ステップS5)、経路分割部53へ返す。予測時間算出の方法は、本実施形態の通信システムの動作において説明した通りである。
 経路分割部53は、上位シグナリング装置制御部51が上位パス設定指示メッセージまたは上位パスメッセージを受信した時刻と、メッセージに含まれるパス要求者の上位パス設定指示メッセージ送信時刻とから、パス設定の残り時間を算出する(ステップS6)。そして、残り時間と予測時間とを比較し、予測時間の方が大きい場合は(ステップS7:No)、経路を分割し(ステップS8)、それぞれの経路情報を上位シグナリング装置制御部51へ送る。経路分割の方法は、上述した本実施形態の通信システムの動作において説明した通りである。残り時間の方が大きい場合は(ステップS7:Yes)、経路分割は行わずにそのままの経路を上位シグナリング装置制御部51へ送る。
 上位シグナリング装置制御部51は、他装置通信部52を通して各経路の始点ノードに対して、パス設定指示メッセージ(Path Cmd)を送信する(ステップS9)。また、この際に上位シグナリング装置制御部51は、パス設定指示メッセージの送信時刻を記憶しておく。
 その後、上位シグナリング装置制御部51は、他装置通信部52を通して、始点ノードからパス設定完了メッセージ(Resv Reply)または上位シグナリング装置から上位リザーブメッセージ(Higher Resv)を受信する(ステップS10)。
 始点ノードからパス設定完了メッセージを受信した場合(ステップS11:Resv Reply)、上位シグナリング装置制御部51は、パス設定指示メッセージ送信時刻とパス設定完了メッセージ受信時刻からシグナリングに要した時間を算出し、受信したパス設定完了メッセージの各情報とともに経路分割部53へ送る。経路分割部53は、自身の管理している分割経路のうち、どの経路に対するものかを識別し、その経路のホップ数と、上位シグナリング装置制御部51から送られてきたシグナリング時間をシグナリング時間管理部54へ送る。シグナリング時間管理部54は、受信した情報をそのまま、あるいは1ホップ当たりのシグナリング時間に加工するなどして、シグナリング時間履歴データベース56に保存する(ステップS12)。
 上位シグナリング装置から上位リザーブメッセージを受信した場合(ステップS11:Higher Resv)は、上位シグナリング装置制御部51は受信したメッセージの情報のみを経路分割部53へ送り、シグナリング時間算出、保存は行わない。
 その後、経路分割部53は、そのパスに関連する全てのパス設定完了メッセージおよび上位リザーブメッセージの受信が完了したかをチェックする(ステップS13)。まだ受信していないメッセージがあれば(ステップS13:No)、上位シグナリング装置制御部51への応答としてメッセージを待つ必要があることを通知する。全てのメッセージ受信が完了していれば(ステップS13:Yes)、他の上位シグナリング装置から受信した上位リザーブメッセージに含まれる確保リソース情報に、自身の担当範囲における確保リソース情報を追加して、応答メッセージの送り先装置の情報とともに上位シグナリング装置制御部51への応答として返す。全てのメッセージ受信完了の応答を受け取った上位シグナリング装置制御部51は、応答メッセージの送り先が他の上位シグナリング装置である場合には上位リザーブメッセージを、パス要求者である場合には上位パス設定完了メッセージ(Higher Resv Reply)を、他装置通信部52を通して送信する(ステップS14)。
 以上のように、本実施形態における通信システムによると、設定しようとするパスの経路を複数に分割し、それぞれの分割経路ごとにシグナリング処理を上位シグナリング装置が並列に行うため、シグナリングによるパス設定を高速に行うことができる。また、要求されたパス設定時間と過去の履歴に基づくシグナリング完了予測時間とから、適切にパスの経路を分割してシグナリング処理を並列に行うため、シグナリングによるパス設定を、パス要求者の要求するパス設定時間内に完了させることができる。
 <実施形態2>
 次に、本発明の第2の実施形態を、図8乃至図13を参照して説明する。図8は、上位シグナンリグ装置の構成を示すブロック図であり、図9は、パス要求者60の構成を示すブロック図である。
 本実施形態においては、上述した実施形態1の通信システムにおける上位シグナリング装置同士のパス情報の共有において、上位シグナリング装置の間で上位パスメッセージ、上位リザーブメッセージをやり取りするのではなく、パス要求者60と各上位シグナリング装置40(41等)とが、直接上位パス設定指示メッセージ、上位パス設定完了メッセージをやり取りする点で、上記実施形態1と異なる。なお、他の動作は実施形態1と同様である。
 [構成]
 本発明の実施形態2における通信システムの構成は、図3に示した実施形態1のものと同様であるため、説明は省略する。
 また、図8に、本実施形態における上位シグナリング装置の構成を示す。図8に示す上位シグナリング装置40の備える構成は、図4の上位シグナリング装置40のものとほぼ同様であるが、他装置通信部52の通信相手がパス要求者60およびノード11等のみであり、他装置通信部52の構成が異なる。また、図4に示した隣接上位シグナリング装置データベース57を備えていない点で異なる。その他の構成は、上記実施形態1のものと同様であるため、説明は省略する。
 また、本実施形態におけるパス要求者60の構成を、図9を参照して説明する。パス要求者60は、演算装置と記憶装置とを備えたコンピュータにて構成されており、後述するように、上位シグナリング装置40(41等)に対して、経路を設定するよう要求する。そして、図9に示すように、パス要求者60は、装置全体の制御を行うパス要求者装置制御部61と、上位シグナリング装置との通信を行う他装置通信部62と、パスの経路の分割および管理をする経路分割部63(要求経路分割手段)と、上位シグナリング装置40に経路の要求を行う経路設定要求部64と、を備えている。なお、上記各部61~64は、パス要求者60が備える演算装置にプログラムが組み込まれることによって構築される。
 また、パス要求者60は、各上位シグナリング装置40(41等)のそれぞれ担当範囲内のネットワーク構成を表すトポロジ情報(ネットワーク構成情報)を保持するトポロジ情報データベース65を備える。但し、このトポロジ情報は、パス要求者60が記憶していなくてもよく、各上位シグナリング装置40から取得してもよい。なお、各構成が有する機能については、以下の動作説明にて説明する。
 [動作]
 本実施形態における通信システムの動作を、図8乃至図10を参照して説明する。図10は、図3に示す本実施形態の通信システムにおけるパス設定のメッセージのやり取りのシーケンスを示した図である。
 まず、パス要求者60の経路分割部63は、設定しようとするパスの経路を、上位シグナリング装置の担当範囲に基づいて分割する。これには、パスの通過する経路を担当範囲に持つ上位シグナリング装置の識別子およびそれぞれの担当範囲の境界の情報が必要であるため、例えば、予めトポロジ情報データベース65に記憶された情報に基づいて分割する。但し、パス要求者60によるこれらの情報の設定方法は任意であり、例えば、ルーティングの際に上位シグナリング装置40から取得するなど経路にそれらの情報が含まれていれば、それを用いてもよい。ここでは、パス要求者60は、ノード11~17の経路を、ノード11~13の経路、ノード13~16の経路、ノード16~17の経路に分割し、それぞれ上位シグナリング装置41,42,43に割り当てたものとする。
 そして、パス要求者60の経路設定要求部64は、それぞれの経路についての上位パス設定指示メッセージ(Higher Path Cmd)を、各上位シグナリング装置40(41等)へ送信する。これらのメッセージに含まれる情報は、経路情報が先に各上位シグナリング装置へ割り当てた経路である点以外は、上述した実施形態1の通信システムにおいて、パス要求者60が上位シグナリング装置41へ送信する上位パス設定指示メッセージの情報と同様である。
 上位パス設定指示メッセージをパス要求者60から受信した上位シグナリング装置41は、過去のシグナリングに要した時間の履歴情報と、担当範囲の経路の経由ノード数とから、シグナリングの予測時間を計算し、経路32に沿ったシグナリングをノード11へ指示し、シグナリング後、パス設定完了メッセージを受信し、シグナリング時間の履歴を保存する。この動作は、上述した実施形態1と同様である。
 その後、上位シグナリング装置41は、パス要求者60に上位パス設定完了メッセージ(Higher Resv Reply)を送信する。このメッセージに含まれる情報は、確保リソース情報が経路32に沿ったノードについてのものである点以外は、上述した実施形態1において、上位シグナリング装置41がパス要求者60へ送信する上位パス設定完了メッセージの情報と同様である。
 上位パス設定指示メッセージをパス要求者60から受信した上位シグナリング装置42は、過去のシグナリングに要した時間の履歴情報と、担当範囲の経路の経由ノード数とから、シグナリングの予測時間を計算した後、ノード13からノード16までの経路を、経路33及び経路34に分割し、それぞれについてシグナリング指示、パス設定完了メッセージ受信、およびシグナリング時間保存を行う。この動作は、上述した実施形態1と同様である。
 その後、上位シグナリング装置42は、パス要求者60に上位パス設定完了メッセージ(Higher Resv Reply)を送信する。このメッセージに含まれる情報は、確保リソース情報が経路33,34に沿ったノードについてのものである点以外は、本実施の形態において、上位シグナリング装置41がパス要求者60へ送信する上位パス設定完了メッセージの情報と同様である。
 上位パス設定指示メッセージをパス要求者60から受信した上位シグナリング装置43は、過去のシグナリングに要した時間の履歴情報と、担当範囲の経路の経由ノード数とから、シグナリングの予測時間を計算し、経路35に沿ったシグナリングをノード16へ指示し、シグナリング後、パス設定完了メッセージを受信し、シグナリング時間の履歴を保存する。この動作は、上述した実施形態1と同様である。
 その後、上位シグナリング装置43は、パス要求者60に上位パス設定完了メッセージ(Higher Resv Reply)を送信する。このメッセージに含まれる情報は、確保リソース情報が経路35に沿ったノードについてのものである点以外は、本実施の形態において、上位シグナリング装置41がパス要求者60へ送信する上位パス設定完了メッセージの情報と同様である。
 パス要求者60は、上位シグナリング装置41~43のすべてから上位パス設定完了メッセージ(Higher Resv Reply)を受信すると、パスの設定が完了したことを認識し、パス設定処理が完了となる。なお、本実施形態における通信システムの構成は、上述した実施形態1の通信システムの構成と同様に、必ずしも図3の構成に限定されるものではない。
 次に、上述した実施形態2におけるパス要求者60及び上位シグナリング装置40のそれぞれの動作を説明する。
 まず、図9及び図11を参照して、パス要求者60の動作を説明する。まず、パス要求者60は、設定しようとするパスの経路を、各上位シグナリング装置の担当範囲に基づいて分割する(ステップS21)。このとき、パスの通過する経路を担当範囲に持つ上位シグナリング装置の識別子およびそれぞれの担当範囲の境界の情報が必要であるため、予め登録されたトポロジ情報を用いたり、各上位シグナリング装置から取得した情報を用いる。そして、パス要求者60は、それぞれの経路についての上位パス設定指示メッセージ(Higher Path Cmd)を、各上位シグナリング装置へ送信する(ステップS22)。その後、パス要求者60は、上位シグナリング装置41~43のすべてから上位パス設定完了メッセージ(Higher Resv Reply)を受信すると(ステップS23)、パスの設定が完了したことを認識し、パス設定処理が完了となる。
 次に、図8、図12、図13を参照して、上位シグナリング装置の動作を説明する。上位シグナリング装置40の他装置通信部52は、パス要求者60から上位パス設定指示メッセージ(Higher Path Cmd)を受信すると(ステップS31)と、メッセージを上位シグナリング装置制御部51へ送る。上位シグナリング装置制御部51は、経路分割部53にメッセージを転送し、自身の担当範囲内の経路の分割が必要かを問い合わせる。
 問い合わせを受けた経路分割部53は、まずシグナリング時間管理部54に対して、自身の担当範囲内の経路のホップ数を送ってシグナリングに要する予測時間の算出を依頼する。シグナリング時間管理部54は、シグナリング時間履歴データベース56を参照して、シグナリングに要する予測時間を算出し(ステップS32)、経路分割部53へ返す。予測時間算出の方法は、上述した本実施形態の通信システムの動作において説明した通りである。
 経路分割部53は、上位シグナリング装置制御部51が上位パス設定指示メッセージを受信した時刻と、メッセージに含まれるパス要求者の上位パス設定指示メッセージ送信時刻とから、パス設定の残り時間を算出する(ステップS33)。そして、残り時間と予測時間とを比較し、予測時間の方が大きい場合は(ステップS34:No)、経路を分割し(ステップS35)、それぞれの経路情報を上位シグナリング装置制御部51へ送る。経路分割の方法は、上述した本実施形態の通信システムの動作において説明した通りである。残り時間の方が大きい場合は(ステップS34:Yes)、経路分割は行わずにそのままの経路を上位シグナリング装置制御部51へ送る。
 上位シグナリング装置制御部51は、他装置通信部52を通して各経路の始点ノードに対して、パス設定指示メッセージ(Path Cmd)を送信する(ステップS36)。また、この際、上位シグナリング装置制御部51は、パス設定指示メッセージの送信時刻を記憶しておく。
 その後、上位シグナリング装置制御部51は、他装置通信部52を通して、始点ノードからパス設定完了メッセージ(Resv Reply)を受信する(ステップS37)。上位シグナリング装置制御部51は、パス設定指示メッセージ送信時刻とパス設定完了メッセージ受信時刻からシグナリングに要した時間を算出し、受信したパス設定完了メッセージの各情報とともに経路分割部53へ送る。経路分割部53は、自身の管理している分割経路のうち、どの経路に対するものかを識別し、その経路のホップ数と、上位シグナリング装置制御部51から送られてきたシグナリング時間をシグナリング時間管理部54へ送る。シグナリング時間管理部54は、受信した情報をそのまま、あるいは1ホップ当たりのシグナリング時間に加工するなどして、シグナリング時間履歴データベース56に保存する(ステップS38)。
 その後、経路分割部53は、そのパスに関連する全てのパス設定完了メッセージの受信が完了したかをチェックする(ステップS39)。まだ受信していないパス設定完了メッセージがあれば(ステップS39:No)、上位シグナリング装置制御部51への応答としてメッセージを待つ必要があることを通知する。全てのパス設定完了メッセージ受信が完了していれば(ステップS39:Yes)、自身の担当範囲における確保リソース情報と、応答メッセージの送り先装置であるパス要求者の情報とともに上位シグナリング装置制御部51への応答として返す。全てのメッセージ受信完了の応答を受け取った上位シグナリング装置制御部51は、応答メッセージの送り先であるパス要求者に上位パス設定完了メッセージ(Higher Resv Reply)を、他装置通信部52を通して送信する(ステップS40)。
 以上のように、本発明の第2の実施形態における通信システムであっても、設定しようとするパスの経路を複数に分割し、それぞれの分割経路ごとにシグナリング処理を上位シグナリング装置が並列に行うため、シグナリングによるパス設定を高速に行うことができる。また、要求されたパス設定時間と過去の履歴に基づくシグナリング完了予測時間とから、適切にパスの経路を分割してシグナリング処理を並列に行うため、シグナリングによるパス設定を、パス要求者の要求するパス設定時間内に完了させることができる。
 <実施形態3>
 本発明の第3の実施形態を、図14乃至図16を参照して説明する。なお、本実施形態では、上述した通信システムの構成の概略を示す。
 図14に示すように、本発明の一形態である通信システムは、
 ネットワーク上に設置されたノード装置のうち、予め定められたノード装置111,112,113,114により構成される特定のネットワーク構成101内の接続制御を行う上位シグナリング装置140と、
 シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路を、上記上位シグナリング装置140が接続制御を行う特定のネットワーク構成101の境界に基づいて分割する要求経路分割手段153と、を備える。
 そして、上記上位シグナリング装置140は、自装置が接続制御するネットワーク構成101に含まれる上記要求経路分割手段153にて分割された分割経路を設定するよう接続制御を行う分割経路設定手段151を備えた、
という構成をとる。
 また、上述した通信システムの変形例は、図15に示すように、
 上記上位シグナリング装置140に対して上記要求経路をシグナリングにより設定するよう要求する経路要求装置160を備える。
 そして、上記上位シグナリング装置140が、上記要求経路分割手段153を備えると共に、自装置が接続制御するネットワーク構成を特定するネットワーク構成情報を記憶し、
 上記上位シグナリング装置140が備えた上記要求経路分割手段153は、上記経路要求装置160から要求された上記要求経路のうち、自装置に記憶された上記ネットワーク構成情報が含まれる部分を特定して上記分割経路として分割する、
という構成をとる。
 そして、上記通信システムでは、
 上記上位シグナリング装置140が有する上記要求経路分割手段153は、上記要求経路を他の上位シグナリング装置に転送する機能を有すると共に、他の上位シグナリング装置から受信した上記要求経路のうち自装置に記憶された上記ネットワーク構成情報が含まれる部分を特定して上記分割経路として分割する、
という構成をとる。
 また、上述した通信システムの変形例は、図16に示すように、
 上記上位シグナリング装置140に対して上記要求経路をシグナリングにより設定するよう要求する経路要求装置160を備えると共に、当該経路要求装置160が、上記要求経路分割手段153を備える。
 そして、上記経路要求装置160が備えた上記要求経路分割手段153は、上記要求経路を、上記上位シグナリング装置140が接続制御する特定のネットワーク構成101を表すネットワーク構成情報に基づいて分割し、当該分割した分割経路の設定を行うよう上記上位シグナリング装置140に要求する、
という構成をとる。
 上記構成の通信システムによると、まず、経路要求装置から要求される要求経路を、各上位シグナリング装置が接続制御する各ネットワーク構成の境界に基づいて分割する。なお、要求経路の分割は、経路要求装置あるいは各上位シグナリング装置が行う。そして、上記分割された分割経路を、各上位シグナリング装置がそれぞれ接続制御する。これにより、各上位シグナリング装置にて確立された各分割経路にて、要求経路の接続が確立されることとなる。以上のように、要求経路を分割して、各上位シグナリング装置にて並列にシグナリング処理を実行しているため、高速に要求経路の設定処理を実現できる。
 また、上記通信システムでは、
 上記上位シグナリング装置が、
 過去に接続制御を行った経路の設定に要した時間と、このとき経由したノード装置の数と、を関連付けて記憶する経路設定時間記憶手段と、
 上記分割経路にて経由するノード装置の数に基づいて、上記経路設定時間記憶手段に記憶された情報から上記分割経路の接続制御に要する予測時間を算出する予測時間算出手段と、
 上記予測時間算出手段にて算出した予測時間に応じて、上記分割経路をさらに分割する経路再分割手段と、を備えると共に、
 上記上位シグナリング装置が備える上記分割経路設定手段は、上記経路再分割手段にて分割された再分割経路を設定するよう接続制御を行う、
という構成をとる。
 そして、上記経路再分割手段は、上記予測時間算出手段にて算出した上記予測時間と、上記経路要求装置から要求された予め設定されている設定要求時間と、を比較し、上記設定要求時間よりも上記予測時間が長い場合に、上記分割経路を分割する、
という構成をとる。
 さらに、上記経路再分割手段は、上記経路設定記憶手段に記憶されている情報から算出された、予め設定された単位数のノード装置を経由する経路の設定に要する時間を表す単位ノード数設定時間に基づいて、上記再分割経路を接続制御して設定するときに要すると予測される時間が上記設定要求時間を超えないよう上記分割経路を分割して上記再分割経路を定める、
という構成をとる。
 上記構成によると、上位シグナリング装置は、まず、すでに接続制御を行った経路の設定に要した時間と、このときに経由したノード装置の数と、を関連付けて記憶する。そして、この過去の経路設定に要した時間の情報に基づいて、分割経路を接続制御するために要することが予測される予測時間を算出し、この予測時間の値に応じて、分割経路をさらに分割する。例えば、予測時間が、経路要求装置から要求された設定要求時間よりも長い場合に、分割経路をさらに分割する。このとき、特に、各再分割経路を設定要求時間内に接続制御できるよう分割経路を分割する。その後、上位シグナリング装置は、再分割経路の接続制御を行う。これにより、上位シグナリング装置にてより多くの経路を並列に接続制御することができるため、要求経路のシグナリングに要する時間をさらに短縮することができる。
 また、上述した通信システムにて実行される本発明の他の形態である通信制御方法は、
 シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路を、上位シグナリング装置が接続制御を行うよう予め定められた特定のネットワーク構成の境界に基づいて分割し、
 上記上位シグナリング装置が、自装置が接続制御するネットワーク構成に含まれる上記分割された分割経路を設定するよう接続制御を行う、
という構成をとる。
 そして、上記通信制御方法では、
 上記上位シグナリング装置に対して経路要求装置が上記要求経路をシグナリングにより設定するよう要求し、
 上記上位シグナリング装置が、上記要求経路を他の上位シグナリング装置に転送すると共に、自装置が接続制御するネットワーク構成を特定するネットワーク構成情報に基づいて、上記経路要求装置から要求された上記要求経路あるいは上記他の上位シグナリング装置から転送された上記要求経路のうち、自装置に記憶された上記ネットワーク構成情報が含まれる部分を特定して上記分割経路として分割する、
という構成をとる。
 あるいは、上記通信制御方法では、
 経路要求装置が、上記要求経路を、上記上位シグナリング装置が接続制御する特定のネットワーク構成を表すネットワーク構成情報に基づいて分割し、当該分割した分割経路の設定を行うよう上記上位シグナリング装置に要求する、
という構成をとる。
 また、上記通信制御方法では、
 上記上位シグナリング装置が、予め記憶された所定の経路の接続制御に要した時間と、このとき経由したノード装置の数と、が関連付けられた情報と、上記分割経路にて経由するノード装置の数と、に基づいて、上記分割経路の接続制御に要する予測時間を算出して、当該予測時間に応じて上記分割経路をさらに分割し、当該さらに分割された再分割経路を設定するよう接続制御を行う、
という構成をとる。
 また、本発明の他の形態であるプログラムは、
 ネットワーク上に設置されたノード装置のうち、予め定められたノード装置により構成される特定のネットワーク構成内の接続制御を行う上位シグナリング装置に、
 シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路を、上位シグナリング装置が接続制御を行う特定のネットワーク構成の境界に基づいて分割する要求経路分割手段と、
 自装置が接続制御するネットワーク構成に含まれる上記要求経路分割手段にて分割された分割経路を設定するよう接続制御を行う分割経路設定手段と、
を実現させるためのプログラムである。
 また、本発明の他の形態であるプログラムは、
 ネットワーク上に設置されたノード装置のうち、予め定められたノード装置により構成される特定のネットワーク構成内の接続制御を行う上位シグナリング装置に、
 予め記憶された所定の経路の接続制御に要した時間と、このとき経由したノード装置の数と、が関連付けられた情報と、シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路が上位シグナリング装置が接続制御を行う特定のネットワーク構成の境界に基づいて分割された分割経路にて経由するノード装置の数と、に基づいて、当該分割経路の接続制御に要する予測時間を算出する予測時間算出手段と、
 上記予測時間算出手段にて算出した予測時間に応じて、上記分割経路をさらに分割する経路再分割手段と、
 自装置が接続制御するネットワーク構成に含まれる上記分割経路あるいは上記再分割された再分割経路を設定するよう接続制御を行う分割経路設定手段と、
を実現させるためのプログラムである。
 上述した構成を有する、通信制御方法、又は、プログラム、の発明であっても、上記通信装置と同様の作用を有するために、上述した本発明の目的を達成することができる。
 以上、上記各実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることができる。
 なお、本発明は、日本国にて2009年12月3日に特許出願された特願2009-275019の特許出願に基づく優先権主張の利益を享受するものであり、当該特許出願に記載された内容は、全て本明細書に含まれるものとする。
 本発明は、世界規模のネットワークにおいてBoD(Bandwidth on Demand)サービスを提供するなど、多くのノードを経由するパスのリアルタイムな設定が要求される通信システムに利用することができ、産業上の利用可能性を有する。
1~3 ドメイン
11~24 ノード
31~35 経路
40~43 上位シグナリング装置
51 上位シグナリング装置制御部
52  他装置通信部
53  経路分割部
54  シグナリング時間管理部
55  トポロジ情報データベース
56  シグナリング時間履歴データベース
57  隣接上位シグナリング装置データベース
60  パス要求者
61  パス要求者装置制御部
62  他装置通信部
63  経路分割部
64  経路設定要求部
65  トポロジ情報データベース
101 ネットワーク構成
111~114 ノード装置
140 上位シグナリング装置
151 分割経路設定手段
153 要求経路分割手段
160 経路要求装置
 

Claims (13)

  1.  ネットワーク上に設置されたノード装置のうち、予め定められたノード装置により構成される特定のネットワーク構成内の接続制御を行う上位シグナリング装置と、
     シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路を、前記上位シグナリング装置が接続制御を行う特定のネットワーク構成の境界に基づいて分割する要求経路分割手段と、を備え、
     前記上位シグナリング装置は、自装置が接続制御するネットワーク構成に含まれる前記要求経路分割手段にて分割された分割経路を設定するよう接続制御を行う分割経路設定手段を備えた、
    通信システム。
  2.  請求項1に記載の通信システムであって、
     前記上位シグナリング装置に対して前記要求経路をシグナリングにより設定するよう要求する経路要求装置を備え、
     前記上位シグナリング装置が、前記要求経路分割手段を備えると共に、自装置が接続制御するネットワーク構成を特定するネットワーク構成情報を記憶し、
     前記上位シグナリング装置が備えた前記要求経路分割手段は、前記経路要求装置から要求された前記要求経路のうち、自装置に記憶された前記ネットワーク構成情報が含まれる部分を特定して前記分割経路として分割する、
    通信システム。
  3.  請求項2に記載の通信システムであって、
     前記上位シグナリング装置が有する前記要求経路分割手段は、前記要求経路を他の上位シグナリング装置に転送する機能を有すると共に、他の上位シグナリング装置から受信した前記要求経路のうち自装置に記憶された前記ネットワーク構成情報が含まれる部分を特定して前記分割経路として分割する、
    通信システム。
  4.  請求項1に記載の通信システムであって、
     前記上位シグナリング装置に対して前記要求経路をシグナリングにより設定するよう要求する経路要求装置を備えると共に、当該経路要求装置が、前記要求経路分割手段を備え、
     前記経路要求装置が備えた前記要求経路分割手段は、前記要求経路を、前記上位シグナリング装置が接続制御する特定のネットワーク構成を表すネットワーク構成情報に基づいて分割し、当該分割した分割経路の設定を行うよう前記上位シグナリング装置に要求する、
    通信システム。
  5.  請求項2乃至4のいずれか一項に記載の通信システムであって、
     前記上位シグナリング装置が、
     過去に接続制御を行った経路の設定に要した時間と、このとき経由したノード装置の数と、を関連付けて記憶する経路設定時間記憶手段と、
     前記分割経路にて経由するノード装置の数に基づいて、前記経路設定時間記憶手段に記憶された情報から前記分割経路の接続制御に要する予測時間を算出する予測時間算出手段と、
     前記予測時間算出手段にて算出した予測時間に応じて、前記分割経路をさらに分割する経路再分割手段と、を備えると共に、
     前記上位シグナリング装置が備える前記分割経路設定手段は、前記経路再分割手段にて分割された再分割経路を設定するよう接続制御を行う、
    通信システム。
  6.  請求項5に記載の通信システムであって、
     前記経路再分割手段は、前記予測時間算出手段にて算出した前記予測時間と、前記経路要求装置から要求された予め設定されている設定要求時間と、を比較し、前記設定要求時間よりも前記予測時間が長い場合に、前記分割経路を分割する、
    通信システム。
  7.  請求項6に記載の通信システムであって、
     前記経路再分割手段は、前記経路設定記憶手段に記憶されている情報から算出された、予め設定された単位数のノード装置を経由する経路の設定に要する時間を表す単位ノード数設定時間に基づいて、前記再分割経路を接続制御して設定するときに要すると予測される時間が前記設定要求時間を超えないよう前記分割経路を分割して前記再分割経路を定める、
    通信システム。
  8.  シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路を、上位シグナリング装置が接続制御を行うよう予め定められた特定のネットワーク構成の境界に基づいて分割し、
     前記上位シグナリング装置が、自装置が接続制御するネットワーク構成に含まれる前記分割された分割経路を設定するよう接続制御を行う、
    通信制御方法。
  9.  請求項8に記載の通信制御方法であって、
     前記上位シグナリング装置に対して経路要求装置が前記要求経路をシグナリングにより設定するよう要求し、
     前記上位シグナリング装置が、前記要求経路を他の上位シグナリング装置に転送すると共に、自装置が接続制御するネットワーク構成を特定するネットワーク構成情報に基づいて、前記経路要求装置から要求された前記要求経路あるいは前記他の上位シグナリング装置から転送された前記要求経路のうち、自装置に記憶された前記ネットワーク構成情報が含まれる部分を特定して前記分割経路として分割する、
    通信制御方法。
  10.  請求項8に記載の通信制御方法であって、
     経路要求装置が、前記要求経路を、前記上位シグナリング装置が接続制御する特定のネットワーク構成を表すネットワーク構成情報に基づいて分割し、当該分割した分割経路の設定を行うよう前記上位シグナリング装置に要求する、
    通信制御方法。
  11.  請求項8乃至10のいずれか一項に記載の通信制御方法であって、
     前記上位シグナリング装置が、予め記憶された所定の経路の接続制御に要した時間と、このとき経由したノード装置の数と、が関連付けられた情報と、前記分割経路にて経由するノード装置の数と、に基づいて、前記分割経路の接続制御に要する予測時間を算出して、当該予測時間に応じて前記分割経路をさらに分割し、当該さらに分割された再分割経路を設定するよう接続制御を行う、
    通信制御方法。
  12.  ネットワーク上に設置されたノード装置のうち、予め定められたノード装置により構成される特定のネットワーク構成内の接続制御を行う上位シグナリング装置に、
     シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路を、上位シグナリング装置が接続制御を行う特定のネットワーク構成の境界に基づいて分割する要求経路分割手段と、
     自装置が接続制御するネットワーク構成に含まれる前記要求経路分割手段にて分割された分割経路を設定するよう接続制御を行う分割経路設定手段と、
    を実現させるためのプログラム。
  13.  ネットワーク上に設置されたノード装置のうち、予め定められたノード装置により構成される特定のネットワーク構成内の接続制御を行う上位シグナリング装置に、
     予め記憶された所定の経路の接続制御に要した時間と、このとき経由したノード装置の数と、が関連付けられた情報と、シグナリングにより設定するよう要求された特定のノード装置を経由する通信回線の経路を表す要求経路が上位シグナリング装置が接続制御を行う特定のネットワーク構成の境界に基づいて分割された分割経路にて経由するノード装置の数と、に基づいて、当該分割経路の接続制御に要する予測時間を算出する予測時間算出手段と、
     前記予測時間算出手段にて算出した予測時間に応じて、前記分割経路をさらに分割する経路再分割手段と、
     自装置が接続制御するネットワーク構成に含まれる前記分割経路あるいは前記再分割された再分割経路を設定するよう接続制御を行う分割経路設定手段と、
    を実現させるためのプログラム。
     
PCT/JP2010/006782 2009-12-03 2010-11-19 通信システム WO2011067901A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009275019 2009-12-03
JP2009-275019 2009-12-03

Publications (1)

Publication Number Publication Date
WO2011067901A1 true WO2011067901A1 (ja) 2011-06-09

Family

ID=44114764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006782 WO2011067901A1 (ja) 2009-12-03 2010-11-19 通信システム

Country Status (1)

Country Link
WO (1) WO2011067901A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068167A (ja) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp 通信システム、管理装置および通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273904A (ja) * 2002-03-14 2003-09-26 Nec Corp 経路制御方法、経路制御装置
JP2005252368A (ja) * 2004-03-01 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 経路計算システム、経路計算方法、及び通信ノード
JP2007228087A (ja) * 2006-02-21 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> パス設定システムおよびパス設定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273904A (ja) * 2002-03-14 2003-09-26 Nec Corp 経路制御方法、経路制御装置
JP2005252368A (ja) * 2004-03-01 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 経路計算システム、経路計算方法、及び通信ノード
JP2007228087A (ja) * 2006-02-21 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> パス設定システムおよびパス設定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068167A (ja) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp 通信システム、管理装置および通信装置

Similar Documents

Publication Publication Date Title
EP1395003B1 (en) Constraint-based shortest path first method for dynamically switched optical transport networks
US7095712B2 (en) Method and apparatus for protection path setup
JP4997196B2 (ja) 通信ネットワークシステム、パス計算装置、通信路確立制御方法
JP4374307B2 (ja) ラベルスイッチパスの経路制御方法
CN102365846B (zh) 路由设置服务器、路由设置方法和路由设置程序
US7787364B2 (en) Control scheme for standby channel route
JP2013541290A (ja) 複数の領域及び複数の自律システムのためのリレーされるcspf
WO2006125386A1 (fr) Procede de traitement de demande d&#39;information de chemin d&#39;acces distribue
CN103477612A (zh) 经扩展以连接网络层级的云服务控制和管理架构
WO2007062608A1 (fr) Procede pour la realisation d&#39;acheminements separes reliant des domaines
US7710883B2 (en) Path setting method and communication apparatus in communication network performing communications through a plurality of layers
CN101155119B (zh) 一种确定自治系统边界节点的方法、装置及路径计算方法
US20140185607A1 (en) Communication system, communication path establishing method and management server
US20090010201A1 (en) Mobile Communication Access System, Packet Transfer Device, and Path Re-Establishing Method
JP2009060673A (ja) 経路計算システム、経路計算方法、及び通信ノード
US20090182801A1 (en) Communication transmitting apparatus and communication transmitting method
EP2395707B1 (en) Method, system and equipment for call processing
JP2002344496A (ja) パスの経路を変更する方法及びこれを用いるスイッチ装置
WO2011067901A1 (ja) 通信システム
US20090016277A1 (en) Mobile communication system, packet transfer device, and path re-establishing method
CN101621453A (zh) 保证差分业务流量工程网络配置参数一致的方法和系统
KR20160035157A (ko) 경로 계산 장치 및 사용자 네트워크 인터페이스 경로 설정 방법
Eadala et al. A review on deployment architectures of path computation element using software defined networking paradigm
JP4390648B2 (ja) 経路制御方法及び装置
JP2003258855A (ja) リアルタイム通信品質管理システムおよび方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP