WO2011066808A1 - 实时定标高光谱分辨率激光雷达装置 - Google Patents

实时定标高光谱分辨率激光雷达装置 Download PDF

Info

Publication number
WO2011066808A1
WO2011066808A1 PCT/CN2010/079437 CN2010079437W WO2011066808A1 WO 2011066808 A1 WO2011066808 A1 WO 2011066808A1 CN 2010079437 W CN2010079437 W CN 2010079437W WO 2011066808 A1 WO2011066808 A1 WO 2011066808A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical filter
photodetector
real
beam splitter
laser radar
Prior art date
Application number
PCT/CN2010/079437
Other languages
English (en)
French (fr)
Inventor
吴松华
陈阳
刘智深
Original Assignee
中国海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋大学 filed Critical 中国海洋大学
Publication of WO2011066808A1 publication Critical patent/WO2011066808A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a device for laser measurement of atmospheric wind fields, and more particularly to a real-time calibration high spectral rate laser radar device for measuring atmospheric wind fields.
  • the atmospheric wind field is an important parameter in meteorological observations and has important application value in the fields of weather, climate, ocean, environment, transportation, aviation, and aerospace.
  • High-spectrum laser radar can obtain high-precision, high-time-time-intensity atmospheric wind field data, provide initial data for numerical weather prediction, improve the observation and forecasting capability of small- and medium-scale severe weather; provide wind farm monitoring for wind power plants, and improve power generation. Machine power; It can also quickly and accurately detect the turbulence, wind shear and other atmospheric structures that seriously affect the safety of the aircraft during flight, and provide safety for flight navigation.
  • the current wind lidar for atmospheric wind field measurement is mainly divided into coherent wind lidar and incoherent wind lidar.
  • Coherent wind lidar can only be used in low-altitude areas with high aerosol content.
  • Non-coherent detection technology also known as hyperspectral furnace rate technology, straight pendulum technology
  • the blast furnace rate spectral analysis device is used to measure the signal intensity change from the frequency change bow, and then the wind speed can be measured to measure the atmospheric liver.
  • the aerosol inch signal, the detection height is 0.5kn! ⁇ 20km atmospheric wind field.
  • the high-spectrum contention lidar based on the iodine-receiving filter is a typical representative of non-coherent technology.
  • a certain absorption line of the iodine-thickness filter such as the 1109 absorption line of the 532nm jet boat
  • the echo signal passes through the iodine pool, and the Bélapper frequency shifts the body bacteria 1J back to the inch 3 ⁇ 4 «: when the iodine liver filter; M rate iodine liver spectral absorption line and the convolution spectrum of the convolution)
  • WoU uses the photodetector to measure the energy of the leg light signal listening to the code pool, and then invert the ship rate, and obtain the frequency shift to get the atmospheric wind speed.
  • the hyperspectral laser signal is required to obtain the 3 ⁇ 43 ⁇ 4 information of the atmosphere at that time, to the spectral line width of the atmospheric H3 ⁇ 4 ⁇ inch spectrum.
  • the atmospheric information comes from other independent observations (such as air balloons, etc.), or from atmospheric models (the atmospheric statistics of a region). Therefore, the information used is not obtained at the same time as the wind measurement, and it is inevitable that errors will be introduced.
  • the invention is based on the existing high-spectral contention laser radar. Since the measurement channel and the reference channel only contain the sum information of the aerosol volume and the atmospheric liver, only the Doppler frequency shift can be detected. And the total energy produced. Considering the importance of real-time acquisition of aerosol relative concentration and atmospheric information to accurately measure wind and obtain more atmospheric parameters, two rotating Raman receiving channels are added to the existing high spectral resolution lidar receiving system to extract The high-spectrum rate of the neglected spectrum in the lidar detection signal is ⁇ ⁇ ⁇ # elastic leg spectrum, that is, the atmospheric liver rotation Raman spectrum, which contains information on the atmospheric liver, and the relative concentration of the aerosol can be extracted.
  • the spectroscope is used to separate the inelastic ⁇ spectrum from the existing detection spectrum, and then use a beam splitter to split the separated spectrum into two receiving channels ⁇ $Specialized Raman channel one and rotating Raman channel two, channel one
  • the corresponding narrow-band optical filter is used to extract the rotating Raman spectrum enhanced with the increase of temperature
  • the corresponding narrow-band optical filter is used in channel 2 to extract the rotating Raman spectrum which is weakened with the increase of temperature
  • the two channels respectively use one photoelectric Detecting Xie ⁇ .
  • the combination of the two channels reduces the impact of 3 ⁇ 43 ⁇ 43 ⁇ 4 measurements, provides accurate real-time aerosol relative concentrations, and inverts real-time high temperature information. In this way, the measurement of the spirit « can be accurately determined in real time, and the atmospheric wind field can be accurately measured to solve the technical difficulties of the high-spectral rate laser radar.
  • the invention comprises a transmitting system consisting of a pulsed laser, a beam expander and an inverted mirror; a receiving system consisting of a telescope, an optical filter a, an iodine liver filter, a beam splitter a and two photodetectors;
  • the electric detector is connected to the «acquisition system and the «processing meter «, which is characterized in that it also comprises a rotating Raman flat one composed of a beam splitter b, an optical filter b and a photodetector, and a beam splitter light a rotating Raman channel 2 composed of a photodetector and a photodetector, and the two Raman channels are separated from the spectrum of the existing receiving system beam splitter a; Inch out of the inelastic ⁇ spectrum, and the two channels are connected to the dichroic mirror c of the second channel, and connected to the tumbling acquisition system, and the information collected by the tumbling acquisition system is transferred to the processing.
  • FIG. 1 Schematic diagram of the general structure of the present invention.
  • Pulsed laser 2. Beam expander 3. Mirror 4. Telescope 5. Optical filter a 6. ⁇ 1 a 7. Beam splitter b 8. Beam splitter c 9. Iodine liver filter 10. Optical filter b 11. Optical filter c 12. Photodetector 13. Photodetector 14. Photodetector 15. Photodetector 16. Data acquisition system 17. Difficulty in processing.
  • the invention comprises an inch system consisting of a pulsed laser 1, a beam expander 2 and a mirror 3; by a telescope 4, an optical filter a5, a beam splitter a6, an iodine filter 9, a photodetector 12 and a photoelectric a receiving system composed of the detector 13; a sas collecting system 16 connected to the photodetector 12 and the photodetector 13, and a Sa processing meter 17, which is characterized in that it also includes the light from the beam splitter a6;
  • the beam splitter b7, and the rotating Raman channel one composed of the beam splitter b7, the optical filter bl0, and the photodetector 14, and the mirror c8, the optical filter C11, the rotating Raman channel 2 composed of the photodetector 15, and the two rotating Raman channels are connected to each other by the ship beam splitter c8, and the photodetector 14 and the photodetector 15 are connected to the flipping acquisition system 16, and
  • the pulsed laser 1 can be an existing pulsed laser, such as various solid-state lasers, fiber lasers, and single longitudinal mode frequency stabilization (wavelength 532.25 nm).
  • photonics' multiplier Nd:YAG pulsed laser with a single pulse energy of 600mJ and a repetition rate of 50KHz is used.
  • the telescope 4 can be a general-purpose telescope such as a reflective or a folding type, such as the 820mm card 3 ⁇ 4 ⁇ binocular telescope manufactured by Celestron, USA.
  • the beam expander 2 can be expanded by 10 times.
  • the optical filter a 5 is a band pass optical filter (wavelength range: 528.2 nm ⁇ 532.8), and the optical filter b 10 and the optical filter c 11 are narrow band optical filters ⁇ (the center wavelength is 531.1 nm and 528.5 nm, respectively) Interference filters, Fabiy-Perot etalon or Faraday anomalous dispersion filters are available.
  • the beam splitter a 6 , b 7 and the beam splitter c 8 are band-pass filters whose M-rate varies with the angle of incidence, either an interference filter, a grating system or a Fabiy-Perot etalon.
  • Iodine liver filter 9 can use a 15cm long iodine pool, the aperture should be slightly larger than the beam.
  • Photodetectors 12, 13, 14 and 15 are the same type of photodetector. High-sensitivity and high-speed response photodiodes, photomultipliers or charge-coupled devices (CCD) can be used. Optoelectronics can be selected. Multiplier tube Electron tubes 9893/350.
  • the pulsed laser of the present invention has a beam expander divergence angle of 1 inch, and then passes through a mirror 3 inches into the atmosphere, and is squashed by atmospheric liver or aerosol. The movement of the atmosphere will cause a Doppler shift in the center frequency of the inch light.
  • the optical filter a 5 compresses the sky background, and is split by the beam splitter a 6, the beam splitter b 7 and the beam splitter c 8 ⁇ , respectively.
  • the measurement channel of the liver filter 9 the reference channel for direct photometric flux, the rotating Raman channel 1 with optical filter b 10 and the rotating Raman channel 2 with optical filter c 11 .
  • the four channels are photoelectrically converted by the four photodetectors 12, 13, 14 and 15 respectively, and the obtained electrical signals are input to the data acquisition system 16, and the electrical signals are digitized by the data acquisition system 16 and summarized into a tumbling meter.
  • Long 17 performs inversion calculations to obtain real-time aerosol relative concentration and atmosphere, accurately calculate the atmospheric hepatic backward ⁇ coefficient, aerosol backward ⁇ coefficient, aerosol extinction coefficient and Doppler shift amount, and obtain the atmosphere. Wind field.
  • the invention has stable performance, convenient operation and strong durability.
  • the main advantages of the present invention are as follows:
  • a plurality of atmospheric clocks (atmospheric backward ⁇ coefficient, aerosol backward ⁇ coefficient, aerosol extinction coefficient, atmospheric and ⁇ 3 ⁇ 4 measurement efficiency) can be acquired at the same time.
  • the aerosol relative concentration information can significantly reduce the measurement error caused by the aerosol space-time variation;
  • the real-time acquired homogenous atmospheric temperature information can reduce the inversion error using the statistical atmospheric model, and the average error is reduced to the original Within 30% of the wind speed measurement accuracy of lm / s, real-time calibration, high measurement accuracy.

Description

说 明 书
实时定标高光 1^»率激光雷 i^g
技术领域
本发明涉及一种激光测量大气风场的装置, 更具体地说是一种测量大气风场的实时 定标高光谱彌率激光雷达装置。
背景技术
大气风场是气象观测中的重要参数, 在天气、气候、海洋、 环境以及交通、航空、 航天等领域都有重要的应用价值。 高光谱 摔激光雷达可以获取高精度高时空 辛率 的大气风场数据, 为数值天气预报提供初始数据, 提高中小尺度灾害性天气的观测和预 报能力; 为风力发电厂提供风场监测, 提高发电机功率; 亦可快速、准确探测飞行全程 中湍流、 风切变等严重影响飞机安全的大气结构, 为飞行导航提供安全保障。
当前用于大气风场测量的测风激光雷达, 主要分为相干测风激光雷达和非相干测风 激光雷达。相干测风激光雷达只能作用于气溶胶含量较高的低空区域。 非相干探测技术 (又称为高光谱爐率技术、直擺则技术)舰高爐率的光谱分析器件来直擺则 频率变化弓 1起的探测信号强度变化, 进而求取风速, 可以测量大气肝和气溶胶黼寸信 号, 探测高度 0.5kn!〜 20km的大气风场。基于碘肝滤波器的高光谱 争率激光雷达, 是非相干技术的典型代表。它利用碘肝滤波器的某一吸收谱线(如 532nm激艇用 1109吸收线)作为鉴别多普勒频移的 器,将 寸激光频率锁定于吸收线的边缘中心 处, 大气后向黼寸的回波信号逝碘池, 贝哆普勒频移将体菌 1J后向黼寸¾«:碘肝 滤波器时的; M率 碘肝光谱吸收线与翻寸光谱的卷积)的变化上, 禾 U用光电探测 器件测得腿光信号聽典池的能量, 进而反演舰率, 获取频移量得到大气风速。
但由于高光谱分辨率激光雷达探测的大气弹性 !¾!寸信号中包含光谱特性截然不同 的气溶胶黼寸 (Me Mi, 带宽窄)和大气肝黼寸(Rayleigh黼寸, 带宽宽), 两种散 射信号逝鉴频滤波器的逝率各不相同, 因此, 为了准确测风, 探测时必须知道当时 大气中气溶胶和 的相对浓度,用以实嚇定测量灵 « (即 lm/s单位风速弓 1起的探 测器响应变化)。高光谱 辛率激光雷达可以探测气溶胶相对浓度,但是这种探测必须在 风速测量以外的时间独雄行。这不仅需要分配额外的测量时间(也就是 寸功率),更 重要的是, 气溶胶的时空变化剧烈, 非同歩的气溶胶测量不能准确反映测风当时的大气 状态(以上 在海面风场、边界层风场探测等小尺度天气过程中更加明显)。
此外, 为准确测量大气 寸信号的多普勒频移, 高光谱^Ji率激光雷¾¾需要 获得当时大气的¾¾信息, 以 ί¾Ε大气 H¾ ^寸光谱的谱线宽度。 已有测 J¾敫光雷达系 统中,大气 信息来自其他独立的观测资料 (如探空气球等),或者来自于大气模型 (某 区域大气统计翻 )。 因此采用的 信息都不是在测风同时获得的, 难免会引入误差。
虽然高光谱彌率激光雷达技术已经 业务化实验阶段,但仍无法实时获得准确 的气溶胶相对浓度和大气 状 言息,即无法实时定标测: 而 ¾Λ真正实用化。 发明内容
本发明的目的是提供一种实时定标高光谱分辨率激光雷达装置, 以弥补已有技术的 不足。
本发明是在已有的高光谱 争率激光雷达基础上, 由于其测量通道和参考通道只包 含了气溶胶黼寸和大气肝黼寸的总和信息, 故仅能检测出因多普勒频移而产生的能量 总差。 考虑到实时获取气溶胶相对浓度和大气 信息以准确测风并获取更多大气参数 的重要性, 在已有的高光谱分辨率激光雷达接收系统中增加两个转动拉曼的接收通道, 以提取高光谱爐率激光雷达探测信号中被忽略的光谱成 ^ ^~ #弹性腿光谱, 即大 气肝转动拉曼谱, 它包含大气肝黼寸的信息, 可提取气溶胶的相对浓度。 利用分光 镜从已有探测光谱中分离出非弹性黼寸光谱, 再利用一片分光镜将分离出的光谱分成两 个接收通道 ~ $专动拉曼通道一和转动拉曼通道二, 通道一中选用相应的窄带光学滤波 器提取随温度升高而增强的转动拉曼谱, 通道二中选用相应的窄带光学滤波器提取随温 度升高而减弱的转动拉曼谱, 两个通道分别用一个光电探测謝妾收。 两通道的结合 既可降低¾¾¾^测量的影响, 获得准确的实时气溶胶相对浓度, 又能反演实时的大气温 度信息。 如此, 就能实时定标测量灵 «, 准确测量大气风场, 解决高光谱 争率激光 雷达实用化的技术难点。
本发明包括由脉冲激光器、扩束镜和反寸镜组成的发射系统; 由望远镜、光学滤波 器 a、 碘肝滤波器、 分光镜 a和两个光电探测器组成的接收系统; 与两^ 6电探测器 相连接的«采集系统和«处理计 «, 其特征在于它还包括了由分光镜 b、 光学滤 波器 b及一个光电探测器组成的转动拉曼扁一, 和分光镜 光彌皮器 c及一个光 电探测器组成的转动拉曼通道二, 且这两 ^动拉曼通道经由通道一的分光镜 b, 从已 有接收系统分光镜 a; it寸而来的光谱中分离; it寸出非弹性黼寸光谱, 且这两个通道之间 道二的分光镜 c相连, 又与翻采集系统相连接, 并经翻采集系统将采集的信 息传入到翻处理计難。
附图说明
下面结合附图对本发明做进一歩说明。
图 1, 本发明的总体结构方框示意图。
其中, 1.脉冲激光器 2.扩束镜 3.反射镜 4.望远镜 5.光学滤波器 a 6.^1 a 7.分光镜 b 8.分光镜 c 9.碘肝滤波器 10.光学滤波器 b 11.光学滤波器 c 12. 光电探测器 13.光电探测器 14.光电探测器 15.光电探测器 16.数据采集系统 17. 翻处理计難。
具体¾»式
如图 1, 本发明包括由脉冲激光器 1、 扩束镜 2和反射镜 3组成的 寸系统; 由望 远镜 4、 光学滤波器 a5、 分光镜 a6、碘 ^滤波器 9、 光电探测器 12和光电探测器 13 组成的接收系统; 与光电探测器 12、光电探测器 13相连接的薩采集系统 16和薩处 理计龍 17, 其特征是它还包括由分光镜 a6的; if 寸光所到达的分光镜 b7, 且由分光镜 b7、光学滤波器 bl0、光电探测器 14组成的转动拉曼通道一, 和 镜 c8、光学滤波器 cll、 光电探测器 15组成的转动拉曼通道二, 且两个转动拉曼通道相互间舰分光镜 c8 相连,光电探测器 14和光电探测器 15又都与翻采集系统 16相连接,并经翻采集系 统 16将采集的信息传入到«处理计 Ml 17而同时测量大气 |¾寸参数,实时定标灵敏 度准确测量风速。
脉冲激光器 1可以采用已有脉冲激光器, 如各种固体激光器、 光纤激光器, 单 纵模稳频(波长为 532.25nm)。 例如, 选用 photonics公司的倍频 Nd:YAG脉冲激光器, 单脉冲能量 600mJ, 重复频率 50KHz, 采用种子注入技术。
望远镜 4可采用反射式、折反式等通用望远镜,例如美国 Celestron公司生产的 820mm卡¾ ^伦望远镜。 扩束镜 2可选用 10倍扩束的即可。
光学滤波器 a 5为带通光 虑波器(波长范围: 528.2nm〜532.8), 光学滤波器 b 10和光学滤波器 c 11为窄带光学滤波^ (中心波长为别为 531.1nm和 528.5nm), 可选 用干涉滤光片、 Fabiy-Perot标准具或者法拉第反常色散滤波器。
分光镜 a 6 、 b 7和分光镜 c 8为; M率随入射角变化而变化的带通滤色 片, 可选用干涉滤光片、 光栅 系统或者 Fabiy-Perot标准具。
碘肝滤波器 9, 可采用 15cm长的碘池, 通光口径应略大于光束。
光电探测器 12、 13、 14和 15, 为同一型号种类的光电探测器件, 可以选用高 灵敏度和高速响应的光电二极管、 光电倍增管或者电荷耦合器件(CCD), 可选用滨淞 光子公司的光电倍增管 Electron tubes 9893/350。
«采集系统 16, 可选用德国 Licel公司的 TR16-160数据采集系统。
本发明的脉冲激光器 1 寸的光 过扩束镜 2扩束压缩发散角后, 经过反射镜 3 寸到大气当中, 被大气肝或气溶胶黼寸。 而大气的运动一风, 会使黼寸光的中心频 率产生多普勒频移。 ±¾大气的黼寸光由望远镜 4收集后, 1光学滤波器 a 5压缩天 空背景辐寸, ί妾着由分光镜 a 6、分光镜 b 7和分光镜 c 8 β分光, 分别 ¾Λ带碘肝 滤波器 9的测量通道,直接测光通量的参考通道, 带光学滤波器 b 10的转动拉曼通道一 和带光学滤波器 c 11的转动拉曼通道二。 四个通道分别利用光电探测器 12、 13、 14和 15这四个光电探测器进行光电转换,得到的电信号输入数据采集系统 16, 由数据采集系 统 16将电信号数字化, 汇总到翻处理计龍 17进行反演运算, 得到实时的气溶胶相 对浓度和大气 , 准确计算出大气肝后向黼寸系数, 气溶胶后向黼寸系数, 气溶胶 消光系数及多普勒频移量, 获得大气风场。
l k实用性
显然, 本发明性能稳定, 操作方便, 结实耐用。 本发明的主要优点在于: 能在一次 光探测中, 同时获取诸多大气鐘(大气 后向黼寸系数, 气溶胶后向黼寸系数, 气 溶胶消光系数、 大气 及^¾ 测量效率高。 实时获取的气溶胶相对浓度信息能显 著减少因气溶胶时空变化而弓 1入的测量误差; 实时获取的同歩大气温度信息可以减少利 用统计大气模型弓 1入的反演误差, 平均误差量降低到原来的 30%以内, 风速测量精度达 到 lm/s, 实时定标, 测量准确度高。

Claims

权 利 要 求 书
1. 一种实时定标高光谱分辨率激光雷达装置, 包括由脉冲激光器 (1 扩束镜 (2)和反射镜 组成的发射系统; 由望远镜 、 光学滤波器 a 5;>、 分 光镜 a(6)、 碘分子滤波器 (9) 、 光电探测器 (12)和光电探测器 (13)组成的接 收系统; 与光电探测器 (12)、 光电探测器 (13)相连接的数据采集系统 (16)和 数据处理计算机 (17), 其特征是它还包括由分光镜 a(6)的透射光所到达的 分光镜 b(7), 且由分光镜 b(7)、 光学滤波器 b(10)、 光电探测器 (14)组成的 转动拉曼通道一, 和分光镜 8:)、 光学滤波器 c(l i;>、 光电探测器 (15;)组成 的转动拉曼通道二, 而且两个转动拉曼通道相互间通过分光镜 ^8;)相连, 光电探测器 (14)和光电探测器 (15)又都与数据采集系统 (16)相连接, 并经数 据采集系统 (16)将采集的信息传入到数据处理计算机 (17)而同时测量大气 散射参数。
2. 如权利要求 1所述的实时定标高光谱分辨率激光雷达装置, 其特征 是上述同时测量的大气散射参数包括大气分子弹性散射、 拉曼散射和气溶 胶散射。
3. 如权利要求 1所述的实时定标高光谱分辨率激光雷达装置, 其特征 是上述的光学滤波器 为带通光学滤波器, 波长范围: 528.2nm〜 532.8
4. 如权利要求 1所述的实时定标高光谱分辨率激光雷达装置, 其特征 是上述的光学滤波器 b lO)为窄带光学滤波器, 中心波长为 531.1nm。
5. 如权利要求 1所述的实时定标高光谱分辨率激光雷达装置, 其特征 是上述的光学滤波器 c(l i;>为窄带光学滤波器, 中心波长为 528.5nm。
PCT/CN2010/079437 2009-12-04 2010-12-03 实时定标高光谱分辨率激光雷达装置 WO2011066808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910231371A CN101710178B (zh) 2009-12-04 2009-12-04 实时定标高光谱分辨率激光雷达装置
CN200910231371.X 2009-12-04

Publications (1)

Publication Number Publication Date
WO2011066808A1 true WO2011066808A1 (zh) 2011-06-09

Family

ID=42402975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079437 WO2011066808A1 (zh) 2009-12-04 2010-12-03 实时定标高光谱分辨率激光雷达装置

Country Status (2)

Country Link
CN (1) CN101710178B (zh)
WO (1) WO2011066808A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169767A (zh) * 2018-01-19 2018-06-15 西安理工大学 一种自校正转动拉曼激光雷达测温系统及其反演方法
CN110865396A (zh) * 2019-11-25 2020-03-06 浙江大学 一种高光谱分辨率激光雷达的扫频定标装置和方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710178B (zh) * 2009-12-04 2012-10-10 中国海洋大学 实时定标高光谱分辨率激光雷达装置
FR2969282B1 (fr) * 2010-12-21 2014-07-18 Horiba Jobin Yvon Sas Dispositif et procede de visualisation et de mesure de diffusion raman
CN102288972B (zh) * 2011-05-10 2014-04-16 中国海洋大学 三波长实时定标激光雷达装置
CN102288973B (zh) * 2011-06-28 2013-03-20 华中科技大学 基于频谱特征信号的多气象参数同步测量方法及激光雷达
CN102288578B (zh) * 2011-07-26 2013-02-13 中国科学院安徽光学精密机械研究所 一种透射式光纤湍流传感器
WO2015058209A1 (en) 2013-10-18 2015-04-23 Tramontane Technologies, Inc. Amplified optical circuit
CN103744285A (zh) * 2013-12-19 2014-04-23 中航贵州飞机有限责任公司 地面采集飞机数据备份系统
CN103954968A (zh) * 2014-04-18 2014-07-30 宁波镭基光电技术有限公司 早期火灾报警用激光雷达监测系统及方法
CN106160850B (zh) * 2015-04-14 2018-11-13 福州高意通讯有限公司 一种光信道监测装置
CN107615094B (zh) * 2015-05-12 2018-09-07 三菱电机株式会社 激光雷达装置和风速观测方法
CN105785397B (zh) * 2016-05-13 2018-08-17 中国海洋大学 一种基于虚像相位阵列的高光谱分辨率大气激光雷达
CN105785398B (zh) * 2016-05-13 2018-08-17 中国海洋大学 一种基于虚像相位阵列的非相干大气激光测风雷达
CN107024699B (zh) * 2017-03-29 2018-04-20 武汉大学 基于紫外准单支纯转动拉曼谱提取的全天时测温激光雷达
CN106908806B (zh) * 2017-03-29 2018-03-13 武汉大学 一种紫外波段准单支纯转动拉曼谱线信号探测装置
CN107390231A (zh) * 2017-04-12 2017-11-24 苏州优函信息科技有限公司 基于沙姆定律的相关法连续光测风雷达系统和方法
CN107390225B (zh) * 2017-08-14 2024-02-02 杭州欧镭激光技术有限公司 一种激光测距装置及其使用方法
CN108318896A (zh) * 2018-01-30 2018-07-24 安徽蓝盾光电子股份有限公司 一种户外型探测臭氧和气溶胶激光雷达装置及探测方法
CN109404676B (zh) * 2018-12-13 2021-07-27 百度在线网络技术(北京)有限公司 支撑装备及其制造方法以及控制方法、装置、设备和介质
CN109959944B (zh) * 2019-03-29 2023-06-16 中国科学技术大学 基于宽谱光源的测风激光雷达
CN110865395B (zh) * 2019-11-11 2023-03-28 西北工业大学 激光雷达数据异步采集同步处理方法
CN113138398B (zh) * 2020-01-17 2022-07-15 中国海洋大学 一种基于无人机大气激光雷达的气溶胶消光系数反演方法
CN111458726B (zh) * 2020-04-19 2023-03-07 青岛镭测创芯科技有限公司 基于相干激光雷达谱强度数据的大气气溶胶分析方法
CN112859112B (zh) * 2021-01-11 2024-03-26 南京晓庄学院 基于转动拉曼-多普勒机制的风温探测激光雷达及方法
CN113776565A (zh) * 2021-07-06 2021-12-10 田斌 一种水下布里渊散射光谱测量装置及测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304541A (ja) * 1995-05-15 1996-11-22 Mitsubishi Electric Corp レーザレーダ装置
CN1987520A (zh) * 2006-12-20 2007-06-27 西安理工大学 气象与大气环境观测拉曼散射激光雷达系统
CN101105532A (zh) * 2007-08-03 2008-01-16 西安理工大学 基于波分复用技术分光的全光纤拉曼散射激光雷达系统
US20080100823A1 (en) * 2006-07-25 2008-05-01 Delfyett Peter J Systems and methods for long-range, high-resolution laser radar range detection
CN101477196A (zh) * 2009-01-16 2009-07-08 南京信息工程大学 振动拉曼激光雷达散射光处理系统及其处理方法
CN101710178A (zh) * 2009-12-04 2010-05-19 中国海洋大学 实时定标高光谱分辨率激光雷达装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304541A (ja) * 1995-05-15 1996-11-22 Mitsubishi Electric Corp レーザレーダ装置
US20080100823A1 (en) * 2006-07-25 2008-05-01 Delfyett Peter J Systems and methods for long-range, high-resolution laser radar range detection
CN1987520A (zh) * 2006-12-20 2007-06-27 西安理工大学 气象与大气环境观测拉曼散射激光雷达系统
CN101105532A (zh) * 2007-08-03 2008-01-16 西安理工大学 基于波分复用技术分光的全光纤拉曼散射激光雷达系统
CN101477196A (zh) * 2009-01-16 2009-07-08 南京信息工程大学 振动拉曼激光雷达散射光处理系统及其处理方法
CN101710178A (zh) * 2009-12-04 2010-05-19 中国海洋大学 实时定标高光谱分辨率激光雷达装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169767A (zh) * 2018-01-19 2018-06-15 西安理工大学 一种自校正转动拉曼激光雷达测温系统及其反演方法
CN110865396A (zh) * 2019-11-25 2020-03-06 浙江大学 一种高光谱分辨率激光雷达的扫频定标装置和方法

Also Published As

Publication number Publication date
CN101710178A (zh) 2010-05-19
CN101710178B (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2011066808A1 (zh) 实时定标高光谱分辨率激光雷达装置
CN102636459B (zh) 一种前向散射与透射结合的能见度测量仪及其测量方法
CN101004453B (zh) 一种气象与大气环境参数的测定方法
CN100543495C (zh) 气象与大气环境观测拉曼散射激光雷达系统
CN106772438B (zh) 一种全天时准确测量大气温度和气溶胶参数的激光雷达系统
CN102288972B (zh) 三波长实时定标激光雷达装置
CN103630908B (zh) 分子散射测风激光雷达中激光频谱测量校准方法
CN101833089B (zh) 多普勒测风激光雷达灵敏度标定系统及其标定方法
CN108303706B (zh) 一种气溶胶光学参数探测方法及高光谱激光雷达探测系统
CN110441792B (zh) 同时测风测温的瑞利散射激光雷达系统及相关校准方法
WO2011131009A1 (zh) 测量多气象参数的多普勒激光雷达装置
CN110749872A (zh) 一种相干差分吸收激光雷达与一种检测气体浓度的方法
CN105334519B (zh) 基于三通道f-p标准具的多大气参数同时高精度探测激光雷达系统
WO2020063073A1 (zh) 多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置
CN110045391B (zh) 一种用于气溶胶尺度谱测量的高光谱激光雷达系统
CN207882443U (zh) 一种高光谱激光雷达探测系统
CN103713293A (zh) 全光纤多普勒激光雷达风场探测系统及探测方法
CN104777487A (zh) 一种大气气溶胶光学特性测定方法及一种激光雷达系统
CN208488547U (zh) 一种大气温度探测激光雷达系统
CN102937586B (zh) 基于激光雷达的云中水拉曼散射全光谱测量系统及其方法
Hoareau et al. A Raman lidar at La Reunion (20.8 S, 55.5 E) for monitoring water vapour and cirrus distributions in the subtropical upper troposphere: preliminary analyses and description of a future system
CN114637030A (zh) 一种双偏振接收的气体探测激光雷达及气体探测方法
CN114660573A (zh) 测量大气二氧化碳及甲烷柱浓度的激光雷达系统
Wu et al. Observations of water vapor mixing ratio profile and flux in the Tibetan Plateau based on the lidar technique
CN106483531B (zh) 大气拉曼-瑞利散射测温激光雷达及反演方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834241

Country of ref document: EP

Kind code of ref document: A1