WO2020063073A1 - 多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置 - Google Patents

多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置 Download PDF

Info

Publication number
WO2020063073A1
WO2020063073A1 PCT/CN2019/097360 CN2019097360W WO2020063073A1 WO 2020063073 A1 WO2020063073 A1 WO 2020063073A1 CN 2019097360 W CN2019097360 W CN 2019097360W WO 2020063073 A1 WO2020063073 A1 WO 2020063073A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam splitter
light
laser
optical unit
incident
Prior art date
Application number
PCT/CN2019/097360
Other languages
English (en)
French (fr)
Inventor
陈卫标
朱亚丹
刘继桥
侯霞
朱小磊
马秀华
臧华国
李蕊
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Priority to US17/281,054 priority Critical patent/US11397149B2/en
Publication of WO2020063073A1 publication Critical patent/WO2020063073A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention belongs to the field of laser radar, and particularly relates to a laser radar system device for measuring atmospheric carbon dioxide concentration and aerosol vertical profile at multiple wavelengths.
  • Carbon dioxide gas is the main gas that affects global warming. Aerosols affect the visibility of the atmosphere and have a direct and indirect effect on the radiation balance of the earth. At the same time, they also affect global climate change. Therefore, we also research and observe long-term real-time changes in carbon dioxide gas concentrations and aerosols. Vertical profiles are of great significance for meteorological predictions, global radiation balance, and atmospheric pollution. Atmospheric sounding lidar is an important method to study atmospheric carbon dioxide concentration and aerosol vertical profile. However, most lidar systems can only detect one kind of gas and can only be used for ground-based testing due to system weight and volume restrictions. Lidar systems that can simultaneously measure atmospheric carbon dioxide concentrations and aerosol vertical profiles and can perform airborne or spaceborne detection to achieve real-time wide-range measurements throughout the day have not yet appeared.
  • the purpose of the present invention is to overcome the shortcoming that a gas measurement radar device can only measure one kind of gas, and provide a multi-wavelength laser radar system device that can simultaneously measure atmospheric carbon dioxide concentration and aerosol vertical profile.
  • the device is suitable for ground-based, airborne and spaceborne platforms, and can achieve high-precision, high-resolution gas concentration measurement, and at the same time can meet the needs of real-time large-scale measurement throughout the day.
  • the basic principle of the invention is to obtain light sources with multiple wavelengths (532/1064 / 1572nm) based on seed injection technology combined with frequency-locked and nonlinear optical technology.
  • the emitted and received energy of 1572nm of online and offline light combined with the distance information to obtain the atmospheric carbon dioxide concentration using the integration path differential absorption method, and using the hyperspectral resolution detection method to obtain the aerosol backscattering coefficient, extinction coefficient, depolarization
  • the vertical profile of the target is obtained using the laser time-of-flight measurement method.
  • a multi-wavelength lidar system for measuring atmospheric carbon dioxide concentration and aerosol vertical profile including 1064nm seed laser, 1572nm seed laser, three-wavelength laser (532/1064 / 1572nm), transmitting beam expander, receiving telescope system, boresight Monitoring module, relay optical unit, photoelectric detection unit, integrating sphere, collimator, first beam splitter, second beam splitter, third beam splitter, data acquisition processing unit, reflector; photoelectric detection unit, including fourth beam splitter Mirror, fifth beam splitter, sixth beam splitter, 1572nm detection optical unit, 1064nm detection optical unit, 532nm polarization detection optical unit, 532nm hyperspectral detection optical unit, 532nm parallel polarization detection optical unit, narrowband filter, polarization beam splitter, Hyperspectral filter, 1572nm detector, 1064nm detector, 532nm polarization receiving detector, 532nm hyperspectral receiving detector, 532nm parallel polarization receiving detector.
  • the positional relationship of the above components is as follows:
  • the 1064nm seed laser and the 1572nm seed laser output port are connected to the input port of the three-wavelength laser through an optical fiber.
  • the 1572nm beam emitted by the three-wavelength laser is divided into two beams by the first beam splitter, and one beam passes through
  • the second beam splitter is divided into two beams, one of which passes through the integrating sphere and collimator into the photoelectric detection unit, and the other beam passes through the reflector into the boresight monitoring module.
  • the other light and the 532nm and 1064nm beams emitted by the three-wavelength laser are simultaneously incident into the atmosphere through the transmitting beam expander, and the 532/1064 / 1572nm three-wavelength echo signals scattered by the atmosphere or the ground pass through the receiving telescope system
  • the third beam splitter divided by the field of view is divided into two beams, one of which is incident on the boresight monitoring module, and the other is incident on the photoelectric detection unit through the relay optical unit.
  • the output end of the photodetection unit is connected to the input end of the data acquisition processing unit.
  • the 1572 nm light that has passed through the integrating sphere and the collimator lens is incident on the fourth beam splitter, and is incident on the fourth beam splitter and the 1572 nm detection optical unit.
  • the three-wavelength beam passing through the relay optical unit is incident on a fourth beam splitter and is divided into two beams of 1572 nm, 532 nm, and 1064 nm.
  • One 1572 nm beam is incident through the 1572 nm detection optical unit.
  • the other 532nm and 1064nm beams are divided into two beams of 532nm and 1064nm by the fifth beam splitter, one 1064nm light enters the 1064nm detector through the 1064nm detection optical unit, and the other 532nm
  • the light is incident on the polarization beam splitter, and is divided into two beams of 532 nm vertical light and parallel light by the polarization beam splitter.
  • One line of 532 nm vertical light passes through the 532 nm polarization detection optical unit and enters the 532 nm polarization reception detection.
  • the other 532nm parallel light is divided into two light beams by the sixth beam splitter, and one light passes through the hyperspectral filter and the 532nm hyperspectral detection optical unit in order to enter the 532nm high In the spectral receiving detector, the other light is incident on the 532 nm parallel polarization receiving detector through the 532 nm parallel polarization detecting optical unit.
  • the multi-wavelength lidar system for measuring atmospheric carbon dioxide concentration and aerosol vertical profile further includes a 1572 nm laser frequency-locking unit, and an output port thereof is connected to an input port of a three-wavelength laser through an optical fiber to improve stability of a laser frequency of 1572 nm.
  • the visual axis monitoring module is composed of a light splitting module and a CCD, and its function is to monitor the angle between the two channels of light transmitted and received, adjust the parallelism of the optical axis of the transmitting and receiving system, and make the transmitting optical axis match the receiving field of view. .
  • the relay optical unit collimates the optical path, and the condensed light received by the receiving telescope system becomes parallel light through the relay optical unit.
  • the multi-wavelength lidar system for measuring atmospheric carbon dioxide concentration and aerosol vertical profile further includes a narrow-band filter, and the narrow-band filter may be disposed between the fifth beam splitter and the polarization beam splitter to filter stray light other than 532 nm. To reduce background noise.
  • the 1572nm detection optical unit and the 1064nm detection optical unit include narrow-band filters of corresponding wavelength bands, which can reduce the interference of solar background radiation and other stray light, improve the signal-to-noise ratio, and achieve real-time high-precision measurement at all times.
  • the telescope system is a receiving telescope system with parallel receiving and emitting axes;
  • the data acquisition and processing unit includes an acquisition card and a data preprocessing module;
  • the 1572nm detector and the 1064nm detector may be APD detectors;
  • the The 532nm detector may be a PMT detector.
  • the multi-wavelength lidar system of the present invention adopts both optical differential absorption method and hyperspectral resolution detection method in a set of lidar system, which can simultaneously measure atmospheric carbon dioxide concentration and aerosol vertical profile, and obtain a greenhouse with high accuracy At the same time, the concentration of gaseous carbon dioxide can be used to achieve high-precision monitoring of aerosols.
  • the lidar ratio it is necessary to assume the lidar ratio to invert the aerosol optical parameters, which results in large errors;
  • the multi-wavelength laser radar system of the present invention is suitable for ground-based, airborne, and spaceborne platforms. It can carry out global real-time high-precision measurement of atmospheric carbon dioxide concentration and aerosol vertical profile, which is helpful for studying the carbon cycle.
  • the vertical profile of the aerosol backscattering coefficient, extinction coefficient, and depolarization ratio further classifies aerosols, and has important applications in environmental stereo monitoring;
  • the multi-wavelength laser radar system of the present invention adopts an active detection method.
  • One laser source simultaneously outputs 532/1064 / 1572nm three-wavelength lasers, which can work at the same time during the day and at night.
  • Each detection optical unit contains a narrow-band filter of the corresponding band. Reduce the solar background radiation, improve the signal-to-noise ratio, and achieve real-time high-precision measurements throughout the day.
  • FIG. 1 is a block diagram of the overall structure of a laser radar system device based on multi-wavelength measurement of carbon dioxide concentration and aerosol vertical profile.
  • FIG. 2 is a structural block diagram of a photodetection unit of the present invention.
  • 9-1 fourth beam splitter
  • 9-2 fifth beam splitter
  • 9-3 ixth beam splitter
  • 9-4 1572 nm detection optical unit
  • 9-5 1064 nm detection optical unit
  • 9- 6-532nm polarization detection optical unit 9-7-532nm hyperspectral detection optical unit
  • 9-8-532nm parallel polarization detection optical unit 9-9-narrowband filter
  • 9-10-polarization beam splitter 9-11- Hyperspectral filter
  • 9-12-1572nm detector 9-13-1064nm detector
  • 9-14-532nm polarization receiving detector 9-15-532nm hyperspectral receiving detector
  • 9-16-532nm parallel polarization receiving detector 9-16-532nm parallel polarization receiving detector.
  • FIG. 1 is a block diagram of the overall structure of a lidar system device for measuring carbon dioxide concentration and aerosol vertical profile based on multi-wavelength according to the present invention. As shown in FIG.
  • the output ports of the 1064nm seed laser 1, the 1572nm seed laser 2, and the 1572nm laser frequency-locking unit 3 are connected to the input ports of the three-wavelength laser 4 through an optical fiber.
  • the 1572nm beam emitted by the three-wavelength laser 4 passes through the first One beam splitter 12 is divided into two beams, and one beam is divided into two beams by the second beam splitter 13 and one of the beams passes through the integrating sphere 10 and the collimator 11 into the photoelectric detection unit 9 and the other
  • the light passes through the reflector 16 and enters the boresight monitoring module 7.
  • the other light and the 532nm and 1064nm beams emitted by the three-wavelength laser 4 are incident into the atmosphere through the emission beam expander 5 at the same time.
  • the ground-scattered 532/1064 / 1572nm three-wavelength echo signal is received by the receiving telescope system 6 and the third beam splitter 14 which is divided by the field of view is divided into two beams, one of which is incident on the boresight monitor In module 7, another channel of light is incident on the photodetection unit 9 through the relay optical unit 8.
  • the output end of the photodetection unit 9 is connected to the input end of the data acquisition and processing unit 15.
  • the 1572 nm light passing through the integrating sphere 10 and the collimator lens 11 is incident on the fourth beam splitter 9-1, and the fourth beam splitter 9-1 and the fourth beam splitter 9-1
  • the 1572nm detection optical unit 9-4 is incident on the 1572nm detector 9-12, and the three-wavelength beam passing through the relay optical unit 8 is incident on the fourth beam splitter 9-1 and is divided into 1572nm and 532nm. Two beams of 1064nm and 1064nm.
  • One beam of 1572nm is incident on the 1572nm detector 9-12 through the 1572nm detection optical unit 9-4, and the other beams of 532nm and 1064nm are divided into 532nm and 5200 by the fifth beam splitter 9-2.
  • 1064nm two beams, one 1064nm light enters the 1064nm detector 9-13 through the 1064nm detection optical unit 9-5, and the other 532nm light enters the narrowband filter 9-9 through the narrowband filter 9-9.
  • the polarization beam splitter 9-10 is divided into two beams of 532 nm vertical light and parallel light by the polarization beam splitter 9-10.
  • One 532 nm vertical light passes through the 532 nm polarization detection optical unit 9-6 and enters the 532 nm polarization.
  • Receive detector 9-14 another 532nm parallel light is divided into two light beams by the sixth beam splitter 9-3, and one light passes in sequence
  • the hyperspectral filter 9-11 and 532nm hyperspectral detection optical unit 9-7 are incident on the 532nm hyperspectral receiving detector 9-15, and the other light passes through the 532nm parallel polarization detection optical unit 9-8.
  • the 532 nm parallel polarization receiving detectors 9-16 are incident.
  • the 1572nm echo signal received by the receiving telescope system 6 and the 1572nm monitoring signal output by the integrating sphere 10 collimator 11 are incident on the 1572nm detector 9- through the 1572nm detection optical unit 9-4.
  • the echo signals 1572nm online and 1572nm offline light energy are E 1 and E 2 respectively
  • the monitoring signals 1572 nm online and 1572 nm offline light energy are E 3 and E 4 respectively
  • the atmospheric carbon dioxide column concentration is Among them, IWF is a weight function related to the absorption cross section of the carbon dioxide molecule, and is related to the atmospheric temperature and wet pressure and the laser operating wavelength.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置,包括激光发射单元:能同时发射1572nm、1064nm和532nm三个波长激光的双脉冲激光器(4)和发射扩束镜(5);接收望远镜系统(6);视轴监测模块(7);光电探测单元(9);数据采集处理单元(15)。在一套激光雷达系统中利用一套同时输出三波长激光的激光器(4),同时采用了光学差分吸收方法和高光谱分辨探测方法,可以同时测量大气二氧化碳浓度及气溶胶垂直廓线,在高精度获取温室气体二氧化碳的浓度同时实现气溶胶的高精度监测。

Description

多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置 技术领域
本发明属于激光雷达领域,尤其涉及多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置。
背景技术
二氧化碳气体是影响全球气候变暖的主要气体,气溶胶影响大气能见度,对地球的辐射平衡有直接和间接作用,同时也影响全球气候变化,因此同时研究并长期实时观测二氧化碳气体浓度变化及气溶胶垂直廓线对气象预测、全球辐射平衡及大气污染有重大意义。大气探测激光雷达是研究大气二氧化碳浓度和气溶胶垂直廓线的重要手段,然而大多数激光雷达系统只能探测一种气体且由于系统重量、体积限制等因素只能用于地基测试。能够同时测量大气二氧化碳浓度及气溶胶垂直廓线并且可以进行机载或星载探测实现全天实时大范围测量的激光雷达系统还未出现。
发明内容
本发明的目的在于克服一个气体测量雷达装置只能测量一种气体的不足,提供一种可以同时测量大气二氧化碳浓度及气溶胶垂直廓线的多波长激光雷达系统装置。该装置适用于地基、机载和星载平台,可以实现高精度、高分辨率气体浓度测量,同时可以满足全天实时大范围测量的需求。
本发明的基本原理是基于种子注入技术结合锁频、非线性光学技术获得多个波长(532/1064/1572nm)的光源。通过测量1572nm的online和offline光的发射能量和接收能量,结合距离信息利用积分路径差分吸收的方法获得大气二氧化碳浓度,利用高光谱分辨探测的方法获得气溶胶后向散射系数、消光系数、退偏比的垂直廓线,同时利用激光飞行时间测量方法获得目标的距离。
本发明技术解决方案如下:
一种多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统,包括1064nm种子激光器,1572nm种子激光器,三波长激光器(532/1064/1572nm),发射扩束镜,接收望远镜系统,视轴监视模块,中继 光学单元,光电探测单元,积分球,准直镜,第一分光镜,第二分光镜,第三分光镜,数据采集处理单元、反光镜;光电探测单元,包括第四分光镜,第五分光镜,第六分光镜,1572nm探测光学单元,1064nm探测光学单元,532nm偏振探测光学单元,532nm高光谱探测光学单元,532nm平行偏振探测光学单元,窄带滤波器,偏振分光镜,高光谱滤波器,1572nm探测器,1064nm探测器,532nm偏振接收探测器,532nm高光谱接收探测器,532nm平行偏振接收探测器。上述元部件的位置关系如下:
所述的1064nm种子激光器、1572nm种子激光器输出端口通过光纤与三波长激光器的输入端口相连,所述的三波长激光器发出的1572nm光束经所述的第一分光镜分为两路光束,一路光经第二分光镜分为两路光束后其中一路经所述的积分球、准直镜射入所述的光电探测单元而另一路光经所述的反光镜后射入所述的视轴监视模块,另一路光与三波长激光器发出的532nm、1064nm光束同时经所述的发射扩束镜入射到大气中,大气或地面散射的532/1064/1572nm三波长回波信号经所述的接收望远镜系统接收后被视场分割的第三分光镜分为两路光束,一路光射入所述的视轴监视模块,另一路光经所述的中继光学单元射入所述的光电探测单元,所述的光电探测单元的输出端与数据采集处理单元的输入端相连。
所述的光电探测单元中,经过所述的积分球、准直镜的1572nm光入射到所述的第四分光镜上,经该第四分光镜和所述的1572nm探测光学单元后射入所述的1572nm探测器,经过所述的中继光学单元的三波长光束入射到第四分光镜上被分为1572nm和532nm、1064nm两路光束,一路1572nm光束经所述的1572nm探测光学单元射入1572nm探测器,另一路532nm和1064nm光束经所述的第五分光镜分为532nm和1064nm两路光束,一路1064nm光经所述的1064nm探测光学单元射入所述的1064nm探测器,另一路532nm光经入射到所述的偏振分光镜,经该偏振分光镜分为532nm垂直光和平行光两路光束,一路532nm垂直光经过所述的532nm偏振探测光学单元射入所述的532nm偏振接收探测器,另一路532nm平行光经所述的第六分光镜分为两路光束,一路光依次经过所述的高光谱滤波器、532nm高光谱探测光学单元射入所述的532nm高光谱接收探测器,另一路光经所述的532nm平行偏振探测光学单元射入所述的532nm平行偏振接收探测器。
所述多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统还包括1572nm激光锁频单元,其输出端口通过光纤与三波长激光器的输入端口 相连,提高1572nm激光频率的稳定性。
所述的视轴监视模块由分光模块和CCD组成,其作用是监测发射和接收两路光之间的夹角,调节发射与接收系统光轴的平行度,使发射光轴与接收视场匹配。
所述中继光学单元对光路进行准直,接收望远镜系统接收到的会聚光经中继光学单元变成平行光。
所述多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统还包括窄带滤波器,所述窄带滤波器可以设置在第五分光镜与偏振分光镜之间,滤除532nm以外的杂散光,降低背景噪声。
所述1572nm探测光学单元、1064nm探测光学单元中包含相应波段的窄带滤光片,其可以降低太阳背景辐射和其他杂散光的干扰,提高信噪比,实现全天时实时高精度测量。
所述的望远镜系统为收发光轴平行的接收望远镜系统;所述的数据采集处理单元包括采集卡和数据预处理模块;所述的1572nm探测器、1064nm探测器可以是APD探测器;所述的532nm探测器可以是PMT探测器。
本发明的有益效果在于:
1、本发明的多波长激光雷达系统,在一套激光雷达系统中同时采用了光学差分吸收方法和高光谱分辨探测方法,可以同时测量大气二氧化碳浓度及气溶胶垂直廓线,在高精度获取温室气体二氧化碳的浓度的同时实现气溶胶的高精度监测,而不用像传统的气溶胶探测激光雷达需要假定激光雷达比来反演气溶胶光学参数,从而带来较大的误差;
2、本发明的多波长激光雷达系统适用于地基、机载和星载平台,可以开展大气二氧化碳浓度及气溶胶垂直廓线的全球范围实时高精度测量,有助于研究碳循环,同时可以通过气溶胶后向散射系数、消光系数、退偏比的垂直廓线进一步对气溶胶进行分类,在环境立体监测中具有重要应用;
3、本发明的多波长激光雷达系统采用主动探测方法,一个激光源同时输出532/1064/1572nm三波长激光,可以同时在白天和晚上工作,各探测光学单元包含相应波段的窄带滤光片可以降低太阳背景辐射,提高信噪比,实现全天实时高精度测量。
附图说明
图1为本发明基于多波长测量二氧化碳浓度及气溶胶垂直轮廓的激光雷达系统装置整体结构框图。图中:1—1064nm种子激光器、2—1572nm种子激光器、3—1572nm激光锁频单元、4—三波长激光器、5—发射扩束镜、6—接收望远镜系统、7—视轴监视模块、8—中继光学单元、9—光电探测单元、10—积分球、11—准直镜、12—第一分光镜、13—第二分光镜、14—第三分光镜、15—数据采集处理单元、16—反光镜。
图2为本发明的光电探测单元结构框图。图中:9-1—第四分光镜、9-2—第五分光镜、9-3—第六分光镜、9-4—1572nm探测光学单元、9-5—1064nm探测光学单元、9-6—532nm偏振探测光学单元、9-7—532nm高光谱探测光学单元、9-8—532nm平行偏振探测光学单元、9-9—窄带滤波器、9-10—偏振分光镜、9-11—高光谱滤波器、9-12—1572nm探测器、9-13—1064nm探测器、9-14—532nm偏振接收探测器、9-15—532nm高光谱接收探测器、9-16—532nm平行偏振接收探测器。
具体实施方式
下面结合实例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。图1为本发明基于多波长测量二氧化碳浓度及气溶胶垂直轮廓的激光雷达系统装置整体结构框图,如图1所示,多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统包括1064nm种子激光器1,1572nm种子激光器2,1572nm激光锁频单元3,三波长激光器(532/1064/1572nm)4,发射扩束镜5,接收望远镜系统6,视轴监视模块7,中继光学单元8,光电探测单元9,积分球10,准直镜11,第一分光镜12,第二分光镜13,第三分光镜14,数据采集处理单元15,反光镜16;光电探测单元,包括第四分光镜9-1,第五分光镜9-2,第六分光镜9-3,1572nm探测光学单元9-4,1064nm探测光学单元9-5,532nm偏振探测光学单元9-6,532nm高光谱探测光学单元9-7,532nm平行偏振探测光学单元9-8,窄带滤波器9-9,偏振分光镜9-10,高光谱滤波器9-11,1572nm探测器9-12,1064nm探测器9-13,532nm偏振接收探测器9-14,532nm高光谱接收探测器9-15,532nm平行偏振接收探测器9-16。上述元部件的位置关系如下:
所述的1064nm种子激光器1、1572nm种子激光器2、1572nm激光锁频单元3的输出端口通过光纤与三波长激光器4的输入端口相连,所述的三波长激光器4发出的1572nm光束经所述的第一分光镜12分为两路光束,一路光经第 二分光镜13分为两路光束后其中一路经所述的积分球10、准直镜11射入所述的光电探测单元9而另一路光经所述的反光镜16后射入所述的视轴监视模块7,另一路光与三波长激光器4发出的532nm、1064nm光束同时经所述的发射扩束镜5入射到大气中,大气或地面散射的532/1064/1572nm三波长回波信号经所述的接收望远镜系统6接收后被视场分割的第三分光镜14分为两路光束,一路光射入所述的视轴监视模块7,另一路光经所述的中继光学单元8射入所述的光电探测单元9,所述的光电探测单元9的输出端与数据采集处理单元15的输入端相连。
所述的光电探测单元9中,经过所述的积分球10、准直镜11的1572nm光入射到所述的第四分光镜9-1上,经该第四分光镜9-1和所述的1572nm探测光学单元9-4后射入所述的1572nm探测器9-12,经过所述的中继光学单元8的三波长光束入射到第四分光镜9-1上被分为1572nm和532nm、1064nm两路光束,一路1572nm光束经所述的1572nm探测光学单元9-4射入1572nm探测器9-12,另一路532nm和1064nm光束经所述的第五分光镜9-2分为532nm和1064nm两路光束,一路1064nm光经所述的1064nm探测光学单元9-5射入所述的1064nm探测器9-13,另一路532nm光经所述的窄带滤波器9-9入射到所述的偏振分光镜9-10,经该偏振分光镜9-10分为532nm垂直光和平行光两路光束,一路532nm垂直光经过所述的532nm偏振探测光学单元9-6射入所述的532nm偏振接收探测器9-14,另一路532nm平行光经所述的第六分光镜9-3分为两路光束,一路光依次经过所述的高光谱滤波器9-11、532nm高光谱探测光学单元9-7射入所述的532nm高光谱接收探测器9-15,另一路光经所述的532nm平行偏振探测光学单元9-8射入所述的532nm平行偏振接收探测器9-16。
本发明实施的基于多波长测量二氧化碳及气溶胶浓度的激光雷达系统具体流程是:
①通过第四分光镜9-1将由接收望远镜系统6接收的1572nm回波信号与由积分球10准直镜11输出1572nm的监测信号同时经过1572nm探测光学单元9-4入射到1572nm探测器9-12中,得到回波信号1572nm online和1572nm offline光能量分别为E 1和E 2,监测信号1572nm online和1572nm offline光能量分别为E 3和E 4,则大气二氧化碳柱线浓度为
Figure PCTCN2019097360-appb-000001
Figure PCTCN2019097360-appb-000002
其中IWF是与二氧化碳分子吸收截面相关的权重函数且与大气温湿压以及激光工作波长有关。
②通过第五分光镜9-2对532nm与1064nm进行分光,可以得到532nm光依次经过窄带滤波器9-9、偏振分光镜9-10、532nm偏振探测光学单元9-6入射到532nm偏振接收探测器9-14中的垂直偏振通道后向散射功率
Figure PCTCN2019097360-appb-000003
依次经过窄带滤波器9-9、偏振分光镜9-10、高光谱滤波器9-11、532nm高光谱探测光学单元9-7入射到532nm高光谱接收探测器9-15中的高光谱通道后向散射功率
Figure PCTCN2019097360-appb-000004
依次经过窄带滤波器9-9、偏振分光镜9-10、532nm平行偏振探测光学单元9-8入射到532nm平行偏振接收探测器9-16中的水平偏振通道后向散射功率
Figure PCTCN2019097360-appb-000005
利用雷达方程
Figure PCTCN2019097360-appb-000006
Figure PCTCN2019097360-appb-000007
Figure PCTCN2019097360-appb-000008
Figure PCTCN2019097360-appb-000009
可得气溶胶后向散射系数、消光系数、退偏比的垂直廓线,其中K 1、K 2、K 3分别为三个通道系统常量,
Figure PCTCN2019097360-appb-000010
分别为垂直通道的分子和气溶胶的后向散射系数,
Figure PCTCN2019097360-appb-000011
分别为平行通道的分子和气溶胶的后向散射系数,α m和α a分别为分子和气溶胶的消光系数,T m和T a分别为分子和气溶胶通过高光谱滤波器的透光率。

Claims (5)

  1. 一种多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置,其特征在于,所述装置包括1064nm种子激光器(1)、1572nm种子激光器(2)、三波长激光器(4)、发射扩束镜(5)、接收望远镜系统(6)、视轴监视模块(7)、中继光学单元(8)、光电探测单元(9)、积分球(10)、准直镜(11)、第一分光镜(12)、第二分光镜(13)、第三分光镜(14)、数据采集处理单元(15)、反光镜(16);光电探测单元(9)包括第四分光镜(9-1)、第五分光镜5(9-2)、第六分光镜(9-3)、1572nm探测光学单元(9-4)、1064nm探测光学单元(9-5)、532nm偏振探测光学单元(9-6)、532nm高光谱探测光学单元(9-7)、532nm平行偏振探测光学单元(9-8)、偏振分光镜(9-10)、高光谱滤波器(9-11)、1572nm探测器(9-12)、1064nm探测器(9-13)、532nm偏振接收探测器(9-14)、532nm高光谱接收探测器(9-15)、532nm平行偏振接收探测器(9-16);其中:
    所述的1064nm种子激光器(1)、1572nm种子激光器(2)的输出端口通过光纤与三波长激光器(4)的输入端口相连,所述的三波长激光器(4)发出的1572nm光束经所述的第一分光镜(12)分为两路光束,一路光经第二分光镜(13)分为两路光束后其中一路经所述的积分球(10)、准直镜(11)射入所述的光电探测单元(9)而另一路光经所述的反光镜(16)后射入所述的视轴监视模块(7),另一路光与三波长激光器(4)发出的532nm、1064nm光束同时经所述的发射扩束镜(5)入射到大气中,大气或地面散射的532/1064/1572nm三波长回波信号经所述的接收望远镜系统(6)接收后被视场分割的第三分光镜(14)分为两路光束,一路光射入所述的视轴监视模块(7),另一路光经所述的中继光学单元(8)射入所述的光电探测单元(9),所述的光电探测单元(9)的输出端与数据采集处理单元(15)的输入端相连;
    所述的光电探测单元(9)中,经过所述的积分球(10)、准直镜(11)的1572nm光入射到所述的第四分光镜(9-1)上,经该第四分光镜(9-1)和所述的1572nm探测光学单元(9-4)后射入所述的1572nm探测器(9-12),经过所述的中继光学单元(8)的三波长光束入射到第四分光镜(9-1)上被分为 1572nm和532nm、1064nm两路光束,一路1572nm光束经所述的1572nm探测光学单元(9-4)射入1572nm探测器(9-12),另一路532nm和1064nm光束经所述的第五分光镜(9-2)分为532nm和1064nm两路光束,一路1064nm光经所述的1064nm探测光学单元(9-5)射入所述的1064nm探测器(9-13),另一路532nm光入射到所述的偏振分光镜(9-10),经该偏振分光镜(9-10)分为532nm垂直光和平行光两路光束,一路532nm垂直光经过所述的532nm偏振探测光学单元(9-6)射入所述的532nm偏振接收探测器(9-14),另一路532nm平行光经所述的第六分光镜(9-3)分为两路光束,一路光依次经过所述的高光谱滤波器(9-11)、532nm高光谱探测光学单元(9-7)射入所述的532nm高光谱接收探测器(9-15),另一路光经所述的532nm平行偏振探测光学单元(9-8)射入所述的532nm平行偏振接收探测器(9-16)。
  2. 根据权利要求1所述的装置,其特征在于,所述的三波长激光器(4)为同时输出532nm、1064nm、1572nm三个波长的多波长激光器并且1572nm脉冲光波长与1572nm种子激光器(2)波长锁定,1064nm脉冲光波长与1064nm种子激光器波长锁定。
  3. 根据权利要求1所述的装置,其特征在于,还包括1572nm激光锁频单元(3)。
  4. 根据权利要求1所述的装置,其特征在于,还包括窄带滤波器(9-9)。
  5. 根据权利要求1所述的装置,其特征在于,所述装置同时采用了光学差分吸收方法和高光谱分辨探测技术方法,最终同时实现大气二氧化碳浓度和气溶胶垂直廓线测量。
PCT/CN2019/097360 2018-09-30 2019-07-23 多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置 WO2020063073A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/281,054 US11397149B2 (en) 2018-09-30 2019-07-23 Laser radar system apparatus for multi-wavelength measurement of atmospheric carbon dioxide concentration and vertical aerosol profile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811154794.1 2018-09-30
CN201811154794.1A CN110967704B (zh) 2018-09-30 2018-09-30 多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置

Publications (1)

Publication Number Publication Date
WO2020063073A1 true WO2020063073A1 (zh) 2020-04-02

Family

ID=69950252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097360 WO2020063073A1 (zh) 2018-09-30 2019-07-23 多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置

Country Status (3)

Country Link
US (1) US11397149B2 (zh)
CN (1) CN110967704B (zh)
WO (1) WO2020063073A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112414958A (zh) * 2020-10-26 2021-02-26 武汉大学 基于激光雷达探测的co2浓度测量方法及系统
CN114114322A (zh) * 2021-10-19 2022-03-01 北京遥测技术研究所 一种适用于空间应用的大气探测激光雷达系统
CN114924290A (zh) * 2022-04-02 2022-08-19 北京遥测技术研究所 一种大气海洋探测激光雷达的探测方法及中继光学系统
CN115524264A (zh) * 2022-11-04 2022-12-27 山东科技大学 一种基于激光雷达测量的气溶胶分类方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112684467A (zh) * 2020-12-09 2021-04-20 长沙思木锐信息技术有限公司 一种三维扫描激光雷达系统及其测量方法
CN112965086B (zh) * 2021-02-08 2022-07-15 中国科学技术大学 基于脉冲编码的1.5μm波长气溶胶探测激光雷达及信号解码方法
CN113281774B (zh) * 2021-05-21 2024-06-14 南京新环光电科技有限公司 高效紧凑的高光谱分辨率激光雷达系统、气溶胶后向散射系数和消光系数的获取方法
CN114280691B (zh) * 2021-11-26 2023-01-24 西南交通大学 一种光子数的绝对标定方法及系统
CN115032655B (zh) * 2022-08-10 2022-11-29 安徽科创中光科技股份有限公司 基于可见光和紫外光的双波长激光雷达反演臭氧浓度算法
CN115372292A (zh) * 2022-08-30 2022-11-22 大连理工大学 一种基于连续波差分吸收激光雷达的no2浓度三波长探测方法
CN115480265A (zh) * 2022-10-12 2022-12-16 山东国耀量子雷达科技有限公司 高动态范围的大气甲烷探测方法、甲烷雷达及计算机终端
CN117784101B (zh) * 2024-02-27 2024-05-10 武汉大学 一种星载大气激光雷达信号仿真方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030001A1 (en) * 2000-01-20 2003-02-13 Cooper David E. Apparatus and method of remote gas trace detection
CN102288972A (zh) * 2011-05-10 2011-12-21 中国海洋大学 三波长实时定标激光雷达装置
CN204515135U (zh) * 2014-06-12 2015-07-29 中国科学院上海技术物理研究所 一种探测大气二氧化碳浓度的激光雷达系统
CN107193015A (zh) * 2017-05-09 2017-09-22 盐城师范学院 基于f‑p标准具的紫外三频高光谱分辨率激光雷达系统及其探测方法
CN108444948A (zh) * 2018-04-10 2018-08-24 中国科学院上海技术物理研究所 测量大气二氧化碳浓度的差分吸收激光雷达系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090185583A1 (en) * 2006-06-02 2009-07-23 Corning Incorporated UV and Visible Laser Systems
CN109655843A (zh) * 2019-01-16 2019-04-19 武汉大学 探测二氧化碳浓度廓线的脉冲红外差分吸收激光雷达系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030001A1 (en) * 2000-01-20 2003-02-13 Cooper David E. Apparatus and method of remote gas trace detection
CN102288972A (zh) * 2011-05-10 2011-12-21 中国海洋大学 三波长实时定标激光雷达装置
CN204515135U (zh) * 2014-06-12 2015-07-29 中国科学院上海技术物理研究所 一种探测大气二氧化碳浓度的激光雷达系统
CN107193015A (zh) * 2017-05-09 2017-09-22 盐城师范学院 基于f‑p标准具的紫外三频高光谱分辨率激光雷达系统及其探测方法
CN108444948A (zh) * 2018-04-10 2018-08-24 中国科学院上海技术物理研究所 测量大气二氧化碳浓度的差分吸收激光雷达系统及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112414958A (zh) * 2020-10-26 2021-02-26 武汉大学 基于激光雷达探测的co2浓度测量方法及系统
CN114114322A (zh) * 2021-10-19 2022-03-01 北京遥测技术研究所 一种适用于空间应用的大气探测激光雷达系统
CN114924290A (zh) * 2022-04-02 2022-08-19 北京遥测技术研究所 一种大气海洋探测激光雷达的探测方法及中继光学系统
CN114924290B (zh) * 2022-04-02 2024-06-04 北京遥测技术研究所 一种大气海洋探测激光雷达的探测方法及中继光学系统
CN115524264A (zh) * 2022-11-04 2022-12-27 山东科技大学 一种基于激光雷达测量的气溶胶分类方法

Also Published As

Publication number Publication date
US20210349011A1 (en) 2021-11-11
CN110967704B (zh) 2021-09-07
US11397149B2 (en) 2022-07-26
CN110967704A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020063073A1 (zh) 多波长测量大气二氧化碳浓度及气溶胶垂直廓线的激光雷达系统装置
CN106443710B (zh) 一种双波长偏振高光谱分辨激光雷达装置
CN107193015B (zh) 基于f-p标准具的紫外三频高光谱分辨率激光雷达系统及其探测方法
US7884937B2 (en) Airborne tunable mid-IR laser gas-correlation sensor
CN105738916B (zh) 高光谱偏振大气探测激光雷达系统及控制方法
CN108303706B (zh) 一种气溶胶光学参数探测方法及高光谱激光雷达探测系统
CN103616698A (zh) 一种大气细粒子时空分布拉曼米散射激光雷达测量装置
US10794998B2 (en) Diode laser based high spectral resolution lidar
CN108957474B (zh) 用于检测粒子形态的全偏振激光雷达系统及其检测方法
CN110673157B (zh) 一种探测海洋光学参数的高光谱分辨率激光雷达系统
CN110441792B (zh) 同时测风测温的瑞利散射激光雷达系统及相关校准方法
CN110161280B (zh) 混合探测多普勒激光雷达风速测量系统及其测量方法
CN105334519A (zh) 基于三通道f-p标准具的多大气参数同时高精度探测激光雷达系统
Kong et al. A polarization-sensitive imaging lidar for atmospheric remote sensing
CN114660573A (zh) 测量大气二氧化碳及甲烷柱浓度的激光雷达系统
Yu et al. Airborne 2-micron double pulsed direct detection IPDA lidar for atmospheric CO2 measurement
CN109283550B (zh) 全固态全天时水汽扫描探测激光雷达系统及探测方法
CN211741577U (zh) 一种自校准的偏振大气激光雷达装置
CN107300539A (zh) 基于双光路法布里珀罗干涉仪的ch4柱浓度遥测装置
CN203786295U (zh) 振动-转动拉曼-米散射多波长激光雷达系统
RU201025U1 (ru) Двухканальный лидар ближнего ик-диапазона
CN115308774A (zh) 基于四通道双程f-p干涉仪的瑞利散射多普勒激光雷达系统
Shen et al. Fabry–Perot etalon-based ultraviolet high-spectral-resolution lidar for tropospheric temperature and aerosol measurement
RU181296U1 (ru) Многокомпонентный лидарный газоанализатор среднего ик-диапазона
Dong et al. Doppler LiDAR measurement of wind in the Stratosphere

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866927

Country of ref document: EP

Kind code of ref document: A1