WO2011066794A1 - 受迫振动直动发电系统 - Google Patents

受迫振动直动发电系统 Download PDF

Info

Publication number
WO2011066794A1
WO2011066794A1 PCT/CN2010/079347 CN2010079347W WO2011066794A1 WO 2011066794 A1 WO2011066794 A1 WO 2011066794A1 CN 2010079347 W CN2010079347 W CN 2010079347W WO 2011066794 A1 WO2011066794 A1 WO 2011066794A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
valve
coil
forced vibration
generation system
Prior art date
Application number
PCT/CN2010/079347
Other languages
English (en)
French (fr)
Inventor
唐明龙
张海明
李小年
张洁
Original Assignee
天津蹊径动力技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2009102240460A external-priority patent/CN102182551A/zh
Application filed by 天津蹊径动力技术有限公司 filed Critical 天津蹊径动力技术有限公司
Priority to CN2010800029298A priority Critical patent/CN102667102A/zh
Publication of WO2011066794A1 publication Critical patent/WO2011066794A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • F02B71/04Adaptations of such engines for special use; Combinations of such engines with apparatus driven thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the invention relates to a forced vibration direct-current power generation system, in particular, the power transmission shaft adopts a large-diameter hollow type, and the vibration springs are respectively located inside and outside the transmission shaft to reduce the length of the system; the linear generator adopts a single-pole radial permanent magnet motor or a multi-pole antenna The permanent magnet motor is used; the first piston ring adopts a barrel-shaped asymmetric piston ring to reduce the friction loss; the combustion chamber structure adopts a nearly parallel and smooth structure of the cylinder head and the piston to reduce the heat transfer loss of the combustion chamber; the valve driving mechanism adopts a monopole radial direction. Permanent magnet linear motor type electromagnetic valve drive system.
  • the 6 invention proposes to use a mechanical spring (or magnet) to form a vibration system, and the piston relies on during the non-power stroke
  • the vibration system and the electromagnetic force of the coil are driven, and the current generated by the generator is buffered by the capacitor to drive the motor.
  • the system optimizes the stroke and compression ratio of the piston by controlling the coil current in the generator.
  • the power is adjusted by controlling the distance between the number of working cylinders and the intake stroke.
  • the driving of the valve utilizes the forced vibration system, and the electromagnetic force supplements the energy.
  • the method and the correct opening and closing of the valve, the system is convenient to adjust the compression ratio, and the compression ignition type is used to ensure a higher compression ratio under wide working conditions and multiple fuels, thereby improving system efficiency.
  • the power is adjusted by controlling the distance between the number of working cylinders and the intake stroke.
  • the main disadvantage is The frequency is relatively fixed and the engine dynamic range is narrow.
  • the main vibrating body generator coil, piston, The coil spring and its connecting mechanism
  • the disc spring is not fixedly connected with the main vibrating body.
  • the forced vibration direct-current power generation system uses the horizontally opposite and synchronous working modes of the cylinders to balance the force in the middle of the body and reduce the vibration.
  • the vibration spring is installed outside the cylinder and is connected end to end, and the length is difficult to reduce.
  • the mechanical loss of the conventional piston engine piston accounts for about 50% of the overall mechanical loss.
  • the method of reducing the friction loss of the piston is mainly to improve the machining accuracy, good surface treatment, good lubrication, and the use of a smaller barrel structure.
  • the outer surface and the lower surface of the piston ring are sealing surfaces.
  • the pressure in the cylinder rises, the upper surface and the inner surface are subjected to gas pressure, and the pressure of the inner surface causes the side pressure to rise and the friction loss to increase.
  • Conventional solutions can use high-strength materials to reduce the height of the piston ring to reduce the side pressure of the high-pressure gas, but in order to ensure strength, there is a limit to the thickness reduction under the same material.
  • Heat transfer loss is an important aspect affecting engine efficiency.
  • conventional engines need to optimize the structure of the combustion chamber, increase turbulence, accelerate the combustion rate, and reduce the heat transfer loss to reduce turbulence.
  • the two are contradictory, so they are burning.
  • the main consideration is to increase the burning speed, and it is rarely considered to reduce the heat transfer loss.
  • the radial permanent magnet linear motor type electromagnetic valve drive proposed in CN201010526680. 2 organically combines an electromagnet and an armature to reduce the operating current of the electromagnetic valve and apply it to the system.
  • a forced vibration direct-current power generation system which comprises a forced vibration system, and the forced vibration system cooperates under the power generation control of the piston and the power generation of the linear motor to perform forced vibration direct motion
  • the power generation, forced vibration system includes a transmission shaft assembly.
  • the transmission shaft assembly fixes the engine piston, the linear generator single-pole radial magnet and the vibration spring.
  • the transmission shaft assembly includes a transmission shaft, and the transmission shaft adopts a large-diameter hollow type, and the vibration
  • the springs are respectively located inside and outside the transmission shaft to reduce the length of the system;
  • the linear motor adopts a single-pole radial permanent magnet linear motor or a multi-pole radial permanent magnet linear motor;
  • the first piston ring on the outer side of the piston adopts a barrel-shaped asymmetric piston ring.
  • the combustion chamber is the space surrounded by the cylinder head, the piston and the cylinder liner.
  • the combustion chamber adopts a nearly parallel and smooth structure of the cylinder head and the piston to reduce the heat transfer loss of the combustion chamber.
  • the valve drive mechanism provided on the cylinder head adopts a monopole. Radial permanent magnet linear motor type electromagnetic valve drive system.
  • the drive shaft straight tube extends the vibration spring indirectly to the inside of the cylinder to reduce the length of the system;
  • the vibration spring comprises an upper disc spring, an upper coil spring, a lower coil spring and a lower disc spring, and the lower coil spring is located inside the transmission shaft
  • the lower disc spring is connected to the lower portion of the lower coil spring
  • the upper coil spring is located outside the transmission shaft (23-1)
  • the upper disc spring is connected to the upper portion of the upper coil spring.
  • the linear motor includes a power generating inner and outer core, an end magnetic conducting plate, a stator coil, a ring-shaped generator monopole radial magnet, and the transmission shaft assembly; and the inner and outer cores are installed concentrically.
  • the end is connected by a magnetically-conductive pressure plate, the stator coil is located between the inner and outer cores of the power generation, the single-pole radial magnet of the generator is located between the stator coil and the core of the power generation, and the transmission shaft assembly further comprises a radial connecting frame, the connecting frame It is integrated with the straight shaft of the drive shaft and is located below the straight shaft of the drive shaft.
  • the single-pole radial magnet of the generator is also radial.
  • the core of the power generation is composed of several sectors. There is a gap between the sectors.
  • the transmission arm passes through the power generation.
  • the radioactive gap of the core is connected to the single-pole radial magnet of the generator, and the stator coil adopts an alternating structure of a magnetic conductive piece and a flat wire.
  • the inner side of the generator monopole to the magnet is a pole and the outer side is a pole.
  • the inner core of the power generation, the outer core for generating electricity, and the magnetically permeable plate are radially stacked by a trapezoidal silicon steel sheet.
  • the thickness of the magnetically permeable plate away from the cylinder direction is smaller than the thickness of the magnetically permeable plate near the cylinder direction, and an air gap is left on the magnetic permeability plate away from the cylinder direction, and the guide can be directly cancelled.
  • the magnetic pressure plate reduces the magnetic flux and inductance generated by the valve coil to improve the working magnetic field of the linear motor.
  • the stator coil comprises a flat wire and a silicon steel strip, and the silicon steel strip and the flat wire are stacked in a vertical manner.
  • the stator coil comprises a bobbin inner cylinder, and the bobbin inner cylinder is made of a high magnetic permeability material.
  • the staggered longitudinal slits are distributed on the inner cylinder of the bobbin.
  • the face of the coil end cap pressed against the stator coil is a helicoid having a pitch equal to the thickness of the magnetically permeable material and the flat conductor.
  • the generator monopole radial magnet is a radial permanent magnet mover;
  • the stator coil is a vertical winding structure, the stator core slot has a spiral surface, or the stator coil is a conductive tape and a flat conductor.
  • the structure of the segment is wound and the outer core is added, and the end plate does not need a magnetic material.
  • stator coil of the cogging structure is a vertical winding
  • groove of the tooth groove has a vertical winding.
  • the spiral surface of the circle fits.
  • the conductive tape and the flat wire are stacked on the stator coil of the outer core, and the coil is superposed on the lead tape and the flat wire.
  • Each segment leads two terminals, and the in-phase winding ends. Connected, the outer sleeve of the ring core.
  • the piston and the cylinder head are each spherical in shape to reduce convective heat transfer losses.
  • the barrel of one end of the first piston ring near the cylinder head is larger than the barrel of the one end away from the cylinder head, and the barrel of the first piston ring near the end of the cylinder head is larger than the thickness of the lubricating oil film;
  • the maximum outer diameter of the ring is located at the lower portion of the piston ring; the high pressure gas in the cylinder enters the upper portion of the outer wall of the first piston ring to offset the side pressure of part of the high pressure gas to reduce friction loss.
  • the electromagnetic valve drive system includes a valve stem, a valve spring, an upper electromagnet and a lower electromagnet, and each electromagnet includes an armature, a valve electromagnet inner and outer cores and a valve coil, and the armature is located thereon.
  • the lower armature; the armature and the monopole to the permanent magnet combine to form a valve-driven composite mover; the valve stem, the valve spring, the inner core of the valve electromagnet, the monopole radial permanent magnet, the valve coil, the valve electromagnet
  • the outer cores are sequentially sleeved from the inside to the outside.
  • valve driving armature and the inner and outer cores and the armature of the two electromagnets respectively adopt a magnetic conductive material mainly composed of radioactive silicon steel sheets; and the valve coil adopts a structure in which the conductive magnets and the wires alternate.
  • the transmission shaft is changed to a large-diameter hollow type, and the vibration springs are respectively located in the transmission. Inside and outside the shaft, the installation space of the vibration spring extends into the cylinder, which increases the installation space of the vibration spring, which can reduce the length of the system and make the design method more flexible.
  • the direct-acting motor core is open-ended at one end, and the transmission shaft is connected to the mover through a cylinder-like mechanism, and the minimum length is twice the stroke, and since the magnetic flux circuit only passes through one end of the iron core, the required core volume is close to two. The volume of the end magnetic circuit is twice, which increases the weight of the system.
  • the stator coil of the existing single-pole linear motor has no magnetizer inside, and the multi-pole linear motor generally has a magnetizer between each coil.
  • the main structure of the embodiment of the invention is a power generation inner core, a power generation outer core, an end magnetizer, a stator coil, a generator monopole radial magnet, and a transmission shaft.
  • the core of the power generation is made into a radial shape, and the connecting frame of the radial transmission shaft assembly is connected to the single-pole radial magnet of the generator through the radioactive gap of the inner core, and the stator coil is formed by the conductive tape and the conductive flat wire, so that the length of the motor Adding the length of the mover to the stroke is about 1.5 times of the stroke, reducing the air gap of the working magnetic field, reducing the weight of the magnet, and increasing the magnetic flux generated by the coil to increase the working magnetic field of the linear motor, away from the cylinder.
  • the thickness of the magnetic end cover is smaller than the thickness of the magnetic end cover close to the cylinder direction, and an air gap is left on the magnetic end cover away from the cylinder direction, and the magnetic end cover can also be directly cancelled.
  • the linear motion motor of the embodiment of the invention adopts a structure similar to that of the conventional linear motor, and the linear motor mover is composed of three parts: a transmission shaft, a multi-pole magnet mover sleeve, and a plurality of opposite-direction radial permanent magnets; a linear motor stator It can be two structures, one is a cogging structure like the conventional multi-pole linear motor, but the coil of the embodiment of the invention is a vertical winding structure, the stator core groove has a spiral surface; the other is a conductive tape and a flat wire stack Set the section to form a winding and add the structure of the outer core.
  • the first piston ring adopts an asymmetric large barrel shape
  • the loss of the piston ring accounts for about 50% of the total loss, and the main loss comes from the side pressure of the piston.
  • the side pressure is composed of three parts; 1 the elastic force of the piston ring; 2 the side pressure caused by the crankshaft rotation; 3 Side pressure caused by high air pressure.
  • the direct-current power generation scheme has no side pressure of crankshaft rotation, and the main friction loss is the side pressure caused by high air pressure; for the direct motion system, the side pressure is balanced, the thickness of the cylinder wall is uniform, so the elastic force of the piston
  • the seal is relatively reliable and reduces the air pressure seal. This embodiment fully utilizes this feature to propose an asymmetric large barrel piston ring.
  • the piston ring In the upper part of the piston (with the largest diameter as the boundary), the barrel degree exceeding the thickness of the oil film is used, and the normal barrel degree is adopted in the lower part, and the lower height is smaller than the upper height.
  • the piston ring When there is high pressure gas, the piston ring not only has the upper surface and the inner surface to withstand the gas pressure, but also the outer surface is subjected to the gas pressure.
  • the side pressure is equal to the inner surface gas pressure minus the outer surface gas pressure, thus reducing the friction loss. .
  • This scheme is the same as the conventional scheme.
  • the piston ring height should be reduced as much as possible. According to the actual sealing surface height, the piston ring width is reduced and the side pressure is reduced.
  • the pressure of the outer pressure bearing surface of the piston ring is basically the same as the conventional design.
  • the piston and cylinder head are nearly parallel and smooth, reducing convective heat transfer loss
  • the heat transfer loss of the combustion chamber is an important aspect affecting the efficiency of the engine.
  • the heat transfer rate affects the time, flow state, temperature, area, etc.
  • the heat transfer time, temperature, and area are related to the speed and power, and are not easy to adjust. Since the main heat transfer mode is convective heat transfer, the flow state has a great influence on heat transfer.
  • the conventional engine needs to increase the turbulent flow to increase the combustion speed, and the turbulent flow increases the heat transfer loss, which is difficult to achieve.
  • the scheme utilizes the characteristics of direct-acting power generation, adopts a homogeneous compression ignition method to increase the combustion speed, and reduces the heat transfer loss by simplifying the structure of the combustion chamber and reducing the turbulence as much as possible.
  • the monopole radial permanent magnet linear motor type electromagnetic valve system adopts a mover structure combining an armature and a linear motor; a magnetic conductive material mainly composed of a radioactive silicon steel sheet; and a parallel permanent magnet circuit for permanent magnet suction-type maintenance, Main body technology such as alternating structure of magnets and coils. At the same time, hydraulic adjustment of the suction gap is adopted; auxiliary technologies such as linear motor speed sensor and inductive displacement calculation are adopted.
  • FIG. 1 is a cross-sectional view showing the overall assembly of a forced vibration direct current power generation system according to an embodiment of the present invention
  • Figure 2 is a perspective view of a power generation core
  • Figure 3 is a perspective view of a direct drive power transmission shaft
  • Figure 4 is a schematic view of an asymmetric large barrel piston ring
  • Figure 5 is a perspective view of a stator coil of a linear motor
  • Figure 6 is a partial cross-sectional view of a stator coil of a linear motor
  • Figure 7 is a sectional view showing the assembly of a single-pole radial permanent magnet linear motor type electromagnetic valve drive system
  • Figure 8 is a cross-sectional view of a valve-driven composite mover
  • Figure 9 is a multi-pole radial permanent magnet linear motor generator monopole radial magnet mover assembly diagram
  • Figure 10 is an assembled view of a stator coil of a cogging multi-pole radial permanent magnet linear motor according to another embodiment of the present invention.
  • Figure 1. Cylinder block, 2. Cylinder liner, 3. Piston, 4. Valve, 5. Water jacket, 6. Water nozzle, 7. Cylinder head, 8. Intake port, 9. Exhaust channel, 10. Cylinder head Waterway, 11. Valve-driven composite mover, 11-1. Valve armature, 11-2. Positioning step, 11-3. Positioning ring, 11-4. Flange, 11-5. Link sleeve, 11-6. Magnetic lining ring, 11_7. Unipolar radial permanent magnet, 11-8. Armature frame, 12. Valve electromagnet inner core, 12-1.
  • Valve electromagnet outer core 12-2. Air gap, 13. Valve spring , 14. Valve coil, 15. Valve speed sensor, 16. Oil nozzle, 17. Oil recovery port, 18. Transmission bearing, 19. Upper disc spring, 20. Bearing oil seal, 21. Linear motor end magnetic pressure plate, 22. Generator single pole radial magnet (also known as generator mover), 22-1 generator multipole radial magnet, 23. drive shaft assembly, 23-1. drive shaft straight, 23-2. radioactive connection, 24. Iron core in power generation, 24-1. Multi-pole magnet mover sleeve, 25. Stator coil, 25-1. Flat wire, 25-2. Silicon steel strip, 25-3. Coil end cover, 25_4 coil end cover helicoid , 25-5. Coil inner tube, 26.
  • External power core 26-1 Toothed outer core, 26-2. outer core slot spiral surface, 27. power generating outer water jacket, 28. upper coil spring, 29. lower coil spring, 30. lower coil spring, 31. lower disc spring, 32. Lower disc spring seat, 33. Asymmetrical barrel degree piston ring, 35. Valve clearance adjustment hydraulic cylinder, 36. Valve lift adjustment Whole hydraulic cylinder, 37. Combustion chamber.
  • Fig. 1 is a cross-sectional view showing a general assembly of a forced vibration direct current power generation system according to an embodiment of the present invention
  • Fig. 2 is a perspective view of a power generating iron core
  • Fig. 3 is a perspective view of a direct power generating power transmission shaft, wherein the main structure can be divided into a cylinder assembly and a cylinder.
  • Cover assembly, valve train, forced vibration system and monopole radial permanent magnet linear motor is composed of a cylinder 1, a cylinder liner 2, a water jacket 5, a water nozzle 6, and the like.
  • the cylinder head assembly is composed of a cylinder head 7, an air inlet 8, an exhaust passage 9, and a cylinder head water passage 10; a cylinder assembly and a cylinder
  • the cover assembly is identical to a conventional engine.
  • the valve train is composed of a valve seat, a valve 4 and a single-pole radial permanent magnet linear motor type electromagnetic valve drive system.
  • the forced vibration system includes a drive shaft assembly 23, one end of which is connected to the piston 3 by a thread, and the other end is cross-shaped (other radial), and is connected to the generator monopole to the magnet 22 by a thread.
  • the transmission shaft assembly 23 includes a transmission shaft straight barrel 23-1 having a cylindrical shape, a radial connection frame 23-2 connected to the lower side of the transmission shaft 23-1, and an arm portion of the connection frame 23-2 (here, a cross arm shape) It can move up and down within the core 24 of the power generation with a gap.
  • the upper coil spring 28 has one end connected to the drive shaft assembly 23 and the other end connected to the upper disc spring 19.
  • the lower coil spring 29 is located inside the transmission shaft straight barrel 23-1, is mounted on the support plate, and the other end is connected in series with the lower thick coil spring 30 and the lower disc spring 31, and is placed on the bottom dead center disc spring seat 32.
  • the transmission shaft assembly 23 is a large-diameter hollow transmission shaft due to the transmission shaft straight barrel 23-1
  • the connecting frame 23-2 has a radial structure, thereby reducing the system length and weight
  • the lower coil spring 29 is preferably a round-line spiral.
  • the spring increases the energy per unit weight, and the lower coil spring 29 and the lower thick coil spring 30 can be made into an integrated variable diameter coil spring.
  • the monopole radial permanent magnet linear motor is composed of a power generating inner core 24, a power generating outer core 26, an end magnetic conducting plate 21, a stator coil 25, a generator monopole radial magnet 22, and a transmission shaft assembly 23.
  • the power generating outer water jacket 27, the power generating outer core 26, the stator coil 25, the power generating inner core 24, and the transmission shaft 23-1 are sequentially sleeved from the outside to the inside.
  • the core 24 for power generation is composed of a plurality of sectors, and the radio link 23-2 of the drive shaft assembly 23 passes through the gap between the sectors of the inner core of the power generation, and is fixed to the monopole radial magnet 22 of the generator.
  • the upper portion of the drive shaft straight barrel 23-1 is fixed to the piston 3.
  • the linear motor end magnetic pressure plates 21 are respectively located at both ends of the inner (outer) core of the power generation.
  • the inner and outer cores 24 and 26 of the power generation are stacked by radioactive silicon steel sheets, and the end magnetic conductive plate 21 of the linear motor may be an integral type, a radial silicon steel sheet or a horizontal silicon steel sheet.
  • the inner and outer cores 24 and 26 and the end magnetically permeable plate 21 of the power generation can increase the radioactive skeleton, and the radial silicon steel sheets are stacked between the radioactive skeletons, and the radioactive skeleton is made of a high-resistance material or a non-magnetic-magnetic material.
  • the bottom of the cylinder passes through the transmission bearing 18 and the oil seal 20 to form a sealed space in the lower part of the cylinder.
  • the oil seal 20 is below the transmission bearing 18.
  • the piston 3 moves to the bottom dead center, the pressure in the bottom space increases, and the piston moves upward.
  • the lower space forms a certain degree of vacuum, the space works in the gas spring state, and the automatic pump is formed by connecting the one-way valve to the oil discharge port 16 and the oil recovery port 17, and then connecting with the sealed oil tank and the filter.
  • Adjustable in-flow single-flow valve (opening pressure adjusted to slightly lower than atmospheric pressure, for example, 10% ⁇ 20% below atmospheric pressure), can supplement certain air when the lower pressure of the cylinder is lower, maintain stable and appropriate gas spring And pump oil effect.
  • FIG. 4 is a schematic view of an asymmetric large barrel piston ring, the outer side of the piston 3 is provided with a plurality of grooves for accommodating the piston ring in the axial direction, and the uppermost piston ring (ie, the piston ring closest to the valve) is the first piston.
  • Ring 33, the outer wall of the first piston ring 33 is a curved surface, the largest diameter is located in the lower part of the piston ring, the upper diameter is smaller (ie, the barrel is larger, larger than the thickness of the lubricating oil film), and the lower diameter is larger (the barrel is relatively small)
  • the high pressure gas can enter the upper annulus, generating an inward force, partially offsetting the inner wall gas pressure, reducing the side pressure of the piston ring, and reducing the friction loss.
  • the shape of the piston 3 and the cylinder head 7 are spherical surfaces having the same curvature.
  • the gas in the combustion chamber 37 is mainly moved upwards and downwards, and there is no obvious irregular movement, which can greatly reduce turbulence and reduce convective heat transfer. loss.
  • Fig. 5 is a perspective view of a stator coil of a linear motor
  • Fig. 6 is a partial sectional view of a stator coil of a linear motor.
  • the stator coil 25 includes a flat wire 25-1 and a silicon steel strip 25-2, and the flat wire 25_1 and the silicon steel strip 25_2 are stacked on the coil inner cylinder 25-5, and the coil end cover 25-3 is pressed at both ends of the coil;
  • the inner surface of the end cover 25-3 is a spiral surface, and the spiral distance thereof is consistent with the total thickness of the flat wire 25-1 and the silicon steel strip 25-2, so that the flat wire 25-1 and the silicon steel strip are well matched with the coil end cover 25-3.
  • the inner cylinder 25-5 of the coil bobbin is made of high magnetic permeability material, and the longitudinal slits are staggered to reduce the eddy current loss.
  • the parallel connection of the coil and the silicon steel strip can reduce the electric resistance loss and eliminate the gap between the silicon steel strip and the flat conductor. Potential.
  • Fig. 7 is a sectional view showing the assembly of a monopole radial permanent magnet linear motor type electromagnetic valve drive system
  • Fig. 8 is a sectional view showing a valve driven composite mover.
  • the single-pole radial permanent magnet linear motor type electromagnetic valve drive system consists of a valve-driven composite mover, an inner and outer iron core, a drive coil, a vibration spring, a valve lift adjustment hydraulic cylinder, a valve clearance adjustment hydraulic cylinder, a speed sensor, etc., from the inside to the outside.
  • the valve stem, the valve spring 13, the inner core 12 of the valve electromagnet, the single-pole radial permanent magnet 11-7 of the valve-driven composite mover 11, the valve coil 14, and the outer core 12-1 of the valve electromagnet are in turn.
  • the inner core 12, the outer core 12-1 and the valve coil 14 are fixed together by a jacket to form an electromagnet winding and are slidably engaged with the outer casing.
  • the armature 11-1, the inner and outer cores 12, 12-1 and the valve coil 14 constitute an electromagnet.
  • the inner and outer cores are stacked by fan-shaped silicon steel sheets, and there is a small air gap 12-2 at the end of the inner and outer cores, and the armature 11-1 of the composite mover It is stacked from fan-shaped silicon steel sheets and installed in the armature frame 11-8.
  • the coupling sleeve 11-5 combines the magnetically permeable collar 11-6 and the monopolar radial permanent magnet 11-7.
  • Each of the positioning ring 11-3 has a positioning step, which is respectively matched with the armature positioning step 11-2 on the armature and the magnetic shielding ring 11-6, and the armature 11-1 and the monopole radial permanent magnet 11-7 pass through the flange.
  • the disc 11-4 and the positioning ring 11-3 are fixed by screws to form a composite mover.
  • the armature 11-1 in the linear motor mover is located between the upper and lower electromagnet windings, and the combined ring of the radial magnet coupling sleeve 11-5 and the magnetically permeable collar 11-6 and the radial permanent magnet 11-7 is located inside the coil 14
  • the armature of the composite mover is located between the two electromagnet windings, the armature frame 11-8 of the valve-driven composite mover is fixed with the valve stem, and the upper and lower end faces of the armature frame are respectively pressed against the upper and lower valve springs.
  • valve-driven compound mover 11 moves up and down with the valve stem, the armature balance position is located in the middle of the upper and lower electromagnet groups, and the valve 4 is in the middle position of the stroke;
  • the linear motor type speed sensor is mounted on the inner hole of the upper electromagnet spring 15
  • a valve clearance adjustment hydraulic cylinder 35 is mounted on the upper surface of the upper electromagnet, and a valve lift adjustment hydraulic cylinder 36 is mounted on the lower surface of the lower electromagnet group.
  • the armature frame and the positioning ring are made of a non-magnetic material or a high-resistance material; the magnetic lining ring 11-6 and the radial magnet coupling sleeve 11-5 are made of a highly magnetically permeable material, and the positioning ring can be eliminated by a suitable design. 3.
  • the armature fan-shaped silicon steel sheet group can be made of high magnetic permeability and high resistance material, and the armature frame can be eliminated at this time.
  • the magnetic flux of the permanent magnet of the armature is increased, so that the armature can be attracted to the suction surface of the electromagnet.
  • the initial state of the system is the valve closed state, the armature 11-1 is sucked on the upper electromagnet, and when the valve needs to be opened, the upper electromagnet is connected with a reverse current to cancel the magnetic flux of the permanent magnet, the armature is released, and the armature 11-1 is at the valve spring. Drive the valve 4 open.
  • the magnetic flux of the permanent magnet keeps the armature open.
  • the reverse electromagnet When the valve is closed, the reverse electromagnet is connected with a reverse current, and the armature is released.
  • the armature 11-1 closes the valve 4 under the driving of the valve spring, and measures the moving speed of the armature in real time during the movement of the valve 4, and adjusts the current in the electromagnet so that the armature moves at a speed close to zero when approaching the electromagnet suction surface. .
  • the valve head Since the valve head is in contact with high temperature gas, when the engine is running, its temperature is higher than other parts of the electromagnetic drive, which will cause the distance between the armature and the suction surface to decrease, and the valve wear will also reduce the distance between the armature and the suction surface, in order to ensure normal operation. , it is necessary to increase the distance between the armature and the suction surface, which will increase the current and increase the energy consumption.
  • the upper electromagnet windings inner and outer cores, coils and accessories
  • the valve spring generates an upward force on the upper electromagnet group.
  • a valve clearance adjusting hydraulic cylinder 35 is fixed outside the outer casing, a check valve is arranged at the inlet of the valve clearance adjusting hydraulic cylinder 35, and is connected with the engine lubricating oil, and a clearance fit is adopted between the movable piston and the outer wall of the hydraulic cylinder 35, allowing the internal liquid to be Leakage under external pressure (leak rate is determined with reference to the conventional valve hydraulic top column).
  • the working area of the hydraulic cylinder 35 uses the minimum pressure of the valve spring and the pressure of the lubricating oil It is determined that when the liquid pressure in the hydraulic cylinder 35 is equal to the highest pressure of the lubricating oil, the pressure generated by the liquid is less than the pressure generated by the valve spring.
  • the upper electromagnet group is positioned by the hydraulic cylinder 35 and the valve spring.
  • the valve spring force inside the armature and inside the upper electromagnet winding is an internal force, and does not exert a force on the hydraulic cylinder 35;
  • the force of the hydraulic cylinder 35 is the pressure of the valve spring (referred to as the lower valve spring) inside the lower armature 11-1 and inside the lower electromagnet winding, and the hydraulic cylinder 35 leaks the liquid under the pressure of the valve spring, due to the valve seat and the valve
  • the head contact limits the pressure of the lower valve spring.
  • the pressure in the hydraulic cylinder 35 is lowered during the suction. At this time, the check valve is opened, and the liquid of the hydraulic cylinder 35 is replenished.
  • the amount of replenishment depends on the leakage amount and the length of the valve stem. The amount of change does not require human control during this process.
  • a valve lift adjustment hydraulic cylinder 36 (or an electrically controlled annular hydraulic cylinder) is installed at the bottom of the lower electromagnet group, and an inlet with a check valve is provided in the valve lift adjustment hydraulic cylinder 36, one belt
  • the outlet of the constant pressure valve is respectively connected to the oil inlet pipe and the oil return pipe with the electric control valve, and the lubricating oil can enter the hydraulic cylinder 36 only when the inlet electric control valve is opened and the pressure in the hydraulic cylinder 36 is lower than the inlet oil pressure (the valve The pressure in the hydraulic cylinder 36 is lowest when fully closed and fully open), only when the outlet electric control valve is opened and the pressure in the hydraulic cylinder 36 is higher than the pressure of the constant pressure valve, the lubricating oil can flow out of the hydraulic cylinder 36 (the valve is completely
  • the hydraulic cylinder 36 has the highest pressure for a period of time before opening or after starting to close.
  • the pressure of the hydraulic cylinder of the same type of valve of the same engine has a fixed phase relationship, wherein the same type of valve of each cylinder is at the highest pressure time. Without overlapping, this feature can be used to precisely control the oil return of each cylinder. Therefore, the inlet and outlet of the stroke adjustment hydraulic cylinders of the same type of valves of all different cylinders are respectively connected in parallel, and then the electric control valve is connected to the oil passage, and the oil inlet amount can be initially controlled according to the phase, and the oil outlet is according to the phase at the speed and displacement. Under the monitoring of the sensor, the stroke is precisely controlled, and the number of electronically controlled valves is reduced.
  • the stroke of each cylinder is preferably the same when using sequential control, and the valve spring performance is as consistent as possible. Of course, each valve stroke can also be controlled by independent hydraulic pressure.
  • Figure 9 illustrates the generator monopole radial magnet mover structure of a multi-pole radial permanent magnet linear motor.
  • the drive shaft assembly 23 and the multi-pole magnet mover sleeve 24-1 are connected by a wire, and the multi-pole radial magnet 22- 1 alternately stacked (one outer N pole, one outer S pole), and assembled between the end covers of the multipole magnet mover sleeve 24-1, the multipole magnet mover sleeve 24-1 with high magnetic permeability material production.
  • Figure 10 illustrates a stator core of a slotted core multipole radial permanent magnet linear motor, a flat conductor of another embodiment
  • the outer core groove has a helicoidal surface matched with the vertical winding wire.
  • the stator shape of the guide tape and the flat conductor and the stator shape of the outer core and the total number of the monopole radial permanent magnet linear motor The structure is similar, the flat wire of FIG. 5 and the conductive tape are stacked on the coil section, and each section leads two terminals, the same phase winding is connected end to end, and the above coil is installed in the outer core of the cylinder to form a flat A linear motor stator in which a wire and a conductive tape are stacked vertically.
  • the multi-pole radial permanent magnet linear motor mover and the multi-pole radial permanent magnet linear motor stator coil are installed concentrically, and the two ends are pressed by the pressure plate (no magnetic conduction is required), and a multi-pole radial permanent magnet linear motor is formed.
  • the forced vibration direct-current power generation system is a forced vibration system that realizes controlled vibration under the action of spring, electromagnetic force, and combustion chamber pressure, and outputs electric power during the power stroke.
  • the working process is as follows: In the initial state of the system, the electromagnetic valve 4 is in the closed state. During the starting process, the linear motor passes the periodic current, and the driving vibration system periodically vibrates, and the intake valve simultaneously opens and closes as the piston 3 moves up and down. When the system energy and stroke meet the start-up requirements, enter the work cycle. At the beginning of the suction stroke, the vibration system is at the top dead center, the upper coil spring 28 is pressed, and the upper disc spring 19 is compressed.
  • the amount of compression depends on the energy of the system, and the vibration system is on the upper disc spring 19 and the upper coil spring 28. Under pressure, the bottom dead center moves, the intake valve opens, the exhaust valve closes, the air is drawn into the cylinder, and the fuel is injected at the same time.
  • the lower coil spring 29 is compressed, and the lower coil spring is compressed.
  • 29 compression pressure the lower disc spring 31 is compressed, when the vibration system movement speed is zero, the suction stroke ends, entering the compression stroke; the vibration system moves under the pressure of the lower disc spring 31 and the lower coil spring 29 to the upper dead point, The inlet and exhaust valves are closed.
  • the upper coil spring is compressed and pressed, and the upper disc spring is compressed.
  • the temperature of the mixture increases during the compression process.
  • the mixture is Compression ignition
  • the vibration system is reduced in speed by the upper coil spring, the upper disc spring and the high pressure gas, and when the speed is zero, the power stroke is entered;
  • the vibration system accelerates the downward dead point under the action of the upper coil spring 28, the upper disc spring 19 and the high pressure gas.
  • the current is outputted through the control circuit, and the vibration system is in the lower coil spring and the lower disc spring.
  • the speed drops to zero, and enters the exhaust stroke; the exhaust valve opens, and the vibration system accelerates to the upper dead point under the action of the lower coil spring 29 and the lower disc spring 31, and exhausts outward, when the vibration system
  • the exhaust stroke ends and a duty cycle is completed.
  • the disc spring has a high stiffness coefficient, which mainly acts when the coil spring is pressed. As the energy of the system increases, the effect of the disc spring becomes larger, and the natural vibration frequency of the system increases. Energy adjusts the operating frequency, adjusts the operating frequency by adjusting the difference in output current, and adjusts the system energy to meet the demand for compression work.
  • the equilibrium position of the system is near the top dead center, and at the compression stroke, the system energy is converted to gas compression work at top dead center.
  • the system has the highest speed at the equilibrium position due to the absence of high-pressure gas.
  • the upper coil spring is pressed and the upper disc spring is compressed.
  • the system is fast under the action of the disc spring with high stiffness coefficient. Stop, enter the suction stroke.
  • Speed and position detection during the above process, or use speed The position, velocity calculation is performed on the relationship between the degree, current and back-EMF.
  • the generator current is dynamically adjusted. If necessary, the motor can be operated in the power generation or motor state in the other three strokes outside the power stroke to coordinate the system operating conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

受迫振动直动发电系统
技术领域
本发明涉及受迫振直动发电系统,尤其是动力传动轴采用大直径中空式, 振动弹 簧分别位于传动轴内外, 减小系统长度; 直线发电机采用单极辐向永磁电机或多极辐 向永磁电机; 第一活塞环采用大桶度非对称活塞环, 降低摩擦损失; 燃烧室结构采用 缸盖与活塞近平行且平滑结构, 降低燃烧室传热损失; 气门驱动机构采用单极辐向永 磁直线电机式电磁气门驱动系统。
背景技术
目前公知各种直动发电方案中主要有①通过气缸联合工作杠杆驱动, 这类工作方 式少了曲轴, 但又增加了杠杆等机构, 没有明显的优势; ②新增密闭气缸, 靠压缩空 气驱动, 这类工作方法要保证新增气缸的密封, 如果不能完全保证, 还要增加补气系 统, 基本实现不了; ③依靠电流驱动, 应该说这类系统比较简单, 控制也较方便, 但 在每个做功循环中有 8次电能和机械能之间的转换 (四冲程发动机), 增加了电损耗, 实际很难取得提高效率的效果; ④ 在 US6349683 发明中提出了二冲程用弹簧振动实 现活塞往复运动的小型发电机(2-3英寸),这类发电机在压缩冲程中利用了弹簧驱动, 可实现二冲程发动机直动工作, 但对于四冲程来说, 排气冲程气缸压力低, 而压缩冲 程气缸压力很高, 不能实现排气冲程和压缩冲程协调工作, 因此不能用于常规的四冲 程发动机。 在 CN200710004101. 6 发明中提出的 "受迫振动直动发电、 缓冲储能、 电 动驱动汽车" 中的直动发电方案提出利用机械弹簧 (或磁体) 形成振动体系, 活塞在 非做功冲程期间, 依靠振动体系和线圈的电磁力驱动, 发电机产生的电流通过电容缓 冲后驱动电动机。 该系统通过控制发电机中线圈电流的方法, 实现活塞的冲程和压缩 比优化, 通过控制投入工作气缸数量和进气冲程的距离来调整功率; 气门的驱动利用 受迫振动体系, 电磁力补充能量的方式并实现气门正确开闭,该系统方便调整压缩比, 采用压燃式工作, 保证在宽工况、 多燃料下实现较高压缩比的方式, 从而提高系统效 率。
在 CN200710004101. 6 发明中提出的 "受迫振动直动发电、 缓冲储能、 电动驱动 汽车"中的直动发电方案,通过控制投入工作气缸数量和进气冲程的距离来调整功率, 主要缺点为频率相对固定, 发动机工作动态范围较窄。在主振动体(发电线圈、活塞、 螺旋弹簧及其连接机构) 外附加碟形弹簧, 碟形弹簧与主振动体无固定连接, 当主振 动体压缩碟形弹簧并离开碟形弹簧后, 碟形弹簧会进入高频振动, 这会形成噪声; 另 外在下一次主振动体对弹簧的压缩初期, 碟形弹簧的振动相位难以控制; 增加两个对 称的气缸工作相位差, 也会增加振动和噪声。 PCT/CN2008/071781 及相关国内专利申 请中提出了带加速弹簧和同拍机构的受迫振动直动发电系统, 降低了受迫振动直动发 电系统碟形弹簧的噪声,并实现频率可调。
受迫振动直动发电系统为了减小机体的振动, 采用气缸水平对置、 同步工作的方 式, 使机体中部受力平衡, 减小振动, 但在水平方向有两个发电单元、两个气缸单元, 振动弹簧安装在缸体以外, 为首尾串连, 长度难以减小。
常规活塞式发动机活塞的机械损失占整体机械损失的 50%左右, 降低活塞摩擦损 失的方法主要为提高加工精度、 良好的表面处理、 良好的润滑, 及采用摩擦较小桶形 结构。 活塞环外表面和下表面为密封面, 当气缸中压力升高时, 上表面和内表面承受 气体压力, 内表面的压力使得侧压力升高, 摩擦损失增高。 常规方案可以采用高强度 材料, 减小活塞环高度的方法, 以降低高压气体的侧压力, 但为了保证强度, 在相同 材料下, 厚度减小量是有一定限度的。
传热损失是影响发动机效率的重要方面, 常规发动机为了提高效率, 需优化燃烧 室结构, 增加紊流, 加快燃烧速度, 而降低传热损失需降低紊流, 二者是矛盾的, 因 此在燃烧室结构设计时, 主要考虑提高燃烧速度, 很少考虑降低传热损失。
在 CN201010526680. 2 中提出的辐向永磁直线电机式电磁气门驱动, 将电磁铁与 衔铁有机结合, 可降低电磁气门的工作电流, 将其运用于本系统。
发明内容
本发明实施例的目的是提供一种受迫振动直动发电系统, 以克服上述技术中的缺 陷。
本发明实施例的技术方案是:一种受迫振动直动发电系统,其包括受迫振动体系, 受迫振动体系在活塞做功和直线电机的发电控制下协调工作, 以进行受迫振动直动发 电, 受迫振动体系包括传动轴组件, 传动轴组件将发动机活塞、 直线的发电机单极辐 向磁体和振动弹簧固定在一起, 传动轴组件包括传动轴, 传动轴采用大直径中空式, 振动弹簧分别位于传动轴的内外, 以减小系统长度; 直线电机采用单极辐向永磁直线 电机或多极辐向永磁直线电机; 活塞外侧的第一活塞环采用大桶度非对称活塞环, 降 低摩擦损失; 燃烧室为缸盖、 活塞及缸套所包围的空间, 燃烧室采用缸盖与活塞近平 行且平滑结构, 降低燃烧室传热损失; 设置于缸盖的气门驱动机构采用单极辐向永磁 直线电机式的电磁气门驱动系统。
所述传动轴直筒将振动弹簧间接延伸至气缸内部, 减小系统长度; 所述振动弹簧 包括上碟形弹簧, 上螺旋弹簧, 下螺旋弹簧和下碟形弹簧, 下螺旋弹簧位于传动轴之 内, 下碟形弹簧连接在下螺旋弹簧的下部, 上螺旋弹簧位于传动轴 (23-1 ) 之外, 上 碟形弹簧连接在上螺旋弹簧的上部。
在优选的实施方式中, 所述直线电机包括发电内、 外铁心, 端部导磁压板, 定子 线圈, 环形的发电机单极辐向磁体和所述传动轴组件; 发电内、 外铁心同心安装, 端 部用导磁压板连结, 定子线圈位于发电内、 外铁心之间, 发电机单极辐向磁体位于定 子线圈和发电内铁心之间, 传动轴组件还包括呈放射状的连接架, 连接架与传动轴直 筒为一体式结构, 位于传动轴直筒的下方, 发电机单极辐向磁体亦呈放射状, 发电内 铁心由数个扇区构成, 扇区之间留有间隙, 传动臂通过发电内铁心的放射性间隙与发 电机单极辐向磁体相连, 定子线圈采用导磁片与扁导线交替式结构。
在优选的实施方式中, 所述发电机单极辐向磁体的内侧为一极, 外侧为一极。 在优选的实施方式中, 所述发电内铁心、 发电外铁心及导磁压板分别由梯形硅钢 片放射状叠成。
在优选的实施方式中, 所述远离气缸方向的导磁压板的厚度小于靠近气缸方向的 导磁压板的厚度, 并在远离气缸方向上的导磁压板上留有气隙, 也可直接取消导磁压 板, 以减小气门线圈产生的磁通和电感, 提高直线电机工作磁场。
在优选的实施方式中, 所述定子线圈包括扁导线和硅钢带, 硅钢带与扁导线呈叠 置立绕方式。
在优选的实施方式中, 所述定子线圈包括线圈架内筒, 线圈架内筒由高导磁材料 制成, 材料导电能力较高时, 在线圈架内筒上分布交错的纵向缝。
在优选的实施方式中, 压在定子线圈上的线圈端盖的面为螺旋面, 其螺距等于导 磁材料与扁导线厚度和。
在优选的实施方式中, 所述发电机单极辐向磁体为辐向永磁铁动子; 定子线圈为 立绕结构, 定子铁心槽具有螺旋面, 或者定子线圈为导磁带与扁导线叠置分段立绕并 加外铁心的结构, 端部压板不需导磁材料。
在优选的实施方式中, 齿槽结构的定子线圈为立绕线圈, 齿槽的槽上有与立绕线 圈相配合的螺旋面。
在优选的实施方式中, 导磁带与扁导线叠置立绕加外铁心的定子线圈, 为导磁带 与扁导线分段叠置立绕的线圈, 各段分别引出两个端子, 同相绕组首尾相接,外部套 环状铁心。
在优选的实施方式中, 所述活塞和缸盖分别为球面形状, 降低对流传热损失。 在优选的实施方式中, 所述第一活塞环的靠近缸盖方向的一端的桶度大于远离缸 盖一端的桶度, 且第一活塞环靠近缸盖一端的桶度大于润滑油膜厚度; 活塞环最大外 径位于活塞环的下部; 气缸内的高压气体进入第一活塞环的外壁上面部分, 抵消部分 高压气体的侧压力, 以减少摩擦损失。
在优选的实施方式中, 所述电磁气门驱动系统包括气门杆, 气门弹簧, 上电磁铁 和下电磁铁, 每个电磁铁包括衔铁, 气门电磁铁内、外铁心和气门线圈, 衔铁位于上、 下电磁铁之间; 所述衔铁与单极辐向永磁铁相结合构成气门驱动复合动子; 气门杆、 气门弹簧、 气门电磁铁内铁心、 单极辐向永磁铁、 气门线圈、 气门电磁铁外铁心由内 向外依次套接。
在优选的实施方式中, 所述气门驱动衔铁与两个电磁铁内、 外铁心和衔铁分别采 用放射性硅钢片为主的导磁材料; 气门线圈采用导磁体与导线交替的结构。
本发明的特点和优点是:
1.大直径中空式传动轴, 减少系统长度和重量
公知技术中, 两组振动弹簧安装在气缸体底部以外的基座上, 为了保证行程和强 度, 弹簧的总长较长, 本发明实施例将传动轴改为大直径中空式, 振动弹簧分别位于 传动轴内外, 振动弹簧的安装空间延伸到气缸内, 增加了振动弹簧的安装空间, 相应 可减少系统长度, 使设计方法更为灵活。
2.单极辐向永磁直线电机
公知技术中, 直动电机铁心为一端开口式, 传动轴通过类似筒状的机构与动子相 连, 其最小长度为行程 2倍, 同时由于磁通回路仅通过铁心一端, 所需铁心体积接近 两端磁路的体积两倍, 增加了系统重量, 同时现有单极式直线电机定子线圈内部无导 磁体, 多极式直线电机一般是每极线圈之间为导磁体。 本发明实施例主要结构为发电 内铁心, 发电外铁心、 端部导磁体、 定子线圈、 发电机单极辐向磁体、 传动轴。 发电 内铁心做成放射状, 放射状的传动轴组件的连接架通过内铁心的放射性缝隙与发电机 单极辐向磁体相连, 定子线圈采用导磁带和导电扁线立绕的方式构成, 这样电机长度 为行程加上动子长度, 约为行程的 1. 5倍, 减小了工作磁场的气隙, 降低磁体重量, 为了减小线圈产生的磁通, 提高直线电机工作磁场, 在远离气缸方向的导磁端盖的厚 度小于靠近气缸方向的导磁端盖的厚度, 并在远离气缸方向上的导磁端盖上留有气 隙, 也可直接取消导磁端盖。
3. 多极辐向永磁直线电机
本发明实施例的直动电机采用与常规直线电机相似的结构, 直线电机动子由三部 分构成: 传动轴、 多极磁铁动子套、 多个方向相反的辐向永磁磁铁; 直线电机定子可 为两种结构, 一种与常规多极直线电机一样, 为齿槽结构, 但本发明实施例的线圈为 立绕结构, 定子铁心槽具有螺旋面; 另一种为导磁带与扁导线叠置分段立绕并加外铁 心的结构。
4.第一活塞环采用非对称大桶度形状
在发动机机械损失中, 活塞环的损失占总损失的 50%左右, 而主要损失来自活塞 的侧压力, 侧压力由三部份构成; ①活塞环的弹性力; ②曲轴转动造成的侧压力; ③ 高气压造成的侧压力。 直动发电方案没有曲轴转动的侧压力, 主要摩擦损失为高气压 造成的侧压力; 对于直动系统而言, 侧压力是均衡的, 缸壁的厚度的磨损是均匀的, 所以活塞的弹性力密封相对可靠, 可降低气压密封。 本实施例充分运用此特点提出了 不对称大桶度活塞环, 在活塞的上部(以最大直径为界)采用超过机油膜厚度的桶度, 在下部采用正常的桶度, 同时下部高度小于上部高度, 当存在高压气体时, 活塞环不 仅上表面、 内表面要承受气体压力, 部份外表面也要承受气体压力, 侧压力等于内表 面气体压力减去外表面气体压力, 这样就降低了摩擦损失。 该方案与常规方案一样, 要尽可能降低活塞环高度, 根据实际密封面高度, 降低活塞环宽度, 降低侧压力, 活 塞环外承压面的压强与常规设计基本一致。
5.活塞和缸盖为近平行且光滑的形状, 降低对流传热损失
燃烧室的传热损失是影响发动机效率的重要方面, 影响传热速度有时间、 流动状 态、 温度、 面积等, 传热时间、 温度、 面积等与转速、 功率有关, 不容易调整。 由于 主要的传热方式为对流传热, 流动状态对传热影响很大, 但常规发动机提高燃烧速度 需要增加紊流, 而增加紊流要增加传热损失, 二者难以兼顾。 本方案利用直动发电的 特点, 采用均质压燃方式来提高燃烧速度, 采用简化燃烧室结构, 尽可能降低紊流的 方法降低传热损失,推荐活塞和缸盖采用同一曲率的球面,使混合气尽可能平行运动, 减小紊流。 6.单极辐向永磁直线电机式电磁气门驱动系统
单极辐向永磁直线电机式电磁气门系统采用了衔铁与直线电机相结合的动子结 构;采用放射性硅钢片为主体的导磁材料;采用并联式永磁回路实现永磁吸合式保持, 导磁体与线圈交替结构等主体技术。 同时采用液压调整吸合间隙; 采用直线电机式速 度传感器、 电感式位移式计算等辅助技术。
附图说明
下面结合附图和实施例对本发明进一步说明:
图 1是本发明实施例的受迫振动直动发电系统的总装配剖面图;
图 2是发电铁心立体图;
图 3是直动发电传动轴立体图;
图 4是非对称大桶度活塞环示意图;
图 5是直线电机定子线圈立体图;
图 6是直线电机定子线圈局部剖面图;
图 7是单极辐向永磁直线电机式电磁气门驱动系统组装剖面图;
图 8是气门驱动复合动子剖面图;
图 9是多极辐向永磁直线电机的发电机单极辐向磁体动子组装图;
图 10是本发明另一实施例的齿槽式铁心多极辐向永磁直线电机定子线圈组装图。 图中 1.缸体, 2.缸套, 3.活塞, 4.气门, 5.水套, 6.水口, 7.缸盖, 8. 进气道, 9.排气道, 10.缸盖水道, 11.气门驱动复合动子, 11-1.气门衔铁, 11-2.定位台阶, 11-3.定位环, 11-4.法兰盘, 11-5.连结套, 11-6.导磁衬环, 11_7.单极辐向永磁铁, 11-8.衔铁架, 12.气门电磁铁内铁心, 12-1.气门电磁铁外铁心, 12-2.气隙, 13.气 门弹簧, 14.气门线圈, 15.气门速度传感器, 16.机油喷口, 17.机油回收口, 18.传 动轴承, 19.上碟形弹簧, 20.轴承油封, 21.直线电机端部导磁压板, 22.发电机单极 辐向磁体 (亦称发电机动子), 22-1 发电机多极辐向磁铁, 23. 传动轴组件, 23-1. 传动轴直筒, 23-2.放射性连接架, 24.发电内铁心, 24-1.多极磁铁动子套, 25.定子 线圈, 25-1.扁导线, 25-2.硅钢带, 25-3. 线圈端盖, 25_4线圈端盖螺旋面, 25-5. 线圈架内筒, 26.发电外铁心, 26-1.带齿外铁心, 26-2.外铁心槽螺旋面, 27.发电外 水套, 28.上螺旋弹簧, 29.下螺旋弹簧, 30.下加粗螺旋弹簧, 31.下碟形弹簧, 32. 下碟形弹簧座, 33.非对称大桶度活塞环, 35.气门间隙调整液压缸, 36.气门升程调 整液压缸, 37.燃烧室。
具体实施方式
图 1是本发明实施例的受迫振动直动发电系统的总装配剖面图, 图 2是发电铁心 立体图, 图 3是直动发电传动轴立体图, 图中主要结构可分为缸体组件、 缸盖组件、 配气机构、 受迫振动体系及单极辐向永磁直线电机等部分。 缸体组件由缸体 1、 缸套 2、 水套 5、 水口 6等构成, 缸盖组件由缸盖 7、 进气道 8、 排气道 9、 缸盖水道 10构 成; 缸体组件、 缸盖组件与常规发动机一致。
配气机构由气门座、 气门 4及单极辐向永磁直线电机式电磁气门驱动系统构成。 受迫振动体系包括传动轴组件 23,传动轴组件 23的一端通过螺纹与活塞 3相连, 另一端为十字架状 (可为其它放射状), 通过螺纹与发电机单极辐向磁体 22相连。 传 动轴组件 23包括形状为圆筒状的传动轴直筒 23-1,传动轴 23-1的下方连接放射状的 连接架 23-2, 连接架 23-2 (此处呈十字臂状) 的臂部可在带缝隙的发电内铁心 24内 上下移动。 上螺旋弹簧 28的一端与传动轴组件 23相连, 另一端与上碟形弹簧 19相 连。 下螺旋弹簧 29—端位于传动轴直筒 23-1内部, 顶在支撑板上, 另一端依次与下 加粗螺旋弹簧 30和下碟形弹簧 31串连, 顶在下止点碟形弹簧座 32上。 其中, 传动 轴组件 23由于其传动轴直筒 23-1为大直径中空式的传动轴, 连接架 23-2为放射状 结构, 如此可减少系统长度和重量, 下螺旋弹簧 29 最好采用圆线螺旋弹簧, 增加单 位重量的能量, 同时下螺旋弹簧 29与下加粗螺旋弹簧 30可做成一体化的变径螺旋弹 簧。
单极辐向永磁直线电机由发电内铁心 24、 发电外铁心 26、 端部导磁压板 21、 定 子线圈 25、 发电机单极辐向磁体 22、 传动轴组件 23等几部分构成。 发电外水套 27、 发电外铁心 26、 定子线圈 25、 发电内铁心 24、 传动轴 23-1从外向内依次套接。 发电 内铁心 24由数个扇区构成, 传动轴组件 23的放射性连接架 23-2穿过发电内铁心的 扇区之间的间隙, 并与发电机单极辐向磁体 22固定。 传动轴直筒 23-1的上部与活塞 3固定。 直线电机端部导磁压板 21分别位于发电内 (外)铁心的两端。 发电内、 外铁 心 24、 26采用硅钢片放射性叠置, 直线电机端部导磁压板 21可为整体式、 放射状硅 钢片或水平硅钢片。 为了减小安装难度, 发电内、 外铁心 24、 26及端部导磁压板 21 可增加放射性骨架, 放射性骨架之间叠置放射状硅钢片, 放射性骨架采用高电阻材料 或非导磁材料。 参见图 1, 气缸底部通过传动轴承 18和油封 20使气缸下部形成密封空间, 油封 20在传动轴承 18的下方, 在活塞 3向下止点运动时, 底部空间压力增高, 在活塞向 上止点运动时, 下部空间形成一定的真空度, 该空间工作在气弹簧状态, 同时通过在 机油喷口 16和机油回收口 17接上单向阀, 再与密封的油箱、 过滤器相连, 就形成了 自动泵油系统, 其余低压回油孔通过单流阀接入气缸底部的机油回收口 17 的单流阀 以前, 可利用缸体下部的压力变化实现泵油效果, 在气缸底部的靠上的方向接一个可 调节的向内流的单流阀 (开启压力调整为略低于大气压,例如低于大气压 10%〜20%), 可在气缸下部压力较低时补充一定的空气, 维持稳定适当的气弹簧和泵油效果。
图 4为非对称大桶度活塞环示意图, 活塞 3的外侧沿轴向方向设有多个用于容纳 活塞环的凹槽, 最上方的活塞环(即最靠近气门的活塞环)为第一活塞环 33, 第一活 塞环 33 的外壁为弧面, 最大直径位于活塞环中下部, 上部直径较小 (即桶度较大, 大于润滑油膜厚度), 下部直径较大 (桶度相对较小), 高压气体可进入上部环隙中, 产生向内的力, 部分抵消内壁气体压力, 降低活塞环的侧压力, 降低摩擦损失。
图 1中, 活塞 3与缸盖 7的形状为相同曲率的球面, 活塞 3上下运动时燃烧室 37 气体以上下运动为主, 没有明显不规则运动,可以大大减小紊流, 减少对流传热损失。
图 5是直线电机定子线圈立体图, 图 6是直线电机定子线圈局部剖面图。 定子线 圈 25包括扁导线 25-1和硅钢带 25-2,扁导线 25_1与硅钢带 25_2叠置立绕在线圈架 内筒 25-5上, 线圈端盖 25-3压在线圈两端; 线圈端盖 25-3的内表面为螺旋形表面, 其螺旋距离与扁导线 25-1与硅钢带 25-2总厚度一致, 使扁导线 25-1和硅钢带与线 圈端盖 25-3配合良好; 线圈架内筒 25-5采用高导磁材料制成, 并交错分布纵向缝, 减小涡流损失; 将线圈与硅钢带并联, 可降低电阻损失, 同时消除了硅钢带与扁导线 之间的电位。
图 7是单极辐向永磁直线电机式电磁气门驱动系统组装剖面图, 图 8是气门驱动 复合动子剖面图。 单极辐向永磁直线电机式电磁气门驱动系统由气门驱动复合动子、 内外铁心、 驱动线圈、 振动弹簧, 气门升程调整液压缸、 气门间隙调整液压缸, 速度 传感器等构成, 由内向外依次为气门杆、 气门弹簧 13、 气门电磁铁内铁心 12、 气门 驱动复合动子 11的单极辐向永磁铁 11-7、 气门线圈 14、 气门电磁铁外铁心 12-1。 内 铁心 12、 外铁心 12-1和气门线圈 14通过外套固定在一起,组成电磁铁绕组, 并与外 壳滑动配合。 衔铁 11-1, 内、 外铁心 12, 12-1和气门线圈 14构成了电磁铁。 内、 外 铁心由扇状硅钢片叠置, 内外铁心端部连结处有一小气隙 12-2,复合动子的衔铁 11-1 由扇状硅钢片叠成, 安装在衔铁架 11-8中。 连结套 11-5将导磁衬环 11-6和单极辐 向永磁铁 11-7组成一整体。 定位环 11-3上下各有一个定位台阶, 分别与衔铁上的衔 铁定位台阶 11-2、 导磁衬环 11-6配合, 衔铁 11-1与单极辐向永磁铁 11-7通过法兰 盘 11-4、 定位环 11-3用螺丝固定, 构成复合动子。 直线电机动子中的衔铁 11-1位于 上下电磁铁绕组之间, 辐向磁铁连结套 11-5与导磁衬环 11-6及辐向永磁铁 11-7的 组合环位于线圈 14与内铁心 12之间, 复合动子的衔铁位于两个电磁铁绕组之间, 气 门驱动复合动子的衔铁架 11-8 与气门杆固定, 衔铁架的上、 下端面分别压在上、 下 气门弹簧 13上,整个气门驱动复合动子 11随气门杆上下运动,衔铁平衡位置位于上、 下电磁铁组中间, 并且气门 4处于行程中间位置; 上电磁铁弹簧内孔上安装直线电机 式速度传感器 15, 上电磁铁的上表面安装气门间隙调整液压缸 35, 下电磁铁组的下 表面安装气门升程调整液压缸 36。 衔铁架和定位环用非导磁材料或高电阻材料制成; 导磁衬环 11-6和辐向磁铁连结套 11-5用高导磁材料制成, 通过适当设计可取消定位 环 11-3。 衔铁扇状硅钢片组可用高导磁、 高电阻材料制造, 此时可取消衔铁架。 以上 组成了电磁铁、 直线电机复合的机构, 气门弹簧与复合动子 11 为一振动体系, 利用 电磁铁及直线电机补充体系能量。 当衔铁与电磁铁的吸合面吸合时, 通过衔铁的永磁 铁磁通量增加, 可使衔铁吸合在电磁铁的吸合面上。 系统初始状态为气门关闭状态, 衔铁 11-1 吸合在上电磁铁上, 当气门需打开时向上电磁铁通以反向电流, 抵消永磁 体的磁通, 衔铁释放, 衔铁 11-1在气门弹簧的驱动下打开气门 4, 当衔铁与下电磁铁 的吸合面靠近时, 永磁铁的磁通使衔铁保持打开, 当气门要关闭时, 向下电磁铁中通 以反向电流, 衔铁释放, 衔铁 11-1在气门弹簧的驱动下关闭气门 4, 在气门 4运动过 程中实时测量衔铁运动速度, 并调整电磁铁中的电流大小, 使衔铁在接近电磁铁吸合 面时运动速度刚好为零。
由于气门头与高温气体接触, 当发动机运行时其温度比电磁驱动其它部份温度 高, 会造成衔铁与吸合面距离降低, 同时气门磨损也会降低衔铁与吸合面距离, 为了 保证正常工作, 就要提高衔铁与吸合面距离, 这样会增加电流, 增加能耗。 本实施例 将上电磁铁绕组(内、外铁心, 线圈及附件) 固定在一起, 与电磁气门外壳滑动配合, 气门弹簧产生对上电磁铁组的向上的力。 在外壳外部固定一个气门间隙调整液压缸 35, 气门间隙调整液压缸 35的入口设置单向阀, 并与发动机润滑油相连, 液压缸 35 的活动活塞与外壁之间采用间隙配合, 允许内部液体在外部压力下泄漏 (泄漏速度参 考常规气门液压顶柱确定)。 液压缸 35的作用面积用气门弹簧最小压力和滑润油压力 确定, 使液压缸 35 中的液体压力与滑润油的最高压力相等时, 液体产生的压力小于 气门弹簧产生的压力。 上电磁铁组被液压缸 35和气门弹簧定位, 当气门 4关闭且衔 铁 11-1 吸合时, 衔铁上部并在上电磁铁绕组内部的气门弹簧力为内力, 不对液压缸 35产生作用力;液压缸 35的作用力为衔铁 11-1下部并在下电磁铁绕组内部的气门弹 簧 (简称下气门弹簧) 的压力, 液压缸 35 在气门弹簧的压力下会泄漏其中的液体, 由于气门座与气门头接触, 限制了下气门弹簧压力的发挥, 液压缸 35 中的压力在吸 合时降低, 此时单向阀打开, 液压缸 35 的液体会得到补充, 补充量取决于泄漏量和 气门杆长度变化量, 在此过程中不需人为控制。
为了动态调整气门行程, 在下电磁铁组的底部安装了气门升程调整液压缸 36 (或 称电控环形液压缸), 气门升程调整液压缸 36中设置一个带单向阀的入口, 一个带定 压阀的出口, 分别与带电控阀的入油管和回油管相连, 只有当入口电控阀打开并且液 压缸 36中压力低于入口油压时, 润滑油才可进入液压缸 36 (气门在完全关闭和完全 打开时液压缸 36中压力最低), 只有当出口电控阀打开并且液压缸 36中压力高于定 压阀标定的压力时, 润滑油才可流出液压缸 36 (气门在完全打开前或开始关闭后的一 段时间内, 液压缸 36压力最大)。 由于气门运动过程中气门弹簧对液压缸 36的压力 会周期性变化, 同一台发动机的不同缸的相同类型气门, 其液压缸的压力具有固定相 位关系, 其中各缸相同类型气门在压力最高的时间不重叠, 可利用此特点顺序精确控 制各缸的回油量。 因此将所有不同缸的相同类型气门的行程调整液压缸的入口和出口 分别并联后, 再接电控阀接入油路, 可根据相位初步控制入油量, 出油口根据相位在 速度和位移传感器的监测下精确控制行程, 减小电控阀的数量, 采用顺序控制时各缸 的行程最好一致, 气门弹簧性能尽可能一致, 当然各气门行程也可采用独立的液压控 制。
图 9说明了多极辐向永磁直线电机的发电机单极辐向磁体动子结构, 传动轴组件 23与多极磁铁动子套 24-1通过丝扣连结,多极辐向磁铁 22-1交替叠置(一个外 N极, —个外 S极), 并拼装在多极磁铁动子套 24-1 的端盖板之间, 多极磁铁动子套 24-1 用高导磁材料制成。
图 10 说明了另一实施例的齿槽式铁心多极辐向永磁直线电机定子线圈,扁导线
25- 1立绕在带齿外铁心 26-1的槽中, 带齿外铁心槽具有与立绕扁线相配合的螺旋面
26- 2, 提高线圈的装填容量。
导磁带与扁导线立绕加外铁心的定子形状与单极辐向永磁直线电机的动子总体 结构类似, 将图 5的扁导线与导磁带叠置立绕线圈分段, 各段分别引出两个端子, 同 相绕组首尾相接, 将以上线圈安装在筒形的外铁心中, 就组成了扁导线与导磁带叠置 立绕的直线电机定子。
将多极辐向永磁直线电机动子与多极辐向永磁直线电机定子线圈同心安装, 两端 用压板压住 (不需要导磁), 就组成了多极辐向永磁直线电机。
受迫振动直动发电系统是受迫振动体系在弹簧、 电磁力、 燃烧室的压力共同作用 下实现受控的振动, 在做功冲程中输出电力。 工作过程如下: 在系统初始状态下, 电 磁气门 4处于关闭状态, 启动过程中直线电机通周期性电流, 驱动振动体系周期性振 动, 同时进气门随着活塞 3上下运动而同步打开、 关闭, 到系统能量和行程满足启动 要求时, 进入工作循环。 吸气冲程初期, 振动体系处于上止点处, 上螺旋弹簧 28 被 压并, 上碟形弹簧 19被压缩, 压缩量取决于体系能量, 振动体系在上碟形弹簧 19和 上螺旋弹簧 28的压力下, 向下止点运动, 进气门打开, 排气门关闭, 空气吸入气缸, 同时将燃料喷入, 振动体系向下止点运动过程中, 下螺旋弹簧 29 压缩, 在后期下螺 旋弹簧 29压缩压并, 下碟形弹簧 31压缩, 振动体系运动速度为零时, 吸气冲程结束, 进入压缩冲程;振动体系在下碟形弹簧 31和下螺旋弹簧 29的压力下, 向上止点运动, 进、 排气门关闭, 振动体系向上止点运动过程中, 上螺旋弹簧压缩并压并, 上碟形弹 簧压缩, 混合气在压缩的过程中温度升高, 当温度达到着火点时, 混合气被压燃, 振 动体系在上螺旋弹簧、 上碟形弹簧及高压气体的作用下速度降低, 当速度为零时, 进 入做功冲程; 此时振动体系在上螺旋弹簧 28、 上碟形弹簧 19及高压气体的作用下加 速向下止点运动, 在此过程中, 通过控制电路向外输出电流, 振动体系在下螺旋弹簧、 下碟形弹簧及电磁力的作用下速度降为零, 进入排气冲程; 排气门打开, 振动体系在 下螺旋弹簧 29、 下碟形弹簧 31的作用下加速向上止点运动, 向外排气, 当振动体系 在上螺旋弹簧、上碟形弹簧的作用下速度为零时, 排气冲程结束, 完成一个工作循环。 体系中碟形弹簧由于劲度系数很高, 主要在螺旋弹簧压并时起作用, 随着体系能量增 力口, 碟形弹簧的作用变大, 其体系的固有振动频率提高, 可通过调整体系能量来调整 工作频率, 通过调整输出电流的不同, 控制体系能量, 来调整工作频率, 并使体系能 量满足压缩功的需求。 体系的平衡位置处于上止点附近, 压缩冲程时, 体系能量在上 止点处转化为气体压缩功。 在排气冲程时, 由于无高压气体的作用, 体系在平衡位置 处速度最高, 此时上螺旋弹簧压并, 上碟形弹簧压缩, 体系在高劲度系数的碟形弹簧 的作用下, 快速停止, 进入吸气冲程。 在以上过程中进行速度和位置检测, 或利用速 度、 电流及反电动势关系进行位置和速度计算, 动态调整发电电流, 必要时可在做功 冲程外的其它三个冲程中让电机工作在发电或电机状态, 协调系统工况。

Claims

权利要求书
1. 一种受迫振动直动发电系统, 其特征是, 所述发电系统包括受迫振动体系, 受迫振动体系在活塞 (3) 做功和直线电机的发电控制下协调工作, 以进行受迫振动 直动发电, 受迫振动体系包括传动轴组件(23), 传动轴组件(23)将发动机活塞(3)、 直线的发电机单极辐向磁体 (22) 和振动弹簧固定在一起, 传动轴组件 (23) 包括传 动轴直筒 (23-1), 传动轴直筒 (23-1) 采用大直径中空式, 振动弹簧分别位于传动 轴 (23-1) 的内外, 以减小系统长度; 直线电机采用单极辐向永磁直线电机或多极辐 向永磁直线电机; 活塞 (3) 外侧的第一活塞环 (33) 采用大桶度非对称活塞环, 降 低摩擦损失; 燃烧室 (37) 为缸盖、 活塞及缸套所包围的空间, 燃烧室采用缸盖 (7) 与活塞 (3) 近平行且平滑结构, 降低燃烧室传热损失; 设置于缸盖 (7) 的气门驱动 机构采用单极辐向永磁直线电机式的电磁气门驱动系统。
2. 根据权利要求 1 所述的受迫振动直动发电系统, 其特征是: 所述传动轴直筒 (23-1) 将振动弹簧间接延伸至气缸内部, 减小系统长度; 所述振动弹簧包括上碟形 弹簧 (19), 上螺旋弹簧 (28), 下螺旋弹簧 (29) 和下碟形弹簧 (31), 下螺旋弹簧 (29)位于传动轴 (23-1)之内, 下碟形弹簧(31)连接在下螺旋弹簧 (29) 的下部, 上螺旋弹簧 (28) 位于传动轴 (23-1) 之外, 上碟形弹簧 (19) 连接在上螺旋弹簧的 上部。
3. 根据权利要求 1 所述的受迫振动直动发电系统, 其特征是: 所述直线电机包 括发电内、 外铁心 (24、 26), 端部导磁压板 (21), 定子线圈 (25), 环形的发电机 单极辐向磁体 (22) 和所述传动轴组件 (23); 发电内、 外铁心 (24、 26) 同心安装, 端部用导磁压板 (21) 连结, 定子线圈 (25) 位于发电内、 外铁心 (24、 26) 之间, 发电机单极辐向磁体 (22) 位于定子线圈 (25) 和发电内铁心 (24) 之间, 传动轴组 件 (23) 还包括呈放射状的连接架 (23-2), 连接架 (23-2) 与传动轴直筒 (23-1) 为一体式结构, 位于传动轴直筒 (23-1) 的下方, 发电机单极辐向磁体 (22) 亦呈放 射状, 发电内铁心 (24) 由数个扇区构成, 扇区之间留有间隙, 传动臂 (23-2) 通过 发电内铁心 (24) 的放射性间隙与发电机单极辐向磁体 (22) 相连, 定子线圈 (25) 采用导磁片与扁导线交替式结构。
4. 根据权利要求 3 受迫振动直动发电系统, 其特征是: 所述发电机单极辐向磁 体 (22) 的内侧为一极, 外侧为一极。
5. 根据权利要求 3 所述的受迫振动直动发电系统, 其特征是: 所述发电内铁心 ( 24)、 发电外铁心 (26 ) 及导磁压板 (21 ) 分别由梯形硅钢片放射状叠成。
6. 根据权利要求 3 所述的受迫振动直动发电系统, 其特征是: 所述远离气缸方 向的导磁压板 (21 ) 的厚度小于靠近气缸方向的导磁压板 (21 ) 的厚度, 并在远离气 缸方向上的导磁压板上留有气隙, 也可直接取消导磁压板, 以减小气门线圈产生的磁 通和电感, 提高直线电机工作磁场。
7. 根据权利要求 3所述受迫振动直动发电系统, 其特征是: 所述定子线圈 (25 ) 包括扁导线 (25-1 ) 和硅钢带 (25-2), 硅钢带与扁导线呈叠置立绕方式。
8. 根据权利要求 7所述受迫振动直动发电系统, 其特征是: 所述定子线圈 (25 ) 包括线圈架内筒 (25-5), 线圈架内筒由高导磁材料制成, 材料导电能力较高时, 在 线圈架内筒上分布交错的纵向缝。
9. 根据权利要求 8所述受迫振动直动发电系统, 其特征是: 压在定子线圈 (25 ) 上的线圈端盖 (25-3 ) 的面为螺旋面, 其螺距等于导磁材料与扁导线厚度和。
10. 根据权利要求 1所述受迫振动直动发电系统, 其特征是: 所述发电机单极辐 向磁体 (22 ) 为辐向永磁铁动子; 定子线圈 (25 ) 为立绕结构, 定子铁心槽具有螺旋 面, 或者定子线圈为导磁带与扁导线叠置分段立绕并加外铁心的结构, 端部压板不需 导磁材料。
11. 根据权利要求 10 所述受迫振动直动发电系统, 其特征是: 齿槽结构的定子 线圈为立绕线圈, 齿槽的槽上有与立绕线圈相配合的螺旋面。
12. 根据权利要求 10 所述受迫振动直动发电系统, 其特征是: 导磁带与扁导线 叠置立绕加外铁心的定子线圈, 为导磁带与扁导线分段叠置立绕的线圈, 各段分别引 出两个端子, 同相绕组首尾相接,外部套环状铁心。
13. 根据权利要求 1 所述的受迫振动直动发电系统, 其特征是: 所述活塞 (3 ) 和缸盖 (7 ) 分别为球面形状, 降低对流传热损失。
14. 根据权利要求 1所述的受迫振动直动发电系统, 其特征是: 所述第一活塞环 ( 33 ) 的靠近缸盖 (7 ) 方向的一端的桶度大于远离缸盖一端的桶度, 且第一活塞环 靠近缸盖一端的桶度大于润滑油膜厚度; 活塞环最大外径位于活塞环的下部; 气缸内 的高压气体进入第一活塞环 (33 ) 的外壁上面部分, 抵消部分高压气体的侧压力, 以 减少摩擦损失。
15. 根据权利要求 1所述的受迫振动直动发电系统, 其特征是: 所述电磁气门驱 动系统包括气门杆, 气门弹簧 (13 ), 上电磁铁和下电磁铁, 每个电磁铁包括衔铁 (11-1), 气门电磁铁内、 外铁心 (12, 12-1) 和气门线圈 (14), 衔铁 (11-1) 位于 上、 下电磁铁之间; 所述衔铁 (11-1) 与单极辐向永磁铁 (11-7) 相结合构成气门驱 动复合动子 (11); 气门杆、 气门弹簧 (13)、 气门电磁铁内铁心 (12)、 单极辐向永 磁铁 (11-7)、 气门线圈 (14)、 气门电磁铁外铁心 (12-1) 由内向外依次套接。
16. 根据权利要求 15 所述的受迫振动直动发电系统, 其特征是: 所述气门驱动 衔铁与两个电磁铁内、 外铁心和衔铁分别采用放射性硅钢片为主的导磁材料; 气门线 圈采用导磁体与导线交替的结构。
PCT/CN2010/079347 2009-12-01 2010-12-01 受迫振动直动发电系统 WO2011066794A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800029298A CN102667102A (zh) 2009-12-01 2010-12-01 受迫振动直动发电系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2009102240460A CN102182551A (zh) 2009-12-01 2009-12-01 受迫振动直动发电系统改进方案
CN200910224046.0 2009-12-01
CN201010558206 2010-11-25
CN201010558206.8 2010-11-25

Publications (1)

Publication Number Publication Date
WO2011066794A1 true WO2011066794A1 (zh) 2011-06-09

Family

ID=44114615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079347 WO2011066794A1 (zh) 2009-12-01 2010-12-01 受迫振动直动发电系统

Country Status (2)

Country Link
CN (1) CN102667102A (zh)
WO (1) WO2011066794A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686048B (zh) * 2019-04-30 2020-02-21 台睿精工股份有限公司 線性振動致動馬達

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349683B1 (en) * 2000-07-06 2002-02-26 Aerodyne Research, Inc. Miniature generator
CN101214788A (zh) * 2007-01-04 2008-07-09 唐明龙 受迫振动直动发电、缓冲储能、电动驱动汽车
CN101353981A (zh) * 2007-07-29 2009-01-28 唐明龙 带加速弹簧受迫振动直动发电系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349683B1 (en) * 2000-07-06 2002-02-26 Aerodyne Research, Inc. Miniature generator
CN101214788A (zh) * 2007-01-04 2008-07-09 唐明龙 受迫振动直动发电、缓冲储能、电动驱动汽车
CN101353981A (zh) * 2007-07-29 2009-01-28 唐明龙 带加速弹簧受迫振动直动发电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686048B (zh) * 2019-04-30 2020-02-21 台睿精工股份有限公司 線性振動致動馬達

Also Published As

Publication number Publication date
CN102667102A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
JP6790027B2 (ja) 高効率線形燃焼機関
JP4901659B2 (ja) 内燃機関
JP4656840B2 (ja) 電気直線駆動部を有するフリーピストン装置
CN102985692B (zh) 线性压缩机
CN102349222A (zh) 电动式直线振荡电动机
CN111365121B (zh) 由预增压换排气自由活塞发动机驱动的直线增程发电机
CN104115377A (zh) 线性发电机
EP2516825A1 (en) A piston
US8534058B2 (en) Energy storage and production systems, apparatus and methods of use thereof
CN111441928A (zh) 一种高功率密度动圈式电磁直驱液压泵
US20130302181A1 (en) Zero emissions pneumatic-electric engine
WO2011066794A1 (zh) 受迫振动直动发电系统
CN101858325B (zh) 动磁式直驱压缩机
JP3367507B2 (ja) フリーピストン形スターリングエンジン
CN201705609U (zh) 动磁式直驱压缩机
CN205117494U (zh) 柴油直线发电机
CN212155076U (zh) 一种高功率密度动圈式电磁直驱液压泵
CN102400886A (zh) 双动子直线压缩机
CN2084524U (zh) 动圈式电磁隔膜泵
CN202451388U (zh) 双动子直线压缩机
CN202451276U (zh) 活塞进气二冲程直线发电系统
CN2445112Y (zh) 内置永磁直线动力的压缩机
CN210799143U (zh) 一种对置活塞式发电机
CN215486435U (zh) 一种微型动圈式直线真空泵
CN102522922A (zh) 磁压发动机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002929.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834227

Country of ref document: EP

Kind code of ref document: A1