WO2011065397A1 - 光ファイバ融着接続部の補強部材と補強方法 - Google Patents

光ファイバ融着接続部の補強部材と補強方法 Download PDF

Info

Publication number
WO2011065397A1
WO2011065397A1 PCT/JP2010/070978 JP2010070978W WO2011065397A1 WO 2011065397 A1 WO2011065397 A1 WO 2011065397A1 JP 2010070978 W JP2010070978 W JP 2010070978W WO 2011065397 A1 WO2011065397 A1 WO 2011065397A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
tube
shrinkable tube
optical fiber
fusion spliced
Prior art date
Application number
PCT/JP2010/070978
Other languages
English (en)
French (fr)
Inventor
龍一郎 佐藤
弘康 豊岡
敏彦 本間
清孝 村嶋
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP10833243.8A priority Critical patent/EP2506050B1/en
Priority to CN201080053471.9A priority patent/CN102667557A/zh
Priority to US13/511,859 priority patent/US20120243838A1/en
Publication of WO2011065397A1 publication Critical patent/WO2011065397A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2558Reinforcement of splice joint

Definitions

  • the present invention relates to a reinforcing member for reinforcing a plurality of optical fiber cores by fusion bonding and then collectively processing them as a single unit, and a reinforcing method using the reinforcing member.
  • the fusion splicing of the optical fiber is performed by removing the fiber coating on the connection end portion and heating and melting and fusing the butt end of the exposed glass fiber portion.
  • the glass fiber portion from which the fiber coating is removed and fusion spliced is protected and reinforced by the reinforcing member because the mechanical strength is weak.
  • the reinforcing member is generally formed by putting a rod-like tensile strength body in a heat-shrinkable tube which is contracted in the radial direction by heating, and inserting a tube-shaped heat-meltable adhesive.
  • each fusion spliced part is reinforced and processed into a junction box etc. It stores it collectively. At this time, if reinforcement of the connection portion of the optical fiber is performed one by one, a large space is required to accommodate the reinforcing member, and there is a problem that the connection box becomes large.
  • Patent Document 1 a plurality of heat melting adhesive tubes are disposed in a heat shrinking tube, and the connection portion of the optical fiber core wire is inserted into each heat melting adhesive tube, It is disclosed to collectively reinforce a plurality of fusion spliced optical fiber cores with a single reinforcing member.
  • FIG. 4 is a diagram showing an example of the reinforcement processing method disclosed in Patent Document 1 above.
  • the reinforcing member 2 is configured by housing a heat melting adhesive tube 5 composed of a tensile strength member 4 and a plurality of heat melting adhesives in a single heat shrinkable tube 3.
  • the tensile body 4 is, for example, a flat plate having flat surfaces on both sides, and the heat melting adhesive tubes 5 are separately disposed in the gap on both sides between the flat surface and the heat shrinkable tube 3, and the respective heat
  • the optical fiber ribbon 1 in the form of a tape is inserted into the fusible adhesive tube 5, and the fusion spliced portions of the plurality of optical fiber ribbons are collectively reinforced.
  • the heater base 6 has a V groove 7 having a V-shaped cross section as shown in FIG. 4A, or a U side as shown in FIG. 4B. It is formed of a U-shaped groove 8 having a cross-section of letter shape.
  • the reinforcing member 2 is heated by heat from the concave wall surface formed of the V groove 7 or the U groove 8, and the heat shrinkable tube 3 is thermally shrunk to reduce the void volume in the tube.
  • the heat melting adhesive tube 5 melts to fill the void in the heat shrinkable tube 3 and encloses the exposed fusion splice and its periphery. Thereafter, the melted heat melting adhesive tube 5 is solidified, and the heat shrinkable tube 3, the tensile strength member 4, and the optical fiber core wire 1 including the fusion spliced part are integrated to complete the reinforcement.
  • the fusion spliced portion of the two tape-like optical fiber cores can be collectively reinforced by a single reinforcing member. Further, by forming the tensile body in a square cross section, heat melting adhesive tubes can be disposed on the four faces, and the fusion spliced portions of the four tape-like optical fiber cores can be collectively reinforced.
  • the heat melting adhesive tubes are disposed opposite to each other across the tensile strength member, the heat melting adhesive tubes are uniformly melted to obtain a good bonding state.
  • the heating surface needs to be a V-shaped or U-shaped wall surface, and the shape of the heater becomes special, resulting in a cost-intensive heat treatment mechanism.
  • the optical fiber cores are disposed with the tensile strength members separated, the size of the gripping portion gripping the both sides of the reinforcing portion is increased, and a plurality of gripping portions are required, which also raises the cost. Become.
  • the present invention has been made in view of the above-described circumstances, and is capable of collectively reinforcing a plurality of optical fiber cores at a high density, and an optical fiber capable of constituting a heat treatment mechanism therefor at low cost.
  • An object of the present invention is to provide a reinforcing member and a reinforcing method of a fusion spliced portion.
  • the reinforcing member for the optical fiber fusion spliced part is a reinforcing member for collectively reinforcing the fusion spliced part of a plurality of single-core optical fibers, and the heat shrinkable tube and the heat shrinkable tube
  • a rod-like tensile member is disposed so as to be partially in contact with it, and a plurality of tubular heat-meltable adhesives which are disposed in the heat-shrinkable tube and in which fusion splices of single-core optical fibers are individually inserted.
  • a plurality of tube-like heat melting adhesive materials are all arranged in one of the space portions formed between the tensile strength body and the heat shrinkable tube.
  • each of the gaps produced by the tensile strength member, the heat-shrinkable tube, and the plurality of tube-shaped heat-meltable adhesives may have a size that prevents insertion of the single-fiber optical fiber.
  • the optical fiber fusion spliced part reinforcement method according to the present invention is characterized in that the fusion spliced parts of a plurality of single-core optical fibers are collectively reinforced using the above-mentioned reinforcing member.
  • all the tube-shaped hot-melt adhesive is arranged in a row or in a pile in one of the spaces formed between the tensile body and the heat shrinkable tube without sandwiching the tensile body. Will be distributed. For this reason, a heater having a flat simple-shaped heating surface can be used as the heater for heat treatment without having a special shape, and the cost can be reduced.
  • the optical fiber cores can be efficiently assembled and collectively by holding the optical fibers without contact with each other by the individual tube-shaped heat melting adhesive and without particularly enlarging the holding portion. .
  • FIG. 7 shows an embodiment of a reinforcing member according to the invention.
  • FIG. 7 shows another embodiment of a reinforcing member according to the present invention. It is a figure explaining a prior art.
  • 10 is a glass fiber portion
  • 10a is a fusion spliced portion
  • 11 is an optical fiber core
  • 12 is a reinforcing member
  • 13 is a heat shrinkable tube
  • 14 is a tensile body
  • 15 is a tube-like heat melting adhesive
  • the reference numeral 16 denotes a heater
  • 16a denotes a heater wire
  • 16b denotes a heater base.
  • the fusion splice of the optical fiber is carried out by removing the fiber coating on the connection end portion of the single-core optical fiber core wire 11 and then exposing the end of the exposed glass fiber portion 10 This is done by heating and melting the parts and bringing them into contact.
  • the glass fiber portion 10 from which the fiber coating has been removed and fusion spliced is protected and reinforced by the reinforcing member because the mechanical strength is weak including the fusion spliced portion 10a.
  • the reinforcing member 12 comprises a heat-shrinkable tube 13 which is contracted in the radial direction by heating, a rod-like tensile member 14 disposed in the heat-shrinkable tube 13, and a plurality of tube-shaped heat-meltable adhesives 15. It consists of
  • the heat-shrinkable tube 13 is formed of a soft polyolefin resin, and for example, in the case where four optical fibers are bundled together, the inner diameter before contraction is around 5 mm, and it differs depending on the fusion connection form, A tube length of 25 mm to 60 mm is used.
  • the tensile body 14 is made of, for example, a glass ceramic, and a rod-like material having a length similar to that of the heat-shrinkable tube 13 described above is used.
  • the cross-sectional shape of the tensile strength member 14 may be various shapes such as a cylinder, a prism and the like, but preferably, it is preferably a shape having at least one flat surface, for example, a crescent shape.
  • the tube-shaped hot-melt adhesive 15 is formed of, for example, a so-called hot-melt adhesive which is melted by heat such as ethylene vinyl acetate resin and adhesively cured by cooling.
  • This tube-shaped heat-melting adhesive 15 is a tube-like member having an inside diameter to which one single optical fiber core (outside diameter 0.25 mm to 0.9 mm) can be easily inserted.
  • the number of pieces (four in the case of four cores) of fusion spliced optical fibers to be used together and collectively molded is housed in a single heat-shrinkable tube 13.
  • the plurality of tube-shaped heat-melting adhesives 15 are concentrated and stored in one space formed between the heat-shrinkable tube 13 and the tensile member 14. That is, depending on the shape of the tensile member, a plurality of spaces may be formed between the heat-shrinkable tube 13 and the tensile member 14. Even in such a case, the tube-like shape may be formed in the plurality of spaces.
  • the heat-melting adhesive 15 is not dispersedly stored, but all the tube-shaped heat-melting adhesives 15 are disposed in one space.
  • FIG. 2 shows an example of the storage form of the above-described shape of the tensile strength body and the tubular heat-melting adhesive.
  • (A) of FIG. 2 is an example using a semi-cylindrical tensile member 14a, and the arc-shaped outer surface is disposed in contact with the inner surface of the heat shrinkable tube 13a, and between the flat surface and the heat shrinkable tube 13a. Form one space part.
  • a plurality of tube-shaped heat-meltable adhesives 15a are arranged in a line in this space portion to form a reinforcing member 12a.
  • FIG. 2B shows an example using a tensile member 14b having a rectangular cross section, and when the two corners are disposed in contact with the inner surface of the heat shrinkable tube 13b, the space between the heat shrinkable tube 13b and the heat shrinkable tube 13b is Two space parts are formed. Of the two space portions, all of the plurality of tube-shaped heat-meltable adhesives 15b are arranged in a line in the upper large space portion to form a reinforcing member 12b.
  • FIG. 2C is an example using a cross-sectional crescent-shaped tensile member 14c, and the arc-shaped outer surface is disposed in contact with the inner surface of the heat-shrinkable tube 13c as in the example of FIG. , Forms a space between the flat surface and the heat shrinkable tube 13c.
  • a plurality of tube-like heat melting adhesives 15c are arranged in a piled state in this space portion to form a reinforcing member 12c.
  • FIG. 3 shows another embodiment, and when a plurality of tube-like heat melting adhesives are disposed in the space between the tensile strength body and the heat shrinkable tube, these tensile strength body, heat shrinkable tube, plural
  • the gaps formed with the tube-shaped heat-melting adhesive are closely spaced to each other so as to prevent the insertion of the single-core optical fiber.
  • a semi-cylindrical tensile member 14d is used, an arc-shaped outer surface is disposed in contact with the inner surface of the heat shrinkable tube 13d, and the flat surface and the heat shrinkable tube 13d Form a space between them.
  • a plurality of tube-shaped heat-meltable adhesives 15d are densely arranged to form a reinforcing member 12d so that no gap can be formed in the space to allow insertion of a single optical fiber core.
  • the tube-shaped heat-melting adhesive 15d may be a rectangular tube obtained by deforming a circular tube, or the arc of the heat-shrinkable tube 13d is partially crushed to form a flat portion. It is also good.
  • a shape is, for example, the extent to which the tube-shaped heat-meltable adhesive does not melt after the tensile strength body and the tube-shaped heat-meltable adhesive are accommodated in the heat-shrinkable tube in the form of FIG.
  • the heat-shrinkable tube can be easily formed by slightly shrinking it.
  • the reinforcing member 12d of this shape is closely filled with the tensile strength member 14d and the tubular heat-meltable adhesive 15d, and these are brought into contact with each other and held in the heat-shrinkable tube 13d. It is possible to prevent the body 14d and the tube-shaped heat melting adhesive 15d from falling off. In addition, since the optical fiber core wire can not be inserted into the portion other than the tube-shaped heat-melting adhesive 15d, the optical fiber core wire is not erroneously inserted, and the workability can be improved.
  • a portion of the surface of the tensile strength member is disposed in contact with the inner surface of the heat shrinkable tube.
  • This form is a form that naturally occurs in the manufacture of the reinforcing member by the gravity of the tensile strength body, and as a result, at least one space is formed between the heat-shrinkable tube and the tensile strength body, and the annular space is formed. It does not occur.
  • one space formed between the heat-shrinkable tube and the tensile member is a heat-shrinkable tube, a tensile member such that all of the required tube-shaped heat-meltable adhesive is accommodated. Size and shape.
  • the heater 16 is composed of a heater wire 16a and a heater table 16b, and the heater table 16b may have a simple and general shape having a flat heating surface.
  • the reinforcing member 12 is placed, for example, so that the tensile member 14 faces the heater table 16 b, and the tubular heat-meltable adhesive 15 is uniformly heated via the tensile member 14. Then, the tube-shaped heat-melting adhesive 15 is melted by heating by the heater 16, and the space in the heat-shrinkable tube 13 is filled to shrink the heat-shrinkable tube 13 in the radial direction. Extrude.
  • the fused tubular heat-meltable adhesive 15 is covered so as to include the glass fiber portion 10 of each optical fiber core 11, the fusion spliced portion 10a and the end portion of the uncovered fiber coating, Protect from direct contact with the fusion splice of the optical fiber.
  • the inner surface of the heat-shrinkable tube 13 whose diameter is reduced is also adhered to the tensile member 14.
  • the heating power is turned off and the reinforcing member is cooled by natural cooling or forced cooling after heating for a predetermined time by the heater 16
  • the melted adhesive is cured.
  • the fusion spliced portion 10a in the reduced-diameter heat-shrinkable tube 13 and the vicinity thereof, and the tensile strength member 14 are integrated and protected and reinforced.
  • the tube-shaped heat-meltable adhesive is not separated by the tensile strength member, and a plurality of tube-shaped heat-meltable bonds Materials can be stored together in one space part.
  • the heating surface of the heater for heating the reinforcing member may be a general heating surface having a flat shape without using a special shape such as V-shaped or U-shaped, and the configuration of the heating processing portion It can be cheap.
  • the plurality of optical fiber cores to be assembled can all be put together in one space formed between the heat-shrinkable tube and the tensile member, the form of collection can be made compact without spreading. It is also possible to reduce the structure of the gripping portion.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

 複数の光ファイバ心線を高密度で一括した補強することができ、そのための加熱処理機構を低コストで構成することができる光ファイバ融着接続部の補強部材と補強方法を提供する。 複数の単心光ファイバ11の融着接続部12aを一括して補強する補強部材12であって、熱収縮チューブ13と、熱収縮チューブの内面に表面の一部が接するように配される棒状の抗張力体14と、熱収縮チューブ内に配され単心光ファイバの融着接続部が個別に挿入される複数のチューブ状熱溶融性接着材15とを備える。そして、抗張力体14と熱収縮チューブとの間に形成される空間部の1つに、複数のチューブ状熱溶融性接着材15が全て配置されている。

Description

光ファイバ融着接続部の補強部材と補強方法
 本発明は、複数の光ファイバ心線を個別に融着接続した後、これらを一括して単一体として補強処理するための補強部材と該補強部材を用いた補強方法に関する。
 光ファイバの融着接続は、接続端部分のファイバ被覆を除去して、露出されたガラスファイバ部の突き合せ端部を加熱溶融して融着することにより行われる。ファイバ被覆が除去され融着接続されたガラスファイバ部は、機械的な強度が弱いため補強部材により保護・補強される。この補強部材は、通常、加熱により径方向に収縮する熱収縮チューブ内に棒状の抗張力体を添えて、チューブ状の熱溶融性接着材を入れて形成されている。
 また、光通信網の発達で、多数の光ファイバ心線を扱うケースが多く、例えば、複数の光ファイバ心線を融着接続した後、各融着接続部を補強処理して接続箱等に一括して収納している。このとき、光ファイバの接続部の補強を1本ずつ行うと、補強部材を収納するために大きなスペースを必要とし、接続箱が大型化するという問題がある。これを解決する方法として、例えば、特許文献1には、熱収縮チューブ内に複数の熱溶融性接着チューブを配し、それぞれの熱溶融性接着チューブに光ファイバ心線の接続部を挿入し、単一の補強部材で複数の融着接続された光ファイバ心線を一括して補強することが開示されている。
 図4は、上記特許文献1に開示の補強処理の方法の一例を示す図である。補強部材2は、単一の熱収縮性チューブ3内に、抗張力体4と複数の熱溶融性接着剤からなる熱溶融性接着チューブ5を収納して構成される。抗張力体4は、例えば、両面に平坦面を有する平板状で、この平坦面と熱収縮性チューブ3との間の両側の空隙部に熱溶融性接着チューブ5を別々に配し、それぞれの熱溶融性接着チューブ5にテープ状の光ファイバ心線1を挿通し、複数の光ファイバ心線の融着接続部を一括して補強している。この場合のヒータ台6は、補強部材2を収納載置する面が、図4の(A)のようにV字形の断面を有するV溝7、或いは、図4の(B)のようにU字形の断面を有するU溝8で形成されている。
 補強部材2は、V溝7またはU溝8からなる凹状の壁面からの熱によって加熱され、熱収縮性チューブ3が熱収縮してチューブ内の空隙容積を減少させる。同時に熱溶融性接着チューブ5が溶融して熱収縮性チューブ3内の空隙を埋め、露出されている融着接続部とその周辺部を包囲する。この後、溶融した熱溶融性接着チューブ5が固化し、熱収縮性チューブ3、抗張力体4、融着接続部を含む光ファイバ心線1が一体化され補強が完了する。
日本国特許公報:特許第3567446号公報
 上述した特許文献1に開示の補強部材によれば、2本のテープ状光ファイバ心線の融着接続部を単一の補強部材により一括して補強することができる。また、抗張力体を断面正方形状とすることにより、四面に熱溶融性接着チューブを配することができ4本のテープ状光ファイバ心線の融着接続部を一括して補強することができる。
 しかしながら、複数の熱溶融性接着チューブは、抗張力体を挟んで対向的に配置されているため、これらの熱溶融性接着チューブが均一に溶融され、良好な接着状態を得るには、ヒータ台の加熱面を上記したようにV状またはU状の壁面とする必要があり、ヒータ形状が特殊となりコスト高な加熱処理機構となる。また、各光ファイバ心線が抗張力体を隔てて配置されることから、補強部の両側を把持する把持部が大型化したり複数の把持部が必要になるなどにより、この点からもコスト高となる。
 本発明は、上述した実情に鑑みてなされたもので、複数の光ファイバ心線を高密度で一括して補強することができ、そのための加熱処理機構を低コストで構成することができる光ファイバ融着接続部の補強部材と補強方法の提供を目的とする。
 本発明による光ファイバ融着接続部の補強部材は、複数の単心光ファイバの融着接続部を一括して補強する補強部材であって、熱収縮チューブと、熱収縮チューブの内面に表面の一部が接するように配される棒状の抗張力体と、熱収縮チューブ内に配され単心光ファイバの融着接続部が個別に挿入される複数のチューブ状熱溶融性接着材とを備える。そして、抗張力体と熱収縮チューブとの間に形成される空間部の1つに、複数のチューブ状熱溶融性接着材が全て配置されていることを特徴とする。なお、抗張力体、熱収縮チューブ、複数のチューブ状熱溶融性接着材によって生じる隙間のそれぞれが、単心光ファイバ心線の挿入が阻止される程度の大きさとなるようにしてもよい。
 また、本発明による光ファイバ融着接続部の補強方法は、上記の補強部材を用いて、複数の単心光ファイバの融着接続部を一括して補強することを特徴とする。
 本発明によれば、抗張力体を間に挟むことなく、抗張力体と熱収縮チューブとの間に形成される空間の1つに、全てのチューブ状熱溶融性接着材が列状または俵積み状態で配される。このため、加熱処理用のヒータには、特殊な形状としなくても平面的な単純形状の加熱面を有するヒータを用いることができ、低コストなものとすることができる。また、光ファイバ心線は、個別のチューブ状熱溶融性接着材により光ファイバ同士が互いに接触することなく、また、把持部を特に大きくすることなく把持して、効率よく集合一括させることができる。
本発明による補強部材の概略を説明する図である。 本発明による補強部材の実施形態を示す図である。 本発明による補強部材の他の実施形態を示す図である。 従来技術を説明する図である。
 図を参照しつつ本発明の実施形態の例を説明する。図中、10はガラスファイバ部、10aは融着接続部、11は光ファイバ心線、12は補強部材、13は熱収縮性チューブ、14は抗張力体、15はチューブ状熱溶融性接着材、16は加熱ヒータ、16aはヒータ線、16bはヒータ台を示す。
 光ファイバの融着接続は、図1の(A)に示すように、単心の光ファイバ心線11をそれぞれ、接続端部分のファイバ被覆を除去して、露出されたガラスファイバ部10の端部を加熱溶融して突き合せることにより行われる。ファイバ被覆が除去され融着接続されたガラスファイバ部10は、その融着接続部10aを含めて機械的な強度が弱いため補強部材により保護・補強される。
 光ファイバ心線の融着接続部の保護・補強は、光ファイバ心線1本毎に個別に行うのが一般的であるが、本発明においては、複数の光ファイバ心線を個別に融着接続した後、これらをまとめて一括して補強処理するための単一の補強部材12が用いられる。本発明による補強部材12は、加熱により径方向に収縮する熱収縮チューブ13と、この熱収縮チューブ13内に配される棒状の抗張力体14と、複数のチューブ状の熱溶融性接着材15とで構成される。
 熱収縮性チューブ13は、軟質のポリオレフィン樹脂で形成され、例えば、4心の光ファイバ心線を一括する場合で、収縮前の内径が5mm前後であり、また、融着接続形態によって異なるが、チューブ長さは25mm~60mmのものが用いられる。
 抗張力体14は、例えば、ガラスセラミックで形成され、上記の熱収縮性チューブ13と同程度の長さを有する棒状のものが用いられる。この抗張力体14の断面形状は、円柱、角柱等の種々の形状のものを用いることができるが、好ましくは、少なくとも1つの平坦面を有する形状、例えば、半月状とするのが好ましい。
 チューブ状の熱溶融性接着材15は、例えば、エチレン酢酸ビニル樹脂などの熱により溶融し、冷却により接着硬化するホットメルト接着材とも言われているもので形成される。このチューブ状の熱溶融性接着材15は、1本の単心の光ファイバ心線(外径が0.25mm~0.9mm)が、容易に挿入することができる程度の内径を有するチューブ状に成形したものが用いられ、一括される融着接続光ファイバの本数分(4心の場合は4本)が、単一の熱収縮性チューブ13内に収納される。
 複数のチューブ状の熱溶融性接着材15は、熱収縮性チューブ13と抗張力体14との間に形成される1つの空間部に集中させて収納される。すなわち、抗張力体の形状によっては、熱収縮性チューブ13と抗張力体14との間に複数の空間部が形成されることがあるが、このような場合にも、複数の空間部にチューブ状の熱溶融性接着材15が分散して収納されるのではなく、1つの空間部に全部のチューブ状の熱溶融性接着材15が収まるように配置する。
 図2は、上述の抗張力体の形状とチューブ状の熱溶融性接着材との収納形態の例を示すものである。図2の(A)は、半円柱状の抗張力体14aを用いる例で、円弧状の外面が熱収縮性チューブ13aの内面に接するように配され、平坦面と熱収縮性チューブ13aとの間に1つの空間部を形成する。この空間部に複数のチューブ状の熱溶融性接着材15aを一列に並ぶように配置して補強部材12aとされる。
 図2の(B)は、断面長方形状の抗張力体14bを用いる例で、2つの角部が熱収縮性チューブ13bの内面に接するように配すると、熱収縮性チューブ13bとの間に上下に2つの空間部が形成される。この2つの空間部のうち、上方の大きい方の空間部に複数のチューブ状の熱溶融性接着材15bの全てを一列に並ぶように配置して補強部材12bとされる。
 図2の(C)は、断面半月状の抗張力体14cを用いる例で、図2の(A)の例と同様に、円弧状の外面が熱収縮性チューブ13cの内面に接するように配され、平坦面と熱収縮性チューブ13cとの間に1つの空間部を形成する。この空間部に複数のチューブ状の熱溶融性接着材15cを俵積み状態に配置して補強部材12cとされる。
 図3は、他の実施形態を示すもので、抗張力体と熱収縮チューブとの間の空間部に複数のチューブ状の熱溶融性接着材を配したとき、これら抗張力体、熱収縮チューブ、複数のチューブ状の熱溶融性接着材との間に生じる隙間のそれぞれが、単心光ファイバ心線の挿入が阻止される程度の大きさの隙間となるように互いに密に配置した例である。例えば、図2の(A)と同様に半円柱状の抗張力体14dを用い、円弧状の外面が熱収縮性チューブ13dの内面に接するように配され、平坦面と熱収縮性チューブ13dとの間に1つの空間部を形成する。そして、この空間部に単心の光ファイバ心線が挿入できるような隙間が生じないように、複数のチューブ状の熱溶融性接着材15dを密に配置して補強部材12dとされる。
 なお、チューブ状の熱溶融性接着材15dは、円形状チューブを変形させた矩形状チューブであってもよく、また、熱収縮チューブ13dの円弧を部分的に押しつぶして扁平な部分を有する形状としてもよい。このような形状は、例えば、図1の(A)の形態で熱収縮チューブ内に抗張力体とチューブ状の熱溶融性接着材を収納した後、チューブ状の熱溶融性接着材が溶融しない程度に加熱して、熱収縮チューブを多少収縮させることで容易に形成することができる。
 この形状の補強部材12dは、熱収縮チューブ13d内が抗張力体14dとチューブ状の熱溶融性接着材15dで、密に満たされ、これらが互いに接触して熱収縮チューブ13d内に保持され、抗張力体14d,チューブ状の熱溶融性接着材15dが脱落するのを抑制することができる。また、光ファイバ心線は、チューブ状の熱溶融性接着材15d以外の部分には挿入できないので、光ファイバ心線が誤挿通されることがなく、作業性を向上させることができる。
 本発明においては、上述したように抗張力体のその表面の一部が熱収縮性チューブの内面と接するようにして配置される。この形態は、抗張力体の重力により補強部材の製造上で自然に生じる形態であり、この結果、熱収縮性チューブと抗張力体との間に少なくとも1つの空間部が形成され、環状の空間部が生じない。そして、熱収縮性チューブと抗張力体との間に形成される1つの空間部は、必要とされるチューブ状の熱溶融性接着材の全部が収納されるような、熱収縮性チューブ、抗張力体のサイズや形状とされる。
 上述の如く構成された補強部材12を用いて一括補強する場合は、熱収縮性チューブ13内に配されたチューブ状の熱溶融性接着材15に、互いに融着接続される複数対の光ファイバ心線11の一方の側の光ファイバ心線(右側か左側の単心光ファイバ心線群)を、融着接続に先立って予め挿通させておく。各対の光ファイバ心線同士の融着接続が全て完了した後、図1の(A)に示すように、補強部材12の中央に融着接続部10aが位置するように、補強部材12を移動させる。
 この後、補強部材12を加熱ヒータ16により加熱する。加熱ヒータ16は、ヒータ線16aとヒータ台16bからなり、ヒータ台16bは、平坦な加熱面を有する単純で一般的な形状のものを用いることができる。補強部材12は、例えば、抗張力体14がヒータ台16bに対向するようにして置かれ、チューブ状の熱溶融性接着材15は、抗張力体14を介して均一に加熱される。そして、加熱ヒータ16による加熱でチューブ状の熱溶融性接着材15が溶融し、熱収縮性チューブ13内の空隙を埋め、熱収縮性チューブ13が径方向に収縮し、内部の空気を外部に押出す。
 溶融したチューブ状の熱溶融性接着材15は、それぞれの光ファイバ心線11のガラスファイバ部10、融着接続部10aと除去されていないファイバ被覆の端部部分を含むように覆って、他の光ファイバ心線の融着接続部と直接接触しないように保護する。また、これと同時に、径が縮小された熱収縮性チューブ13の内面と抗張力体14とも接着する。加熱ヒータ16による所定時間の加熱後、加熱電源がオフされ自然冷却または強制冷却により補強部材が冷却されると、溶融した接着材が硬化する。そして、縮径された熱収縮性チューブ13内の融着接続部10aとその近傍、並びに、抗張力体14とは一体化されて保護・補強される。
 上記のように構成された補強部材を用いることにより、図4に示すようにチューブ状の熱溶融性接着材が抗張力体により隔てて配置されることがなく、複数のチューブ状の熱溶融性接着材は、1つの空間部にまとめて収納することができる。この結果、補強部材を加熱する加熱ヒータの加熱面は、V状やU状のように特殊な形状を用いなくても、平坦な形状の一般的な加熱面でよく、加熱処理部の構成を安価なものとすることができる。また、集合される複数の光ファイバ心線は、熱収縮性チューブと抗張力体との間に形成される1つの空間部に全てまとめられるので、集合形態が広がらずにコンパクトにまとめることができ、把持部の構造も小さくすることが可能となる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2009年11月25日出願の日本特許出願(特願2009-267747)、及び2010年1月22日出願の日本特許出願(特願2010-11879)に基づくものであり、それらの内容はここに参照として取り込まれる。
10…ガラスファイバ部、10a…融着接続部、11…光ファイバ心線、12~12d…補強部材、13~13d…熱収縮性チューブ、14~14d…抗張力体、15~15d…チューブ状熱溶融性接着材、16…加熱ヒータ、16a…ヒータ線、16b…ヒータ台

Claims (3)

  1.  複数の単心光ファイバの融着接続部を一括して補強する補強部材であって、熱収縮チューブと、前記熱収縮チューブの内面に表面の一部が接するように配される棒状の抗張力体と、前記熱収縮チューブ内に配され前記単心光ファイバの融着接続部が個別に挿入される複数のチューブ状熱溶融性接着材とを備え、
     前記抗張力体と前記熱収縮チューブとの間に形成される空間部の1つに、前記複数のチューブ状熱溶融性接着材が全て配置されていることを特徴とする光ファイバ融着接続部の補強部材。
  2.  前記抗張力体、前記熱収縮チューブ、前記複数のチューブ状熱溶融性接着材によって生じる隙間のそれぞれが、前記単心光ファイバ心線の挿入が阻止される大きさの隙間であることを特徴とする請求項1に記載の光ファイバ融着接続部の補強部材。
  3.  請求項1または2に記載の光ファイバ融着接続部の補強部材を用いて、複数の単心光ファイバの融着接続部を一括して補強することを特徴とする光ファイバ融着接続部の補強方法。
PCT/JP2010/070978 2009-11-25 2010-11-25 光ファイバ融着接続部の補強部材と補強方法 WO2011065397A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10833243.8A EP2506050B1 (en) 2009-11-25 2010-11-25 Reinforcing member and reinforcing method for fusion spliced portions of optical fibers
CN201080053471.9A CN102667557A (zh) 2009-11-25 2010-11-25 光纤熔接部的加强部件和加强方法
US13/511,859 US20120243838A1 (en) 2009-11-25 2010-11-25 Reinforcing member for optical fiber fusion-splicing portion and reinforcing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009267747 2009-11-25
JP2009-267747 2009-11-25
JP2010011879A JP2011133838A (ja) 2009-11-25 2010-01-22 光ファイバ融着接続部の補強部材と補強方法
JP2010-011879 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011065397A1 true WO2011065397A1 (ja) 2011-06-03

Family

ID=44066502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070978 WO2011065397A1 (ja) 2009-11-25 2010-11-25 光ファイバ融着接続部の補強部材と補強方法

Country Status (6)

Country Link
US (1) US20120243838A1 (ja)
EP (1) EP2506050B1 (ja)
JP (1) JP2011133838A (ja)
KR (1) KR20120101405A (ja)
CN (1) CN102667557A (ja)
WO (1) WO2011065397A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549315A3 (en) * 2011-07-18 2013-01-30 Tyco Electronics Raychem BVBA Method, device and kit of parts for attaching an optical fiber in an optical fiber connector
CN103389543A (zh) * 2012-05-11 2013-11-13 上海宽岱电讯科技发展有限公司 一种裸纤热熔单元的结构

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702326B2 (en) * 2012-03-23 2014-04-22 Corning Cable Systems Llc Splice protector for fiber optic ribbons
US9360624B2 (en) * 2013-03-22 2016-06-07 Corning Optical Communications LLC Splice protector for fiber optic ribbons
WO2014021185A1 (ja) * 2012-08-03 2014-02-06 Seiオプティフロンティア株式会社 光ファイバ補強部材の加熱処理装置、この加熱処理装置を備える光ファイバ融着接続機および光ファイバ補強部材の加熱処理方法
JP6381591B2 (ja) 2016-08-01 2018-08-29 株式会社フジクラ 補強構造
EP3602155A1 (en) 2017-03-21 2020-02-05 Corning Research & Development Corporation Fiber optic cable assembly with thermoplastically overcoated fusion splice, and related method and apparatus
WO2020051034A1 (en) 2018-09-07 2020-03-12 Corning Incorporated Optical fiber fan-out assembly with ribbonized interface for mass fusion splicing, and fabrication method
US10976492B2 (en) * 2018-09-07 2021-04-13 Corning Incorporated Cable with overcoated non-coplanar groups of fusion spliced optical fibers, and fabrication method
KR20210069638A (ko) * 2018-10-02 2021-06-11 스미토모 덴코 옵티프론티어 가부시키가이샤 광파이버 융착 접속부의 보강 장치 및 그를 구비한 융착 접속기
US11360265B2 (en) 2019-07-31 2022-06-14 Corning Research & Development Corporation Fiber optic cable assembly with overlapping bundled strength members, and fabrication method and apparatus
JP7097402B2 (ja) * 2020-03-23 2022-07-07 古河電気工業株式会社 融着機
US11886009B2 (en) 2020-10-01 2024-01-30 Corning Research & Development Corporation Coating fusion spliced optical fibers and subsequent processing methods thereof
US11808983B2 (en) 2020-11-24 2023-11-07 Corning Research & Development Corporation Multi-fiber splice protector with compact splice-on furcation housing
US11867947B2 (en) 2021-04-30 2024-01-09 Corning Research & Development Corporation Cable assembly having routable splice protectors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124205U (ja) * 1991-04-30 1992-11-12 日本電気株式会社 光フアイバの融着接続部補強構造
JP2004038019A (ja) * 2002-07-05 2004-02-05 Sumitomo Electric Ind Ltd 光ファイバ融着接続部の補強部材およびその製造方法
JP3567446B2 (ja) 1996-04-30 2004-09-22 住友電気工業株式会社 光ファイバ心線接続部の補強器および補強方法
JP2009267747A (ja) 2008-04-24 2009-11-12 Kyocera Corp 無線通信システム、基地局、移動局および無線通信方法
JP2010011879A (ja) 2008-06-30 2010-01-21 Nihon Choriki ノズル取付構造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2591855B2 (ja) * 1990-09-12 1997-03-19 日本タングステン株式会社 高精度ウェイト部品とその製造方法
US5832162A (en) * 1995-12-15 1998-11-03 Tii Industries, Inc. Multiple fiber fusion splice protection sleeve
US6099170A (en) * 1999-01-07 2000-08-08 Thomas & Betters International, Inc. Splice protection sleeve for a plurality of optical fibers and method of installation
JP2004309841A (ja) * 2003-04-08 2004-11-04 Fujikura Ltd 光ファイバ融着補強部材及び前記光ファイバ融着補強部材を用いた光ファイバ管理方法
JP4532251B2 (ja) * 2004-12-14 2010-08-25 古河電気工業株式会社 光ファイバ接続部補強スリーブの加熱方法及びそれに用いる加熱装置
JP4816471B2 (ja) * 2007-01-25 2011-11-16 住友電気工業株式会社 光ファイバの保護スリーブ
US8556525B2 (en) * 2007-09-07 2013-10-15 Sumitomo Electric Industries, Ltd. Protection sleeve, manufacturing apparatus for protection sleeve, and manufacturing method for protection sleeve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124205U (ja) * 1991-04-30 1992-11-12 日本電気株式会社 光フアイバの融着接続部補強構造
JP3567446B2 (ja) 1996-04-30 2004-09-22 住友電気工業株式会社 光ファイバ心線接続部の補強器および補強方法
JP2004038019A (ja) * 2002-07-05 2004-02-05 Sumitomo Electric Ind Ltd 光ファイバ融着接続部の補強部材およびその製造方法
JP2009267747A (ja) 2008-04-24 2009-11-12 Kyocera Corp 無線通信システム、基地局、移動局および無線通信方法
JP2010011879A (ja) 2008-06-30 2010-01-21 Nihon Choriki ノズル取付構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549315A3 (en) * 2011-07-18 2013-01-30 Tyco Electronics Raychem BVBA Method, device and kit of parts for attaching an optical fiber in an optical fiber connector
CN103389543A (zh) * 2012-05-11 2013-11-13 上海宽岱电讯科技发展有限公司 一种裸纤热熔单元的结构
CN103389543B (zh) * 2012-05-11 2015-12-23 上海宽岱电讯科技发展有限公司 一种裸纤热熔单元的结构

Also Published As

Publication number Publication date
EP2506050B1 (en) 2020-12-23
US20120243838A1 (en) 2012-09-27
CN102667557A (zh) 2012-09-12
EP2506050A4 (en) 2018-01-03
JP2011133838A (ja) 2011-07-07
KR20120101405A (ko) 2012-09-13
EP2506050A1 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2011065397A1 (ja) 光ファイバ融着接続部の補強部材と補強方法
US5832162A (en) Multiple fiber fusion splice protection sleeve
JPS59200207A (ja) 光導波路用保護シ−ス
JPH04271307A (ja) 光カプラ用補強部材及び光カプラの補強方法
JP5233859B2 (ja) 光ファイバ心線の補強方法
US20210157055A1 (en) Flexible splice protector assembly and method for preparing same
JP5857889B2 (ja) 保護スリーブ
JP2004347801A (ja) 光ファイバ補強スリーブ及び光ファイバ補強方法
JP2004038019A (ja) 光ファイバ融着接続部の補強部材およびその製造方法
JPH03500216A (ja) 光ファイバカプラー
JP2003232953A (ja) 光ファイバ融着接続部の補強方法および補強部材
JPS61219011A (ja) 光フアイバ接続部の補強部の形成方法及びそれに用いる補強部材
EP1175634A1 (en) Bulbous configured fiber optic splice closure and associated methods
JP2011112785A (ja) 光ファイバ融着接続機および融着接続方法
JPS61219010A (ja) プラスチツククラツド光フアイバの接続方法
JP3439635B2 (ja) 光ファイバ接続部の補強方法及び補強部材
KR102088745B1 (ko) 내구성이 보강된 광섬유 접속장치 및 그를 이용한 광섬유 접속방법
CN209765096U (zh) 一种光纤热缩套管
JP4444270B2 (ja) 光ファイバ接続部の補強構造、補強方法及び補強スリーブ
JP2005024921A (ja) 融着接続補強装置及び補強方法
JP4257836B2 (ja) 光ファイバコードの融着接続部補強構造および補強方法
JP2004219953A (ja) 光ファイバ引留め方法及び装置
JP2526488B2 (ja) 光ファイバ融着接続部の補強構造及び補強方法
JP5679407B2 (ja) 融着補強スリーブ
JPS5893016A (ja) 光フアイバ接続部補強部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053471.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127013482

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13511859

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010833243

Country of ref document: EP