WO2011065356A1 - Functional capillary device and drive method for same - Google Patents

Functional capillary device and drive method for same Download PDF

Info

Publication number
WO2011065356A1
WO2011065356A1 PCT/JP2010/070880 JP2010070880W WO2011065356A1 WO 2011065356 A1 WO2011065356 A1 WO 2011065356A1 JP 2010070880 W JP2010070880 W JP 2010070880W WO 2011065356 A1 WO2011065356 A1 WO 2011065356A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
vibrating
phase
traveling wave
unit
Prior art date
Application number
PCT/JP2010/070880
Other languages
French (fr)
Japanese (ja)
Inventor
和義 槌谷
淳 鷹股
靖智 上辻
Original Assignee
学校法人 東海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 東海大学 filed Critical 学校法人 東海大学
Publication of WO2011065356A1 publication Critical patent/WO2011065356A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps

Definitions

  • the present invention relates to a functional capillary device that transports fluid in a capillary and a driving method thereof.
  • micro electro mechanical systems MEMS
  • ⁇ TAS Micro Total Analysis Systems
  • Patent Document 1 a micro pump in which a flow path and a pump are integrated (see Patent Document 1 and Non-Patent Document 1).
  • This micropump attaches a ring-type piezoelectric element (PZT [lead zirconate titanate] element) to the surface of a silicon tube, and generates a traveling wave in the fluid in the tube by the vibration of the piezoelectric element, thereby transporting the fluid. Is what you do.
  • PZT lead zirconate titanate
  • a conventional micropump 60 has ring-type piezoelectric elements (PZT elements) 62 arranged at equal intervals on a silicon tube 61 that is a hollow tube, and applies different AC voltages to the piezoelectric elements 62. .
  • PZT elements piezoelectric elements
  • a standing wave is generated on the inner wall of the silicon tube 61, and traveling waves having different sizes are generated in the fluid in the tube.
  • a composite wave generated by collision of traveling waves of different magnitudes becomes a traveling wave having an elliptical orbit. In this way, the fluid is transported by generating an elliptical motion at an arbitrary point of the fluid.
  • the conventional micropump changes the frequency and phase applied to the piezoelectric element, thereby controlling the vibration speed of the piezoelectric element and changing the wavelength of the traveling wave generated in the fluid in the tube to control the flow rate. It was.
  • the above-described conventional micro pump can integrate the flow path and the pump by combining a silicon tube with a ring-type piezoelectric element (PZT element), and can be downsized. Moreover, since this micropump can control the flow rate, it can be applied to, for example, an injection needle for blood collection and drug administration. Thus, the micropump developed by the inventors of the present application is excellent in that it is small in size and capable of minute flow control.
  • the conventional micropump controls the flow velocity by simply changing the frequency and phase applied to the piezoelectric element, but the parameters (for example, AC voltage phase, piezoelectric element installation interval, etc.) are clear. It wasn't a natural thing. For this reason, the conventional micropump has room for further improvement in efficiency, and establishment of a technique for efficiently controlling the speed of the fluid in the narrow tube has been demanded.
  • the present invention has been made in view of the above situation, and it is an object of the present invention to provide a functional capillary device capable of efficiently controlling the speed of fluid in the capillary and a driving method thereof. .
  • the functional thin tube device has a plurality of vibrations that vibrate the tube wall of the tube body inward and outward in the major axis direction of the hollow tube body that transports fluid.
  • An oscillating tube provided with parts spaced apart from each other, and energy supply means for independently supplying the energy for generating traveling waves in the tube by vibrating the plurality of vibrating parts independently,
  • Energy is supplied to the plurality of vibration units so as to generate traveling waves having shifted phases.
  • a certain vibration unit and a vibration unit located next to the vibration unit in the flow path direction are shifted by a distance from the phase difference of the traveling wave generated in the tube. Has been placed. Therefore, the traveling wave generated by the vibration of a certain vibration part attenuates, but the attenuated traveling wave and the new traveling wave generated by the vibration of the adjacent vibration part have the same phase. Wave attenuation will be compensated.
  • each vibration part is arranged at a position shifted by the phase shift of the traveling wave generated in the tube, and therefore, at the position of each vibration part, Attenuation of the traveling wave generated in the tube in the rear is compensated, and the amplitude of the traveling wave traveling in the flow path traveling direction is maintained.
  • the vibration-type tube includes m (m is an integer of 2 or more) vibration parts as one unit, the wavelength of the traveling wave is ⁇ , and the vibration adjacent to the vibration part center.
  • the energy supply means supplies the AC voltage supplied to the other vibration part with reference to the phase of the AC voltage supplied to the vibration part closest to the fluid source of the unit. It is good also as a structure which advances a phase each (360 / m) degree and supplies an alternating voltage.
  • the functional thin tube device can be provided with a vibrating portion at a position corresponding to the same phase difference for each unit in the vibrating tube, and the vibrating portion is provided at equal intervals in the unit. Can do.
  • the length of a vibration type tubular body can be ensured by providing a plurality of units.
  • the functional thin tube device can be provided with vibrating portions at equal intervals for each unit, and the odd-numbered two vibrating portions are simply inverted (0 °, 180 °). ) And supply an AC voltage. Similarly, the functional thin tube device may simply supply the alternating voltage to the even-numbered two vibrating portions by inverting the phases (90 °, 270 °).
  • the energy supply means is configured so that the phase of the AC voltage supplied to the plurality of vibrating parts generating the traveling wave traveling in one direction is reversed by the external switch. It is good also as a structure provided with the traveling wave inversion means to invert so that it may generate
  • the functional thin tube device With such a configuration, the functional thin tube device generates a traveling wave in the opposite direction because the phase of the traveling wave is inverted in the vibration type tubular body. Thereby, the functional thin tube device can reduce the velocity of the fluid flowing in one direction or transport the fluid in the opposite direction.
  • the present invention separates a plurality of vibration parts that vibrate the tube wall of the tube body inward and outward in the major axis direction of the hollow tube body that transports fluid.
  • a functional tubular device provided with a vibration-type tubular body provided and an energy supply means that independently vibrates the plurality of vibration portions and supplies energy for generating traveling waves in the tubular body. It can also be understood as a driving method of the functional capillary device.
  • the traveling wave generated by a certain vibration unit corresponds to the phase shift when the traveling wave reaches the position of the adjacent vibration unit in the fluid traveling direction. It is assumed that energy is sequentially supplied to the plurality of adjacent vibrators so as to generate a traveling wave.
  • the functional capillary device and the driving method thereof according to the present invention have the following excellent effects.
  • the functional thin tube device according to the present invention can compensate for the attenuation of the traveling wave by the adjacent vibration parts in the traveling direction in order, and can therefore propagate the traveling wave having a large amplitude in the tubular body. Thereby, the functional thin tube device can efficiently control the speed of the fluid transported in the tube.
  • the functional thin tube device according to the present invention can facilitate the manufacture of the vibration type tubular body by providing the vibrating portions at equal intervals according to the wavelength and the number of waves of the traveling wave generated in the tubular body. .
  • the functional thin tube device provides a vibration type tubular body by providing four vibrating parts at equal intervals in one unit according to the wavelength and the number of traveling waves generated in the tubular body. It can be made easier to manufacture. Furthermore, this functional thin tube device only needs to supply an alternating voltage whose phase is inverted to each of the odd-numbered vibration parts or even-numbered vibration parts, and therefore supplies the alternating voltages of different phases to the respective vibration parts. Compared to the case, the energy supply means can be configured simply.
  • the functional thin tube device inverts the phase of the AC voltage supplied to the plurality of vibrating portions generating the traveling wave traveling in one direction so that the traveling wave is generated in the opposite direction.
  • the traveling wave reversing means it becomes possible to control the direction of flow of the fluid or the flow velocity.
  • the driving method of the functional capillary device can compensate the attenuation of the traveling wave by the vibration part in the traveling direction sequentially, the traveling wave having a large amplitude can be propagated in the tubular body. . Accordingly, the method can efficiently control the speed of the fluid transported in the pipe.
  • (A) is the perspective view which exaggerates the dimension of the vibration type tubular body of the functional thin tube apparatus concerning the embodiment of the present invention, and shows the whole
  • (b) is the perspective view which expands and shows a part of vibration type tubular body FIG.
  • It is a mimetic diagram showing typically the whole functional thin tube device concerning the embodiment of the present invention.
  • It is a schematic diagram which shows typically the state of the traveling wave in the tubular body of the functional thin tube apparatus which concerns on embodiment of this invention.
  • (A), (b) is explanatory drawing for demonstrating the relationship of the phase of a traveling wave, the phase of an alternating voltage, and the position of a vibration part in the functional thin tube apparatus which concerns on embodiment of this invention.
  • (A), (b), (c) is the phase of the traveling wave, the phase of the alternating voltage, and the position of the vibration part in another embodiment in which the number of vibration parts in the unit of the functional capillary device according to the present invention is changed. It is explanatory drawing for demonstrating the relationship of (interval). It is a schematic diagram which shows typically the structure of the experimental apparatus used in the Example of the functional thin tube apparatus which concerns on this invention.
  • (A), (b), (c) are the examples of the functional thin tube device according to the present invention (Experimental Example 1, Comparative Example 1-1, Comparative Example 1-2).
  • FIG. 5 is a graph in which the horizontal axis represents the voltage supplied to the vibrating portion and the vertical axis represents the flow velocity in the tube.
  • FIG. 3 It is a schematic diagram which shows typically the state of the traveling wave in the pipe
  • FIG. 1 and FIG. 2 the structure of the functional thin tube apparatus based on embodiment of this invention is demonstrated.
  • This functional thin tube device generates a traveling wave in the tubular body and transports fluid (liquid, gas) inside the tubular body.
  • the functional thin tube device 1 supplies a vibration-type tube body 2 including a tube body 21 and a plurality of vibration portions 22, and an alternating voltage serving as energy for generating vibration in the vibration portion 22 of the vibration-type tube body 2.
  • the vibration type tube body 2 and the energy supply means 4 are connected by a signal line (cable) 3.
  • the vibration type tubular body 2 includes a tubular body 21 having a hollow inside, and a plurality of vibration portions 22 that are integrally formed to be separated in the long axis direction of the tubular body 21.
  • the tube body 21 is hollow inside, and transmits the vibration given by the vibrating portion 22 to the fluid in the tube through the tube wall.
  • a silicon tube is used as an example of the tube body 21.
  • the tube body 21 may be made of a flexible material such as rubber or resin other than silicon as long as the tube body 21 is hollow and can transmit vibration to the inside.
  • a metal material such as titanium or a titanium alloy may be used.
  • the vibrating part 22 vibrates the tube wall of the tube body 21 in the inner and outer directions, and is installed separately from the long axis direction of the tube body 21.
  • the position (interval) of the vibration part 22 is determined in advance by the relationship between the waveform of the traveling wave generated inside the tube body 21 and the waveform (phase) of the AC voltage applied to the plurality of vibration parts 22.
  • the vibration unit 22 is arranged such that a certain vibration unit (for example, the vibration unit 22 1 ) and a vibration unit (for example, the vibration unit 22 2 ) located adjacent to each other in the flow path traveling direction of the vibration unit are tubes. It is arranged at a position shifted by a distance with respect to the phase difference of the traveling wave generated in the body 21. The position (interval) at which the vibrating portion 22 is provided will be described later in detail.
  • the vibrating section 22 includes a piezoelectric element 22a formed in a ring shape, and metal electrodes 22b and 22c provided on the inner and outer peripheral surfaces of the piezoelectric element 22a.
  • the piezoelectric element 22a is a piezoelectric body that has been previously polarized in the radial direction and deforms in a ring shape inward and outward when a voltage is applied through the metal electrodes 22b and 22c.
  • the piezoelectric element 22a is, for example, a PZT (lead zirconate titanate) element.
  • the piezoelectric element is illustrated here as a raw material of the vibration part 22, if it is a raw material which vibrates and deform
  • a piezoelectric element For example, if light energy is used as the energy, a polymer material that converts light energy into electrical / mechanical energy, and if magnetic energy is used, a giant magnetostrictive element that converts the magnetic energy into mechanical energy is vibrated. It may be used as a material for the portion 22.
  • the metal electrodes 22b and 22c apply an AC voltage supplied from the energy supply means 4 to the piezoelectric element 22a.
  • the metal electrodes 22b and 22c are formed of, for example, a metal thin film, and are formed of a platinum, gold, or silver thin film.
  • the metal electrodes 22b and 22c may be made of metal, alloy, or other material as long as it is a conductive material capable of applying a voltage to the piezoelectric element 22a.
  • Such a vibrating portion 22 can be formed integrally with the tube body 21 by a sputtering deposition method or the like.
  • the vibration part 22 and the pipe body 21 may be formed separately, and may be integrally formed by bonding with an adhesive, or may be integrally formed by being fused by heat.
  • the vibration-type tube body 2 may be configured such that the entire tube body 21 is made of a piezoelectric material, a metal electrode is provided on the inner surface of the tube body 21, and a ring-shaped metal electrode is provided at a position where vibration of the outer surface is generated. .
  • the energy supply means 4 supplies energy for causing a traveling wave to be generated in the tubular body 21 by independently vibrating the plurality of vibrating portions 22.
  • the energy supply means 4 shall supply an alternating voltage to the piezoelectric element 22a of the vibration part 22 via the metal electrodes 22b and 22c.
  • the energy supplied by the energy supply means 4 will be described as an AC voltage.
  • a polymer material having a light energy conversion ability is used for the vibrating portion 22 instead of the piezoelectric element 22a, light energy is supplied.
  • a giant magnetostrictive element is used, magnetic energy can be supplied.
  • the energy supply unit 4 includes an AC generation unit 41 and a traveling wave inversion unit 42.
  • This energy supply means 4 has a predetermined number of vibrating sections 22 as one unit U, and AC generating sections 41 (41 1 , 41 2 , 41 3 , 41) having the number of channels corresponding to the number of vibrating sections 22 in the unit U. 41 4 ).
  • FIG. 2 an example in which the number of vibration units 22 of one unit U is four is shown, but three may be used, and any integer of 2 or more.
  • the AC generating unit 41 supplies AC voltages having different phases independently to the vibrating unit 22 in one unit U.
  • the AC voltage supplied by the AC generator 41 is different in phase, and has the same period and amplitude.
  • the AC generator 41 can be configured by a general function generator or amplifier.
  • the AC voltage V 1 supplied from the AC generator 41 to the vibrating unit 22 (22 1 ) closest to the fluid source in the unit U is expressed by the following equation (1).
  • A is the amplitude
  • k (k 2 ⁇ / ⁇ ; where ⁇ is the wavelength) is the wave number
  • is the angular frequency
  • t is the time. That is, the AC voltage V 1 travels at an angular frequency ⁇ in the x direction (fluid traveling direction) in the tube body 21 by supplying the alternating voltage of the formula (1) to the vibrating portion 22 (piezoelectric element 22a). Wave (traveling wave) can be generated.
  • the AC generator 41 can change the voltage amplitude and the like by an external control knob 4b.
  • the AC voltages V 2 , V 3 , V 4 supplied to the other vibrating parts 22 (22 2 , 22 3 , 22 4 ) in the unit are as shown in the following equations (2) to (4):
  • the AC voltage V 1 in the equation (1) has a waveform in which only the phases ( ⁇ 2 , ⁇ 3 , ⁇ 4 ) are shifted.
  • the phase shift of the AC voltage supplied to each vibration unit 22 generated by the AC generation unit 41 corresponds to the phase shift at the position of each vibration unit 22 of the traveling wave generated inside the tubular body 21. .
  • the AC generation unit 41 supplies AC power to each vibration unit 22, and the vibration unit 22 vibrates the wall surface of the tube body 21, thereby causing the fluid particles in the tube body 21 to have an elliptical orbit in one direction.
  • a traveling wave that travels while drawing can be generated.
  • the AC generator 41 supplies the AC voltage supplied to each vibration part 22 with a phase corresponding to the phase shift at the position of each vibration part 22 of the traveling wave, so that the vibration of the certain vibration part 22 1
  • the phase of the traveling wave generated in the tubular body 21 matches the phase of the traveling wave generated by the vibration of the other vibrating parts 22 2 , 22 3 , and 22 4 , and the attenuation of the traveling wave amplitude is suppressed. Or compensated.
  • the relationship between the phase of the traveling wave and the phase at the position of the vibration unit 22 will be described in detail later.
  • each vibration part 22 supplies AC voltage to a certain vibration part 22 (22 1 ), and the amount of vibration attenuation by a laser Doppler vibrometer or the like at the position of the adjacent vibration part 22 (22 2 ).
  • at least the ratio of the attenuated vibration amount to the initial vibration amount is set so as not to be equal to or less than a predetermined ratio.
  • the distance from the vibrating portion 22 (22 1 ) to the vibrating portion 22 (22 2 ) is such that the amplitude of the traveling wave is 50% or more, preferably 70% or more, with respect to the initial vibration amount. It is desirable to do so.
  • the traveling wave inverting means 42 advances the phase of the AC voltage supplied to the plurality of vibration units 22 that generate traveling waves traveling in one direction in order to switch the direction of traveling waves generated in the tube body 21. It reverses to generate waves in the opposite direction.
  • the traveling wave inversion means 42 inverts the phase of the AC voltage generated by the AC generator 41 when instructed to invert the phase by an instruction from the control knob (external switch) 4b.
  • the AC voltage supplied by the AC generator 41 is, for example, the AC voltage V 1 expressed by the above equation (1) is (5 ) To the alternating voltage V 1 shown in the equation.
  • the traveling wave generated in the tubular body 21 is reversed by changing the sign of ⁇ t with respect to the equation (1).
  • the velocity of the fluid flowing in one direction within the tube body 21 is reduced by the traveling wave in the opposite direction.
  • the fluid is transported in the opposite direction.
  • the functional thin tube device 1 may cover the entire vibration-type tubular body 2 with a cover 23.
  • the energy supply means 4 may be configured in a housing 4d provided with a power switch 4a, control knobs 4b and 4b, a display device 4c, and the like.
  • FIG. 3 partially describes four vibration portions 22 (22 1 , 22 2 , 22 3 , 22 4 ) as one unit of the vibration type tubular body 2.
  • FIG. 3A schematically shows only the traveling wave W 1 generated in the tubular body 21 by the vibration of the vibrating portion 22 1 .
  • FIG. 3B schematically shows a traveling wave W 1 (solid line) generated by the vibration of the vibration part 22 1 and a traveling wave W 2 (dotted line) generated by the vibration of the vibration part 22 2 . .
  • the amplitude of the traveling wave W 1 generated by the vibrating portion 22 1 is attenuated in the major axis direction due to friction with the tube wall of the tube body 21.
  • the vibration part 22 2 is caused by vibration that matches the phase, period, and amplitude of the traveling wave W 1 generated by the vibration of the vibration part 22 1 at the position of the vibration part 22 2 .
  • a traveling wave W 2 is generated.
  • traveling waves W 3 and W 4 (not shown) that coincide with the phase, period, and amplitude of the traveling wave W 1 are generated.
  • the traveling wave W 1 is synthesized with other traveling waves W 2 , W 3 , and W 4 having the same phase, and as shown in FIG. Wave (synthetic traveling wave) W ALL is generated, and the flow velocity is increased compared to the case of traveling wave W 1 alone.
  • the number of the vibrating portions 22 in one unit of the vibrating tube 2 is m (m is an integer of 2 or more), the wavelength of the traveling wave is ⁇ , the center of the vibrating portion 22 is The interval to the center of another adjacent vibration part 22 is L, and the number of traveling waves generated at the interval (the number of waves of wavelength ⁇ ; rounded down after the decimal point) is n (n is an integer of 0 or more).
  • n is an integer of 0 or more
  • FIG. 4A shows the case where the distance between the vibrating parts 22 is shorter than the wavelength ⁇ of the traveling wave, that is, the number n of traveling waves generated between the vibrating parts 22 is “0” and one unit of vibration is generated.
  • the installation interval L of the vibration part 22 is set to ⁇ / 4 from the above equation (6).
  • the waveform of the AC voltage supplied to the vibrating portion 22 1 is sin ⁇
  • the phase of the traveling wave at the position of the vibrating portion 22 2 is (360 / m) ° from the vibrating portion 22 1 .
  • a corresponding shift of 90 ° will occur. That is, the attenuation of the amplitude of the traveling wave can be suppressed by setting the waveform of the AC voltage supplied to the vibration unit 22 2 to be cos ⁇ .
  • FIG. 4B shows that when the interval between the vibrating parts 22 is longer than the wavelength ⁇ of the traveling wave, that is, the number n of traveling waves generated between the vibrating parts of the vibrating part 22 is “1”.
  • the number m of the vibrating parts 22 of the unit is set to “4”.
  • the installation interval L of the vibration part 22 is set to 5 ⁇ / 4 from the above equation (6).
  • the number of the vibrating parts 22 in the unit is described as “4”, but this number can be an arbitrary integer of “2” or more.
  • the AC voltage supplied to the odd-numbered vibrating parts 22 1 , 22 3 is a signal whose waveform is sin ⁇ and only the phase is inverted. Can do.
  • the AC voltage supplied to the even-numbered vibrating portions 22 2 and 22 4 can be a signal having the same waveform of cos ⁇ and having only the phase inverted.
  • the AC generators 41 1 , 41 2 , 41 3 , and 41 4 that supply voltages to the respective vibrators 22 are provided.
  • the odd-numbered vibrators 22 1 and 22 3 The AC generator 41 to be supplied is provided as one, an alternating voltage of sin ⁇ is supplied to one vibrating unit 22 1 , and ⁇ sin ⁇ is supplied to the other vibrating unit 22 3 via an inverting circuit (not shown). AC voltage may be supplied.
  • a single AC generator 41 is supplied to the even-numbered vibrators 22 2 and 22 4, and an AC voltage of cos ⁇ is supplied to one vibrator 22 2 , and the other vibrator 22 4 is provided.
  • an AC voltage of ⁇ cos ⁇ may be supplied through an inverting circuit (not shown).
  • the relationship between the position (interval) of the vibrating portion 22 and the phase of the AC voltage supplied by the energy supply unit 4 will be described for an example in which the number in the unit is other than “4”. To do.
  • the interval between the vibrating parts 22 is short, that is, the number n of traveling waves generated between the vibrating parts 22 is set to “0”.
  • FIG. 5A shows an example in which the number m of vibration units 22 of one unit is “3”.
  • the installation interval L of the vibration part 22 is set to ⁇ / 3 from the above equation (6).
  • FIG. 5B shows an example in which the number m of the vibrating units 22 of one unit is “2”.
  • the installation interval L of the vibration part 22 is set to ⁇ / 2 from the above equation (6).
  • the waveform of the alternating voltage supplied to vibrating section 22 2 shifted 180 ° relative to the phase of the waveform of the AC voltage supplied to the vibrating unit 22 first waveform (-sin) And it is sufficient. Similarly, it is only necessary to supply an alternating voltage having a waveform whose phase is sequentially shifted by 180 ° in the other vibration units 22.
  • FIG. 5C shows an example in which the number m of the vibrating units 22 of one unit is “6”.
  • the installation interval L of the vibration part 22 is set to ⁇ / 6 from the above equation (6).
  • the AC voltage may be supplied to the vibrating unit 22 by advancing the phase by (360 / m) °.
  • the interval between the vibrating parts 22 in the unit is made equal, and the phase shift supplied to each vibrating part 22 is constant.
  • the vibrating part 22 when the vibrating part 22 is set at an arbitrary position, May be supplied to each vibration unit 22 with an AC voltage whose phase is shifted corresponding to the phase shift of the traveling wave at the position. This also can suppress the attenuation of the traveling wave amplitude.
  • the functional thin tube device 1 can suppress or compensate for the attenuation of the amplitude of the traveling wave generated in the tubular body 21 by synthesizing the traveling wave generated by each vibration unit 22. . Thereby, the functional thin tube device 1 can be controlled so that the fluid can be efficiently transported even at a lower voltage.
  • a silicon tube having an inner diameter of 10 mm, an outer diameter of 12 mm, and a length of 200 mm was used as the tube body 21 of the vibration type tube body 2.
  • the vibration-type tubular body 2 includes four vibration portions 22, and ring-type PZT elements having an inner diameter of 12.5 mm, an outer diameter of 13.5 mm, and a width of 5 mm are installed at equal intervals as the vibration portion 22.
  • a silver electrode (not shown) was applied to the outer surface and the inner surface of the ring type PZT element.
  • C-9 piezoelectric constant d33 718 pm / V
  • pure water was used as a fluid transported inside the tube body 21.
  • the wavelength of the traveling wave generated in the tube body 21 was determined by the following procedure. First, only one vibration part 22 1 is installed in the vibration type tube 2, and pure water is passed through the tube 21 at a steady speed of 1.0 ml / sec.
  • E is the Young's modulus of the silicon tube that is the tube body 21 (140000 Pa in this experiment)
  • h is the thickness of the silicon tube (1 ⁇ 10 ⁇ 3 m in this experiment)
  • R is the silicon tube.
  • the outer diameter radius (in this experiment, 5 ⁇ 10 ⁇ 3 m) and ⁇ is the density of pure water (in this experiment, 1000 kg / m 3 ).
  • the wavelength ( ⁇ ) of the traveling wave is obtained by the following equation (8).
  • u is a propagation velocity obtained by measurement (or calculation in equation (7)), and f is a frequency (3.0 kHz in this experiment).
  • f is a frequency (3.0 kHz in this experiment).
  • the installation interval L of the vibration part 22 was determined as 10.3 mm according to the equation (6). Then, the vibration parts 22 1 , 22 2 , 22 3 , and 22 4 were adjusted and installed so that the installation interval from the center to the center was 10.3 mm.
  • the frequency of the AC voltage generated by the AC generator 41 of the energy supply means 4 is 3.0 kHz, and the voltage is 5 Vpp, 7.5 Vpp, 10 Vpp, 12.
  • Five conditions (experiment numbers (1) to (5)) of 5 Vpp and 15 Vpp were used.
  • the energy supply means 4 shifts the phase of each vibration part 22 so that the vibration parts 22 1 , 22 2 , 22 3 , and 22 4 satisfy (360 / m) ° [m is the number of vibration parts].
  • An alternating voltage having a waveform shifted by 90 ° (sin ⁇ , cos ⁇ , ⁇ sin ⁇ , ⁇ cos ⁇ ) was supplied.
  • FIG. 7A shows the result of the experiment conducted under the conditions of [Table 1].
  • FIG. 7A shows the AC voltage (AC Voltage [Vpp]) applied to the horizontal axis and the flow velocity (Flow velocity [ml / s]) on the vertical axis.
  • the plot in the figure shows the average value of 5 times, and the vertical line added to the plot shows the standard deviation (variation) of 5 times.
  • the flow rate increased linearly by increasing the voltage with respect to the initial flow rate of pure water (1.0 ml / s).
  • Comparative Example 1-1 basically, only the phase of the AC voltage supplied to the vibrating portions 22 1 , 22 2 , 22 3 , and 22 4 is changed with the same configuration and the same conditions as in Experimental Example 1. Yes. That is, in Comparative Example 1-1, as shown in [Table 2], the energy supply means 4 is moved to the vibrating portions 22 1 , 22 2 , 22 3 , and 22 4 at (360 / m) ° [m is the vibrating portion. AC voltage having a waveform (sin ⁇ , cos ⁇ , sin ⁇ , cos ⁇ ) that does not satisfy the above condition is supplied.
  • FIG. 7B shows the result of a comparative experiment performed under the conditions of [Table 2].
  • FIG. 7B shows the AC voltage [Vpp] applied on the horizontal axis and the flow rate [ml / s] on the vertical axis.
  • Vpp the initial flow rate of pure water
  • the flow rate gradually increases but the value is small. It was found that the slope was gentle compared to (a), the flow rate could not be increased efficiently with respect to the voltage, and the control efficiency was low.
  • Comparative Example 1-2 basically, the same configuration and the same conditions as in Experimental Example 1 were used, and only the installation interval of each vibrating portion 22 was changed to 12.0 mm.
  • FIG. 7C shows the result of supplying an alternating voltage having the same phase as in [Table 1] to the vibrating portions 22 1 , 22 2 , 22 3 , and 22 4 in this configuration.
  • FIG. 7C shows the AC voltage [Vpp] applied on the horizontal axis and the flow rate [ml / s] on the vertical axis.
  • the flow rate is increased by increasing the voltage with respect to the initial flow rate (1.0 ml / s) of pure water, but the value is still small, and FIG. Compared to 7 (a), the slope was gentler, and the flow velocity could not be increased efficiently with respect to voltage.
  • the phase of the AC voltage supplied to the vibration unit 22 and the installation interval of the vibration unit 22 are set under conditions that match the phase of the traveling wave. It can be seen that the flow rate is greatly improved.
  • the present invention can obtain higher fluidity by supplying a high voltage to the vibrating portion 22. Moreover, even if it is a case where a low voltage is supplied to the vibration part 22, this invention has acquired the high fluidity
  • Example 2 Next, as Experimental Example 2, one unit of the vibration type tubular body 2 was configured by three vibration portions 22 (22 1 , 22 2 , 22 3 ) and an experiment was performed. That is, in Experiment 2, the experiment is basically performed with the same configuration and the same conditions as in Experiment 1, but the number of vibration units 22 installed in one unit is changed from four to three. Went.
  • the measuring device is the same as the experimental device 5 described in FIG.
  • the installation interval (installation interval from the center of the ring-type PZT element) L of the vibrating portions 22 1 , 22 2 , and 22 3 is expressed by the above equation (6) ( ⁇ (m ⁇ n + 1) / M ⁇ ⁇ ⁇ ) and was 10.4 mm.
  • n and ⁇ in Equation (6) are “8” and “1.25” as in Experimental Example 1, and only m is “3”, which is different from Experimental Example 1. .
  • FIG. 8A shows the result of the experiment conducted under the conditions of [Table 3]. As can be seen from FIG. 8A, it was confirmed that the flow rate increased linearly by increasing the voltage with respect to the initial flow rate of pure water (1.0 ml / s).
  • FIG. 8B shows the result of supplying an alternating voltage having the same phase as in [Table 3] to the vibrating portions 22 1 , 22 2 , and 22 3 in this configuration.
  • the flow rate is increased by increasing the voltage with respect to the initial flow rate (1.0 ml / s) of pure water, but the value is still small.
  • the slope was gentle compared to 8 (a), and the flow rate could not be increased efficiently with respect to voltage.
  • the functional thin tube device 1 matches the phase of the AC voltage supplied to each vibrating unit 22 with the phase of the traveling wave in the tube 21 even when the number of vibrating units 22 in the unit is three. By doing so, the fluid can be efficiently transported even at a lower voltage.
  • Example 3 an experiment was performed to reverse the phase of the AC voltage supplied to the vibrating units 22 1 , 22 2 , 22 3 , and 22 4 with the same configuration as that of Experimental Example 1. That is, in Experimental Example 3, as in Experimental Example 1, the installation interval of the vibrating parts 22 was set to 10.3 mm satisfying the above expression (6). Further, in Experimental Example 3, as shown in [Table 4], the energy supply unit 4 causes the traveling wave inversion unit 42 to invert the phase of the AC voltage generated by the AC generation unit 41, thereby oscillating the unit 22 1.
  • the functional thin tube device 1 sets the position of the vibration unit 22 and the phase of the AC voltage supplied to each vibration unit 22 so as to match the phase of the traveling wave generated in the fluid in the tube body 21. By adjusting, the fluid can be efficiently transported with respect to the applied AC voltage. Moreover, since the functional thin tube device 1 can efficiently transport a fluid even at a low voltage, it can be realized as a micropump that is small and requires low-voltage driving. Furthermore, the functional thin tube device 1 can increase or decrease the flow velocity by simply inverting the phase of the AC voltage to be applied, and can easily control the fluid velocity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Disclosed is a functional capillary device which is capable of efficiently controlling the speed of fluids within a capillary. A functional capillary device (1) is provided with: a vibrating tube body (2) in which a plurality of vibrating units (22) for inducing the radial vibration of the walls of a hollow tube (21) through which a fluid is conveyed are provided to the tube (21) at intervals along the major axis thereof; and an energy supply means (4) which supplies energy for independently vibrating the plurality of vibration units (22) to generate a travelling wave inside the tube (21). The functional capillary device (1) is characterized in that the energy supply means (4) supplies energy to the plurality of vibrating units (22) in a manner such that the phase shift in the travelling wave generated by a given vibrating unit (22), when the travelling wave reaches the position of the adjacent vibrating unit (22) in the direction that fluid travels, is countered by generating a travelling wave with a phase that is offset by the same amount as the phase shift in the adjacent vibrating unit (22).

Description

機能細管装置およびその駆動方法Functional capillary device and driving method thereof
 本発明は、細管内を流体輸送させる機能細管装置およびその駆動方法に関する。 The present invention relates to a functional capillary device that transports fluid in a capillary and a driving method thereof.
 近年、MEMS(Micro Electro Mechanical Systems)技術を用いて、流体を輸送する流路、ポンプ等を集積回路等のチップ上に集積化、微小化させたμTAS(Micro Total Analysis Systems)や、Lab on a Chip等のマイクロ流体システムの開発が盛んに行われている。
 このMEMS技術を用いてチップ上に部品を配置するマイクロ流体システムは、流路とポンプとが別体で構成されているため、小型化が容易ではなく、また、流路等をチップ上に配置するため、多様なアプリケーションへの対応が困難であった。
In recent years, using micro electro mechanical systems (MEMS) technology, μTAS (Micro Total Analysis Systems), which has been integrated and miniaturized on a chip such as an integrated circuit, a flow path for transporting fluid, a pump, etc. Development of microfluidic systems such as Chip has been actively conducted.
The microfluidic system that uses MEMS technology to place components on the chip is not easy to downsize because the flow path and pump are configured separately, and the flow path and the like are arranged on the chip. Therefore, it was difficult to deal with various applications.
 そこで、本願の発明者らは、流路とポンプとを一体化したマイクロポンプを開発してきた(特許文献1、非特許文献1参照)。
 このマイクロポンプは、リング型の圧電素子(PZT〔チタン酸ジルコン酸鉛〕素子)をシリコンチューブ表面に取り付け、圧電素子の振動によって、管内の流体に進行波を発生させることで、流体の輸送を行うものである。
Therefore, the inventors of the present application have developed a micro pump in which a flow path and a pump are integrated (see Patent Document 1 and Non-Patent Document 1).
This micropump attaches a ring-type piezoelectric element (PZT [lead zirconate titanate] element) to the surface of a silicon tube, and generates a traveling wave in the fluid in the tube by the vibration of the piezoelectric element, thereby transporting the fluid. Is what you do.
 図10に示すように、従来のマイクロポンプ60は、中空管であるシリコンチューブ61にリング型の圧電素子(PZT素子)62を等間隔で設置し、圧電素子62に異なる交流電圧を印加する。これによって、シリコンチューブ61内壁に定在波が生じ、管内の流体には大きさの異なる進行波が生成される。この大きさの異なる進行波が衝突することで生成される合成波は、楕円軌道を有する進行波となる。このように、流体の任意の点において、楕円運動が発生することで、流体が輸送されることになる。
 このとき、従来のマイクロポンプは、圧電素子に印加する周波数や位相を変化させることで、圧電素子の振動速度を制御し、管内の流体に発生させる進行波の波長を変化させて流量を制御してきた。
As shown in FIG. 10, a conventional micropump 60 has ring-type piezoelectric elements (PZT elements) 62 arranged at equal intervals on a silicon tube 61 that is a hollow tube, and applies different AC voltages to the piezoelectric elements 62. . As a result, a standing wave is generated on the inner wall of the silicon tube 61, and traveling waves having different sizes are generated in the fluid in the tube. A composite wave generated by collision of traveling waves of different magnitudes becomes a traveling wave having an elliptical orbit. In this way, the fluid is transported by generating an elliptical motion at an arbitrary point of the fluid.
At this time, the conventional micropump changes the frequency and phase applied to the piezoelectric element, thereby controlling the vibration speed of the piezoelectric element and changing the wavelength of the traveling wave generated in the fluid in the tube to control the flow rate. It was.
国際公開第2008/102817号パンフレットInternational Publication No. 2008/102817 Pamphlet
 前記した従来のマイクロポンプは、シリコンチューブにリング型の圧電素子(PZT素子)を組み合わせることで、流路とポンプとを一体化することができ、小型化が可能となる。また、このマイクロポンプは、流量制御も可能であるため、例えば、血液採取、薬液投与の注射針にも応用ができる。このように、本願の発明者らが開発したマイクロポンプは、小型、かつ、微小な流量制御が可能な点で優れている。 The above-described conventional micro pump can integrate the flow path and the pump by combining a silicon tube with a ring-type piezoelectric element (PZT element), and can be downsized. Moreover, since this micropump can control the flow rate, it can be applied to, for example, an injection needle for blood collection and drug administration. Thus, the micropump developed by the inventors of the present application is excellent in that it is small in size and capable of minute flow control.
 しかし、従来のマイクロポンプは、単に圧電素子に印加する周波数や位相を変化させることで、流速制御を行っていたが、そのパラメータ(例えば、交流電圧の位相、圧電素子の設置間隔等)は明確なものとはなっていなかった。そのため、従来のマイクロポンプにおいては、さらなる効率性を高める余地があり、細管内の流体の速度を効率よく制御する技術の確立が求められていた。 However, the conventional micropump controls the flow velocity by simply changing the frequency and phase applied to the piezoelectric element, but the parameters (for example, AC voltage phase, piezoelectric element installation interval, etc.) are clear. It wasn't a natural thing. For this reason, the conventional micropump has room for further improvement in efficiency, and establishment of a technique for efficiently controlling the speed of the fluid in the narrow tube has been demanded.
 本発明は、以上のような現状に鑑みて創案されたものであって、細管内の流体の速度を効率よく制御することが可能な機能細管装置およびその駆動方法を提供することを課題とする。 The present invention has been made in view of the above situation, and it is an object of the present invention to provide a functional capillary device capable of efficiently controlling the speed of fluid in the capillary and a driving method thereof. .
 従来のマイクロポンプは、図10で説明したように、圧電素子に異なる交流電圧を印加することによって管体内に発生する大きさの異なる進行波が衝突している。そこで、本願の発明者は、この進行波の衝突によって、各圧電素子の振動により発生する進行波がそれぞれ減衰してしまうことに着目し、管体の内部に発生させる進行波の振幅の減衰を抑えることで、流体速度の効率を高めることが可能であることを見出し、本発明に至った。 In the conventional micropump, as described with reference to FIG. 10, traveling waves of different sizes generated in the tube collide by applying different AC voltages to the piezoelectric elements. Therefore, the inventor of the present application pays attention to the fact that the traveling wave generated by the vibration of each piezoelectric element is attenuated by this traveling wave collision, and reduces the amplitude of the traveling wave generated inside the tube body. It has been found that the efficiency of the fluid velocity can be increased by the suppression, and the present invention has been achieved.
 すなわち、本発明に係る機能細管装置は、前記課題を解決するため、流体の輸送を行う内部が中空な管体の長軸方向に、前記管体の管壁を内外方向に振動させる複数の振動部を互いに離間して設けた振動型管体と、前記複数の振動部を独立して振動させて、前記管体内に進行波を生じさせるためのエネルギを供給するエネルギ供給手段とを備え、前記エネルギ供給手段が、ある振動部で発生させる進行波が、前記流体の進行方向において隣接する振動部の位置に到達するときの位相のずれに対応して、前記隣接する振動部において、前記ずれ分ずらした位相の進行波を発生させるように前記複数の振動部にエネルギを供給する構成とした。 That is, in order to solve the above-described problem, the functional thin tube device according to the present invention has a plurality of vibrations that vibrate the tube wall of the tube body inward and outward in the major axis direction of the hollow tube body that transports fluid. An oscillating tube provided with parts spaced apart from each other, and energy supply means for independently supplying the energy for generating traveling waves in the tube by vibrating the plurality of vibrating parts independently, Corresponding to the phase shift when the traveling wave generated by the energy supply means at a certain vibration part reaches the position of the adjacent vibration part in the traveling direction of the fluid, Energy is supplied to the plurality of vibration units so as to generate traveling waves having shifted phases.
 このように構成した機能細管装置は、ある振動部と、当該振動部の流路進行方向で隣に位置する振動部とは、管体内に発生させる進行波の位相差に対する距離だけずれた位置に配置されている。そこで、ある振動部の振動によって生じた進行波は減衰するが、その減衰した進行波と、隣接する振動部の振動によって生じる新たな進行波とは、位相が一致するため、先に減衰した進行波の減衰が補われることになる。
 すなわち、本発明に係る機能細管装置は、各振動部が、管体内に発生させる進行波の位相のずれだけずれた位置に配置されているため、各振動部の位置において、流路進行方向の後方で発生した管体内の進行波の減衰が補償され、流路進行方向に進行する進行波の振幅が保たれることになる。
In the functional thin tube device configured as described above, a certain vibration unit and a vibration unit located next to the vibration unit in the flow path direction are shifted by a distance from the phase difference of the traveling wave generated in the tube. Has been placed. Therefore, the traveling wave generated by the vibration of a certain vibration part attenuates, but the attenuated traveling wave and the new traveling wave generated by the vibration of the adjacent vibration part have the same phase. Wave attenuation will be compensated.
That is, in the functional thin tube device according to the present invention, each vibration part is arranged at a position shifted by the phase shift of the traveling wave generated in the tube, and therefore, at the position of each vibration part, Attenuation of the traveling wave generated in the tube in the rear is compensated, and the amplitude of the traveling wave traveling in the flow path traveling direction is maintained.
 また、この機能細管装置において、前記振動型管体が、m個(mは2以上の整数)の前記振動部を1つのユニットとし、前記進行波の波長をλ、振動部中心から隣接する振動部中心までの間隔(設置間隔)をL、当該間隔において発生させる前記進行波の波の数をn(nは0以上の整数)としたとき、前記振動部をL={(m×n+1)/m}×λの間隔で設け、前記エネルギ供給手段が、前記ユニットの前記流体の送り元に最も近い振動部へ供給する交流電圧の位相を基準として、他の振動部に供給する交流電圧の位相をそれぞれ(360/m)°ずつ進ませて交流電圧を供給する構成としてもよい。 In this functional thin tube device, the vibration-type tube includes m (m is an integer of 2 or more) vibration parts as one unit, the wavelength of the traveling wave is λ, and the vibration adjacent to the vibration part center. When the interval (installation interval) to the center of the part is L and the number of traveling waves generated at the interval is n (n is an integer of 0 or more), the vibration part is L = {(m × n + 1) /M}.times..lamda., And the energy supply means supplies the AC voltage supplied to the other vibration part with reference to the phase of the AC voltage supplied to the vibration part closest to the fluid source of the unit. It is good also as a structure which advances a phase each (360 / m) degree and supplies an alternating voltage.
 このように構成することで、機能細管装置は、振動型管体において、ユニットごとに同一の位相差に対応した位置に振動部を設けることができ、ユニット内で等間隔に振動部を設けることができる。なお、このユニットを複数設けることで、振動型管体の長さを確保することができる。 With this configuration, the functional thin tube device can be provided with a vibrating portion at a position corresponding to the same phase difference for each unit in the vibrating tube, and the vibrating portion is provided at equal intervals in the unit. Can do. In addition, the length of a vibration type tubular body can be ensured by providing a plurality of units.
 また、この機能細管装置において、前記ユニットにおける前記振動部の数を4個とし、それぞれの振動部をL={(4×n+1)/4}×λの間隔で設け、前記エネルギ供給手段が、前記ユニットの前記流体の送り元に最も近い振動部から順に、0°、90°、180°、270°位相をずらしてそれぞれの振動部に交流電圧を供給する構成としてもよい。 Further, in this functional thin tube device, the number of the vibration parts in the unit is four, and each vibration part is provided at an interval of L = {(4 × n + 1) / 4} × λ, and the energy supply unit includes: It is good also as a structure which supplies an alternating voltage to each vibration part by shifting a phase of 0 degree, 90 degrees, 180 degrees, and 270 degrees in an order from the vibration part nearest to the source of the fluid of the unit.
 このように構成することで、機能細管装置は、ユニットごとに等間隔で振動部を設けることができるとともに、奇数番目の2つの振動部には、単にそれぞれの位相を反転(0°,180°)させて交流電圧を供給すればよい。また、機能細管装置は、同様に、偶数番目の2つの振動部には、単にそれぞれの位相を反転(90°,270°)させて交流電圧を供給すればよい。 With this configuration, the functional thin tube device can be provided with vibrating portions at equal intervals for each unit, and the odd-numbered two vibrating portions are simply inverted (0 °, 180 °). ) And supply an AC voltage. Similarly, the functional thin tube device may simply supply the alternating voltage to the even-numbered two vibrating portions by inverting the phases (90 °, 270 °).
 また、この機能細管装置において、前記エネルギ供給手段は、外部スイッチにより、一方向に進行する進行波を発生させている前記複数の振動部に供給する交流電圧の位相を、前記進行波を逆方向の向きに発生させるように反転させる進行波反転手段を備える構成としてもよい。 Further, in this functional thin tube device, the energy supply means is configured so that the phase of the AC voltage supplied to the plurality of vibrating parts generating the traveling wave traveling in one direction is reversed by the external switch. It is good also as a structure provided with the traveling wave inversion means to invert so that it may generate | occur | produce in direction.
 このように構成することで、機能細管装置は、振動型管体において、進行波の位相が反転するため、逆方向の進行波を発生させることになる。これによって、機能細管装置は、一方向に流れている流体の速度を減速させたり、あるいは、逆方向に流体を輸送させたりすることができる。 With such a configuration, the functional thin tube device generates a traveling wave in the opposite direction because the phase of the traveling wave is inverted in the vibration type tubular body. Thereby, the functional thin tube device can reduce the velocity of the fluid flowing in one direction or transport the fluid in the opposite direction.
 また、前記課題を解決するため、本発明は、流体の輸送を行う内部が中空な管体の長軸方向に、前記管体の管壁を内外方向に振動させる複数の振動部を互いに離間して設けた振動型管体と、前記複数の振動部を独立して振動させて、前記管体内に進行波を生じさせるためのエネルギを供給するエネルギ供給手段とを備えた機能細管装置を用いた機能細管装置の駆動方法として捉えることもできる。このとき、当該駆動方法は、ある振動部で発生させる進行波が、前記流体の進行方向において隣接する振動部の位置に到達するときの位相のずれに対応して、前記ずれ分ずらした位相の進行波を発生させるように前記隣接する複数の振動部に順次エネルギを供給することとする。 In order to solve the above-mentioned problem, the present invention separates a plurality of vibration parts that vibrate the tube wall of the tube body inward and outward in the major axis direction of the hollow tube body that transports fluid. A functional tubular device provided with a vibration-type tubular body provided and an energy supply means that independently vibrates the plurality of vibration portions and supplies energy for generating traveling waves in the tubular body. It can also be understood as a driving method of the functional capillary device. At this time, according to the driving method, the traveling wave generated by a certain vibration unit corresponds to the phase shift when the traveling wave reaches the position of the adjacent vibration unit in the fluid traveling direction. It is assumed that energy is sequentially supplied to the plurality of adjacent vibrators so as to generate a traveling wave.
 本発明に係る機能細管装置およびその駆動方法は、以下に示す優れた効果を奏するものである。
 本発明に係る機能細管装置は、進行波の減衰を、順次進行方向の隣接振動部によって補償することができるため、大きな振幅を保った進行波を管体内で伝搬させることができる。これによって、機能細管装置は、管内を輸送する流体の速度を効率よく制御することができる。
The functional capillary device and the driving method thereof according to the present invention have the following excellent effects.
The functional thin tube device according to the present invention can compensate for the attenuation of the traveling wave by the adjacent vibration parts in the traveling direction in order, and can therefore propagate the traveling wave having a large amplitude in the tubular body. Thereby, the functional thin tube device can efficiently control the speed of the fluid transported in the tube.
 また、本発明に係る機能細管装置は、管体内に発生させる進行波の波長、波の数に応じて、等間隔に振動部を設けることで、振動型管体を製造し易くすることができる。 Moreover, the functional thin tube device according to the present invention can facilitate the manufacture of the vibration type tubular body by providing the vibrating portions at equal intervals according to the wavelength and the number of waves of the traveling wave generated in the tubular body. .
 また、本発明に係る機能細管装置は、管体内に発生させる進行波の波長、波の数に応じて、1つのユニットに4個の振動部を等間隔に設けることで、振動型管体を製造し易くすることができる。さらに、この機能細管装置は、奇数番目の振動部、あるいは、偶数番目の振動部にそれぞれ位相を反転させた交流電圧を供給すればよいため、それぞれの振動部に異なる位相の交流電圧を供給する場合に比べて、エネルギ供給手段を簡易に構成することができる。 In addition, the functional thin tube device according to the present invention provides a vibration type tubular body by providing four vibrating parts at equal intervals in one unit according to the wavelength and the number of traveling waves generated in the tubular body. It can be made easier to manufacture. Furthermore, this functional thin tube device only needs to supply an alternating voltage whose phase is inverted to each of the odd-numbered vibration parts or even-numbered vibration parts, and therefore supplies the alternating voltages of different phases to the respective vibration parts. Compared to the case, the energy supply means can be configured simply.
 また、本発明に係る機能細管装置は、一方向に進行する進行波を発生させている複数の振動部に供給する交流電圧の位相を、進行波を逆方向の向きに発生させるように反転させる進行波反転手段を備えることで、流体の進行方向の制御あるいは流速の制御を行うことも可能になる。 In addition, the functional thin tube device according to the present invention inverts the phase of the AC voltage supplied to the plurality of vibrating portions generating the traveling wave traveling in one direction so that the traveling wave is generated in the opposite direction. By providing the traveling wave reversing means, it becomes possible to control the direction of flow of the fluid or the flow velocity.
 また、本発明に係る機能細管装置の駆動方法は、進行波の減衰を、順次進行方向の振動部によって補償することができるため、大きな振幅を保った進行波を管体内で伝搬させることができる。これによって、当該方法は、管内を輸送する流体の速度を効率よく制御することができる。 In addition, since the driving method of the functional capillary device according to the present invention can compensate the attenuation of the traveling wave by the vibration part in the traveling direction sequentially, the traveling wave having a large amplitude can be propagated in the tubular body. . Accordingly, the method can efficiently control the speed of the fluid transported in the pipe.
(a)は、本発明の実施形態に係る機能細管装置の振動型管体の寸法を誇張して全体を示す斜視図、(b)は、振動型管体の一部を拡大して示す斜視図である。(A) is the perspective view which exaggerates the dimension of the vibration type tubular body of the functional thin tube apparatus concerning the embodiment of the present invention, and shows the whole, (b) is the perspective view which expands and shows a part of vibration type tubular body FIG. 本発明の実施形態に係る機能細管装置の全体を模式的に示す模式図である。It is a mimetic diagram showing typically the whole functional thin tube device concerning the embodiment of the present invention. 本発明の実施形態に係る機能細管装置の管体内における進行波の状態を模式的に示す模式図である。It is a schematic diagram which shows typically the state of the traveling wave in the tubular body of the functional thin tube apparatus which concerns on embodiment of this invention. (a)、(b)は、本発明の実施形態に係る機能細管装置における進行波の位相、交流電圧の位相および振動部の位置の関係を説明するための説明図である。(A), (b) is explanatory drawing for demonstrating the relationship of the phase of a traveling wave, the phase of an alternating voltage, and the position of a vibration part in the functional thin tube apparatus which concerns on embodiment of this invention. (a)、(b)、(c)は、本発明に係る機能細管装置のユニット内の振動部の個数を変えた他の実施形態における進行波の位相、交流電圧の位相および振動部の位置(間隔)の関係を説明するための説明図である。(A), (b), (c) is the phase of the traveling wave, the phase of the alternating voltage, and the position of the vibration part in another embodiment in which the number of vibration parts in the unit of the functional capillary device according to the present invention is changed. It is explanatory drawing for demonstrating the relationship of (interval). 本発明に係る機能細管装置の実施例において使用した実験装置の構成を模式的に示す模式図である。It is a schematic diagram which shows typically the structure of the experimental apparatus used in the Example of the functional thin tube apparatus which concerns on this invention. (a)、(b)、(c)は、本発明に係る機能細管装置の実施例(実験例1、比較例1-1、比較例1-2)において、交流電圧の位相および振動部の位置(間隔)を変えた実験結果を示し、横軸に振動部に対して供給する電圧、縦軸に管内の流速をとったグラフ図である。(A), (b), (c) are the examples of the functional thin tube device according to the present invention (Experimental Example 1, Comparative Example 1-1, Comparative Example 1-2). It is the graph which showed the experimental result which changed the position (interval), took the voltage supplied with respect to a vibration part on a horizontal axis, and took the flow velocity in a pipe on the vertical axis. (a)、(b)は、本発明に係る機能細管装置の実施例(実験例2、比較例2)において、ユニット内の振動部の個数および振動部の位置(間隔)を変えた実験結果を示し、横軸に振動部に対して供給する電圧、縦軸に管内の流速をとったグラフ図である。(A), (b) is the experimental result which changed the number of the vibration parts in a unit, and the position (space | interval) of a vibration part in the Example (experimental example 2, comparative example 2) of the functional thin tube apparatus based on this invention. FIG. 5 is a graph in which the horizontal axis represents the voltage supplied to the vibrating portion and the vertical axis represents the flow velocity in the tube. 本発明に係る機能細管装置の実施例(実験例3)において、交流電圧の位相を反転させた実験結果を示し、横軸に振動部に対して供給する電圧、縦軸に管内の流速をとったグラフ図である。In the example of the functional thin tube device according to the present invention (Experimental Example 3), the experimental results obtained by inverting the phase of the AC voltage are shown, the horizontal axis indicates the voltage supplied to the vibrating part, and the vertical axis indicates the flow velocity in the pipe. FIG. 従来のマイクロポンプの管内における進行波の状態を模式的に示す模式図である。It is a schematic diagram which shows typically the state of the traveling wave in the pipe | tube of the conventional micropump.
 以下、本発明の実施形態について図面を参照して説明する。
[機能細管装置の構成]
 まず、図1および図2を参照して、本発明の実施形態に係る機能細管装置の構成について説明する。この機能細管装置は、管体内に進行波を発生させて、管体内部において流体(液体、気体)の輸送を行うものである。ここでは、機能細管装置1は、管体21と複数の振動部22とからなる振動型管体2と、この振動型管体2の振動部22に振動を発生させるエネルギとなる交流電圧を供給するエネルギ供給手段4とを備えている。なお、振動型管体2とエネルギ供給手段4とは、信号線(ケーブル)3によって接続されている。
Embodiments of the present invention will be described below with reference to the drawings.
[Configuration of functional capillary device]
First, with reference to FIG. 1 and FIG. 2, the structure of the functional thin tube apparatus based on embodiment of this invention is demonstrated. This functional thin tube device generates a traveling wave in the tubular body and transports fluid (liquid, gas) inside the tubular body. Here, the functional thin tube device 1 supplies a vibration-type tube body 2 including a tube body 21 and a plurality of vibration portions 22, and an alternating voltage serving as energy for generating vibration in the vibration portion 22 of the vibration-type tube body 2. Energy supply means 4. The vibration type tube body 2 and the energy supply means 4 are connected by a signal line (cable) 3.
 振動型管体2は、内部が中空な管体21と、この管体21の長軸線方向に離間して一体に形成した複数の振動部22とを備えている。
 管体21は、内部が中空で、振動部22によって与えられる振動を、管壁を通して管内の流体に伝達するものである。ここでは、管体21の一例としてシリコン製のチューブを用いている。
 この管体21は、内部が中空であって、内部に振動を伝達することができる素材であれば、シリコン以外のゴム、樹脂等の可撓性材料を用いてもよい。あるいは、チタン、チタン合金等の金属材料を用いてもよい。
The vibration type tubular body 2 includes a tubular body 21 having a hollow inside, and a plurality of vibration portions 22 that are integrally formed to be separated in the long axis direction of the tubular body 21.
The tube body 21 is hollow inside, and transmits the vibration given by the vibrating portion 22 to the fluid in the tube through the tube wall. Here, a silicon tube is used as an example of the tube body 21.
The tube body 21 may be made of a flexible material such as rubber or resin other than silicon as long as the tube body 21 is hollow and can transmit vibration to the inside. Alternatively, a metal material such as titanium or a titanium alloy may be used.
 振動部22は、管体21の管壁を内外方向に振動させるものであって、管体21の長軸方向に離間して設置される。この振動部22の位置(間隔)は、管体21の内部に発生させる進行波の波形と、複数の振動部22に与える交流電圧の波形(位相)との関係で予め定められるものである。 The vibrating part 22 vibrates the tube wall of the tube body 21 in the inner and outer directions, and is installed separately from the long axis direction of the tube body 21. The position (interval) of the vibration part 22 is determined in advance by the relationship between the waveform of the traveling wave generated inside the tube body 21 and the waveform (phase) of the AC voltage applied to the plurality of vibration parts 22.
 ここでは、振動部22の配置は、ある振動部(例えば、振動部221)と、当該振動部の流路進行方向で隣に位置する振動部(例えば、振動部222)とは、管体21内に発生させる進行波の位相差に対する距離だけずれた位置に配置している。なお、この振動部22を設ける位置(間隔)については、後で詳細に説明する。 Here, the vibration unit 22 is arranged such that a certain vibration unit (for example, the vibration unit 22 1 ) and a vibration unit (for example, the vibration unit 22 2 ) located adjacent to each other in the flow path traveling direction of the vibration unit are tubes. It is arranged at a position shifted by a distance with respect to the phase difference of the traveling wave generated in the body 21. The position (interval) at which the vibrating portion 22 is provided will be described later in detail.
 また、ここでは、振動部22は、リング状に形成された圧電素子22aと、この圧電素子22aの内周面および外周面に設けた金属電極22b,22cとを備えている。
 圧電素子22aは、予め半径方向に分極処理が施されており、金属電極22b,22cを介して電圧が印加されることで、リング状の内外方向に変形する圧電体である。この圧電素子22aは、例えば、PZT(チタン酸ジルコン酸鉛)素子である。
Further, here, the vibrating section 22 includes a piezoelectric element 22a formed in a ring shape, and metal electrodes 22b and 22c provided on the inner and outer peripheral surfaces of the piezoelectric element 22a.
The piezoelectric element 22a is a piezoelectric body that has been previously polarized in the radial direction and deforms in a ring shape inward and outward when a voltage is applied through the metal electrodes 22b and 22c. The piezoelectric element 22a is, for example, a PZT (lead zirconate titanate) element.
 なお、ここでは、振動部22の素材として圧電素子を例示しているが、エネルギ供給によって、振動、変形を行う素材であれば圧電素子に限定されるものではない。例えば、エネルギとして、光エネルギを用いる場合であれば、光エネルギを電気・機械エネルギに変換する高分子材料、磁気エネルギを用いるのであれば、当該磁気エネルギを機械エネルギに変換する超磁歪素子を振動部22の素材として用いることとしてもよい。 In addition, although the piezoelectric element is illustrated here as a raw material of the vibration part 22, if it is a raw material which vibrates and deform | transforms by energy supply, it will not be limited to a piezoelectric element. For example, if light energy is used as the energy, a polymer material that converts light energy into electrical / mechanical energy, and if magnetic energy is used, a giant magnetostrictive element that converts the magnetic energy into mechanical energy is vibrated. It may be used as a material for the portion 22.
 金属電極22b,22cは、エネルギ供給手段4から供給される交流電圧を圧電素子22aに印加するものである。この金属電極22b,22cは、例えば、金属薄膜により形成され、白金、金、あるいは銀薄膜により形成されている。なお、この金属電極22b,22cは、電圧を圧電素子22aに印加させることができる電導性材料であれば、金属でも、合金でも、あるいは他の材料であっても構わない。 The metal electrodes 22b and 22c apply an AC voltage supplied from the energy supply means 4 to the piezoelectric element 22a. The metal electrodes 22b and 22c are formed of, for example, a metal thin film, and are formed of a platinum, gold, or silver thin film. The metal electrodes 22b and 22c may be made of metal, alloy, or other material as long as it is a conductive material capable of applying a voltage to the piezoelectric element 22a.
 このような振動部22は、スパッタリング堆積法等により管体21と一体に形成することができる。なお、振動部22と管体21とを別々に形成して、接着剤により接着して一体に形成することとしてもよいし、熱により融着され一体に形成することとしてもよい。
 なお、振動型管体2は、管体21全体を圧電素材で構成し、管体21の内面に金属電極を設け、外面の振動を発生させる位置にリング状の金属電極を設ける構成としてもよい。
Such a vibrating portion 22 can be formed integrally with the tube body 21 by a sputtering deposition method or the like. In addition, the vibration part 22 and the pipe body 21 may be formed separately, and may be integrally formed by bonding with an adhesive, or may be integrally formed by being fused by heat.
The vibration-type tube body 2 may be configured such that the entire tube body 21 is made of a piezoelectric material, a metal electrode is provided on the inner surface of the tube body 21, and a ring-shaped metal electrode is provided at a position where vibration of the outer surface is generated. .
 エネルギ供給手段4は、複数の振動部22を独立して振動させて、管体21内に進行波を生じさせるためのエネルギを供給するものである。ここでは、エネルギ供給手段4は、振動部22の圧電素子22aに、金属電極22b,22cを介して交流電圧を供給するものとする。なお、ここでは、エネルギ供給手段4が供給するエネルギを交流電圧として説明するが、振動部22に圧電素子22aの代わりに光エネルギ変換能を有する高分子素材を用いるのであれば、光エネルギを供給し、超磁歪素子を用いるのであれば、磁気エネルギを供給することも可能である。 The energy supply means 4 supplies energy for causing a traveling wave to be generated in the tubular body 21 by independently vibrating the plurality of vibrating portions 22. Here, the energy supply means 4 shall supply an alternating voltage to the piezoelectric element 22a of the vibration part 22 via the metal electrodes 22b and 22c. Here, the energy supplied by the energy supply means 4 will be described as an AC voltage. However, if a polymer material having a light energy conversion ability is used for the vibrating portion 22 instead of the piezoelectric element 22a, light energy is supplied. However, if a giant magnetostrictive element is used, magnetic energy can be supplied.
 ここでは、エネルギ供給手段4は、交流発生部41と、進行波反転手段42とを備えている。このエネルギ供給手段4は、予め定めた振動部22の数を1ユニットUとして、ユニットU内の振動部22の数に応じたチャンネル数の交流発生部41(411,412,413,414)を備えている。図2においては、1ユニットUの振動部22の数を4個とした例を示しているが、3個でもよいし、2以上の任意の整数である。 Here, the energy supply unit 4 includes an AC generation unit 41 and a traveling wave inversion unit 42. This energy supply means 4 has a predetermined number of vibrating sections 22 as one unit U, and AC generating sections 41 (41 1 , 41 2 , 41 3 , 41) having the number of channels corresponding to the number of vibrating sections 22 in the unit U. 41 4 ). In FIG. 2, an example in which the number of vibration units 22 of one unit U is four is shown, but three may be used, and any integer of 2 or more.
 交流発生部41は、1ユニットU内の振動部22に対して、それぞれ位相の異なる交流電圧を独立して供給するものである。なお、交流発生部41が供給する交流電圧は、ここでは、位相が異なるだけで、周期、振幅は同一である。この交流発生部41は、一般的なファンクションジェネレータや増幅器で構成することができる。
 この交流発生部41が、ユニットU内で流体の送り元に最も近い振動部22(221)に供給する交流電圧V1を以下の(1)式で表す。
The AC generating unit 41 supplies AC voltages having different phases independently to the vibrating unit 22 in one unit U. Here, the AC voltage supplied by the AC generator 41 is different in phase, and has the same period and amplitude. The AC generator 41 can be configured by a general function generator or amplifier.
The AC voltage V 1 supplied from the AC generator 41 to the vibrating unit 22 (22 1 ) closest to the fluid source in the unit U is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Aは振幅、k(k=2π/λ;ただしλは波長)は波数、ωは角振動数、tは時間を示す。すなわち、交流電圧V1は、振動部22(圧電素子22a)に(1)式の交流電圧を供給することで、管体21において、x方向(流体の進行方向)に角振動数ωで進行する波(進行波)を発生させることができる。なお、交流発生部41は、外部の制御つまみ4bによって、電圧の振幅等の変更を行うことができる。 Here, A is the amplitude, k (k = 2π / λ; where λ is the wavelength) is the wave number, ω is the angular frequency, and t is the time. That is, the AC voltage V 1 travels at an angular frequency ω in the x direction (fluid traveling direction) in the tube body 21 by supplying the alternating voltage of the formula (1) to the vibrating portion 22 (piezoelectric element 22a). Wave (traveling wave) can be generated. The AC generator 41 can change the voltage amplitude and the like by an external control knob 4b.
 また、ユニット内の他の振動部22(222,223,224)に供給する交流電圧V2,V3,V4は、以下の(2)~(4)式に示すように、(1)式の交流電圧V1とは、位相(δ2,δ3,δ4)のみがずれた波形となっている。 Further, the AC voltages V 2 , V 3 , V 4 supplied to the other vibrating parts 22 (22 2 , 22 3 , 22 4 ) in the unit are as shown in the following equations (2) to (4): The AC voltage V 1 in the equation (1) has a waveform in which only the phases (δ 2 , δ 3 , δ 4 ) are shifted.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この交流発生部41で発生させる各振動部22に供給する交流電圧の位相のずれは、管体21の内部に発生させる進行波の各振動部22の位置における位相のずれに相当するものである。 The phase shift of the AC voltage supplied to each vibration unit 22 generated by the AC generation unit 41 corresponds to the phase shift at the position of each vibration unit 22 of the traveling wave generated inside the tubular body 21. .
 このように、交流発生部41は、各振動部22に交流電源を供給し、振動部22が管体21の壁面を振動させることで、管体21内の流体粒子を一方向に楕円軌道を描きながら進行させる進行波を発生させることができる。 As described above, the AC generation unit 41 supplies AC power to each vibration unit 22, and the vibration unit 22 vibrates the wall surface of the tube body 21, thereby causing the fluid particles in the tube body 21 to have an elliptical orbit in one direction. A traveling wave that travels while drawing can be generated.
 また、交流発生部41は、各振動部22に供給する交流電圧を、進行波の各振動部22の位置における位相のずれに応じた位相で供給することで、ある振動部221の振動によって管体21内に発生する進行波の位相は、他の振動部222,223,224の振動によって発生する進行波の位相と合致することになり、進行波の振幅の減衰が抑えられたり、補償されることが望ましい。この進行波の位相と振動部22の位置における位相との関係については、後で詳細に説明する。 Further, the AC generator 41 supplies the AC voltage supplied to each vibration part 22 with a phase corresponding to the phase shift at the position of each vibration part 22 of the traveling wave, so that the vibration of the certain vibration part 22 1 The phase of the traveling wave generated in the tubular body 21 matches the phase of the traveling wave generated by the vibration of the other vibrating parts 22 2 , 22 3 , and 22 4 , and the attenuation of the traveling wave amplitude is suppressed. Or compensated. The relationship between the phase of the traveling wave and the phase at the position of the vibration unit 22 will be described in detail later.
 なお、各振動部22の設置間隔は、ある振動部22(221)に交流電圧を供給し、隣接する振動部22(222)の位置において、レーザードップラー振動計等によって振動が減衰した量を求めておき、少なくともその減衰した振動量の当初振動量に対する割合が、予め定めた割合以下とならないように設定する。例えば、ある振動部22(221)から振動部22(222)までの距離は、進行波の振幅が、当初振動量に対する当該割合が50%以上、好ましくは70%以上となるような大きさとすることが望ましい。 In addition, the installation interval of each vibration part 22 supplies AC voltage to a certain vibration part 22 (22 1 ), and the amount of vibration attenuation by a laser Doppler vibrometer or the like at the position of the adjacent vibration part 22 (22 2 ). And at least the ratio of the attenuated vibration amount to the initial vibration amount is set so as not to be equal to or less than a predetermined ratio. For example, the distance from the vibrating portion 22 (22 1 ) to the vibrating portion 22 (22 2 ) is such that the amplitude of the traveling wave is 50% or more, preferably 70% or more, with respect to the initial vibration amount. It is desirable to do so.
 進行波反転手段42は、管体21内に発生する進行波の向きを切り替えるために、一方向に進行する進行波を発生させている複数の振動部22に供給する交流電圧の位相を、進行波を逆方向の向きに発生させるように反転させるものである。なお、この進行波反転手段42は、制御つまみ(外部スイッチ)4bからの指示により、位相の反転を指示された場合に、交流発生部41が発生する交流電圧の位相を反転させることとする。 The traveling wave inverting means 42 advances the phase of the AC voltage supplied to the plurality of vibration units 22 that generate traveling waves traveling in one direction in order to switch the direction of traveling waves generated in the tube body 21. It reverses to generate waves in the opposite direction. The traveling wave inversion means 42 inverts the phase of the AC voltage generated by the AC generator 41 when instructed to invert the phase by an instruction from the control knob (external switch) 4b.
 このように、進行波反転手段42によって、位相が反転された場合、交流発生部41が供給する交流電圧は、例えば、前記(1)式で表された交流電圧V1は、以下の(5)式に示す交流電圧V1に切り替わることになる。 Thus, when the phase is inverted by the traveling wave inverting means 42, the AC voltage supplied by the AC generator 41 is, for example, the AC voltage V 1 expressed by the above equation (1) is (5 ) To the alternating voltage V 1 shown in the equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 この(5)式に示すように、前記(1)式に対し、ωtの符号が変わることで、管体21内に発生する進行波は逆向きになる。
 これによって、一旦、管体21内で一方向に流れている流体の速度は、逆向きの進行波により低減することになる。さらに、その進行波を発生し続けることで、逆向きの方向に流体が輸送されることになる。
As shown in the equation (5), the traveling wave generated in the tubular body 21 is reversed by changing the sign of ωt with respect to the equation (1).
As a result, the velocity of the fluid flowing in one direction within the tube body 21 is reduced by the traveling wave in the opposite direction. Furthermore, by continuing to generate the traveling wave, the fluid is transported in the opposite direction.
 なお、機能細管装置1は、図1に示すように、振動型管体2全体をカバー23で覆ってもよい。また、エネルギ供給手段4は、電源スイッチ4a、制御つまみ4b,4b、表示装置4c等を備えた筐体4d内に構成してもよい。 In addition, as shown in FIG. 1, the functional thin tube device 1 may cover the entire vibration-type tubular body 2 with a cover 23. The energy supply means 4 may be configured in a housing 4d provided with a power switch 4a, control knobs 4b and 4b, a display device 4c, and the like.
[進行波の位相と交流電圧の位相および振動部の位置との関係]
 ここで、図3を参照して、管体21の内部に発生させる進行波の波形(位相)、エネルギ供給手段4(交流発生部41)が供給する交流電圧の位相、および、振動部22の位置(間隔)の関係について一例を説明する。
[Relationship between traveling wave phase and AC voltage phase and position of vibrating part]
Here, with reference to FIG. 3, the waveform (phase) of the traveling wave generated inside the tube body 21, the phase of the AC voltage supplied by the energy supply means 4 (AC generation unit 41), and the vibration unit 22 An example of the relationship between positions (intervals) will be described.
 図3は、振動型管体2の1つのユニットとして、4つの振動部22(221,222,223,224)を部分的に記載している。図3(a)は、振動部221の振動によって管体21内に発生させる進行波W1のみを模式的に示している。図3(b)は、振動部221の振動によって発生する進行波W1(実線)と、振動部222の振動によって発生する進行波W2(点線)とを各々模式的に示している。 FIG. 3 partially describes four vibration portions 22 (22 1 , 22 2 , 22 3 , 22 4 ) as one unit of the vibration type tubular body 2. FIG. 3A schematically shows only the traveling wave W 1 generated in the tubular body 21 by the vibration of the vibrating portion 22 1 . FIG. 3B schematically shows a traveling wave W 1 (solid line) generated by the vibration of the vibration part 22 1 and a traveling wave W 2 (dotted line) generated by the vibration of the vibration part 22 2 . .
 図3(a)に示すように、振動部221によって発生する進行波W1は、管体21の管壁との摩擦等によって、長軸方向に向かって振幅が減衰していく。 As shown in FIG. 3A, the amplitude of the traveling wave W 1 generated by the vibrating portion 22 1 is attenuated in the major axis direction due to friction with the tube wall of the tube body 21.
 そこで、図3(b)に示すように、振動部222は、振動部222の位置において、振動部221の振動によって発生する進行波W1の位相、周期および振幅と一致した振動によって進行波W2を発生させる。なお、他の振動部223,224においても、同様に、進行波W1の位相、周期および振幅と一致した進行波W3,W4(図示せず)を発生させる。これによって、進行波W1は、同一位相の他の進行波W2,W3,W4と合成されることで、図3(c)に示すように、減衰が補われた大きな振幅の進行波(合成進行波)WALLが生成されることになり、進行波W1のみの場合と比べて流速が高まる。 Therefore, as shown in FIG. 3B, the vibration part 22 2 is caused by vibration that matches the phase, period, and amplitude of the traveling wave W 1 generated by the vibration of the vibration part 22 1 at the position of the vibration part 22 2 . A traveling wave W 2 is generated. Similarly, in the other vibration parts 22 3 and 22 4 , traveling waves W 3 and W 4 (not shown) that coincide with the phase, period, and amplitude of the traveling wave W 1 are generated. As a result, the traveling wave W 1 is synthesized with other traveling waves W 2 , W 3 , and W 4 having the same phase, and as shown in FIG. Wave (synthetic traveling wave) W ALL is generated, and the flow velocity is increased compared to the case of traveling wave W 1 alone.
 ここで、図4を参照(適宜図1,2参照)して、具体的に、振動部22の位置(間隔)と、エネルギ供給手段4が供給する交流電圧の位相との関係について説明する。
 ここでは、機能細管装置1は、振動型管体2の1つのユニット内の振動部22の個数をm個(mは2以上の整数)、進行波の波長をλ、振動部22の中心と隣接する他の振動部22の中心までの間隔をL、当該間隔において発生させる進行波の波の数(波長λの波の数;小数点以下切り捨て)をn(nは0以上の整数)としたとき、振動部22の間隔Lは、以下の(6)式の関係を満たすものとする。
Here, with reference to FIG. 4 (refer to FIGS. 1 and 2 as appropriate), the relationship between the position (interval) of the vibration unit 22 and the phase of the AC voltage supplied by the energy supply unit 4 will be described specifically.
Here, in the functional thin tube device 1, the number of the vibrating portions 22 in one unit of the vibrating tube 2 is m (m is an integer of 2 or more), the wavelength of the traveling wave is λ, the center of the vibrating portion 22 is The interval to the center of another adjacent vibration part 22 is L, and the number of traveling waves generated at the interval (the number of waves of wavelength λ; rounded down after the decimal point) is n (n is an integer of 0 or more). At this time, it is assumed that the interval L between the vibrating portions 22 satisfies the relationship of the following expression (6).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この(6)式のように、振動部22間で発生させる進行波のn個分の波の波長λを、ユニット内の振動部22の個数mにより除算することで、ユニット内の波長に応じた振動部22の等間隔の設置間隔Lが求められる。 By dividing the wavelength λ of n traveling waves generated between the vibrating parts 22 by the number m of the vibrating parts 22 in the unit as shown in the equation (6), Further, an equal installation interval L of the vibrating parts 22 is obtained.
 図4(a)は、進行波の波長λよりも、振動部22の間隔が短い場合、すなわち、振動部22間で発生させる進行波の波の数nを“0”とし、1ユニットの振動部22の個数mを“4”とした例を示している。この場合、振動部22の設置間隔Lを、前記(6)式より、λ/4とする。 FIG. 4A shows the case where the distance between the vibrating parts 22 is shorter than the wavelength λ of the traveling wave, that is, the number n of traveling waves generated between the vibrating parts 22 is “0” and one unit of vibration is generated. An example in which the number m of the parts 22 is “4” is shown. In this case, the installation interval L of the vibration part 22 is set to λ / 4 from the above equation (6).
 このように設定することで、振動部221に供給する交流電圧の波形をsinθとした場合、振動部222の位置における進行波の位相は、振動部221から(360/m)°に相当する90°ずれることになる。すなわち、振動部222に供給する交流電圧の波形をcosθとすることで、進行波の振幅の減衰を抑えることができる。 By setting in this way, when the waveform of the AC voltage supplied to the vibrating portion 22 1 is sin θ, the phase of the traveling wave at the position of the vibrating portion 22 2 is (360 / m) ° from the vibrating portion 22 1 . A corresponding shift of 90 ° will occur. That is, the attenuation of the amplitude of the traveling wave can be suppressed by setting the waveform of the AC voltage supplied to the vibration unit 22 2 to be cos θ.
 図4(b)は、進行波の波長λよりも、振動部22の間隔が長い場合、すなわち、振動部22の振動部間で発生させる進行波の波の数nを“1”とし、1ユニットの振動部22の個数mを“4”とした例を示している。この場合、振動部22の設置間隔Lを、前記(6)式より、5λ/4とする。 FIG. 4B shows that when the interval between the vibrating parts 22 is longer than the wavelength λ of the traveling wave, that is, the number n of traveling waves generated between the vibrating parts of the vibrating part 22 is “1”. In this example, the number m of the vibrating parts 22 of the unit is set to “4”. In this case, the installation interval L of the vibration part 22 is set to 5λ / 4 from the above equation (6).
 このように設定することで、図4(a)と同様、振動部221に供給する交流電圧の波形をsinθとした場合、振動部222の位置における進行波の位相は、振動部221から90°ずれることになり、進行波の振幅の減衰を抑えることができる。
 以上の説明では、ユニット内の振動部22の数を“4”として説明したが、この数は、“2”以上の任意の整数とすることができる。
By setting in this way, similarly to FIG. 4A, when the waveform of the AC voltage supplied to the vibration part 22 1 is sin θ, the phase of the traveling wave at the position of the vibration part 22 2 is the vibration part 22 1. Therefore, it is possible to suppress the attenuation of the amplitude of the traveling wave.
In the above description, the number of the vibrating parts 22 in the unit is described as “4”, but this number can be an arbitrary integer of “2” or more.
 なお、ユニット内の振動部22の数を“4”とすることで、奇数番目の振動部221,223に供給する交流電圧は、波形が同じsinθで位相のみが反転した信号とすることができる。また、同様に、偶数番目の振動部222,224に供給する交流電圧は、波形が同じcosθで位相のみが反転した信号とすることができる。 By setting the number of vibrating parts 22 in the unit to “4”, the AC voltage supplied to the odd-numbered vibrating parts 22 1 , 22 3 is a signal whose waveform is sin θ and only the phase is inverted. Can do. Similarly, the AC voltage supplied to the even-numbered vibrating portions 22 2 and 22 4 can be a signal having the same waveform of cos θ and having only the phase inverted.
 よって、図2では、それぞれの振動部22に電圧を供給する交流発生部411,412,413,414を備えることとしたが、例えば、奇数番目の振動部221,223に供給する交流発生部41を1つとし、一方の振動部221には、sinθの交流電圧を供給し、他方の振動部223には、反転回路(図示せず)を介して、-sinθの交流電圧を供給することとしてもよい。また、同様に、偶数番目の振動部222,224に供給する交流発生部41を1つとし、一方の振動部222には、cosθの交流電圧を供給し、他方の振動部224には、反転回路(図示せず)を介して、-cosθの交流電圧を供給してもよい。 Therefore, in FIG. 2, the AC generators 41 1 , 41 2 , 41 3 , and 41 4 that supply voltages to the respective vibrators 22 are provided. For example, the odd-numbered vibrators 22 1 and 22 3 The AC generator 41 to be supplied is provided as one, an alternating voltage of sin θ is supplied to one vibrating unit 22 1 , and −sin θ is supplied to the other vibrating unit 22 3 via an inverting circuit (not shown). AC voltage may be supplied. Similarly, a single AC generator 41 is supplied to the even-numbered vibrators 22 2 and 22 4, and an AC voltage of cos θ is supplied to one vibrator 22 2 , and the other vibrator 22 4 is provided. Alternatively, an AC voltage of −cos θ may be supplied through an inverting circuit (not shown).
 次に、図5を参照して、ユニット内の数を“4”以外とした例について、振動部22の位置(間隔)と、エネルギ供給手段4が供給する交流電圧の位相との関係について説明する。なお、ここでは、振動部22の間隔が短い場合、すなわち、振動部22間で発生させる進行波の波の数nを“0”としている。 Next, with reference to FIG. 5, the relationship between the position (interval) of the vibrating portion 22 and the phase of the AC voltage supplied by the energy supply unit 4 will be described for an example in which the number in the unit is other than “4”. To do. Here, when the interval between the vibrating parts 22 is short, that is, the number n of traveling waves generated between the vibrating parts 22 is set to “0”.
 図5(a)では、1ユニットの振動部22の個数mを“3”とした例を示している。この場合、振動部22の設置間隔Lを、前記(6)式より、λ/3とする。
 このように設定することで、振動部221に供給する交流電圧の波形の位相を0°とした場合、振動部222の位置における進行波の位相は、振動部221から(360/m)°に相当する120°ずれることになる。よって、進行波の減衰を抑えるためには、振動部222に供給する交流電圧の波形を、振動部221に供給する交流電圧の波形の位相に対して120°ずらした波形とすればよい。同様に、他の振動部22においても順次120°位相をずらした波形の交流電圧を供給すればよい。
FIG. 5A shows an example in which the number m of vibration units 22 of one unit is “3”. In this case, the installation interval L of the vibration part 22 is set to λ / 3 from the above equation (6).
By setting in this way, when the phase of the waveform of the AC voltage supplied to the vibrating part 22 1 is 0 °, the phase of the traveling wave at the position of the vibrating part 22 2 is changed from the vibrating part 22 1 to (360 / m ) Is shifted by 120 ° corresponding to °. Therefore, in order to suppress the attenuation of the traveling wave, the waveform of the AC voltage supplied to the vibration unit 22 2 may be shifted by 120 ° with respect to the phase of the waveform of the AC voltage supplied to the vibration unit 22 1. . Similarly, it is only necessary to supply an alternating voltage having a waveform whose phase is sequentially shifted by 120 ° in the other vibration units 22.
 図5(b)では、1ユニットの振動部22の個数mを“2”とした例を示している。この場合、振動部22の設置間隔Lを、前記(6)式より、λ/2とする。
 このように設定することで、振動部221に供給する交流電圧の波形の位相を0°(sinθ)とした場合、振動部222の位置における進行波の位相は、振動部221から(360/m)°に相当する180°ずれることになる。よって、進行波の減衰を抑えるためには、振動部222に供給する交流電圧の波形を、振動部221に供給する交流電圧の波形の位相に対して180°ずらした波形(-sinθ)とすればよい。同様に、他の振動部22においても順次180°位相をずらした波形の交流電圧を供給すればよい。
FIG. 5B shows an example in which the number m of the vibrating units 22 of one unit is “2”. In this case, the installation interval L of the vibration part 22 is set to λ / 2 from the above equation (6).
By setting in this way, when the phase of the waveform of the AC voltage supplied to the vibration part 22 1 is 0 ° (sin θ), the phase of the traveling wave at the position of the vibration part 22 2 is changed from the vibration part 22 1 to ( 360 ° corresponding to 360 / m) °. Therefore, in order to suppress the attenuation of the traveling wave, the waveform of the alternating voltage supplied to vibrating section 22 2, shifted 180 ° relative to the phase of the waveform of the AC voltage supplied to the vibrating unit 22 first waveform (-sin) And it is sufficient. Similarly, it is only necessary to supply an alternating voltage having a waveform whose phase is sequentially shifted by 180 ° in the other vibration units 22.
 図5(c)では、1ユニットの振動部22の個数mを“6”とした例を示している。この場合、振動部22の設置間隔Lを、前記(6)式より、λ/6とする。
 このように設定することで、振動部221に供給する交流電圧の波形の位相を0°とした場合、振動部222の位置における進行波の位相は、振動部221から(360/m)°に相当する60°ずれることになる。よって、進行波の減衰を抑えるためには、振動部222に供給する交流電圧の波形を、振動部221に供給する交流電圧の波形の位相に対して60°ずらした波形とすればよい。同様に、他の振動部22においても順次60°位相をずらした波形の交流電圧を供給すればよい。
FIG. 5C shows an example in which the number m of the vibrating units 22 of one unit is “6”. In this case, the installation interval L of the vibration part 22 is set to λ / 6 from the above equation (6).
By setting in this way, when the phase of the waveform of the AC voltage supplied to the vibrating part 22 1 is 0 °, the phase of the traveling wave at the position of the vibrating part 22 2 is changed from the vibrating part 22 1 to (360 / m ) Is shifted by 60 ° corresponding to °. Therefore, in order to suppress the attenuation of the traveling wave, the waveform of the AC voltage supplied to the vibration unit 22 2 may be shifted by 60 ° with respect to the phase of the waveform of the AC voltage supplied to the vibration unit 22 1. . Similarly, it is only necessary to supply an alternating voltage having a waveform whose phases are sequentially shifted by 60 ° in the other vibration units 22.
 すなわち、前記(6)式により、1ユニットの振動部22のm個の位置(間隔)を定めた場合、流体の送り元に最も近い振動部22に供給する交流電圧の位相を基準として、他の振動部22に、(360/m)°だけ位相を進ませて交流電圧を供給すればよいことになる。 That is, when the m positions (intervals) of the vibrating unit 22 of one unit are determined by the above equation (6), the other is determined based on the phase of the AC voltage supplied to the vibrating unit 22 closest to the fluid source. Therefore, the AC voltage may be supplied to the vibrating unit 22 by advancing the phase by (360 / m) °.
 なお、ここでは、ユニット内の振動部22の間隔を等間隔にし、各振動部22に供給する位相のずれを一定としたが、本発明において、任意の位置に振動部22を設定した場合には、当該位置における進行波の位相のずれに相当する位相をずらした交流電圧を各振動部22に供給すればよい。これによっても、進行波の振幅の減衰を抑えることができる。
 ただし、機能細管装置1の製作の容易性を考慮した場合、振動部22を等間隔に設定することが望ましい。
Here, the interval between the vibrating parts 22 in the unit is made equal, and the phase shift supplied to each vibrating part 22 is constant. However, in the present invention, when the vibrating part 22 is set at an arbitrary position, May be supplied to each vibration unit 22 with an AC voltage whose phase is shifted corresponding to the phase shift of the traveling wave at the position. This also can suppress the attenuation of the traveling wave amplitude.
However, considering the ease of manufacturing the functional thin tube device 1, it is desirable to set the vibrating portions 22 at equal intervals.
 以上説明したように、機能細管装置1は、各振動部22で発生させる進行波が合成されることで、管体21内に発生する進行波の振幅の減衰を抑えたり、補償することができる。これによって、機能細管装置1は、より低い電圧であっても効率よく流体を輸送することができるように制御することができる。 As described above, the functional thin tube device 1 can suppress or compensate for the attenuation of the amplitude of the traveling wave generated in the tubular body 21 by synthesizing the traveling wave generated by each vibration unit 22. . Thereby, the functional thin tube device 1 can be controlled so that the fluid can be efficiently transported even at a lower voltage.
[機能細管装置の機能確認実験結果]
 以下、本発明に係る機能細管装置の機能を確認した実施結果について説明する。
<実験例1>
 本実験では、図6に示すような実験装置5を構成し、機能細管装置1の振動型管体2に、貯水タンク51から、チューブ52を介して流体を流し、チューブ53を介して計測装置54に排出される流体の速度(単位時間当たりの流量)を測定することで、機能細管装置1の機能確認実験を行った。
[Results of functional confirmation of functional capillary device]
Hereinafter, the results of confirming the function of the functional capillary device according to the present invention will be described.
<Experimental example 1>
In this experiment, an experimental apparatus 5 as shown in FIG. 6 is configured, and a fluid is allowed to flow from the water storage tank 51 to the vibration-type tube body 2 of the functional thin tube apparatus 1 through the tube 52 and the measurement apparatus through the tube 53. The function confirmation experiment of the functional thin tube device 1 was performed by measuring the speed of the fluid discharged to 54 (flow rate per unit time).
 本実験においては、振動型管体2の管体21として、内径10mm、外径12mm、長さ200mmのシリコンチューブを用いた。
 また、振動型管体2は、4個の振動部22を備え、振動部22として、内径12.5mm、外径13.5mm、幅5mmのリング型PZT素子を等間隔で設置した。また、このリング型PZT素子の外面および内面には、銀電極(図示せず)を塗布した。なお、リング型PZT素子には、株式会社富士セラミックス製C-9(圧電定数d33 718pm/V)を用いた。
 また、管体21内を輸送する流体として純水を用いた。
In this experiment, a silicon tube having an inner diameter of 10 mm, an outer diameter of 12 mm, and a length of 200 mm was used as the tube body 21 of the vibration type tube body 2.
The vibration-type tubular body 2 includes four vibration portions 22, and ring-type PZT elements having an inner diameter of 12.5 mm, an outer diameter of 13.5 mm, and a width of 5 mm are installed at equal intervals as the vibration portion 22. A silver electrode (not shown) was applied to the outer surface and the inner surface of the ring type PZT element. For the ring type PZT element, C-9 (piezoelectric constant d33 718 pm / V) manufactured by Fuji Ceramics Co., Ltd. was used.
Further, pure water was used as a fluid transported inside the tube body 21.
(進行波の波長)
 まず、実験装置5において、以下の手順により、管体21内において発生する進行波の波長を求めた。
 まず、振動型管体2に振動部221を1個だけ設置し、管体21内に純水を1.0ml/secの定常速度で通過させる。
(Wavelength of traveling wave)
First, in the experimental apparatus 5, the wavelength of the traveling wave generated in the tube body 21 was determined by the following procedure.
First, only one vibration part 22 1 is installed in the vibration type tube 2, and pure water is passed through the tube 21 at a steady speed of 1.0 ml / sec.
 そして、振動部221に周波数f=3.0kHz、電圧80Vppの交流電圧を印加し振動を発生させる。
 なお、管体21内において純水が振動によって伝播する速度uは、以下の(7)式により求める。
Then, an AC voltage having a frequency f = 3.0 kHz and a voltage of 80 Vpp is applied to the vibration part 22 1 to generate vibration.
Note that the velocity u at which pure water propagates in the tube body 21 by vibration is obtained by the following equation (7).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、Eは、管体21であるシリコンチューブのヤング率(本実験では、140000Pa)、hは、シリコンチューブの厚さ(本実験では、1×10-3m)、Rは、シリコンチューブの外径の半径(本実験では、5×10-3m)、ρは、純水の密度(本実験では、1000kg/m3)である。
 そして、進行波の波長(λ)を、以下の(8)式により求める。
Here, E is the Young's modulus of the silicon tube that is the tube body 21 (140000 Pa in this experiment), h is the thickness of the silicon tube (1 × 10 −3 m in this experiment), and R is the silicon tube. The outer diameter radius (in this experiment, 5 × 10 −3 m) and ρ is the density of pure water (in this experiment, 1000 kg / m 3 ).
Then, the wavelength (λ) of the traveling wave is obtained by the following equation (8).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、uは、測定(または(7)式にいる計算)で求めた伝播速度、fは周波数(本実験では、3.0kHz)である。
 このように、進行波の波長λを、予め1.25mmとして求めた。
Here, u is a propagation velocity obtained by measurement (or calculation in equation (7)), and f is a frequency (3.0 kHz in this experiment).
Thus, the wavelength λ of the traveling wave was obtained in advance as 1.25 mm.
(振動部の間隔)
 そして、振動部221の管体21内の純水の流れの方向に対して後方に設置する他の振動部222,223,224の設置間隔(リング型PZT素子の中心から中心までの設置間隔)Lを、前記(6)式({(m×n+1)/m}×λ)により求める。
(Spacing between vibration parts)
And the installation interval (from the center of the ring-type PZT element to the center) of the other vibration parts 22 2 , 22 3 , and 22 4 installed rearward with respect to the direction of the flow of pure water in the tube 21 of the vibration part 22 1 L) is determined by the above equation (6) ({(m × n + 1) / m} × λ).
 本実験においては、振動部22の個数mを“4”、振動部22間で発生させる進行波の波の数nを“8”とし、先に求めた進行波の波長λが“1.25”であることから、前記(6)式により、振動部22の設置間隔Lを、10.3mmとして求めた。
 そして、振動部221,222,223,224を、中心から中心までの設置間隔が10.3mmとなるように調整し設置した。
In this experiment, the number m of the vibrating parts 22 is “4”, the number n of traveling waves generated between the vibrating parts 22 is “8”, and the wavelength λ of the traveling wave previously obtained is “1.25”. Therefore, the installation interval L of the vibration part 22 was determined as 10.3 mm according to the equation (6).
Then, the vibration parts 22 1 , 22 2 , 22 3 , and 22 4 were adjusted and installed so that the installation interval from the center to the center was 10.3 mm.
(実験方法)
 本実験では、前記したように振動部22を管体21に設置した状態で、管体21内に純水を1.0ml/secの定常速度で通過させ、振動部22に交流電圧を印加することで、純水の流速を測定した。なお、この測定は1回につき20秒間行い、5回繰り返して平均値をとった。
(experimental method)
In this experiment, with the vibration unit 22 installed on the tube body 21 as described above, pure water is passed through the tube body 21 at a steady speed of 1.0 ml / sec, and an AC voltage is applied to the vibration unit 22. Thus, the flow rate of pure water was measured. This measurement was performed for 20 seconds at a time, and the average value was obtained by repeating the measurement five times.
 また、本実験では、エネルギ供給手段4の交流発生部41が発生する交流電圧の周波数を3.0kHzとし、〔表1〕に示すように、電圧を、5Vpp、7.5Vpp、10Vpp、12.5Vppおよび15Vppの5条件(実験番号(1)~(5))とした。また、エネルギ供給手段4は、振動部221,222,223,224に、(360/m)°〔mは振動部の個数〕を満たすように、それぞれの振動部22に位相を90°ずらした波形(sinθ、cosθ、-sinθ、-cosθ)の交流電圧を供給した。 In this experiment, the frequency of the AC voltage generated by the AC generator 41 of the energy supply means 4 is 3.0 kHz, and the voltage is 5 Vpp, 7.5 Vpp, 10 Vpp, 12. Five conditions (experiment numbers (1) to (5)) of 5 Vpp and 15 Vpp were used. Further, the energy supply means 4 shifts the phase of each vibration part 22 so that the vibration parts 22 1 , 22 2 , 22 3 , and 22 4 satisfy (360 / m) ° [m is the number of vibration parts]. An alternating voltage having a waveform shifted by 90 ° (sin θ, cos θ, −sin θ, −cos θ) was supplied.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 この〔表1〕の条件で実験を行った結果を図7(a)に示した。図7(a)は、横軸に印加した交流電圧(AC Voltage[Vpp])、縦軸に流速(Flow velocity[ml/s])を表している。また、図中のプロットは5回の平均値を示しており、プロットに付加した上下線は、5回の標準偏差(ばらつき)を示している。
 図7(a)からも分かるように、純水の初期流速(1.0ml/s)に対し、電圧を増大させることで、線形的に流速が増大することが確認された。
FIG. 7A shows the result of the experiment conducted under the conditions of [Table 1]. FIG. 7A shows the AC voltage (AC Voltage [Vpp]) applied to the horizontal axis and the flow velocity (Flow velocity [ml / s]) on the vertical axis. Moreover, the plot in the figure shows the average value of 5 times, and the vertical line added to the plot shows the standard deviation (variation) of 5 times.
As can be seen from FIG. 7A, it was confirmed that the flow rate increased linearly by increasing the voltage with respect to the initial flow rate of pure water (1.0 ml / s).
<比較例1-1>
 ここで、実験例1と比較するため、振動部221,222,223,224の設置位置は同じであっても、振動部221,222,223,224に供給する交流電圧の位相のずれが、(360/m)°〔mは振動部の個数〕を満たさないことで、各振動部22が発生させる進行波の位相が、予め定めた進行波の位相のずれに合っていない場合について実験した。
<Comparative Example 1-1>
Supplying Here, for comparison with Experimental Example 1, the vibrating unit 22 1, 22 2, 22 3, the installation position of 22 4 are the same, the vibrating unit 22 1, 22 2, 22 3, 22 4 Since the phase shift of the AC voltage does not satisfy (360 / m) ° [m is the number of vibrating portions], the phase of the traveling wave generated by each vibrating portion 22 is a predetermined phase shift of the traveling wave. An experiment was conducted for a case that did not fit.
 この比較例1-1では、基本的には、実験例1と同様の構成、同様の条件で、振動部221,222,223,224に供給する交流電圧の位相のみを変えている。すなわち、比較例1-1では、〔表2〕に示すように、エネルギ供給手段4が、振動部221,222,223,224に、(360/m)°〔mは振動部の個数〕を満たさない波形(sinθ、cosθ、sinθ、cosθ)の交流電圧を供給した。 In Comparative Example 1-1, basically, only the phase of the AC voltage supplied to the vibrating portions 22 1 , 22 2 , 22 3 , and 22 4 is changed with the same configuration and the same conditions as in Experimental Example 1. Yes. That is, in Comparative Example 1-1, as shown in [Table 2], the energy supply means 4 is moved to the vibrating portions 22 1 , 22 2 , 22 3 , and 22 4 at (360 / m) ° [m is the vibrating portion. AC voltage having a waveform (sin θ, cos θ, sin θ, cos θ) that does not satisfy the above condition is supplied.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 この〔表2〕の条件で比較実験を行った結果を図7(b)に示した。図7(b)は、横軸に印加した交流電圧[Vpp]、縦軸に流速[ml/s]を表している。
 図7(b)からも分かるように、純水の初期流速(1.0ml/s)に対し、電圧を増大させることで、流速は徐々に増えているがその値は小さく、また、図7(a)に比べ傾きが緩やかで、電圧に対して、流速を効率的に高めることはできず、制御効率が低いことがわかった。
FIG. 7B shows the result of a comparative experiment performed under the conditions of [Table 2]. FIG. 7B shows the AC voltage [Vpp] applied on the horizontal axis and the flow rate [ml / s] on the vertical axis.
As can be seen from FIG. 7B, by increasing the voltage with respect to the initial flow rate of pure water (1.0 ml / s), the flow rate gradually increases but the value is small. It was found that the slope was gentle compared to (a), the flow rate could not be increased efficiently with respect to the voltage, and the control efficiency was low.
<比較例1-2>
 さらに、実験例1と比較するため、振動部221,222,223,224に供給する交流電圧の位相のずれが、(360/m)°〔mは振動部の個数〕を満たす場合であっても、振動部221,222,223,224の設置間隔が、{(m×n+1)/m}×λ(前記(6)式)の条件を満たさないことで、各振動部22が発生させる進行波の位相が、予め定めた進行波の位相のずれに合っていない場合について実験した。
<Comparative Example 1-2>
Further, for comparison with Experimental Example 1, the phase shift of the AC voltage supplied to the vibrating parts 22 1 , 22 2 , 22 3 , and 22 4 satisfies (360 / m) ° [m is the number of vibrating parts]. Even in this case, the installation interval of the vibrating parts 22 1 , 22 2 , 22 3 , 22 4 does not satisfy the condition of {(m × n + 1) / m} × λ (the above formula (6)). An experiment was conducted in the case where the phase of the traveling wave generated by each vibration unit 22 did not match the predetermined phase shift of the traveling wave.
 この比較例1-2では、基本的には、実験例1と同様の構成、同様の条件で、各振動部22の設置間隔のみを変えて、12.0mmとした。この設置間隔の値12.0mmは、{(m×n+1)/m}×λにおいて、n=10とn=11との間の値である。 In Comparative Example 1-2, basically, the same configuration and the same conditions as in Experimental Example 1 were used, and only the installation interval of each vibrating portion 22 was changed to 12.0 mm. This installation interval value of 12.0 mm is a value between n = 10 and n = 11 in {(m × n + 1) / m} × λ.
 この構成において、〔表1〕と同様の位相となる交流電圧を振動部221,222,223,224に供給した結果を図7(c)に示した。図7(c)は、横軸に印加した交流電圧[Vpp]、縦軸に流速[ml/s]を表している。
 図7(c)からも分かるように、純水の初期流速(1.0ml/s)に対し、電圧を増大させることで、流速は増えているが、やはり、その値は小さく、そして、図7(a)に比べ傾きが緩やかで、電圧に対して、流速を効率的に高めることはできなかった。
FIG. 7C shows the result of supplying an alternating voltage having the same phase as in [Table 1] to the vibrating portions 22 1 , 22 2 , 22 3 , and 22 4 in this configuration. FIG. 7C shows the AC voltage [Vpp] applied on the horizontal axis and the flow rate [ml / s] on the vertical axis.
As can be seen from FIG. 7 (c), the flow rate is increased by increasing the voltage with respect to the initial flow rate (1.0 ml / s) of pure water, but the value is still small, and FIG. Compared to 7 (a), the slope was gentler, and the flow velocity could not be increased efficiently with respect to voltage.
 図7(a)~(c)の実験結果からも分かるように、振動部22に供給する交流電圧の位相や、振動部22の設置間隔が、進行波の位相に合うような条件で設定された場合、流速が非常に向上することが分かる。 As can be seen from the experimental results of FIGS. 7A to 7C, the phase of the AC voltage supplied to the vibration unit 22 and the installation interval of the vibration unit 22 are set under conditions that match the phase of the traveling wave. It can be seen that the flow rate is greatly improved.
 すなわち、図7(a)と、図7(b)(c)とを比較すると、振動部22に高電圧を供給することで、本発明が、より高い流動性を得ることができる。また、振動部22に低電圧を供給した場合であっても、本発明は、高い流動性を得ている。
 このように、本発明は、低電圧でも効率よく流体を輸送することができるため、低電圧での駆動が必要なマイクロポンプに適用することができる。
That is, when FIG. 7A is compared with FIGS. 7B and 7C, the present invention can obtain higher fluidity by supplying a high voltage to the vibrating portion 22. Moreover, even if it is a case where a low voltage is supplied to the vibration part 22, this invention has acquired the high fluidity | liquidity.
As described above, the present invention can efficiently transport a fluid even at a low voltage, and thus can be applied to a micropump that needs to be driven at a low voltage.
<実験例2>
 次に、実験例2として、振動型管体2の1ユニットを3個の振動部22(221,222,223)で構成して実験を行った。
 すなわち、実験例2は、基本的には、実験例1と同様の構成、同様の条件で実験を行うが、1ユニット内に設置する振動部22の数を4個から3個に変えて実験を行った。計測装置については、図6で説明した実験装置5と同様である。
<Experimental example 2>
Next, as Experimental Example 2, one unit of the vibration type tubular body 2 was configured by three vibration portions 22 (22 1 , 22 2 , 22 3 ) and an experiment was performed.
That is, in Experiment 2, the experiment is basically performed with the same configuration and the same conditions as in Experiment 1, but the number of vibration units 22 installed in one unit is changed from four to three. Went. The measuring device is the same as the experimental device 5 described in FIG.
 このとき、実験例2では、振動部221,222,223の設置間隔(リング型PZT素子の中心から中心までの設置間隔)Lを、前記(6)式({(m×n+1)/m}×λ)により求め、10.4mmとした。なお、実験例2では、前記(6)式におけるn、λは、実験例1と同様、“8”、“1.25”であり、mのみが、実験例1と異なる“3”である。 At this time, in Experimental Example 2, the installation interval (installation interval from the center of the ring-type PZT element) L of the vibrating portions 22 1 , 22 2 , and 22 3 is expressed by the above equation (6) ({(m × n + 1) / M} × λ) and was 10.4 mm. In Experimental Example 2, n and λ in Equation (6) are “8” and “1.25” as in Experimental Example 1, and only m is “3”, which is different from Experimental Example 1. .
 また、実験例2では、〔表3〕に示すように、エネルギ供給手段4の交流発生部41が、振動部221,222,223に、(360/m)°〔mは振動部の個数〕を満たすように、それぞれの振動部22に、位相を120°ずらした波形の交流電圧を供給した。なお、他の条件については、実験例1と同様である。 In Experimental Example 2, as shown in [Table 3], the AC generating unit 41 of the energy supply means 4 is moved to (360 / m) ° [m is the vibrating unit] in the vibrating units 22 1 , 22 2 , and 22 3. The AC voltage having a waveform whose phase is shifted by 120 ° is supplied to each of the vibrating sections 22 so as to satisfy the above. Other conditions are the same as in Experimental Example 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 この〔表3〕の条件で実験を行った結果を図8(a)に示した。
 図8(a)からも分かるように、純水の初期流速(1.0ml/s)に対し、電圧を増大させることで、線形的に流速が増大することが確認された。
FIG. 8A shows the result of the experiment conducted under the conditions of [Table 3].
As can be seen from FIG. 8A, it was confirmed that the flow rate increased linearly by increasing the voltage with respect to the initial flow rate of pure water (1.0 ml / s).
<比較例2>
 ここで、実験例2と比較するため、振動部221,222,223に供給する交流電圧の位相のずれが、(360/m)°〔mは振動部の個数〕を満たす場合であっても、振動部221,222,223の設置間隔が、{(m×n+1)/m}×λ(前記(6)式)の条件を満たさないことで、各振動部22が発生させる進行波の位相が、予め定めた進行波の位相のずれに合っていない場合について実験した。
 この比較例2では、基本的には、実験例2と同様の構成、同様の条件で、各振動部22の設置間隔のみを変えて、12.0mmとした。
<Comparative Example 2>
Here, for comparison with Experimental Example 2, the phase shift of the AC voltage supplied to the vibrating parts 22 1 , 22 2 , and 22 3 satisfies (360 / m) ° [m is the number of vibrating parts]. Even if it exists, each installation of the vibration parts 22 1 , 22 2 , and 22 3 does not satisfy the condition of {(m × n + 1) / m} × λ (the above expression (6)). An experiment was conducted in the case where the phase of the traveling wave to be generated did not match a predetermined phase shift of the traveling wave.
In Comparative Example 2, basically, the same configuration and the same conditions as in Experimental Example 2 were used, and only the installation interval of the vibrating portions 22 was changed to 12.0 mm.
 この構成において、〔表3〕と同様の位相となる交流電圧を振動部221,222,223に供給した結果を図8(b)に示す。
 図8(b)からも分かるように、純水の初期流速(1.0ml/s)に対し、電圧を増大させることで、流速は増えているが、やはり、その値は小さく、そして、図8(a)に比べ傾きが緩やかで、電圧に対して、流速を効率的に高めることはできなかった。
FIG. 8B shows the result of supplying an alternating voltage having the same phase as in [Table 3] to the vibrating portions 22 1 , 22 2 , and 22 3 in this configuration.
As can be seen from FIG. 8 (b), the flow rate is increased by increasing the voltage with respect to the initial flow rate (1.0 ml / s) of pure water, but the value is still small. The slope was gentle compared to 8 (a), and the flow rate could not be increased efficiently with respect to voltage.
 すなわち、機能細管装置1は、ユニット内の振動部22の個数が3個の場合であっても、各振動部22に供給する交流電圧の位相を、管体21内の進行波の位相に合致させることで、より低い電圧であっても効率よく流体を輸送することができる。 In other words, the functional thin tube device 1 matches the phase of the AC voltage supplied to each vibrating unit 22 with the phase of the traveling wave in the tube 21 even when the number of vibrating units 22 in the unit is three. By doing so, the fluid can be efficiently transported even at a lower voltage.
<実験例3>
 次に、実験例3として、実験例1と同様の構成で、振動部221,222,223,224に供給する交流電圧の位相を反転させる実験を行った。
 すなわち、実験例3では、実験例1と同様、振動部22の設置間隔を、前記(6)式を満たす10.3mmとした。また、実験例3では、〔表4〕に示すように、エネルギ供給手段4は、進行波反転手段42によって、交流発生部41で発生させる交流電圧の位相を反転させることで、振動部221,222,223,224に、実験例1で用いた交流電圧とは位相を反転させた波形(-sinθ、-cosθ、sinθ、cosθ)の交流電圧を供給した。なお、他の条件については、実験例1と同様である。
<Experimental example 3>
Next, as Experimental Example 3, an experiment was performed to reverse the phase of the AC voltage supplied to the vibrating units 22 1 , 22 2 , 22 3 , and 22 4 with the same configuration as that of Experimental Example 1.
That is, in Experimental Example 3, as in Experimental Example 1, the installation interval of the vibrating parts 22 was set to 10.3 mm satisfying the above expression (6). Further, in Experimental Example 3, as shown in [Table 4], the energy supply unit 4 causes the traveling wave inversion unit 42 to invert the phase of the AC voltage generated by the AC generation unit 41, thereby oscillating the unit 22 1. , 22 2 , 22 3 , and 22 4 were supplied with AC voltages having waveforms (−sin θ, −cos θ, sin θ, cos θ) whose phases were inverted from those of the AC voltage used in Experimental Example 1. Other conditions are the same as in Experimental Example 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 この〔表4〕の条件で実験を行った結果を図9に示した。
 図9からも分かるように、純水の初期流速(1.0ml/s)に対し、電圧を増大させると、線形的に流速が減少することが確認された。
The results of experiments conducted under the conditions shown in Table 4 are shown in FIG.
As can be seen from FIG. 9, it was confirmed that when the voltage was increased with respect to the initial flow rate of pure water (1.0 ml / s), the flow rate decreased linearly.
 以上説明したように、機能細管装置1は、管体21内の流体に発生させる進行波の位相に合わせるように、振動部22の位置と、各振動部22に供給する交流電圧の位相とを調整することで、印加する交流電圧に対して効率よく流体の輸送を行わせることができる。
 また、機能細管装置1は、低電圧であっても、流体の輸送を効率よく行うことができるため、小型で低電圧駆動が必要なマイクロポンプとして実現することができる。
 さらに、機能細管装置1は、印加する交流電圧の位相を反転させるだけで、流速を増大または減少させることができ、流体の速度を簡易に制御することができる。
As described above, the functional thin tube device 1 sets the position of the vibration unit 22 and the phase of the AC voltage supplied to each vibration unit 22 so as to match the phase of the traveling wave generated in the fluid in the tube body 21. By adjusting, the fluid can be efficiently transported with respect to the applied AC voltage.
Moreover, since the functional thin tube device 1 can efficiently transport a fluid even at a low voltage, it can be realized as a micropump that is small and requires low-voltage driving.
Furthermore, the functional thin tube device 1 can increase or decrease the flow velocity by simply inverting the phase of the AC voltage to be applied, and can easily control the fluid velocity.
 1   機能細管装置
 2   振動型管体
 21  管体
 22  振動部
 22a 圧電素子
 22b 金属電極
 22c 金属電極
 23  カバー
 3   信号線(ケーブル)
 4   エネルギ供給手段
 41  交流発生部
 42  進行波反転手段
 4a  電源スイッチ
 4b  制御つまみ(外部スイッチ)
 4c  表示装置
 4d  筐体
 5   実験装置
 51  貯水タンク
 52  チューブ
 53  チューブ
 54  計測装置
 U   ユニット
DESCRIPTION OF SYMBOLS 1 Functional thin tube apparatus 2 Vibrating-type tubular body 21 Tubing body 22 Vibrating part 22a Piezoelectric element 22b Metal electrode 22c Metal electrode 23 Cover 3 Signal line (cable)
4 Energy supply means 41 AC generator 42 Traveling wave reversing means 4a Power switch 4b Control knob (external switch)
4c display device 4d housing 5 experimental device 51 water storage tank 52 tube 53 tube 54 measuring device U unit

Claims (5)

  1.  流体の輸送を行う内部が中空な管体の長軸方向に、前記管体の管壁を内外方向に振動させる複数の振動部を互いに離間して設けた振動型管体と、前記複数の振動部を独立して振動させて、前記管体内に進行波を生じさせるためのエネルギを供給するエネルギ供給手段とを備えた機能細管装置であって、
     前記エネルギ供給手段は、
     ある振動部で発生させる進行波が、前記流体の進行方向において隣接する振動部の位置に到達するときの位相のずれに対応して、前記隣接する振動部において、前記ずれ分ずらした位相の進行波を発生させるように前記複数の振動部にエネルギを供給することを特徴とする機能細管装置。
    A vibration-type tube body provided with a plurality of vibration parts spaced apart from each other in the major axis direction of a hollow tube body that transports fluid in the long axis direction, and the plurality of vibrations An energy supply means for supplying energy for independently vibrating parts to generate traveling waves in the tubular body,
    The energy supply means includes
    Corresponding to a phase shift when a traveling wave generated by a certain vibration part reaches the position of the adjacent vibration part in the traveling direction of the fluid, the progression of the phase shifted by the shift in the adjacent vibration part A functional capillary device, wherein energy is supplied to the plurality of vibrating portions so as to generate a wave.
  2.  請求の範囲第1項に記載の機能細管装置において、
     前記振動型管体は、
     m個(mは2以上の整数)の前記振動部を1つのユニットとし、前記進行波の波長をλ、振動部中心から振動部中心までの間隔をL、当該間隔において発生させる前記進行波の波の数をn(nは0以上の整数)としたとき、前記振動部をL={(m×n+1)/m}×λの間隔で設け、
     前記エネルギ供給手段は、
     前記ユニットの前記流体の送り元に最も近い振動部へ供給する交流電圧の位相を基準として、他の振動部に供給する交流電圧の位相をそれぞれ(360/m)°ずつ進ませて交流電圧を供給することを特徴とする機能細管装置。
    In the functional capillary device according to claim 1,
    The vibrating tube is
    m (m is an integer greater than or equal to 2) of the above-mentioned vibrating parts are set as one unit, the wavelength of the traveling wave is λ, the distance from the center of the vibrating part to the center of the vibrating part is L, and the traveling wave generated at the interval is When the number of waves is n (n is an integer greater than or equal to 0), the vibrating portions are provided at intervals of L = {(m × n + 1) / m} × λ,
    The energy supply means includes
    Based on the phase of the alternating voltage supplied to the vibrating part closest to the fluid source of the unit as a reference, the phase of the alternating voltage supplied to the other vibrating part is advanced by (360 / m) °, respectively. A functional capillary device characterized by supplying.
  3.  請求の範囲第1項に記載の機能細管装置において、
     前記ユニットにおける前記振動部の数を4個とし、それぞれの振動部をL={(4×n+1)/4}×λの間隔で設け、
     前記エネルギ供給手段は、
     前記ユニットの前記流体の送り元に最も近い振動部から順に、0°、90°、180°、270°位相をずらしてそれぞれの振動部に交流電圧を供給することを特徴とする機能細管装置。
    In the functional capillary device according to claim 1,
    The number of the vibration parts in the unit is four, and each vibration part is provided at an interval of L = {(4 × n + 1) / 4} × λ.
    The energy supply means includes
    A functional capillary device that supplies an alternating voltage to each of the oscillating units by sequentially shifting the phase by 0 °, 90 °, 180 °, and 270 ° from the oscillating unit closest to the fluid source of the unit.
  4.  請求の範囲第1項から第3項のいずれか一項に記載の機能細管装置において、
     前記エネルギ供給手段は、
     外部スイッチにより、一方向に進行する進行波を発生させている前記複数の振動部に供給する交流電圧の位相を、前記進行波を逆方向の向きに発生させるように反転させる進行波反転手段を備えることを特徴とする機能細管装置。
    In the functional thin tube device according to any one of claims 1 to 3,
    The energy supply means includes
    Traveling wave reversing means for reversing the phase of the AC voltage supplied to the plurality of vibrating parts generating traveling waves traveling in one direction by an external switch so as to generate the traveling waves in the opposite direction. A functional capillary device characterized by comprising.
  5.  流体の輸送を行う内部が中空な管体の長軸方向に、前記管体の管壁を内外方向に振動させる複数の振動部を互いに離間して設けた振動型管体と、前記複数の振動部を独立して振動させて、前記管体内に進行波を生じさせるためのエネルギを供給するエネルギ供給手段とを備えた機能細管装置を用い、
     ある振動部で発生させる進行波が、前記流体の進行方向において隣接する振動部の位置に到達するときの位相のずれに対応して、前記ずれ分ずらした位相の進行波を発生させるように前記隣接する複数の振動部に順次エネルギを供給することを特徴とする機能細管装置の駆動方法。
    A vibration-type tube body provided with a plurality of vibration parts spaced apart from each other in the major axis direction of a hollow tube body that transports fluid in the long axis direction, and the plurality of vibrations Using a functional thin tube device provided with energy supply means for supplying energy for independently generating vibrations to generate traveling waves in the tubular body,
    Corresponding to a phase shift when a traveling wave generated in a certain vibrating section reaches a position of an adjacent vibrating section in the traveling direction of the fluid, a traveling wave having a phase shifted by the shift is generated. A driving method of a functional capillary device, wherein energy is sequentially supplied to a plurality of adjacent vibration units.
PCT/JP2010/070880 2009-11-25 2010-11-24 Functional capillary device and drive method for same WO2011065356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009267628 2009-11-25
JP2009-267628 2009-11-25

Publications (1)

Publication Number Publication Date
WO2011065356A1 true WO2011065356A1 (en) 2011-06-03

Family

ID=44066461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070880 WO2011065356A1 (en) 2009-11-25 2010-11-24 Functional capillary device and drive method for same

Country Status (1)

Country Link
WO (1) WO2011065356A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201500A1 (en) * 2019-04-04 2020-10-08 Tomorrow's Motion GmbH Acoustic principle based fluid pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297779A (en) * 1987-05-29 1988-12-05 Hitachi Ltd Transfer device for trace quantity of fluid
JP2004150438A (en) * 2002-10-31 2004-05-27 Hewlett-Packard Development Co Lp Fluidic pumping system
WO2008102817A1 (en) * 2007-02-22 2008-08-28 Tokai University Educational System Functional thin tube device
WO2009050998A1 (en) * 2007-10-15 2009-04-23 Sanyo Electric Co., Ltd. Fluid transfer device and fuel cell with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297779A (en) * 1987-05-29 1988-12-05 Hitachi Ltd Transfer device for trace quantity of fluid
JP2004150438A (en) * 2002-10-31 2004-05-27 Hewlett-Packard Development Co Lp Fluidic pumping system
WO2008102817A1 (en) * 2007-02-22 2008-08-28 Tokai University Educational System Functional thin tube device
WO2009050998A1 (en) * 2007-10-15 2009-04-23 Sanyo Electric Co., Ltd. Fluid transfer device and fuel cell with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201500A1 (en) * 2019-04-04 2020-10-08 Tomorrow's Motion GmbH Acoustic principle based fluid pump
US12092089B2 (en) 2019-04-04 2024-09-17 Tomorrow's Motion GmbH Fluid pump having actuators including movable elements for pumping fluid in a pumping direction

Similar Documents

Publication Publication Date Title
Watson et al. Piezoelectric ultrasonic micro/milli-scale actuators
JP4999207B2 (en) Functional capillary device
JP5384794B2 (en) Driving method and driving apparatus of standing wave type ultrasonic actuator
JPS5996881A (en) Motor device utilizing supersonic vibration
JP4422721B2 (en) Traveling wave type ultrasonic motor
US8035275B2 (en) Vibration actuator, lens barrel, camera system and vibrating element
WO2011065356A1 (en) Functional capillary device and drive method for same
JP6957640B2 (en) Activating buckling mode of fiber scanner to increase field of view
JPS62225182A (en) Oscillatory wave motor
JP2010107572A (en) Optical scanner
KR100661311B1 (en) Piezoelectric ultrasonic motor
Murimi et al. A survey of Ultrasonic Waves in Powder Transportation
JP4411736B2 (en) Actuator driving method and apparatus
JPH08242592A (en) Ultrasonic actuator
JP2006271167A (en) Piezoelectric actuator
JP2001178161A (en) Actuator
JP6012226B2 (en) Vibration wave driving device and driving circuit thereof
JPH08149862A (en) Ultrasonic oscillator
JP2009101284A (en) Liquid fluidizing apparatus
JPH0993962A (en) Oscillatory actuator
JP2009217093A (en) Optical reflection element
Takano et al. 3-09-02 Electrode Structre of the Multi-layered Piezoelectric Transducer for Longitudinal-Bending Ultrasonic Actuators (High power ultrasound)
Murimi Application of Ultrasonic Waves in Powder Transportation
Naz et al. A Comprehensive Review of Piezoelectric Ultrasonic Motors: Classifications, Characterization, Fabrication, Applications, and Future Challenges
Zhang Designs of Surface Acoustic Waves for Micro/Nano-scale Particles/Fluid Manipulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP