JPS5996881A - Motor device utilizing supersonic vibration - Google Patents

Motor device utilizing supersonic vibration

Info

Publication number
JPS5996881A
JPS5996881A JP57205220A JP20522082A JPS5996881A JP S5996881 A JPS5996881 A JP S5996881A JP 57205220 A JP57205220 A JP 57205220A JP 20522082 A JP20522082 A JP 20522082A JP S5996881 A JPS5996881 A JP S5996881A
Authority
JP
Japan
Prior art keywords
elastic body
wave
vibrator
rotor
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57205220A
Other languages
Japanese (ja)
Other versions
JPH0117354B2 (en
Inventor
Toshio Sashita
年生 指田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57205220A priority Critical patent/JPS5996881A/en
Priority to CA000421908A priority patent/CA1208269A/en
Priority to GB08304897A priority patent/GB2120462B/en
Priority to IT19758/83A priority patent/IT1169116B/en
Priority to FR838303019A priority patent/FR2522216B1/en
Priority to NL8300700A priority patent/NL8300700A/en
Priority to CH1049/83A priority patent/CH665511A5/en
Priority to BR8300874A priority patent/BR8300874A/en
Priority to ES520082A priority patent/ES8402734A1/en
Priority to DE19833306755 priority patent/DE3306755A1/en
Priority to US06/610,933 priority patent/US4562374A/en
Publication of JPS5996881A publication Critical patent/JPS5996881A/en
Priority to US07/135,187 priority patent/USRE33390E/en
Publication of JPH0117354B2 publication Critical patent/JPH0117354B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/08Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using travelling waves, i.e. Rayleigh surface waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Abstract

PURPOSE:To obtain a strong motor device which has small size and light weight by associating an electrostrictive or magnetostrictive element in an elastic unit, and rotatably or linearly moving a movable unit by surface wave excited on the surface. CONSTITUTION:The node part of a cylindrical bendable vibrator 12 is supported by a supporting member 12 in a casing body 11. A taper 13a is provided on the outer peripheral surface at the center of the vibrator 13, and the one end side of the inner peripheral surface of the rotor 14 is pressurized and contacted as a movable unit on the surface. The rotor 14 is axially movably supported to the rotational shaft 15, and the rotary force is transmitted through a pressure regulating mechanism 16 to the shaft 15. This vibrator 13 is associated with a plurality of electrostrictive or magnetostrictive elements 18, 19, and which are associated with the elastic unit. A surface wave which is produced by combining the lateral wave and the longitudinal wave is generated on the surface of the taper 13a, and the rotor 14 is driven in a direction.

Description

【発明の詳細な説明】 本発明は超音波振動子の表面において励振される進行波
を、相互に加圧接触する位置に配置した動体の一方向運
動に変換することを特徴とするモーター装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a motor device characterized in that it converts a traveling wave excited on the surface of an ultrasonic transducer into a unidirectional motion of moving objects placed in pressure contact with each other. It is something.

従来から広く用いられてbる各種モーター装置は、その
駆動源として電磁力を応用したものが大部分であり、各
種用途に使われている。しかしこれら装置の大きさや重
量及び回転力(トルク)等は用いられる材料によって一
定の制限を受けるものである。何故ならば上記因子は用
いられる材料の磁気的特性等によって決められるもので
あり、これらの特性を超えた装置は回転駆動を行うこと
が不可能となるためである。
Most of the various motor devices that have been widely used in the past utilize electromagnetic force as their driving source, and are used for various purposes. However, the size, weight, rotational force (torque), etc. of these devices are subject to certain limitations depending on the materials used. This is because the above-mentioned factors are determined by the magnetic properties of the materials used, and devices exceeding these properties cannot be rotated.

一方上記各種モーター装置に代替する装置として、本出
願人によって超音波振動を利用したモーター装置(特願
昭54−61955号、特願昭55−40656号、特
願昭55−152756号)が提案されており、その技
術内容として超音波振動子により振動子により振動する
振動体の一端と動体の一端面を相互に対向する位置に配
置し、両者間に板状又は棒状の振動片を介在させて、該
振動片を適当な角度で傾けて超音波振動子の往復運動を
動体の一方向運動に変換する如き装置が開示されている
。上記発明によって超音波の持つ強力な振動エネルギー
を回転又は直進運動に変換することによって小形に)7
て軽量なモーター装置を実現1−だものであるが、本願
は上記装置とは更に観点を変えて、弾性体内に電歪素子
又は磁歪素子を組込構成した超音波振動子の表面忙励振
される進行波を利用したモーター装置の提供を目的とす
るものである。
On the other hand, as an alternative to the various motor devices mentioned above, the present applicant has proposed a motor device using ultrasonic vibration (Japanese Patent Application No. 54-61955, Japanese Patent Application No. 55-40656, Japanese Patent Application No. 55-152756). The technical content is that one end of a vibrating body vibrated by an ultrasonic vibrator and one end face of a moving body are placed in positions facing each other, and a plate-shaped or rod-shaped vibrating piece is interposed between the two. A device has been disclosed in which the reciprocating motion of an ultrasonic transducer is converted into unidirectional motion of a moving body by tilting the vibrating piece at an appropriate angle. With the above invention, the powerful vibrational energy of ultrasonic waves is converted into rotational or linear motion, resulting in a compact size)7
However, in the present application, the viewpoint is further changed from the above device, and the surface of an ultrasonic vibrator having an electrostrictive element or a magnetostrictive element incorporated in an elastic body is excited. The purpose of this invention is to provide a motor device that utilizes traveling waves.

以下図面を参照l〜で本発明に係るモーター装置の動作
原理と実施例に関し詳細な説明を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operating principle and embodiments of the motor device according to the present invention will be described in detail below with reference to the drawings.

第1図は動作原理を説明するための一部拡大斜視図であ
る。1は金属等弾性体であり、その表面1a上に横振動
と縦振動が合成された進行波が形成された状態を拡大し
て示している。上記進行波とは第1に一般にレイリー波
と呼ばれる表面波であり、弾性体の表面に沿って伝わる
波が存在する仁とが理論的に解明されている。固体中に
おける弾性波は縦波と横波とがあり、夫々独立に存在す
るが、表面という境界条件のため互いに錯綜し合って合
成される。レイリー波を発生させるには基板媒質上に縦
又は横振動をする振動子をのせて基板の表面をたたけば
よく、どんなたたきかたをi〜ても振動源より相当能れ
たところで表面波成分を観測することができる。
FIG. 1 is a partially enlarged perspective view for explaining the principle of operation. Reference numeral 1 designates an elastic body such as a metal, and the state in which a traveling wave, which is a combination of transverse vibration and longitudinal vibration, is formed on its surface 1a is shown in an enlarged manner. The traveling wave mentioned above is firstly a surface wave generally called a Rayleigh wave, and it has been theoretically elucidated that there are waves that propagate along the surface of an elastic body. Elastic waves in solids include longitudinal waves and transverse waves, each of which exists independently, but due to the boundary condition of the surface, they intertwine and are synthesized. To generate Rayleigh waves, it is sufficient to place a vibrator that vibrates vertically or horizontally on the substrate medium and strike the surface of the substrate. No matter how you strike, the surface wave component will be generated at a point far away from the vibration source. can be observed.

第2に棒状(板状)弾性体の屈曲振動による進行波であ
り、弾性体の表面には縦波と横波とが90°位相のずれ
た楕円振動が形成され、棒状(板状)弾性体に沿って伝
搬する。第6に棒状(板状)弾性体に沿って伝搬する 
縦波航行波であって、弾性体の表面にはポアッソン比に
よる横波が表われる。この場合も弾性体表面は縦波と横
波とが90°位相のずれた楕円振動を形成する。
The second is a traveling wave caused by the bending vibration of a rod-shaped (plate-shaped) elastic body, and an elliptical vibration in which longitudinal waves and transverse waves are out of phase by 90 degrees is formed on the surface of the elastic body, and the rod-shaped (plate-shaped) elastic body propagates along. Sixth, it propagates along the rod-shaped (plate-shaped) elastic body.
It is a longitudinal wave, and a transverse wave appears on the surface of an elastic body due to Poisson's ratio. In this case as well, the surface of the elastic body forms elliptical vibrations in which longitudinal waves and transverse waves are out of phase by 90 degrees.

前記第1図の場合、振動源は示しておらず、レイリー波
の伝搬−状態のみを示している。即ち、今質点Bに着目
すると、横振巾a(上下方向)と縦振巾す、(左右方向
)との合成された惰円Q上を矢印Nの方向に運動してお
り、その進行波tri 音速U ノスピードで移動して
いる。この運動は弾性体表面上1このどの点であっても
同様であって、この状態下でフリーなi体20表面を弾
性体1の表面上に加圧接触させると、該動体2は弾性体
1の進行波の頂点A及びA′の部分でのみ接触[7てお
り、且つ該頂点A、 A’は振動速度v = 2π4b
(ただし子は振動数)で矢印Mの方向に運動しているの
であるから、フリーな動体2は弾性体1との摩擦力によ
って矢印Nの方向に駆動されることになる。
In the case of FIG. 1, the vibration source is not shown, and only the propagation state of Rayleigh waves is shown. That is, if we focus on the mass point B, it is moving in the direction of the arrow N on the inertia circle Q, which is a combination of the horizontal amplitude a (vertical direction) and the longitudinal amplitude (horizontal direction), and its traveling wave It is moving at the speed of tri sound U. This movement is the same at any point on the surface of the elastic body 1, and under this condition, when the surface of the free i-body 20 is pressed into contact with the surface of the elastic body 1, the moving body 2 moves to the surface of the elastic body 1. Contact occurs only at the vertices A and A' of the traveling wave of 1, and the vertices A and A' have a vibration velocity v = 2π4b
Since the free moving body 2 is moving in the direction of the arrow M at a frequency (where the child is the frequency), the free moving body 2 is driven in the direction of the arrow N by the frictional force with the elastic body 1.

本発明は上記進行波にょる動体の駆動を基本としたモー
ター装置に係り、その実施例を以下に説明する。第2図
は装置の一部断面図を示]7ており、図中11はケーシ
ング本体であって、その内部に筒状屈曲振動子16の節
部分を支持部材12で支え、且つ該振動子16の略中央
部外周面にテーパー13aを設け、こノテーバー16a
の面上に動体としての回転子14の内周面一端側が加圧
接触するように配置する。回転子14は回転軸15に対
してその軸方向に移動可能に支持され、回転力が調圧機
構16を介して回転軸15に伝えられる。尚調圧機構1
6の一例詳細は第5図によって後述する。17は軸受を
示している。
The present invention relates to a motor device based on driving a moving object using the traveling wave described above, and embodiments thereof will be described below. FIG. 2 shows a partial cross-sectional view of the device] 7, in which reference numeral 11 is a casing body, inside which the node portion of the cylindrical bending vibrator 16 is supported by a support member 12, and the vibrator is A taper 13a is provided on the outer peripheral surface of the approximately central portion of the taper 16a.
The rotor 14 as a moving body is arranged so that one end side of the inner circumferential surface of the rotor 14 is in pressurized contact with the surface of the rotor 14 . The rotor 14 is supported movably in the axial direction relative to the rotating shaft 15, and rotational force is transmitted to the rotating shaft 15 via the pressure regulating mechanism 16. Additionally, pressure regulating mechanism 1
6 will be described in detail later with reference to FIG. 17 indicates a bearing.

振動子16は中途部において電歪素子18゜19を組込
み構成してあり、進行波の励振源となっている。第6図
は上記振動子16の側面図を示し、第4図は第6図のA
−A線断面を示す。
The vibrator 16 has electrostrictive elements 18 and 19 incorporated in its midway portion, and serves as an excitation source for traveling waves. FIG. 6 shows a side view of the vibrator 16, and FIG.
-A cross section is shown.

第6図において電歪素子18.19は軸方向に矢印のよ
うに伸縮動作する構成とし、その間に電極20をはさみ
込んである。電歪素子と電極の配置は第4図に示す如く
、対角にある電極a。
In FIG. 6, electrostrictive elements 18 and 19 are configured to expand and contract in the axial direction as shown by arrows, and electrodes 20 are sandwiched between them. The arrangement of the electrostrictive element and the electrodes is as shown in FIG. 4, with electrode a on the diagonal.

bを結線して端子21に導き、同様に電極C1dを結線
して端子22に導く。夫々の対角位置にある電歪素子は
互に逆方向に伸縮するように動作する。即ち、電極aに
接する電歪素子18゜19は伸長方向へ、電極bK接す
る電歪素子18゜19は短縮方向へ動作するように分極
する。更に電極dに接する電歪素子18.19は伸長方
向へ、電極Cに接する電歪素子is、19a短縮方向へ
動作するように分極する。
b is connected and led to the terminal 21, and the electrode C1d is similarly connected and led to the terminal 22. The electrostrictive elements located at respective diagonal positions operate to expand and contract in opposite directions. That is, the electrostrictive elements 18-19 in contact with the electrode a are polarized so as to operate in the elongating direction, and the electrostrictive elements 18-19 in contact with the electrode bK are polarized so as to operate in the shortening direction. Further, the electrostrictive elements 18, 19 in contact with the electrode d are polarized so as to operate in the elongating direction, and the electrostrictive elements is, 19a in contact with the electrode C are polarized so as to operate in the shortening direction.

第5図は調圧機構16の一例を示す断面図である。同図
は自動調圧機構の一例を示しており、回転軸15と回転
子14との間にV形成をもった特殊なカム23.24の
一対と、その中間に介在する複数個の鋼球25を設ける
ことにより、無負荷のときはカム底部に鋼球があるが、
負荷が加わり、トルクが増加するに従って鋼球が溝をの
り上げて軸方向の圧力が発生するように機能する。それ
によって回転子14のトルクが回転軸15側に伝達され
る。
FIG. 5 is a sectional view showing an example of the pressure regulating mechanism 16. The figure shows an example of an automatic pressure adjustment mechanism, which includes a pair of special cams 23 and 24 with a V-formation between the rotating shaft 15 and the rotor 14, and a plurality of steel balls interposed between them. By providing 25, there is a steel ball at the bottom of the cam when there is no load, but
As the load is applied and the torque increases, the steel ball rides up the groove, creating axial pressure. Thereby, the torque of the rotor 14 is transmitted to the rotating shaft 15 side.

上記の構成により、第4図に示す電極a、bに結線され
た端子21と振動子16との間に高周波電圧を印加する
と、振動子16は第6図に示すような屈曲振動をひきお
こす。即ち一次の振動状態において、中央部B点が振動
の腹、H及びに点が振動の節となる。次に他の一方の電
極c、dに結線された端子22と、振動子16の間に前
記電極a、bの電圧に対して90°位相のずれだ高周波
電圧を加えると前記B点の振動と垂直方向に位相のずれ
だ振動Z(紙面に垂直方向)が引き起され、いわば縦波
と横波とを人工的に作り出すことになり、その合成波が
回転円振動となる。
With the above configuration, when a high frequency voltage is applied between the vibrator 16 and the terminal 21 connected to the electrodes a and b shown in FIG. 4, the vibrator 16 causes a bending vibration as shown in FIG. 6. That is, in the first-order vibration state, point B in the center is the antinode of vibration, and points H and 2 are nodes of vibration. Next, when a high frequency voltage having a phase shift of 90° with respect to the voltage of the electrodes a and b is applied between the terminal 22 connected to the other electrodes c and d and the vibrator 16, the vibration at the point B is applied. A phase-shifted vibration Z (perpendicular to the plane of the paper) is induced in the vertical direction, so to speak, a longitudinal wave and a transverse wave are artificially created, and the composite wave becomes a rotating circular vibration.

第7図により振動子中央部16B1即ち振動の腹の部分
と、それに外接する回転子14の内周面1転との接触状
態を1/4周期毎に分解して(A)(B)(C1α))
に示した。即ち回転子14の内周面14aは振動子16
側の波の頂点と接触しており、その接触点は順次移動し
て1周期毎に回転子14の内周面14aを一周する。頂
点の質点速度は、振動の振巾に比例し、0−数m / 
sec程度である。上記の接触点の移動によって振動子
側に発生した振動が回転子側の回転力として変換される
理由を以下に述べる。即ち回転子14の内周面14aの
局長と、これに内接する振動子16の外周面13Bの局
長とを比較した場合、図示より明らかなように当然前者
の周長の方が長く、よって第7図に示したように両者の
接触点が順次移動して、接触点が一周l〜た時、前記の
両局長差の分だけ回転子14側がずれることに々す、そ
れが回転となりて取り出される。
7, the contact state between the vibrator central portion 16B1, that is, the antinode portion of the vibration, and the inner peripheral surface of the rotor 14 that circumscribes it is broken down into quarter cycles (A), (B), C1α))
It was shown to. That is, the inner peripheral surface 14a of the rotor 14 is the vibrator 16.
The contact point is in contact with the top of the side wave, and the contact point moves sequentially and goes around the inner circumferential surface 14a of the rotor 14 every cycle. The velocity of the mass at the apex is proportional to the amplitude of vibration, and is 0 to several m/
It is about sec. The reason why the vibration generated on the vibrator side due to the movement of the contact point is converted into rotational force on the rotor side will be described below. That is, when comparing the length of the inner circumferential surface 14a of the rotor 14 and the length of the outer circumferential surface 13B of the vibrator 16 inscribed therein, as is clear from the illustration, the former has a longer circumference, and therefore As shown in Fig. 7, when the contact points between the two move sequentially and the contact points go through one rotation, the rotor 14 side shifts by the difference between the two stations, which causes rotation and takes out the rotor 14. It will be done.

又電極a、b又はc、dに加える高周波電圧の位相を逆
転することによって回転子の回転方向全切り換えること
ができる。
Further, by reversing the phase of the high frequency voltage applied to electrodes a, b or c, d, the entire rotational direction of the rotor can be switched.

第8図は本発明の他の実施例を示す(イ)−細断面図、
c口’IA−A線断面図である。本実施例によればケー
シング本体61の内部に支持部材62に支えられたリン
グ状屈曲振動子66を配置し、その内周面にテーパー3
38を設け、回転子64の外周面が接触するように配置
される。
FIG. 8 shows another embodiment of the present invention (a) - thin sectional view;
It is a cross-sectional view taken along line c' IA-A. According to this embodiment, a ring-shaped bending vibrator 66 supported by a support member 62 is disposed inside a casing body 61, and a taper 3 is formed on the inner peripheral surface of the ring-shaped bending vibrator 66.
38 is provided and arranged so that the outer circumferential surface of the rotor 64 comes into contact with it.

回転子34は回転軸65に対して軸方向に対して移動可
能に支持され第5図に示した構成と同様の調圧機構66
を設けて回転軸65に回転力を伝える。67は電歪素子
□を示し68は軸受を示す。第8図(ロ)において(同
図ではケーシング本体31の断面を省略しである)リン
グ状屈曲振動子66は弾性体で構成され、その外周に固
定配置1〜九電歪素子67は夫々矢印方向に伸縮するよ
うに分極されて、電極”l bl  C1d1e+  
f+g+ hを設ける。更に電極a、b、c。
The rotor 34 is supported so as to be movable in the axial direction with respect to the rotating shaft 65, and has a pressure regulating mechanism 66 similar to the configuration shown in FIG.
is provided to transmit rotational force to the rotating shaft 65. 67 indicates an electrostrictive element □, and 68 indicates a bearing. In FIG. 8(B) (the cross section of the casing body 31 is omitted in the same figure), the ring-shaped bending vibrator 66 is made of an elastic body, and the electrostrictive elements 1 to 9 fixedly arranged on the outer periphery are respectively indicated by the arrows. The electrode "l bl C1d1e+
Provide f+g+h. Furthermore, electrodes a, b, and c.

dを結線して端子69に導き、同様に電極e。d and lead it to the terminal 69, and similarly the electrode e.

f、g、hを結線して端子40に導く。端子69と振動
子66との間に高周波電圧を印加し、更に端子40と振
動子36との間に90°位相をずらした高周波電圧を印
加すると振動子66がバイモルフ形の屈曲振動を発生中
る。この際の屈曲振動数+は ただし E:ヤング率  ♂:ポアソン比a:中心円の
半径h:周壁の厚さ n:屈曲振動の次数 /′:材料の密度上記実施例はn
= 2の場合であって、第9図により振動子66に内接
する回転子64の接触状態を1Z4周期毎に分解して(
A)<B)(CJ (D)に示した。
Connect f, g, and h and lead them to the terminal 40. When a high frequency voltage is applied between the terminal 69 and the vibrator 66, and a high frequency voltage with a 90° phase shift is applied between the terminal 40 and the vibrator 36, the vibrator 66 is generating bimorph bending vibration. Ru. In this case, the bending frequency + is as follows: E: Young's modulus ♂: Poisson's ratio a: Radius of the center circle h: Thickness of the peripheral wall n: Order of bending vibration /': Density of the material In the above example, n
In the case of = 2, the contact state of the rotor 64 inscribed in the vibrator 66 is decomposed into every 1Z4 period according to FIG.
A)<B)(CJ Shown in (D).

上記両者の接触する点が波の頂点であり、その頂点は振
動の一周期につき回転子64の外周面上を半周し、上記
接触点の移動によって振動子66側に発生した振動が回
転子64側の回転力として伝達されることは第7図に示
した例によって説明しまた通りである。
The point where the two contact each other is the apex of the wave, and the apex makes half a revolution on the outer peripheral surface of the rotor 64 in one cycle of vibration, and the vibration generated on the vibrator 66 side by the movement of the contact point is transmitted to the rotor 64. The fact that it is transmitted as a rotational force on the side is the same as explained using the example shown in FIG.

第10図は本発明の更に他の実施例を示し、(イ)図は
一部断面図、(ロ)図は圧電体の電極配置図である。本
実施例によれば90°位相のずれた2回路の高周波電圧
をそれぞれの電極a、bに印加し圧電体2を励振させる
。弾性リング1はバイモルフ振動を発生し、その一端面
1人に横波と縦波の合成された表面波が形成され、その
一端面に加圧接触された回転子6が回転駆動を受ける。
FIG. 10 shows still another embodiment of the present invention, in which (a) is a partial cross-sectional view, and (b) is an electrode arrangement diagram of a piezoelectric body. According to this embodiment, the piezoelectric body 2 is excited by applying high frequency voltages of two circuits having a phase shift of 90° to each electrode a and b. The elastic ring 1 generates bimorph vibration, and a surface wave composed of a transverse wave and a longitudinal wave is formed on one end surface of the elastic ring 1, and the rotor 6, which is in pressure contact with the one end surface, is driven to rotate.

第10図(ロ)は圧電体の分極方向と電極配置である。FIG. 10(b) shows the polarization direction of the piezoelectric body and the electrode arrangement.

電極ピッチを表面波の波長の1/2とし圧電体の分極方
向を図(ロ)に示すようにee■e・・・とする。(電
極群AとBの位置を1/4波長ずらし)各電極は結線さ
れ端子aとbの2回路構成する。上記の構成により端子
aとbに90°位相のずれた高周波電圧を印加すると弾
性体表面上に進行波が形成される。
The electrode pitch is set to 1/2 of the wavelength of the surface wave, and the polarization direction of the piezoelectric body is set to ee, *e, etc., as shown in the figure (b). (The positions of electrode groups A and B are shifted by 1/4 wavelength.) Each electrode is connected to form two circuits of terminals a and b. With the above configuration, when high frequency voltages with a phase shift of 90° are applied to terminals a and b, a traveling wave is formed on the surface of the elastic body.

第1i図は本発明の更に他の実施例を示しており、超音
練振動を直進運動に変換するリニアモーターの一例を示
している。同図において板状部材41の表面に対して単
数又は複数の弾性体42 (,12)を加圧接触さ・せ
、該弾性体42表面の一部に圧電体、13(43)を設
けて、弾性体42に表面波(レイリー波)を発生させる
FIG. 1i shows still another embodiment of the present invention, and shows an example of a linear motor that converts ultrasonic vibration into linear motion. In the figure, one or more elastic bodies 42 (, 12) are brought into pressure contact with the surface of a plate-like member 41, and a piezoelectric body 13 (43) is provided on a part of the surface of the elastic body 42. , generates a surface wave (Rayleigh wave) in the elastic body 42.

弾性体42のコーナ一部42aを曲面形状とすることに
よって表面波は弾性体42の表面に沿って伝搬し、板状
部材41を矢印W方向に移動させるように駆動させる。
By forming the corner part 42a of the elastic body 42 into a curved shape, the surface waves propagate along the surface of the elastic body 42, and drive the plate member 41 to move in the direction of the arrow W.

第1Z図は棒状弾性体1の表面に板状部材2を加圧接触
させ、棒状弾性体1の他の一部に複数の圧電体6を固定
配置l〜、棒状弾性体を曲線形状に曲げてエンドレス構
造としたリニアモーターの一例である。上記の構成によ
り棒状弾性体は屈曲振動をひきおこし、その波動は棒状
弾性体1に沿って伝搬し、進行波となってリング上を循
環する。
In Fig. 1Z, the plate-like member 2 is brought into pressure contact with the surface of the rod-like elastic body 1, a plurality of piezoelectric bodies 6 are fixedly arranged on the other part of the rod-like elastic body 1, and the rod-like elastic body is bent into a curved shape. This is an example of a linear motor with an endless structure. With the above configuration, the rod-shaped elastic body causes bending vibration, and the waves propagate along the rod-shaped elastic body 1 and become traveling waves that circulate on the ring.

第13図は2本の棒状弾性体1,2を結合子6.4によ
って固定し、一方の棒状弾性体1の表面に板状部材5を
加圧接触させ、他方の棒状弾性体2の一部に複数の圧電
体6を固定配置したリニアモーターの一例である。上記
の構成により棒状弾性体2は圧電体6により屈曲振動を
ひきおこし、その進行波は棒状弾性体1の端部で結合+
6の縦振動に変換され、その縦振動は棒状弾性体2の屈
曲振動に変換され、進行波となって棒状弾性体2上を伝
搬する。この進行波は結合子4を通ってもとへもどる。
In FIG. 13, two rod-shaped elastic bodies 1 and 2 are fixed by a connector 6.4, a plate-shaped member 5 is brought into pressure contact with the surface of one of the rod-shaped elastic bodies 1, and one part of the other rod-shaped elastic body 2 is fixed. This is an example of a linear motor in which a plurality of piezoelectric bodies 6 are fixedly disposed at a portion thereof. With the above configuration, the rod-shaped elastic body 2 causes bending vibration by the piezoelectric body 6, and the traveling wave is coupled at the end of the rod-shaped elastic body 1.
6, and the longitudinal vibration is converted into a bending vibration of the rod-shaped elastic body 2, which becomes a traveling wave and propagates on the rod-shaped elastic body 2. This traveling wave passes through the connector 4 and returns.

第14図は棒状弾性体1の両端部に振動子2゜6を結合
し、棒状弾性体の表面に板状部材4を加圧接触させたリ
ニアモーターの一例である。
FIG. 14 shows an example of a linear motor in which vibrators 2.degree. 6 are coupled to both ends of a rod-like elastic body 1, and a plate-like member 4 is pressed into contact with the surface of the rod-like elastic body.

上記の構成により、棒状弾性体1は振動子2により屈曲
振動をひきおこし、その進行波は振動子6により振動エ
ネルギーを吸収される。この振動エネルギーは電気エネ
ルギーに変換され、回収または振動子2に帰還される。
With the above configuration, the rod-shaped elastic body 1 causes bending vibration by the vibrator 2, and the vibration energy of the traveling wave is absorbed by the vibrator 6. This vibrational energy is converted into electrical energy and recovered or fed back to the vibrator 2.

第19図は上記実施例に用いた一方向表面波発生方法を
示しており、圧電体460表面に複数個の電極44.4
4・・・を配置し、図示の如く6回路に分割接続して移
相器45に接続する。
FIG. 19 shows the unidirectional surface wave generation method used in the above embodiment, in which a plurality of electrodes 44.
4... are arranged, and as shown in the figure, they are divided into six circuits and connected to the phase shifter 45.

該移相器45により、夫々の回路に0°、120゜24
0°の如く120°位相のずれた高周波電圧を印加する
ことによって圧電体46に一方向表面波を発生させるこ
とができる。
The phase shifter 45 provides 0° and 120°24 to each circuit.
A unidirectional surface wave can be generated in the piezoelectric body 46 by applying high frequency voltages with a phase shift of 120 degrees, such as 0 degrees.

第16図は棒状(板状)弾性体1の表面上に2回路(A
及びB)の電極を有する圧電体2を固定し、圧電体の分
極方向を1/4波長おきに弾性体1に対して紙面に垂直
方向の矢印M、M’・・・となるように配置する。電極
A及びBにそれぞれ90’位相のずれだ高周波電圧を印
加すると棒状弾性体はバイモルフ振動をひきおこし一定
方向の進行波を形成する。
FIG. 16 shows two circuits (A
and B) The piezoelectric body 2 having the electrodes is fixed, and the piezoelectric body is arranged so that the polarization direction of the piezoelectric body becomes arrows M, M', etc. perpendicular to the plane of the paper with respect to the elastic body 1 every 1/4 wavelength. do. When high-frequency voltages with a phase shift of 90' are applied to electrodes A and B, the rod-shaped elastic body causes bimorph vibration and forms a traveling wave in a constant direction.

第17図及び第19図は上記圧電体2の電極A′及びB
′の配置を別々の位置におき圧電体の分極方向を1/2
波長おきに弾性体に対して矢印M、M’となるように配
置し、圧電体AとBの位置関係を1/4波長十号波長く
n:整数)の間隔とした場合である。
17 and 19 show electrodes A' and B of the piezoelectric body 2.
' are placed at different positions and the polarization direction of the piezoelectric material is halved.
This is a case where the piezoelectric bodies A and B are arranged at intervals of wavelengths as shown by arrows M and M' with respect to the elastic body, and the positional relationship between the piezoelectric bodies A and B is set at an interval of 1/4 wavelength, 10th wave, and n: an integer.

第18図は棒状(板状)弾性体1の一部分に2ケの結合
子4.5を介した振動子2.6を固定配置した場合であ
る。結合子の間隔を1/4波長十号波長(n:整数)と
してそれぞれの振動子に90°位相のずれた高周波電圧
を印加すると棒状弾性体1は屈曲振動をひきおこし一定
方向の進行波を形成する。
FIG. 18 shows a case where a vibrator 2.6 is fixedly arranged on a part of the rod-shaped (plate-shaped) elastic body 1 via two connectors 4.5. When high-frequency voltages with a phase shift of 90° are applied to each vibrator with the spacing between the couplers set to 1/4 wavelength or 10th wavelength (n: integer), the rod-shaped elastic body 1 causes bending vibration and forms a traveling wave in a fixed direction. do.

何本実施例では主として電歪素子を主として用いている
が、磁歪素子に代替することが可能である。
Although this embodiment mainly uses an electrostrictive element, it is possible to use a magnetostrictive element instead.

以上本発明に係る超音波振動を利用したモーター装置に
関して、その駆動原理及び実施例の詳細な説明を行った
が、従来の各種モーター装置と異なり、弾性体内に電歪
素子又は磁歪素子を組込構成することによって、表面に
励振される進行波を利用した装置であって超音波の持つ
強力な振動エネルギーによって楕円振動を伴った進行波
を発生させて動体の回転又は直進運動に変換するという
画期的手法によって成るものであり、強力な回転力、駆
動力を持つ小形軽量なモーター装置が得られるという大
きな効果を有1−でおり、あらゆる用途に適用すること
が可能であるという大きな効果を発揮する。
The driving principle and embodiments of the motor device using ultrasonic vibration according to the present invention have been explained in detail above, but unlike various conventional motor devices, an electrostrictive element or a magnetostrictive element is incorporated in the elastic body. This is a device that uses traveling waves excited on the surface, and uses the powerful vibrational energy of ultrasonic waves to generate traveling waves with elliptical vibrations that are converted into rotational or rectilinear motion of a moving object. It is constructed using an innovative method, and has the great effect of being able to obtain a small and lightweight motor device with strong rotational force and driving force, and has the great effect of being able to be applied to all kinds of applications. Demonstrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の動作原理・を説明するための一部拡大
斜視図であり、第2図は本発明の実施例を示寸一部断面
図、第6図は振動子の側面図第4図は第6図のA−A線
断面図、第5図は調圧機構の一例を示す断面図、第6図
は振動子の屈曲状態を示す状態図、第7図は振動子と回
転子の接触状態を示す分解図、第8図は本発明の別の実
施例を示す(イ)一部所面図、(ロ)A−A線断面図、
第9図は振動子と回転子の接触状態を示す分解図、第1
0図は本発明の更に他の実施例を示すものであって(イ
)図は一部断面図、(ロ)図は圧電体の電極配置図、第
11図は本発明の更に他の実施例を示す斜視図、第12
図はエンドレス構造のリニアモーターの一例図、第16
図は結合子によりエンドレス構造としたりニアモーター
の一例図、第14図は1本の直線弾性体と2個の振動子
により構成した リニアモーターの一例図、第15図は
上記実施例に用いた一方向表面波発生方法を示す態様図
、第16図、第17図、第19図は圧電体により棒状弾
性体に進行波を形成させる電極の配置図、第18図は振
動子により棒状弾性体に進行波を形成させる配置図であ
る。 1・・・弾性体  2・・・動体  11.31・・・
ケーシング本体  12.32・・・支持部材  16
.33・・・振動子  13a 、 63a・・・テー
パー  14.34・・・回転子  15.35・・・
回転軸  16.ろ6・・・調圧機構  17・・・軸
受  18.19・・・電歪素子20・・・電極 23
.24・・・カム  25・・・鋼球67・・・電歪素
子  68・・・軸受 41・・・板状部材42・・・
弾性体 46・・・圧電体  44・・・電極45・・
・移相器 月・10図 (イ)                      
      (。)第12図 第13図 第15図 第18図 第19図 手続補正書(自発) 昭和58年9り/Z日 特許庁長官殿 1、事件の表示 特願昭57−205220号2、発明
の名称 超音波振動を利用l〜だモーター装置3、補正
をする者 事件との関係 特許出願人 4、補正の対象 fl)明細書の特許請求の範囲の欄 (2)明細書の発明の詳細な説明の欄 (3)明細書の図面の簡単な説明の欄 (4)図面(第8図(ロ)) 5、補正の内容 (1)別紙の通り ア企哨りいT1$壱〇1u゛ 明    細    書 1、発明の名称 超音波振動を利用したモーター装置 2、特許請求の範囲 (1)複数個の電歪素子又は磁歪素子を組合せて、弾性
体内に組込構成した超音波振動子と、この弾性体の一端
面と、 一定の方向に移動する動体の一端面を相互に加圧接触す
る位置に配置することにより、この弾性体の表面におい
て励振される横波と縦波の合成された表面波を、 との動体の一方向運動に変換することを特徴とする超音
波振動を利用したモーター装置。 (2)超音波振動子は円柱又は円筒状弾性体内に電歪素
子又は磁歪素子を2回路以上組込構成して成り、 この超音波振動子の一端面と相互に加圧接触させる動体
を円筒形回転子と1.て構成することにより、 超音波振動子の表面において励振される横波と縦波の合
成された表面波を動体の一方向回転運動に変換すること
を特徴とする特許請求の範囲第(11項記載の超音波振
動を利用したモーター装置。 (3)超音波振動子はリング状弾性体内に電歪素子又は
磁歪素子を2回路以上組込構成して成り、 このリング状弾性体内に配置した回転子の一端面とこの
弾性体の一端面とが相互に加圧接触する構成とし、 弾性体の表面において励振される横波と縦波の合成され
た表面波を回転子の一方向回転運動に変換することを特
徴とする特許請求の範囲第(1)項記載の超音波振動を
利用したモーター装置。 (4)動体は一定方向に移動する板状部材より成り、 この板状部材に加圧接触する単数又は複数の弾性体表面
に2回路以上の磁歪又は電歪素子を固定配置し、 それ、ぞれの回路に印加する高周波電圧の位相をずらせ
ることにより、 弾性体表面において横波と縦波が合成された表面波を形
成してこの板状部材を一定方向に直進移動せしめること
を特徴とする特許請求の範囲第(1)項記載の超音波振
動を利用したモーター装置。 3、発明の詳細な説明 本発明は超音波振動子の表面において励振される表面波
を相互に加圧接触する位置に配置した動体の一方向運動
に変換することを特徴とするモーター装置に関するもの
である。 従来から広く用いられている各種モーター装置はその駆
動源として電磁力を応用したものカニ大部分であり、各
種用途に使われている。し75)しこれら装置の大きさ
や重量及びトルク等は用いられる材料によって一定の制
限を受けるものである。何故ならば、これらの因子は用
いられる材料の磁気的特性等によって決められるもので
あり、これらの特性を超えた装置は回転駆動を行うこと
が不可能となるためである。 本発明はこれら装置とは更に観点を変えて、弾性体内に
電歪素子又は磁歪素子を組込構成した超音波振動子の表
面に励振される表面波を利用したモーター装置の提供を
目的とするものである。 以下、図面を参照して本発明に係るモーター装置の動作
原理と実施例に関L7詳細な説明を行う。 <1〉動作原理について 第1図は動作原理を説明するための一部拡大斜視図であ
オ゛。1は金属等弾性体であり、その表面la上に横振
動と縦振動が合成された表面波が形成された状態を拡大
して示している。この表面波とは第1に一般にレイリー
波と呼ばれるものであり、弾性体の表面に沿って伝わる
波が存在することが理論的に解明されている。固体中に
おける弾性波は縦波と横波とがあり、それぞれ独立に存
在するが、表面という境界条件のため互いに錯綜し合っ
て合成される。レイリー波を発生させるには基板媒質上
に縦又は横振動をする振動子をのせて弾性体の表面を励
振すれば、振動源より相当離れたところで表面波成分を
観測することができる。 第2に棒状(板状)弾性体の屈曲振動による表面波であ
り、弾性体の表面には縦波と横波とが90°位相のずれ
た欄内振動が形成され、棒状(板状)弾性体に沿って伝
搬する。 第3に棒状(板状)弾性体に沿って伝搬する縦波弾性波
であって、弾性体の表面にはポアッソン比による横波が
表われる。この場合も弾性体表面は縦波と横波とが90
°位相のずれだ欄内振動を形成する。 第1図の場合、レイリー波の伝搬状態(振動源は図示せ
ず)のみを示[2ている。即ち、質点Bに着目すると、
横振巾a(上下方向)と縦振巾b(左右方向)との合成
された欄内Q上を矢印Nの方向に運動しており、その表
面波は音速Uのスピードで移動1〜でいる。この運動は
弾性体表面上1aのどの点であっても同様であって、こ
の状態下でフリーな動体2の表面を弾性体1の表面上に
加圧接触させると、この動体2は弾性体1の表面波の頂
点A及びA′の部分でのみ接触しており、かつこれらの
頂点A、 A′は振動速度V : ’;l x予b(た
だし子は振動数)で矢印Mの方向に運動しているのであ
るから、フリーな動体2は弾性体1との摩擦力はよって
矢印Nの方向に駆動されることになる。 〈2〉本発明の実施例につhて 本発明はこの表面波による動体の駆動を基本としたモー
ター装置に係り、その実施例を以下に説明する。第2図
は装置の一部断面図を示しており、11はケーシング本
体であって、その内部に筒状屈曲振動子13の節部分を
支持部材12で支え、かつこの振動子13の略中央部外
周面にチー バー x3aを設け、このテーパー13H
の面上に動体としての回転子14の内周面一端側が加圧
接触するように配置する9回転子14は回転軸15に対
してその軸方向に移動可能に支持され、回転力が調圧機
構16を介して回転軸15罠伝えられる。 なお1.調圧機構16のi例詳細は第5図によって後述
する。17は軸受を示して込る。 〈3〉振動子について 振動子13は中途部において電歪素子18.19を組込
み構成してあり、表面波の励振源となっている。第3図
は振動子13の側面図を示し、第4図は第3図のA−A
M断面を示す。第3図において電歪素子18.19は軸
方向に矢印のように伸縮動作する構成とし、その間に電
極20をはさみ込んである。電歪素子と電極の配置は第
4図に示す如く、対角にある電極a、bを結線して端子
21に導き、同様に電極c、dを結線して端子22に導
く。それぞれの対角位置にある電歪素子は互に逆方向に
伸縮するように動作する。即ち、電極aに接する電歪素
子18.19は伸長方向へ、電極すに接する電歪素子1
8.19は短縮方向へ動作するように分極する。さらに
、電極dに接する電歪素子18.19は伸長方向へ、電
極Cに接する電歪素子18.19は短縮方向へ動作する
ように分極する。 〈4〉調圧機構について 第5図は調圧機構16の一例を示す断面図である。同図
は自動調圧機構の一例を示しており、回転軸15と回転
子14との間にV形成をもった特殊なカム23.24の
一対と、その中間に介在する複数個の鋼球25を設ける
ことにより、無負荷のときはカム底部に鋼球があ名が、
負荷が加わり、トルクが増加するに従って鋼球が溝をの
り上げて軸方向の圧力が発生するように機能する。それ
によって回転子14のトルクが回転軸15側に伝達され
る。 この構成により、第4図に示す電極a、bに結線された
端子21と振動子13との間に高周波電圧を印加すると
、振動子13け第6図に示すような屈曲振動をひきおこ
す。即ち、−次の振動状態において、中央部B点が振動
の腹、H及びに点が振動の節となる。次に他の一方の電
極C9dに結線された端子22と、振動子13の間にこ
れらの電極a、bの電圧に対して90°位相のずれた高
周波電圧を加えると、このB点の振動と垂直方向に位相
のずれた振動Z(紙面に垂直方向)が引き起され、いわ
ば縦波と横波とを人工的に作り出すことになり、その表
面波が回転円振動となる。 〈5〉振動子と回転子の接触状態について第7図により
振動子中央部13B、即ち、振動の腹の部分と、それに
外接する回転子14の内周面14aとの接触状態を7周
期毎に分解して(A)(B)(C)(D)に示した。即
ち、回転子14の内周面14aは振動子13側の波の頂
点と接触しており、その接触点は順次移動して1周期毎
に回転子14の内周面14aを一周する。頂点の質点速
度は、振動の振巾に比例し、0〜数m / sec程度
である。これらの接触点の移動によって振動子側に発生
した撮動が回転子側の回転力とじて変換される理由を以
下に述べる。即ち、回転子14の内周面14aの周長と
、これに内接する振動子13の外周面13Bの周長とを
比較した場合、図示より明らかなように自然前者の局長
の方が長く、よって第7図に示したように両者の接触点
が順次移動して、接触点が一周した時、この両局長差の
分だけ回転子14側がずれることになり、それが回転と
なって取り出される。 また、電極a、b又はc、dに加える高周波電圧の位相
を逆転することによって回転子の回転方向を切り換える
ことができる。 〈6〉リング状屈曲撮動子について 第8図は本発明の他の実施例を示し、(イ)−細断面図
、(ロ)A−A線断面図である9本実施例によればケー
シング本体31の内郭に支持部材32に支えられたリン
グ状屈曲振動子33を配置し、その内周面にテーパー3
33を設け、回転子34の外周面が接触するように配置
される。 回転子34は回転軸35に対して軸方向に対して移動可
能に支持され第5図に示した構成と同様の調圧機構36
を設けて回転軸35に回転力を伝える。37け電歪素子
を示し、38は軸受を示す。第8図(ロ)において(同
図ではケーシング本体31の断面を省略しである)、 振動子33は弾性体で構成され、その外周に固定配置し
た。電歪素子37はそれぞれ矢印方向に伸縮するように
分極されて、電極a、b、c、d。 e+  f+g+  hを設ける。さらに、電極a、b
。 c、dを結線して端子39に導き、同様に電極e。 f、g、hを結線して端子40に導く。端子39と振動
子33との間に高周波電圧を印加し、さらに、端子40
と振動子33との間[90°位相をずらした高周波電圧
を印加すると振動子33がバイモルフ形の廟曲振動を発
生する。この際の屈曲振動数すは ただし   E:ヤング率     f :ボアツンン
比a :中心円の半径   h :周壁の厚さn :屈
曲振動の次数  f’材料の密度この実施例はn = 
2の場合であって、第9図により振動子33に内接する
回転子34の接触状態を主局期毎に分解して(A)(B
)(C)(D)に示した。これら両者の接触する点が波
の頂点であり、その頂点は振動の一周期につき回転子3
4の外周面上を半周し、これらの接触点の移動によって
振動子33側に発生1〜だ振動が回転子34側の回転力
として伝達されることは第7図に示した例によって説明
した通りである。 〈7〉 高周波電圧による圧電体の励振について第10
図は本発明の他の実施例を示し、(イ)図は一部断面図
、(ロ)図は圧電体の電極配置図である。 この実施例によれば90°位相のずれた2回路の高周波
電圧をそれぞれの電極a、bに印加し圧電体2を励振さ
せる。弾性リング1はバイモルフ振動を発生し、その一
端面IAに横波と縦波の合成された表面波が形成され、
その一端面に加圧接触された回転子3が回転駆動を受け
る。第10図C口)は圧電体の分極方向と電極配置であ
る。電極ピッチを表面波の波長の1とし圧電体の分極方
向を図(ロ)に示すようにの○■e・・とする。(電極
群AとBの位置を土波長すらし)各電極は結線され端子
aとbの2回路構成する。これらの構成により端子aと
bに90!相のずれた高周波電圧を印加すると弾性体表
面上に表面波が形成される。。 〈8〉直進運動に変換するリニアモーターについて 第11図は本発明の他の実施例を示してお6、超音波振
動を直進運動に変換するリニアモーターの一例を示して
いる。同図において板状部材41の表面に対して単数又
は複数の弾性体42(42)を加圧接触させ、この弾性
体42表面の一部に圧電体43 (43)を設けて、弾
性体42に表面波(レイリー波)を発生させる。弾性体
42のコーナ一部42aを曲面形状とすることによって
表面波は弾性体42の表面に沿って伝搬し、板状部材4
1を矢印W方向に移動させるように駆動させる。 〈9〉  エンドレス構造としたリニアモーターについ
て 第12図は棒状弾性体1の表面に板状部材2を加圧接触
させ、棒状弾性体1の他の一部に複数の圧電体3を固定
配置し、棒状弾性体を曲線形状に曲げてエンドレス構造
としたリニアモーターの一例である。この構成により棒
状弾性体は屈曲振動をひきおこし、その波動は棒状弾性
体1に沿って伝搬し、表面波となってリング上を循環す
る。 <10> 2本の棒状弾性体を有するリニアモーターに
ついて 第13図は2本の棒状弾性体1.2を結合子3゜4によ
って固定し、棒状弾硅体1の表面に板状部材5を加圧接
触させ、棒状弾性体2の一部に複数の圧電体6を固定配
置したリニアモーターの一例である。この構成により棒
状弾性体2は圧電体6により屈曲振動をひきおこし、そ
の表面波は棒状弾性体1の端部で結合子3の縦振動に変
換され、その縦振動は棒状弾性体2の屈曲振動に変換さ
れ、表面波となって棒状弾性体2上を伝搬する。この表
面波は結合子4を通ってもとへもどる。 〈11〉棒状弾性体に2個の振動子を有するリニアモー
ターについて 第14図は棒状弾性体1の両端部に振動子2゜3を結合
し、棒状弾性体の表面に板状部材4を加圧接触させたリ
ニアモーターの一例である。 この構成により、棒状弾性体1は振動子2により屈曲振
動をひきおこし、その表面波は振動子3により振動エネ
ルギーを吸収される。こめ振。 動エネルギーは電気エネルギーに変換され、回収まだは
振動子2に帰還される。 〈12〉一方向表面波発生方法について第15図は実施
例に用いた一方向表面波発生方法を示しており、圧電体
43の表面に複数個の電極44.44・・・を配置し、
図示の如く3回路に公害U接続して移相器45に接続す
る。この移相器45により、それぞれの回路に00.1
20°、240°の如く120°位相のずれた高周波電
圧を印加することによって圧電体43に一方向表面波を
発生させることができる。 〈13〉表面波発生方法について 第16図は棒状(板状)弾性体1の表面上に2回路(A
及びB)の電極を有する圧電体2を固定し、圧電体の分
極方向を一波長おきに弾性体1に対して紙面に垂直方向
の矢印M、M’・・・となるように配置する。電極A及
びBにそれぞれ90゜位相のずれた高周波電圧を印加す
ると棒状弾性体はバイモルフ振動をひきおこし一定方向
の表面波を形成する。 〈14〉表面波発生方法について 第17図及び第19図は圧電体2の電極A′及びB′の
配置を別々の位置におき用電体の分極方向を1波長おき
に弾性体に対して矢印M、 M’となるように配置し、
圧電体AとBの位置関係を上液長+7波長(11:整数
)の間隔とした場合である。 〈15〉表面波発生方法について 第18図は棒状(板状)弾性体1の一部分に2ケの結合
子48.5を介した振動子2,3を固定配置した場合で
ある。結合子の間隔をユ波長十1波長(n:整数)とし
てそれぞれの振動子に90°位相のずれた高周波電圧を
印加すると棒状弾性体1は屈曲振動をひきおこし一定方
向の表面波を形成する。 なお、本実施例では主として電歪素子を主として用いて
いるが、磁歪素子に代替することが可能である。 <16)本発明の効果について 以上、本発明に係る超音波振動を利用し尼モーター装置
に関して、その駆動原理及び実施例の詳細な説明を行っ
たが、従来の各種モーター装置と異カリ、弾性体内に電
歪素子又は磁歪素子を組込構成することによって、表面
に励振される表面波を利用した装置であって、超音波の
持つ強力な振動エネルギーによって欄内振動を伴った表
面波を発生させて動体の回転又は直進運動に変換す、る
という画期的手法によって成るものであり、強力な回転
力、駆動力を持つ小形軽量なモーター装置が得られると
いう大きな効果を有しており、あらゆる用途に適用する
ことが可能であるという大きな効果を発揮する。 4、図面の簡単な説明 第1図は本発明の動作原理を説明するための一部拡大斜
視図であり、第2図は本発明の実施例を示す一部断面図
、第3図は振動子の側面図、第4図は第3図のA−A線
断面図、第5図は調圧機構の一例を示す断面図、第6図
は振動子の屈曲状態を示す状態図、第7図は振動子と回
転子の接触状態を示す分解図、第8図は本発明の他の実
施例を示す(イ)一部断面図、(ロ)A −A線断面図
、第9図は撮動子と回転子の接触状態を示す分解図、第
10図は本発明め他の実施例を示すものであって(イ)
図は一部断面図、(ロ)図は圧電体の電極配置図、第1
1図は本発明の他の実施例を示す斜視図、第12図はエ
ンドレス構造のリニアモーターの一例図、第13図は結
合子によりエンドレス構造としたリニアモーターの一例
図、第14図は1本の直線弾性体と2個の振動子によ、
り構成したリニアモーターの一例図、第15図は第14
図に示した実施例に用いた一方向表面波発生方法を示す
態様図、第16図、第17図、第19図は圧電体により
棒状弾性体に表面波を形成させる電極の配置図、第18
図は振動子により棒状弾性体に表面波を形成させる配置
図である。 1・・・弾性体  2・・・動体  11,31・・・
ケーシング本体  12.32・・・支持部材  13
.33・・・振動子 13a 、 33a・・・テーパ
ー  14.34・・・回転子  15.35・・・回
転軸  16.36・・・調圧機構  17・・・軸受
  18.19・・・電歪素子  20・・・電極  
23.24・・・カム  25・・・鋼球  37・・
・電歪素子  38・・・軸受  41・・・板状部材
42・・・弾性体  43・・・圧電体  44・・・
電極45・・・移相器
Fig. 1 is a partially enlarged perspective view for explaining the operating principle of the present invention, Fig. 2 is a partially sectional view showing an embodiment of the present invention, and Fig. 6 is a side view of the vibrator. Figure 4 is a cross-sectional view taken along the line A-A in Figure 6, Figure 5 is a cross-sectional view showing an example of the pressure regulating mechanism, Figure 6 is a state diagram showing the vibrator in a bent state, and Figure 7 is a diagram showing the vibrator and its rotation. FIG. 8 is an exploded view showing the contact state of the child; FIG. 8 is a partial partial view showing another embodiment of the present invention;
Figure 9 is an exploded view showing the state of contact between the vibrator and rotor.
Figure 0 shows still another embodiment of the present invention, (A) is a partial sectional view, (B) is an electrode arrangement diagram of a piezoelectric body, and Figure 11 is a still another embodiment of the present invention. Perspective view showing an example, 12th
The figure is an example of an endless structure linear motor, No. 16
The figure shows an example of a near motor with an endless structure using a coupler, Fig. 14 shows an example of a linear motor configured with one linear elastic body and two vibrators, and Fig. 15 shows a linear motor used in the above example. 16, 17, and 19 are arrangement diagrams of electrodes that form a traveling wave on a rod-shaped elastic body using a piezoelectric body, and Figure 18 is a diagram showing a method of generating a unidirectional surface wave on a rod-shaped elastic body using a piezoelectric body. FIG. 1... Elastic body 2... Moving body 11.31...
Casing body 12.32...Supporting member 16
.. 33... Vibrator 13a, 63a... Taper 14.34... Rotor 15.35...
Rotating axis 16. Filter 6...Pressure regulating mechanism 17...Bearing 18.19...Electrostrictive element 20...Electrode 23
.. 24...Cam 25...Steel ball 67...Electrostrictive element 68...Bearing 41...Plate member 42...
Elastic body 46... Piezoelectric body 44... Electrode 45...
・Phase shifter month・Figure 10 (a)
(.) Fig. 12 Fig. 13 Fig. 15 Fig. 18 Fig. 19 Procedural amendment (spontaneous) September 1983/Z Japan Commissioner of the Patent Office 1, Indication of the case Patent Application No. 1987-205220 2, Title of the invention Motor device using ultrasonic vibration 3 Relationship with the case of the person making the amendment Patent applicant 4 Subject of the amendment fl) Scope of claims in the specification (2) Claims of the invention in the specification Detailed explanation column (3) Brief explanation column of drawings in the specification (4) Drawings (Figure 8 (b)) 5. Contents of amendment (1) As shown in the attached sheet 1U゛Specification 1, Name of the invention, Motor device using ultrasonic vibration 2, Claims (1) Ultrasonic vibration constructed by combining a plurality of electrostrictive elements or magnetostrictive elements and incorporating them into an elastic body. By arranging the elastic body, one end surface of this elastic body, and one end surface of a moving body moving in a certain direction at a position where they are in pressurized contact with each other, transverse waves and longitudinal waves excited on the surface of this elastic body can be synthesized. A motor device that utilizes ultrasonic vibration, characterized in that it converts surface waves generated by the vibration into unidirectional motion of a moving object. (2) An ultrasonic transducer is constructed by incorporating two or more circuits of electrostrictive elements or magnetostrictive elements in a cylinder or a cylindrical elastic body, and a moving body that is brought into pressurized contact with one end surface of the ultrasonic transducer is made of a cylinder. shaped rotor and 1. Claim No. 11 (Recited in Claim 11) characterized in that, by configuring the ultrasonic transducer, a combined surface wave of a transverse wave and a longitudinal wave excited on the surface of an ultrasonic transducer is converted into a unidirectional rotational motion of a moving object. (3) An ultrasonic vibrator is composed of two or more circuits of electrostrictive elements or magnetostrictive elements built into a ring-shaped elastic body, and a rotor placed inside this ring-shaped elastic body. One end surface and one end surface of this elastic body are configured to come into pressure contact with each other, and a combined surface wave of a transverse wave and a longitudinal wave excited on the surface of the elastic body is converted into a unidirectional rotational motion of the rotor. A motor device using ultrasonic vibration according to claim (1), characterized in that: (4) The moving body is made of a plate-like member that moves in a fixed direction, and is brought into pressurized contact with the plate-like member. By fixing two or more circuits of magnetostrictive or electrostrictive elements on the surface of one or more elastic bodies and shifting the phase of the high-frequency voltage applied to each circuit, transverse waves and longitudinal waves can be generated on the surface of the elastic body. A motor device using ultrasonic vibration according to claim (1), characterized in that the plate-like member is moved straight in a fixed direction by forming a combined surface wave. 3. Details of the invention. Description: The present invention relates to a motor device that converts surface waves excited on the surface of an ultrasonic transducer into unidirectional motion of moving bodies placed in pressure contact with each other. Most of the various widely used motor devices apply electromagnetic force as their driving source, and are used for various purposes.75) The size, weight, torque, etc. of these devices depend on the materials used. It is subject to certain restrictions. This is because these factors are determined by the magnetic properties of the materials used, and devices exceeding these properties cannot be rotated. The present invention further differs from these devices in that it aims to provide a motor device that utilizes surface waves excited on the surface of an ultrasonic vibrator having an electrostrictive element or a magnetostrictive element incorporated in an elastic body. It is something. Hereinafter, the operating principle and embodiments of the motor device according to the present invention will be described in detail with reference to the drawings. <1> Principle of operation FIG. 1 is a partially enlarged perspective view for explaining the principle of operation. Reference numeral 1 denotes an elastic body such as a metal, and the state in which a surface wave, which is a combination of transverse vibration and longitudinal vibration, is formed on the surface la is shown in an enlarged manner. First, this surface wave is generally called a Rayleigh wave, and it has been theoretically clarified that there are waves that propagate along the surface of an elastic body. Elastic waves in solids include longitudinal waves and transverse waves, each of which exists independently, but due to the boundary condition of the surface, they intertwine and are synthesized. To generate Rayleigh waves, if a vibrator that vibrates vertically or horizontally is placed on the substrate medium and the surface of the elastic body is excited, the surface wave component can be observed at a considerable distance from the vibration source. The second type is a surface wave caused by the bending vibration of a rod-shaped (plate-shaped) elastic body. Propagates along the body. Thirdly, there are longitudinal elastic waves that propagate along a rod-shaped (plate-shaped) elastic body, and transverse waves due to Poisson's ratio appear on the surface of the elastic body. In this case as well, the surface of the elastic body has longitudinal waves and transverse waves of 90
° Out of phase creates in-column vibration. In the case of FIG. 1, only the propagation state of Rayleigh waves (the vibration source is not shown) is shown. That is, if we focus on mass point B,
It is moving in the direction of the arrow N on the field Q, which is a combination of the transverse amplitude a (vertical direction) and the longitudinal amplitude b (horizontal direction), and its surface wave moves at the speed of sound U at 1~ There is. This movement is the same at any point on the surface of the elastic body 1a, and under this condition, when the surface of the free moving body 2 is pressed into contact with the surface of the elastic body 1, this moving body 2 moves to the elastic body. They are in contact only at the vertices A and A' of the surface waves of 1, and these vertices A and A' are in the direction of arrow M at the vibration velocity V:'; Therefore, the free moving body 2 is driven in the direction of arrow N by the frictional force with the elastic body 1. <2> Embodiments of the present invention The present invention relates to a motor device based on driving a moving object using surface waves, and embodiments thereof will be described below. FIG. 2 shows a partial cross-sectional view of the device. Reference numeral 11 denotes a casing body, in which a node portion of a cylindrical bending vibrator 13 is supported by a support member 12, and approximately at the center of this vibrator 13. A cheever x3a is provided on the outer peripheral surface of the part, and this taper 13H
The rotor 14, which is disposed so that one end side of the inner circumferential surface of the rotor 14 as a moving body is in pressurized contact with the surface of The rotation shaft 15 is transmitted through a mechanism 16. Note 1. Details of an example i of the pressure regulating mechanism 16 will be described later with reference to FIG. 17 indicates a bearing. <3> About the Vibrator The vibrator 13 has electrostrictive elements 18 and 19 incorporated in its midway portion, and serves as an excitation source for surface waves. FIG. 3 shows a side view of the vibrator 13, and FIG. 4 shows a side view of the vibrator 13, and FIG.
M cross section is shown. In FIG. 3, electrostrictive elements 18 and 19 are configured to expand and contract in the axial direction as shown by arrows, and electrodes 20 are sandwiched between them. The arrangement of the electrostrictive element and the electrodes is as shown in FIG. 4, where diagonal electrodes a and b are connected and led to terminal 21, and electrodes c and d are similarly connected and led to terminal 22. The electrostrictive elements located at each diagonal position operate to expand and contract in opposite directions. That is, the electrostrictive elements 18 and 19 in contact with the electrode a extend in the extending direction, and the electrostrictive elements 1 in contact with the electrode
8.19 is polarized to move in the shortening direction. Furthermore, the electrostrictive elements 18, 19 in contact with the electrode d are polarized so as to operate in the elongating direction, and the electrostrictive elements 18, 19 in contact with the electrode C are polarized so as to operate in the retracting direction. <4> Pressure Regulation Mechanism FIG. 5 is a sectional view showing an example of the pressure regulation mechanism 16. The figure shows an example of an automatic pressure adjustment mechanism, which includes a pair of special cams 23 and 24 with a V-formation between the rotating shaft 15 and the rotor 14, and a plurality of steel balls interposed between them. By providing 25, the steel ball is located at the bottom of the cam when no load is applied.
As the load is applied and the torque increases, the steel ball rides up the groove, creating axial pressure. Thereby, the torque of the rotor 14 is transmitted to the rotating shaft 15 side. With this configuration, when a high frequency voltage is applied between the terminal 21 connected to electrodes a and b shown in FIG. 4 and the vibrator 13, the vibrator 13 causes a bending vibration as shown in FIG. 6. That is, in the - next vibration state, the central point B becomes the antinode of the vibration, and the points H and 2 become the nodes of the vibration. Next, when a high-frequency voltage with a phase shift of 90° with respect to the voltages of these electrodes a and b is applied between the terminal 22 connected to the other electrode C9d and the vibrator 13, the vibration at point B A vibration Z (perpendicular to the plane of the paper) with a phase shift in the vertical direction is induced, so to speak, and a longitudinal wave and a transverse wave are artificially created, and the surface wave becomes a rotating circular vibration. <5> Concerning the contact state between the vibrator and the rotor As shown in FIG. It was decomposed into (A), (B), (C), and (D). That is, the inner circumferential surface 14a of the rotor 14 is in contact with the peak of the wave on the side of the vibrator 13, and the contact point moves sequentially and goes around the inner circumferential surface 14a of the rotor 14 every cycle. The velocity of the mass point at the apex is proportional to the amplitude of vibration, and is on the order of 0 to several m/sec. The reason why the imaging generated on the vibrator side due to the movement of these contact points is converted into rotational force on the rotor side will be described below. That is, when comparing the circumferential length of the inner circumferential surface 14a of the rotor 14 and the circumferential length of the outer circumferential surface 13B of the vibrator 13 inscribed therein, as is clear from the illustration, the former is naturally longer; Therefore, as shown in Fig. 7, when the contact points of both move sequentially and go around once, the rotor 14 side will shift by the difference between the two stations, and this will be taken out as rotation. . Further, the rotation direction of the rotor can be switched by reversing the phase of the high frequency voltage applied to the electrodes a, b or c, d. <6> Regarding the ring-shaped bending camera element, FIG. 8 shows another embodiment of the present invention, and according to the nine embodiments, which are (a) - thin sectional view and (b) sectional view on the line A-A. A ring-shaped bending vibrator 33 supported by a support member 32 is disposed inside the casing body 31, and a taper 3 is formed on the inner peripheral surface of the ring-shaped bending vibrator 33 supported by a support member 32.
33 is provided and arranged so that the outer circumferential surface of the rotor 34 comes into contact with it. The rotor 34 is supported so as to be movable in the axial direction with respect to the rotating shaft 35, and has a pressure regulating mechanism 36 similar to the configuration shown in FIG.
is provided to transmit rotational force to the rotating shaft 35. 37 shows an electrostrictive element, and 38 shows a bearing. In FIG. 8(B) (the cross section of the casing body 31 is omitted in the same figure), the vibrator 33 is made of an elastic body, and is fixedly arranged on the outer periphery of the vibrator 33. The electrostrictive elements 37 are polarized to expand and contract in the directions of the arrows, respectively, and form electrodes a, b, c, and d. Provide e+ f+ g+ h. Furthermore, electrodes a, b
. Connect c and d and lead them to terminal 39, and similarly connect electrode e. Connect f, g, and h and lead them to the terminal 40. A high frequency voltage is applied between the terminal 39 and the vibrator 33, and the terminal 40
When a high frequency voltage with a phase shift of 90° is applied between the oscillator 33 and the oscillator 33, the oscillator 33 generates a bimorph-shaped mausoleum vibration. The bending frequency in this case is as follows: E: Young's modulus f: Boastsun ratio a: radius of center circle h: thickness of peripheral wall n: order of bending vibration f' density of material In this example, n =
In case 2, the contact state of the rotor 34 inscribed in the vibrator 33 is broken down into main phases according to FIG. 9 (A) and (B).
) (C) (D). The point where these two come into contact is the peak of the wave, and the peak is the number of rotors per cycle of vibration.
It was explained using the example shown in FIG. 7 that the vibration generated on the vibrator 33 side by the movement of these contact points is transmitted as rotational force on the rotor 34 side. That's right. <7> About excitation of piezoelectric material by high frequency voltage Part 10
The figures show other embodiments of the present invention, in which figure (a) is a partial sectional view and figure (b) is a diagram of the arrangement of electrodes of a piezoelectric body. According to this embodiment, the piezoelectric body 2 is excited by applying high frequency voltages of two circuits having a phase difference of 90° to the respective electrodes a and b. The elastic ring 1 generates bimorph vibration, and a surface wave that is a combination of a transverse wave and a longitudinal wave is formed on one end surface IA.
The rotor 3, which is brought into pressure contact with one end surface thereof, receives rotational drive. Figure 10 (C) shows the polarization direction of the piezoelectric material and the electrode arrangement. The electrode pitch is set to 1 of the wavelength of the surface wave, and the polarization direction of the piezoelectric body is set to ○■e... as shown in the figure (b). (The positions of electrode groups A and B are arranged at the same wavelength.) Each electrode is connected to form two circuits of terminals a and b. With these configurations, 90! When out-of-phase high-frequency voltages are applied, surface waves are formed on the surface of the elastic body. . <8> Regarding the linear motor that converts into linear motion FIG. 11 shows another embodiment of the present invention, and shows an example of a linear motor that converts ultrasonic vibration into linear motion. In the same figure, one or more elastic bodies 42 (42) are brought into pressure contact with the surface of a plate-like member 41, and a piezoelectric body 43 (43) is provided on a part of the surface of this elastic body 42. generates surface waves (Rayleigh waves). By making the corner part 42a of the elastic body 42 curved, surface waves propagate along the surface of the elastic body 42, and the plate-like member 4
1 is driven to move in the direction of arrow W. <9> Regarding a linear motor with an endless structure. In FIG. 12, a plate-like member 2 is brought into pressure contact with the surface of a rod-like elastic body 1, and a plurality of piezoelectric bodies 3 are fixedly arranged on the other part of the rod-like elastic body 1. This is an example of a linear motor that has an endless structure by bending a rod-shaped elastic body into a curved shape. With this configuration, the rod-shaped elastic body causes bending vibration, and the wave propagates along the rod-shaped elastic body 1 and circulates on the ring as a surface wave. <10> Regarding a linear motor having two rod-shaped elastic bodies, FIG. 13 shows two rod-shaped elastic bodies 1.2 fixed by connectors 3 and 4, and a plate member 5 on the surface of the rod-shaped elastic bodies 1. This is an example of a linear motor in which a plurality of piezoelectric bodies 6 are fixedly arranged on a part of a rod-shaped elastic body 2 in pressure contact. With this configuration, the rod-shaped elastic body 2 causes bending vibration by the piezoelectric body 6, and the surface wave is converted into longitudinal vibration of the coupler 3 at the end of the rod-shaped elastic body 1, and the longitudinal vibration is the bending vibration of the rod-shaped elastic body 2. is converted into a surface wave and propagates on the rod-shaped elastic body 2. This surface wave passes through the coupler 4 and returns to the source. <11> Regarding a linear motor having two vibrators on a rod-shaped elastic body, FIG. This is an example of a linear motor in pressure contact. With this configuration, the rod-shaped elastic body 1 causes bending vibration by the vibrator 2, and the vibration energy of the surface wave is absorbed by the vibrator 3. Kome-furi. The dynamic energy is converted into electrical energy, which is then recovered and fed back to the vibrator 2. <12> Unidirectional surface wave generation method FIG. 15 shows the unidirectional surface wave generation method used in the example, in which a plurality of electrodes 44, 44... are arranged on the surface of the piezoelectric body 43,
As shown in the figure, the three circuits are connected to the pollution U and connected to the phase shifter 45. This phase shifter 45 provides 00.1 to each circuit.
A unidirectional surface wave can be generated in the piezoelectric body 43 by applying high frequency voltages with a phase shift of 120 degrees, such as 20 degrees and 240 degrees. <13> Surface wave generation method Figure 16 shows two circuits (A
The piezoelectric body 2 having the electrodes 2 and B) is fixed, and the piezoelectric body is arranged so that the polarization direction of the piezoelectric body becomes every other wavelength as arrows M, M', . . . perpendicular to the plane of the paper with respect to the elastic body 1. When high frequency voltages with a phase shift of 90° are applied to electrodes A and B, the rod-shaped elastic body causes bimorph vibration and forms a surface wave in a fixed direction. <14> Surface wave generation method Figures 17 and 19 show that the electrodes A' and B' of the piezoelectric body 2 are arranged at different positions, and the polarization direction of the electric body is changed every other wavelength with respect to the elastic body. Arrange it as shown by arrows M and M',
This is a case where the positional relationship between the piezoelectric bodies A and B is set to an interval of the upper liquid length + 7 wavelengths (11: an integer). <15> Surface wave generation method FIG. 18 shows a case where vibrators 2 and 3 are fixedly arranged on a part of a rod-shaped (plate-shaped) elastic body 1 via two couplers 48.5. When the spacing between the couplers is set to 11 wavelengths (n: integer) and high frequency voltages with a phase shift of 90° are applied to each vibrator, the rod-shaped elastic body 1 causes bending vibration and forms a surface wave in a fixed direction. Note that although an electrostrictive element is mainly used in this embodiment, a magnetostrictive element can be used instead. <16) Effects of the present invention The driving principle and embodiments of the motor device using ultrasonic vibration according to the present invention have been explained in detail above, but it is different from various conventional motor devices in terms of potency and elasticity. This is a device that uses surface waves excited on the surface by incorporating an electrostrictive element or magnetostrictive element into the body, and generates surface waves with in-field vibration using the powerful vibrational energy of ultrasonic waves. It uses an innovative method of converting the motion of a moving object into rotational or linear motion, and has the great effect of producing a small and lightweight motor device with strong rotational force and driving force. It is highly effective and can be applied to a variety of applications. 4. Brief description of the drawings Fig. 1 is a partially enlarged perspective view for explaining the operating principle of the present invention, Fig. 2 is a partially sectional view showing an embodiment of the present invention, and Fig. 3 is a vibration 4 is a sectional view taken along the line A-A in FIG. 3, FIG. 5 is a sectional view showing an example of the pressure regulating mechanism, FIG. 6 is a state diagram showing the vibrator in a bent state, and FIG. The figure is an exploded view showing the contact state of the vibrator and rotor, FIG. 8 is a partial cross-sectional view showing another embodiment of the present invention, (b) a cross-sectional view taken along the line A--A, and FIG. FIG. 10, an exploded view showing the state of contact between the camera element and the rotor, shows another embodiment of the present invention (a).
The figure is a partial cross-sectional view, and the figure (b) is a diagram of the electrode arrangement of the piezoelectric body.
1 is a perspective view showing another embodiment of the present invention, FIG. 12 is an example of a linear motor with an endless structure, FIG. 13 is an example of a linear motor with an endless structure using a connector, and FIG. 14 is an example of a linear motor with an endless structure. By the linear elastic body of the book and two vibrators,
Figure 15 is an example of a linear motor configured as shown in Figure 14.
FIGS. 16, 17, and 19 are diagrams showing the unidirectional surface wave generation method used in the example shown in the figure, and are layout diagrams of electrodes that generate surface waves in a rod-shaped elastic body using a piezoelectric body. 18
The figure is a layout diagram in which a surface wave is formed in a rod-shaped elastic body by a vibrator. 1... Elastic body 2... Moving body 11, 31...
Casing body 12.32...Supporting member 13
.. 33... Vibrator 13a, 33a... Taper 14.34... Rotor 15.35... Rotating shaft 16.36... Pressure regulating mechanism 17... Bearing 18.19... Electric Strain element 20...electrode
23.24...Cam 25...Steel ball 37...
- Electrostrictive element 38... Bearing 41... Plate member 42... Elastic body 43... Piezoelectric body 44...
Electrode 45...phase shifter

Claims (4)

【特許請求の範囲】[Claims] (1)複数個の電歪素子又は磁歪素子を組合せて、弾性
体内に組込構成した超音波振動子と、該弾性体の一端面
と、一定の方向に移動する動体の一端面を相互に加圧接
触する位置に配置することにより、前記弾性体の表面に
おいて励振される横波と縦波の合成された進行波を、前
記動体の一方向運動に変換することを特徴とする超音波
振動を利用したモーター装置。
(1) An ultrasonic transducer constructed by combining a plurality of electrostrictive elements or magnetostrictive elements into an elastic body, and one end surface of the elastic body and one end surface of a moving body moving in a certain direction are mutually connected. The ultrasonic vibration is characterized in that, by placing the ultrasonic vibration in a position where the elastic body is in pressure contact, a traveling wave that is a combination of a transverse wave and a longitudinal wave excited on the surface of the elastic body is converted into a unidirectional motion of the moving body. The motor device used.
(2)超音波振動子は、円柱又は円筒状弾性体内に電歪
素子又は磁歪素子を2回路以上組込構成して成り、前記
超音波振動子の一端面と相互に加圧接触させる動体を円
筒形回転子として構成することにより、超音波振動子の
表面において励振される横波と縦波の合成された進行波
を動体の一方向回転運動に変換することを特徴とする特
許請求の範囲第(1)項記載の超音波振動を利用したモ
ーター装置。
(2) The ultrasonic vibrator is constructed by incorporating two or more circuits of electrostrictive elements or magnetostrictive elements into a columnar or cylindrical elastic body, and includes a moving body that is brought into pressurized contact with one end surface of the ultrasonic vibrator. Claim No. 1, characterized in that by configuring the ultrasonic rotor as a cylindrical rotor, a combined traveling wave of a transverse wave and a longitudinal wave excited on the surface of the ultrasonic transducer is converted into a unidirectional rotational motion of a moving object. A motor device using ultrasonic vibration as described in (1).
(3)超音波振動子はリング状弾性体内に電歪素子又は
磁歪素子を2回路以上組込構成して成り、該り/グ状弾
性体内に配置した回転子の一端面と前記弾性体の一端面
とが相互に加圧接触する構成とし、弾性体の表面におい
て励振される横波と縦波の合成された進行波を回転子の
一方向回転運動に変換することを特徴とする特許請求の
範囲第(1)項記載の超音波振動を利用したモーター装
置。
(3) An ultrasonic vibrator is constructed by incorporating two or more circuits of electrostrictive elements or magnetostrictive elements in a ring-shaped elastic body, and connects one end surface of a rotor disposed in the ring-shaped elastic body and the elastic body. One end surface is in pressure contact with each other, and a combined traveling wave of a transverse wave and a longitudinal wave excited on the surface of the elastic body is converted into a unidirectional rotational motion of a rotor. A motor device using ultrasonic vibration as described in scope (1).
(4)動体は一定方向に移動する板状部材より成り、該
板状部材に加圧接触する単数又は複数の弾性体表面に2
回路以上の磁歪又は電歪素子を固定配置し、夫々の回路
に印加する高周波電圧の位相をずらせることにより、弾
性体表面において横波と縦波が合成された進行波を形成
して前記板状部材を一定方向に直進移動せしめることを
特徴とする特許請求の範囲第(1)項記載の超音波振動
を利用したモーター装置。
(4) The moving body consists of a plate-like member that moves in a fixed direction, and the surface of one or more elastic bodies that comes into pressure contact with the plate-like member has two
By fixedly arranging magnetostrictive or electrostrictive elements larger than the circuit and shifting the phase of the high-frequency voltage applied to each circuit, a traveling wave in which a transverse wave and a longitudinal wave are combined is formed on the surface of the elastic body, and the plate-shaped A motor device using ultrasonic vibration according to claim 1, wherein the motor device moves a member straight in a fixed direction.
JP57205220A 1982-02-25 1982-11-22 Motor device utilizing supersonic vibration Granted JPS5996881A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP57205220A JPS5996881A (en) 1982-11-22 1982-11-22 Motor device utilizing supersonic vibration
CA000421908A CA1208269A (en) 1982-02-25 1983-02-18 Motor device utilizing ultrasonic oscillation
GB08304897A GB2120462B (en) 1982-02-25 1983-02-22 Motor
BR8300874A BR8300874A (en) 1982-02-25 1983-02-24 ENGINE DEVICE USING ULTRA - SONICA OSCILLATION
FR838303019A FR2522216B1 (en) 1982-02-25 1983-02-24 MOTOR DEVICE USING ULTRASONIC OSCILLATION
NL8300700A NL8300700A (en) 1982-02-25 1983-02-24 ENGINE DEVICE USING ULTRASONIC OSCILLATION.
CH1049/83A CH665511A5 (en) 1982-02-25 1983-02-24 MOTOR USING ULTRASOUND VIBRATIONS.
IT19758/83A IT1169116B (en) 1982-02-25 1983-02-24 MOTOR DEVICE USING AN ULTRASONIC OSCILLATION
ES520082A ES8402734A1 (en) 1982-02-25 1983-02-24 Motor device utilizing ultrasonic oscillation
DE19833306755 DE3306755A1 (en) 1982-02-25 1983-02-25 DRIVE USING ULTRASOUND VIBRATIONS
US06/610,933 US4562374A (en) 1982-02-25 1984-05-16 Motor device utilizing ultrasonic oscillation
US07/135,187 USRE33390E (en) 1982-02-25 1987-12-18 Motor device utilizing ultrasonic oscillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57205220A JPS5996881A (en) 1982-11-22 1982-11-22 Motor device utilizing supersonic vibration

Publications (2)

Publication Number Publication Date
JPS5996881A true JPS5996881A (en) 1984-06-04
JPH0117354B2 JPH0117354B2 (en) 1989-03-30

Family

ID=16503394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57205220A Granted JPS5996881A (en) 1982-02-25 1982-11-22 Motor device utilizing supersonic vibration

Country Status (1)

Country Link
JP (1) JPS5996881A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109038A (en) * 1982-12-14 1984-06-23 Canon Inc Driving device of optical system
JPS59201685A (en) * 1983-04-30 1984-11-15 Canon Inc Vibration wave motor
JPS6096183A (en) * 1983-10-26 1985-05-29 Canon Inc Surface wave motor
JPS6130972A (en) * 1984-07-18 1986-02-13 Taga Denki Kk Supersonic motor device
JPS6139871A (en) * 1984-07-28 1986-02-26 Marcon Electronics Co Ltd Piezoelectric linear motor
JPS6139870A (en) * 1984-07-27 1986-02-26 Marcon Electronics Co Ltd Piezoelectric linear motor
JPS61124276A (en) * 1984-11-19 1986-06-12 Marcon Electronics Co Ltd Piezoelectric supersonic wave linear motor
JPS61166429A (en) * 1985-01-18 1986-07-28 Motoda Electronics Co Ltd Ultrasonic conveyer
JPS61180582A (en) * 1985-02-04 1986-08-13 Marcon Electronics Co Ltd Piezoelectric supersonic wave motor
JPS6277068A (en) * 1985-08-31 1987-04-09 Shinsei Kogyo:Kk Improvement in support of surface wave motor
JPS62114478A (en) * 1985-11-11 1987-05-26 Taga Denki Kk Ultrasonic vibrator and control method for drive thereof
JPS62126874A (en) * 1985-11-27 1987-06-09 Taga Denki Kk Ultrasonic vibrator and drive controlling method thereof
JPS62141980A (en) * 1985-12-16 1987-06-25 Taga Denki Kk Ultrasonic vibrator and drive controlling method thereof
JPS62152377A (en) * 1985-12-24 1987-07-07 Taga Denki Kk Drive-controlling method for ultrasonic wave vibrator
JPS62152378A (en) * 1985-12-24 1987-07-07 Taga Denki Kk Ultrasonic wave vibrator and its drive-controlling method
JPH01129781A (en) * 1987-11-11 1989-05-23 Matsushita Electric Ind Co Ltd Ultrasonic motor device
US5050157A (en) * 1987-11-30 1991-09-17 Nec Home Electronics Ltd. Friction reducing piezoelectric feed guide mechanism
US5136200A (en) * 1989-07-27 1992-08-04 Olympus Optical Co., Ltd. Ultransonic motor
US5198732A (en) * 1991-08-22 1993-03-30 Mitsubishi Jukogyo Kabushiki Kaisha Rotation control system for ultrasonic motor
US5600196A (en) * 1989-06-05 1997-02-04 Canon Kabushiki Kaisha Vibration driven motor
JP2003047264A (en) * 2001-08-02 2003-02-14 Canon Inc Housing structure of motor
US6870306B2 (en) 2000-08-11 2005-03-22 Ecchandes Inc. Overlapping type piezoelectric stator, overlapping type piezoelectric actuator and applications thereof
US7514845B2 (en) 2005-05-26 2009-04-07 Nikon Corporation Vibrational actuator and method for driving vibrational actuator
US8063538B2 (en) 2008-05-27 2011-11-22 Murata Manufacturing Co., Ltd. Ultrasonic motor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381241B2 (en) 2009-03-31 2014-01-08 株式会社ニコン Vibration actuator, lens barrel and camera
US8513857B2 (en) 2010-02-08 2013-08-20 Nikon Corporation Vibrational wave motor, lens barrel and camera
JP5459192B2 (en) 2010-12-06 2014-04-02 株式会社ニコン Vibration wave motor, lens barrel and camera
JP5665522B2 (en) 2010-12-20 2015-02-04 キヤノン株式会社 Vibrating body and vibration type driving device
EP3521887B1 (en) 2012-02-28 2021-12-22 Nikon Corporation Drive apparatus with associated drive method and optical device
TW201810914A (en) 2016-06-30 2018-03-16 日商尼康股份有限公司 Vibration wave motor and optical device
CN117335685A (en) 2017-10-18 2024-01-02 株式会社尼康 Vibration wave motor, lens barrel, and imaging device
JP2021191197A (en) 2020-06-04 2021-12-13 株式会社ニコン Vibrating body and vibrating wave motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148682A (en) * 1982-02-25 1983-09-03 Toshio Sashita Motor device using supersonic vibration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148682A (en) * 1982-02-25 1983-09-03 Toshio Sashita Motor device using supersonic vibration

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109038A (en) * 1982-12-14 1984-06-23 Canon Inc Driving device of optical system
JPH0477287B2 (en) * 1982-12-14 1992-12-08 Canon Kk
JPH0140597B2 (en) * 1983-04-30 1989-08-30 Canon Kk
JPS59201685A (en) * 1983-04-30 1984-11-15 Canon Inc Vibration wave motor
JPS6096183A (en) * 1983-10-26 1985-05-29 Canon Inc Surface wave motor
JPH0510912B2 (en) * 1983-10-26 1993-02-12 Canon Kk
JPS6130972A (en) * 1984-07-18 1986-02-13 Taga Denki Kk Supersonic motor device
JPS6139870A (en) * 1984-07-27 1986-02-26 Marcon Electronics Co Ltd Piezoelectric linear motor
JPS6139871A (en) * 1984-07-28 1986-02-26 Marcon Electronics Co Ltd Piezoelectric linear motor
JPS61124276A (en) * 1984-11-19 1986-06-12 Marcon Electronics Co Ltd Piezoelectric supersonic wave linear motor
JPS61166429A (en) * 1985-01-18 1986-07-28 Motoda Electronics Co Ltd Ultrasonic conveyer
JPS61180582A (en) * 1985-02-04 1986-08-13 Marcon Electronics Co Ltd Piezoelectric supersonic wave motor
JPS6277068A (en) * 1985-08-31 1987-04-09 Shinsei Kogyo:Kk Improvement in support of surface wave motor
JPH0588073B2 (en) * 1985-08-31 1993-12-20 Shinsei Industries Co
JPS62114478A (en) * 1985-11-11 1987-05-26 Taga Denki Kk Ultrasonic vibrator and control method for drive thereof
JPS62126874A (en) * 1985-11-27 1987-06-09 Taga Denki Kk Ultrasonic vibrator and drive controlling method thereof
JPH0345986B2 (en) * 1985-11-27 1991-07-12 Taga Denki Kk
JPS62141980A (en) * 1985-12-16 1987-06-25 Taga Denki Kk Ultrasonic vibrator and drive controlling method thereof
JPH0345987B2 (en) * 1985-12-24 1991-07-12 Taga Denki Kk
JPS62152378A (en) * 1985-12-24 1987-07-07 Taga Denki Kk Ultrasonic wave vibrator and its drive-controlling method
JPS62152377A (en) * 1985-12-24 1987-07-07 Taga Denki Kk Drive-controlling method for ultrasonic wave vibrator
JPH01129781A (en) * 1987-11-11 1989-05-23 Matsushita Electric Ind Co Ltd Ultrasonic motor device
JPH0687672B2 (en) * 1987-11-11 1994-11-02 松下電器産業株式会社 Ultrasonic motor device
US5050157A (en) * 1987-11-30 1991-09-17 Nec Home Electronics Ltd. Friction reducing piezoelectric feed guide mechanism
US5600196A (en) * 1989-06-05 1997-02-04 Canon Kabushiki Kaisha Vibration driven motor
US5136200A (en) * 1989-07-27 1992-08-04 Olympus Optical Co., Ltd. Ultransonic motor
US5198732A (en) * 1991-08-22 1993-03-30 Mitsubishi Jukogyo Kabushiki Kaisha Rotation control system for ultrasonic motor
US6870306B2 (en) 2000-08-11 2005-03-22 Ecchandes Inc. Overlapping type piezoelectric stator, overlapping type piezoelectric actuator and applications thereof
JP2003047264A (en) * 2001-08-02 2003-02-14 Canon Inc Housing structure of motor
US7514845B2 (en) 2005-05-26 2009-04-07 Nikon Corporation Vibrational actuator and method for driving vibrational actuator
US8063538B2 (en) 2008-05-27 2011-11-22 Murata Manufacturing Co., Ltd. Ultrasonic motor

Also Published As

Publication number Publication date
JPH0117354B2 (en) 1989-03-30

Similar Documents

Publication Publication Date Title
JPS5996881A (en) Motor device utilizing supersonic vibration
JPS58148682A (en) Motor device using supersonic vibration
JPS61224878A (en) Vibration wave motor
JPS59122385A (en) Motor device utilizing supersonic vibration
JP4838463B2 (en) Vibration type actuator and vibration type drive device
JP2004194487A (en) Vibration driving gear
JPS61224883A (en) Vibration wave motor
JP5029948B2 (en) Ultrasonic motor
JPH11346487A (en) Oscillation wave unit and oscillation wave driver
JPS62203570A (en) Ultrasonic motor
JPS60207469A (en) Supersonic motor
JP2558830B2 (en) Ultrasonic motor
JPS59191488A (en) Improvement of stator of surface wave motor
JPH08242592A (en) Ultrasonic actuator
SU853711A1 (en) Vibromotor
JP2725767B2 (en) Vibration wave drive
JPH0993962A (en) Oscillatory actuator
JPH0773428B2 (en) Piezoelectric drive
JPH0232771A (en) Traveling-wave motor
JP2000358387A (en) Truss-type actuator
JP4032161B2 (en) Actuator
JPH08172782A (en) Ultrasonic motor
JPS60170471A (en) Vibration wave motor
JPS60207466A (en) Supersonic motor
JPS63314182A (en) Piezoelectric driving gear