WO2011065148A1 - Laser beam source apparatus - Google Patents

Laser beam source apparatus Download PDF

Info

Publication number
WO2011065148A1
WO2011065148A1 PCT/JP2010/068241 JP2010068241W WO2011065148A1 WO 2011065148 A1 WO2011065148 A1 WO 2011065148A1 JP 2010068241 W JP2010068241 W JP 2010068241W WO 2011065148 A1 WO2011065148 A1 WO 2011065148A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
wavelength
semiconductor
resonator
Prior art date
Application number
PCT/JP2010/068241
Other languages
French (fr)
Japanese (ja)
Inventor
能徳 久保田
英之 岡本
健 春日
育成 原
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2011065148A1 publication Critical patent/WO2011065148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06745Tapering of the fibre, core or active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • H01S3/0815Configuration of resonator having 3 reflectors, e.g. V-shaped resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/086One or more reflectors having variable properties or positions for initial adjustment of the resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping

Definitions

  • the present invention relates to a resonator configuration for obtaining a highly efficient laser light source device that is easy to manufacture and a laser light source device using the resonator.
  • a solid-state laser having a semiconductor light source as an excitation light source, a semiconductor laser, or a wavelength conversion laser having a semiconductor laser excitation solid-state laser as a fundamental wave are known. .
  • a solid-state laser excited by a semiconductor laser there is known a method for exciting a solid-state laser material such as a crystal, glass, ceramics, or fiber added with a rare earth or a transition metal ion with a semiconductor laser or a high-power LED. Laser light is obtained.
  • Fabry-Perot type and ring type are known as resonators for solid-state lasers. Excitation light generated by a semiconductor laser is irradiated from the outside of this resonator to a solid-state laser material through a dichroic mirror. Then, laser light is oscillated by confining light of the target laser wavelength.
  • a solid-state laser resonator can be configured using a laser mirror or a fiber Bragg diffraction grating formed on the end face of the fiber, and the laser can be configured as an all-fiber type.
  • a semiconductor pump light source with a fiber pigtail is often used as the pump light source.
  • filters are installed.
  • the semiconductor laser resonator that generates the excitation light and the solid-state laser resonator that generates the laser light by absorbing the excitation light are completely independent of each other.
  • the wavelength conversion laser is mainly used for a visible light laser or a mid-infrared wavelength band laser, which is difficult to obtain with a semiconductor laser or a solid-state laser.
  • Non-linear wavelength conversion techniques such as second harmonic (SHG), sum frequency (SFG), and difference frequency (DFG) are used for the wavelength conversion laser.
  • SHG second harmonic
  • FSG sum frequency
  • DFG difference frequency
  • a semiconductor laser excitation solid-state laser or a semiconductor laser is used to generate the fundamental wave.
  • in-resonator wavelength conversion has been proposed in which the fundamental wave and the wavelength-converted light are confined in the same resonator to achieve high efficiency.
  • the absorption loss of the nonlinear optical crystal is sufficiently low with respect to the fundamental wave generated by the semiconductor laser, so the optical density in the nonlinear optical crystal is increased by confining the fundamental wave, Increasing the confinement of the fundamental wave, increasing the number of turns, and increasing the interaction length with the nonlinear optical crystal can increase the efficiency.
  • Patent Document 8 a method using a resonator configuration method in which a solid-state laser material is placed in a semiconductor laser resonator has been proposed (Patent Document 8), and simultaneously realizes a resonance condition of a semiconductor light source and a laser resonance condition of a solid-state light emitting medium. Therefore, it is necessary to adjust the gain and loss, match the mode volume, and simultaneously adjust the optical axes, and it is difficult to achieve all of them optimally.
  • a solid laser material which is a light emitting medium, serves as an absorption medium. Therefore, only a region where the solid laser material causes absorption saturation can be used for semiconductor laser oscillation, and as a result, high-power semiconductor laser oscillation is possible.
  • the optical resonator of the semiconductor light source and the optical resonator of the solid-state laser material are independent of each other and are independent of each other in terms of optical arrangement. Adjustments must also be made independently. For this reason, when trying to obtain the desired output light by condensing and irradiating the solid-state laser material with the excitation light from the semiconductor light source, optimization of the optical component position of the laser resonator of the solid-state laser and the coupling efficiency of the excitation light In order to achieve both optimization, complicated optical component position adjustment is necessary, and it is difficult to construct an optimal resonator.
  • Non-patent Document 1 a tunable laser with a visible broadband and a broadband wavelength has been proposed by using a GaN-based semiconductor laser as a semiconductor laser and using a ZBLAN fiber doped with Pr 3+ as a light-emitting medium.
  • Japanese Patent Laid-Open No. 06-112560 Japanese Patent Laid-Open No. 7-106682 JP-A-7-104332 JP-A-6-350168 Japanese Patent Laid-Open No. 5-95145 JP-A-6-112560 JP-A-62-86881 JP-A-6-112560
  • an object of the present invention is to provide a laser light source device that can easily realize a light source device having high luminance and high light emission efficiency.
  • the present inventors have used a solid state laser in a laser light source device that uses a semiconductor light source as an excitation source and extracts the output of a solid laser material that emits light by absorbing the excitation light.
  • a solid state laser in a laser light source device that uses a semiconductor light source as an excitation source and extracts the output of a solid laser material that emits light by absorbing the excitation light.
  • the present invention relates to a semiconductor light source including a semiconductor light emitting element that emits excitation light, and a light emitting medium that emits light by absorbing the excitation light, and at least part of the light emission is output as output light.
  • a medium a first optical resonator configured by a first reflection element set to resonate the excitation light and enhance its light intensity, and a light source of the light emitting medium to resonate and enhance the light intensity
  • a laser light source device including a second optical resonator that constitutes a second optical path by a second reflecting element set, wherein the first optical path and the second optical path share a part, and the semiconductor light emitting device is shared by the shared portion.
  • An element is disposed, the light emitting medium is disposed in the second optical path, the first reflective element set and the second reflective element set share at least the first reflective element, and the first reflective element is coupled with the output light.
  • a laser light source device that reflects the excitation light together is provided.
  • both the first optical resonator and the second optical resonator are Fabry-Perot optical resonators
  • the first reflective element group includes a second reflective element other than the first reflective element.
  • the second reflection element constitutes a light emitting end of the first optical resonator, and the second reflection element has a reflectance of light having a desired oscillation wavelength of the first optical resonator.
  • the second reflective element set has a third reflective element other than the first reflective element, and the third reflective element constitutes a light emitting end of the second optical resonator, and the third reflective element Provides a laser light source device in which the reflectance of light having a desired oscillation wavelength of the second optical resonator is lower than that of the first reflecting element.
  • FIG. 1 shows a schematic diagram of a first embodiment according to the invention.
  • FIG. 2 shows a schematic diagram of a second embodiment according to the present invention.
  • FIG. 3 shows a schematic diagram of a third embodiment according to the present invention.
  • FIG. 6 shows a schematic diagram of a fourth embodiment according to the present invention.
  • FIG. 7 shows a schematic diagram of a fifth embodiment according to the present invention.
  • FIG. 10 is a schematic diagram of a sixth embodiment according to the present invention.
  • FIG. 10 is a schematic view of a seventh embodiment according to the present invention.
  • FIG. 10 is a schematic diagram of an eighth embodiment according to the present invention.
  • FIG. 10 is a schematic view of a ninth embodiment according to the present invention.
  • FIG. 10 shows a schematic diagram of a tenth embodiment according to the present invention.
  • the schematic of the apparatus used for the comparative example 1 is shown.
  • the schematic of the apparatus used for the comparative example 2 is shown.
  • the present invention it is possible to easily obtain a laser light source device that can easily adjust the optical position for optimizing the performance of the light source, has high brightness of the obtained laser light, and has high luminous efficiency.
  • a semiconductor light emitting device 4 is used as an excitation light source, and a light emitting medium 5 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light is provided to enhance the light of the semiconductor optical device 4 that generates the excitation light.
  • a semiconductor laser resonator 1 first optical resonator
  • the solid-state laser resonator 2 second optical resonator
  • the element 6, the reflective element 9, and the reflective element 10 is provided.
  • the semiconductor laser resonator 1 (first optical resonator) and the solid-state laser resonator 2 (second light) are provided.
  • the resonator shares a part of the optical path with the reflective element 6 (first reflective element), and the semiconductor light emitting element 4 that emits the excitation light is installed in the shared optical path.
  • a light-emitting medium 5 is installed in an optical path that is not shared It has been.
  • the reflective element 6 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 4 and the light emission wavelength from the light emitting medium 5 as an optical path conversion mirror. Is a reflection element that partially reflects the excitation light generated in the semiconductor light emitting element 4 and transmits light having the emission wavelength of the light emitting medium 5.
  • the reflection element 8 is a reflection that highly reflects the excitation light generated in the semiconductor light emitting element 4.
  • the reflective element 9 is a reflective element that highly transmits excitation light generated by the semiconductor light emitting element 4 as a dichroic mirror and highly reflects light having the emission wavelength of the light emitting medium 5.
  • the reflective element 10 is a light emitting medium 5. It is a reflective element that partially reflects and partially transmits light having the emission wavelength of.
  • the luminescent medium 5 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 7.
  • the emitted fluorescence is amplified and oscillates as it circulates in the ring-shaped resonator (solid laser resonator 2) composed of the reflective element 6, the reflective element 9, and the reflective element 10. Part of the oscillated laser light is output 3 through the reflecting element 10 to the outside.
  • the semiconductor laser resonator 1 (first optical resonator) is optimized to maximize the pumping light intensity, and then the shared optical path with the semiconductor laser resonator 1 and the shared reflecting element 6 (first reflecting element) are fixed.
  • the light output can be easily maximized by optimizing the position of the light emitting medium 5 and the position and angle of the reflecting element 10 (non-shared reflecting element) of the solid-state laser resonator 2 (second optical resonator). Can be planned.
  • the semiconductor laser resonator 1 is not affected because it is an independent resonator.
  • the solid-state laser resonator 2 is supplied with the excitation light with the optimized output from the optimized semiconductor laser resonator 1, the light emitting medium 5 can emit strong light.
  • the optical axis is coincident with or sufficiently close to the shared portion with the semiconductor laser resonator 1. This is because absorption and scattering are caused by the semiconductor light emitting element in the semiconductor laser resonator 1 except for the vicinity of the optical axis of the semiconductor laser that oscillates in the semiconductor laser resonator 1, and the solid laser resonator 2 has a low loss. It is because it does not become. Due to this effect, when the solid-state laser resonator 2 is adjusted to perform laser oscillation, the optical axes of the semiconductor laser resonator 1 are naturally aligned at the same time.
  • the oscillation wavelength of the laser light generated by the solid-state laser resonator 2 and the wavelength of the excitation light generated by the semiconductor laser resonator 1 This makes it easy to maximize mode overlap.
  • the incident optical system in which the excitation light is incident on the light emitting medium 5 and the reflecting element 10 (non-shared reflecting element) of the solid-state laser resonator 2 and the light emitting medium In order to maximize the mode overlap at both wavelengths, the incident optical system in which the excitation light is incident on the light emitting medium 5 and the reflecting element 10 (non-shared reflecting element) of the solid-state laser resonator 2 and the light emitting medium.
  • the target laser output can be maximized by adjusting the distance in the direction of the optical axis 5 and adjusting the diameter of the focused spot on the light emitting medium 5 and the focal length. Therefore, the optical system can be easily adjusted by simple optical adjustment, and a laser light source device having high luminance and high light emission efficiency can be easily realized.
  • the semiconductor laser resonator 201 (first optical resonator) composed of the reflective element 206 and the reflective element 207 and the light emission from the light emitting medium 205 are emitted.
  • a solid-state laser resonator 202 (second optical resonator) composed of a reflective element 206 (first reflective element) and a reflective element 210 is provided.
  • a Fabry-Perot type semiconductor laser resonator 201 is installed so as to share one reflection element (reflection element 206) of the solid-state laser resonator 202.
  • the configuration shown in FIG. 2 has a simplified configuration in which the reflective elements corresponding to the reflective elements 8 and 9 in FIG. 1 are removed, and the number of components is smaller than that in FIG.
  • the light emitting medium 205 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 207. Fluorescence emitted from the light emitting medium 205 is confined between the reflective element 206 and the reflective element 206 shared with the reflective element 210 and is enhanced while reciprocating, and laser oscillation occurs. A part of the oscillated laser beam is output 203 through the reflecting element 210 to the outside.
  • the optical system can be easily adjusted by simpler optical adjustment than in the first embodiment.
  • excitation light is emitted between the reflective element 7 and the light emitting medium 5 and between the reflective element 207 and the light emitting medium 205.
  • a lens for condensing and irradiating the medium can be added.
  • This lens is preferably provided with a broadband non-reflective coating that is low-reflective in both oscillating laser light and excitation light.
  • the lens it is preferable to use an achromatic lens or an aspherical lens in which the focal length is approximately equal between the wavelength of the oscillating laser light and the wavelength of the excitation light and the aberration is suppressed.
  • the semiconductor light-emitting element 304 is used as an excitation light source, and includes a fiber-type light-emitting medium 305 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light.
  • a semiconductor laser resonator 301 (first optical resonator) composed of a reflective element 306 and a reflective element 313, and as a resonator for enhancing light emission from the light emitting medium 305, a reflective element 306 (first reflective element) and a solid state laser resonator 302 (second optical resonator) composed of the reflective element 314, and a semiconductor laser resonator 301 (first optical resonator) and a solid state laser resonator 302 (second optical resonator).
  • the optical resonator) shares a part of the optical path with the reflecting element 306, and a semiconductor light emitting element 304 that emits excitation light is installed in the shared optical path.
  • the reflective element 306 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 304 and the light emission wavelength from the light emitting medium 305 as a shared mirror.
  • the reflective element that transmits light of the emission wavelength of the light emitting medium 305 and the surface of the semiconductor light emitting element 304 side partially reflects the excitation light generated by the semiconductor light emitting element 304.
  • the shape of the reflective element 313 on the light emitting medium 305 side is The lens has a convex lens shape so that excitation light can be condensed on the excitation side end surface 315 of the light emitting medium 305. Further, the light emitted from the light emitting medium 305 in the form of a fiber is arranged so as to be roughly coupled to the active layer of the semiconductor light emitting element 304.
  • the reflecting element 314 is formed by directly forming an optical thin film that partially reflects the fluorescence from the light emitting medium 305 on the end surface of the light emitting medium 305 opposite to the semiconductor light emitting element 304 or by forming a transparent film on which the optical thin film is formed. It is equipped by bonding, optical contact or fusing the substrates.
  • the luminescent medium 305 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 313.
  • the fluorescence from the light emitting medium 305 is enhanced while reciprocating between the reflecting element 314 and the reflecting element 306, and laser oscillation occurs. Part of the oscillated laser beam is output 303 through the reflecting element 314 to the outside.
  • the excitation-side end face 315 is provided with a broadband non-reflective coating that has low reflectance at both the excitation light wavelength and the oscillated laser light wavelength.
  • the semiconductor laser resonator 301 (first optical resonator) is optimized to maximize the pumping light intensity. Thereafter, the input end 315 of the optical waveguide is adjusted in the vicinity of the focal point of the reflective element 313 having a condensing function while the shared optical path with the semiconductor laser resonator 301 and the shared reflective element 306 (first reflective element) are fixed. The angle is adjusted so that the output of the semiconductor laser is roughly coupled to the fiber core. Since the light emitting medium 305 has a waveguide shape and already has a reflecting element 314 that is an output partial reflecting mirror of the solid-state laser resonator 302 at one end, half of the resonator is coupled with excitation light. It is completed with.
  • a semiconductor light-emitting element 404 that uses a semiconductor light-emitting element 404 as an excitation light source, includes a fiber-shaped light-emitting medium 405 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light, and generates the excitation light.
  • a semiconductor laser resonator 401 first optical resonator
  • a reflective element 406 first reflective element
  • a reflective element 413 light emission from a light emitting medium 405 are enhanced.
  • a solid-state laser resonator 402 (second optical resonator) including a reflective element 406 and a reflective element 414 is provided, and a semiconductor laser resonator 401 (first optical resonator) and a solid-state laser resonator 402 (second optical resonator).
  • the optical resonator shares a part of the optical path with the reflecting element 406, and a semiconductor light emitting element 404 that emits excitation light is installed in the shared optical path.
  • Emitting medium 405 is installed in the 02 optical path that is not shared.
  • the reflective element 406 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 404 and the light emission wavelength from the light emitting medium 405 as a shared mirror.
  • the semiconductor light emitting element side end surface 416 of the light emitting medium 405 is polished into a lens shape so as to collect the excitation light from the semiconductor light emitting element 404 and couple the light emitted from the light emitting medium 405 to the active layer of the semiconductor light emitting element 404.
  • the semiconductor light emitting device 404 is disposed in proximity to the active layer.
  • an optical thin film that partially reflects the fluorescence from the light emitting medium 405 is formed directly on the end surface of the light emitting medium 405 opposite to the semiconductor light emitting element 404, or a transparent film on which the optical thin film is formed. It is equipped by bonding, optical contact or fusing the substrates.
  • the luminescent medium 405 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 413.
  • the fluorescence from the light emitting medium 405 is enhanced while reciprocating between the reflecting element 414 and the reflecting element 406, and laser oscillation occurs.
  • a part of the oscillated laser beam is output 403 to the outside through the reflecting element 414.
  • the excitation-side end face 416 is provided with a broadband non-reflective coating that has a low reflectance at both the excitation light wavelength and the oscillated laser light wavelength.
  • the coupling optical system for coupling the excitation light radiated from the semiconductor laser resonator 401 to the light emitting medium 405 can be reduced in size. Further, by downsizing the optical coupling portion, the optical coupling portion can be easily and firmly fixed, and the coupling efficiency can be prevented from changing or changing due to vibration or temperature change.
  • a semiconductor light-emitting element 504 is used as an excitation light source, and includes a fiber-type light-emitting medium 505 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light.
  • a semiconductor laser resonator 501 first optical resonator
  • a reflective element 506 first reflective element
  • a reflective element 513 light emission from a light emitting medium 505 are enhanced.
  • a solid-state laser resonator 502 (second optical resonator) including a reflective element 506 and a reflective element 514 is provided.
  • the reflective element 514 includes an output fiber 517, and a semiconductor laser resonator 501 (first optical resonator). ) And the solid-state laser resonator 502 (second optical resonator) share a part of the optical path with the reflecting element 506, and a semiconductor light emitting element that emits excitation light in the shared optical path. 504 is installed, the light emitting medium 505 in the optical path that is not shared the solid-state laser resonator 502 is installed.
  • the reflective element 506 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 504 and the light emission wavelength from the light emitting medium 505 as a shared mirror.
  • the reflective element that transmits light of the emission wavelength of the light emitting medium 505 and that partially reflects the excitation light generated by the semiconductor light emitting element 504 is the reflective element 513 on the light emitting medium 505 side.
  • the light emitting medium 505 has a convex lens shape so that the excitation light can be condensed on the excitation side end surface 515. Further, the light emitted from the light emitting medium 505 in the fiber form is arranged so as to be roughly coupled to the active layer of the semiconductor light emitting element 504.
  • the reflecting element 514 of the output fiber 517 in which the reflecting element 514 that partially reflects the fluorescence from the light emitting medium 505 is directly formed on the end surface is formed.
  • the end faces are fusion spliced.
  • the luminescent medium 505 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 513.
  • the fluorescence from the light emitting medium 505 is enhanced while reciprocating between the reflecting element 514 and the reflecting element 506, and laser oscillation occurs. Part of the oscillated laser light propagates to the output fiber 517 through the reflecting element 514 and is output 503 from the end face of the output fiber 517 to the outside.
  • the excitation-side end surface 515 is provided with a broadband non-reflective coating that has a low reflectance at both the excitation light wavelength and the oscillated laser light wavelength.
  • the same effect as the third embodiment can be obtained. Further, since there is no reflecting element constituting the solid-state laser resonator 502 at the end of the output fiber 517 on the output 503 side, and the reflecting element 514 is protected by the fused portion, it is excellent in environmental resistance and durability. In particular, when the light emitting medium 505 has a problem in environmental resistance, it is possible to prevent the light emitting medium 505 from being deteriorated by exposing only the output fiber 517 from the hermetic seal housing.
  • a semiconductor light-emitting element 604 is used as an excitation light source, and includes a light-emitting medium 605 in the form of a fiber that absorbs the excitation light and emits light having a wavelength different from that of the excitation light.
  • a semiconductor laser resonator 601 first optical resonator
  • a reflective element 606 first reflective element
  • a reflective element 613 light emission from a light emitting medium 605 are enhanced.
  • a solid-state laser resonator 602 (second optical resonator) including a reflective element 606 and a reflective element 614 is provided, and a semiconductor laser resonator 601 (first optical resonator) and a solid-state laser resonator 602 (second optical resonator).
  • the optical resonator) shares a part of the optical path with the reflecting element 606, and a semiconductor light emitting element 604 that emits excitation light is installed in the shared optical path.
  • Emitting medium 605 is installed in the 02 optical path that is not shared.
  • the reflective element 606 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 604 and the light emission wavelength from the light emitting medium 605 as a shared mirror.
  • a reflective element that transmits light of the emission wavelength of the light emitting medium 605 and partially reflects the excitation light generated by the semiconductor light emitting element 604.
  • the dielectric multilayer film or the Fresnel reflection directly formed on the end face of the semiconductor light emitting element 604 The cleaved end face used.
  • An input fiber 618 is fused and connected to the semiconductor light emitting element side of the light emitting medium 605 at a fusion point 619, and an end surface 616 of the input fiber 618 on the semiconductor light emitting element 604 side receives excitation light from the semiconductor light emitting element 604.
  • the light is condensed and polished into a lens shape so as to couple light emitted from the light emitting medium 605 to the active layer of the semiconductor light emitting element 604, and is disposed close to the active layer of the semiconductor light emitting element 604.
  • a reflective element 614 that partially reflects the fluorescence from the light emitting medium 605 is formed directly, or an optical thin film is formed. It is equipped by bonding, optical contact or fusing a transparent substrate.
  • the input fiber 618 can propagate light emitted from the light emitting medium 605 and excitation light generated from the semiconductor light emitting element 604 bidirectionally with low loss. Excitation light propagating through the input fiber 618 is coupled to the core of the light emitting medium 605 in the form of a fiber through a fusion point 619.
  • the luminescent medium 605 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 613. Fluorescence from the luminescent medium 605 is enhanced while reciprocating between the reflective element 614 and the reflective element 606, and lasing. Part of the oscillated laser beam is output 603 to the outside through the reflecting element 614.
  • the end face 616 of the input fiber 618 is provided with a broadband non-reflective coating that has a low reflectance at both the excitation light wavelength and the oscillated laser light wavelength.
  • the input fiber 618 can be a fiber different from the light emitting medium 605, a general-purpose optical component such as a lensed fiber using quartz can be used.
  • the light emitting medium 605 is, for example, a fluoride fiber
  • the processing is not always easy. Therefore, the processing yield of the product can be improved, and the manufacturing cost can be suppressed by using inexpensive general-purpose parts.
  • a semiconductor light-emitting element 704 is used as an excitation light source, and includes a light emitting medium 705 in a fiber form that absorbs the excitation light and emits light having a wavelength different from that of the excitation light.
  • a semiconductor laser resonator 701 first optical resonator
  • a reflective element 706 first reflective element
  • a reflective element 713 light emission from a light emitting medium 705
  • a solid-state laser resonator 702 including a reflective element 706 and a reflective element 714 is provided.
  • the reflective element 714 includes an output fiber 717, and a semiconductor laser resonator 701 (first optical resonator). ) And the solid-state laser resonator 702 (second optical resonator) share a part of the optical path with the reflecting element 706, and a semiconductor light emitting element that emits excitation light in the shared optical path. 704 is installed, the light emitting medium 705 in the optical path that is not shared the solid-state laser resonator 702 is installed.
  • the reflective element 706 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 704 and the light emission wavelength from the light emitting medium 705 as a shared mirror.
  • the light emitting medium 705 transmits light having the emission wavelength
  • the surface on the semiconductor light emitting element 704 side is a reflective element that partially reflects the excitation light generated by the semiconductor light emitting element 704.
  • the light emitting medium 705 has a surface on the semiconductor light emitting element 704 side.
  • the input fiber 718 is fusion spliced at a fusion point 719, and the end surface 715 of the input fiber 718 on the semiconductor light emitting element 704 side has a low reflectance at both the excitation light wavelength and the oscillated laser light wavelength. Reflective coating is applied, and the shape of the reflective element 713 on the side of the light emitting medium 705 is the same as that of the input fiber 7 fused and connected to the excitation side of the light emitting medium 705. It has a convex shape so that the excitation light can condensing on the end face 715 of the 8.
  • the reflection element 713 can collect the excitation light on the end face 715 and is disposed so as to couple the light having the emission wavelength from the fiber type light emitting medium 705 propagating through the input fiber 718 to the active layer of the semiconductor light emitting element 704. Has been.
  • the input fiber 718 can propagate light emitted from the light emitting medium 705 and excitation light generated from the semiconductor light emitting element 704 bidirectionally with low loss. Excitation light propagating through the input fiber 718 is coupled to the core of the light emitting medium 705 in the form of a fiber through a fusion point 719.
  • the reflecting element 714 of the output fiber 717 in which the reflecting element 714 that partially reflects the fluorescence from the light emitting medium 705 is directly formed on the end face is formed.
  • the end faces are fusion spliced.
  • the light emitting medium 705 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 713.
  • the fluorescence from the light emitting medium 705 is enhanced while reciprocating between the reflecting element 714 and the reflecting element 706, and laser oscillation occurs.
  • Part of the oscillated laser light propagates to the output fiber 717 through the reflecting element 714 and is output 703 from the end face of the output fiber 717 to the outside.
  • the input fiber 718 provided with the input end 715 can be a fiber different from the light emitting medium 705, a general-purpose optical component such as a film-formed quartz fiber can be used.
  • a general-purpose optical component such as a film-formed quartz fiber
  • the light-emitting medium 705 is, for example, a fluoride fiber
  • a semiconductor light emitting element 804 is used as an excitation light source, and includes a light emitting medium 805 in the form of a fiber that absorbs the excitation light and emits light having a wavelength different from that of the excitation light.
  • a semiconductor laser resonator 801 first optical resonator
  • a reflective element 806 first reflective element
  • a reflective element 813 light emission from a light emitting medium 805
  • a solid-state laser resonator 802 including a reflective element 806 and a reflective element 814 is provided.
  • the reflective element 814 includes an output fiber 817, and a semiconductor laser resonator 801 (first optical resonator). ) And the solid-state laser resonator 802 (second optical resonator) share a part of the optical path with the reflecting element 806, and a semiconductor light emitting element that emits excitation light in the shared optical path 804 is installed, the light emitting medium 805 in the optical path that is not shared the solid-state laser resonator 802 is installed.
  • the reflective element 806 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 804 and the light emission wavelength from the light emitting medium 805 as a shared mirror.
  • the reflective element 813 is a reflective element that transmits the light having the emission wavelength of the light emitting medium 805 and partially reflects the excitation light generated by the semiconductor light emitting element 804.
  • An input fiber 818 is fused and connected to the semiconductor light emitting element 804 side of the light emitting medium 805 at a fusion point 819, and an end face 816 of the input fiber 818 on the semiconductor light emitting element 804 side is excited light from the semiconductor light emitting element 804. Is collected in a lens shape so as to couple light emitted from the light emitting medium 805 to the active layer of the semiconductor light emitting element 804, and is disposed close to the active layer of the semiconductor light emitting element 804.
  • the input fiber 818 can propagate light emitted from the light emitting medium 805 and excitation light generated from the semiconductor light emitting element 804 bidirectionally with low loss. Excitation light propagating through the input fiber 818 is coupled to the core of the light emitting medium 805 in the form of a fiber through a fusion point 819.
  • the reflecting element 814 of the output fiber 817 in which the reflecting element 814 that partially reflects the fluorescence from the light emitting medium 805 is directly formed on the end surface is formed.
  • the end faces are fusion spliced.
  • the luminescent medium 805 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 813. Fluorescence from the light emitting medium 805 is enhanced while reciprocating between the reflecting element 814 and the reflecting element 806, and lasing. Part of the oscillated laser beam is output 803 to the outside through the reflecting element 814.
  • the end face 816 of the input fiber 818 is provided with a broadband non-reflective coating that has low reflectivity at both the excitation light wavelength and the oscillated laser light wavelength.
  • the same effect as in the sixth embodiment can be obtained. Furthermore, since there is no reflecting element constituting the solid-state laser resonator 802 at the end of the output fiber 817 on the output 803 side, and the reflecting element 814 is protected by the fused portion, it is excellent in environmental resistance and durability. In particular, when the light emitting medium 805 has a problem in environmental resistance, it is possible to prevent deterioration of the light emitting medium 805 by exposing only the output fiber 817 from the hermetic seal housing.
  • a semiconductor light-emitting element 904 is used as an excitation light source, and includes a light-emitting medium 905 in the form of a fiber that absorbs the excitation light and emits light having a wavelength different from that of the excitation light.
  • a semiconductor laser resonator 901 first optical resonator
  • a reflective element 906 first reflective element
  • a reflective element 913 light emission from a light emitting medium 905 are enhanced.
  • a solid-state laser resonator 902 (second optical resonator) including a reflecting element 906 and a reflecting element 920 is provided, and the reflecting element 920 is fused to the end surface of the light emitting medium 905 opposite to the semiconductor optical element 904 side.
  • the semiconductor laser resonator 901 (first optical resonator) and the solid-state laser resonator 902 (second optical resonator) are connected to each other at a point 919 by a reflection element 906 and a part of the optical path.
  • Share and are semiconductor light emitting element 904 is disposed to emit excitation light to the shared optical path, the light emitting medium 905 is installed in the optical path that is not shared the solid-state laser resonator 902.
  • the reflective element 906 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 904 and the light emission wavelength from the light emitting medium 905 as a shared mirror.
  • the light emitting medium 905 transmits light of the emission wavelength
  • the surface on the semiconductor light emitting element 904 side is a reflective element that partially reflects the excitation light generated by the semiconductor light emitting element 904.
  • the input fiber 918 is fusion spliced at a fusion point 921, and the end surface 915 of the input fiber 918 on the semiconductor light emitting element 904 side has a low reflectance at both the pumping light wavelength and the oscillated laser light wavelength.
  • Reflective coating is applied, and the shape of the reflective element 913 on the side of the light emitting medium 905 is the same as that of the input fiber 9 fused and connected to the excitation side of the light emitting medium 905. It has a convex shape so that the excitation light can condensing on the end face 915 of the 8.
  • the reflection element 913 is arranged so that excitation light can be collected on the end face 915 and light of the emission wavelength from the fiber type light emitting medium 905 propagating through the input fiber 918 is coupled to the active layer of the semiconductor light emitting element 904. Has been.
  • the input fiber 918 can propagate light emitted from the light emitting medium 905 and excitation light generated from the semiconductor light emitting element 904 bidirectionally with low loss. Excitation light propagating through the input fiber 918 is coupled to the core of the light emitting medium 905 in the form of a fiber through a fusion point 921.
  • the reflection element 920 is a fiber diffraction grating that partially reflects light having the emission wavelength of the light emitting medium 905, and includes an output fiber 917 on the side that is not fusion-bonded to the light emitting medium 905.
  • the light emitting medium 905 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 913. Fluorescence from the light emitting medium 905 is enhanced while reciprocating between the reflective element 920 and the reflective element 906, and lasing. Part of the oscillated laser light propagates to the output fiber 917 through the reflection element 920 and is output 903 from the end face of the output fiber 917 to the outside.
  • the reflection element 920 of the solid-state laser resonator 902 is a fiber diffraction grating, it can be easily made a reflection element having a narrow-band reflection characteristic even in the visible light wavelength region, and is small and has a small excess loss.
  • a resonator is configured, and a solid laser with high efficiency and high output can be easily realized.
  • the tenth embodiment will be described with reference to FIG. 10 as another example of using a light emitting medium in the form of a fiber.
  • a semiconductor light emitting device 1004 that uses a semiconductor light emitting device 1004 as an excitation light source, includes a fiber-type light emitting medium 1005 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light, and generates the excitation light.
  • a semiconductor laser resonator 1001 first optical resonator
  • a reflective element 1006 first reflective element
  • a reflective element 1013 light emission from a light emitting medium 1005
  • a solid-state laser resonator 1002 (second optical resonator) including a reflecting element 1006 and a reflecting element 1020 is provided, and the reflecting element 1020 is fused to an end surface of the light emitting medium 1005 opposite to the semiconductor optical element 1004 side.
  • the semiconductor laser resonator 1001 (first optical resonator) and the solid-state laser resonator 1002 (second optical resonator) are fusion-spliced at a point 1019.
  • a part of the optical path is shared with the reflecting element 1006, a semiconductor light emitting element 1004 that emits excitation light is installed in the shared optical path, and a light emitting medium is installed in the unshared optical path of the solid-state laser resonator 1002. 1005 is installed.
  • the reflective element 1006 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 1004 and the light emission wavelength from the light emitting medium 1005 as a shared mirror.
  • the reflective element 1013 is a reflective element that transmits light having the emission wavelength of the light emitting medium 1005 and partially reflects the excitation light generated by the semiconductor light emitting element 1004.
  • An input fiber 1018 is fused and connected to the semiconductor light emitting element 1004 side of the light emitting medium 1005 at a fusion point 1021, and an end surface 1016 of the input fiber 1018 on the semiconductor light emitting element 1004 side is excited light from the semiconductor light emitting element 1004. Is collected in a lens shape so as to couple light emitted from the light emitting medium 1005 to the active layer of the semiconductor light emitting element 1004, and is disposed close to the active layer of the semiconductor light emitting element 1004.
  • the input fiber 1018 can propagate light emitted from the light emitting medium 1005 and excitation light generated from the semiconductor light emitting element 1004 bidirectionally with low loss.
  • the excitation light propagating through the input fiber 1018 is coupled to the core of the light emitting medium 1005 in the form of a fiber through the fusion point 1021.
  • the reflection element 1020 is a fiber diffraction grating that partially reflects light having the emission wavelength of the light emitting medium 1005, and includes an output fiber 1017 on the side not fused to the light emitting medium 1005.
  • the luminescent medium 1005 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 1013.
  • the fluorescence from the light emitting medium 1005 is enhanced while reciprocating between the reflective element 1020 and the reflective element 1006, and laser oscillation occurs. Part of the oscillated laser light propagates to the output fiber 1017 through the reflecting element 1020, and is output 1003 from the end face of the output fiber 1017 to the outside.
  • the end face 1016 of the input fiber 1018 is provided with a broadband non-reflective coating that has low reflectivity at both the excitation light wavelength and the oscillated laser light wavelength.
  • the reflecting element 1020 of the solid-state laser resonator 1002 is a fiber diffraction grating, not only can the reflecting element have a narrow-band reflecting characteristic even in the visible light wavelength region, but also a small resonator with less excess loss. It is possible to easily realize a high-efficiency and high-power solid-state laser.
  • the lens shape of the end surface for inputting the excitation light on the semiconductor light emitting element side of the light emitting medium may be a tapered lens, a tip cylindrical lens shape, a compound cylindrical lens shape, or the like.
  • a shape that easily couples light having a large difference in divergence angle between the right and left directions to the core of the optical fiber is preferable.
  • the broadband non-reflective coating to be applied has both the reflectance of the oscillated laser light wavelength and the excitation light wavelength of 1% or less.
  • dielectric film coating such as vapor deposition and sputtering is common, but wet coating such as resin coating and organic-inorganic hybrid film coating can also be used.
  • a dielectric multilayer coating for the reflective element installed on the output side of the light emitting medium it is preferable to use a dielectric multilayer coating for the reflective element installed on the output side of the light emitting medium.
  • a metal film or an alloy film is used depending on the wavelength characteristics and reflectance.
  • a film using fullerenes such as carbon nanotubes or a coating film containing semiconductor nanoparticles can be used.
  • a transparent substrate on which an optical thin film is formed as a reflective element that is bonded, optically contacted, or fused to the output side of the light emitting medium is used, at least as the transparent substrate It is necessary to be transparent to the oscillation wavelength output to the outside, and it is preferable to use a glass substrate or a crystallized glass substrate.
  • the light emitting medium when the end face of the output fiber on which the reflecting element is formed is fusion-bonded to the output-side end face of the light emitting medium, the light emitting medium is made of low phonon glass. In terms of materials, it is particularly preferable to use an oxide-based fiber as the output fiber.
  • the partial reflecting mirror that constitutes the resonator 1 is not limited to the illustrated meniscus lens shape, and is a combination of a concave reflecting mirror and a convex lens, or a part of the semiconductor light emitting element end face. It may be replaced with another configuration that realizes a similar function such as forming a reflecting mirror and combining it with a convex lens.
  • a combination of an optical thin film or a cleaved end face formed on the end face of a semiconductor light emitting device exemplified as a partial reflector constituting a semiconductor laser resonator and a lens-shaped input end face
  • other combinations that realize similar functions such as a combination of a concave reflecting mirror, a convex lens, and an input end face with a broadband non-reflective coating, and a combination of a meniscus-shaped reflecting mirror and an input end face with a broadband non-reflective coating It may be replaced with a configuration.
  • the reflective element (corresponding to the first reflective element) that highly reflects both the excitation light wavelength from the semiconductor light emitting element and the light emission wavelength from the light emitting medium as a shared mirror,
  • a dielectric multilayer mirror, metal or alloy mirror, distributed diffractive mirror (so-called DBR), or distributed feedback structure (so-called DFB) can be selected as appropriate.
  • These reflective elements can be formed by directly forming a film on the end face of the semiconductor light emitting element or by directly forming the reflective element when manufacturing the semiconductor light emitting element.
  • DBR and DFB are particularly preferable from the viewpoint of simplification of the manufacturing process and optical position adjustment because they can be formed at the same time when the semiconductor light emitting device is manufactured.
  • the semiconductor light emitting device used is a waveguide having a normal mesa structure in which an active layer is sandwiched between cladding layers, a quantum well structure, and a transparent window structure in the vicinity of the output end face.
  • Any material can be used as long as it has a structure that functions as a semiconductor optical waveguide having an optical amplification function, such as a structure, and is transparent to the wavelength of the laser light oscillated by the second optical resonator.
  • the active layer has a strained quantum well structure of InGaN-based material and the cladding layer uses n-type or p-type GaN-based material, it is transparent at wavelengths longer than the wavelength of the excitation light generated by this device.
  • a mesa structure strained quantum well InGaN laser having an oscillation wavelength (excitation light wavelength) of 440 nm is used as a semiconductor light-emitting device, and a Pr-doped fluoride glass fiber is used as a light-emitting medium.
  • the laser oscillation wavelength oscillated by the resonator can be selected from a 490 nm band, a 520 nm band, a 602 nm band, a 635 nm band, a 715 nm band, a 900 nm band, and the like, and the InGaN active layer or the cladding layer closest to the active layer can be used for any wavelength. Because it transmits light with low loss, it can be easily output to the outside.
  • the active ions added to the light emitting medium that emits fluorescence by absorbing the emitted excitation light depends on the specific wavelength of the excitation light.
  • Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Dy 3+ , Gd 3+ , Ho 3+ , Er 3 can be excited in the wavelength range of 350 nm to 490 nm. + , Tm 3+ , Sm 2+ , Eu 2+ and Yb 2+ .
  • These rare earths emit fluorescent light in the visible or near-infrared wavelength region where the GaN-based semiconductor laser material is highly transparent, and are therefore suitable as added ions to the light-emitting medium suitable for the resonator structure of the present invention.
  • the material of the light-emitting medium to which these ions are added is a low phonon optical material that can obtain high light emission efficiency for rare-earth fluorescence in the visible to near-infrared region, and the emission wavelength of the GaN-based semiconductor laser is ultraviolet to green. It is preferably transparent in the wavelength band.
  • fluoride glass halide crystal, halide oxide glass, halide oxide crystal, or oxide glass or organic-inorganic hybrid material in which fine particles of these materials added with active ions such as rare earth are dispersed.
  • active ions such as rare earth are dispersed.
  • fluoride glass, fluoride crystal, fluorine oxide glass, and fluorine oxide crystal are most preferable because they can easily produce a light emitting medium and have practical durability.
  • a combination of active ions added to the semiconductor light emitting element and the light emitting medium can be selected as appropriate.
  • fluoride glass used in the present invention, but ZrF 4 (HfF 4 ) -BaF 2 -LnF 3 (selected from Ln: Sc, Y and rare earth elements) -AlF 3 -NaF.
  • Composition system [Zr—F system], AlF 3 —LnF 3 (selected from Ln: Sc, Y and rare earth elements) —MgF 2 (ZnF 2 ) —CaF 2 —SrF 2 —BaF 2 [Al—F system] AlF 3 —ZrF 4 (HfF 4 ) —LnF 3 (Ln: selected from Sc, Y and rare earth elements) —MgF 2 (ZnF 2 ) —CaF 2 —SrF 2 —BaF 2 [Al—Zr—F system InF 3 (GaF 3 ) -LnF 3 (Ln: selected from Sc, Y and rare earth elements) -MgF 2 (ZnF 2 ) —CaF 2 —SrF 2 —BaF 2 [In—F system] Suitable for stability .
  • fluorine oxide glass There are various types of fluorine oxide glass, but from the viewpoint of phonon energy, a material having an oxygen / fluorine atomic ratio of 1 or less is preferable because of its low loss in terms of ultraviolet absorption.
  • fluoride crystals including Li (Y, Lu) F 4 , Li (Ca, Sr) (Al, Ga) F 6 , (Ba, Sr) (Y, Lu) 2 F 8 , Ba (Mg, Zn) F 4 , (Ca, Sr) (Al, Ga) F 5 , Na 2 (Mg, Zn) AlF 7 and the like are suitable.
  • the organic-inorganic hybrid material can be designed relatively freely with respect to the optical, mechanical, chemical, and thermal properties of the matrix material, and may be supplied at a low cost.
  • an active center-added material-dispersed organic-inorganic hybrid material dispersed in an organic material or an organic-inorganic hybrid material has a high degree of freedom in molding shape and is advantageous in terms of price.
  • the particle diameter of the material to be dispersed is preferably 1 ⁇ 4 or less of the shortest wavelength that is actually used in the wavelength band of the generated fluorescence.
  • the reflective element For the purpose of reducing the loss of the resonator constituting the present invention, it is preferable to form a low reflection film on the reflective element, the semiconductor light emitting element, the light emitting medium, and other optical components as necessary.
  • a Fresnel lens or a diffractive optical element may be formed directly on the light emitting medium side end face of the semiconductor light emitting element for the purpose of increasing the optical coupling efficiency.
  • the vicinity of the end surface on the light emitting medium side of the semiconductor light emitting element is particularly preferably a so-called window region without current injection.
  • an achromatic lens whose focal length is the same between the excitation light wavelength and the output oscillation wavelength, or an aspheric lens operating at both wavelengths.
  • the lens-shaped input ends exemplified in the above fourth, sixth, eighth, and tenth embodiments have different fiber dispersion values at the pumping light wavelength and the laser light wavelength. Since dispersion may occur, fluorides such as NaAlF 4 , CaF 2 , SrF 2 and BaF 2 are formed into appropriate thicknesses as dispersion compensation materials having dispersion values different from the fiber material dispersion characteristics. It is particularly preferable to adjust.
  • the broadband antireflection coating should be formed both above and below the dispersion compensation film (the interface between the dispersion compensation film and the air and the interface between the dispersion compensation film and the lens-shaped end face). Is particularly preferred.
  • a mirror in which a dielectric multilayer film or a metal film is deposited or formed on a glass or transparent crystallized glass substrate can be used.
  • a metal mirror or a mirror in which a dielectric multilayer film or a metal film is deposited or formed on a substrate made of metal or ceramics can be used.
  • the laser light is output from the reflection element of the second optical resonator that is not shared, but the reflection shared by the first optical resonator and the second optical resonator.
  • the laser light can be output to the outside also from the shared reflecting element.
  • the light emitting medium emits fluorescence of a plurality of wavelength bands, it is shared with the reflective element of the second optical resonator that is not shared by adjusting the wavelength dependency of the reflective element shared with the second optical resonator. It is possible to output laser beams having different wavelengths from the reflecting element.
  • a dispersion element such as a prism or a diffraction grating as a laser oscillation wavelength selection element in the resonator, or insert a wavelength plate with a continuously variable wavelength, or change the wavelength.
  • a tunable laser can be obtained by a method such as inserting a simple etalon.
  • short pulse laser oscillation with a pulse width of 100 ns or less is possible by inserting a saturable absorbing element and a dispersion compensation optical system into the resonator.
  • a saturable absorbing element and a dispersion compensation optical system For example, when a ZBLAN fiber doped with Pr 3+ is used as a light emitting medium and excited by a GaN-based semiconductor laser, for example, the above-described first or second embodiment is used for a resonator, and a saturable absorber and dispersion compensation optics are used.
  • a compact and highly efficient visible light band short pulse laser can be realized by inserting the system between the light emitting medium and the output mirror to form a solid-state laser resonator.
  • a material that exhibits appropriate absorption saturation characteristics in a visible broadband such as a dye-added film, carbon nanotube, graphene, ZnO thin film, In 2 O 3 —SnO 2 thin film (ITO thin film), TiN thin film should be used. Can do. These materials can be used as a fiber type device by forming a film on the end face of the fiber with the aid of a member such as a ferrule.
  • This example is an example of the first embodiment shown in FIG. In FIG. 1, display of the power source and the control device to the semiconductor light emitting element 4 is omitted.
  • the semiconductor light emitting device 4 used in this example is a mesa structure chip having an emission center wavelength of 442 nm using an InGaN multiple quantum well (MQW) active layer as a light emitting layer, and the GaN substrate surface is bonded to an AlN heat sink.
  • the active layer has a thickness of 0.8 ⁇ m, a light emission width of 7 ⁇ m, an element length of 1 mm, and a current non-injection window region of 0.05 mm in length at both ends of the element.
  • the radiant light emitted from the semiconductor light emitting element 4 (in the direction toward the reflecting element 7 in FIG. 1) has a high transmittance of 15% reflectance at the emission center wavelength of 442 nm and 0.5% reflectance at the wavelength of 520 nm. Is reflected in the active layer of the semiconductor light emitting element 4 and is emitted backward (in the direction toward the reflective element 6 in FIG. 1). The light having a wavelength of 442 nm emitted backward is reflected and bent by the reflecting element 6, passes through the reflecting element 9, and reaches the reflecting element 8.
  • the reflective elements 6 and 8 are high-reflectivity mirrors having a reflectivity of 99% and 99.5%, respectively, at a wavelength of 442 nm.
  • the reflecting element 9 has a high reflectance of 0.5% at a wavelength of 442 nm and 99.5% at a laser wavelength of 520 nm on the incident surface of the emitted light from the semiconductor light emitting element 4 reflected and bent by the reflecting element 6.
  • a dichroic optical film is formed, and an antireflection film having a wavelength of 442 nm and a reflectance of 0.3% is formed on the surface opposite to the incident surface, and is a transparent mirror at a wavelength of 442 nm.
  • the reflecting element 6 is a high-reflectance broadband high-reflection mirror having a reflectance of 99.5% even at a wavelength of 520 nm.
  • the semiconductor laser resonator 1 including the reflective element 7 -the semiconductor light emitting element 4 -the reflective element 6 -the reflective element 8 is a semiconductor laser resonator, and emits excitation light having a wavelength of 442 nm from the reflective element 7 toward the light emitting medium 5. To do.
  • antireflection films having a reflectance of 0.3 to 1% in the wavelength range of 400 nm to 700 nm are formed on both end faces of the semiconductor light emitting element 4 on the reflecting element 6 side and the 7 side.
  • the reflecting element 7 is a plane mirror, the mirror thickness is 0.5 mm, and the distance between the semiconductor light emitting element 4 and the reflecting element 7 is about 0.1 mm.
  • the reflecting element 6 is a parabolic reflector having a focal length of 4 mm, and is adjusted so as to focus on the surfaces of the reflecting element 7 and the reflecting element 9. The distance between the reflecting element 7 and the reflecting element 6 is about 6 mm. The distance of the reflective element 6 was about 12 mm.
  • the reflective element 9 uses a flat quartz glass substrate having a thickness of 1 mm, and the reflective element 8 is a spherical mirror having a focal length of 4.5 mm. The distance between the surface of the reflective element 9 and the reflective element 8 was about 9.5 mm.
  • a LiYF 4 rod having a length of 4 mm and a diameter of 2 mm to which Pr 3+ is added at 1 atomic mass% is prepared, and the reflectance is 0.3 to 0.5% in the wavelength range of 400 nm to 700 nm on both end faces.
  • An antireflection film is formed.
  • NA 0.6
  • a focal length of 2 mm, and a design wavelength of 500 nm are collected between the reflective element 7 and the light emitting medium 5 so that the focal lengths are substantially the same at wavelengths of 440 nm and 520 nm.
  • the achromatic lens for light A 1 is inserted about 2.5 mm from the surface of the reflecting element 7, and not only the excitation light is condensed and irradiated onto the light emitting medium 5, but also the laser light with a wavelength of 520 nm is emitted from the semiconductor light emitting element. 4 is adjusted so as to pass almost the same optical path as the excitation light in 4.
  • the condensed excitation light is absorbed by the light emitting medium 5 by about 90%.
  • the distance between the reflective element 10 and the reflective element 7 was about 12.5 mm.
  • Fluorescence having a wavelength of 520 nm emitted from the light emitting medium 5 toward the reflecting element 10 is folded back by the reflecting element 10 that is a partially reflecting parabolic mirror having a focal length of 4 mm and a reflectance of 98% at a wavelength of 520 nm.
  • the light is reflected by the reflecting element 6 and transmitted through the semiconductor light emitting element 4, and returns to the light emitting medium 5 through the reflecting element 7 and the condensing achromatic lens A 1 .
  • the path opposite to this path functions in the same manner with respect to the fluorescence emitted from the light emitting medium 5 toward the reflecting element 7 to form a feedback optical circuit to the light emitting medium 5.
  • the feedback optical system for the radiation of the light emitting medium 5 to the fluorescent reflecting element 10 side and the reflecting element 7 side constitutes a ring laser resonator 2.
  • a laser beam having a center wavelength of 520 nm is transmitted through the reflecting element 10 which is a partial reflecting mirror and output 3.
  • the laser beam output 3 is represented by one in FIG. 1, two clockwise and counterclockwise laser beams are output simultaneously.
  • the reflecting element 6, the reflecting element 8, and the reflecting element 7 are adjusted so that the output of the semiconductor laser resonator 1 is maximized.
  • the pumping light power radiated from the semiconductor laser resonator 1 was 160 mW at the maximum.
  • the position of the condensing achromatic lens A 1 is adjusted to condense and irradiate the light emitting medium 5 with excitation light, and the condensing achromatic lens A 1 , the light emitting medium 5, and the reflective element
  • the ring laser resonator 2 By adjusting 10 and optimizing the ring laser resonator 2, laser oscillation was easily obtained. At this time, it took 5 minutes to adjust the ring laser resonator 2 until the laser oscillation was started. Further, the ring laser output at this time was 10 mW in total.
  • the semiconductor light emitting device 1104 is used as an excitation light source, and a light emitting medium 1105 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light is provided, and the light of the semiconductor optical device 1104 that generates the excitation light is enhanced.
  • a semiconductor laser resonator 1101 including a reflection element 1121 and a reflection element 1120 and a resonator for enhancing light emission from the light emitting medium 1105 are used as a reflection element 1123, a reflection element 1124, and a reflection element 1107.
  • the semiconductor light emitting device 1104 and the light emitting material 1105 used in this comparative example are the same as those in Example 1. Further, the display of the power supply and control device to the semiconductor light emitting element 1104 is omitted.
  • the radiation from the semiconductor light emitting element 1104 to the reflecting element 1120 side is reflected by the reflecting element 1120 which is a 0.5 mm thick flat reflecting mirror on which an optical reflecting film having a light emission center wavelength of 442 nm and a reflectance of 15% is formed. Then, it is amplified in the active layer of the semiconductor light emitting device 1104 and emitted to the reflective element 1121 side.
  • the radiation toward the reflecting element 1121 is folded back by the reflecting element 1121 which is a high-reflectance spherical mirror having a focal length of 4 mm at a wavelength of 442 nm, and forms a semiconductor laser resonator 1101.
  • the distance between the reflective element 1121 and the reflective element 1120 was about 9 mm, and the distance between the semiconductor light emitting element 1104 and the reflective element 1120 was about 0.1 mm. A part of the light amplified in the semiconductor laser resonator 1101 is emitted from the reflection element 1120 as excitation light of the light emitting medium 1105.
  • the emitted excitation light is reflected by a condensing lens 1122 and is a reflecting element that is a parabolic mirror having a reflectance of 0.5% at the excitation light wavelength, a reflectance of 99.5% at the laser light wavelength of 520 nm, and a focal length of 6.4 mm
  • the light emitting medium 1105 is condensed and irradiated through 1123.
  • the focal length of the condenser lens 1122 was 1.8 mm, the distance from the reflective element 1120 was about 2 mm, and the distance between the condenser lens 1122 and the reflective element 1123 was about 1 mm.
  • the fluorescence having a wavelength of 520 nm emitted from the light emitting medium 1105 to the reflection element 1107 side is folded by the reflection element 1107 which is a partially reflecting parabolic mirror having a focal length of 4 mm and a wavelength of 520 nm and a reflectance of 90%.
  • the light is reflected by 99.5% of the reflective element 1124 and the reflective element 1123 and returned to the light emitting medium 1105.
  • the path opposite to this path functions in the same manner with respect to the fluorescence emitted from the light emitting medium 1105 to the reflecting element 1123, and forms a feedback optical circuit to the light emitting medium 1105.
  • the feedback optical system for the radiation of the light emitting medium 1105 to the fluorescent reflecting element 1107 side and the reflecting element 1123 side constitutes a ring laser resonator (solid laser resonator 1102).
  • a laser beam having a center wavelength of 520 nm is transmitted through the reflecting element 1107, which is a partial reflecting mirror, and output 1103.
  • the laser beam output 1103 is expressed as one in FIG. 11, two clockwise and counterclockwise laser beams are output simultaneously.
  • the distance between the reflecting element 1123 and the reflecting element 1107 was about 20 mm, and the distance between the reflecting element 1123 and the reflecting element 1124 and between the reflecting element 1107 and the reflecting element 1124 was about 12 mm.
  • the maximum radiation power from the semiconductor laser resonator 1101 was 180 mW.
  • the time required from the adjustment of the solid-state laser resonator 1102 to the start of laser oscillation was 45 minutes. Further, the ring laser output at this time was 4 mW in total.
  • This example is an example of the second embodiment shown in FIG. In FIG. 2, display of the power source and the control device to the semiconductor light emitting element 204 is omitted.
  • the semiconductor light emitting device 204 used in this example is a mesa structure chip having an emission center wavelength of 440 nm using an InGaN multiple quantum well (MQW) active layer as a light emitting layer, and the GaN substrate surface is bonded to an AlN heat sink.
  • the active layer has a thickness of 0.8 ⁇ m, a light emission width of 7 ⁇ m, an element length of 1 mm, and a current non-injection window region of 0.05 mm in length at both ends of the element.
  • the forward radiation (in the direction toward the reflecting element 207 in FIG. 2) from the semiconductor light emitting element 204 forms a dichroic optical film having a high transmittance of 15% reflectance at a wavelength of 440 nm and 0.3% reflectance at a wavelength of 520 nm.
  • the light is reflected by the coated reflective element 207, amplified in the active layer of the semiconductor light emitting element 204, and emitted backward (in the direction toward the reflective element 206 in FIG. 2).
  • the light having a wavelength of 440 nm emitted backward is reflected and reflected by the reflecting element 206 which is a broadband high-reflecting mirror, and is amplified again in the semiconductor light emitting device 204.
  • the optical resonator composed of the reflecting element 207, the semiconductor light emitting element 204, and the reflecting element 206 is the semiconductor laser resonator 201, and emits excitation light having a wavelength of 440 nm from the reflecting element 207 to the light emitting medium 205 side.
  • antireflection films having a reflectance of 0.5 to 1% in the wavelength range of 400 nm to 700 nm are formed on both end surfaces of the semiconductor light emitting element 204 on the reflective element 206 side and the reflective element 207 side.
  • the reflecting element 207 is a plane mirror having a thickness of 0.5 mm, and the distance between the semiconductor light emitting element 204 and the reflecting element 207 is about 0.1 mm.
  • the reflective element 206 which is a spherical reflector with a focal length of 3.5 mm, was adjusted so as to be focused near the end face of the semiconductor light emitting material 204. The distance between the reflective element 207 and the reflective element 206 was about 8 mm.
  • a LiYF 4 rod having a length of 4 mm and a diameter of 2 mm to which Pr 3+ is added at 1 atomic mass% is prepared, and the reflectance is 0.5 to 1% in a wavelength range of 400 nm to 700 nm on both end faces.
  • An antireflection film is formed.
  • NA 0.6
  • focal length 2.8 mm and design wavelength 500 nm so that the focal lengths are substantially the same at wavelengths of 440 nm and 520 nm between the reflective element 207 and the light emitting medium 205.
  • the condensing achromatic lens A 2 is inserted about 4 mm from the surface of the reflecting element 207, and not only the excitation light having a wavelength of 440 nm is condensed and irradiated onto the light emitting medium 205, but also the laser light having a wavelength of 520 nm is emitted. It is adjusted so as to pass almost the same optical path as the excitation light in the semiconductor light emitting device 204.
  • the condensed excitation light is absorbed by the light emitting medium 205 by about 90%.
  • the fluorescence having a wavelength of 520 nm emitted from the light emitting medium 205 to the reflecting element 210 is folded by the reflecting element 210 which is a partially reflecting flat mirror having a reflectance of 95% at a wavelength of 520 nm, and is amplified in the light emitting medium 205.
  • the distance between the reflective element 210 and the light emitting medium 205 was about 0.1 mm, and the distance between the condensing achromatic lens A 2 and the reflective element 207 was about 9.5 mm.
  • the reflecting element 206, the reflecting element 207, the condenser lens A 2, the light emitting medium 205, and the reflecting element 210 constitute a Fabry-Perot type solid-state laser resonator 202.
  • a laser beam having a center wavelength of 520 nm is transmitted through the reflecting element 210, which is a partial reflecting mirror, and output 203.
  • the reflecting element 206 and the reflecting element 207 were first adjusted so that the output of the semiconductor laser resonator 201 was maximized.
  • the pumping light power radiated from the semiconductor laser resonator 201 was 220 mW at the maximum.
  • the position of the condensing achromatic lens A 2 is adjusted to condense and irradiate the light emitting medium 205 with excitation light, and the condensing achromatic lens A 2 , the light emitting medium 205, and the reflective element
  • the semiconductor light emitting device 1204 and the light emitting medium 1205 used in this comparative example are the same as those in Example 2.
  • the radiation from the semiconductor light emitting element 1204 toward the reflective element 1220 is reflected by the reflective element 1220 having an optical reflective film having a wavelength of 440 nm and a reflectivity of 15%, and is amplified in the active layer of the semiconductor light emitting element 1204 to be reflected. Radiated to the 1221 side.
  • the light having a wavelength of 440 nm emitted to the reflection element 1221 side is folded back by the reflection element 1221 to constitute the semiconductor laser resonator 1201.
  • the semiconductor laser resonator 1201 emits excitation light having a wavelength of 440 nm from the reflective element 1220.
  • the reflective element 1220 was a plane mirror having a thickness of 0.5 mm, and the distance between the semiconductor light emitting element 1204 and the reflective element 1220 was about 0.1 mm.
  • the reflective element 1221 which is a spherical reflector having a focal length of 3.5 mm was adjusted so as to be focused near the end face of the semiconductor light emitting material 1204.
  • the distance between the reflective element 1221 and the reflective element 1220 is about 8 mm.
  • the emitted excitation light is transmitted to the luminescent medium 1205 by the condenser lens 1222 through the reflective element 1223 of a spherical reflector having a focal length of 5 mm, which has a reflectance of 0.5% at a wavelength of 440 nm and a reflectance of 99% at a wavelength of 520 nm. Focused irradiation.
  • the distance between the condenser lens 1222 having a focal length of 1.8 mm and the reflecting element 1220 was about 2.2 mm.
  • the distance between the condenser lens 1222 and the reflective element 1223 was about 1 mm, and the distance between the reflective element 1223 and the reflective element 1207 was about 11 mm.
  • Fluorescence having a wavelength of 520 nm emitted from the light emitting medium 1205 to the reflecting element 1207 side is folded back by a reflecting element 1207 which is a partially reflecting flat mirror having a reflectance of 90% at a wavelength of 520 nm, and reflected by a reflecting element 1223 that reflects 99% at a wavelength of 520 nm.
  • the light is reflected and returned to the light emitting medium 1205.
  • the reflecting element 1223-the light emitting medium 1205 and the reflecting element 1207 constitute a Fabry-Perot type solid state laser resonator 1202.
  • a laser beam having a center wavelength of 520 nm is transmitted through a reflecting element 1207 that is a partial reflecting mirror and output 1203.
  • the maximum radiation power from the semiconductor laser resonator 1201 was 220 mW.
  • the time required from the adjustment of the solid-state laser resonator 1202 to the start of laser oscillation was 15 minutes.
  • the solid-state laser output at this time was 12 mW.
  • This example is an example of the third embodiment shown in FIG. In FIG. 3, display of the power source and the control device to the semiconductor light emitting element 304 is omitted.
  • the semiconductor light emitting device 304 used in this example is a mesa structure chip having an emission center wavelength of 445 nm using an InGaN multiple quantum well (MQW) active layer as a light emitting layer, and the GaN substrate surface is bonded to an AlN heat sink.
  • the active layer has a thickness of 0.8 ⁇ m, a light emission width of 7 ⁇ m, an element length of 1 mm, and a current non-injection window region of 0.05 mm in length at both ends of the element.
  • the radiation from the semiconductor light emitting element 304 to the reflecting element 313 is reflected in the shape of a convex meniscus lens formed with a dichroic optical film having a high transmittance of 15% reflectance at a wavelength of 445 nm and 0.5% reflectance at a wavelength of 521 nm.
  • the light is reflected from the concave surface of the element 313, amplified in the active layer of the semiconductor light emitting element 304, and emitted to the reflective element 306.
  • the light having a wavelength of 445 nm emitted to the reflecting element 306 is reflected by the reflecting element 306, which is a broadband high-reflecting mirror, folded back, and amplified again in the semiconductor light emitting element 304.
  • the optical resonator composed of the reflective element 313 -the semiconductor light emitting element 304 and the reflective element 306 is the semiconductor laser resonator 301, and emits excitation light having a wavelength of 445 nm from the reflective element 313 to the light emitting medium 305 side.
  • antireflection films having a reflectance of 0.5 to 1% in the wavelength range of 400 nm to 700 nm are formed on both end surfaces of the semiconductor light emitting element 304 on the reflective element 306 side and the reflective element 313 side.
  • the concave surface of the reflective element 313 is a spherical mirror having a focal length of 2.5 mm, and the distance between the semiconductor light emitting element 304 and the reflective element 313 is about 5 mm.
  • the distance between the reflective element 313 and the reflective element 306 is about 11 mm.
  • the reflection element 313 has a convex meniscus lens shape, and an antireflection film having a reflectance of about 0.5% is formed on the convex surface side at both a wavelength of 521 nm and a wavelength of 445 nm.
  • the excitation light radiated from the semiconductor laser resonator 301 is condensed on the excitation side end face 315 of the light emitting medium 305 in the form of a fiber by the reflecting element 313 and coupled to the core of the light emitting medium 305.
  • laser light having a wavelength of 521 nm emitted from the excitation side end face 315 of the light emitting medium 305 is substantially coupled to the active layer of the semiconductor light emitting element 304 by the reflecting element 313.
  • An antireflection film having a reflectivity of 0.3 to 0.5% is formed on the excitation-side end surface 315 of the light emitting medium 305 at a wavelength of 521 nm which is a laser light wavelength and a wavelength of 445 nm which is an excitation light wavelength.
  • the emission medium 305 was used length 10cm and the Pr 3+ added 3000 ppm by weight in the core, the core diameter 4 [mu] m, the fluoride fiber having a numerical aperture of 0.22.
  • the condensed excitation light is absorbed by the light emitting medium 305 by about 90%.
  • Fluorescence having a wavelength of 521 nm emitted from the end surface opposite to the excitation-side end surface 315 from the light emitting medium 305 is folded back by a reflecting element 314 having a reflectivity of 85% at a wavelength of 521 nm formed on the other fiber end. Amplified in the luminescent medium.
  • the reflective element 306, the reflective element 313, the light emitting medium 305, and the reflective element 314 constitute a Fabry-Perot solid laser resonator 302. Laser light having a center wavelength of 521 nm is output 303 from the reflection element 314 which is a partial reflection mirror.
  • the reflecting element 306 and the reflecting element 313 were first adjusted so that the output of the semiconductor laser resonator 301 was maximized.
  • the pumping light power radiated from the semiconductor laser resonator 301 was 200 mW at the maximum.
  • laser oscillation was easily obtained by adjusting the position of the excitation side end face 315 of the light emitting medium 305 and condensing and irradiating the light emitting medium 305 with excitation light.
  • the time required for adjustment of the solid-state laser resonator 302 until the start of laser oscillation was only 2 minutes, and the maximum output was 29 mW.
  • the maximum output wavelength is the center wavelength and the laser line width is defined by a wavelength width that is 1 ⁇ 2 of the output, it is 4 nm.
  • This example is an example of the fourth embodiment shown in FIG. In FIG. 4, display of the power source and the control device to the semiconductor light emitting element 404 is omitted.
  • the semiconductor light emitting element 404 used in this example is a mesa structure chip having an emission center wavelength of 442 nm using an InGaN multiple quantum well (MQW) active layer as a light emitting layer, and the GaN substrate surface is bonded to an AlN heat sink.
  • the active layer has a thickness of 0.8 ⁇ m, a light emission width of 7 ⁇ m, an element length of 1 mm, and a current non-injection window region of 0.05 mm in length at both ends of the element.
  • the radiation from the semiconductor light emitting element 404 toward the fiber-shaped light emitting medium 405 is directly formed on the semiconductor light emitting element having a high transmittance of 15% reflectance at a wavelength of 442 nm and 0.5% reflectance at a wavelength of 520 nm.
  • the dichroic optical film is reflected by the reflecting element 413, amplified in the active layer of the semiconductor light emitting element 404, and emitted to the reflecting element 406 side.
  • the light having a wavelength of 442 nm emitted toward the reflective element 406 is reflected by the reflective element 406, which is a broadband high-reflection spherical mirror having a focal length of 2.5 mm, and is amplified again in the semiconductor light emitting element 404.
  • the distance between the reflective element 406 and the semiconductor light emitting element 404 was about 5 mm.
  • the optical resonator composed of the reflective element 413 -the semiconductor light emitting element 404 -the reflective element 406 is the semiconductor laser resonator 401, and emits excitation light having a wavelength of 442 nm from the reflective element 413 to the light emitting medium 405 side.
  • an antireflection film having a reflectance of 0.5 to 1% in the wavelength range of 400 nm to 700 nm is formed on the end face of the semiconductor light emitting element 404 on the reflective element 406 side.
  • the light-emitting medium 405 includes a cylindrical lens-shaped lensed fiber 416 having a curvature radius of 3 ⁇ m at one end, and a reflecting element 414 having a reflectance of 50% at a wavelength of 520 nm at one end.
  • the pumping light emitted from the semiconductor laser resonator 401 is incident on the light emitting medium 405 by correcting the divergence angle in the vertical direction by the lensed fiber 416 installed in the vicinity of the pumping light emitting region, and enters the core of the fiber. Combined.
  • laser light having a wavelength of 520 nm emitted from the lensed fiber 416 is substantially coupled to the active layer of the semiconductor light emitting element 404.
  • the surface of the lensed fiber 416 is formed with a dispersion compensation film made of CaF 2 in order to suppress focal position fluctuations due to chromatic aberration at wavelengths of 442 nm and 520 nm, and further has a laser light wavelength of 520 nm and an excitation light wavelength.
  • An antireflection film having a reflectance of about 0.5% at a wavelength of 442 nm is formed.
  • the emission medium 405 was used length 20cm and the Pr 3+ added 3000 ppm by weight in the core, the core diameter 4 [mu] m, the fluoride fiber having a numerical aperture of 0.22.
  • the condensed excitation light is absorbed by the light emitting medium 405 by about 95%.
  • Fluorescence having a wavelength of 520 nm emitted from the light emitting medium 405 toward the reflecting element 414 is folded by the formed reflecting element 414 having a reflectivity of 50% and amplified in the light emitting medium 405.
  • the reflective element 406, the reflective element 413, the lensed fiber 416, the light emitting medium 405, and the reflective element 414 constitute a Fabry-Perot type solid-state laser resonator 402.
  • a laser beam having a center wavelength of 520 nm is output 403 from a reflection element 414 that is a partial reflection mirror.
  • the reflection element 406 was adjusted so that the output of the semiconductor laser resonator 401 was maximized.
  • the power of pumping light emitted from the semiconductor laser resonator 401 was 250 mW at the maximum.
  • the time required for adjusting the solid-state laser resonator 402 until the start of laser oscillation was only 1 minute, and power optimization was achieved in 3 minutes, and a maximum output of 34 mW was obtained. Further, when the maximum output wavelength is the center wavelength and the laser line width is defined by a wavelength width that is 1 ⁇ 2 of the output, it is 4 nm.
  • This example is an example of the fifth embodiment shown in FIG. In FIG. 5, display of the power source and the control device to the semiconductor light emitting element 504 is omitted.
  • the semiconductor laser resonator 501 used in the present example is the same as that in the third example.
  • the light emitting medium 505 is also a fiber having the same parameters as in Example 3.
  • the excitation light having a wavelength of 445 nm emitted from the semiconductor laser resonator 501 is condensed on the excitation side end surface 515 of the light emitting medium 505 in the form of a fiber by the reflecting element 513 and coupled to the core of the light emitting medium 505.
  • laser light having a wavelength of 521 nm emitted from the excitation side end face 515 is substantially coupled to the active layer of the semiconductor light emitting element 504 by the reflecting element 513.
  • the excitation side end face 515 is formed with an antireflection film having a reflectance of about 0.5% at a wavelength of 521 nm which is a laser light wavelength and a wavelength of 445 nm which is an excitation light wavelength.
  • an output fiber 517 which is a quartz fiber, is fusion-spliced to a short surface opposite to the excitation side end face 515 via a reflection element 514 having a reflectance of 40% at a wavelength of 521 nm. Fluorescence having a wavelength of 521 nm emitted from the light emitting medium 505 in the direction of the reflecting element 514 is folded by the reflecting element 514 and amplified in the light emitting medium 505.
  • the reflecting element 506 -the reflecting element 513 -the light emitting medium 505 -the reflecting element 514 constitutes a Fabry-Perot type solid state laser resonator 502.
  • the laser beam having a wavelength of 521 nm output from the reflecting element 514 passes through the output fiber 517 and is output 503 from the end face on the opposite side.
  • the reflective element 506 and the reflective element 513 were adjusted so that the output of the semiconductor laser resonator 501 was maximized.
  • the radiation pumping light power from the semiconductor laser resonator 501 was 200 mW at the maximum.
  • laser oscillation can be easily obtained simply by adjusting the position of the excitation side end face 515 and condensing and irradiating the light emitting medium 505 with excitation light.
  • the time required for adjustment of the solid state laser resonator 502 until the start of laser oscillation was only 2 minutes, and the maximum output was 20 mW.
  • This example is an example of the sixth embodiment shown in FIG. In FIG. 6, the display of the power source and the control device to the semiconductor light emitting element 604 is omitted.
  • the semiconductor light emitting device 604 used in this example is the same as that in Example 4.
  • the light emitting medium 605 was also a fiber having the same parameters as in Example 4.
  • the radiation from the semiconductor light emitting element 604 toward the input fiber 618 is a dichroic film formed directly on the semiconductor light emitting element that has a high transmittance of 15% reflectance at a wavelength of 442 nm and 0.3% reflectance at a wavelength of 520 nm.
  • the light is reflected by the reflective element 613 that is an optical film, amplified in the active layer of the semiconductor light emitting element 604, and emitted toward the reflective element 606 side.
  • Light having a wavelength of 442 nm emitted toward the reflective element 606 is reflected by the reflective element 606, which is a broadband high-reflection spherical mirror having a focal length of 2.5 mm, and is amplified again in the semiconductor light emitting device 604.
  • the semiconductor laser resonator 601 including the reflective element 613 -the semiconductor light emitting element 604 -the reflective element 606 emits excitation light having a wavelength of 442 nm forward from the reflective element 613.
  • an antireflection film having a reflectance of about 0.5% in the wavelength range of 400 nm to 700 nm is formed on the end face of the semiconductor light emitting element 604 on the reflective element 606 side.
  • the light emitting medium 605 is fused with an input fiber 618 which is a quartz fiber having a lens fiber 616 having a compound cylindrical lens shape having a curvature radius of 3 ⁇ m (longitudinal correction) and a curvature radius of 7 ⁇ m (lateral correction), and a fusion point 619.
  • the surface of the lensed fiber 616 is formed with a dispersion compensation film made of CaF 2 and BaF 2 in order to suppress focal position fluctuations due to chromatic aberration at wavelengths of 442 nm and 520 nm, and further, a laser beam wavelength of 520 nm and excitation light.
  • An antireflection film having a reflectance in the range of 0.5 to 1% at a wavelength of 442 nm is formed.
  • the pumping light emitted from the semiconductor laser resonator 601 is incident on the light emitting medium 605 with the divergence angle corrected by the lensed fiber 616 installed in the vicinity of the pumping light emission region, and is coupled to the core of the fiber.
  • laser light having a wavelength of 520 nm emitted from the lensed fiber 616 is substantially coupled to the active layer of the semiconductor light emitting device 604.
  • Fluorescence with a wavelength of 520 nm emitted from the light emitting medium 605 to the input fiber 618 side is folded back by a reflecting element 614 having a reflectivity of 50% at a wavelength of 520 nm formed on the fiber end on the output 603 side. Amplified within.
  • the reflective element 606, the reflective element 613, the lensed fiber 616, the light emitting medium 605, and the reflective element 614 constitute a Fabry-Perot type solid state laser resonator 602.
  • a laser beam having a center wavelength of 520 nm is output 603 from a reflection element 614 that is a partial reflection mirror.
  • the reflective element 606 was first adjusted so that the output of the semiconductor laser resonator 601 was maximized. At this time, the pumping light power radiated from the semiconductor laser resonator 601 was 250 mW at the maximum. After adjusting the semiconductor laser resonator 601, adjusting the position and angle of the lensed fiber 616 and the distance from the semiconductor light emitting element while measuring the power of the laser output 603 not only provides laser oscillation but also easily Power optimization was possible. At this time, the time required for adjustment of the solid state laser resonator 602 until the start of laser oscillation was only 1 minute, and power optimization was achieved in 3 minutes, and a maximum output of 30 mW was obtained.
  • This example is an example of the seventh embodiment shown in FIG. In FIG. 7, display of the power source and the control device to the semiconductor light emitting element 704 is omitted.
  • the semiconductor laser resonator 701 used in the present example is the same as that in the third example.
  • the light emitting medium 705 is also a fiber having the same parameters as in Example 3.
  • the light emitting medium 705 has an end face opposite to the excitation side of the input fiber 718 which is a quartz fiber provided with an antireflection film having a reflectance of about 0.5% at both wavelengths 521 nm and 445 nm on the end face 715 on the excitation side.
  • the output fiber 717 and the reflection element 714 which are quartz fibers each having a reflection element 714 having a reflectance of 40% at a wavelength of 521 nm on the end surface opposite to the fusion point 719 are fused and connected to each other. It is fusion spliced through.
  • Excitation light having a wavelength of 445 nm emitted from the semiconductor laser resonator 701 is condensed on the end face 715 of the input fiber 718 by the reflection element 713 and coupled to the core of the light emitting medium 705.
  • laser light having a wavelength of 521 nm emitted from the end face 715 is substantially coupled to the active layer of the semiconductor light emitting element 704 by the reflecting element 713.
  • Fluorescence having a wavelength of 521 nm emitted from the light emitting medium 705 to the output fiber 717 side is folded back by the reflecting element 714 having a reflectance of 40% at the wavelength of 521 nm, and is amplified in the light emitting medium.
  • the reflecting element 706 -the reflecting element 713 -the light emitting medium 705 -the reflecting element 714 constitute a Fabry-Perot type solid state laser resonator 702.
  • the laser light having a wavelength of 521 nm output from the reflective element 714 passes through the output fiber 717 and is output 703 from the end face on the opposite side of the reflective element 714.
  • This example is an example of the eighth embodiment shown in FIG. In FIG. 8, display of the power source and the control device to the semiconductor light emitting element 804 is omitted.
  • the semiconductor light emitting device 804 used in this example is the same as that in Example 4.
  • the light emitting medium 805 was also a fiber having the same parameters as in Example 4.
  • the radiation from the semiconductor light emitting element 804 toward the input fiber 818 has a high transmittance with a reflectance of 15% at a wavelength of 442 nm and a reflectance of 0.3% at a wavelength of 520 nm, and is formed directly on the semiconductor light emitting element.
  • the light is reflected by the reflective element 813 that is a film, amplified in the active layer of the semiconductor light emitting element 804, and emitted to the reflective element 806 side.
  • Light having a wavelength of 442 nm emitted toward the reflective element 806 is reflected by the reflective element 806, which is a broadband high-reflection spherical mirror having a focal length of 2.5 mm, and is amplified again in the semiconductor light emitting device 804.
  • the semiconductor laser resonator 801 including the reflecting element 813 -the semiconductor light emitting element 804 -the reflecting element 806 emits excitation light having a wavelength of 442 nm from the reflecting element 813 to the input fiber 818 side.
  • an antireflection film having a reflectance of about 0.5% in the wavelength range of 400 nm to 700 nm is formed on the end face of the semiconductor light emitting element 804 on the reflective element 806 side.
  • the light emitting medium 805 is fused at a fusion point 819 with an input fiber 818 which is a quartz fiber having a lens fiber 816 having a compound cylindrical lens shape having a curvature radius of 3 ⁇ m (longitudinal correction) and a curvature radius of 7 ⁇ m (lateral correction).
  • the output fiber 817 is provided with a reflection element 814 on the output fiber 817 side, and the output fiber 817 is fusion-bonded via the reflection element 814.
  • the surface of the lensed fiber 816 is formed with a dispersion compensation film made of CaF 2 and BaF 2 in order to suppress focal position fluctuations due to chromatic aberration at wavelengths of 520 nm and 442 nm, and further, a laser beam wavelength of 520 nm and excitation light.
  • An antireflection film having a reflectance of about 0.5% at a wavelength of 442 nm is formed.
  • Excitation light emitted from the semiconductor laser resonator 801 is incident on the light emitting medium 805 with a divergence angle corrected by a lensed fiber 816 installed in the vicinity of the excitation light emission region, and is coupled to the core of the fiber.
  • laser light having a wavelength of 520 nm emitted from the lensed fiber 816 is substantially coupled to the active layer of the semiconductor light emitting element 804.
  • Fluorescence having a wavelength of 520 nm emitted forward from the light emitting medium 805 is folded back by a reflecting element 814 having a reflectance of 50% at a wavelength of 520 nm, and is amplified in the light emitting medium.
  • the reflecting element 806 -the reflecting element 813 -the lensed fiber 816 -the light emitting medium 805 -the reflecting element 814 constitutes a Fabry-Perot type solid state laser resonator 802.
  • Laser light having a center wavelength of 520 nm propagates through the output fiber 817 through the reflecting element 814 that is a partial reflecting mirror, and is output 803 forward from the fiber end.
  • the reflecting element 806 was adjusted so that the output of the semiconductor laser resonator 801 was maximized.
  • the maximum pumping light power emitted from the semiconductor laser resonator 801 was 250 mW.
  • adjusting the semiconductor laser resonator 801 adjusting the position and angle of the lensed fiber 816 and the distance from the semiconductor light emitting element while measuring the power of the laser output 803 not only makes it easy to obtain laser oscillation, but also makes it easy Power optimization was possible.
  • the time required to adjust the solid state laser resonator 802 until the start of laser oscillation was only 1 minute, and power optimization was achieved in 3 minutes, and a maximum output of 30 mW was obtained.
  • This example is an example of the ninth embodiment shown in FIG. In FIG. 9, display of the power source and the control device to the semiconductor light emitting element 904 is omitted.
  • the semiconductor laser resonator 901 used in this example is the same as that in Example 3.
  • the light emitting medium 905 is also a fiber having the same parameters as in the third embodiment.
  • the light emitting medium 905 is fused to the end surface opposite to the excitation side of the input fiber 918 which is a quartz fiber provided with an antireflection film having a reflectance of about 0.5% at both the wavelength 521 nm and the wavelength 445 nm on the end surface 915.
  • An output fiber which is a quartz fiber having a reflection element 920 made of a fiber Bragg grating (FBG) having a reflectance of 40% at a wavelength of 521 nm on the end surface opposite to the fusion point 921, which is fusion spliced at a point 921. It is fusion-bonded at 917 and a fusion point 919.
  • FBG fiber Bragg grating
  • Excitation light having a wavelength of 445 nm emitted from the semiconductor laser resonator 901 is condensed on the end face 915 of the input fiber 918 by the reflection element 913 and coupled to the core of the light emitting medium 905.
  • laser light having a wavelength of 521 nm emitted from the fiber excitation side end face 915 is substantially coupled to the active layer of the semiconductor light emitting device 904 by the reflecting element 913.
  • Fluorescence having a wavelength of 521 nm emitted forward from the light emitting medium 905 is folded back by a reflection element 920 that is a fiber diffraction grating having a reflectance of 40% at a wavelength of 521 nm, and is amplified in the light emitting medium 905.
  • the reflecting element 906 -the reflecting element 913 -the light emitting medium 905 -the reflecting element 920 constitutes a Fabry-Perot type solid state laser resonator 902.
  • Laser light having a center wavelength of 521 nm passes through the output fiber 917 and is output 903 from the end face on the opposite side.
  • the bandwidth of the reflection element 920, which is a fiber diffraction grating was 0.08 nm when the maximum value of the reflectance was the center wavelength and the wavelength width was 1 ⁇ 2 of the maximum reflectance.
  • the reflecting element 906 and the reflecting element 913 were first adjusted so that the output of the semiconductor laser resonator 901 was maximized.
  • the maximum pumping light power emitted from the semiconductor laser resonator 901 was 200 mW.
  • laser oscillation can be easily obtained by adjusting the position of the end face 915 of the input fiber 918 and condensing and irradiating the light emitting medium 905 with excitation light.
  • the line width of the solid-state laser output is 0.1 nm which is very close to the bandwidth of the fiber diffraction grating when the maximum output wavelength is the center wavelength and the wavelength width is 1 ⁇ 2 of the output.
  • This example is an example of the tenth embodiment shown in FIG. In FIG. 10, the display of the power source and the control device to the semiconductor light emitting element 1004 is omitted.
  • the semiconductor light emitting device 1004 used in this example is the same as that in Example 4.
  • the light emitting medium 1005 is also a fiber having the same parameters as in Example 4.
  • the radiation from the semiconductor light emitting device 1004 toward the input fiber 1018 has a high transmittance of 15% reflectivity at a wavelength of 442 nm and 0.3% reflectivity at a wavelength of 520 nm, and is formed directly on the semiconductor light emitting device 1004.
  • the light is reflected by the reflective element 1013 that is an optical film, amplified in the active layer of the semiconductor light emitting element 1004, and emitted to the reflective element 1006 side.
  • Light having a wavelength of 442 nm emitted toward the reflective element 1006 is reflected by the reflective element 1006, which is a broadband high-reflection spherical mirror having a focal length of 2.5 mm, and is amplified again in the semiconductor light emitting device 1004.
  • the semiconductor laser resonator 1001 including the reflective element 1013 -semiconductor light emitting element 1004 -reflective element 1006 emits excitation light having a wavelength of 442 nm from the reflective element 1013 to the input fiber 1018 side.
  • an antireflection film having a reflectance of about 0.5% in the wavelength range of 400 nm to 700 nm is formed on the end face of the semiconductor light emitting element 1004 on the reflective element 1006 side.
  • the light emitting medium 1005 is fused at a fusion point 1021 to an input fiber 1018 which is a quartz fiber having a lensed fiber 1016 having a compound cylindrical lens shape having a curvature radius of 3 ⁇ m (longitudinal correction) and a curvature radius of 7 ⁇ m (lateral correction).
  • the output fiber 1017 having the reflection element 1020 made of FBG and the fusion point 1019 are fusion-connected.
  • the surface of the lensed fiber 1016 is formed with a dispersion compensation film made of CaF 2 and BaF 2 in order to suppress focal position fluctuations due to chromatic aberration of wavelengths 442 nm and 520 nm, and further, a laser beam wavelength of 520 nm and excitation light.
  • An antireflection film having a reflectance of about 1% at a wavelength of 442 nm is formed.
  • Excitation light emitted from the semiconductor laser resonator 1001 is incident on the light emitting medium 1005 with a divergence angle corrected by a lensed fiber 1016 installed close to the excitation light emission region, and is coupled to the core of the fiber.
  • laser light having a wavelength of 520 nm emitted from the lensed fiber 1016 is substantially coupled to the active layer of the semiconductor light emitting device 1004.
  • Fluorescence having a wavelength of 520 nm emitted forward from the light emitting medium 1005 is folded back by the reflecting element 1020 which is a fiber diffraction grating having a reflectance of 50% at a wavelength of 520 nm, and is amplified in the light emitting medium 1005.
  • the reflecting element 1006 -the reflecting element 1013 -the lensed fiber 1016 -the light emitting medium 1005 -the reflecting element 1020 constitutes a Fabry-Perot type solid-state laser resonator 1002.
  • Laser light having a center wavelength of 520 nm propagates through the output fiber 1017 through the reflecting element 1020 which is a partial reflecting mirror, and is output 1003 from the fiber end.
  • the bandwidth of the reflection element 1020 which is a fiber diffraction grating, was 0.08 nm when the maximum value of reflectance was defined as the center wavelength and the wavelength width that was 1 ⁇ 2 of the maximum reflectance.
  • the reflecting element 1006 was adjusted so that the output of the semiconductor laser resonator 1001 was maximized.
  • the pumping light power radiated from the semiconductor laser resonator 1001 was 250 mW at the maximum.
  • adjusting the semiconductor laser resonator 1001 adjusting the position, angle, and distance from the semiconductor light emitting element of the lensed fiber 1016 while measuring the power of the laser output 1003 not only provides laser oscillation, but also easily Power optimization was possible.
  • the time required for adjustment of the solid-state laser resonator 1002 until the start of laser oscillation was only 1 minute, and power optimization was achieved in 3 minutes, and a maximum output of 32 mW was obtained.
  • the line width of the solid-state laser output was 0.1 nm which is extremely close to the bandwidth of the fiber diffraction grating when the maximum output wavelength is the center wavelength and the wavelength width is 1 ⁇ 2 of the output.
  • the present invention can be used as an observation or analysis light source used in the medical, bio, healthcare, and biological fields, an industrial inspection light source, a television, a display or projector light source, a light source for an optical gyroscope, a light source for fine processing, .

Abstract

Disclosed is a laser beam source apparatus provided with: a semiconductor light source comprising a semiconductor light emitting element that irradiates excitation light; a light emitting medium that emits light by absorbing the excitation light, and from which at least a part of the emitted light is outputted as output light; a first optical resonator that configures a first light path, which strengthens the light intensity of the excitation light by making the excitation light resonate with a first reflection element group; and a second optical resonator that configures a second light path, which strengthens the light intensity of the light emitted by the light emitting medium by making the light emitted by the light emitting medium resonate with a second reflection element group. The first light path and the second light path share a section of the light paths thereof, and the semiconductor light emitting element is arranged at the shared section. The light emitting medium is arranged at the second light path. The first reflection element group and the second reflection element group share at least the first reflection element, and the first reflection element reflects both the output light and the excitation light.

Description

レーザ光源装置Laser light source device
  本発明は製造が容易で高効率なレーザ光源装置を得るための共振器構成およびそれを用いたレーザ光源装置に関するものである。 The present invention relates to a resonator configuration for obtaining a highly efficient laser light source device that is easy to manufacture and a laser light source device using the resonator.
  半導体レーザを励起源や基本波の光源として用いたレーザ光源装置としては、半導体光源を励起光源とする固体レーザ、半導体レーザまたは半導体レーザ励起固体レーザを基本波とする波長変換レーザが知られている。 As a laser light source device using a semiconductor laser as an excitation source or a fundamental wave light source, a solid-state laser having a semiconductor light source as an excitation light source, a semiconductor laser, or a wavelength conversion laser having a semiconductor laser excitation solid-state laser as a fundamental wave are known. .
  半導体レーザ励起の固体レーザとしては、希土類や遷移金属イオンを添加した結晶、ガラス、セラミックス、ファイバなどの固体レーザ材料を、半導体レーザや高出力LEDで励起する方法が知られており、高品質なレーザ光が得られている。固体レーザの共振器としては、ファブリペロー形式、リング形式などが知られており、半導体レーザが発生する励起光をこの共振器の外側からダイクロイックミラーを通して固体レーザ材料に照射し、固体レーザ共振器内に目的のレーザ波長の光を閉じこめてレーザ発振させる。ファイバレーザでは、ファイバ端面に成膜したレーザ用のミラーやファイバブラッグ回折格子を用いて固体レーザ共振器を構成し、全ファイバ型でレーザを構成することもできる。ファイバレーザでは、励起光源としてファイバピグテール付の半導体励起光源が用いられる事が多く、通常は半導体励起光源とファイバレーザ材料の間に、発生したファイバレーザ光が半導体励起光源側に戻らないようなアイソレータやフィルタが設置される。このようなレーザ共振器構成では、励起光を発生する半導体レーザ共振器と、励起光を吸収してレーザ光を発生する固体レーザ共振器は、相互に完全に独立している。 As a solid-state laser excited by a semiconductor laser, there is known a method for exciting a solid-state laser material such as a crystal, glass, ceramics, or fiber added with a rare earth or a transition metal ion with a semiconductor laser or a high-power LED. Laser light is obtained. Fabry-Perot type and ring type are known as resonators for solid-state lasers. Excitation light generated by a semiconductor laser is irradiated from the outside of this resonator to a solid-state laser material through a dichroic mirror. Then, laser light is oscillated by confining light of the target laser wavelength. In the fiber laser, a solid-state laser resonator can be configured using a laser mirror or a fiber Bragg diffraction grating formed on the end face of the fiber, and the laser can be configured as an all-fiber type. In fiber lasers, a semiconductor pump light source with a fiber pigtail is often used as the pump light source. Usually, an isolator that does not return the generated fiber laser light to the semiconductor pump light source side between the semiconductor pump light source and the fiber laser material. And filters are installed. In such a laser resonator configuration, the semiconductor laser resonator that generates the excitation light and the solid-state laser resonator that generates the laser light by absorbing the excitation light are completely independent of each other.
  上記の従来型の固体レーザ共振器に対し、半導体レーザからの励起光と固体レーザ光のモード重なりを改善するために、半導体レーザ共振器内に固体レーザ媒質を配置するレーザ共振器構成が提案されている(特許文献1)。 In order to improve the mode overlap between the pumping light from the semiconductor laser and the solid-state laser light, a laser resonator configuration in which a solid-state laser medium is arranged in the semiconductor laser resonator has been proposed. (Patent Document 1).
  波長変換レーザは、主に半導体レーザや固体レーザで得ることが困難とされている、可視光レーザや中赤外波長帯のレーザに用いられている。波長変換レーザには、第二次高調波(SHG)、和周波(SFG)、差周波(DFG)などの非線形波長変換技術が利用されている。基本波の発生には、半導体レーザ励起固体レーザまたは半導体レーザが用いられる。共振器構成については、基本波と波長変換した光を同じ共振器内に閉じこめることで高効率化を図る共振器内波長変換が提案されている。 The wavelength conversion laser is mainly used for a visible light laser or a mid-infrared wavelength band laser, which is difficult to obtain with a semiconductor laser or a solid-state laser. Non-linear wavelength conversion techniques such as second harmonic (SHG), sum frequency (SFG), and difference frequency (DFG) are used for the wavelength conversion laser. A semiconductor laser excitation solid-state laser or a semiconductor laser is used to generate the fundamental wave. Regarding the resonator configuration, in-resonator wavelength conversion has been proposed in which the fundamental wave and the wavelength-converted light are confined in the same resonator to achieve high efficiency.
  基本波が半導体レーザ励起固体レーザの場合の共振器内波長変換では、固体レーザ媒質と非線形光学結晶が同一の共振器内に設置され、この共振器の外側から半導体レーザで励起する方法が提案されている(特許文献2~5)。このようなレーザでは、励起光を発生する半導体レーザ共振器と、固体レーザ材料と非線形光学結晶が置かれたレーザ共振器は互いに独立している。 In the intracavity wavelength conversion when the fundamental wave is a semiconductor laser pumped solid-state laser, a method has been proposed in which the solid-state laser medium and the nonlinear optical crystal are installed in the same resonator and pumped by the semiconductor laser from the outside of the resonator. (Patent Documents 2 to 5). In such a laser, the semiconductor laser resonator that generates the excitation light and the laser resonator on which the solid-state laser material and the nonlinear optical crystal are placed are independent of each other.
  基本波が半導体レーザの場合の共振器内波長変換では、同一の共振器内に半導体レーザ材料と非線形光学結晶を設置して共振器を共有し、半導体レーザが発する基本波と非線形光学結晶で波長変換された光のモードを一致させることで高効率化する方法が提案されている(特許文献6)。また、半導体レーザが発する基本波を共振器によって閉じこめ、この共振器内に非線形光学結晶を置いて第二次高調波を発生させるが、波長変換された光は半導体レーザ内を通過して折り返されるだけで共振器を構成せず、そのまま取り出される方法も提案されている(特許文献7)。 In the intracavity wavelength conversion when the fundamental wave is a semiconductor laser, a semiconductor laser material and a nonlinear optical crystal are placed in the same cavity to share the resonator, and the fundamental wave and nonlinear optical crystal emitted by the semiconductor laser have a wavelength. A method for improving efficiency by matching the modes of converted light has been proposed (Patent Document 6). In addition, the fundamental wave emitted from the semiconductor laser is confined by a resonator, and a nonlinear optical crystal is placed in the resonator to generate the second harmonic, but the wavelength-converted light is folded through the semiconductor laser. A method is also proposed in which the resonator is taken out as it is without forming a resonator (Patent Document 7).
  非線形光学結晶などを用いた波長変換レーザでは、半導体レーザが発生する基本波に対して非線形光学結晶の吸収損失が十分に低いため、基本波を閉じこめて非線形光学結晶中の光密度を高めるか、基本波の閉じ込めを強めて折り返し回数を増やし、非線形光学結晶との相互作用長を長くすれば高効率化が可能となる。 In a wavelength conversion laser using a nonlinear optical crystal or the like, the absorption loss of the nonlinear optical crystal is sufficiently low with respect to the fundamental wave generated by the semiconductor laser, so the optical density in the nonlinear optical crystal is increased by confining the fundamental wave, Increasing the confinement of the fundamental wave, increasing the number of turns, and increasing the interaction length with the nonlinear optical crystal can increase the efficiency.
  一方、半導体光源を励起光源として用い、希土類などを添加した固体レーザ材料からの発光を利用する固体レーザやファイバレーザにおいては、単に励起光を閉じ込めるだけでは十分なレーザ特性を得ることが困難である。これは、発光媒質に活性イオンとして添加されている希土類や遷移金属イオンによって励起光が吸収されるため、発光媒質の吸収(損失)特性と発光(利得)特性と、共振器の構成(帰還率)とを最適化することが困難になるためである。 On the other hand, it is difficult to obtain sufficient laser characteristics by simply confining excitation light in a solid-state laser or fiber laser that uses a semiconductor light source as an excitation light source and uses light emitted from a solid-state laser material to which rare earth is added. . This is because the excitation light is absorbed by the rare earth or transition metal ions added as active ions to the light emitting medium, so that the absorption (loss) characteristics and light emission (gain) characteristics of the light emitting medium and the resonator configuration (feedback rate) ) Is difficult to optimize.
  例えば、半導体レーザ共振器内に固体レーザ材料を置く共振器の構成方法を用いる方法が提案されている(特許文献8)が、半導体光源の共振条件と固体発光媒質のレーザ共振条件を同時に実現するために、利得や損失の調整、モード体積の一致、相互の光軸の同時調整などの必要があり、全てを最適に実現することが困難である。特に、半導体レーザにとっては発光媒質である固体レーザ材料が吸収媒質となるため、固体レーザ材料が吸収飽和を起こす領域しか半導体レーザ発振に使用できず、結果的に高出力な半導体レーザ発振が可能な注入電流を一時的に与えるか、固体レーザ材料の吸収を減らす(すなわち、固体レーザ出力を低出力に設定する)必要があって、利得と損失のバランス調整が困難である。また、利得と損失のバランス調整に成功した場合でも、レーザ発振には固体レーザ材料の吸収飽和特性を考慮しなければならないため、特定の励起パワー、または固体レーザ材料が発光する特定の出力以外では最適なレーザ共振器の条件からはずれてしまう。 For example, a method using a resonator configuration method in which a solid-state laser material is placed in a semiconductor laser resonator has been proposed (Patent Document 8), and simultaneously realizes a resonance condition of a semiconductor light source and a laser resonance condition of a solid-state light emitting medium. Therefore, it is necessary to adjust the gain and loss, match the mode volume, and simultaneously adjust the optical axes, and it is difficult to achieve all of them optimally. In particular, for a semiconductor laser, a solid laser material, which is a light emitting medium, serves as an absorption medium. Therefore, only a region where the solid laser material causes absorption saturation can be used for semiconductor laser oscillation, and as a result, high-power semiconductor laser oscillation is possible. It is difficult to adjust the balance between gain and loss because it is necessary to temporarily apply an injection current or reduce the absorption of the solid-state laser material (that is, set the solid-state laser output to a low output). Even if the balance between gain and loss is successfully adjusted, the laser saturation must take into account the absorption saturation characteristics of the solid-state laser material. Therefore, except for the specific excitation power or the specific output that the solid-state laser material emits. It will deviate from the optimal laser resonator conditions.
  固体レーザ材料と一般的な空間光学系を用いた固体レーザでは、半導体光源の光共振器と固体レーザ材料の光共振器は互いに独立しており、光学的配置に関して相互に独立しており、光学調整も独立に行う必要がある。このため、半導体光源からの励起光を固体レーザ材料に集光照射して所望の出力光を得ようとした場合、固体レーザのレーザ共振器の光学部品位置最適化と、励起光の結合効率の最適化を両立させるために、煩雑な光学部品位置調整が必要であり、最適な共振器を構成することは困難である。 In a solid-state laser using a solid-state laser material and a general spatial optical system, the optical resonator of the semiconductor light source and the optical resonator of the solid-state laser material are independent of each other and are independent of each other in terms of optical arrangement. Adjustments must also be made independently. For this reason, when trying to obtain the desired output light by condensing and irradiating the solid-state laser material with the excitation light from the semiconductor light source, optimization of the optical component position of the laser resonator of the solid-state laser and the coupling efficiency of the excitation light In order to achieve both optimization, complicated optical component position adjustment is necessary, and it is difficult to construct an optimal resonator.
  また、半導体レーザとしてGaN系半導体レーザを用い、発光媒質としてPr3+を添加したZBLANファイバを用いることにより、可視広帯域で広帯域波長の可変レーザも提案されている(非特許文献1)。 In addition, a tunable laser with a visible broadband and a broadband wavelength has been proposed by using a GaN-based semiconductor laser as a semiconductor laser and using a ZBLAN fiber doped with Pr 3+ as a light-emitting medium (Non-patent Document 1).
特開平06-112560号公報Japanese Patent Laid-Open No. 06-112560 特開平7-106682号公報Japanese Patent Laid-Open No. 7-106682 特開平7-104332号公報JP-A-7-104332 特開平6-350168号公報JP-A-6-350168 特開平5-95145号公報Japanese Patent Laid-Open No. 5-95145 特開平6-112560号公報JP-A-6-112560 特開昭62-86881号公報JP-A-62-86881 特開平6-112560号公報JP-A-6-112560
  上記のように、半導体光源を励起光源として用い、希土類などを添加した固体レーザ材料からの発光を利用する固体レーザやファイバレーザにおいて、発光媒質の吸収(損失)特性と発光(利得)特性と、共振器の構成(帰還率)とを最適化することが困難であり、また、固体レーザのレーザ共振器の光学部品位置最適化と、励起光の結合効率の最適化とを両立させるためには、煩雑な光学部品位置調整が必要である。 As described above, in a solid-state laser or fiber laser using a semiconductor light source as an excitation light source and utilizing light emitted from a solid-state laser material to which rare earth or the like is added, the absorption (loss) characteristics and emission (gain) characteristics of the light-emitting medium, It is difficult to optimize the resonator configuration (feedback rate), and in order to achieve both optimization of the optical component position of the laser resonator of the solid-state laser and optimization of the coupling efficiency of the pumping light Therefore, complicated optical component position adjustment is necessary.
  本発明では、半導体光源による発光媒質の高効率励起および、複数の共振器の最適化による高効率発光が可能となるだけでなく、光源の性能を最適化するための光学的位置調整が簡単になり、輝度が高く発光効率の高い光源装置が容易に実現できるレーザ光源装置を提供することを目的としている。 The present invention enables not only high-efficiency excitation of a light-emitting medium by a semiconductor light source and high-efficiency light emission by optimizing a plurality of resonators, but also easy optical position adjustment to optimize the performance of the light source. Therefore, an object of the present invention is to provide a laser light source device that can easily realize a light source device having high luminance and high light emission efficiency.
  本発明者らは、上記の課題に対して鋭意検討を重ねた結果、半導体光源を励起源に用い、この励起光を吸収して発光する固体レーザ材料の出力を取り出すレーザ光源装置において、固体レーザの光共振器が半導体レーザの光共振器と別々であり、かつそれぞれの共振器の光路中の少なくとも1つの高反射率の反射要素を共有し、固体レーザ材料からの放射光が半導体レーザ中の半導体チップ内を通過する構成とすることで問題を解決できることに思い至り、本発明に至った。 As a result of intensive studies on the above problems, the present inventors have used a solid state laser in a laser light source device that uses a semiconductor light source as an excitation source and extracts the output of a solid laser material that emits light by absorbing the excitation light. Are separate from the optical resonators of the semiconductor laser and share at least one highly reflective reflective element in the optical path of each resonator, and the emitted light from the solid-state laser material in the semiconductor laser The inventors have come up with the present invention by thinking that the problem can be solved by adopting a structure that passes through the semiconductor chip.
  すなわち本発明は、励起光を放射する半導体発光素子を備えた半導体光源と、該励起光を吸収して発光する発光媒質であって、該発光の少なくとも一部が出力光として出力される該発光媒質と、該励起光を共振させてその光強度を増強する第1光路を第1反射要素組により構成する第1光共振器と、該発光媒質の発光を共振させてその光強度を増強する第2光路を第2反射要素組により構成する第2光共振器を備えたレーザ光源装置であって、該第1光路と該第2光路が一部を共有し、該共有部に該半導体発光素子が配置され、該発光媒質が該第2光路に配置され、該第1反射要素組と該第2反射要素組が少なくとも第1反射要素を共有し、該第1反射要素が該出力光と該励起光を共に反射するレーザ光源装置を提供するものである。 That is, the present invention relates to a semiconductor light source including a semiconductor light emitting element that emits excitation light, and a light emitting medium that emits light by absorbing the excitation light, and at least part of the light emission is output as output light. A medium, a first optical resonator configured by a first reflection element set to resonate the excitation light and enhance its light intensity, and a light source of the light emitting medium to resonate and enhance the light intensity A laser light source device including a second optical resonator that constitutes a second optical path by a second reflecting element set, wherein the first optical path and the second optical path share a part, and the semiconductor light emitting device is shared by the shared portion. An element is disposed, the light emitting medium is disposed in the second optical path, the first reflective element set and the second reflective element set share at least the first reflective element, and the first reflective element is coupled with the output light. A laser light source device that reflects the excitation light together is provided.
  さらには、該第1光共振器と該第2光共振器が共にファブリペロー型の光共振器であって、該第1反射要素組が該第1反射要素以外の第2反射要素を有し、該第2反射要素が該第1光共振器の光出射端を構成し、該第2反射要素は、該第1光共振器の所望の発振波長の光の反射率が該第1反射要素より低く、該第2反射要素組が該第1反射要素以外の第3反射要素を有し、該第3反射要素が該第2光共振器の光出射端を構成し、該第3反射要素は、該第2光共振器の所望の発振波長の光の反射率が該第1反射要素より低いレーザ光源装置を提供するものである。 Further, both the first optical resonator and the second optical resonator are Fabry-Perot optical resonators, and the first reflective element group includes a second reflective element other than the first reflective element. The second reflection element constitutes a light emitting end of the first optical resonator, and the second reflection element has a reflectance of light having a desired oscillation wavelength of the first optical resonator. The second reflective element set has a third reflective element other than the first reflective element, and the third reflective element constitutes a light emitting end of the second optical resonator, and the third reflective element Provides a laser light source device in which the reflectance of light having a desired oscillation wavelength of the second optical resonator is lower than that of the first reflecting element.
本発明による第1の実施の形態の概略図を示すものである。1 shows a schematic diagram of a first embodiment according to the invention. 本発明による第2の実施の形態の概略図を示すものである。FIG. 2 shows a schematic diagram of a second embodiment according to the present invention. 本発明による第3の実施の形態の概略図を示すものである。FIG. 3 shows a schematic diagram of a third embodiment according to the present invention. 本発明による第4の実施の形態の概略図を示すものである。FIG. 6 shows a schematic diagram of a fourth embodiment according to the present invention. 本発明による第5の実施の形態の概略図を示すものである。FIG. 7 shows a schematic diagram of a fifth embodiment according to the present invention. 本発明による第6の実施の形態の概略図を示すものである。FIG. 10 is a schematic diagram of a sixth embodiment according to the present invention. 本発明による第7の実施の形態の概略図を示すものである。FIG. 10 is a schematic view of a seventh embodiment according to the present invention. 本発明による第8の実施の形態の概略図を示すものである。FIG. 10 is a schematic diagram of an eighth embodiment according to the present invention. 本発明による第9の実施の形態の概略図を示すものである。FIG. 10 is a schematic view of a ninth embodiment according to the present invention. 本発明による第10の実施の形態の概略図を示すものである。FIG. 10 shows a schematic diagram of a tenth embodiment according to the present invention. 比較例1に用いた装置の概略図を示すものである。The schematic of the apparatus used for the comparative example 1 is shown. 比較例2に用いた装置の概略図を示すものである。The schematic of the apparatus used for the comparative example 2 is shown.
  本発明により、光源の性能を最適化するための光学的位置調整が簡単で、得られるレーザ光の輝度が高く発光効率の高いレーザ光源装置を容易に得ることができる。 According to the present invention, it is possible to easily obtain a laser light source device that can easily adjust the optical position for optimizing the performance of the light source, has high brightness of the obtained laser light, and has high luminous efficiency.
  以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
  本発明の第1の実施の形態に係るレーザ光源装置の配置について、図1を用いて説明する。 The arrangement of the laser light source device according to the first embodiment of the present invention will be described with reference to FIG.
  図1では、半導体発光素子4を励起光源として用い、この励起光を吸収して励起光と異なる波長の光を放射する発光媒質5を備え、励起光を発生する半導体光素子4の光を増強するための共振器として、反射要素6、反射要素7、反射要素8からなる半導体レーザ共振器1(第1光共振器)と、発光媒質5からの発光を増強するための共振器として、反射要素6、反射要素9、反射要素10からなる固体レーザ共振器2(第2光共振器)とを備え、半導体レーザ共振器1(第1光共振器)と固体レーザ共振器2(第2光共振器)は互いに反射要素6(第1反射要素)と光路の一部を共有しており、その共有光路内に励起光を放射する半導体発光素子4が設置されており、固体レーザ共振器2の共有されていない光路内に発光媒質5が設置されている。 In FIG. 1, a semiconductor light emitting device 4 is used as an excitation light source, and a light emitting medium 5 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light is provided to enhance the light of the semiconductor optical device 4 that generates the excitation light. As a resonator for performing the above, a semiconductor laser resonator 1 (first optical resonator) including the reflecting element 6, the reflecting element 7, and the reflecting element 8, and a resonator for enhancing light emission from the light emitting medium 5 are reflected. The solid-state laser resonator 2 (second optical resonator) including the element 6, the reflective element 9, and the reflective element 10 is provided. The semiconductor laser resonator 1 (first optical resonator) and the solid-state laser resonator 2 (second light) are provided. The resonator) shares a part of the optical path with the reflective element 6 (first reflective element), and the semiconductor light emitting element 4 that emits the excitation light is installed in the shared optical path. A light-emitting medium 5 is installed in an optical path that is not shared It has been.
  さらに、反射要素6(第1反射要素)は、光路変換ミラーとして半導体発光素子4からの励起光波長と発光媒質5からの発光波長の両方の光を高反射する反射要素であり、反射要素7は、半導体発光素子4で発生する励起光を部分反射し発光媒質5の発光波長の光を透過する反射要素であり、反射要素8は、半導体発光素子4で発生する励起光を高反射する反射要素であり、反射要素9は、ダイクロイックミラーとして半導体発光素子4で発生する励起光を高透過し発光媒質5の発光波長の光を高反射する反射要素であり、反射要素10は、発光媒質5の発光波長の光を部分反射および部分透過する反射要素である。 Furthermore, the reflective element 6 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 4 and the light emission wavelength from the light emitting medium 5 as an optical path conversion mirror. Is a reflection element that partially reflects the excitation light generated in the semiconductor light emitting element 4 and transmits light having the emission wavelength of the light emitting medium 5. The reflection element 8 is a reflection that highly reflects the excitation light generated in the semiconductor light emitting element 4. The reflective element 9 is a reflective element that highly transmits excitation light generated by the semiconductor light emitting element 4 as a dichroic mirror and highly reflects light having the emission wavelength of the light emitting medium 5. The reflective element 10 is a light emitting medium 5. It is a reflective element that partially reflects and partially transmits light having the emission wavelength of.
  発光媒質5は、反射要素7を透過した励起光を吸収することにより発生する蛍光を放射する。放射される蛍光は反射要素6、反射要素9、反射要素10からなるリング状の共振器(固体レーザ共振器2)内を周回するうちに増幅され、レーザ発振する。発振したレーザ光の一部は、反射要素10を通して外部に出力3される。 The luminescent medium 5 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 7. The emitted fluorescence is amplified and oscillates as it circulates in the ring-shaped resonator (solid laser resonator 2) composed of the reflective element 6, the reflective element 9, and the reflective element 10. Part of the oscillated laser light is output 3 through the reflecting element 10 to the outside.
  以上の第1の実施の形態によれば、以下に示す作用効果を奏する。 According to the first embodiment described above, the following operational effects are achieved.
  まず半導体レーザ共振器1(第1光共振器)を最適化して励起光強度を最大化し、その後半導体レーザ共振器1との共有光路や共有する反射要素6(第1反射要素)を固定したまま、発光媒質5の位置および固体レーザ共振器2(第2光共振器)の反射要素10(共有していない反射要素)の位置や角度を最適化することで、容易に光出力の最大化を図ることができる。この時、固体レーザ共振器2を調整中であっても、半導体レーザ共振器1は独立した共振器であるために影響を受けない。また固体レーザ共振器2は、最適化された半導体レーザ共振器1から最適化された出力で励起光を供給されているため、発光媒質5は強い光を放射できる。 First, the semiconductor laser resonator 1 (first optical resonator) is optimized to maximize the pumping light intensity, and then the shared optical path with the semiconductor laser resonator 1 and the shared reflecting element 6 (first reflecting element) are fixed. The light output can be easily maximized by optimizing the position of the light emitting medium 5 and the position and angle of the reflecting element 10 (non-shared reflecting element) of the solid-state laser resonator 2 (second optical resonator). Can be planned. At this time, even if the solid-state laser resonator 2 is being adjusted, the semiconductor laser resonator 1 is not affected because it is an independent resonator. Further, since the solid-state laser resonator 2 is supplied with the excitation light with the optimized output from the optimized semiconductor laser resonator 1, the light emitting medium 5 can emit strong light.
  さらに、固体レーザ共振器2がレーザ発振を開始するためには、半導体レーザ共振器1との共有部分で光軸が一致または十分に近接する必要がある。これは、半導体レーザ共振器1でレーザ発振している半導体レーザの光軸付近以外では、半導体レーザ共振器1内の半導体発光素子などによる吸収や散乱などが起こり、固体レーザ共振器2は低損失にならないためである。この効果によって、固体レーザ共振器2を調整してレーザ発振した時には、同時に自ずと半導体レーザ共振器1との光軸が揃っていることになる。つまり、半導体レーザ共振器1と固体レーザ共振器2の光軸が一致または近接することで、固体レーザ共振器2で発生するレーザ光の発振波長と半導体レーザ共振器1で発生する励起光の波長でのモード重なりを最大化しやすくなる。この両方の波長でモード重なりを最大化するためには、励起光を発光媒質5に入射している入射光学系や固体レーザ共振器2の反射要素10(共有していない反射要素)と発光媒質5の光軸方向の距離を調整し、発光媒質5への集光スポット径、焦点距離などを調整して、目的とするレーザ出力を最大化できる。したがって、簡単な光学調整により容易に光学系の調整が可能となり、輝度が高く発光効率の高いレーザ光源装置が容易に実現可能となる。 Furthermore, in order for the solid-state laser resonator 2 to start laser oscillation, it is necessary that the optical axis is coincident with or sufficiently close to the shared portion with the semiconductor laser resonator 1. This is because absorption and scattering are caused by the semiconductor light emitting element in the semiconductor laser resonator 1 except for the vicinity of the optical axis of the semiconductor laser that oscillates in the semiconductor laser resonator 1, and the solid laser resonator 2 has a low loss. It is because it does not become. Due to this effect, when the solid-state laser resonator 2 is adjusted to perform laser oscillation, the optical axes of the semiconductor laser resonator 1 are naturally aligned at the same time. That is, when the optical axes of the semiconductor laser resonator 1 and the solid-state laser resonator 2 are coincident or close to each other, the oscillation wavelength of the laser light generated by the solid-state laser resonator 2 and the wavelength of the excitation light generated by the semiconductor laser resonator 1 This makes it easy to maximize mode overlap. In order to maximize the mode overlap at both wavelengths, the incident optical system in which the excitation light is incident on the light emitting medium 5 and the reflecting element 10 (non-shared reflecting element) of the solid-state laser resonator 2 and the light emitting medium. The target laser output can be maximized by adjusting the distance in the direction of the optical axis 5 and adjusting the diameter of the focused spot on the light emitting medium 5 and the focal length. Therefore, the optical system can be easily adjusted by simple optical adjustment, and a laser light source device having high luminance and high light emission efficiency can be easily realized.
  また、図1で示される共振器をさらに構成を単純化した第2の実施の形態について、図2を用いて説明する。尚、図1で共通する部分の説明は省略する。 Further, a second embodiment in which the configuration of the resonator shown in FIG. 1 is further simplified will be described with reference to FIG. In addition, description of the part which is common in FIG. 1 is abbreviate | omitted.
  励起光を発生する半導体光素子204の光を増強するための共振器として、反射要素206と反射要素207からなる半導体レーザ共振器201(第1光共振器)と、発光媒質205からの発光を増強するための共振器として、反射要素206(第1反射要素)と反射要素210からなる固体レーザ共振器202(第2光共振器)とを備え、ファブリペロー型の固体レーザ共振器202内に固体レーザ共振器202の反射要素の一枚(反射要素206)を共有して、ファブリペロー型の半導体レーザ共振器201が設置されている。図2で示される形態は、図1における反射要素8および9に相当する反射要素が除かれ、図1に比べ構成要素の数が少ない、より単純化した構成となっている。 As a resonator for enhancing the light of the semiconductor optical element 204 that generates the excitation light, the semiconductor laser resonator 201 (first optical resonator) composed of the reflective element 206 and the reflective element 207 and the light emission from the light emitting medium 205 are emitted. As a resonator for enhancing, a solid-state laser resonator 202 (second optical resonator) composed of a reflective element 206 (first reflective element) and a reflective element 210 is provided. A Fabry-Perot type semiconductor laser resonator 201 is installed so as to share one reflection element (reflection element 206) of the solid-state laser resonator 202. The configuration shown in FIG. 2 has a simplified configuration in which the reflective elements corresponding to the reflective elements 8 and 9 in FIG. 1 are removed, and the number of components is smaller than that in FIG.
  発光媒質205は、反射要素207を透過した励起光を吸収することにより発生する蛍光を放射する。発光媒質205から放射される蛍光は、反射要素210と共有する反射要素206の間に閉じ込められて往復する間に増強され、レーザ発振する。発振したレーザ光の一部は、反射要素210を通して外部に出力203される。 The light emitting medium 205 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 207. Fluorescence emitted from the light emitting medium 205 is confined between the reflective element 206 and the reflective element 206 shared with the reflective element 210 and is enhanced while reciprocating, and laser oscillation occurs. A part of the oscillated laser beam is output 203 through the reflecting element 210 to the outside.
  以上の第2の実施の形態によれば、以下に示す作用効果を奏する。第1の実施の形態と同様の効果が得られる。さらに、第1の実施の形態より簡単な光学調整により容易に光学系の調整が可能となる。 According to the second embodiment described above, the following effects are obtained. The same effect as the first embodiment can be obtained. Furthermore, the optical system can be easily adjusted by simpler optical adjustment than in the first embodiment.
  本発明の第1の実施の形態と第2の実施の形態では特に図に示していないが、反射要素7と発光媒質5の間および反射要素207と発光媒質205の間に、励起光を発光媒質に集光照射するためのレンズを追加することができる。このレンズには、発振するレーザ光と励起光の両方において低反射である広帯域無反射コーティングを施すことが好ましい。またレンズとしては、発振するレーザ光の波長と励起光の波長で焦点距離が略等しく、収差が抑制された色消しレンズや非球面レンズを用いることが好ましい。また、このようなレンズの代わりに、反射要素7の発光媒質5側および反射要素207の発光媒質205側を凸レンズ形状とし、励起光を発光媒質に集光する機能を持たせても良い。 Although not specifically shown in the drawings in the first embodiment and the second embodiment of the present invention, excitation light is emitted between the reflective element 7 and the light emitting medium 5 and between the reflective element 207 and the light emitting medium 205. A lens for condensing and irradiating the medium can be added. This lens is preferably provided with a broadband non-reflective coating that is low-reflective in both oscillating laser light and excitation light. Further, as the lens, it is preferable to use an achromatic lens or an aspherical lens in which the focal length is approximately equal between the wavelength of the oscillating laser light and the wavelength of the excitation light and the aberration is suppressed. Further, instead of such a lens, the light emitting medium 5 side of the reflecting element 7 and the light emitting medium 205 side of the reflecting element 207 may have a convex lens shape to have a function of condensing excitation light on the light emitting medium.
  さらに、発光媒質として光導波路の形態を用いることができるため、光導波路の形態の一つであるファイバの形態をした発光媒質を用いる場合の第3の実施の形態について、図3を用いて説明する。 Furthermore, since the form of an optical waveguide can be used as the light emitting medium, a third embodiment in the case of using a light emitting medium in the form of a fiber which is one of the forms of the optical waveguide will be described with reference to FIG. To do.
  図3では、半導体発光素子304を励起光源として用い、この励起光を吸収して励起光と異なる波長の光を放射するファイバ形態の発光媒質305を備え、励起光を発生する半導体光素子304の光を増強するための共振器として、反射要素306と反射要素313からなる半導体レーザ共振器301(第1光共振器)と、発光媒質305からの発光を増強するための共振器として、反射要素306(第1反射要素)と反射要素314からなる固体レーザ共振器302(第2光共振器)とを備え、半導体レーザ共振器301(第1光共振器)と固体レーザ共振器302(第2光共振器)は互いに反射要素306と光路の一部を共有しており、その共有光路内に励起光を放射する半導体発光素子304が設置されており、固体レーザ共振器302の共有されていない光路内に発光媒質305が設置されている。 In FIG. 3, the semiconductor light-emitting element 304 is used as an excitation light source, and includes a fiber-type light-emitting medium 305 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light. As a resonator for enhancing light, a semiconductor laser resonator 301 (first optical resonator) composed of a reflective element 306 and a reflective element 313, and as a resonator for enhancing light emission from the light emitting medium 305, a reflective element 306 (first reflective element) and a solid state laser resonator 302 (second optical resonator) composed of the reflective element 314, and a semiconductor laser resonator 301 (first optical resonator) and a solid state laser resonator 302 (second optical resonator). The optical resonator) shares a part of the optical path with the reflecting element 306, and a semiconductor light emitting element 304 that emits excitation light is installed in the shared optical path. Emitting medium 305 is installed in the 02 optical path that is not shared.
  さらに、反射要素306(第1反射要素)は、共有ミラーとして半導体発光素子304からの励起光波長と発光媒質305からの発光波長の両方の光を高反射する反射要素であり、反射要素313は、発光媒質305の発光波長の光を透過し且つ半導体発光素子304側の面が半導体発光素子304で発生する励起光を部分反射する反射要素であり、発光媒質305側の反射要素313の形状は、発光媒質305の励起側端面315に励起光を集光できるように凸レンズ形状となっている。また、ファイバ形態の発光媒質305からの放射光を半導体発光素子304の活性層に概略結合できるように配置されている。 Furthermore, the reflective element 306 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 304 and the light emission wavelength from the light emitting medium 305 as a shared mirror. The reflective element that transmits light of the emission wavelength of the light emitting medium 305 and the surface of the semiconductor light emitting element 304 side partially reflects the excitation light generated by the semiconductor light emitting element 304. The shape of the reflective element 313 on the light emitting medium 305 side is The lens has a convex lens shape so that excitation light can be condensed on the excitation side end surface 315 of the light emitting medium 305. Further, the light emitted from the light emitting medium 305 in the form of a fiber is arranged so as to be roughly coupled to the active layer of the semiconductor light emitting element 304.
  反射要素314は、発光媒質305の半導体発光素子304と反対側の端面に、発光媒質305からの蛍光を部分反射する光学薄膜が直接成膜されるか、または該光学薄膜が成膜された透明基板を接着あるいはオプティカルコンタクトあるいは融着することで装備されている。 The reflecting element 314 is formed by directly forming an optical thin film that partially reflects the fluorescence from the light emitting medium 305 on the end surface of the light emitting medium 305 opposite to the semiconductor light emitting element 304 or by forming a transparent film on which the optical thin film is formed. It is equipped by bonding, optical contact or fusing the substrates.
  発光媒質305は、反射要素313を透過した励起光を吸収することにより発生する蛍光を放射する。発光媒質305からの蛍光は、反射要素314と反射要素306の間を往復する間に増強され、レーザ発振する。発振したレーザ光の一部は、反射要素314を通して外部に出力303される。 The luminescent medium 305 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 313. The fluorescence from the light emitting medium 305 is enhanced while reciprocating between the reflecting element 314 and the reflecting element 306, and laser oscillation occurs. Part of the oscillated laser beam is output 303 through the reflecting element 314 to the outside.
  励起側端面315は、励起光波長と発振したレーザ光波長の両方で低反射率である広帯域無反射コーティングが施されている。 The excitation-side end face 315 is provided with a broadband non-reflective coating that has low reflectance at both the excitation light wavelength and the oscillated laser light wavelength.
  以上の第3の実施の形態によれば、以下に示す作用効果を奏する。 According to the third embodiment described above, the following effects are obtained.
  まず半導体レーザ共振器301(第1光共振器)を最適化して励起光強度を最大化する。その後半導体レーザ共振器301との共有光路や共有する反射要素306(第1反射要素)を固定したまま、光導波路の入力端315を、集光機能を有する反射要素313の焦点付近で位置調整と角度調整し、半導体レーザの出力が概略ファイバコアに結合するように調芯する。発光媒質305は導波路形状をしており、固体レーザ共振器302の出力用部分反射鏡である反射要素314をその一端にすでに備えていることから、共振器の半分は励起光を結合した段階で完成している。その後、出力303をモニタしながら、主に入力端315の角度を調整して出力を最大化していくと、容易にレーザ発振が得られる。この時、単にレーザ発振するだけでなく、第1の実施の形態で述べたのと同じ理由によって、レーザ発振と同時に自動的に半導体レーザ共振器301と固体レーザ共振器302の光軸がほぼ一致する。このため、レーザ発振が容易であるだけでなく、出力の最大化と、モード重なり最大化による高効率化が、同時に達成できる。したがって、発光媒質が導波路形状である場合においても、簡単な光学調整により容易に光学系の調整が可能となり、輝度が高く発光効率の高いレーザ光源装置が容易に実現可能となる。 First, the semiconductor laser resonator 301 (first optical resonator) is optimized to maximize the pumping light intensity. Thereafter, the input end 315 of the optical waveguide is adjusted in the vicinity of the focal point of the reflective element 313 having a condensing function while the shared optical path with the semiconductor laser resonator 301 and the shared reflective element 306 (first reflective element) are fixed. The angle is adjusted so that the output of the semiconductor laser is roughly coupled to the fiber core. Since the light emitting medium 305 has a waveguide shape and already has a reflecting element 314 that is an output partial reflecting mirror of the solid-state laser resonator 302 at one end, half of the resonator is coupled with excitation light. It is completed with. Thereafter, when the output 303 is monitored and the angle of the input end 315 is mainly adjusted to maximize the output, laser oscillation can be easily obtained. At this time, not only the laser oscillation but also the optical axes of the semiconductor laser resonator 301 and the solid-state laser resonator 302 automatically coincide with each other automatically for the same reason as described in the first embodiment. To do. For this reason, not only laser oscillation is easy, but also maximum output and high efficiency by maximizing mode overlap can be achieved at the same time. Therefore, even when the light emitting medium has a waveguide shape, the optical system can be easily adjusted by simple optical adjustment, and a laser light source device having high luminance and high light emission efficiency can be easily realized.
  ファイバの形態をした発光媒質を用いる場合の他の例として第4の実施の形態について、図4を用いて説明する。 As another example of using a light emitting medium in the form of a fiber, a fourth embodiment will be described with reference to FIG.
  図4では、半導体発光素子404を励起光源として用い、この励起光を吸収して励起光と異なる波長の光を放射するファイバ形態の発光媒質405を備え、励起光を発生する半導体光素子404の光を増強するための共振器として、反射要素406(第1反射要素)と反射要素413からなる半導体レーザ共振器401(第1光共振器)と、発光媒質405からの発光を増強するための共振器として、反射要素406と反射要素414からなる固体レーザ共振器402(第2光共振器)とを備え、半導体レーザ共振器401(第1光共振器)と固体レーザ共振器402(第2光共振器)は互いに反射要素406と光路の一部を共有しており、その共有光路内に励起光を放射する半導体発光素子404が設置されており、固体レーザ共振器402の共有されていない光路内に発光媒質405が設置されている。 In FIG. 4, a semiconductor light-emitting element 404 that uses a semiconductor light-emitting element 404 as an excitation light source, includes a fiber-shaped light-emitting medium 405 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light, and generates the excitation light. As a resonator for enhancing light, a semiconductor laser resonator 401 (first optical resonator) composed of a reflective element 406 (first reflective element) and a reflective element 413, and light emission from a light emitting medium 405 are enhanced. As a resonator, a solid-state laser resonator 402 (second optical resonator) including a reflective element 406 and a reflective element 414 is provided, and a semiconductor laser resonator 401 (first optical resonator) and a solid-state laser resonator 402 (second optical resonator). The optical resonator) shares a part of the optical path with the reflecting element 406, and a semiconductor light emitting element 404 that emits excitation light is installed in the shared optical path. Emitting medium 405 is installed in the 02 optical path that is not shared.
  さらに、反射要素406(第1反射要素)は、共有ミラーとして半導体発光素子404からの励起光波長と発光媒質405からの発光波長の両方の光を高反射する反射要素であり、反射要素413は、半導体発光素子404で発生する励起光を部分反射し且つ発光媒質405の発光波長の光を透過する反射要素で、半導体発光素子404の端面に直接成膜された誘電体多層膜またはフレネル反射を利用したクリーブ端面である。発光媒質405の半導体発光素子側端面416は、半導体発光素子404からの励起光を集光し発光媒質405からの発光を半導体発光素子404の活性層に結合するようにレンズ形状に研磨されており、半導体発光素子404の活性層に近接して配置されている。 Further, the reflective element 406 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 404 and the light emission wavelength from the light emitting medium 405 as a shared mirror. A reflective element that partially reflects the excitation light generated in the semiconductor light emitting element 404 and transmits light having the emission wavelength of the light emitting medium 405, and has a dielectric multilayer film or Fresnel reflection formed directly on the end face of the semiconductor light emitting element 404. The cleaved end face used. The semiconductor light emitting element side end surface 416 of the light emitting medium 405 is polished into a lens shape so as to collect the excitation light from the semiconductor light emitting element 404 and couple the light emitted from the light emitting medium 405 to the active layer of the semiconductor light emitting element 404. The semiconductor light emitting device 404 is disposed in proximity to the active layer.
  反射要素414は、発光媒質405の半導体発光素子404と反対側の端面に、発光媒質405からの蛍光を部分反射する光学薄膜が直接成膜されるか、または該光学薄膜が成膜された透明基板を接着あるいはオプティカルコンタクトあるいは融着することで装備されている。 In the reflective element 414, an optical thin film that partially reflects the fluorescence from the light emitting medium 405 is formed directly on the end surface of the light emitting medium 405 opposite to the semiconductor light emitting element 404, or a transparent film on which the optical thin film is formed. It is equipped by bonding, optical contact or fusing the substrates.
  発光媒質405は、反射要素413を透過した励起光を吸収することにより発生する蛍光を放射する。発光媒質405からの蛍光は、反射要素414と反射要素406の間を往復する間に増強され、レーザ発振する。発振したレーザ光の一部は、反射要素414を通して外部に出力403される。 The luminescent medium 405 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 413. The fluorescence from the light emitting medium 405 is enhanced while reciprocating between the reflecting element 414 and the reflecting element 406, and laser oscillation occurs. A part of the oscillated laser beam is output 403 to the outside through the reflecting element 414.
  励起側端面416は、励起光波長と発振したレーザ光波長の両方で低反射率である広帯域無反射コーティングが施されている。 The excitation-side end face 416 is provided with a broadband non-reflective coating that has a low reflectance at both the excitation light wavelength and the oscillated laser light wavelength.
  以上の第4の実施の形態によれば、以下に示す作用効果を奏する。 According to the fourth embodiment described above, the following effects are obtained.
  第3の実施形態と同様の効果が得られる。さらに、入射端面がレンズ形状のいわゆるレンズドファイバを用いることによって、半導体レーザ共振器401から放射する励起光を発光媒質405に結合する結合光学系を小型化する事ができる。また、この光学結合部分を小型化する事によって、光学結合部分の固定が容易かつ強固なものとなり、振動や温度変化による結合効率の変化や変移を抑制することができる。 The same effect as the third embodiment can be obtained. Further, by using a so-called lensed fiber having a lens-shaped incident end surface, the coupling optical system for coupling the excitation light radiated from the semiconductor laser resonator 401 to the light emitting medium 405 can be reduced in size. Further, by downsizing the optical coupling portion, the optical coupling portion can be easily and firmly fixed, and the coupling efficiency can be prevented from changing or changing due to vibration or temperature change.
  ファイバの形態をした発光媒質を用いる場合の他の例として第5の実施の形態について、図5を用いて説明する。 As another example of using a light emitting medium in the form of a fiber, a fifth embodiment will be described with reference to FIG.
  図5では、半導体発光素子504を励起光源として用い、この励起光を吸収して励起光と異なる波長の光を放射するファイバ形態の発光媒質505を備え、励起光を発生する半導体光素子504の光を増強するための共振器として、反射要素506(第1反射要素)と反射要素513からなる半導体レーザ共振器501(第1光共振器)と、発光媒質505からの発光を増強するための共振器として、反射要素506と反射要素514からなる固体レーザ共振器502(第2光共振器)とを備え、反射要素514は出力ファイバ517を備え、半導体レーザ共振器501(第1光共振器)と固体レーザ共振器502(第2光共振器)は互いに反射要素506と光路の一部を共有しており、その共有光路内に励起光を放射する半導体発光素子504が設置されており、固体レーザ共振器502の共有されていない光路内に発光媒質505が設置されている。 In FIG. 5, a semiconductor light-emitting element 504 is used as an excitation light source, and includes a fiber-type light-emitting medium 505 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light. As a resonator for enhancing light, a semiconductor laser resonator 501 (first optical resonator) composed of a reflective element 506 (first reflective element) and a reflective element 513, and light emission from a light emitting medium 505 are enhanced. As a resonator, a solid-state laser resonator 502 (second optical resonator) including a reflective element 506 and a reflective element 514 is provided. The reflective element 514 includes an output fiber 517, and a semiconductor laser resonator 501 (first optical resonator). ) And the solid-state laser resonator 502 (second optical resonator) share a part of the optical path with the reflecting element 506, and a semiconductor light emitting element that emits excitation light in the shared optical path. 504 is installed, the light emitting medium 505 in the optical path that is not shared the solid-state laser resonator 502 is installed.
  さらに、反射要素506(第1反射要素)は、共有ミラーとして半導体発光素子504からの励起光波長と発光媒質505からの発光波長の両方の光を高反射する反射要素であり、反射要素513は、発光媒質505の発光波長の光を透過し且つ半導体発光素子504側の面が半導体発光素子504で発生する励起光を部分反射する反射要素であり、発光媒質505側の反射要素513の形状は、発光媒質505の励起側端面515に励起光を集光できるように凸レンズ形状となっている。また、ファイバ形態の発光媒質505からの放射光を半導体発光素子504の活性層に概略結合できるように配置されている。 Further, the reflective element 506 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 504 and the light emission wavelength from the light emitting medium 505 as a shared mirror. The reflective element that transmits light of the emission wavelength of the light emitting medium 505 and that partially reflects the excitation light generated by the semiconductor light emitting element 504 is the reflective element 513 on the light emitting medium 505 side. The light emitting medium 505 has a convex lens shape so that the excitation light can be condensed on the excitation side end surface 515. Further, the light emitted from the light emitting medium 505 in the fiber form is arranged so as to be roughly coupled to the active layer of the semiconductor light emitting element 504.
  発光媒質505の半導体発光素子504側と反対側の端面に、発光媒質505からの蛍光を部分反射する反射要素514が端面に直接成膜された出力ファイバ517の反射要素514が成膜されている端面が融着接続されている。 On the end surface of the light emitting medium 505 opposite to the semiconductor light emitting element 504 side, the reflecting element 514 of the output fiber 517 in which the reflecting element 514 that partially reflects the fluorescence from the light emitting medium 505 is directly formed on the end surface is formed. The end faces are fusion spliced.
  発光媒質505は、反射要素513を透過した励起光を吸収することにより発生する蛍光を放射する。発光媒質505からの蛍光は、反射要素514と反射要素506の間を往復する間に増強され、レーザ発振する。発振したレーザ光の一部は、反射要素514を通して出力ファイバ517に伝搬し、出力ファイバ517端面から外部に出力503される。 The luminescent medium 505 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 513. The fluorescence from the light emitting medium 505 is enhanced while reciprocating between the reflecting element 514 and the reflecting element 506, and laser oscillation occurs. Part of the oscillated laser light propagates to the output fiber 517 through the reflecting element 514 and is output 503 from the end face of the output fiber 517 to the outside.
  励起側端面515は、励起光波長と発振したレーザ光波長の両方で低反射率である広帯域無反射コーティングが施されている。 The excitation-side end surface 515 is provided with a broadband non-reflective coating that has a low reflectance at both the excitation light wavelength and the oscillated laser light wavelength.
  以上の第5の実施の形態によれば、以下に示す作用効果を奏する。 According to the fifth embodiment described above, the following effects are obtained.
  第3の実施形態と同様の効果が得られる。さらに、出力ファイバ517の出力503側の末端に固体レーザ共振器502を構成する反射要素がなく、反射要素514は融着部で保護されているため、耐環境性と耐久性に優れる。特に発光媒質505が耐環境性に問題がある場合、ハーメチックシールの筐体から出力ファイバ517だけを外部に露出することで、発光媒質505の劣化を防止する事ができる。 The same effect as the third embodiment can be obtained. Further, since there is no reflecting element constituting the solid-state laser resonator 502 at the end of the output fiber 517 on the output 503 side, and the reflecting element 514 is protected by the fused portion, it is excellent in environmental resistance and durability. In particular, when the light emitting medium 505 has a problem in environmental resistance, it is possible to prevent the light emitting medium 505 from being deteriorated by exposing only the output fiber 517 from the hermetic seal housing.
  ファイバの形態をした発光媒質を用いる場合の他の例として第6の実施の形態について、図6を用いて説明する。 As another example of using a light emitting medium in the form of a fiber, a sixth embodiment will be described with reference to FIG.
  図6では、半導体発光素子604を励起光源として用い、この励起光を吸収して励起光と異なる波長の光を放射するファイバ形態の発光媒質605を備え、励起光を発生する半導体光素子604の光を増強するための共振器として、反射要素606(第1反射要素)と反射要素613からなる半導体レーザ共振器601(第1光共振器)と、発光媒質605からの発光を増強するための共振器として、反射要素606と反射要素614からなる固体レーザ共振器602(第2光共振器)とを備え、半導体レーザ共振器601(第1光共振器)と固体レーザ共振器602(第2光共振器)は互いに反射要素606と光路の一部を共有しており、その共有光路内に励起光を放射する半導体発光素子604が設置されており、固体レーザ共振器602の共有されていない光路内に発光媒質605が設置されている。 In FIG. 6, a semiconductor light-emitting element 604 is used as an excitation light source, and includes a light-emitting medium 605 in the form of a fiber that absorbs the excitation light and emits light having a wavelength different from that of the excitation light. As a resonator for enhancing light, a semiconductor laser resonator 601 (first optical resonator) composed of a reflective element 606 (first reflective element) and a reflective element 613, and light emission from a light emitting medium 605 are enhanced. As a resonator, a solid-state laser resonator 602 (second optical resonator) including a reflective element 606 and a reflective element 614 is provided, and a semiconductor laser resonator 601 (first optical resonator) and a solid-state laser resonator 602 (second optical resonator). The optical resonator) shares a part of the optical path with the reflecting element 606, and a semiconductor light emitting element 604 that emits excitation light is installed in the shared optical path. Emitting medium 605 is installed in the 02 optical path that is not shared.
  さらに、反射要素606(第1反射要素)は、共有ミラーとして半導体発光素子604からの励起光波長と発光媒質605からの発光波長の両方の光を高反射する反射要素であり、反射要素613は、発光媒質605の発光波長の光を透過し且つ半導体発光素子604で発生する励起光を部分反射する反射要素で、半導体発光素子604の端面に直接成膜された誘電体多層膜またはフレネル反射を利用したクリーブ端面である。発光媒質605の半導体発光素子側には、入力ファイバ618が融着点619で融着接続されており、入力ファイバ618の半導体発光素子604側の端面616は、半導体発光素子604からの励起光を集光し発光媒質605からの発光を半導体発光素子604の活性層に結合するようにレンズ形状に研磨されており、半導体発光素子604の活性層に近接して配置されている。発光媒質605の入力ファイバ618側と反対側の端面には、発光媒質605からの蛍光を部分反射する反射要素614が、光学薄膜が直接成膜されるか、または該光学薄膜が成膜された透明基板を接着あるいはオプティカルコンタクトあるいは融着することで装備されている。 Furthermore, the reflective element 606 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 604 and the light emission wavelength from the light emitting medium 605 as a shared mirror. , A reflective element that transmits light of the emission wavelength of the light emitting medium 605 and partially reflects the excitation light generated by the semiconductor light emitting element 604. The dielectric multilayer film or the Fresnel reflection directly formed on the end face of the semiconductor light emitting element 604 The cleaved end face used. An input fiber 618 is fused and connected to the semiconductor light emitting element side of the light emitting medium 605 at a fusion point 619, and an end surface 616 of the input fiber 618 on the semiconductor light emitting element 604 side receives excitation light from the semiconductor light emitting element 604. The light is condensed and polished into a lens shape so as to couple light emitted from the light emitting medium 605 to the active layer of the semiconductor light emitting element 604, and is disposed close to the active layer of the semiconductor light emitting element 604. On the end face of the light emitting medium 605 opposite to the input fiber 618 side, a reflective element 614 that partially reflects the fluorescence from the light emitting medium 605 is formed directly, or an optical thin film is formed. It is equipped by bonding, optical contact or fusing a transparent substrate.
  入力ファイバ618は、発光媒質605で発光する光および半導体発光素子604で発生する励起光を低損失で双方向に伝搬することができる。入力ファイバ618を伝搬する励起光は、融着点619を介してファイバ形態の発光媒質605のコアに結合する。 The input fiber 618 can propagate light emitted from the light emitting medium 605 and excitation light generated from the semiconductor light emitting element 604 bidirectionally with low loss. Excitation light propagating through the input fiber 618 is coupled to the core of the light emitting medium 605 in the form of a fiber through a fusion point 619.
  発光媒質605は、反射要素613を透過した励起光を吸収することにより発生する蛍光を放射する。発光媒質605からの蛍光は、反射要素614と反射要素606の間を往復する間に増強され、レーザ発振する。発振したレーザ光の一部は、反射要素614を通して外部に出力603される。 The luminescent medium 605 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 613. Fluorescence from the luminescent medium 605 is enhanced while reciprocating between the reflective element 614 and the reflective element 606, and lasing. Part of the oscillated laser beam is output 603 to the outside through the reflecting element 614.
  入力ファイバ618の端面616は、励起光波長と発振したレーザ光波長の両方で低反射率となる、広帯域無反射コーティングが施されている。 The end face 616 of the input fiber 618 is provided with a broadband non-reflective coating that has a low reflectance at both the excitation light wavelength and the oscillated laser light wavelength.
  以上の第6の実施の形態によれば、以下に示す作用効果を奏する。 According to the sixth embodiment described above, the following effects are obtained.
  第4の実施形態と同様の効果が得られる。さらに、入力ファイバ618は発光媒質605と異なるファイバを用いることができるので、例えば石英を用いたレンズドファイバなど汎用的な光学部品を用いる事ができる。このため、発光媒質605が例えばフッ化物ファイバであった場合、加工が必ずしも容易でないことから、製品の加工歩留まりを向上させると共に、安価な汎用部品を用いる事で製造コストを抑制する事ができる。 The same effect as the fourth embodiment can be obtained. Furthermore, since the input fiber 618 can be a fiber different from the light emitting medium 605, a general-purpose optical component such as a lensed fiber using quartz can be used. For this reason, when the light emitting medium 605 is, for example, a fluoride fiber, the processing is not always easy. Therefore, the processing yield of the product can be improved, and the manufacturing cost can be suppressed by using inexpensive general-purpose parts.
  ファイバの形態をした発光媒質を用いる場合の他の例として第7の実施の形態について、図7を用いて説明する。 As another example of using a light emitting medium in the form of a fiber, a seventh embodiment will be described with reference to FIG.
  図7では、半導体発光素子704を励起光源として用い、この励起光を吸収して励起光と異なる波長の光を放射するファイバ形態の発光媒質705を備え、励起光を発生する半導体光素子704の光を増強するための共振器として、反射要素706(第1反射要素)と反射要素713からなる半導体レーザ共振器701(第1光共振器)と、発光媒質705からの発光を増強するための共振器として、反射要素706と反射要素714からなる固体レーザ共振器702(第2光共振器)とを備え、反射要素714は出力ファイバ717を備え、半導体レーザ共振器701(第1光共振器)と固体レーザ共振器702(第2光共振器)は互いに反射要素706と光路の一部を共有しており、その共有光路内に励起光を放射する半導体発光素子704が設置されており、固体レーザ共振器702の共有されていない光路内に発光媒質705が設置されている。 In FIG. 7, a semiconductor light-emitting element 704 is used as an excitation light source, and includes a light emitting medium 705 in a fiber form that absorbs the excitation light and emits light having a wavelength different from that of the excitation light. As a resonator for enhancing light, a semiconductor laser resonator 701 (first optical resonator) composed of a reflective element 706 (first reflective element) and a reflective element 713, and light emission from a light emitting medium 705 are enhanced. As a resonator, a solid-state laser resonator 702 (second optical resonator) including a reflective element 706 and a reflective element 714 is provided. The reflective element 714 includes an output fiber 717, and a semiconductor laser resonator 701 (first optical resonator). ) And the solid-state laser resonator 702 (second optical resonator) share a part of the optical path with the reflecting element 706, and a semiconductor light emitting element that emits excitation light in the shared optical path. 704 is installed, the light emitting medium 705 in the optical path that is not shared the solid-state laser resonator 702 is installed.
  さらに、反射要素706(第1反射要素)は、共有ミラーとして半導体発光素子704からの励起光波長と発光媒質705からの発光波長の両方の光を高反射する反射要素であり、反射要素713は、発光媒質705の発光波長の光を透過し且つ半導体発光素子704側の面が半導体発光素子704で発生する励起光を部分反射する反射要素であり、発光媒質705の半導体発光素子704側には、入力ファイバ718が融着点719で融着接続されており、入力ファイバ718の半導体発光素子704側の端面715は、励起光波長と発振したレーザ光波長の両方で低反射率である広帯域無反射コーティングが施されており、発光媒質705側の反射要素713の形状は、発光媒質705の励起側に融着接続されている入力ファイバ718の端面715に励起光を集光できるように凸レンズ形状となっている。また、反射要素713は、端面715に励起光を集光でき、入力ファイバ718を伝搬してきたファイバ型の発光媒質705からの発光波長の光を半導体発光素子704の活性層に結合するように配置されている。 Further, the reflective element 706 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 704 and the light emission wavelength from the light emitting medium 705 as a shared mirror. The light emitting medium 705 transmits light having the emission wavelength, and the surface on the semiconductor light emitting element 704 side is a reflective element that partially reflects the excitation light generated by the semiconductor light emitting element 704. The light emitting medium 705 has a surface on the semiconductor light emitting element 704 side. The input fiber 718 is fusion spliced at a fusion point 719, and the end surface 715 of the input fiber 718 on the semiconductor light emitting element 704 side has a low reflectance at both the excitation light wavelength and the oscillated laser light wavelength. Reflective coating is applied, and the shape of the reflective element 713 on the side of the light emitting medium 705 is the same as that of the input fiber 7 fused and connected to the excitation side of the light emitting medium 705. It has a convex shape so that the excitation light can condensing on the end face 715 of the 8. The reflection element 713 can collect the excitation light on the end face 715 and is disposed so as to couple the light having the emission wavelength from the fiber type light emitting medium 705 propagating through the input fiber 718 to the active layer of the semiconductor light emitting element 704. Has been.
  入力ファイバ718は、発光媒質705で発光する光および半導体発光素子704で発生する励起光を低損失で双方向に伝搬することができる。入力ファイバ718を伝搬する励起光は、融着点719を介してファイバ形態の発光媒質705のコアに結合する。 The input fiber 718 can propagate light emitted from the light emitting medium 705 and excitation light generated from the semiconductor light emitting element 704 bidirectionally with low loss. Excitation light propagating through the input fiber 718 is coupled to the core of the light emitting medium 705 in the form of a fiber through a fusion point 719.
  発光媒質705の半導体発光素子704側と反対側の端面に、発光媒質705からの蛍光を部分反射する反射要素714が端面に直接成膜された出力ファイバ717の反射要素714が成膜されている端面が融着接続されている。 On the end face of the light emitting medium 705 opposite to the semiconductor light emitting element 704 side, the reflecting element 714 of the output fiber 717 in which the reflecting element 714 that partially reflects the fluorescence from the light emitting medium 705 is directly formed on the end face is formed. The end faces are fusion spliced.
  発光媒質705は、反射要素713を透過した励起光を吸収することにより発生する蛍光を放射する。発光媒質705からの蛍光は、反射要素714と反射要素706の間を往復する間に増強され、レーザ発振する。発振したレーザ光の一部は、反射要素714を通して出力ファイバ717に伝搬し、出力ファイバ717端面から外部に出力703される。 The light emitting medium 705 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 713. The fluorescence from the light emitting medium 705 is enhanced while reciprocating between the reflecting element 714 and the reflecting element 706, and laser oscillation occurs. Part of the oscillated laser light propagates to the output fiber 717 through the reflecting element 714 and is output 703 from the end face of the output fiber 717 to the outside.
  以上の第7の実施の形態によれば、以下に示す作用効果を奏する。 According to the seventh embodiment described above, the following effects are obtained.
  第5の実施形態と同様の効果が得られる。さらに、入力端715を備えた入力ファイバ718を発光媒質705とは異なるファイバとすることができるので、例えば成膜済み石英ファイバなど汎用的な光学部品を用いる事ができる。このため、発光媒質705が例えばフッ化物ファイバであった場合、端面への光学薄膜の直接成膜が必ずしも容易でない場合があることから、製品の加工歩留まりを向上させると共に、安価な汎用部品を用いる事で製造コストを抑制する事ができる。 The same effect as the fifth embodiment can be obtained. Furthermore, since the input fiber 718 provided with the input end 715 can be a fiber different from the light emitting medium 705, a general-purpose optical component such as a film-formed quartz fiber can be used. For this reason, when the light-emitting medium 705 is, for example, a fluoride fiber, it may not always be easy to form an optical thin film directly on the end face. Manufacturing costs can be reduced.
  ファイバの形態をした発光媒質を用いる場合の他の例として第8の実施の形態について、図8を用いて説明する。 As another example of using a light emitting medium in the form of a fiber, an eighth embodiment will be described with reference to FIG.
  図8では、半導体発光素子804を励起光源として用い、この励起光を吸収して励起光と異なる波長の光を放射するファイバ形態の発光媒質805を備え、励起光を発生する半導体光素子804の光を増強するための共振器として、反射要素806(第1反射要素)と反射要素813からなる半導体レーザ共振器801(第1光共振器)と、発光媒質805からの発光を増強するための共振器として、反射要素806と反射要素814からなる固体レーザ共振器802(第2光共振器)とを備え、反射要素814は出力ファイバ817を備え、半導体レーザ共振器801(第1光共振器)と固体レーザ共振器802(第2光共振器)は互いに反射要素806と光路の一部を共有しており、その共有光路内に励起光を放射する半導体発光素子804が設置されており、固体レーザ共振器802の共有されていない光路内に発光媒質805が設置されている。 In FIG. 8, a semiconductor light emitting element 804 is used as an excitation light source, and includes a light emitting medium 805 in the form of a fiber that absorbs the excitation light and emits light having a wavelength different from that of the excitation light. As a resonator for enhancing light, a semiconductor laser resonator 801 (first optical resonator) composed of a reflective element 806 (first reflective element) and a reflective element 813, and light emission from a light emitting medium 805 are enhanced. As a resonator, a solid-state laser resonator 802 (second optical resonator) including a reflective element 806 and a reflective element 814 is provided. The reflective element 814 includes an output fiber 817, and a semiconductor laser resonator 801 (first optical resonator). ) And the solid-state laser resonator 802 (second optical resonator) share a part of the optical path with the reflecting element 806, and a semiconductor light emitting element that emits excitation light in the shared optical path 804 is installed, the light emitting medium 805 in the optical path that is not shared the solid-state laser resonator 802 is installed.
  さらに、反射要素806(第1反射要素)は、共有ミラーとして半導体発光素子804からの励起光波長と発光媒質805からの発光波長の両方の光を高反射する反射要素である。反射要素813は、発光媒質805の発光波長の光を透過し且つ半導体発光素子804で発生する励起光を部分反射する反射要素で、半導体発光素子804の端面に直接成膜された誘電体多層膜またはフレネル反射を利用したクリーブ端面である。発光媒質805の半導体発光素子804側には、入力ファイバ818が融着点819で融着接続されており、入力ファイバ818の半導体発光素子804側の端面816は、半導体発光素子804からの励起光を集光し発光媒質805からの発光を半導体発光素子804の活性層に結合するようにレンズ形状に研磨されており、半導体発光素子804の活性層に近接して配置されている。 Furthermore, the reflective element 806 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 804 and the light emission wavelength from the light emitting medium 805 as a shared mirror. The reflective element 813 is a reflective element that transmits the light having the emission wavelength of the light emitting medium 805 and partially reflects the excitation light generated by the semiconductor light emitting element 804. The dielectric multilayer film directly formed on the end face of the semiconductor light emitting element 804 Or it is a cleave end face using Fresnel reflection. An input fiber 818 is fused and connected to the semiconductor light emitting element 804 side of the light emitting medium 805 at a fusion point 819, and an end face 816 of the input fiber 818 on the semiconductor light emitting element 804 side is excited light from the semiconductor light emitting element 804. Is collected in a lens shape so as to couple light emitted from the light emitting medium 805 to the active layer of the semiconductor light emitting element 804, and is disposed close to the active layer of the semiconductor light emitting element 804.
  入力ファイバ818は、発光媒質805で発光する光および半導体発光素子804で発生する励起光を低損失で双方向に伝搬することができる。入力ファイバ818を伝搬する励起光は、融着点819を介してファイバ形態の発光媒質805のコアに結合する。 The input fiber 818 can propagate light emitted from the light emitting medium 805 and excitation light generated from the semiconductor light emitting element 804 bidirectionally with low loss. Excitation light propagating through the input fiber 818 is coupled to the core of the light emitting medium 805 in the form of a fiber through a fusion point 819.
  発光媒質805の半導体発光素子804側と反対側の端面に、発光媒質805からの蛍光を部分反射する反射要素814が端面に直接成膜された出力ファイバ817の反射要素814が成膜されている端面が融着接続されている。 On the end surface of the light emitting medium 805 opposite to the semiconductor light emitting element 804 side, the reflecting element 814 of the output fiber 817 in which the reflecting element 814 that partially reflects the fluorescence from the light emitting medium 805 is directly formed on the end surface is formed. The end faces are fusion spliced.
  発光媒質805は、反射要素813を透過した励起光を吸収することにより発生する蛍光を放射する。発光媒質805からの蛍光は、反射要素814と反射要素806の間を往復する間に増強され、レーザ発振する。発振したレーザ光の一部は、反射要素814を通して外部に出力803される。 The luminescent medium 805 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 813. Fluorescence from the light emitting medium 805 is enhanced while reciprocating between the reflecting element 814 and the reflecting element 806, and lasing. Part of the oscillated laser beam is output 803 to the outside through the reflecting element 814.
  入力ファイバ818の端面816は、励起光波長と発振したレーザ光波長の両方で低反射率となる、広帯域無反射コーティングが施されている。 The end face 816 of the input fiber 818 is provided with a broadband non-reflective coating that has low reflectivity at both the excitation light wavelength and the oscillated laser light wavelength.
  以上の第8の実施の形態によれば、以下に示す作用効果を奏する。 According to the above eighth embodiment, the following operational effects are obtained.
  第6の実施形態と同様の効果が得られる。さらに、出力ファイバ817の出力803側の末端に固体レーザ共振器802を構成する反射要素がなく、反射要素814は融着部で保護されているため、耐環境性と耐久性に優れる。特に発光媒質805が耐環境性に問題がある場合、ハーメチックシールの筐体から出力ファイバ817だけを外部に露出することで、発光媒質805の劣化を防止する事ができる。 The same effect as in the sixth embodiment can be obtained. Furthermore, since there is no reflecting element constituting the solid-state laser resonator 802 at the end of the output fiber 817 on the output 803 side, and the reflecting element 814 is protected by the fused portion, it is excellent in environmental resistance and durability. In particular, when the light emitting medium 805 has a problem in environmental resistance, it is possible to prevent deterioration of the light emitting medium 805 by exposing only the output fiber 817 from the hermetic seal housing.
  ファイバの形態をした発光媒質を用いる場合の他の例として第9の実施の形態について、図9を用いて説明する。 As another example of using a light emitting medium in the form of a fiber, a ninth embodiment will be described with reference to FIG.
  図9では、半導体発光素子904を励起光源として用い、この励起光を吸収して励起光と異なる波長の光を放射するファイバ形態の発光媒質905を備え、励起光を発生する半導体光素子904の光を増強するための共振器として、反射要素906(第1反射要素)と反射要素913からなる半導体レーザ共振器901(第1光共振器)と、発光媒質905からの発光を増強するための共振器として、反射要素906と反射要素920からなる固体レーザ共振器902(第2光共振器)とを備え、反射要素920は発光媒質905の半導体光素子904側と反対側の端面に融着点919で融着接続されており、半導体レーザ共振器901(第1光共振器)と固体レーザ共振器902(第2光共振器)は互いに反射要素906と光路の一部を共有しており、その共有光路内に励起光を放射する半導体発光素子904が設置されており、固体レーザ共振器902の共有されていない光路内に発光媒質905が設置されている。 In FIG. 9, a semiconductor light-emitting element 904 is used as an excitation light source, and includes a light-emitting medium 905 in the form of a fiber that absorbs the excitation light and emits light having a wavelength different from that of the excitation light. As a resonator for enhancing light, a semiconductor laser resonator 901 (first optical resonator) composed of a reflective element 906 (first reflective element) and a reflective element 913, and light emission from a light emitting medium 905 are enhanced. As a resonator, a solid-state laser resonator 902 (second optical resonator) including a reflecting element 906 and a reflecting element 920 is provided, and the reflecting element 920 is fused to the end surface of the light emitting medium 905 opposite to the semiconductor optical element 904 side. The semiconductor laser resonator 901 (first optical resonator) and the solid-state laser resonator 902 (second optical resonator) are connected to each other at a point 919 by a reflection element 906 and a part of the optical path. Share and are semiconductor light emitting element 904 is disposed to emit excitation light to the shared optical path, the light emitting medium 905 is installed in the optical path that is not shared the solid-state laser resonator 902.
  さらに、反射要素906(第1反射要素)は、共有ミラーとして半導体発光素子904からの励起光波長と発光媒質905からの発光波長の両方の光を高反射する反射要素であり、反射要素913は、発光媒質905の発光波長の光を透過し且つ半導体発光素子904側の面が半導体発光素子904で発生する励起光を部分反射する反射要素であり、発光媒質905の半導体発光素子904側には、入力ファイバ918が融着点921で融着接続されており、入力ファイバ918の半導体発光素子904側の端面915は、励起光波長と発振したレーザ光波長の両方で低反射率である広帯域無反射コーティングが施されており、発光媒質905側の反射要素913の形状は、発光媒質905の励起側に融着接続されている入力ファイバ918の端面915に励起光を集光できるように凸レンズ形状となっている。また、反射要素913は、端面915に励起光を集光でき、入力ファイバ918を伝搬してきたファイバ型の発光媒質905からの発光波長の光を半導体発光素子904の活性層に結合するように配置されている。 Further, the reflective element 906 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 904 and the light emission wavelength from the light emitting medium 905 as a shared mirror. The light emitting medium 905 transmits light of the emission wavelength, and the surface on the semiconductor light emitting element 904 side is a reflective element that partially reflects the excitation light generated by the semiconductor light emitting element 904. The input fiber 918 is fusion spliced at a fusion point 921, and the end surface 915 of the input fiber 918 on the semiconductor light emitting element 904 side has a low reflectance at both the pumping light wavelength and the oscillated laser light wavelength. Reflective coating is applied, and the shape of the reflective element 913 on the side of the light emitting medium 905 is the same as that of the input fiber 9 fused and connected to the excitation side of the light emitting medium 905. It has a convex shape so that the excitation light can condensing on the end face 915 of the 8. The reflection element 913 is arranged so that excitation light can be collected on the end face 915 and light of the emission wavelength from the fiber type light emitting medium 905 propagating through the input fiber 918 is coupled to the active layer of the semiconductor light emitting element 904. Has been.
  入力ファイバ918は、発光媒質905で発光する光および半導体発光素子904で発生する励起光を低損失で双方向に伝搬することができる。入力ファイバ918を伝搬する励起光は、融着点921を介してファイバ形態の発光媒質905のコアに結合する。 The input fiber 918 can propagate light emitted from the light emitting medium 905 and excitation light generated from the semiconductor light emitting element 904 bidirectionally with low loss. Excitation light propagating through the input fiber 918 is coupled to the core of the light emitting medium 905 in the form of a fiber through a fusion point 921.
  反射要素920は、発光媒質905の発光波長の光を部分反射するファイバ回折格子であり、発光媒質905と融着接続されていない側に出力ファイバ917を備えている。 The reflection element 920 is a fiber diffraction grating that partially reflects light having the emission wavelength of the light emitting medium 905, and includes an output fiber 917 on the side that is not fusion-bonded to the light emitting medium 905.
  発光媒質905は、反射要素913を透過した励起光を吸収することにより発生する蛍光を放射する。発光媒質905からの蛍光は、反射要素920と反射要素906の間を往復する間に増強され、レーザ発振する。発振したレーザ光の一部は、反射要素920を通して出力ファイバ917に伝搬し、出力ファイバ917端面から外部に出力903される。 The light emitting medium 905 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 913. Fluorescence from the light emitting medium 905 is enhanced while reciprocating between the reflective element 920 and the reflective element 906, and lasing. Part of the oscillated laser light propagates to the output fiber 917 through the reflection element 920 and is output 903 from the end face of the output fiber 917 to the outside.
  以上の第9の実施の形態によれば、以下に示す作用効果を奏する。 According to the ninth embodiment described above, the following effects are obtained.
  第7の実施形態と同様の効果が得られる。さらに、固体レーザ共振器902の反射要素920がファイバ回折格子であることから、容易に可視光波長領域でも狭帯域な反射特性を有する反射要素とすることができるだけでなく、小型で過剰損失が少ない共振器を構成し、高効率で高出力な固体レーザを容易に実現できる。 The same effect as the seventh embodiment can be obtained. Further, since the reflection element 920 of the solid-state laser resonator 902 is a fiber diffraction grating, it can be easily made a reflection element having a narrow-band reflection characteristic even in the visible light wavelength region, and is small and has a small excess loss. A resonator is configured, and a solid laser with high efficiency and high output can be easily realized.
  ファイバの形態をした発光媒質を用いる場合の他の例として第10の実施の形態について、図10を用いて説明する。 The tenth embodiment will be described with reference to FIG. 10 as another example of using a light emitting medium in the form of a fiber.
  図10では、半導体発光素子1004を励起光源として用い、この励起光を吸収して励起光と異なる波長の光を放射するファイバ形態の発光媒質1005を備え、励起光を発生する半導体光素子1004の光を増強するための共振器として、反射要素1006(第1反射要素)と反射要素1013からなる半導体レーザ共振器1001(第1光共振器)と、発光媒質1005からの発光を増強するための共振器として、反射要素1006と反射要素1020からなる固体レーザ共振器1002(第2光共振器)とを備え、反射要素1020は発光媒質1005の半導体光素子1004側と反対側の端面に融着点1019で融着接続されており、半導体レーザ共振器1001(第1光共振器)と固体レーザ共振器1002(第2光共振器)は互いに反射要素1006と光路の一部を共有しており、その共有光路内に励起光を放射する半導体発光素子1004が設置されており、固体レーザ共振器1002の共有されていない光路内に発光媒質1005が設置されている。 In FIG. 10, a semiconductor light emitting device 1004 that uses a semiconductor light emitting device 1004 as an excitation light source, includes a fiber-type light emitting medium 1005 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light, and generates the excitation light. As a resonator for enhancing light, a semiconductor laser resonator 1001 (first optical resonator) composed of a reflective element 1006 (first reflective element) and a reflective element 1013, and light emission from a light emitting medium 1005 are enhanced. As a resonator, a solid-state laser resonator 1002 (second optical resonator) including a reflecting element 1006 and a reflecting element 1020 is provided, and the reflecting element 1020 is fused to an end surface of the light emitting medium 1005 opposite to the semiconductor optical element 1004 side. The semiconductor laser resonator 1001 (first optical resonator) and the solid-state laser resonator 1002 (second optical resonator) are fusion-spliced at a point 1019. A part of the optical path is shared with the reflecting element 1006, a semiconductor light emitting element 1004 that emits excitation light is installed in the shared optical path, and a light emitting medium is installed in the unshared optical path of the solid-state laser resonator 1002. 1005 is installed.
  さらに、反射要素1006(第1反射要素)は、共有ミラーとして半導体発光素子1004からの励起光波長と発光媒質1005からの発光波長の両方の光を高反射する反射要素である。反射要素1013は、発光媒質1005の発光波長の光を透過し且つ半導体発光素子1004で発生する励起光を部分反射する反射要素で、半導体発光素子1004の端面に直接成膜された誘電体多層膜またはフレネル反射を利用したクリーブ端面である。発光媒質1005の半導体発光素子1004側には、入力ファイバ1018が融着点1021で融着接続されており、入力ファイバ1018の半導体発光素子1004側の端面1016は、半導体発光素子1004からの励起光を集光し発光媒質1005からの発光を半導体発光素子1004の活性層に結合するようにレンズ形状に研磨されており、半導体発光素子1004の活性層に近接して配置されている。 Furthermore, the reflective element 1006 (first reflective element) is a reflective element that highly reflects both the excitation light wavelength from the semiconductor light emitting element 1004 and the light emission wavelength from the light emitting medium 1005 as a shared mirror. The reflective element 1013 is a reflective element that transmits light having the emission wavelength of the light emitting medium 1005 and partially reflects the excitation light generated by the semiconductor light emitting element 1004. The dielectric multilayer film directly formed on the end face of the semiconductor light emitting element 1004 Or it is a cleave end face using Fresnel reflection. An input fiber 1018 is fused and connected to the semiconductor light emitting element 1004 side of the light emitting medium 1005 at a fusion point 1021, and an end surface 1016 of the input fiber 1018 on the semiconductor light emitting element 1004 side is excited light from the semiconductor light emitting element 1004. Is collected in a lens shape so as to couple light emitted from the light emitting medium 1005 to the active layer of the semiconductor light emitting element 1004, and is disposed close to the active layer of the semiconductor light emitting element 1004.
  入力ファイバ1018は、発光媒質1005で発光する光および半導体発光素子1004で発生する励起光を低損失で双方向に伝搬することができる。入力ファイバ1018を伝搬する励起光は、融着点1021を介してファイバ形態の発光媒質1005のコアに結合する。 The input fiber 1018 can propagate light emitted from the light emitting medium 1005 and excitation light generated from the semiconductor light emitting element 1004 bidirectionally with low loss. The excitation light propagating through the input fiber 1018 is coupled to the core of the light emitting medium 1005 in the form of a fiber through the fusion point 1021.
  反射要素1020は、発光媒質1005の発光波長の光を部分反射するファイバ回折格子であり、発光媒質1005と融着接続されていない側に出力ファイバ1017を備えている。 The reflection element 1020 is a fiber diffraction grating that partially reflects light having the emission wavelength of the light emitting medium 1005, and includes an output fiber 1017 on the side not fused to the light emitting medium 1005.
  発光媒質1005は、反射要素1013を透過した励起光を吸収することにより発生する蛍光を放射する。発光媒質1005からの蛍光は、反射要素1020と反射要素1006の間を往復する間に増強され、レーザ発振する。発振したレーザ光の一部は、反射要素1020を通して出力ファイバ1017に伝搬し、出力ファイバ1017端面から外部に出力1003される。 The luminescent medium 1005 emits fluorescence generated by absorbing the excitation light transmitted through the reflecting element 1013. The fluorescence from the light emitting medium 1005 is enhanced while reciprocating between the reflective element 1020 and the reflective element 1006, and laser oscillation occurs. Part of the oscillated laser light propagates to the output fiber 1017 through the reflecting element 1020, and is output 1003 from the end face of the output fiber 1017 to the outside.
  入力ファイバ1018の端面1016は、励起光波長と発振したレーザ光波長の両方で低反射率となる、広帯域無反射コーティングが施されている。 The end face 1016 of the input fiber 1018 is provided with a broadband non-reflective coating that has low reflectivity at both the excitation light wavelength and the oscillated laser light wavelength.
  以上の第10の実施の形態によれば、以下に示す作用効果を奏する。 According to the tenth embodiment described above, the following effects are obtained.
  第8の実施形態と同様の効果が得られる。さらに、固体レーザ共振器1002の反射要素1020がファイバ回折格子であることから、可視光波長領域でも狭帯域な反射特性を有する反射要素とすることができるだけでなく、小型で過剰損失が少ない共振器を構成し、高効率で高出力な固体レーザを容易に実現できる。 The same effect as in the eighth embodiment can be obtained. Further, since the reflecting element 1020 of the solid-state laser resonator 1002 is a fiber diffraction grating, not only can the reflecting element have a narrow-band reflecting characteristic even in the visible light wavelength region, but also a small resonator with less excess loss. It is possible to easily realize a high-efficiency and high-power solid-state laser.
  上記の第4、6、8、10の実施の形態において、発光媒質の半導体発光素子側の励起光を入力する端面のレンズ形状は、テーパレンズ、先端円筒レンズ形状、複合円筒レンズ形状など、上下方向と左右方向で広がり角の差が大きい光を光ファイバのコアに結合しやすい形状が好ましい。 In the fourth, sixth, eighth, and tenth embodiments described above, the lens shape of the end surface for inputting the excitation light on the semiconductor light emitting element side of the light emitting medium may be a tapered lens, a tip cylindrical lens shape, a compound cylindrical lens shape, or the like. A shape that easily couples light having a large difference in divergence angle between the right and left directions to the core of the optical fiber is preferable.
  上記の第3~10の実施の形態において、施される広帯域無反射コーティングは、発振したレーザ光波長および励起光波長の反射率が共に1%以下であることが好ましく、このようなコーティング処理方法としては、蒸着やスパッタなどの誘電体膜コーティングが一般的であるが、樹脂コーティングや有機無機ハイブリッド膜コーティングなどの湿式コーティングも利用可能である。 In the above third to tenth embodiments, it is preferable that the broadband non-reflective coating to be applied has both the reflectance of the oscillated laser light wavelength and the excitation light wavelength of 1% or less. In general, dielectric film coating such as vapor deposition and sputtering is common, but wet coating such as resin coating and organic-inorganic hybrid film coating can also be used.
  上記の第3~8の実施の形態において、発光媒質の出力側に設置される反射要素には、誘電体多層膜コーティングを用いることが好ましいが、波長特性や反射率によっては金属膜や合金膜やカーボンナノチューブなどのフラーレン類を用いた膜や半導体ナノ微粒子を含むコーティング膜を用いることができる。 In the third to eighth embodiments, it is preferable to use a dielectric multilayer coating for the reflective element installed on the output side of the light emitting medium. However, depending on the wavelength characteristics and reflectance, a metal film or an alloy film is used. Further, a film using fullerenes such as carbon nanotubes or a coating film containing semiconductor nanoparticles can be used.
  上記の第3、4、6の実施の形態において、発光媒質の出力側に接着あるいはオプティカルコンタクトあるいは融着される反射要素として光学薄膜が成膜された透明基板を用いる場合、該透明基板として少なくとも外部に出力する発振波長に対して透明であることが必要であり、ガラス基板、結晶化ガラス基板を用いることが好ましい。 In the third, fourth, and sixth embodiments, when a transparent substrate on which an optical thin film is formed as a reflective element that is bonded, optically contacted, or fused to the output side of the light emitting medium is used, at least as the transparent substrate It is necessary to be transparent to the oscillation wavelength output to the outside, and it is preferable to use a glass substrate or a crystallized glass substrate.
  上記の第5、7、8の実施の形態において、発光媒質の出力側の端面に、出力ファイバの該反射要素が成膜されている端面を融着接続する場合、該発光媒質が低フォノンガラス材料においては、該出力ファイバは酸化物系のファイバを使用することが特に好ましい。 In the fifth, seventh, and eighth embodiments, when the end face of the output fiber on which the reflecting element is formed is fusion-bonded to the output-side end face of the light emitting medium, the light emitting medium is made of low phonon glass. In terms of materials, it is particularly preferable to use an oxide-based fiber as the output fiber.
  上記の第3、5、7、9の実施の形態において、共振器1を構成する部分反射鏡は、例示したメニスカスレンズ形状以外に、凹面反射鏡と凸レンズの組み合わせや、半導体発光素子端面に部分反射鏡を成膜して凸レンズと組み合わせるなど、同様の機能を実現する他の構成で置き換えても良い。 In the third, fifth, seventh, and ninth embodiments described above, the partial reflecting mirror that constitutes the resonator 1 is not limited to the illustrated meniscus lens shape, and is a combination of a concave reflecting mirror and a convex lens, or a part of the semiconductor light emitting element end face. It may be replaced with another configuration that realizes a similar function such as forming a reflecting mirror and combining it with a convex lens.
  上記の第4、6、8、10の実施の形態において、半導体レーザ共振器を構成する部分反射鏡として例示した半導体発光素子端面に成膜した光学薄膜あるいはクリーブ端面とレンズ形状の入力端面の組み合わせ以外に、凹面反射鏡と凸レンズと広帯域無反射コーティングを施した入力端面の組み合わせや、メニスカスレンズ形状の反射鏡と広帯域無反射コーティングを施した入力端面の組み合わせなど、同様の機能を実現する他の構成で置き換えても良い。 In the fourth, sixth, eighth, and tenth embodiments described above, a combination of an optical thin film or a cleaved end face formed on the end face of a semiconductor light emitting device exemplified as a partial reflector constituting a semiconductor laser resonator and a lens-shaped input end face In addition, other combinations that realize similar functions, such as a combination of a concave reflecting mirror, a convex lens, and an input end face with a broadband non-reflective coating, and a combination of a meniscus-shaped reflecting mirror and an input end face with a broadband non-reflective coating It may be replaced with a configuration.
  上記の第1~10の実施の形態において、共有ミラーとして半導体発光素子からの励起光波長と発光媒質からの発光波長の両方の光を高反射する反射要素(第1反射要素に相当)は、誘電体多層膜ミラー、金属または合金ミラー、分布回折型ミラー(いわゆるDBR)、または分布フィードバック構造(いわゆるDFB)、などから適宜選択することができる。これら反射要素を、半導体発光素子端面に直接成膜するか、半導体発光素子を製造する際に直接作り込むことで形成できる。半導体発光素子端面に直接成膜または反射要素を直接作り込んだ半導体発光素子を用いることは、低コスト化と量産化に適しており、特に好ましい。中でもDBRやDFBは、半導体発光素子を製造する際に同時に作り込む事が可能なので、製造プロセスの簡素化と光学位置調整の簡略化の観点から、特に好ましい。 In the first to tenth embodiments described above, the reflective element (corresponding to the first reflective element) that highly reflects both the excitation light wavelength from the semiconductor light emitting element and the light emission wavelength from the light emitting medium as a shared mirror, A dielectric multilayer mirror, metal or alloy mirror, distributed diffractive mirror (so-called DBR), or distributed feedback structure (so-called DFB) can be selected as appropriate. These reflective elements can be formed by directly forming a film on the end face of the semiconductor light emitting element or by directly forming the reflective element when manufacturing the semiconductor light emitting element. The use of a semiconductor light emitting device in which a film is formed directly on the end face of the semiconductor light emitting device or a reflective element is directly used is suitable for cost reduction and mass production, and is particularly preferable. Among these, DBR and DFB are particularly preferable from the viewpoint of simplification of the manufacturing process and optical position adjustment because they can be formed at the same time when the semiconductor light emitting device is manufactured.
  上記の第1~10の実施の形態において、用いられる半導体発光素子は、活性層がクラッド層で挟まれる通常のメサ型構成、量子井戸構成、出力端面付近に透明なウィンドウ構造を設けた導波路構造など、光増幅機能を備えた半導体光導波路として機能する構造を具備し、しかも第2光共振器で発振するレーザ光波長に対して透過性のある材料であれば、どんなものでも良い。例えば、活性層にInGaN系材料の歪み量子井戸構造を持ち、クラッド層にはn型、p型のGaN系材料を用いた場合、この素子で発生する励起光の波長よりも長波長では透明性が高く、低損失で透過可能である。この場合の例として、発振波長(励起光の波長)が440nmとなるメサ構造歪み量子井戸InGaNレーザを半導体発光素子として使用し、Pr添加フッ化物ガラスファイバを発光媒質として用いることにより、第2光共振器で発振するレーザ発振波長は490nm帯、520nm帯、602nm帯、635nm帯、715nm帯、900nm帯などから選択可能となり、いずれの波長に対してもInGaN活性層または活性層直近のクラッド層が低損失に透過するため、容易に外部へ出力できる。 In the above first to tenth embodiments, the semiconductor light emitting device used is a waveguide having a normal mesa structure in which an active layer is sandwiched between cladding layers, a quantum well structure, and a transparent window structure in the vicinity of the output end face. Any material can be used as long as it has a structure that functions as a semiconductor optical waveguide having an optical amplification function, such as a structure, and is transparent to the wavelength of the laser light oscillated by the second optical resonator. For example, if the active layer has a strained quantum well structure of InGaN-based material and the cladding layer uses n-type or p-type GaN-based material, it is transparent at wavelengths longer than the wavelength of the excitation light generated by this device. And can be transmitted with low loss. As an example in this case, a mesa structure strained quantum well InGaN laser having an oscillation wavelength (excitation light wavelength) of 440 nm is used as a semiconductor light-emitting device, and a Pr-doped fluoride glass fiber is used as a light-emitting medium. The laser oscillation wavelength oscillated by the resonator can be selected from a 490 nm band, a 520 nm band, a 602 nm band, a 635 nm band, a 715 nm band, a 900 nm band, and the like, and the InGaN active layer or the cladding layer closest to the active layer can be used for any wavelength. Because it transmits light with low loss, it can be easily output to the outside.
  また、半導体発光素子としてGaN系半導体レーザを用いる場合、放射される励起光を発光媒質が吸収して蛍光を放射する発光媒質に添加される活性イオンは、励起光の具体的な波長にもよるが、350nmから490nmの波長域で励起可能なものとしては、Pr3+、Nd3+、Sm3+、Eu3+、Tb3+、Dy3+、Gd3+、Ho3+、Er3+、Tm3+、Sm2+、Eu2+、Yb2+が挙げられる。これらの希土類はGaN系半導体レーザ材料の透明性が高い可視光または近赤外波長領域の光の蛍光を発光するため、本発明の共振器構造に適合した発光媒質への添加イオンとして適当である。これらのイオンが添加される発光媒質の材料は、可視から近赤外域の希土類蛍光に対して高い発光効率が得られる低フォノン光学材料であって、GaN系半導体レーザの発光波長である紫外~緑色波長帯域で透明である事が好ましい。具体的には、ハライドガラス、ハライド結晶、ハライド酸化物ガラス、ハライド酸化物結晶、または希土類など活性イオンを添加したこれらの材料の微粒子を分散させた酸化物ガラスまたは有機無機ハイブリッド材料、から選ぶ事ができる。中でもフッ化物ガラス、フッ化物結晶、フッ素酸化物ガラス、フッ素酸化物結晶は発光媒質の作製が容易で実用的な耐久性を備えていることから、最も好ましい。 When a GaN-based semiconductor laser is used as the semiconductor light emitting device, the active ions added to the light emitting medium that emits fluorescence by absorbing the emitted excitation light depends on the specific wavelength of the excitation light. However, Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Dy 3+ , Gd 3+ , Ho 3+ , Er 3 can be excited in the wavelength range of 350 nm to 490 nm. + , Tm 3+ , Sm 2+ , Eu 2+ and Yb 2+ . These rare earths emit fluorescent light in the visible or near-infrared wavelength region where the GaN-based semiconductor laser material is highly transparent, and are therefore suitable as added ions to the light-emitting medium suitable for the resonator structure of the present invention. . The material of the light-emitting medium to which these ions are added is a low phonon optical material that can obtain high light emission efficiency for rare-earth fluorescence in the visible to near-infrared region, and the emission wavelength of the GaN-based semiconductor laser is ultraviolet to green. It is preferably transparent in the wavelength band. Specifically, it is selected from halide glass, halide crystal, halide oxide glass, halide oxide crystal, or oxide glass or organic-inorganic hybrid material in which fine particles of these materials added with active ions such as rare earth are dispersed. Can do. Among these, fluoride glass, fluoride crystal, fluorine oxide glass, and fluorine oxide crystal are most preferable because they can easily produce a light emitting medium and have practical durability.
  半導体発光素子と発光媒質に添加される活性イオンの組合せを適宜選択することができる。 A combination of active ions added to the semiconductor light emitting element and the light emitting medium can be selected as appropriate.
  さらに、本発明に用いられるフッ化物ガラスには様々な種類があるが、ZrF4(HfF4)-BaF2-LnF3(Ln:Sc、Yおよび希土類元素から選択される)-AlF3-NaF組成系[Zr-F系]、AlF3-LnF3(Ln:Sc,Yおよび希土類元素から選択される)-MgF2(ZnF2)-CaF2-SrF2-BaF2[Al-F系]、AlF3-ZrF4(HfF4)-LnF3(Ln:Sc,Yおよび希土類元素から選択される)-MgF2(ZnF2)-CaF2-SrF2-BaF2[Al-Zr-F系]、InF3(GaF3)-LnF3(Ln:Sc,Yおよび希土類元素から選択される)-MgF2(ZnF2)-CaF2-SrF2-BaF2[In-F系]などがガラス安定性の面から好適である。 Furthermore, there are various types of fluoride glass used in the present invention, but ZrF 4 (HfF 4 ) -BaF 2 -LnF 3 (selected from Ln: Sc, Y and rare earth elements) -AlF 3 -NaF. Composition system [Zr—F system], AlF 3 —LnF 3 (selected from Ln: Sc, Y and rare earth elements) —MgF 2 (ZnF 2 ) —CaF 2 —SrF 2 —BaF 2 [Al—F system] AlF 3 —ZrF 4 (HfF 4 ) —LnF 3 (Ln: selected from Sc, Y and rare earth elements) —MgF 2 (ZnF 2 ) —CaF 2 —SrF 2 —BaF 2 [Al—Zr—F system InF 3 (GaF 3 ) -LnF 3 (Ln: selected from Sc, Y and rare earth elements) -MgF 2 (ZnF 2 ) —CaF 2 —SrF 2 —BaF 2 [In—F system] Suitable for stability .
  またフッ素酸化物ガラスには様々な種類があるが、フォノンエネルギーの観点から酸素/フッ素原子比が1以下の材料が、紫外吸収の点で低損失なので、好適である。 There are various types of fluorine oxide glass, but from the viewpoint of phonon energy, a material having an oxygen / fluorine atomic ratio of 1 or less is preferable because of its low loss in terms of ultraviolet absorption.
  またフッ化物結晶には様々な種類があるが、Li(Y,Lu)F4、Li(Ca,Sr)(Al,Ga)F6、(Ba,Sr)(Y,Lu)28、Ba(Mg,Zn)F4、(Ca,Sr)(Al,Ga)F5、Na2(Mg,Zn)AlF7などが好適である。 There are various types of fluoride crystals, including Li (Y, Lu) F 4 , Li (Ca, Sr) (Al, Ga) F 6 , (Ba, Sr) (Y, Lu) 2 F 8 , Ba (Mg, Zn) F 4 , (Ca, Sr) (Al, Ga) F 5 , Na 2 (Mg, Zn) AlF 7 and the like are suitable.
  また、上記のガラスまたは結晶に活性中心となる材料を添加して微粒子化し、酸化物ガラス、有機材料、有機無機ハイブリッド材料に分散させた、活性中心添加材料分散酸化物ガラスまたは活性中心添加材料分散有機無機ハイブリッド材料は、マトリックス材料の光学的、機械的、化学的、熱的性質を比較的自由に設計可能であり、価格の面でも安価に供給できる可能性がある。特に、有機材料中または有機無機ハイブリッド材料中に分散させた、活性中心添加材料分散有機無機ハイブリッド材料は、成形形状の自由度も高く、価格面でも有利である。分散させる材料の粒子径は、発生する蛍光の波長帯の中で実際に使用する最短波長の4分の1以下が好ましい。 Also, active center-added material dispersed oxide glass or active center-added material dispersed in the above glass or crystal by adding a material that becomes an active center into fine particles and dispersed in oxide glass, organic material, or organic-inorganic hybrid material The organic-inorganic hybrid material can be designed relatively freely with respect to the optical, mechanical, chemical, and thermal properties of the matrix material, and may be supplied at a low cost. In particular, an active center-added material-dispersed organic-inorganic hybrid material dispersed in an organic material or an organic-inorganic hybrid material has a high degree of freedom in molding shape and is advantageous in terms of price. The particle diameter of the material to be dispersed is preferably ¼ or less of the shortest wavelength that is actually used in the wavelength band of the generated fluorescence.
  本発明を構成する共振器の損失を低減することを目的として、反射要素、半導体発光素子、発光媒質、その他の光学部品には、必要に応じて低反射膜の成膜を施すことが好ましい。 For the purpose of reducing the loss of the resonator constituting the present invention, it is preferable to form a low reflection film on the reflective element, the semiconductor light emitting element, the light emitting medium, and other optical components as necessary.
  また、出力される発振波長と励起光波長が近い波長帯である場合、光学結合効率を高めることを目的として、半導体発光素子の発光媒質側端面に直接フレネルレンズや回折光学素子を形成することが好ましい。この場合、半導体発光素子の発光媒質側端面付近は、電流注入が無いいわゆるウィンドウ領域であることが特に好ましい。 In addition, when the output oscillation wavelength and the excitation light wavelength are close to each other, a Fresnel lens or a diffractive optical element may be formed directly on the light emitting medium side end face of the semiconductor light emitting element for the purpose of increasing the optical coupling efficiency. preferable. In this case, the vicinity of the end surface on the light emitting medium side of the semiconductor light emitting element is particularly preferably a so-called window region without current injection.
  本発明で用いるレンズ類は、励起光波長と出力される発振波長で焦点距離が一致する色消しレンズや、両波長で動作する非球面レンズを用いることが好ましい。 For the lenses used in the present invention, it is preferable to use an achromatic lens whose focal length is the same between the excitation light wavelength and the output oscillation wavelength, or an aspheric lens operating at both wavelengths.
  特に上記の第4、6、8、10の実施形態で例示したレンズ形状の入力端は、励起光波長とレーザ光波長でファイバの分散値が異なるために、そのままでは双方の波長で焦点距離がずれる場合があるので、ファイバの材料分散特性と異なる分散値を持つ分散補償材料として、NaAlF4、CaF2、SrF2やBaF2などのフッ化物を適切な厚さに成膜して分散値を調整することが特に好ましい。この方法による分散補償膜で分散補償した場合、広帯域無反射コーティングは、分散補償膜の上下(分散補償膜と空気の界面および、分散補償膜とレンズ形状の端面の界面)両方に成膜することが特に好ましい。 In particular, the lens-shaped input ends exemplified in the above fourth, sixth, eighth, and tenth embodiments have different fiber dispersion values at the pumping light wavelength and the laser light wavelength. Since dispersion may occur, fluorides such as NaAlF 4 , CaF 2 , SrF 2 and BaF 2 are formed into appropriate thicknesses as dispersion compensation materials having dispersion values different from the fiber material dispersion characteristics. It is particularly preferable to adjust. When dispersion compensation is performed with a dispersion compensation film by this method, the broadband antireflection coating should be formed both above and below the dispersion compensation film (the interface between the dispersion compensation film and the air and the interface between the dispersion compensation film and the lens-shaped end face). Is particularly preferred.
  本発明で用いる反射要素には、ガラスまたは透明結晶化ガラス基板に、誘電体多層膜や金属膜を蒸着成膜またはスパッタリング成膜したミラーを用いることができる。また、光が透過しないミラーに対しては、金属鏡や、金属またはセラミックスからなる基板に、誘電体多層膜または金属膜を蒸着成膜またはスパッタリング成膜したミラーを用いることができる。 As the reflecting element used in the present invention, a mirror in which a dielectric multilayer film or a metal film is deposited or formed on a glass or transparent crystallized glass substrate can be used. For a mirror that does not transmit light, a metal mirror or a mirror in which a dielectric multilayer film or a metal film is deposited or formed on a substrate made of metal or ceramics can be used.
  さらに、上記の第1~10の実施の形態では、共有されない第2光共振器の反射要素からレーザ光が出力しているが、第1光共振器と第2光共振器に共有される反射要素の、出力する発振波長に対する反射率を調整することで、共有される反射要素からもレーザ光を外部に出力することができる。また、発光媒質が複数の波長帯域の蛍光を発光する場合、第2光共振器に共有される反射要素の波長依存性を調整することで、共有されない第2光共振器の反射要素と共有される反射要素から異なる波長のレーザ光を出力可能となる。 Further, in the above first to tenth embodiments, the laser light is output from the reflection element of the second optical resonator that is not shared, but the reflection shared by the first optical resonator and the second optical resonator. By adjusting the reflectance of the element with respect to the output oscillation wavelength, the laser light can be output to the outside also from the shared reflecting element. In addition, when the light emitting medium emits fluorescence of a plurality of wavelength bands, it is shared with the reflective element of the second optical resonator that is not shared by adjusting the wavelength dependency of the reflective element shared with the second optical resonator. It is possible to output laser beams having different wavelengths from the reflecting element.
  また、発光媒質の発光波長帯域が広帯域である場合、共振器内にレーザ発振波長選択素子としてプリズムや回折格子などの分散素子を挿入するか、連続波長可変な波長板を挿入するか、波長可変なエタロンを挿入するなどの方法によって、波長可変レーザとすることができる。 When the emission wavelength band of the luminescent medium is wide, insert a dispersion element such as a prism or a diffraction grating as a laser oscillation wavelength selection element in the resonator, or insert a wavelength plate with a continuously variable wavelength, or change the wavelength. A tunable laser can be obtained by a method such as inserting a simple etalon.
  さらに、発光媒質の発光波長帯域が広帯域である場合、可飽和吸収素子と分散補償光学系を共振器内に挿入することによって、パルス幅が100ns以下の短パルスレーザ発振が可能である。例えば、Pr3+を添加したZBLANファイバを発光媒質としてGaN系半導体レーザで励起する場合、例えば共振器に上記の第1または第2の実施形態を用い、さらに、可飽和吸収素子と分散補償光学系を発光媒質と出力ミラーの間に挿入して固体レーザ共振器を構成とすることで、小型で高効率な可視光帯域短パルスレーザが実現できる。可飽和吸収体としては、色素添加フィルム、カーボンナノチューブ、グラフェン、ZnO薄膜、In23-SnO2薄膜(ITO薄膜)、TiN薄膜など適切な吸収飽和特性を可視広帯域で示す材料を使用することができる。これらの材料はフェルールなどの部材を援用してファイバ端面に成膜し、ファイバ型のデバイスとして使用することができる。 Further, when the emission wavelength band of the light emitting medium is wide, short pulse laser oscillation with a pulse width of 100 ns or less is possible by inserting a saturable absorbing element and a dispersion compensation optical system into the resonator. For example, when a ZBLAN fiber doped with Pr 3+ is used as a light emitting medium and excited by a GaN-based semiconductor laser, for example, the above-described first or second embodiment is used for a resonator, and a saturable absorber and dispersion compensation optics are used. A compact and highly efficient visible light band short pulse laser can be realized by inserting the system between the light emitting medium and the output mirror to form a solid-state laser resonator. As a saturable absorber, a material that exhibits appropriate absorption saturation characteristics in a visible broadband such as a dye-added film, carbon nanotube, graphene, ZnO thin film, In 2 O 3 —SnO 2 thin film (ITO thin film), TiN thin film should be used. Can do. These materials can be used as a fiber type device by forming a film on the end face of the fiber with the aid of a member such as a ferrule.
 以下に、本発明を用いた具体的な実施例を開示する。 Hereinafter, specific examples using the present invention will be disclosed.
  本実施例は、図1に示す第1の実施の形態の例である。図1では、半導体発光素子4への電源や制御装置の表示を省略している。 This example is an example of the first embodiment shown in FIG. In FIG. 1, display of the power source and the control device to the semiconductor light emitting element 4 is omitted.
  本実施例で用いた半導体発光素子4はInGaNの多重量子井戸(MQW)活性層を発光層とする発光中心波長442nmのメサ構造のチップであり、GaN基板面はAlNヒートシンクに接合されている。活性層の厚みは0.8μmであり、発光幅は7μm、素子長は1mm、素子両端にそれぞれ長さ0.05mmの電流非注入のウィンドウ領域を備えている。 The semiconductor light emitting device 4 used in this example is a mesa structure chip having an emission center wavelength of 442 nm using an InGaN multiple quantum well (MQW) active layer as a light emitting layer, and the GaN substrate surface is bonded to an AlN heat sink. The active layer has a thickness of 0.8 μm, a light emission width of 7 μm, an element length of 1 mm, and a current non-injection window region of 0.05 mm in length at both ends of the element.
  この半導体発光素子4からの前方(図1では反射要素7へ向かう方向)放射は、発光中心波長442nmで反射率15%かつ、波長520nmで反射率0.5%の高透過となるダイクロイック光学膜を成膜した反射要素7で反射され、半導体発光素子4の活性層内で増幅されて後方(図1では反射要素6へ向かう方向)に放射される。後方に放射された波長442nmの光は、反射要素6で反射して折り曲げられ、反射要素9を透過して反射要素8に到達する。反射要素6、反射要素8は各々波長442nmで99%および99.5%の反射率を持つ高反射率のミラーである。反射要素9は、反射要素6で反射して折り曲げられた半導体発光素子4からの放射光の入射面に、波長442nmで反射率0.5%かつレーザ波長520nmで99.5%の高反射率となるダイクロイック光学膜が成膜され、入射面と反対側の面に、波長442nmで反射率が0.3%の反射防止膜が成膜されており、波長442nmにおいて透明なミラーである。さらに、反射要素6は、波長520nmでも99.5%の反射率を持つ高反射率の広帯域高反射ミラーである。反射要素7-半導体発光素子4-反射要素6-反射要素8で構成される半導体レーザ共振器1は、半導体レーザ共振器であり、反射要素7から発光媒質5側に波長442nmの励起光を放射する。 The radiant light emitted from the semiconductor light emitting element 4 (in the direction toward the reflecting element 7 in FIG. 1) has a high transmittance of 15% reflectance at the emission center wavelength of 442 nm and 0.5% reflectance at the wavelength of 520 nm. Is reflected in the active layer of the semiconductor light emitting element 4 and is emitted backward (in the direction toward the reflective element 6 in FIG. 1). The light having a wavelength of 442 nm emitted backward is reflected and bent by the reflecting element 6, passes through the reflecting element 9, and reaches the reflecting element 8. The reflective elements 6 and 8 are high-reflectivity mirrors having a reflectivity of 99% and 99.5%, respectively, at a wavelength of 442 nm. The reflecting element 9 has a high reflectance of 0.5% at a wavelength of 442 nm and 99.5% at a laser wavelength of 520 nm on the incident surface of the emitted light from the semiconductor light emitting element 4 reflected and bent by the reflecting element 6. A dichroic optical film is formed, and an antireflection film having a wavelength of 442 nm and a reflectance of 0.3% is formed on the surface opposite to the incident surface, and is a transparent mirror at a wavelength of 442 nm. Further, the reflecting element 6 is a high-reflectance broadband high-reflection mirror having a reflectance of 99.5% even at a wavelength of 520 nm. The semiconductor laser resonator 1 including the reflective element 7 -the semiconductor light emitting element 4 -the reflective element 6 -the reflective element 8 is a semiconductor laser resonator, and emits excitation light having a wavelength of 442 nm from the reflective element 7 toward the light emitting medium 5. To do.
  なお、半導体発光素子4の反射要素6側と7側の両端面には、波長400nmから700nmの範囲で反射率が0.3~1%となる反射防止膜が成膜されている。本実施例では反射要素7は平面鏡であり、ミラーの厚みは0.5mm、半導体発光素子4と反射要素7の間隔は約0.1mmであった。反射要素6は焦点距離4mmの放物面反射鏡で、反射要素7と反射要素9の表面で焦点を結ぶように調整し、反射要素7と反射要素6の距離は約6mm、反射要素9と反射要素6の距離は約12mmであった。反射要素9は厚み1mmの平面石英硝子基板を用いており、反射要素8は焦点距離4.5mmの球面鏡である。反射要素9表面と反射要素8の距離は約9.5mmであった。 Note that antireflection films having a reflectance of 0.3 to 1% in the wavelength range of 400 nm to 700 nm are formed on both end faces of the semiconductor light emitting element 4 on the reflecting element 6 side and the 7 side. In this embodiment, the reflecting element 7 is a plane mirror, the mirror thickness is 0.5 mm, and the distance between the semiconductor light emitting element 4 and the reflecting element 7 is about 0.1 mm. The reflecting element 6 is a parabolic reflector having a focal length of 4 mm, and is adjusted so as to focus on the surfaces of the reflecting element 7 and the reflecting element 9. The distance between the reflecting element 7 and the reflecting element 6 is about 6 mm. The distance of the reflective element 6 was about 12 mm. The reflective element 9 uses a flat quartz glass substrate having a thickness of 1 mm, and the reflective element 8 is a spherical mirror having a focal length of 4.5 mm. The distance between the surface of the reflective element 9 and the reflective element 8 was about 9.5 mm.
  発光媒質5には、Pr3+を1原子質量%添加した長さ4mm直径2mmのLiYF4ロッドを用意し、両端面に波長400nmから700nmの範囲で反射率が0.3~0.5%となる反射防止膜が成膜されている。図1では省略されているが、反射要素7と発光媒質5の間には、波長440nmと520nmで焦点距離がほぼ一致するように、NA=0.6、焦点距離2mm、設計波長500nmの集光用色消しレンズA1が反射要素7の表面から約2.5mmのところに挿入されていて、励起光を発光媒質5に集光照射するだけでなく、波長520nmのレーザ光が半導体発光素子4内の励起光とほぼ同じ光路を通るように調整されている。集光された励起光は発光媒質5で約90%吸収される。反射要素10と反射要素7の距離は約12.5mmであった。 For the luminescent medium 5, a LiYF 4 rod having a length of 4 mm and a diameter of 2 mm to which Pr 3+ is added at 1 atomic mass% is prepared, and the reflectance is 0.3 to 0.5% in the wavelength range of 400 nm to 700 nm on both end faces. An antireflection film is formed. Although omitted in FIG. 1, NA = 0.6, a focal length of 2 mm, and a design wavelength of 500 nm are collected between the reflective element 7 and the light emitting medium 5 so that the focal lengths are substantially the same at wavelengths of 440 nm and 520 nm. The achromatic lens for light A 1 is inserted about 2.5 mm from the surface of the reflecting element 7, and not only the excitation light is condensed and irradiated onto the light emitting medium 5, but also the laser light with a wavelength of 520 nm is emitted from the semiconductor light emitting element. 4 is adjusted so as to pass almost the same optical path as the excitation light in 4. The condensed excitation light is absorbed by the light emitting medium 5 by about 90%. The distance between the reflective element 10 and the reflective element 7 was about 12.5 mm.
  発光媒質5から反射要素10側に放射される波長520nmの蛍光は、焦点距離4mm、波長520nmの反射率が98%の部分反射放物面鏡である反射要素10で折り返され、反射要素9、反射要素6で反射されて半導体発光素子4内を透過し、反射要素7、集光用色消しレンズA1を経て発光媒質5に帰還する。この経路の反対向きの経路は、発光媒質5から反射要素7側に放射される蛍光に対して同様に機能して発光媒質5への帰還光学回路を形成する。これら発光媒質5の蛍光の反射要素10側および反射要素7側への放射に対する帰還光学系はリングレーザ共振器2を構成している。中心波長520nmのレーザ光が、部分反射鏡である反射要素10を透過して出力3される。レーザ光の出力3は、図1では1本で表現されているが、右回りと左回りのレーザ光2本が同時に出力される。 Fluorescence having a wavelength of 520 nm emitted from the light emitting medium 5 toward the reflecting element 10 is folded back by the reflecting element 10 that is a partially reflecting parabolic mirror having a focal length of 4 mm and a reflectance of 98% at a wavelength of 520 nm. The light is reflected by the reflecting element 6 and transmitted through the semiconductor light emitting element 4, and returns to the light emitting medium 5 through the reflecting element 7 and the condensing achromatic lens A 1 . The path opposite to this path functions in the same manner with respect to the fluorescence emitted from the light emitting medium 5 toward the reflecting element 7 to form a feedback optical circuit to the light emitting medium 5. The feedback optical system for the radiation of the light emitting medium 5 to the fluorescent reflecting element 10 side and the reflecting element 7 side constitutes a ring laser resonator 2. A laser beam having a center wavelength of 520 nm is transmitted through the reflecting element 10 which is a partial reflecting mirror and output 3. Although the laser beam output 3 is represented by one in FIG. 1, two clockwise and counterclockwise laser beams are output simultaneously.
  この構成では、共有ミラーである反射要素6の角度に注意する必要があるものの、半導体レーザ共振器1の出力が最大となるように反射要素6、反射要素8、反射要素7を調整した。このとき、半導体レーザ共振器1から放射される励起光パワーは最大で160mWであった。半導体レーザ共振器1を調整後、集光用色消しレンズA1の位置を調整して発光媒質5に励起光を集光照射し、集光用色消しレンズA1、発光媒質5、反射要素10を調整してリングレーザ共振器2を最適化することで、容易にレーザ発振が得られた。この時、レーザ発振開始までにリングレーザ共振器2の調整に要した時間は5分であった。また、この時のリングレーザ出力は合計10mWであった。 In this configuration, although it is necessary to pay attention to the angle of the reflecting element 6 that is a shared mirror, the reflecting element 6, the reflecting element 8, and the reflecting element 7 are adjusted so that the output of the semiconductor laser resonator 1 is maximized. At this time, the pumping light power radiated from the semiconductor laser resonator 1 was 160 mW at the maximum. After adjusting the semiconductor laser resonator 1 , the position of the condensing achromatic lens A 1 is adjusted to condense and irradiate the light emitting medium 5 with excitation light, and the condensing achromatic lens A 1 , the light emitting medium 5, and the reflective element By adjusting 10 and optimizing the ring laser resonator 2, laser oscillation was easily obtained. At this time, it took 5 minutes to adjust the ring laser resonator 2 until the laser oscillation was started. Further, the ring laser output at this time was 10 mW in total.
比較例1Comparative Example 1
  本例を、図11を用いて説明する。図11では、半導体発光素子1104を励起光源として用い、この励起光を吸収して励起光と異なる波長の光を放射する発光媒質1105を備え、励起光を発生する半導体光素子1104の光を増強するための共振器として、反射要素1121、反射要素1120からなる半導体レーザ共振器1101と、発光媒質1105からの発光を増強するための共振器として、反射要素1123、反射要素1124、反射要素1107からなる固体レーザ共振器1102とを備え、さらには、半導体レーザ共振器1101から放射される励起光を発光媒質1105に集光するための集光レンズ1122を備えている。本比較例で用いた半導体発光素子1104、発光材料1105は実施例1と同じものである。また、半導体発光素子1104への電源や制御装置の表示を省略している。 This example will be described with reference to FIG. In FIG. 11, the semiconductor light emitting device 1104 is used as an excitation light source, and a light emitting medium 1105 that absorbs the excitation light and emits light having a wavelength different from that of the excitation light is provided, and the light of the semiconductor optical device 1104 that generates the excitation light is enhanced. As a resonator for performing the above, a semiconductor laser resonator 1101 including a reflection element 1121 and a reflection element 1120 and a resonator for enhancing light emission from the light emitting medium 1105 are used as a reflection element 1123, a reflection element 1124, and a reflection element 1107. And a condensing lens 1122 for condensing the excitation light emitted from the semiconductor laser resonator 1101 on the light emitting medium 1105. The semiconductor light emitting device 1104 and the light emitting material 1105 used in this comparative example are the same as those in Example 1. Further, the display of the power supply and control device to the semiconductor light emitting element 1104 is omitted.
  半導体発光素子1104から反射要素1120側への放射は、発光中心波長442nmで反射率15%の光学反射膜が成膜されている厚さ0.5mmの平面反射鏡である反射要素1120で反射され、半導体発光素子1104の活性層内で増幅されて反射要素1121側に放射される。反射要素1121側への放射は、波長442nmにおいて焦点距離4mmの高反射率球面鏡である反射要素1121で折り返され、半導体レーザ共振器1101を構成する。反射要素1121と反射要素1120の距離は約9mm、半導体発光素子1104と反射要素1120の距離は約0.1mmであった。この半導体レーザ共振器1101内で増幅される光の一部が、発光媒質1105の励起光として反射要素1120から放射される。 The radiation from the semiconductor light emitting element 1104 to the reflecting element 1120 side is reflected by the reflecting element 1120 which is a 0.5 mm thick flat reflecting mirror on which an optical reflecting film having a light emission center wavelength of 442 nm and a reflectance of 15% is formed. Then, it is amplified in the active layer of the semiconductor light emitting device 1104 and emitted to the reflective element 1121 side. The radiation toward the reflecting element 1121 is folded back by the reflecting element 1121 which is a high-reflectance spherical mirror having a focal length of 4 mm at a wavelength of 442 nm, and forms a semiconductor laser resonator 1101. The distance between the reflective element 1121 and the reflective element 1120 was about 9 mm, and the distance between the semiconductor light emitting element 1104 and the reflective element 1120 was about 0.1 mm. A part of the light amplified in the semiconductor laser resonator 1101 is emitted from the reflection element 1120 as excitation light of the light emitting medium 1105.
  放射された励起光は、集光レンズ1122により、励起光波長で反射率0.5%、レーザ光波長520nmで反射率99.5%、焦点距離6.4mmの放物面鏡である反射要素1123を通して発光媒質1105に集光照射される。集光レンズ1122の焦点距離は1.8mm、反射要素1120からの距離は約2mm、集光レンズ1122と反射要素1123の距離は約1mmであった。 The emitted excitation light is reflected by a condensing lens 1122 and is a reflecting element that is a parabolic mirror having a reflectance of 0.5% at the excitation light wavelength, a reflectance of 99.5% at the laser light wavelength of 520 nm, and a focal length of 6.4 mm The light emitting medium 1105 is condensed and irradiated through 1123. The focal length of the condenser lens 1122 was 1.8 mm, the distance from the reflective element 1120 was about 2 mm, and the distance between the condenser lens 1122 and the reflective element 1123 was about 1 mm.
  発光媒質1105から反射要素1107側に放射された波長520nmの蛍光は、焦点距離4mm、波長520nmで反射率90%の部分反射放物面鏡である反射要素1107で折り返され、波長520nmで反射率99.5%の反射要素1124および反射要素1123で反射されて発光媒質1105に帰還する。 The fluorescence having a wavelength of 520 nm emitted from the light emitting medium 1105 to the reflection element 1107 side is folded by the reflection element 1107 which is a partially reflecting parabolic mirror having a focal length of 4 mm and a wavelength of 520 nm and a reflectance of 90%. The light is reflected by 99.5% of the reflective element 1124 and the reflective element 1123 and returned to the light emitting medium 1105.
  この経路の反対向きの経路は、発光媒質1105から反射要素1123側に放射される蛍光に対して同様に機能して発光媒質1105への帰還光学回路を形成する。これら発光媒質1105の蛍光の反射要素1107側および反射要素1123側への放射に対する帰還光学系はリングレーザ共振器(固体レーザ共振器1102)を構成している。 The path opposite to this path functions in the same manner with respect to the fluorescence emitted from the light emitting medium 1105 to the reflecting element 1123, and forms a feedback optical circuit to the light emitting medium 1105. The feedback optical system for the radiation of the light emitting medium 1105 to the fluorescent reflecting element 1107 side and the reflecting element 1123 side constitutes a ring laser resonator (solid laser resonator 1102).
  中心波長520nmのレーザ光が、部分反射鏡である反射要素1107を透過して出力1103される。レーザ光の出力1103は、図11では1本で表現されているが、右回りと左回りのレーザ光2本が同時に出力される。反射要素1123と反射要素1107の距離は約20mm、反射要素1123と反射要素1124および反射要素1107と反射要素1124の距離は約12mmであった。 A laser beam having a center wavelength of 520 nm is transmitted through the reflecting element 1107, which is a partial reflecting mirror, and output 1103. Although the laser beam output 1103 is expressed as one in FIG. 11, two clockwise and counterclockwise laser beams are output simultaneously. The distance between the reflecting element 1123 and the reflecting element 1107 was about 20 mm, and the distance between the reflecting element 1123 and the reflecting element 1124 and between the reflecting element 1107 and the reflecting element 1124 was about 12 mm.
  このような一般的なリングレーザ構成では、半導体レーザ共振器1101とリングレーザ共振器(固体レーザ共振器1102)の間に関連性がないことから、半導体レーザ共振器1101と固体レーザ共振器1102の相対距離、相対角度の設定に加え、固体レーザ共振器1102の全ての光学要素を試行錯誤的に調整しなければ最適な配置が得られず、大変面倒である。 In such a general ring laser configuration, since there is no relationship between the semiconductor laser resonator 1101 and the ring laser resonator (solid laser resonator 1102), the semiconductor laser resonator 1101 and the solid laser resonator 1102 In addition to setting the relative distance and the relative angle, an optimum arrangement cannot be obtained unless all the optical elements of the solid-state laser resonator 1102 are adjusted by trial and error, which is very troublesome.
  この実験配置では、半導体レーザ共振器1101からの最大放射パワーは180mWであった。半導体レーザ共振器1101を最適化後、固体レーザ共振器1102を調整してからレーザ発振開始に至るまでに要した時間は45分であった。また、この時のリングレーザ出力は合計4mWであった。 In this experimental arrangement, the maximum radiation power from the semiconductor laser resonator 1101 was 180 mW. After optimizing the semiconductor laser resonator 1101, the time required from the adjustment of the solid-state laser resonator 1102 to the start of laser oscillation was 45 minutes. Further, the ring laser output at this time was 4 mW in total.
  本実施例は、図2に示す第2の実施の形態の例である。図2では、半導体発光素子204への電源や制御装置の表示を省略している。 This example is an example of the second embodiment shown in FIG. In FIG. 2, display of the power source and the control device to the semiconductor light emitting element 204 is omitted.
  本実施例で用いた半導体発光素子204はInGaNの多重量子井戸(MQW)活性層を発光層とする発光中心波長440nmのメサ構造のチップであり、GaN基板面はAlNヒートシンクに接合されている。活性層の厚みは0.8μmであり、発光幅は7μm、素子長は1mm、素子両端にそれぞれ長さ0.05mmの電流非注入のウィンドウ領域を備えている。 The semiconductor light emitting device 204 used in this example is a mesa structure chip having an emission center wavelength of 440 nm using an InGaN multiple quantum well (MQW) active layer as a light emitting layer, and the GaN substrate surface is bonded to an AlN heat sink. The active layer has a thickness of 0.8 μm, a light emission width of 7 μm, an element length of 1 mm, and a current non-injection window region of 0.05 mm in length at both ends of the element.
  この半導体発光素子204からの前方(図2では反射要素207へ向かう方向)放射は、波長440nmで反射率15%かつ、波長520nmで反射率0.3%の高透過となるダイクロイック光学膜を成膜した反射要素207で反射され、半導体発光素子204の活性層内で増幅されて後方(図2では反射要素206へ向かう方向)に放射される。後方に放射された波長440nmの光は、広帯域高反射鏡である反射要素206で反射して折り返され、半導体発光素子204内で再び増幅される。反射要素207-半導体発光素子204-反射要素206で構成される光共振器は、半導体レーザ共振器201であり、反射要素207から発光媒質205側に波長440nmの励起光を放射する。 The forward radiation (in the direction toward the reflecting element 207 in FIG. 2) from the semiconductor light emitting element 204 forms a dichroic optical film having a high transmittance of 15% reflectance at a wavelength of 440 nm and 0.3% reflectance at a wavelength of 520 nm. The light is reflected by the coated reflective element 207, amplified in the active layer of the semiconductor light emitting element 204, and emitted backward (in the direction toward the reflective element 206 in FIG. 2). The light having a wavelength of 440 nm emitted backward is reflected and reflected by the reflecting element 206 which is a broadband high-reflecting mirror, and is amplified again in the semiconductor light emitting device 204. The optical resonator composed of the reflecting element 207, the semiconductor light emitting element 204, and the reflecting element 206 is the semiconductor laser resonator 201, and emits excitation light having a wavelength of 440 nm from the reflecting element 207 to the light emitting medium 205 side.
  なお、半導体発光素子204の反射要素206側と反射要素207側の両端面には、波長400nmから700nmの範囲で反射率が0.5~1%となる反射防止膜が成膜されている。本実施例では反射要素207は厚さ0.5mmの平面鏡であり、半導体発光素子204と反射要素207の間隔は約0.1mmであった。焦点距離3.5mm球面反射鏡である反射要素206は、半導体発光材料204の端面近傍で焦点を結ぶように調整された。反射要素207と反射要素206の距離は約8mmであった。 Note that antireflection films having a reflectance of 0.5 to 1% in the wavelength range of 400 nm to 700 nm are formed on both end surfaces of the semiconductor light emitting element 204 on the reflective element 206 side and the reflective element 207 side. In this embodiment, the reflecting element 207 is a plane mirror having a thickness of 0.5 mm, and the distance between the semiconductor light emitting element 204 and the reflecting element 207 is about 0.1 mm. The reflective element 206, which is a spherical reflector with a focal length of 3.5 mm, was adjusted so as to be focused near the end face of the semiconductor light emitting material 204. The distance between the reflective element 207 and the reflective element 206 was about 8 mm.
  発光媒質205には、Pr3+を1原子質量%添加した長さ4mm直径2mmのLiYF4ロッドを用意し、両端面に波長400nmから700nmの範囲で反射率が0.5~1%となる反射防止膜が成膜されている。図2では省略されているが、反射要素207と発光媒質205の間には、波長440nmと520nmで焦点距離がほぼ一致するように、NA=0.6、焦点距離2.8mm、設計波長500nmの集光用色消しレンズA2が反射要素207の表面から約4mmのところに挿入されていて、波長440nmの励起光を発光媒質205に集光照射するだけでなく、波長520nmのレーザ光が半導体発光素子204内の励起光とほぼ同じ光路を通るように調整されている。集光された励起光は発光媒質205で約90%吸収される。 As the luminescent medium 205, a LiYF 4 rod having a length of 4 mm and a diameter of 2 mm to which Pr 3+ is added at 1 atomic mass% is prepared, and the reflectance is 0.5 to 1% in a wavelength range of 400 nm to 700 nm on both end faces. An antireflection film is formed. Although omitted in FIG. 2, NA = 0.6, focal length 2.8 mm, and design wavelength 500 nm so that the focal lengths are substantially the same at wavelengths of 440 nm and 520 nm between the reflective element 207 and the light emitting medium 205. The condensing achromatic lens A 2 is inserted about 4 mm from the surface of the reflecting element 207, and not only the excitation light having a wavelength of 440 nm is condensed and irradiated onto the light emitting medium 205, but also the laser light having a wavelength of 520 nm is emitted. It is adjusted so as to pass almost the same optical path as the excitation light in the semiconductor light emitting device 204. The condensed excitation light is absorbed by the light emitting medium 205 by about 90%.
  発光媒質205から反射要素210に放射された波長520nmの蛍光は、波長520nmの反射率が95%の部分反射平面鏡である反射要素210で折り返され、発光媒質205内で増幅される。反射要素210と発光媒質205の距離は約0.1mm、集光用色消しレンズA2と反射要素207の距離は約9.5mmであった。反射要素206-反射要素207-集光レンズA2―発光媒質205―反射要素210はファブリペロー型の固体レーザ共振器202を構成している。中心波長520nmのレーザ光が、部分反射鏡である反射要素210を透過して出力203される。 The fluorescence having a wavelength of 520 nm emitted from the light emitting medium 205 to the reflecting element 210 is folded by the reflecting element 210 which is a partially reflecting flat mirror having a reflectance of 95% at a wavelength of 520 nm, and is amplified in the light emitting medium 205. The distance between the reflective element 210 and the light emitting medium 205 was about 0.1 mm, and the distance between the condensing achromatic lens A 2 and the reflective element 207 was about 9.5 mm. The reflecting element 206, the reflecting element 207, the condenser lens A 2, the light emitting medium 205, and the reflecting element 210 constitute a Fabry-Perot type solid-state laser resonator 202. A laser beam having a center wavelength of 520 nm is transmitted through the reflecting element 210, which is a partial reflecting mirror, and output 203.
  この構成では、まず半導体レーザ共振器201の出力が最大となるように反射要素206および反射要素207を調整した。このとき、半導体レーザ共振器201から放射される励起光パワーは最大で220mWであった。半導体レーザ共振器201を調整後、集光用色消しレンズA2の位置を調整して発光媒質205に励起光を集光照射し、集光用色消しレンズA2、発光媒質205、反射要素210を調整して固体レーザ共振器202を最適化することで、容易にレーザ発振が得られた。この時、レーザ発振開始までに固体レーザ共振器202の調整に要した時間はわずか3分であった。また、この時の固体レーザ出力は17mWであった。 In this configuration, the reflecting element 206 and the reflecting element 207 were first adjusted so that the output of the semiconductor laser resonator 201 was maximized. At this time, the pumping light power radiated from the semiconductor laser resonator 201 was 220 mW at the maximum. After adjusting the semiconductor laser resonator 201, the position of the condensing achromatic lens A 2 is adjusted to condense and irradiate the light emitting medium 205 with excitation light, and the condensing achromatic lens A 2 , the light emitting medium 205, and the reflective element By adjusting 210 and optimizing the solid-state laser resonator 202, laser oscillation was easily obtained. At this time, the time required for adjusting the solid-state laser resonator 202 until the laser oscillation was started was only 3 minutes. Moreover, the solid-state laser output at this time was 17 mW.
比較例2Comparative Example 2
  本例を、図12を用いて説明する。図12では、半導体発光素子1204への電源や制御装置の表示を省略している。 This example will be described with reference to FIG. In FIG. 12, the display of the power source and the control device to the semiconductor light emitting element 1204 is omitted.
  本比較例で用いた半導体発光素子1204、発光媒質1205は実施例2と同じものである。 The semiconductor light emitting device 1204 and the light emitting medium 1205 used in this comparative example are the same as those in Example 2.
  半導体発光素子1204から反射要素1220側への放射は、波長440nmで反射率15%の光学反射膜を成膜した反射要素1220で反射され、半導体発光素子1204の活性層内で増幅されて反射要素1221側へ放射される。反射要素1221側に放射された波長440nmの光は、反射要素1221で折り返され、半導体レーザ共振器1201を構成する。この半導体レーザ共振器1201は、反射要素1220から波長440nmの励起光を放射する。 The radiation from the semiconductor light emitting element 1204 toward the reflective element 1220 is reflected by the reflective element 1220 having an optical reflective film having a wavelength of 440 nm and a reflectivity of 15%, and is amplified in the active layer of the semiconductor light emitting element 1204 to be reflected. Radiated to the 1221 side. The light having a wavelength of 440 nm emitted to the reflection element 1221 side is folded back by the reflection element 1221 to constitute the semiconductor laser resonator 1201. The semiconductor laser resonator 1201 emits excitation light having a wavelength of 440 nm from the reflective element 1220.
  本比較例では、反射要素1220は厚さ0.5mmの平面鏡であり、半導体発光素子1204と反射要素1220の間隔は約0.1mmであった。焦点距離3.5mm球面反射鏡である反射要素1221は、半導体発光材料1204の端面近傍で焦点を結ぶように調整された。反射要素1221と反射要素1220の距離は約8mmである。 In this comparative example, the reflective element 1220 was a plane mirror having a thickness of 0.5 mm, and the distance between the semiconductor light emitting element 1204 and the reflective element 1220 was about 0.1 mm. The reflective element 1221 which is a spherical reflector having a focal length of 3.5 mm was adjusted so as to be focused near the end face of the semiconductor light emitting material 1204. The distance between the reflective element 1221 and the reflective element 1220 is about 8 mm.
  放射される励起光は、集光レンズ1222により、波長440nmで反射率が0.5%かつ波長520nmで反射率が99%である焦点距離5mmの球面反射鏡の反射要素1223を通して発光媒質1205に集光照射される。 The emitted excitation light is transmitted to the luminescent medium 1205 by the condenser lens 1222 through the reflective element 1223 of a spherical reflector having a focal length of 5 mm, which has a reflectance of 0.5% at a wavelength of 440 nm and a reflectance of 99% at a wavelength of 520 nm. Focused irradiation.
  焦点距離は1.8mmである集光レンズ1222と、反射要素1220の距離は約2.2mmであった。集光レンズ1222と反射要素1223の距離は約1mm、反射要素1223と反射要素1207の距離は約11mmであった。 The distance between the condenser lens 1222 having a focal length of 1.8 mm and the reflecting element 1220 was about 2.2 mm. The distance between the condenser lens 1222 and the reflective element 1223 was about 1 mm, and the distance between the reflective element 1223 and the reflective element 1207 was about 11 mm.
  発光媒質1205から反射要素1207側に放射された波長520nmの蛍光は、波長520nmの反射率が90%の部分反射平面鏡である反射要素1207で折り返され、波長520nmを99%反射する反射要素1223で反射されて発光媒質1205に帰還する。反射要素1223-発光媒質1205-反射要素1207はファブリペロー型の固体レーザ共振器1202を構成している。中心波長520nmのレーザ光が、部分反射鏡である反射要素1207を透過して出力1203される。 Fluorescence having a wavelength of 520 nm emitted from the light emitting medium 1205 to the reflecting element 1207 side is folded back by a reflecting element 1207 which is a partially reflecting flat mirror having a reflectance of 90% at a wavelength of 520 nm, and reflected by a reflecting element 1223 that reflects 99% at a wavelength of 520 nm. The light is reflected and returned to the light emitting medium 1205. The reflecting element 1223-the light emitting medium 1205 and the reflecting element 1207 constitute a Fabry-Perot type solid state laser resonator 1202. A laser beam having a center wavelength of 520 nm is transmitted through a reflecting element 1207 that is a partial reflecting mirror and output 1203.
  このような一般的なファブリペロー型のレーザ構成では、半導体レーザ共振器1201と固体レーザ共振器1202の間に関連性がないことから、半導体レーザ共振器1201と固体レーザ共振器1202の相対距離、相対角度の設定に加え、固体レーザ共振器1202の全ての光学要素を試行錯誤的に調整しなければ最適な配置が得られず、大変面倒である。 In such a general Fabry-Perot type laser configuration, since there is no relationship between the semiconductor laser resonator 1201 and the solid-state laser resonator 1202, the relative distance between the semiconductor laser resonator 1201 and the solid-state laser resonator 1202, In addition to setting the relative angle, an optimal arrangement cannot be obtained unless all the optical elements of the solid-state laser resonator 1202 are adjusted by trial and error, which is very troublesome.
  この実験配置では、半導体レーザ共振器1201からの最大放射パワーは220mWであった。半導体レーザ共振器1201を最適化後、固体レーザ共振器1202を調整してからレーザ発振開始に至るまでに要した時間は15分であった。また、この時の固体レーザ出力は12mWであった。 In this experimental arrangement, the maximum radiation power from the semiconductor laser resonator 1201 was 220 mW. After optimizing the semiconductor laser resonator 1201, the time required from the adjustment of the solid-state laser resonator 1202 to the start of laser oscillation was 15 minutes. Moreover, the solid-state laser output at this time was 12 mW.
  本実施例は、図3に示す第3の実施の形態の例である。図3では、半導体発光素子304への電源や制御装置の表示を省略している。 This example is an example of the third embodiment shown in FIG. In FIG. 3, display of the power source and the control device to the semiconductor light emitting element 304 is omitted.
  本実施例で用いた半導体発光素子304はInGaNの多重量子井戸(MQW)活性層を発光層とする発光中心波長445nmのメサ構造のチップであり、GaN基板面はAlNヒートシンクに接合されている。活性層の厚みは0.8μmであり、発光幅は7μm、素子長は1mm、素子両端にそれぞれ長さ0.05mmの電流非注入のウィンドウ領域を備えている。 The semiconductor light emitting device 304 used in this example is a mesa structure chip having an emission center wavelength of 445 nm using an InGaN multiple quantum well (MQW) active layer as a light emitting layer, and the GaN substrate surface is bonded to an AlN heat sink. The active layer has a thickness of 0.8 μm, a light emission width of 7 μm, an element length of 1 mm, and a current non-injection window region of 0.05 mm in length at both ends of the element.
  この半導体発光素子304から反射要素313への放射は、波長445nmで反射率15%かつ、波長521nmで反射率0.5%の高透過となるダイクロイック光学膜を成膜した凸メニスカスレンズ形状の反射要素313の凹面で反射され、半導体発光素子304の活性層内で増幅されて反射要素306へ放射される。反射要素306へ放射された波長445nmの光は、広帯域高反射ミラーである反射要素306で反射して折り返され、半導体発光素子304内で再び増幅される。反射要素313-半導体発光素子304-反射要素306で構成される光共振器は、半導体レーザ共振器301であり、反射要素313から発光媒質305側に波長445nmの励起光を放射する。 The radiation from the semiconductor light emitting element 304 to the reflecting element 313 is reflected in the shape of a convex meniscus lens formed with a dichroic optical film having a high transmittance of 15% reflectance at a wavelength of 445 nm and 0.5% reflectance at a wavelength of 521 nm. The light is reflected from the concave surface of the element 313, amplified in the active layer of the semiconductor light emitting element 304, and emitted to the reflective element 306. The light having a wavelength of 445 nm emitted to the reflecting element 306 is reflected by the reflecting element 306, which is a broadband high-reflecting mirror, folded back, and amplified again in the semiconductor light emitting element 304. The optical resonator composed of the reflective element 313 -the semiconductor light emitting element 304 and the reflective element 306 is the semiconductor laser resonator 301, and emits excitation light having a wavelength of 445 nm from the reflective element 313 to the light emitting medium 305 side.
  なお、半導体発光素子304の反射要素306側と反射要素313側の両端面には、波長400nmから700nmの範囲で反射率が0.5~1%となる反射防止膜が成膜されている。本実施例では反射要素313の凹面は焦点距離2.5mmの球面鏡であり、半導体発光素子304と反射要素313の間隔は約5mmであった。焦点距離2.5mm球面反射鏡である反射要素306は、半導体発光材料304の端面近傍で焦点を結ぶように調整された。反射要素313と反射要素306の距離は約11mmである。 Note that antireflection films having a reflectance of 0.5 to 1% in the wavelength range of 400 nm to 700 nm are formed on both end surfaces of the semiconductor light emitting element 304 on the reflective element 306 side and the reflective element 313 side. In this embodiment, the concave surface of the reflective element 313 is a spherical mirror having a focal length of 2.5 mm, and the distance between the semiconductor light emitting element 304 and the reflective element 313 is about 5 mm. The reflective element 306, which is a spherical reflector with a focal length of 2.5 mm, was adjusted so as to be focused near the end face of the semiconductor light emitting material 304. The distance between the reflective element 313 and the reflective element 306 is about 11 mm.
  反射要素313は凸メニスカスレンズ形状であって、凸面側は波長521nmおよび波長445nmで共に反射率が約0.5%となる反射防止膜が成膜されている。半導体レーザ共振器301から放射される励起光は、この反射要素313でファイバ形態の発光媒質305の励起側端面315に集光され、発光媒質305のコアに結合される。逆に、発光媒質305の励起側端面315から放射される波長521nmのレーザ光は、反射要素313によって半導体発光素子304の活性層に該略結合される。発光媒質305の励起側端面315はレーザ光波長である波長521nmおよび励起光波長である波長445nmでは反射率0.3~0.5%となる反射防止膜が成膜されている。 The reflection element 313 has a convex meniscus lens shape, and an antireflection film having a reflectance of about 0.5% is formed on the convex surface side at both a wavelength of 521 nm and a wavelength of 445 nm. The excitation light radiated from the semiconductor laser resonator 301 is condensed on the excitation side end face 315 of the light emitting medium 305 in the form of a fiber by the reflecting element 313 and coupled to the core of the light emitting medium 305. Conversely, laser light having a wavelength of 521 nm emitted from the excitation side end face 315 of the light emitting medium 305 is substantially coupled to the active layer of the semiconductor light emitting element 304 by the reflecting element 313. An antireflection film having a reflectivity of 0.3 to 0.5% is formed on the excitation-side end surface 315 of the light emitting medium 305 at a wavelength of 521 nm which is a laser light wavelength and a wavelength of 445 nm which is an excitation light wavelength.
  発光媒質305には、コアにPr3+を3,000質量ppm添加した長さ10cm、コア直径4μm、開口数0.22のフッ化物ファイバを用いた。このファイバのコア組成はmol%で53ZrF4-22BaF2-4.5LnF3-3.5AlF3-17NaF(LnF3=LaF3+YF3+PrF3)である。集光された励起光は発光媒質305で約90%吸収される。 The emission medium 305, was used length 10cm and the Pr 3+ added 3000 ppm by weight in the core, the core diameter 4 [mu] m, the fluoride fiber having a numerical aperture of 0.22. The core composition of this fiber is 53ZrF 4 −22BaF 2 −4.5LnF 3 −3.5AlF 3 −17NaF (LnF 3 = LaF 3 + YF 3 + PrF 3 ) in mol%. The condensed excitation light is absorbed by the light emitting medium 305 by about 90%.
  発光媒質305から励起側端面315と反対側の端面から放射される波長521nmの蛍光は、もう一方のファイバ端に成膜された、波長521nmで85%の反射率を持つ反射要素314で折り返され、発光媒質内で増幅される。反射要素306-反射要素313-発光媒質305―反射要素314はファブリペロー型の固体レーザ共振器302を構成している。中心波長521nmのレーザ光が、部分反射鏡である反射要素314から出力303される。 Fluorescence having a wavelength of 521 nm emitted from the end surface opposite to the excitation-side end surface 315 from the light emitting medium 305 is folded back by a reflecting element 314 having a reflectivity of 85% at a wavelength of 521 nm formed on the other fiber end. Amplified in the luminescent medium. The reflective element 306, the reflective element 313, the light emitting medium 305, and the reflective element 314 constitute a Fabry-Perot solid laser resonator 302. Laser light having a center wavelength of 521 nm is output 303 from the reflection element 314 which is a partial reflection mirror.
  この構成では、まず半導体レーザ共振器301の出力が最大となるように反射要素306および反射要素313を調整した。このとき、半導体レーザ共振器301から放射される励起光パワーは最大で200mWであった。半導体レーザ共振器301を調整後、発光媒質305の励起側端面315の位置を調整して発光媒質305に励起光を集光照射するだけで、容易にレーザ発振が得られた。この時、レーザ発振開始までに固体レーザ共振器302の調整に要した時間はわずか2分、最大出力は29mWであった。また、最大出力波長を中心波長とし、その出力の1/2となる波長幅でレーザ線幅を規定すると、4nmであった。 In this configuration, the reflecting element 306 and the reflecting element 313 were first adjusted so that the output of the semiconductor laser resonator 301 was maximized. At this time, the pumping light power radiated from the semiconductor laser resonator 301 was 200 mW at the maximum. After adjusting the semiconductor laser resonator 301, laser oscillation was easily obtained by adjusting the position of the excitation side end face 315 of the light emitting medium 305 and condensing and irradiating the light emitting medium 305 with excitation light. At this time, the time required for adjustment of the solid-state laser resonator 302 until the start of laser oscillation was only 2 minutes, and the maximum output was 29 mW. Further, when the maximum output wavelength is the center wavelength and the laser line width is defined by a wavelength width that is ½ of the output, it is 4 nm.
  本実施例は、図4に示す第4の実施の形態の例である。図4では、半導体発光素子404への電源や制御装置の表示を省略している。 This example is an example of the fourth embodiment shown in FIG. In FIG. 4, display of the power source and the control device to the semiconductor light emitting element 404 is omitted.
  本実施例で用いた半導体発光素子404はInGaNの多重量子井戸(MQW)活性層を発光層とする発光中心波長442nmのメサ構造のチップであり、GaN基板面はAlNヒートシンクに接合されている。活性層の厚みは0.8μmであり、発光幅は7μm、素子長は1mm、素子両端にそれぞれ長さ0.05mmの電流非注入のウィンドウ領域を備えている。 The semiconductor light emitting element 404 used in this example is a mesa structure chip having an emission center wavelength of 442 nm using an InGaN multiple quantum well (MQW) active layer as a light emitting layer, and the GaN substrate surface is bonded to an AlN heat sink. The active layer has a thickness of 0.8 μm, a light emission width of 7 μm, an element length of 1 mm, and a current non-injection window region of 0.05 mm in length at both ends of the element.
  この半導体発光素子404からファイバ形態の発光媒質405の方への放射は、波長442nmで反射率15%かつ、波長520nmで反射率0.5%の高透過となる、半導体発光素子に直接成膜されたダイクロイック光学膜である反射要素413で反射され、半導体発光素子404の活性層内で増幅されて反射要素406側に放射される。反射要素406側に放射された波長442nmの光は、焦点距離2.5mmの広帯域高反射球面ミラーである反射要素406で反射して折り返され、半導体発光素子404内で再び増幅される。反射要素406と半導体発光素子404の距離は約5mmであった。反射要素413-半導体発光素子404-反射要素406で構成される光共振器は、半導体レーザ共振器401であり、反射要素413から発光媒質405側に波長442nmの励起光を放射する。 The radiation from the semiconductor light emitting element 404 toward the fiber-shaped light emitting medium 405 is directly formed on the semiconductor light emitting element having a high transmittance of 15% reflectance at a wavelength of 442 nm and 0.5% reflectance at a wavelength of 520 nm. The dichroic optical film is reflected by the reflecting element 413, amplified in the active layer of the semiconductor light emitting element 404, and emitted to the reflecting element 406 side. The light having a wavelength of 442 nm emitted toward the reflective element 406 is reflected by the reflective element 406, which is a broadband high-reflection spherical mirror having a focal length of 2.5 mm, and is amplified again in the semiconductor light emitting element 404. The distance between the reflective element 406 and the semiconductor light emitting element 404 was about 5 mm. The optical resonator composed of the reflective element 413 -the semiconductor light emitting element 404 -the reflective element 406 is the semiconductor laser resonator 401, and emits excitation light having a wavelength of 442 nm from the reflective element 413 to the light emitting medium 405 side.
  なお、反射要素406側の半導体発光素子404の端面には、波長400nmから700nmの波長範囲で反射率が0.5~1%となる反射防止膜が成膜されている。 Note that an antireflection film having a reflectance of 0.5 to 1% in the wavelength range of 400 nm to 700 nm is formed on the end face of the semiconductor light emitting element 404 on the reflective element 406 side.
  発光媒質405は、曲率半径3μmのシリンドリカルレンズ形状のレンズドファイバ416を一端に備え、対向する一端には波長520nmで50%の反射率を持つ反射要素414を備えている。半導体レーザ共振器401から放射される励起光は、励起光放射領域に近接して設置されたレンズドファイバ416によって、縦方向の発散角を補正して発光媒質405に入射され、ファイバのコアに結合される。逆に、レンズドファイバ416から放射される波長520nmのレーザ光は、半導体発光素子404の活性層に該略結合される。 The light-emitting medium 405 includes a cylindrical lens-shaped lensed fiber 416 having a curvature radius of 3 μm at one end, and a reflecting element 414 having a reflectance of 50% at a wavelength of 520 nm at one end. The pumping light emitted from the semiconductor laser resonator 401 is incident on the light emitting medium 405 by correcting the divergence angle in the vertical direction by the lensed fiber 416 installed in the vicinity of the pumping light emitting region, and enters the core of the fiber. Combined. Conversely, laser light having a wavelength of 520 nm emitted from the lensed fiber 416 is substantially coupled to the active layer of the semiconductor light emitting element 404.
  レンズドファイバ416の表面は、波長442nmと波長520nmの色収差による焦点位置変動を抑制するために、CaF2による分散補償膜が成膜され、さらにレーザ光波長である波長520nmと励起光波長である波長442nmで共に反射率が約0.5%となる反射防止膜が成膜されている。 The surface of the lensed fiber 416 is formed with a dispersion compensation film made of CaF 2 in order to suppress focal position fluctuations due to chromatic aberration at wavelengths of 442 nm and 520 nm, and further has a laser light wavelength of 520 nm and an excitation light wavelength. An antireflection film having a reflectance of about 0.5% at a wavelength of 442 nm is formed.
  発光媒質405には、コアにPr3+を3,000質量ppm添加した長さ20cm、コア直径4μm、開口数0.22のフッ化物ファイバを用いた。このファイバのコア組成はmol%で30AlF3-10ZrF4-11BaF2-13SrF2-20CaF2-3MgF2-4NaF-9LnF3(LnF3=YF3+PrF3)である。集光された励起光は発光媒質405で約95%吸収される。 The emission medium 405, was used length 20cm and the Pr 3+ added 3000 ppm by weight in the core, the core diameter 4 [mu] m, the fluoride fiber having a numerical aperture of 0.22. The core composition of this fiber is 30AlF 3 -10ZrF 4 -11BaF 2 -13SrF 2 -20CaF 2 -3MgF 2 -4NaF-9LnF 3 (LnF 3 = YF 3 + PrF 3 ) in mol%. The condensed excitation light is absorbed by the light emitting medium 405 by about 95%.
  発光媒質405から反射要素414の方に放射される波長520nmの蛍光は、成膜された50%の反射率を持つ反射要素414で折り返され、発光媒質405内で増幅される。反射要素406-反射要素413-レンズドファイバ416-発光媒質405―反射要素414はファブリペロー型の固体レーザ共振器402を構成している。中心波長520nmのレーザ光が、部分反射鏡である反射要素414から出力403される。 Fluorescence having a wavelength of 520 nm emitted from the light emitting medium 405 toward the reflecting element 414 is folded by the formed reflecting element 414 having a reflectivity of 50% and amplified in the light emitting medium 405. The reflective element 406, the reflective element 413, the lensed fiber 416, the light emitting medium 405, and the reflective element 414 constitute a Fabry-Perot type solid-state laser resonator 402. A laser beam having a center wavelength of 520 nm is output 403 from a reflection element 414 that is a partial reflection mirror.
  この構成では、まず半導体レーザ共振器401の出力が最大となるように反射要素406を調整した。このとき、半導体レーザ共振器401から放射される励起光パワーは最大で250mWであった。半導体レーザ共振器401を調整後、発光媒質405に励起光を集光照射しながらレーザ光の出力403を計測し、レンズドファイバ416の位置、角度、半導体発光素子との距離を調整すると、容易にレーザ発振が得られるだけでなく、容易にパワーの最適化が可能であった。この時、レーザ発振開始までに固体レーザ共振器402の調整に要した時間はわずか1分、パワー最適化は3分で達成し、最大出力34mWが得られた。また、最大出力波長を中心波長とし、その出力の1/2となる波長幅でレーザ線幅を規定すると、4nmであった。 In this configuration, first, the reflection element 406 was adjusted so that the output of the semiconductor laser resonator 401 was maximized. At this time, the power of pumping light emitted from the semiconductor laser resonator 401 was 250 mW at the maximum. After adjusting the semiconductor laser resonator 401, it is easy to measure the output 403 of the laser light while condensing and irradiating the light emitting medium 405 with excitation light, and adjusting the position, angle, and distance from the semiconductor light emitting element of the lensed fiber 416. In addition to laser oscillation, the power can be easily optimized. At this time, the time required for adjusting the solid-state laser resonator 402 until the start of laser oscillation was only 1 minute, and power optimization was achieved in 3 minutes, and a maximum output of 34 mW was obtained. Further, when the maximum output wavelength is the center wavelength and the laser line width is defined by a wavelength width that is ½ of the output, it is 4 nm.
  本実施例は、図5に示す第5の実施の形態の例のである。図5では、半導体発光素子504への電源や制御装置の表示を省略している。 This example is an example of the fifth embodiment shown in FIG. In FIG. 5, display of the power source and the control device to the semiconductor light emitting element 504 is omitted.
  本実施例で用いた半導体レーザ共振器501は、実施例3と同じものである。また、発光媒質505も実施例3と同等のパラメータを持つファイバを使用した。 The semiconductor laser resonator 501 used in the present example is the same as that in the third example. The light emitting medium 505 is also a fiber having the same parameters as in Example 3.
  半導体レーザ共振器501から放射される波長445nmの励起光は、反射要素513でファイバ形態の発光媒質505の励起側端面515に集光され、発光媒質505のコアに結合される。逆に、該励起側端面515から放射される波長521nmのレーザ光は、反射要素513によって半導体発光素子504の活性層に該略結合される。該励起側端面515はレーザ光波長である波長521nmおよび励起光波長である波長445nmで反射率が共に約0.5%となる反射防止膜が成膜されている。 The excitation light having a wavelength of 445 nm emitted from the semiconductor laser resonator 501 is condensed on the excitation side end surface 515 of the light emitting medium 505 in the form of a fiber by the reflecting element 513 and coupled to the core of the light emitting medium 505. Conversely, laser light having a wavelength of 521 nm emitted from the excitation side end face 515 is substantially coupled to the active layer of the semiconductor light emitting element 504 by the reflecting element 513. The excitation side end face 515 is formed with an antireflection film having a reflectance of about 0.5% at a wavelength of 521 nm which is a laser light wavelength and a wavelength of 445 nm which is an excitation light wavelength.
  発光媒質505は、該励起側端面515と反対側の短面に、波長521nmで40%の反射率である反射要素514を介して石英ファイバである出力ファイバ517が融着接続されている。発光媒質505から反射要素514方向に放射される波長521nmの蛍光は、反射要素514で折り返され、発光媒質505内で増幅される。反射要素506-反射要素513-発光媒質505―反射要素514はファブリペロー型の固体レーザ共振器502を構成している。 In the light emitting medium 505, an output fiber 517, which is a quartz fiber, is fusion-spliced to a short surface opposite to the excitation side end face 515 via a reflection element 514 having a reflectance of 40% at a wavelength of 521 nm. Fluorescence having a wavelength of 521 nm emitted from the light emitting medium 505 in the direction of the reflecting element 514 is folded by the reflecting element 514 and amplified in the light emitting medium 505. The reflecting element 506 -the reflecting element 513 -the light emitting medium 505 -the reflecting element 514 constitutes a Fabry-Perot type solid state laser resonator 502.
  反射要素514は、NA=0.2、コア直径4μmの石英ファイバからなる出力ファイバ517の端面に成膜された後、発光媒質505と融着接続されている。反射要素514から出力される波長521nmのレーザ光は、出力ファイバ517を通り、反対側の端面から出力503される。 The reflection element 514 is formed on the end face of the output fiber 517 made of a quartz fiber having NA = 0.2 and a core diameter of 4 μm, and then fused and connected to the light emitting medium 505. The laser beam having a wavelength of 521 nm output from the reflecting element 514 passes through the output fiber 517 and is output 503 from the end face on the opposite side.
  この構成では、まず半導体レーザ共振器501の出力が最大となるように反射要素506および反射要素513を調整した。このとき、半導体レーザ共振器501からの放射励起光パワーは最大で200mWであった。半導体レーザ共振器501を調整後、該励起側端面515の位置を調整して発光媒質505に励起光を集光照射するだけで、容易にレーザ発振が得られる。この時、レーザ発振開始までに固体レーザ共振器502の調整に要した時間はわずか2分、最大出力は20mWであった。 In this configuration, first, the reflective element 506 and the reflective element 513 were adjusted so that the output of the semiconductor laser resonator 501 was maximized. At this time, the radiation pumping light power from the semiconductor laser resonator 501 was 200 mW at the maximum. After adjusting the semiconductor laser resonator 501, laser oscillation can be easily obtained simply by adjusting the position of the excitation side end face 515 and condensing and irradiating the light emitting medium 505 with excitation light. At this time, the time required for adjustment of the solid state laser resonator 502 until the start of laser oscillation was only 2 minutes, and the maximum output was 20 mW.
  本実施例は、図6に示す第6の実施の形態の例である。図6では、半導体発光素子604への電源や制御装置の表示を省略している。 This example is an example of the sixth embodiment shown in FIG. In FIG. 6, the display of the power source and the control device to the semiconductor light emitting element 604 is omitted.
  本実施例で用いた半導体発光素子604は、実施例4と同じものである。また、発光媒質605も実施例4と同等のパラメータを持つファイバを使用した。 The semiconductor light emitting device 604 used in this example is the same as that in Example 4. The light emitting medium 605 was also a fiber having the same parameters as in Example 4.
  この半導体発光素子604からの入力ファイバ618側への放射は、波長442nmで反射率15%かつ、波長520nmで反射率0.3%の高透過となる、半導体発光素子に直接成膜されたダイクロイック光学膜である反射要素613で反射され、半導体発光素子604の活性層内で増幅されて反射要素606側の方に放射される。反射要素606側に放射された波長442nmの光は、焦点距離2.5mmの広帯域高反射球面ミラーである反射要素606で反射して折り返され、半導体発光素子604内で再び増幅される。反射要素613-半導体発光素子604-反射要素606で構成される半導体レーザ共振器601は、反射要素613から前方に波長442nmの励起光を放射する。 The radiation from the semiconductor light emitting element 604 toward the input fiber 618 is a dichroic film formed directly on the semiconductor light emitting element that has a high transmittance of 15% reflectance at a wavelength of 442 nm and 0.3% reflectance at a wavelength of 520 nm. The light is reflected by the reflective element 613 that is an optical film, amplified in the active layer of the semiconductor light emitting element 604, and emitted toward the reflective element 606 side. Light having a wavelength of 442 nm emitted toward the reflective element 606 is reflected by the reflective element 606, which is a broadband high-reflection spherical mirror having a focal length of 2.5 mm, and is amplified again in the semiconductor light emitting device 604. The semiconductor laser resonator 601 including the reflective element 613 -the semiconductor light emitting element 604 -the reflective element 606 emits excitation light having a wavelength of 442 nm forward from the reflective element 613.
  なお、半導体発光素子604の反射要素606側の端面には、波長400nmから700nmの範囲で反射率が約0.5%となる反射防止膜が成膜されている。 Note that an antireflection film having a reflectance of about 0.5% in the wavelength range of 400 nm to 700 nm is formed on the end face of the semiconductor light emitting element 604 on the reflective element 606 side.
  発光媒質605は、曲率半径3μm(縦方向補正)と曲率半径7μm(横方向補正)の複合シリンドリカルレンズ形状のレンズドファイバ616を備えた石英ファイバである入力ファイバ618と、融着点619で融着接続されている。入力ファイバ618に用いた石英ファイバのパラメータは、NA=0.2、コア直径4μmである。 The light emitting medium 605 is fused with an input fiber 618 which is a quartz fiber having a lens fiber 616 having a compound cylindrical lens shape having a curvature radius of 3 μm (longitudinal correction) and a curvature radius of 7 μm (lateral correction), and a fusion point 619. Incoming connection. The parameters of the quartz fiber used for the input fiber 618 are NA = 0.2 and a core diameter of 4 μm.
  レンズドファイバ616の表面は、波長442nmと波長520nmの色収差による焦点位置変動を抑制するために、CaF2とBaF2による分散補償膜が成膜され、さらにレーザ光波長である波長520nmと励起光波長である波長442nmで共に反射率が0.5~1%の範囲内となる反射防止膜が成膜されている。 The surface of the lensed fiber 616 is formed with a dispersion compensation film made of CaF 2 and BaF 2 in order to suppress focal position fluctuations due to chromatic aberration at wavelengths of 442 nm and 520 nm, and further, a laser beam wavelength of 520 nm and excitation light. An antireflection film having a reflectance in the range of 0.5 to 1% at a wavelength of 442 nm is formed.
  半導体レーザ共振器601から放射される励起光は、励起光放射領域に近接して設置されたレンズドファイバ616で発散角を補正して発光媒質605に入射され、ファイバのコアに結合される。逆に、レンズドファイバ616から放射される波長520nmのレーザ光は、半導体発光素子604の活性層に該略結合される。 The pumping light emitted from the semiconductor laser resonator 601 is incident on the light emitting medium 605 with the divergence angle corrected by the lensed fiber 616 installed in the vicinity of the pumping light emission region, and is coupled to the core of the fiber. Conversely, laser light having a wavelength of 520 nm emitted from the lensed fiber 616 is substantially coupled to the active layer of the semiconductor light emitting device 604.
  発光媒質605から入力ファイバ618側に放射される波長520nmの蛍光は、出力603側のファイバ端に成膜された、波長520nmで50%の反射率を持つ反射要素614で折り返され、発光媒質605内で増幅される。反射要素606-反射要素613-レンズドファイバ616-発光媒質605―反射要素614はファブリペロー型の固体レーザ共振器602を構成している。中心波長520nmのレーザ光が、部分反射鏡である反射要素614から出力603はされる。 Fluorescence with a wavelength of 520 nm emitted from the light emitting medium 605 to the input fiber 618 side is folded back by a reflecting element 614 having a reflectivity of 50% at a wavelength of 520 nm formed on the fiber end on the output 603 side. Amplified within. The reflective element 606, the reflective element 613, the lensed fiber 616, the light emitting medium 605, and the reflective element 614 constitute a Fabry-Perot type solid state laser resonator 602. A laser beam having a center wavelength of 520 nm is output 603 from a reflection element 614 that is a partial reflection mirror.
  この構成では、まず半導体レーザ共振器601の出力が最大となるように反射要素606を調整した。このとき、半導体レーザ共振器601から放射される励起光パワーは最大で250mWであった。半導体レーザ共振器601を調整後、レーザ出力603のパワーを計測しながらレンズドファイバ616の位置、角度、半導体発光素子との距離を調整すると、容易にレーザ発振が得られるだけでなく、容易にパワーの最適化が可能であった。この時、レーザ発振開始までに固体レーザ共振器602の調整に要した時間はわずか1分、パワー最適化は3分で達成し、最大出力30mWが得られた。 In this configuration, the reflective element 606 was first adjusted so that the output of the semiconductor laser resonator 601 was maximized. At this time, the pumping light power radiated from the semiconductor laser resonator 601 was 250 mW at the maximum. After adjusting the semiconductor laser resonator 601, adjusting the position and angle of the lensed fiber 616 and the distance from the semiconductor light emitting element while measuring the power of the laser output 603 not only provides laser oscillation but also easily Power optimization was possible. At this time, the time required for adjustment of the solid state laser resonator 602 until the start of laser oscillation was only 1 minute, and power optimization was achieved in 3 minutes, and a maximum output of 30 mW was obtained.
  本実施例は、図7に示す第7の実施の形態の例である。図7では、半導体発光素子704への電源や制御装置の表示を省略している。 This example is an example of the seventh embodiment shown in FIG. In FIG. 7, display of the power source and the control device to the semiconductor light emitting element 704 is omitted.
  本実施例で用いた半導体レーザ共振器701は、実施例3と同じものである。また、発光媒質705も実施例3と同等のパラメータを持つファイバを使用した。 The semiconductor laser resonator 701 used in the present example is the same as that in the third example. The light emitting medium 705 is also a fiber having the same parameters as in Example 3.
  発光媒質705は、励起側の端面715に波長521nmおよび波長445nmの両方で反射率が約0.5%である反射防止膜を備えた石英ファイバである入力ファイバ718の励起側と反対側の端面に融着点719で融着接続されており、融着点719と反対側の端面を波長521nmで40%の反射率である反射要素714を備えた石英ファイバである出力ファイバ717と反射要素714を介して融着接続されている。 The light emitting medium 705 has an end face opposite to the excitation side of the input fiber 718 which is a quartz fiber provided with an antireflection film having a reflectance of about 0.5% at both wavelengths 521 nm and 445 nm on the end face 715 on the excitation side. The output fiber 717 and the reflection element 714 which are quartz fibers each having a reflection element 714 having a reflectance of 40% at a wavelength of 521 nm on the end surface opposite to the fusion point 719 are fused and connected to each other. It is fusion spliced through.
  入力ファイバ718と出力ファイバ717に用いた石英ファイバのパラメータは、NA=0.2、コア直径4μmである。 The parameters of the quartz fiber used for the input fiber 718 and the output fiber 717 are NA = 0.2 and the core diameter is 4 μm.
  半導体レーザ共振器701から放射される波長445nmの励起光は、反射要素713で入力ファイバ718の端面715に集光され、発光媒質705のコアに結合される。逆に、端面715から放射される波長521nmのレーザ光は、反射要素713によって半導体発光素子704の活性層に該略結合される。 Excitation light having a wavelength of 445 nm emitted from the semiconductor laser resonator 701 is condensed on the end face 715 of the input fiber 718 by the reflection element 713 and coupled to the core of the light emitting medium 705. Conversely, laser light having a wavelength of 521 nm emitted from the end face 715 is substantially coupled to the active layer of the semiconductor light emitting element 704 by the reflecting element 713.
  発光媒質705から出力ファイバ717側に放射される波長521nmの蛍光は、波長521nmで40%の反射率を持つ反射要素714で折り返され、発光媒質内で増幅される。反射要素706-反射要素713-発光媒質705―反射要素714はファブリペロー型の固体レーザ共振器702を構成している。反射要素714から出力される波長521nmのレーザ光は、出力ファイバ717を通り、反射要素714の反対側の端面から出力703される。 Fluorescence having a wavelength of 521 nm emitted from the light emitting medium 705 to the output fiber 717 side is folded back by the reflecting element 714 having a reflectance of 40% at the wavelength of 521 nm, and is amplified in the light emitting medium. The reflecting element 706 -the reflecting element 713 -the light emitting medium 705 -the reflecting element 714 constitute a Fabry-Perot type solid state laser resonator 702. The laser light having a wavelength of 521 nm output from the reflective element 714 passes through the output fiber 717 and is output 703 from the end face on the opposite side of the reflective element 714.
  この構成では、まず半導体レーザ共振器701の出力が最大となるように反射要素706および反射要素713を調整した。このとき、半導体レーザ共振器701から放射される励起光パワーは最大で200mWであった。半導体レーザ共振器701を調整後、ファイバ励起側端面715の位置を調整して発光媒質705に励起光を集光照射するだけで、容易にレーザ発振が得られる。この時、レーザ発振開始までに固体レーザ共振器702の調整に要した時間はわずか2分、最大出力は22mWであった。 In this configuration, first, the reflecting element 706 and the reflecting element 713 were adjusted so that the output of the semiconductor laser resonator 701 was maximized. At this time, the pumping light power radiated from the semiconductor laser resonator 701 was 200 mW at the maximum. After adjusting the semiconductor laser resonator 701, the position of the fiber excitation side end face 715 is adjusted and the light emission medium 705 is simply focused and irradiated with excitation light, so that laser oscillation can be easily obtained. At this time, it took only 2 minutes to adjust the solid state laser resonator 702 until the start of laser oscillation, and the maximum output was 22 mW.
  本実施例は、図8に示す第8の実施の形態の例である。図8では、半導体発光素子804への電源や制御装置の表示を省略してある。 This example is an example of the eighth embodiment shown in FIG. In FIG. 8, display of the power source and the control device to the semiconductor light emitting element 804 is omitted.
  本実施例で用いた半導体発光素子804は、実施例4と同じものである。また、発光媒質805も実施例4と同等のパラメータを持つファイバを使用した。 The semiconductor light emitting device 804 used in this example is the same as that in Example 4. The light emitting medium 805 was also a fiber having the same parameters as in Example 4.
  この半導体発光素子804から入力ファイバ818側への放射は、波長442nmで反射率15%かつ、波長520nmで反射率0.3%の高透過となる、半導体発光素子に直接成膜されたダイクロイック光学膜である反射要素813で反射され、半導体発光素子804の活性層内で増幅されて反射要素806側に放射される。反射要素806側に放射された波長442nmの光は、焦点距離2.5mmの広帯域高反射球面ミラーである反射要素806で反射して折り返され、半導体発光素子804内で再び増幅される。反射要素813-半導体発光素子804-反射要素806で構成される半導体レーザ共振器801は、反射要素813から入力ファイバ818側に波長442nmの励起光を放射する。 The radiation from the semiconductor light emitting element 804 toward the input fiber 818 has a high transmittance with a reflectance of 15% at a wavelength of 442 nm and a reflectance of 0.3% at a wavelength of 520 nm, and is formed directly on the semiconductor light emitting element. The light is reflected by the reflective element 813 that is a film, amplified in the active layer of the semiconductor light emitting element 804, and emitted to the reflective element 806 side. Light having a wavelength of 442 nm emitted toward the reflective element 806 is reflected by the reflective element 806, which is a broadband high-reflection spherical mirror having a focal length of 2.5 mm, and is amplified again in the semiconductor light emitting device 804. The semiconductor laser resonator 801 including the reflecting element 813 -the semiconductor light emitting element 804 -the reflecting element 806 emits excitation light having a wavelength of 442 nm from the reflecting element 813 to the input fiber 818 side.
  なお、半導体発光素子804の反射要素806側の端面には、波長400nmから700nmの範囲で反射率が約0.5%となる反射防止膜が成膜されている。 Note that an antireflection film having a reflectance of about 0.5% in the wavelength range of 400 nm to 700 nm is formed on the end face of the semiconductor light emitting element 804 on the reflective element 806 side.
  発光媒質805は、曲率半径3μm(縦方向補正)と曲率半径7μm(横方向補正)の複合シリンドリカルレンズ形状のレンズドファイバ816を備えた石英ファイバである入力ファイバ818と融着点819で融着接続されており、出力ファイバ817側に反射要素814を備えた出力ファイバ817と反射要素814を介して融着接続されている。入力ファイバ818および出力ファイバ817に用いた石英ファイバのパラメータは、NA=0.2、コア直径4μmである。 The light emitting medium 805 is fused at a fusion point 819 with an input fiber 818 which is a quartz fiber having a lens fiber 816 having a compound cylindrical lens shape having a curvature radius of 3 μm (longitudinal correction) and a curvature radius of 7 μm (lateral correction). The output fiber 817 is provided with a reflection element 814 on the output fiber 817 side, and the output fiber 817 is fusion-bonded via the reflection element 814. The parameters of the quartz fiber used for the input fiber 818 and the output fiber 817 are NA = 0.2 and a core diameter of 4 μm.
  レンズドファイバ816の表面は、波長520nmと波長442nmの色収差による焦点位置変動を抑制するために、CaF2とBaF2による分散補償膜が成膜され、さらにレーザ光波長である波長520nmと励起光波長である波長442nmで共に反射率が約0.5%となる反射防止膜が成膜されている。 The surface of the lensed fiber 816 is formed with a dispersion compensation film made of CaF 2 and BaF 2 in order to suppress focal position fluctuations due to chromatic aberration at wavelengths of 520 nm and 442 nm, and further, a laser beam wavelength of 520 nm and excitation light. An antireflection film having a reflectance of about 0.5% at a wavelength of 442 nm is formed.
  半導体レーザ共振器801から放射される励起光は、励起光放射領域に近接して設置されたレンズドファイバ816で発散角を補正して発光媒質805に入射され、ファイバのコアに結合される。逆に、レンズドファイバ816から放射される波長520nmのレーザ光は、半導体発光素子804の活性層に該略結合される。 Excitation light emitted from the semiconductor laser resonator 801 is incident on the light emitting medium 805 with a divergence angle corrected by a lensed fiber 816 installed in the vicinity of the excitation light emission region, and is coupled to the core of the fiber. Conversely, laser light having a wavelength of 520 nm emitted from the lensed fiber 816 is substantially coupled to the active layer of the semiconductor light emitting element 804.
  発光媒質805から前方に放射された波長520nmの蛍光は、波長520nmで50%の反射率を持つ反射要素814で折り返され、発光媒質内で増幅される。反射要素806-反射要素813-レンズドファイバ816-発光媒質805―反射要素814はファブリペロー型の固体レーザ共振器802を構成している。中心波長520nmのレーザ光が、部分反射鏡である反射要素814を通して出力ファイバ817を伝搬し、ファイバ端から前方に出力803される。 Fluorescence having a wavelength of 520 nm emitted forward from the light emitting medium 805 is folded back by a reflecting element 814 having a reflectance of 50% at a wavelength of 520 nm, and is amplified in the light emitting medium. The reflecting element 806 -the reflecting element 813 -the lensed fiber 816 -the light emitting medium 805 -the reflecting element 814 constitutes a Fabry-Perot type solid state laser resonator 802. Laser light having a center wavelength of 520 nm propagates through the output fiber 817 through the reflecting element 814 that is a partial reflecting mirror, and is output 803 forward from the fiber end.
  この構成では、まず半導体レーザ共振器801の出力が最大となるように反射要素806を調整した。このとき、半導体レーザ共振器801からの放射される励起光パワーは最大で250mWであった。半導体レーザ共振器801を調整後、レーザ出力803のパワーを計測しながらレンズドファイバ816の位置、角度、半導体発光素子との距離を調整すると、容易にレーザ発振が得られるだけでなく、容易にパワーの最適化が可能であった。この時、レーザ発振開始までに固体レーザ共振器802の調整に要した時間はわずか1分、パワー最適化は3分で達成し、最大出力30mWが得られた。 In this configuration, first, the reflecting element 806 was adjusted so that the output of the semiconductor laser resonator 801 was maximized. At this time, the maximum pumping light power emitted from the semiconductor laser resonator 801 was 250 mW. After adjusting the semiconductor laser resonator 801, adjusting the position and angle of the lensed fiber 816 and the distance from the semiconductor light emitting element while measuring the power of the laser output 803 not only makes it easy to obtain laser oscillation, but also makes it easy Power optimization was possible. At this time, the time required to adjust the solid state laser resonator 802 until the start of laser oscillation was only 1 minute, and power optimization was achieved in 3 minutes, and a maximum output of 30 mW was obtained.
  本実施例は、図9に示す第9の実施の形態の例である。図9では、半導体発光素子904への電源や制御装置の表示を省略してある。 This example is an example of the ninth embodiment shown in FIG. In FIG. 9, display of the power source and the control device to the semiconductor light emitting element 904 is omitted.
  本実施例で用いた半導体レーザ共振器901は、実施例3と同じものである。また、発光媒質905も実施例3と同等のパラメータを持つファイバを使用した。 The semiconductor laser resonator 901 used in this example is the same as that in Example 3. The light emitting medium 905 is also a fiber having the same parameters as in the third embodiment.
  発光媒質905は、端面915に波長521nmおよび波長445nmの両方で反射率が約0.5%である反射防止膜を備えた石英ファイバである入力ファイバ918の励起側と反対側の端面と融着点921で融着接続されており、融着点921と反対側の端面を波長521nmで40%の反射率であるファイバブラッググレーティング(FBG)からなる反射要素920を備えた石英ファイバである出力ファイバ917と、融着点919で融着接続されている。 The light emitting medium 905 is fused to the end surface opposite to the excitation side of the input fiber 918 which is a quartz fiber provided with an antireflection film having a reflectance of about 0.5% at both the wavelength 521 nm and the wavelength 445 nm on the end surface 915. An output fiber which is a quartz fiber having a reflection element 920 made of a fiber Bragg grating (FBG) having a reflectance of 40% at a wavelength of 521 nm on the end surface opposite to the fusion point 921, which is fusion spliced at a point 921. It is fusion-bonded at 917 and a fusion point 919.
  入力ファイバ918と出力ファイバ917に用いた石英ファイバのパラメータは、NA=0.2、コア直径4μmである。 The parameters of the quartz fiber used for the input fiber 918 and the output fiber 917 are NA = 0.2 and the core diameter is 4 μm.
  半導体レーザ共振器901から放射される波長445nmの励起光は、反射要素913で入力ファイバ918の端面915に集光され、発光媒質905のコアに結合される。逆に、ファイバ励起側端面915から放射される波長521nmのレーザ光は、反射要素913によって半導体発光素子904の活性層に該略結合される。 Excitation light having a wavelength of 445 nm emitted from the semiconductor laser resonator 901 is condensed on the end face 915 of the input fiber 918 by the reflection element 913 and coupled to the core of the light emitting medium 905. Conversely, laser light having a wavelength of 521 nm emitted from the fiber excitation side end face 915 is substantially coupled to the active layer of the semiconductor light emitting device 904 by the reflecting element 913.
  発光媒質905から前方に放射された波長521nmの蛍光は、波長521nmで40%の反射率を持つファイバ回折格子である反射要素920で折り返され、発光媒質905内で増幅される。反射要素906-反射要素913-発光媒質905―反射要素920はファブリペロー型の固体レーザ共振器902を構成している。中心波長521nmのレーザ光は、出力ファイバ917を通り、反対側の端面から出力903される。なお、ファイバ回折格子である反射要素920の帯域幅は、反射率の最大値を中心波長とし、最大反射率の1/2となる波長幅で規定すると、0.08nmであった。 Fluorescence having a wavelength of 521 nm emitted forward from the light emitting medium 905 is folded back by a reflection element 920 that is a fiber diffraction grating having a reflectance of 40% at a wavelength of 521 nm, and is amplified in the light emitting medium 905. The reflecting element 906 -the reflecting element 913 -the light emitting medium 905 -the reflecting element 920 constitutes a Fabry-Perot type solid state laser resonator 902. Laser light having a center wavelength of 521 nm passes through the output fiber 917 and is output 903 from the end face on the opposite side. The bandwidth of the reflection element 920, which is a fiber diffraction grating, was 0.08 nm when the maximum value of the reflectance was the center wavelength and the wavelength width was ½ of the maximum reflectance.
  この構成では、まず半導体レーザ共振器901の出力が最大となるように反射要素906および反射要素913を調整した。このとき、半導体レーザ共振器901からの放射される励起光パワーは最大で200mWであった。半導体レーザ共振器901を調整後、入力ファイバ918の端面915の位置を調整して発光媒質905に励起光を集光照射するだけで、容易にレーザ発振が得られる。この時、レーザ発振開始までに固体レーザ共振器902の調整に要した時間はわずか2分、最大出力は24mWであった。また、固体レーザ出力の線幅は、最大出力波長を中心波長とし、その出力の1/2となる波長幅で規定すると、ファイバ回折格子の帯域幅に極めて近い0.1nmであった。 In this configuration, the reflecting element 906 and the reflecting element 913 were first adjusted so that the output of the semiconductor laser resonator 901 was maximized. At this time, the maximum pumping light power emitted from the semiconductor laser resonator 901 was 200 mW. After adjusting the semiconductor laser resonator 901, laser oscillation can be easily obtained by adjusting the position of the end face 915 of the input fiber 918 and condensing and irradiating the light emitting medium 905 with excitation light. At this time, it took only 2 minutes to adjust the solid state laser resonator 902 until the start of laser oscillation, and the maximum output was 24 mW. Further, the line width of the solid-state laser output is 0.1 nm which is very close to the bandwidth of the fiber diffraction grating when the maximum output wavelength is the center wavelength and the wavelength width is ½ of the output.
  本実施例は、図10に示す第10の実施の形態の例である。図10では、半導体発光素子1004への電源や制御装置の表示を省略してある。 This example is an example of the tenth embodiment shown in FIG. In FIG. 10, the display of the power source and the control device to the semiconductor light emitting element 1004 is omitted.
  本実施例で用いた半導体発光素子1004は、実施例4と同じものである。また、発光媒質1005も実施例4と同等のパラメータを持つファイバを使用した。 The semiconductor light emitting device 1004 used in this example is the same as that in Example 4. The light emitting medium 1005 is also a fiber having the same parameters as in Example 4.
  この半導体発光素子1004から入力ファイバ1018側への放射は、波長442nmで反射率15%かつ、波長520nmで反射率0.3%の高透過となる、半導体発光素子1004に直接成膜されたダイクロイック光学膜である反射要素1013で反射され、半導体発光素子1004の活性層内で増幅され反射要素1006側に放射される。反射要素1006側に放射された波長442nmの光は、焦点距離2.5mmの広帯域高反射球面ミラーである反射要素1006で反射して折り返され、半導体発光素子1004内で再び増幅される。反射要素1013-半導体発光素子1004-反射要素1006で構成される半導体レーザ共振器1001は、反射要素1013から入力ファイバ1018側に波長442nmの励起光を放射する。 The radiation from the semiconductor light emitting device 1004 toward the input fiber 1018 has a high transmittance of 15% reflectivity at a wavelength of 442 nm and 0.3% reflectivity at a wavelength of 520 nm, and is formed directly on the semiconductor light emitting device 1004. The light is reflected by the reflective element 1013 that is an optical film, amplified in the active layer of the semiconductor light emitting element 1004, and emitted to the reflective element 1006 side. Light having a wavelength of 442 nm emitted toward the reflective element 1006 is reflected by the reflective element 1006, which is a broadband high-reflection spherical mirror having a focal length of 2.5 mm, and is amplified again in the semiconductor light emitting device 1004. The semiconductor laser resonator 1001 including the reflective element 1013 -semiconductor light emitting element 1004 -reflective element 1006 emits excitation light having a wavelength of 442 nm from the reflective element 1013 to the input fiber 1018 side.
  なお、半導体発光素子1004の反射要素1006側の端面には、波長400nmから700nmの範囲で反射率が約0.5%となる反射防止膜が成膜されている。 Note that an antireflection film having a reflectance of about 0.5% in the wavelength range of 400 nm to 700 nm is formed on the end face of the semiconductor light emitting element 1004 on the reflective element 1006 side.
  発光媒質1005は、曲率半径3μm(縦方向補正)と曲率半径7μm(横方向補正)の複合シリンドリカルレンズ形状のレンズドファイバ1016を備えた石英ファイバである入力ファイバ1018と融着点1021で融着接続されており、FBGからなる反射要素1020を備えた出力ファイバ1017と融着点1019で融着接続されている。入力ファイバ1018および出力ファイバ1017に用いた石英ファイバのパラメータは、NA=0.2、コア直径4μmである。 The light emitting medium 1005 is fused at a fusion point 1021 to an input fiber 1018 which is a quartz fiber having a lensed fiber 1016 having a compound cylindrical lens shape having a curvature radius of 3 μm (longitudinal correction) and a curvature radius of 7 μm (lateral correction). The output fiber 1017 having the reflection element 1020 made of FBG and the fusion point 1019 are fusion-connected. The parameters of the quartz fiber used for the input fiber 1018 and the output fiber 1017 are NA = 0.2 and a core diameter of 4 μm.
  レンズドファイバ1016の表面は、波長442nmと波長520nmの色収差による焦点位置変動を抑制するために、CaF2とBaF2による分散補償膜が成膜され、さらにレーザ光波長である波長520nmと励起光波長である波長442nmで共に反射率が約1%となる反射防止膜が成膜されている。 The surface of the lensed fiber 1016 is formed with a dispersion compensation film made of CaF 2 and BaF 2 in order to suppress focal position fluctuations due to chromatic aberration of wavelengths 442 nm and 520 nm, and further, a laser beam wavelength of 520 nm and excitation light. An antireflection film having a reflectance of about 1% at a wavelength of 442 nm is formed.
  半導体レーザ共振器1001から放射される励起光は、励起光放射領域に近接して設置されたレンズドファイバ1016で発散角を補正して発光媒質1005に入射され、ファイバのコアに結合される。逆に、レンズドファイバ1016から放射される波長520nmのレーザ光は、半導体発光素子1004の活性層に該略結合される。 Excitation light emitted from the semiconductor laser resonator 1001 is incident on the light emitting medium 1005 with a divergence angle corrected by a lensed fiber 1016 installed close to the excitation light emission region, and is coupled to the core of the fiber. Conversely, laser light having a wavelength of 520 nm emitted from the lensed fiber 1016 is substantially coupled to the active layer of the semiconductor light emitting device 1004.
  発光媒質1005から前方に放射された波長520nmの蛍光は、波長520nmで50%の反射率を持つファイバ回折格子である反射要素1020で折り返され、発光媒質1005内で増幅される。反射要素1006-反射要素1013-レンズドファイバ1016-発光媒質1005―反射要素1020はファブリペロー型の固体レーザ共振器1002を構成している。中心波長520nmのレーザ光は、部分反射鏡である反射要素1020を通して出力ファイバ1017を伝搬し、ファイバ端から出力1003される。なお、ファイバ回折格子である反射要素1020の帯域幅は、反射率の最大値を中心波長とし、最大反射率の1/2となる波長幅で規定すると、0.08nmであった。 Fluorescence having a wavelength of 520 nm emitted forward from the light emitting medium 1005 is folded back by the reflecting element 1020 which is a fiber diffraction grating having a reflectance of 50% at a wavelength of 520 nm, and is amplified in the light emitting medium 1005. The reflecting element 1006 -the reflecting element 1013 -the lensed fiber 1016 -the light emitting medium 1005 -the reflecting element 1020 constitutes a Fabry-Perot type solid-state laser resonator 1002. Laser light having a center wavelength of 520 nm propagates through the output fiber 1017 through the reflecting element 1020 which is a partial reflecting mirror, and is output 1003 from the fiber end. Note that the bandwidth of the reflection element 1020, which is a fiber diffraction grating, was 0.08 nm when the maximum value of reflectance was defined as the center wavelength and the wavelength width that was ½ of the maximum reflectance.
  この構成では、まず半導体レーザ共振器1001の出力が最大となるように反射要素1006を調整した。このとき、半導体レーザ共振器1001から放射される励起光パワーは最大で250mWであった。半導体レーザ共振器1001を調整後、レーザ出力1003のパワーを計測しながらレンズドファイバ1016の位置、角度、半導体発光素子との距離を調整すると、容易にレーザ発振が得られるだけでなく、容易にパワーの最適化が可能であった。この時、レーザ発振開始までに固体レーザ共振器1002の調整に要した時間はわずか1分、パワー最適化は3分で達成し、最大出力32mWが得られた。また、固体レーザ出力の線幅は、最大出力波長を中心波長とし、その出力の1/2となる波長幅で規定すると、ファイバ回折格子の帯域幅に極めて近い0.1nmであった。 In this configuration, first, the reflecting element 1006 was adjusted so that the output of the semiconductor laser resonator 1001 was maximized. At this time, the pumping light power radiated from the semiconductor laser resonator 1001 was 250 mW at the maximum. After adjusting the semiconductor laser resonator 1001, adjusting the position, angle, and distance from the semiconductor light emitting element of the lensed fiber 1016 while measuring the power of the laser output 1003 not only provides laser oscillation, but also easily Power optimization was possible. At this time, the time required for adjustment of the solid-state laser resonator 1002 until the start of laser oscillation was only 1 minute, and power optimization was achieved in 3 minutes, and a maximum output of 32 mW was obtained. Further, the line width of the solid-state laser output was 0.1 nm which is extremely close to the bandwidth of the fiber diffraction grating when the maximum output wavelength is the center wavelength and the wavelength width is ½ of the output.
  本発明は、医療、バイオ、ヘルスケア、生物分野で使用される観察用や分析用光源、工業用検査光源、テレビ、ディスプレイやプロジェクタ用光源、光ジャイロ用光源、微細加工用光源などとして利用できる。  INDUSTRIAL APPLICABILITY The present invention can be used as an observation or analysis light source used in the medical, bio, healthcare, and biological fields, an industrial inspection light source, a television, a display or projector light source, a light source for an optical gyroscope, a light source for fine processing, .

Claims (2)

  1.   励起光を放射する半導体発光素子を備えた半導体光源と、
      該励起光を吸収して発光する発光媒質であって、該発光の少なくとも一部が出力光として出力される該発光媒質と、
      該励起光を共振させてその光強度を増強する第1光路を第1反射要素組により構成する第1光共振器と、
      該発光媒質の発光を共振させてその光強度を増強する第2光路を第2反射要素組により構成する第2光共振器を備えたレーザ光源装置であって、
      該第1光路と該第2光路が一部を共有し、該共有部に該半導体発光素子が配置され、
      該発光媒質が該第2光路に配置され、
      該第1反射要素組と該第2反射要素組が少なくとも第1反射要素を共有し、該第1反射要素が該出力光と該励起光を共に反射するレーザ光源装置。
    A semiconductor light source including a semiconductor light emitting element that emits excitation light;
    A light emitting medium that emits light by absorbing the excitation light, wherein the light emitting medium outputs at least a part of the light emission as output light;
    A first optical resonator configured by a first reflecting element set to form a first optical path for resonating the excitation light and enhancing its light intensity;
    A laser light source device comprising a second optical resonator configured by a second reflecting element group, wherein a second optical path for resonating light emission of the light emitting medium to enhance its light intensity is provided,
    The first optical path and the second optical path share a part, and the semiconductor light emitting element is disposed in the shared part,
    The luminescent medium is disposed in the second optical path;
    A laser light source device in which the first reflecting element group and the second reflecting element group share at least the first reflecting element, and the first reflecting element reflects both the output light and the excitation light.
  2.   該第1光共振器と該第2光共振器が共にファブリペロー型の光共振器であって、
      該第1反射要素組が該第1反射要素以外の第2反射要素を有し、該第2反射要素が該第1光共振器の光出射端を構成し、該第2反射要素は、該第1光共振器の所望の発振波長の光の反射率が該第1反射要素より低く、
      該第2反射要素組が該第1反射要素以外の第3反射要素を有し、該第3反射要素が該第2光共振器の光出射端を構成し、該第3反射要素は、該第2光共振器の所望の発振波長の光の反射率が該第1反射要素より低い請求項1に記載のレーザ光源装置。
    The first optical resonator and the second optical resonator are both Fabry-Perot type optical resonators,
    The first reflective element set has a second reflective element other than the first reflective element, the second reflective element constitutes a light emitting end of the first optical resonator, and the second reflective element is The reflectance of light having a desired oscillation wavelength of the first optical resonator is lower than that of the first reflective element,
    The second reflective element set includes a third reflective element other than the first reflective element, the third reflective element constitutes a light emitting end of the second optical resonator, and the third reflective element includes the The laser light source device according to claim 1, wherein the reflectance of light having a desired oscillation wavelength of the second optical resonator is lower than that of the first reflecting element.
PCT/JP2010/068241 2009-11-24 2010-10-18 Laser beam source apparatus WO2011065148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009266211A JP2011114005A (en) 2009-11-24 2009-11-24 Laser light source device
JP2009-266211 2009-11-24

Publications (1)

Publication Number Publication Date
WO2011065148A1 true WO2011065148A1 (en) 2011-06-03

Family

ID=44066253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068241 WO2011065148A1 (en) 2009-11-24 2010-10-18 Laser beam source apparatus

Country Status (2)

Country Link
JP (1) JP2011114005A (en)
WO (1) WO2011065148A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196020A (en) * 2014-06-27 2019-09-03 株式会社基恩士 Multi-wavelength confocal measuring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6097584B2 (en) * 2013-02-04 2017-03-15 株式会社日本自動車部品総合研究所 Laser oscillation device and manufacturing method thereof
KR20160094247A (en) * 2015-01-30 2016-08-09 한국과학기술원 Optical waveguide type saturable absorber using evanescent field interaction and manufacturing method thereof, pulse laser apparatus using the same, and pulse laser using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112560A (en) * 1992-09-30 1994-04-22 Shimadzu Corp Semiconductor laser excited solid-state laser device
JP2008112846A (en) * 2006-10-30 2008-05-15 Sony Corp Laser light source device and image generator using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112560A (en) * 1992-09-30 1994-04-22 Shimadzu Corp Semiconductor laser excited solid-state laser device
JP2008112846A (en) * 2006-10-30 2008-05-15 Sony Corp Laser light source device and image generator using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196020A (en) * 2014-06-27 2019-09-03 株式会社基恩士 Multi-wavelength confocal measuring device
CN110196020B (en) * 2014-06-27 2021-08-10 株式会社基恩士 Multi-wavelength confocal measuring device

Also Published As

Publication number Publication date
JP2011114005A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
US8270440B2 (en) Laser light source and optical device
JP3120828B2 (en) Semiconductor laser module
US6490309B1 (en) Laser-diode-pumped laser apparatus in which Pr3+-doped laser medium is pumped with GaN-based compound laser diode
TWI446012B (en) Broadband laser lamp with reduced speckle
JP5156385B2 (en) Laser light source device and image display device
US6816532B2 (en) Laser-diode-excited laser apparatus, fiber laser apparatus, and fiber laser amplifier in which laser medium doped with one of ho3+, sm3+, eu3+, dy3+, er3+, and tb3+is excited with gan-based compound laser diode
JP5259385B2 (en) Wavelength conversion device and image display device
JP2010141283A (en) Wide-band wavelength-variable laser device
JP2007157764A (en) Multi-wavelength laser light source using fluorescent fiber
US9118164B1 (en) Composite laser gain medium
WO2011065148A1 (en) Laser beam source apparatus
TWI423545B (en) Intracavity upconversion laser
US8781274B2 (en) Optical amplifier and resonator
US6628692B2 (en) Solid-state laser device and solid-state laser amplifier provided therewith
US6829256B2 (en) Fiber laser apparatus as well as optical multi/demultiplexer and image display apparatus therefor
WO2021161556A1 (en) Ultraviolet laser device
CN113270785A (en) Continuous wave 1.5 mu m human eye safety all-solid-state self-Raman laser
JPWO2004102752A1 (en) Solid state laser equipment
JP2001015839A (en) Optical fiber excitation solid laser
JP6739164B2 (en) Laser oscillator
JP2008042178A (en) Fiber device, wavelength converter, and image displaying apparatus
JPH04198907A (en) Optical fiber coupler and solid-state laser device
JP2004281595A (en) Solid state laser apparatus
JPH06104516A (en) Laser
JP2002314174A (en) Blue up-conversion fiber laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832995

Country of ref document: EP

Kind code of ref document: A1