JP6097584B2 - Laser oscillation device and manufacturing method thereof - Google Patents

Laser oscillation device and manufacturing method thereof Download PDF

Info

Publication number
JP6097584B2
JP6097584B2 JP2013019462A JP2013019462A JP6097584B2 JP 6097584 B2 JP6097584 B2 JP 6097584B2 JP 2013019462 A JP2013019462 A JP 2013019462A JP 2013019462 A JP2013019462 A JP 2013019462A JP 6097584 B2 JP6097584 B2 JP 6097584B2
Authority
JP
Japan
Prior art keywords
excitation light
fixing member
fixing
housing
transmission unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013019462A
Other languages
Japanese (ja)
Other versions
JP2014150222A (en
Inventor
金原 賢治
賢治 金原
明光 杉浦
明光 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2013019462A priority Critical patent/JP6097584B2/en
Priority to DE201410201832 priority patent/DE102014201832A1/en
Publication of JP2014150222A publication Critical patent/JP2014150222A/en
Application granted granted Critical
Publication of JP6097584B2 publication Critical patent/JP6097584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、半導体レーザ等の励起光源から放射され、光ファイバを介して伝送されたコヒーレントな励起光を励起光集光手段(コリメートレンズ)によって集光して、レーザ媒質と可飽和吸収体等を組み合わせたQスイッチ式の共振器に照射して、共振器内で増幅しエネルギ密度の高いパルスレーザを発振するレーザ発振装置とその製造方法に関するものであり、特に、内燃機関の燃焼室内にエネルギ密度の高いパルスレーザを集光して点火を行うレーザ点火装置や、被加工部材に高いエネルギ密度のパルスレーザを集光して、被加工部材の溶接するレーザ溶接装置や、被加工物の切断加工を行ったりするレーザ加工装置等に好適なものである。   The present invention condenses coherent excitation light emitted from an excitation light source such as a semiconductor laser and transmitted through an optical fiber by an excitation light condensing means (collimating lens), and a laser medium and a saturable absorber. In particular, the present invention relates to a laser oscillation apparatus that irradiates a Q-switch type resonator combining the above and amplifies the inside of the resonator to oscillate a pulse laser having a high energy density, and a manufacturing method thereof. A laser ignition device that focuses and ignites a high-density pulse laser, a laser welding device that focuses a high energy density pulse laser on a workpiece and welds the workpiece, and a workpiece cut It is suitable for a laser processing apparatus that performs processing.

近年、高過給エンジン、高圧縮エンジン、シリンダ内径の大きな天然ガスエンジン等、難着火性の内燃機関の点火に、フラッシュランプ、半導体レーザ等からなる励起光源から発振した励起光をQスイッチ式のレーザ媒質を含むレーザ共振器に照射し、短いパルス幅でエネルギを集中させて放出するパルスレーザとして発振させ、さらにパルスレーザを集光レンズなどの光学素子を用いて、混合気中に集光して、エネルギ密度の高い火炎核を発生させることにより、内燃機関の点火を行うレーザ点火装置について種々提案されている。   In recent years, a Q-switch type pumping light oscillated from a pumping light source such as a flash lamp or a semiconductor laser is used to ignite a non-ignitable internal combustion engine such as a high-supercharged engine, a high-compression engine, or a natural gas engine having a large cylinder inner diameter. Irradiate the laser resonator containing the laser medium, oscillate it as a pulsed laser that concentrates and emits energy with a short pulse width, and condenses the pulsed laser in the mixture using optical elements such as a condenser lens. Various laser ignition devices that ignite an internal combustion engine by generating flame nuclei with high energy density have been proposed.

例えば、特許文献1には、レーザ点火装置を備えた内燃機関が開示されている(特許文献1図1a、図1b参照)。
また、特許文献1では、このようなレーザ点火装置等に用いられるダイオードレーザから出射されたレーザビームを低損失で光ファイバに入力結合させるために用いられる、所定の横断面を有する結合デバイスを光ファイバと一体的に効率的に形成する方法が開示されている。
For example, Patent Document 1 discloses an internal combustion engine equipped with a laser ignition device (see Patent Document 1 FIGS. 1a and 1b).
Further, in Patent Document 1, a coupling device having a predetermined cross section used for coupling a laser beam emitted from a diode laser used in such a laser ignition device or the like to an optical fiber with a low loss is used. A method for efficiently and integrally forming a fiber is disclosed.

ところが、励起光を発振するレーザダイオードの特性、光ファイバの端末部の研磨形状、入力結合時の損失等には不可避的に個体差が存在し、必然的に光ファイバの端末部から出射される励起光の放射角度やエネルギ密度に個体差が発生する。
励起光の放射角度は、励起用レーザの取付け角度、集光レンズ、プリズム等の光学系のアライメント、光ファイバの直径、光ファイバ端末部の端面の曲率等によって変化する。このため、励起光を所定のビーム径で共振器に入光させるために、光ファイバと励起光集光レンズとの距離を一定にした状態で、特許文献1にあるような入力結合デバイスを用いて、レーザダイオードから出射された励起光を低損失で光ファイバへ結合できたとしても、最終的に共振器に入射する励起光の放射角度、ビーム径が変化することにより、共振器内のビームプロファイルにも個体差を生じ、結果的に共振器から出光されるパルス光の品質を一定に保つことが困難となることが判明した。
このようなパルス光の品質のバラツキは、レーザ点火装置の着火性を不安定にしたり、レーザ溶接機やレーザ切断機の加工速度や加工精度を不安定にしたりすることになる。
However, there are inevitably individual differences in the characteristics of the laser diode that oscillates the excitation light, the polished shape of the end portion of the optical fiber, the loss during input coupling, and the light is necessarily emitted from the end portion of the optical fiber. Individual differences occur in the radiation angle and energy density of the excitation light.
The radiation angle of the excitation light varies depending on the mounting angle of the excitation laser, the alignment of an optical system such as a condensing lens and a prism, the diameter of the optical fiber, the curvature of the end face of the optical fiber end portion, and the like. For this reason, in order to make excitation light enter the resonator with a predetermined beam diameter, an input coupling device as in Patent Document 1 is used in a state where the distance between the optical fiber and the excitation light condensing lens is constant. Even if the pumping light emitted from the laser diode can be coupled to the optical fiber with low loss, the radiation angle and beam diameter of the pumping light finally incident on the resonator change, so that the beam in the resonator It was found that individual differences were also generated in the profiles, and as a result, it was difficult to keep the quality of the pulsed light emitted from the resonator constant.
Such variations in the quality of the pulsed light make the ignitability of the laser igniter unstable and make the processing speed and processing accuracy of the laser welding machine and laser cutting machine unstable.

そこで、本発明は、かかる実情に鑑みなされたもので、共振器内に入射する励起光の個体差があっても、共振器内のビームプロファイルをガウス関数形状に近い状態とし、共振器から出光されるパルス光が高品質かつ高出力となるように、共振器からの出力をモニタしながら光ファイバの端末部と集光レンズとの距離を調整することによって、個体差を抑制した信頼性の高いレーザ発振装置とその製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and even if there is an individual difference in the excitation light incident on the resonator, the beam profile in the resonator is brought into a state close to a Gaussian function shape, and light emitted from the resonator is emitted. By adjusting the distance between the end of the optical fiber and the condensing lens while monitoring the output from the resonator so that the emitted pulsed light has high quality and high output, it is possible to reduce the individual differences. It is an object of the present invention to provide a high laser oscillation device and a manufacturing method thereof.

本発明(6、6a、6b、6c、6d、6e、6f)では、コヒーレントな励起光(LSRPMP)を放射する励起光源(3)と、前記励起光(LSRPMP)を集光する励起光集光手段(10)と、集光された励起光(LSRPMP)を共振増幅してエネルギ密度の高いパルス光(LSRPLS)として発振する共振器(11)と、前記パルス光(LSRPLS)を拡張する拡張手段(13)と、拡張されたパルス光(LSRPLS)を集光するパルス光集光手段(14)と、保護カバー(15)とを同軸上に配設して、筒状のハウジング(16、16a、16b、16c、17、18)内に一体的に収容した出力部(1)と、前記励起光源(3)と前記出力部(1)との間に設けられ前記励起光(LSRPMP)を伝送する励起光伝送部(2)と、を具備するレーザ発振装置であって、
前記励起光伝送部(2)が、光ファイバ(20)と、保護被覆(21)で覆われた前記光ファイバ(20)が圧入される筒状の固定部材(22)と、前記固定部材(22)の基端側(224)に固定されて前記光ファイバ(20)の外周を保護する可撓性保護管(24)と、を含み、
前記固定部材(22)の先端に一致する前記光ファイバ(20)の端末面(200)から前記励起光集光手段(10)までの距離を励起光入光距離(L)とし、前記固定部材(22)が、前記励起光入光距離(L)を調整するための距離調整手段として、前記固定部材(22)の押し戻し両方向への移動を容易とする固定部保持手段(221)と、前記固定部材(22)を戻り方向に押圧する弾性部材(23、23a、23b、23c)と、前記励起光入光距離(L)を所定の位置で固定すべく、前記固定部材(22)と前記出力部(1)とを固定する固定手段(25、25a、25c)を具備し、
前記固定部材(22)は、先端側の嵌合部(223)が、前記ハウジング(16、16a、16b、16c)内に圧入され、前記嵌合部(223)の基端側において、前記固定部材(22)の外周面と前記ハウジング(16、16a、16b、16c)の内周面との間に区画される空間に、前記弾性部材(23、23a、23b、23c)が収容されている
In the present invention (6, 6a, 6b, 6c, 6d, 6e, 6f), the excitation light source (3) that emits coherent excitation light (LSR PMP ) and the excitation light that collects the excitation light (LSR PMP ) Condensing means (10), a resonator (11) that oscillates as a pulse light (LSR PLS ) with high energy density by resonance amplification of the condensed pumping light (LSR PMP ), and the pulsed light (LSR PLS ) An expanding means (13) for expanding the light, a pulsed light condensing means (14) for condensing the expanded pulsed light (LSR PLS ), and a protective cover (15) are disposed coaxially to form a cylindrical shape. The output unit (1) integrally accommodated in the housing (16, 16a, 16b, 16c, 17 , 18), and the excitation unit provided between the excitation light source (3) and the output unit (1) Excitation to transmit light (LSR PMP ) A laser oscillation device comprising an electromotive transmission unit (2),
The excitation light transmission unit (2) includes an optical fiber (20), a cylindrical fixing member (22) into which the optical fiber (20) covered with a protective coating (21 ) is press-fitted, and the fixing member ( 22) a flexible protective tube (24) fixed to the base end side (224) of the optical fiber (20) and protecting the outer periphery of the optical fiber (20) ,
The distance from the end surface (200) of the optical fiber (20) that coincides with the tip of the fixing member (22) to the excitation light condensing means (10) is defined as an excitation light incident distance (L), and the fixing member (22) as a distance adjusting means for adjusting the excitation light incident distance (L), a fixing portion holding means (221) for facilitating movement of the fixing member (22) in both directions of pushing back; An elastic member (23, 23a, 23b, 23c) that presses the fixing member (22) in the return direction, and the fixing member (22) and the above-mentioned in order to fix the excitation light incident distance (L) at a predetermined position A fixing means (25, 25a, 25c) for fixing the output section (1) ;
In the fixing member (22), a fitting portion (223) on the distal end side is press-fitted into the housing (16, 16a, 16b, 16c), and the fixing portion (22) is fixed on the proximal end side of the fitting portion (223). The elastic member (23, 23a, 23b, 23c) is accommodated in a space defined between the outer peripheral surface of the member (22) and the inner peripheral surface of the housing (16, 16a, 16b, 16c). .

少なくとも、保護被覆(21)で覆われた光ファイバ(20)を可撓性保護管(24)内に挿通しながら、筒状の固定部材(22)内に圧入し、前記光ファイバ(20)の端末面(200)が前記固定部材(22)の先端に一致するまで引き出し、前記可撓性保護管(24)を前記固定部材(22)の基端側(224)に固定して励起光伝送部(2)を形成する励起光伝送部形成工程と、略筒状の第2のハウジング(17)内に弾性保持部材(12)と共振器(11)と励起光集光手段(10)とを収容し、弾性シールリング(190)を介して、略筒状の第1のハウジング(16)と前記第2のハウジング(17)とを螺結して共振器組立体(W)を形成する共振器組立体形成工程と、弾性部材(23)を介して、前記励起光伝送部(2)と、前記共振器組立体(W)とを組み付ける伝送部固定工程と、を具備するレーザ発振装置の製造方法によって、本願発明のレーザ点火装置が実現できる。   At least the optical fiber (20) covered with the protective coating (21) is press-fitted into the cylindrical fixing member (22) while being inserted into the flexible protective tube (24), and the optical fiber (20). The terminal surface (200) of the fixing member (22) is pulled out until it coincides with the distal end of the fixing member (22), and the flexible protective tube (24) is fixed to the base end side (224) of the fixing member (22) to excite light. Excitation light transmission part forming step for forming the transmission part (2), the elastic holding member (12), the resonator (11), and the excitation light condensing means (10) in the substantially cylindrical second housing (17). And a substantially cylindrical first housing (16) and the second housing (17) are screwed through an elastic seal ring (190) to form a resonator assembly (W). The pump assembly (2) through the resonator assembly forming step and the elastic member (23). , By the method for producing a laser oscillation apparatus comprising: a transmission portion fixing step of assembling the said resonator assembly (W), the laser ignition device of the present invention can be realized.

特に、伝送部固定工程において、前記共振器(11)内に前記励起光(LSRPMP)を導入して、前記共振器(11)内のビームプロファイルをモニタしながら該出力が最大となる位置で、前記励起光伝送部(2)と前記共振器組立体(W)とを固定することによって、前記光ファイバ(20)の端末部(200)から放射される励起光(LSRPMP)の放射角に個体差があっても、前記共振器(11)から発振されるパルス光が最も高品質及び高出力となる位置を確認した上で前記励起光入光距離(L)が固定されているので、前記励起光源(3)における消費電力が小さくなり、波長安定化のための音調システムの小型化、低コスト化が可能となる。   In particular, in the transmission unit fixing step, the pumping light (LSRPMP) is introduced into the resonator (11), and the output is maximized while monitoring the beam profile in the resonator (11). By fixing the pumping light transmission part (2) and the resonator assembly (W), the radiation angle of the pumping light (LSRPMP) emitted from the terminal part (200) of the optical fiber (20) can be increased. Even if there is a difference, the excitation light incident distance (L) is fixed after confirming the position where the pulsed light oscillated from the resonator (11) has the highest quality and high output. The power consumption in the excitation light source (3) is reduced, and the tone system for wavelength stabilization can be reduced in size and cost.

本発明の前記出力部(1)を内燃機関(5)の燃焼室(530)に望むように配設・固定してレーザ発振装置(6、6a、6b、6c、6d、6e、6f)をレーザ点火装置として用いた場合には、高過給、高圧縮の自動車用エンジン、シリンダボア径の大きいエンジン、天然ガスを用いた発電用エンジン等の難着火性エンジンの点火を安定して実現できる。
また、本発明のレーザ発振装置(6、6a、6b、6c、6d、6e、6f)をレーザ溶接装置やレーザ加工装置として用いた場合には、加工速度を早くしたり、加工精度を向上したりすることが可能となる。
The laser oscillation device (6, 6a, 6b, 6c, 6d, 6e, 6f) is arranged and fixed as desired in the combustion chamber (530) of the internal combustion engine (5). When used as a laser ignition device, it is possible to stably realize ignition of a highly ignitable engine such as a high-supercharged, high-compression automobile engine, an engine with a large cylinder bore diameter, and a power generation engine using natural gas.
Further, when the laser oscillation device (6, 6a, 6b, 6c, 6d, 6e, 6f) of the present invention is used as a laser welding device or a laser processing device, the processing speed is increased or the processing accuracy is improved. It becomes possible to do.

本発明の第1の実施形態におけるレーザ点火装置の要部を示す断面図。Sectional drawing which shows the principal part of the laser ignition device in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるレーザ点火装置の全体概要を示す断面図。1 is a cross-sectional view showing an overall outline of a laser ignition device according to a first embodiment of the present invention. 本発明のレーザ点火装置の製造方法における励起光伝送手段製造工程及び点火部製造工程の概要を説明するための展開図。The expanded view for demonstrating the outline | summary of the excitation light transmission means manufacturing process and ignition part manufacturing process in the manufacturing method of the laser ignition device of this invention. 本発明のレーザ点火装置の製造方法の要部である点火部と励起光伝送部との組み付け工程の概要を示す構成図。The block diagram which shows the outline | summary of the assembly | attachment process of the ignition part which is the principal part of the manufacturing method of the laser ignition apparatus of this invention, and an excitation light transmission part. 本発明の効果を確認するために行った比較例1の試験結果を示すエネルギ密度解析図。The energy density analysis figure which shows the test result of the comparative example 1 performed in order to confirm the effect of this invention. 本発明の効果を確認するために行った実施例1の試験結果を示すエネルギ密度解析図。The energy density analysis figure which shows the test result of Example 1 performed in order to confirm the effect of this invention. 本発明の効果を確認するために行った比較例2の試験結果を示すエネルギ密度解析図。The energy density analysis figure which shows the test result of the comparative example 2 performed in order to confirm the effect of this invention. 比較例1のエネルギ密度分布を示す特性図。The characteristic view which shows the energy density distribution of the comparative example 1. 実施例1のエネルギ密度分布を示す特性図。FIG. 3 is a characteristic diagram showing an energy density distribution of Example 1. 比較例2のエネルギ密度分布を示す特性図。The characteristic view which shows the energy density distribution of the comparative example 2. 光ファイバ端面から集光レンズまでの距離の変化に対するパルス光エネルギの変化を示す特性図。The characteristic view which shows the change of pulsed light energy with respect to the change of the distance from an optical fiber end surface to a condensing lens. 本発明の第2の実施形態における出力部(点火部)1aの概要を示す要部断面図。The principal part sectional drawing which shows the outline | summary of the output part (ignition part) 1a in the 2nd Embodiment of this invention. 本発明の第3の実施形態における出力部(点火部)1bの概要を示す要部断面図。The principal part sectional drawing which shows the outline | summary of the output part (ignition part) 1b in the 3rd Embodiment of this invention. 本発明の第4の実施形態における出力部(点火部)1cの概要を示す要部断面図。The principal part sectional drawing which shows the outline | summary of the output part (ignition part) 1c in the 4th Embodiment of this invention. 本発明に用いられる励起光源と入力結合部の例を示す要部断面図。The principal part sectional drawing which shows the example of the excitation light source used for this invention, and an input coupling part. 本発明に用いられる励起光源と入力結合部の変形例を示す要部斜視図。The principal part perspective view which shows the modification of the excitation light source used for this invention, and an input coupling part. 本発明に用いられる励起光源と入力結合部の他の変形例を示す要部斜視図。The principal part perspective view which shows the other modification of the excitation light source used for this invention, and an input coupling part.

図1A、図1B、図2Aを参照して本発明の第1の実施形態におけるレーザ発振装置の概要について説明する。
本発明は、コヒーレントな励起光LSRPMPを放射する励起光源3と、励起光LSRPMPを集光する励起光集光手段10と、集光された励起光LSRPMPを共振増幅してエネルギ密度の高いパルス光LSRPLSとして発振する共振器11と、パルス光LSRPLSを拡張する拡張手段13と、拡張されたパルス光LSRPLSを集光するパルス光集光手段14と、保護カバー15とを同軸上に配設してハウジング16、17、18内に一体的に収容した出力部1と、励起光源3と出力部1との間に設けられ励起光LSRPMPを伝送する励起光伝送部2と、を具備するレーザ発振装置6に関するものである。
The outline of the laser oscillation apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1A, 1B, and 2A.
The present invention includes an excitation light source 3 that emits coherent excitation light LSR PMP, the excitation light and the pumping light condensing means 10 for condensing the LSR PMP, the energy density of the focused excitation light LSR PMP resonating amplified coaxial resonator 11 which oscillates as a high pulse light LSR PLS, and expansion means 13 for expanding the pulse light LSR PLS, the pulsed light condensing means 14 for condensing the expanded pulsed light LSR PLS, and a protective cover 15 An output unit 1 disposed on the housing 16, 17, and 18 and integrally disposed in the housings 16, 17, 18; a pumping light transmission unit 2 provided between the pumping light source 3 and the output unit 1 for transmitting the pumping light LSR PMP ; The present invention relates to a laser oscillation device 6 comprising:

励起光伝送部2は、光ファイバ20と、保護被覆21と、固定部材22と、可撓性保護管24とによって構成されている。
本実施形態においては、光ファイバ20の端末面200から励起光集光手段10までの距離を励起光入光距離Lとし、固定部材22が、起光入光距離Lを調整するための距離調整手段として、固定部材22の押し戻し両方向への移動を容易とする固定部保持手段221と、固定部材22を戻り方向に押圧する弾性部材23と、励起光入光距離Lを所定の位置で固定すべく、固定部材22と出力部1とを固定する固定手段25を具備することを特徴とする。
The pumping light transmission unit 2 includes an optical fiber 20, a protective coating 21, a fixing member 22, and a flexible protective tube 24.
In the present embodiment, the distance from the end surface 200 of the optical fiber 20 to the excitation light condensing means 10 is the excitation light incident distance L, and the fixing member 22 adjusts the distance for adjusting the light incident incident distance L. As means, a fixing portion holding means 221 that makes it easy to move the fixing member 22 in both directions of pushing back, an elastic member 23 that presses the fixing member 22 in the returning direction, and an excitation light incident distance L are fixed at predetermined positions. Therefore, it is characterized by including a fixing means 25 for fixing the fixing member 22 and the output unit 1.

以下、出力部1が内燃機関5に設けられ、燃焼室530内に導入した燃料空気混合気体の点火に用いるレーザ点火部として用いた場合を例に詳述する。
レーザ点火装置6は、詳述略の内燃機関5に設けられ、エンジン制御装置4(以下、ECU4と称する。)と、励起光源3と、励起光伝送部2と、出力部(点火部)1とによって構成されている。
Hereinafter, a case where the output unit 1 is provided in the internal combustion engine 5 and used as a laser ignition unit used for ignition of the fuel-air mixed gas introduced into the combustion chamber 530 will be described in detail.
The laser ignition device 6 is provided in an internal combustion engine 5 that is not described in detail, and includes an engine control device 4 (hereinafter referred to as ECU 4), an excitation light source 3, an excitation light transmission unit 2, and an output unit (ignition unit) 1. And is composed of.

ECU4は、内燃機関5の運転状況に応じて点火信号IGtを出力する。
その点火信号IGtにしたがって、励起光源3への駆動電圧の供給とを停止とが行われる。
励起光源3は、フラッシュランプや半導体レーザ等の公知の励起光源を用いることができ、電源から供給されたエネルギを高周波の励起光LSRPMPに変換し、励起光伝送部2を経由して、出力部(点火部)1に励起光LSRPMPを入射する。
The ECU 4 outputs an ignition signal IGt according to the operating condition of the internal combustion engine 5.
In accordance with the ignition signal IGt, the supply of the drive voltage to the excitation light source 3 is stopped.
The pumping light source 3 can be a known pumping light source such as a flash lamp or a semiconductor laser. The pumping light source 3 converts the energy supplied from the power source into high frequency pumping light LSR PMP and outputs it via the pumping light transmission unit 2. Excitation light LSR PMP is incident on the part (ignition part) 1.

励起光伝送部2は、光ファイバ20と、保護被覆21と、固定部材22と、弾性部材23と、可撓性金属保護管24とによって構成されている。
本発明の要部である固定部材22は、例えば、銅、ステンレス、鉄、ニッケルなどの金属を略筒状に形成してある。
固定部材22は、筒状基体220に、その外周の一部を外径方向に向かって鍔状に突出せしめた鍔部221と、外径を段状に縮径した固定部材側径変部222と、出力部(点火部)1との嵌合を図る嵌合部223と、可撓性保護管24との嵌合を図る基端部224と、光ファイバ20を挿入するための貫通孔225が形成されている。
光ファイバ20は、保護被覆21を介して固定部材22に保持された状態で、第1のハウジング16(以下、単にハウジング16と称する。)に固定されている。
固定部材側径変部222は、後述するハウジング側径変部162との間に弾性部材23を収容するための空間を区画する。
The pumping light transmission unit 2 includes an optical fiber 20, a protective coating 21, a fixing member 22, an elastic member 23, and a flexible metal protective tube 24.
The fixing member 22 which is a main part of the present invention is made of, for example, a metal such as copper, stainless steel, iron, or nickel in a substantially cylindrical shape.
The fixing member 22 has a flange portion 221 in which a part of the outer periphery of the cylindrical base body 220 is protruded in a hook shape toward the outer diameter direction, and a fixing member side diameter changing portion 222 whose outer diameter is reduced stepwise. And a fitting portion 223 for fitting with the output portion (ignition portion) 1, a base end portion 224 for fitting with the flexible protective tube 24, and a through hole 225 for inserting the optical fiber 20. Is formed.
The optical fiber 20 is fixed to the first housing 16 (hereinafter simply referred to as the housing 16) while being held by the fixing member 22 via the protective coating 21.
The fixing member side diameter changing portion 222 divides a space for housing the elastic member 23 between the fixing member side diameter changing portion 222 and a housing side diameter changing portion 162 described later.

本実施形態における嵌合部223には、ハウジング16へ圧入したときに、ハウジング16の内周面161と嵌合するように、軸方向に対して僅かに先細りとなるテーパが設けられている。
固定部材22の内側に設けた貫通孔225には、保護被覆21で覆われた光ファイバ20が挿入保持されている。
基端部224には、金属製の可撓性保護管24が嵌着され、レーザ溶接等により固定され、光ファイバ20の保護と、外部からの水分の侵入防止が図られている。
光ファイバ20には、例えば、NA<0.09(NAは、Numerical Aperture、開口数)、コア径600μmの公知の光ファイバを用いることができる。
保護被覆21には、フッ素樹脂やシリコーン樹脂等の公知の可撓性部材が用いられ、光ファイバ20を覆っている。
The fitting portion 223 in the present embodiment is provided with a taper that is slightly tapered with respect to the axial direction so as to be fitted to the inner peripheral surface 161 of the housing 16 when press-fitted into the housing 16.
The optical fiber 20 covered with the protective coating 21 is inserted and held in a through hole 225 provided inside the fixing member 22.
A metal flexible protective tube 24 is fitted to the base end portion 224 and is fixed by laser welding or the like to protect the optical fiber 20 and prevent moisture from entering from the outside.
As the optical fiber 20, for example, a known optical fiber having NA <0.09 (NA is a numerical aperture, numerical aperture) and a core diameter of 600 μm can be used.
A known flexible member such as a fluorine resin or a silicone resin is used for the protective coating 21 and covers the optical fiber 20.

ハウジング16は、例えば、ステンレス、鉄、ニッケルなどの金属を略筒状に形成してある。
ハウジング16は、ハウジング基体160と、内周面161と、ハウジング側径変部162と、基端部163と、ネジ部163と、先端部165と、ネジ締め部167とによって構成されている。
ハウジング16の内周面161には、固定部材22の先端側に設けた嵌合部223が圧入されている。ハウジング16の内周面161は、テーパ状となっているので、固定部材22の嵌合部223を挿入したときに、内周面161から嵌合部223を介して光ファイバ20の外周面に面圧が負荷され、光ファイバ20を保持する力が高まる。
ハウジング側径変部162と固定部材側径変部222とによって、弾性部材収容空間が区画され、略リング状の弾性部材23が収容されている。
本実施形態における弾性部材23は、例えば、ウレタンゴム、フッ素ゴム、シリコーンゴム等の公知の弾性部材からなるシールリングが用いられている。
弾性部材23は、ハウジング側径変部162と固定部材側径変部222とによって軸方向に上下から押圧されており、反力によって、固定部材22を基端側、即ち、戻り方向に向かって押圧している。
For example, the housing 16 is formed of a metal such as stainless steel, iron, or nickel in a substantially cylindrical shape.
The housing 16 includes a housing base 160, an inner peripheral surface 161, a housing side diameter changing portion 162, a base end portion 163, a screw portion 163, a distal end portion 165, and a screw tightening portion 167.
A fitting portion 223 provided on the distal end side of the fixing member 22 is press-fitted into the inner peripheral surface 161 of the housing 16. Since the inner peripheral surface 161 of the housing 16 is tapered, when the fitting portion 223 of the fixing member 22 is inserted, the inner peripheral surface 161 extends from the inner peripheral surface 161 to the outer peripheral surface of the optical fiber 20 via the fitting portion 223. The surface pressure is applied, and the force for holding the optical fiber 20 is increased.
The housing-side diameter changing portion 162 and the fixed member-side diameter changing portion 222 define an elastic member accommodation space, and the substantially ring-shaped elastic member 23 is accommodated.
As the elastic member 23 in the present embodiment, for example, a seal ring made of a known elastic member such as urethane rubber, fluorine rubber, or silicone rubber is used.
The elastic member 23 is pressed from above and below in the axial direction by the housing side diameter changing portion 162 and the fixing member side diameter changing portion 222, and the reaction force causes the fixing member 22 to move toward the base end side, that is, toward the return direction. Pressing.

後述する製造方法によって、共振器11から発振されるパルス光LSRPLSのエネルギ密度PDが最大となるように、光ファイバ20の端末部201から、後述する励起光集光手段10の表面までの距離(以下、励起光入光距離と称する。)Lを調整した状態で、ハウジング基端部163において、固定部材22が固定手段としてレーザ溶接部25を形成して溶接固定されている。
鍔部221は、後述の製造方法に示すように励起光入光距離Lを調整する際に固定部材22をハウジング16内で押し戻し方向への移動を容易にするために用いられるものであり、鍔状に限らず、固定部材22の外周面の一部を窪ませた窪み形状でもよい。
また、本発明において、光ファイバ20の端末部201から、励起光集光手段10の表面までの距離を励起光入光距離Lとして定義しているが、ファイバ20の端末部201から、励起光集光手段10の中心、励起光集光レンズ100の焦点、レンズホルダ101の端面等何らかの規準となる位置までの距離を定義し、これを規準として、光ファイバ20の端末部20の位置を設定できればよい。
The distance from the end portion 201 of the optical fiber 20 to the surface of the excitation light condensing means 10 described later so that the energy density PD of the pulsed light LSR PLS oscillated from the resonator 11 is maximized by the manufacturing method described later. (Hereinafter referred to as excitation light incident distance.) With the L adjusted, the fixing member 22 is welded and fixed at the housing base end 163 by forming a laser welding portion 25 as fixing means.
The flange portion 221 is used for facilitating movement of the fixing member 22 in the housing 16 in the push-back direction when adjusting the excitation light incident distance L as shown in a manufacturing method described later. Not only the shape but also a hollow shape in which a part of the outer peripheral surface of the fixing member 22 is recessed may be used.
In the present invention, the distance from the terminal portion 201 of the optical fiber 20 to the surface of the pumping light collecting means 10 is defined as the pumping light incident distance L. Define the distance to some standard position, such as the center of the condensing means 10, the focal point of the excitation light condensing lens 100, the end face of the lens holder 101, and set the position of the terminal portion 20 of the optical fiber 20 based on this distance. I can do it.

出力部(点火部)1は、励起光集光手段10、共振器11、弾性保持部材12、パルス光拡張手段13、パルス光集光手段14、保護カバー15が、一軸上に配設され、略筒状の第1のハウジング16、第2のハウジング17(以下、ハウジング17と称する。)、第3のハウジング18(以下、ハウジング18と称する。)内に収容固定されて構成されている。
出力部(点火部)1は、内燃機関5のプラグホール501内に収容固定され、先端に配設した保護カバー15を介して燃焼室530内に露出している。
励起光集光手段10は、励起光集光レンズ100とレンズホルダ101とによって構成されている。
The output unit (ignition unit) 1 includes an excitation light condensing unit 10, a resonator 11, an elastic holding member 12, a pulse light expanding unit 13, a pulse light condensing unit 14, and a protective cover 15 arranged on one axis. The first housing 16, the second housing 17 (hereinafter referred to as “housing 17”), and the third housing 18 (hereinafter referred to as “housing 18”) are accommodated and fixed in a substantially cylindrical shape.
The output unit (ignition unit) 1 is housed and fixed in the plug hole 501 of the internal combustion engine 5 and is exposed in the combustion chamber 530 through a protective cover 15 disposed at the tip.
The excitation light condensing means 10 includes an excitation light condensing lens 100 and a lens holder 101.

励起光集光レンズ100には、光学ガラス、耐熱ガラス、石英ガラス、サファイヤガラス等の公知の光学素子材料が用いられ、入射面が先端側に向かって凹面状に窪み、出射面が先端側に向かって凸面状に膨らんで、それぞれが異なる曲率半径を有する非球面レンズを構成して一体的に形成されている。
励起光集光レンズ100の入射面と出射面には、それぞれ、励起光LSRPMPの反射を抑制すべく、フッ化マグネシウム等の公知のARコーティングが施されている。
The excitation light condensing lens 100 is made of a known optical element material such as optical glass, heat-resistant glass, quartz glass, or sapphire glass. The incident surface is concaved toward the tip side, and the exit surface is on the tip side. Aspherical lenses that bulge toward a convex surface and have different radii of curvature are formed integrally.
The entrance surface and the exit surface of the excitation light collecting lens 100 are each provided with a known AR coating such as magnesium fluoride in order to suppress reflection of the excitation light LSR PMP .

励起光集光手段10は、所定の屈折率を有する集光レンズ100とこれを収容するレンズホルダ101とからなり、光ファイバ20の端末面200から放射された励起光LSRPMPを所定のビーム径に集光して共振器11に入射させる。
レンズホルダ101は、その底面と共振器11の上面とが当接したときに、励起光集光レンズ100と共振器11との距離を一定に保持する役割を果たすべく、レンズホルダ101の底面が精度良く加工されている。
The excitation light condensing means 10 includes a condensing lens 100 having a predetermined refractive index and a lens holder 101 that accommodates the condensing lens 100. The excitation light LSR PMP radiated from the terminal surface 200 of the optical fiber 20 is converted into a predetermined beam diameter. The light is condensed and incident on the resonator 11.
When the bottom surface of the lens holder 101 and the top surface of the resonator 11 come into contact with each other, the bottom surface of the lens holder 101 has a function of maintaining a constant distance between the excitation light collecting lens 100 and the resonator 11. Processed with high accuracy.

レーザ共振器11は、レーザ媒質110と、その一方の端面に励起光LSRPMPの反射を抑制するARコーティング111が施され、波長の短い励起光LSRPMP(例えば、波長λIN=808nm)を透過し、波長の長い反射光(例えば、波長λOUT=1064nm)を全反射する全反射鏡112と、他方の端面に配設され、レーザ媒質110内の光が所定のQ値以下の場合には全反射し、Q値を超えた場合には透過する受動Qスイッチを構成する可飽和吸収体113と、部分反射膜114とが一体に形成されて構成されている。
レーザ媒質110には、例えば、YAG単結晶にNdをドーピングしたNd:YAG等、公知のレーザ媒質が用いられている。
また、可飽和吸収体113には、YAG単結晶にCr4+をドーピングしたCr:YAG等受動Qスイッチとして公知のものが用いられている。
The laser resonator 11 is provided with a laser medium 110 and an AR coating 111 that suppresses reflection of the excitation light LSR PMP on one end surface thereof, and transmits the excitation light LSR PMP having a short wavelength (for example, wavelength λ IN = 808 nm). When the reflected light having a long wavelength (for example, the wavelength λ OUT = 1064 nm) is totally reflected and the other end face is disposed, and the light in the laser medium 110 is not more than a predetermined Q value, The saturable absorber 113 constituting the passive Q switch that totally reflects and transmits when the Q value is exceeded, and the partial reflection film 114 are integrally formed.
As the laser medium 110, for example, a known laser medium such as Nd: YAG in which a YAG single crystal is doped with Nd is used.
As the saturable absorber 113, a known passive Q switch such as Cr: YAG in which Y4 single crystal is doped with Cr4 + is used.

共振器11は、共振器11内に導入された励起光LSRPMPを共振、増幅させ、エネルギ密度の高いパルス光LSRPLSとして出射する。
共振器11から放出されるパルス光LSPPLSは、例えば、M=1.2〜1.4の集光性が高く、約φ1.2mmのビーム径を有する平行光となっている。
なお、共振器11は、前記構成に限定するものではなく、レーザ媒質110として、公知のNd:YVO、Nd:GVO、Nd:GGG、Nd:SUAP、Yb:YAG、YB;LUAG、受動Qスイッチ112には、Cr:GGG、V:YAG、Co:スピネル等を適宜採用できる。
The resonator 11 resonates and amplifies the excitation light LSR PMP introduced into the resonator 11 and emits it as pulsed light LSR PLS having a high energy density.
The pulsed light LSP PLS emitted from the resonator 11 is, for example, parallel light having a high light collecting property of M 2 = 1.2 to 1.4 and a beam diameter of about φ1.2 mm.
The resonator 11 is not limited to the above-described configuration. As the laser medium 110, known Nd: YVO, Nd: GVO, Nd: GGG, Nd: SUAP, Yb: YAG, YB; LUAG, passive Q switch For 112, Cr: GGG, V: YAG, Co: spinel, or the like can be appropriately employed.

ハウジング17は、略筒状で、内側には、ハウジング16と螺合するネジ部174と、励起光集光手段10を収容する集光手段収容空間173と、共振器11と弾性部材12とを収容する共振器収容空間172と共振器11から出射されたパルス光LSRPLSが通過する貫通孔171とが形成され、外周には、ネジ締め部177が形成されている。
集光手段収容空間173と共振器収容空間172との間の段差部176は、集光手段11の底面を支持すると共に、第1の基準面S1を構成している。
共振器収容空間172と貫通孔171との間の段差部175は、弾性保持部材12を係止している。
The housing 17 has a substantially cylindrical shape, and on the inner side, a screw portion 174 that is screwed with the housing 16, a condensing means accommodating space 173 that accommodates the excitation light condensing means 10, the resonator 11, and the elastic member 12. A resonator accommodating space 172 to be accommodated and a through hole 171 through which the pulsed light LSR PLS emitted from the resonator 11 passes are formed, and a screw fastening portion 177 is formed on the outer periphery.
The step portion 176 between the light condensing means accommodation space 173 and the resonator accommodation space 172 supports the bottom surface of the light condensing means 11 and constitutes the first reference plane S1.
A step portion 175 between the resonator accommodating space 172 and the through hole 171 locks the elastic holding member 12.

弾性保持部材12は、コイル状バネ等の弾性部材からなり、ハウジング17内に収容された共振器11を基端側に向かって弾性的に押圧し、共振器11の上面とレンズホルダ101の底面との密着状態を維持して、励起光集光手段10と共振器11との距離が一定となるように保持している。
ハウジング17内に、弾性保持部材12、共振器11、励起光集光手段10の順に収容した後、ハウジング16のネジ部194とハウジング17のネジ部174とを螺結することによって、励起光集光手段10と共振器11とが第1の基準面S1にレンズホルダ101の底面が密着してハウジング17内に弾性的保持された状態となる。
弾性シール部材190は、ハウジング16とハウジング17とを螺合したときに、ハウジング16の先端面165が過剰に励起光集光手段10を押圧しないように、緩衝効果を発揮すると共に、ハウジング16とハウジング17とを密着させ共振器収容空間内に水滴等の侵入を防いでいる。
The elastic holding member 12 is made of an elastic member such as a coiled spring, and elastically presses the resonator 11 accommodated in the housing 17 toward the base end side, and the upper surface of the resonator 11 and the bottom surface of the lens holder 101. Is maintained so that the distance between the excitation light condensing means 10 and the resonator 11 is constant.
After housing the elastic holding member 12, the resonator 11, and the excitation light condensing means 10 in this order in the housing 17, the screw portion 194 of the housing 16 and the screw portion 174 of the housing 17 are screwed together to collect the excitation light. The optical means 10 and the resonator 11 are in a state in which the bottom surface of the lens holder 101 is in close contact with the first reference plane S1 and is elastically held in the housing 17.
The elastic seal member 190 exhibits a buffering effect so that the distal end surface 165 of the housing 16 does not excessively press the excitation light collecting means 10 when the housing 16 and the housing 17 are screwed together. The housing 17 is brought into close contact with each other to prevent water droplets or the like from entering the resonator accommodating space.

拡張レンズ130には、光学ガラス、耐熱ガラス、石英ガラス、サファイヤガラス等の公知の光学素子材料が用いられている。
拡張レンズ130の入射面と出射面のそれぞれには、パルス光LSRPLPの反射を抑制するARコーティングが施されている。
また、拡張レンズ130は、入射面と出射面とが異なる曲率半径を有する一体の非球面レンズとなっている。
For the expansion lens 130, a known optical element material such as optical glass, heat-resistant glass, quartz glass, sapphire glass, or the like is used.
Each of the entrance surface and the exit surface of the extension lens 130 is provided with an AR coating that suppresses reflection of the pulsed light LSR PLP .
The extended lens 130 is an integral aspherical lens having different radii of curvature on the entrance surface and the exit surface.

集光レンズ14には、光学ガラス、耐熱ガラス、石英ガラス、サファイヤガラス等の公知の光学素子材料が用いられている。
集光レンズ14の入射面と出射面のそれぞれには、パルス光LSRPLPの反射を抑制するARコーティングが施されている。
また、集光レンズ140は、入射面と出射面とが異なる曲率半径を有する一体の非球面レンズとなっている。
For the condenser lens 14, a known optical element material such as optical glass, heat-resistant glass, quartz glass, sapphire glass, or the like is used.
Each of the incident surface and the exit surface of the condenser lens 14 is provided with an AR coating that suppresses reflection of the pulsed light LSR PLP .
The condensing lens 140 is an integral aspheric lens having different radii of curvature on the entrance surface and the exit surface.

保護ガラス150は、燃焼室530内を臨み、燃焼室530内の熱、圧力、燃料、煤等による汚染等から集光レンズ14を保護している。
保護ガラス15には、光学ガラス、耐熱ガラス、石英ガラス、サファイヤガラス等の公知の光学素子材料が用いられている。
保護ガラス15の入射面には、集光レンズ14から出射されたパルス光LSRPLSの反射を抑制するARコーティングが施されている。
The protective glass 150 faces the inside of the combustion chamber 530 and protects the condenser lens 14 from contamination caused by heat, pressure, fuel, soot and the like in the combustion chamber 530.
For the protective glass 15, a known optical element material such as optical glass, heat-resistant glass, quartz glass, sapphire glass or the like is used.
An AR coating that suppresses reflection of the pulsed light LSR PLS emitted from the condenser lens 14 is applied to the incident surface of the protective glass 15.

ハウジング18には、SUS等の耐熱性金属が用いられている。
ハウジング18は、略筒状で、内側に、パルス光拡張手段13(ビームエキスパンダ)、パルス光集光手段14、保護カバー16を収容保持している。
ハウジング18は、略筒状のハウジング基体180と、その内側に設けたパルス集光レンズ14とスペーサ192と保護カバー15とを収容する集光レンズ収容空間181と、パルス光拡張手段13を収容する拡張レンズ収容空間182と、ハウジング17を螺結するためのネジ部183と、パルス光LSRPLSが通過するための貫通孔184、185と、外周面の一部に設けたハウジング18を内燃機関5のシリンダヘッド50に固定するためのネジ部187と、ネジ部187を締め付けるための六角部188と、集光レンズ収容空間181内に収容されたパルス集光レンズ14とスペーサ192と保護カバー15とを一体的に加締め固定する加締め部186とによって構成されている。
拡張レンズ収容空間182と貫通孔184との段差部は第2の基準面S2となり、拡張レンズ収容空間182内に収容したパルス光拡張手段13のレンズホルダ131の底面が当接する。
A heat resistant metal such as SUS is used for the housing 18.
The housing 18 has a substantially cylindrical shape, and accommodates and holds the pulsed light expanding means 13 (beam expander), the pulsed light condensing means 14 and the protective cover 16 inside.
The housing 18 accommodates the substantially cylindrical housing base 180, the condensing lens housing space 181 that houses the pulse condensing lens 14, the spacer 192, and the protective cover 15 provided inside the housing base 180, and the pulse light expanding means 13. The internal combustion engine 5 includes an expansion lens housing space 182, a screw portion 183 for screwing the housing 17, through holes 184 and 185 for passing the pulsed light LSR PLS, and a housing 18 provided in a part of the outer peripheral surface. A screw portion 187 for fixing to the cylinder head 50, a hexagonal portion 188 for tightening the screw portion 187, the pulse condensing lens 14 accommodated in the condensing lens accommodating space 181, the spacer 192, and the protective cover 15 And a caulking portion 186 for integrally caulking and fixing.
A step portion between the extended lens housing space 182 and the through hole 184 becomes a second reference surface S2, and the bottom surface of the lens holder 131 of the pulsed light expanding means 13 housed in the extended lens housing space 182 contacts.

弾性シール部材191を介挿した状態で、ハウジング17のネジ部178と、ハウジング18のネジ部183とを螺合すると、ハウジング17の先端面179がレンズホルダ131の上面に当接して、レンズホルダ131の底面を第2の基準面S2に弾性的に押圧することになる。
このとき、弾性シール部材191は、レンズホルダ131が過剰に押圧されるのを抑制している。
When the threaded portion 178 of the housing 17 and the threaded portion 183 of the housing 18 are screwed together with the elastic seal member 191 interposed, the front end surface 179 of the housing 17 comes into contact with the upper surface of the lens holder 131, and the lens holder The bottom surface of 131 is elastically pressed against the second reference surface S2.
At this time, the elastic seal member 191 suppresses the lens holder 131 from being excessively pressed.

貫通孔185と、集光レンズ収容空間181との間の段差部は第3の基準面S3となり集光レンズ14、スペーサ192、保護カバー15を収容したときに、集光手段14のレンズホルダ141の上面が当接する。
第2の基準面S2と第3の基準面S3との距離は精度良く加工されており、拡張レンズ130と集光レンズ140との距離が一定となる。
The step portion between the through hole 185 and the condensing lens housing space 181 becomes the third reference surface S3, and when the condensing lens 14, the spacer 192, and the protective cover 15 are housed, the lens holder 141 of the condensing means 14 is used. The upper surface of the abuts.
The distance between the second reference surface S2 and the third reference surface S3 is processed with high accuracy, and the distance between the expansion lens 130 and the condenser lens 140 is constant.

共振器11から出射されるパルス光LSRPLSは、ほぼ平行光であり、拡張レンズ130と集光レンズ140とが一定の距離を隔てて配設されているので、拡張レンズ130で拡張されたパルス光LSRPLSが、集光レンズ140によって集光されたときには、常に所定の集光点FPに集光することになる。
このとき、本発明においては、光ファイバ20の端末面200から出射される励起光LSRPMPの放射角に個体差があっても、共振器11から出射するパルス光LSRPMPの品質、出力がもとっとも高くなるように、励起光入光距離Lが調整されているので、安定した品質のパルス光LSRPLSが一定の位置に集光されるため、安定した着火を実現できるのである。
The pulsed light LSR PLS emitted from the resonator 11 is substantially parallel light, and the extended lens 130 and the condenser lens 140 are arranged at a certain distance, and thus the pulse expanded by the extended lens 130. When the light LSR PLS is condensed by the condenser lens 140, the light LSR PLS is always condensed at a predetermined condensing point FP.
At this time, in the present invention, even if there is an individual difference in the emission angle of the pumping light LSR PMP emitted from the terminal surface 200 of the optical fiber 20, the quality and output of the pulsed light LSR PMP emitted from the resonator 11 are high. Since the excitation light incident distance L is adjusted so as to be as high as possible, the stable quality pulse light LSLPLS is condensed at a certain position, so that stable ignition can be realized.

図2A、図2Bを参照して、本発明の要部である、高品質のパルス光LSRPMPを出力させるために、励起光入光距離Lを調整しながら出力部1と励起光伝送部2とを組み付けする製造方法について説明する。
本発明のレーザ発振装置の製造方法は、少なくとも、保護被覆21で覆われた光ファイバ20を可撓性保護管24内に挿通しながら、筒状の固定部材22内に圧入し、光ファイバ20の端末面200が固定部材22の先端に一致するまで引き出し、可撓性保護管24を固定部材22の基端側224に固定して励起光伝送部2を形成する励起光伝送部形成工程と、略筒状の第2のハウジング17内に弾性保持部材12と共振器11と励起光集光手段10とを収容し、弾性シールリング190を介して、略筒状の第1のハウジング16と第2のハウジング17とを螺結して共振器組立体Wを形成する共振器組立体形成工程と、弾性部材23を介して、励起光伝送部2と、共振器組立体Wとを組み付ける伝送部固定工程と、を具備する。
2A and 2B, in order to output high-quality pulsed light LSR PMP , which is a main part of the present invention, the output unit 1 and the pumping light transmission unit 2 are adjusted while adjusting the pumping light incident distance L. Will be described.
In the method of manufacturing the laser oscillation device of the present invention, at least the optical fiber 20 covered with the protective coating 21 is pressed into the cylindrical fixing member 22 while being inserted into the flexible protective tube 24, and the optical fiber 20 is inserted. A pumping light transmission part forming step in which the pumping light transmission part 2 is formed by pulling out the terminal surface 200 of the fixing member 22 until it coincides with the distal end of the fixing member 22 and fixing the flexible protective tube 24 to the proximal end side 224 of the fixing member 22; The elastic holding member 12, the resonator 11, and the excitation light condensing means 10 are accommodated in the substantially cylindrical second housing 17, and the substantially cylindrical first housing 16 is interposed via the elastic seal ring 190. A resonator assembly forming step of forming a resonator assembly W by screwing the second housing 17, and a transmission for assembling the pumping light transmission unit 2 and the resonator assembly W via the elastic member 23. Part fixing step.

以下、各工程、及び、本発明のレーザ発振装置の完成までに必要な工程について順を追って詳述する。
予め、図2Aに示すように、保護被覆21で覆われた光ファイバ20を可撓性保護管24内に挿通しながら、筒状の固定部材22内に圧入し、光ファイバ20の端末面200が固定部材22の先端に一致するまで引き出し、可撓性保護管24を固定部材22の基端側に溶接固定して励起光伝送部2が完成する。
このとき、樹脂製の保護被覆21は弾性を有するので、弾性変形しながら固定部材22内を摺動するが、光ファイバ20の末端部200を所定位置に配設し、静止した状態になると、保護被覆21の復元力が固定部材22の内周面及び光ファイバ20に作用し、摩擦力によって光ファイバ20が固定部材22内で移動することがない。なお、光ファイバ20と固定部材22との間に接着剤を充填したり、固定用リングを圧入したりしても良い。
Hereinafter, each step and steps necessary until the completion of the laser oscillation device of the present invention will be described in detail.
As shown in FIG. 2A, the optical fiber 20 covered with the protective coating 21 is inserted into the cylindrical fixing member 22 while being inserted into the flexible protective tube 24, and the end surface 200 of the optical fiber 20 is inserted. Is pulled out until it coincides with the distal end of the fixing member 22, and the flexible protective tube 24 is welded and fixed to the proximal end side of the fixing member 22 to complete the excitation light transmission unit 2.
At this time, since the resin protective coating 21 has elasticity, it slides inside the fixing member 22 while being elastically deformed. However, when the distal end portion 200 of the optical fiber 20 is disposed at a predetermined position and becomes stationary, The restoring force of the protective coating 21 acts on the inner peripheral surface of the fixing member 22 and the optical fiber 20, and the optical fiber 20 does not move in the fixing member 22 due to frictional force. Note that an adhesive may be filled between the optical fiber 20 and the fixing member 22, or a fixing ring may be press-fitted.

次いで、ハウジング17内に弾性保持部材12と共振器11と励起光集光手段10とを収容し、弾性シールリング190を介して、ハウジング16とハウジング17と螺結する。
さらに、励起光伝送部2と、内部に弾性保持部材12と共振器11と励起光集光手段10とを収容しハウジング16、17が一体となったもの(以下、共振器組立体Wと称する。)と、弾性部材23とを、図2Bに示すような、組付装置ASMによって組み付けを行う。
Next, the elastic holding member 12, the resonator 11, and the excitation light collecting means 10 are accommodated in the housing 17, and are screwed to the housing 16 and the housing 17 via the elastic seal ring 190.
Further, the pumping light transmission unit 2, the elastic holding member 12, the resonator 11, and the pumping light condensing means 10 are accommodated therein, and the housings 16 and 17 are integrated (hereinafter referred to as a resonator assembly W). And the elastic member 23 are assembled by an assembling apparatus ASM as shown in FIG. 2B.

組付装置ASMの一例と合わせて、本発明の要部である励起光入光距離調整工程について説明する。
組付装置ASMは、伝送部保持クランプCLP1と、ワーククランプCLP2、CLP3、伝送部固定位置調整手段SVOと、パルス光モニタMONと、固定装置として設けたレーザ溶接機WLDと、これらを駆動制御する制御装置CNTとによって構成されている。
組立体保持手段として設けられたワーククランプCLP2、CLP3は、生後装置CNTによって開閉駆動され、共振器組立体Wを保持固定する。
このとき、ハウジング16、17の外周に設けたネジ締め部167、177を利用しても良い。
Together with an example of the assembling apparatus ASM, an excitation light incident distance adjusting step that is a main part of the present invention will be described.
The assembly device ASM drives and controls the transmission unit holding clamp CLP1, the work clamps CLP2 and CLP3, the transmission unit fixing position adjusting means SVO, the pulsed light monitor MON, the laser welding machine WLD provided as a fixing device. It is comprised by the control apparatus CNT.
The work clamps CLP2 and CLP3 provided as assembly holding means are driven to open and close by the postnatal device CNT, and hold and fix the resonator assembly W.
At this time, you may utilize the screw fastening part 167,177 provided in the outer periphery of the housings 16,17.

伝送部保持手段として設けられた伝送部保持クランプCLP1は、励起光伝送部2の固定部材22に設けた鍔部221を保持する。
伝送部保持クランプCLP1は、伝送部固定位置調整手段SVOによって駆動され、固定部材22の先端に設けた嵌合部223を共振器組立体Wのハウジング16の内周面161に摺動するように移動させる。
伝送部固定位置調整手段SVOは、励起光入光距離Lを30μm以上300μm以下の調整幅で調整可能となっている。
The transmission part holding clamp CLP1 provided as the transmission part holding means holds the flange part 221 provided on the fixing member 22 of the excitation light transmission part 2.
The transmission portion holding clamp CLP1 is driven by the transmission portion fixing position adjusting means SVO so that the fitting portion 223 provided at the tip of the fixing member 22 slides on the inner peripheral surface 161 of the housing 16 of the resonator assembly W. Move.
The transmission unit fixed position adjusting means SVO can adjust the excitation light incident distance L with an adjustment width of 30 μm to 300 μm.

パルス光モニタMONは、励起光伝送部2を利用して、励起光源3から励起光LSRPMPを共振器組立体W内に導入したときに、共振器11内のビームプロファイルをモニタし、出力が最大となる光ファイバ20の端末面200の位置を検出する。
具体的には、ビームプロファイルを検出する励起光モニタMONとして、公知のイメージスセンサ式のレーザビームプロファイラやスキャン式のレーザビームプロファイラ等を用いることができる。
また、本発明では、相対的な結果が分かればよいので、エネルギ密度の代用特性として、共振器11の出力側表面の温度分布等を計測しても良い。
制御装置CNTは、伝送部固定位置調整手段SVOを駆動して、励起光入光距離Lを変化させながら、励起光モニタMONによって検出された共振器11内のビームプロファイルが最適となる位置を判定し、最もレーザ品質が高く出力が安定したときの励起光入光距離Lで伝送部固定位置調整手段SVOをを停止し、レーザ溶接機WLDを駆動させて、固定部材22とハウジング16の基端部163とをレーザ溶接により固定することにより、共振器組立体Wと励起光伝送部2との組み付けが完了する。
The pulsed light monitor MON monitors the beam profile in the resonator 11 when the pumping light LSR PMP is introduced from the pumping light source 3 into the resonator assembly W using the pumping light transmission unit 2, and the output is monitored. The position of the terminal surface 200 of the optical fiber 20 that is maximum is detected.
Specifically, as the excitation light monitor MON for detecting the beam profile, a known image sensor type laser beam profiler, a scanning type laser beam profiler, or the like can be used.
In the present invention, since the relative result only needs to be known, the temperature distribution on the output side surface of the resonator 11 may be measured as a substitute characteristic of the energy density.
The control device CNT determines the position where the beam profile in the resonator 11 detected by the excitation light monitor MON is optimal while driving the transmission unit fixed position adjusting means SVO and changing the excitation light incident distance L. Then, the transmission portion fixing position adjusting means SVO is stopped at the excitation light incident distance L when the laser quality is the highest and the output is stable, and the laser welding machine WLD is driven to fix the fixing member 22 and the base end of the housing 16. By fixing the part 163 by laser welding, the assembly of the resonator assembly W and the pumping light transmission unit 2 is completed.

なお、伝送部固定位置調整手段SVOは、サーボモータ、ソレノイドアクチュエータ、エアシリンダ等の駆動手段と、ボール螺子やリニアガイド等の移動方向変換手段と、変速ギア等とを組み合わせて、前進後退、又は、正転逆転によって、固定部材22の押し戻しを30μmから300μmの範囲で自在に制御できるものであればどのような機構であっても構わない。
また、ハウジング16の内周面161には、先端に向かって径小となるように僅かに傾斜面が施されており、固定部材22を圧入したときに、ハウジング16と固定部材22との間に面圧が作用し、固定部材22内に配設された光ファイバ20が固定部材22内を移動することはない。
The transmission unit fixed position adjusting means SVO is a combination of a driving means such as a servo motor, a solenoid actuator, an air cylinder, a moving direction converting means such as a ball screw or a linear guide, and a speed change gear. Any mechanism may be used as long as the pressing back of the fixing member 22 can be freely controlled in the range of 30 μm to 300 μm by forward and reverse rotation.
In addition, the inner peripheral surface 161 of the housing 16 is slightly inclined so that the diameter decreases toward the tip, and when the fixing member 22 is press-fitted, the housing 16 is fixed between the fixing member 22 and the inner surface 161. A surface pressure acts on the optical fiber 20 so that the optical fiber 20 disposed in the fixing member 22 does not move in the fixing member 22.

さらに、弾性部材23は、伝送部固定位置調整手段SVOを移動させている間は、固定部材22を反挿入方向へ付勢するため、伝送部固定位置手段SVOによって、急激に固定部材22がハウジング16内に挿入されるのを抑制することができる。
また、固定部材22とハウジング16との組み付けが完了した後は、ハウジング16と固定部材22との気密性を確保し、内部に水滴などの侵入を阻止するシール部材として機能する。
なお、共振器11から出射されたパルス光LSRPLSは、全反射鏡MLを用いて、出射方向を特定の方向に変化させてパルス光モニタMONへ入力するようにし、戻り光による共振器11等の損傷を防止するようにしても良い。
Further, the elastic member 23 urges the fixing member 22 in the anti-insertion direction while the transmission unit fixing position adjusting unit SVO is moved, so that the fixing member 22 is suddenly moved into the housing by the transmission unit fixing position unit SVO. 16 can be suppressed.
In addition, after the assembly of the fixing member 22 and the housing 16 is completed, the airtightness between the housing 16 and the fixing member 22 is ensured, and the seal member functions as a seal member that prevents intrusion of water droplets or the like inside.
The pulsed light LSR PLS emitted from the resonator 11 is input to the pulsed light monitor MON by changing the emission direction to a specific direction by using the total reflection mirror ML, and the resonator 11 and the like by return light. The damage may be prevented.

図3A、図3B、図3C、図4A、図4B、図4C、図5を参照して本発明の効果を確認するために行った試験について説明する。
図2Bに示した組立装置ASMと同様の原理で、光ファイバ20の端末面200から励起光集光手段10の表面までの距離Lを3.0mmから3.6mmまで変化させてたときの共振器11の出力をモニタした。
A test conducted to confirm the effect of the present invention will be described with reference to FIGS. 3A, 3B, 3C, 4A, 4B, 4C, and 5. FIG.
Resonance when the distance L from the end surface 200 of the optical fiber 20 to the surface of the excitation light condensing means 10 is changed from 3.0 mm to 3.6 mm based on the same principle as the assembling apparatus ASM shown in FIG. 2B. The output of the vessel 11 was monitored.

励起光入光距離Lを変化させたとき、最も出力が高くなった位置(L=3.3mm)を実施例1とし、実施例1よりも、励起光入光距離Lを短くしたとき(L=3.0mm)を比較例1とし、実施例1よりも、励起光入光距離Lを長くしたとき(L=3.6mm)を比較例2とする。
図3A、図4Aに示すように、比較例1においては、出力されるビーム径が小さく、エネルギ密度も低い。
また、図3C、図4Cに示すように、比較例2においては、出力されるビーム径は大きくなるが、中心部分のエネルギ密度が平均化され、却って出力強度は低下する。
図3B、図4B、図5に示すように、励起光入光距離Lには、パルス光LSRPLSの出力強度を最大とする最適値が存在する。
特に、レーザ媒質110内のエネルギ分布が、図4Bに示すように、ガウス関数に近くなるほど、出力品質が向上する。
When the excitation light incident distance L is changed, the position where the output is highest (L = 3.3 mm) is taken as Example 1, and when the excitation light incident distance L is made shorter than in Example 1 (L = 3.0 mm) is Comparative Example 1, and when the excitation light incident distance L is longer than that of Example 1 (L = 3.6 mm) is Comparative Example 2.
As shown in FIGS. 3A and 4A, in Comparative Example 1, the output beam diameter is small and the energy density is low.
As shown in FIGS. 3C and 4C, in Comparative Example 2, the output beam diameter is increased, but the energy density in the central portion is averaged, and the output intensity is decreased.
As shown in FIG. 3B, FIG. 4B, and FIG. 5, the excitation light incident distance L has an optimum value that maximizes the output intensity of the pulsed light LSR PLS .
In particular, as the energy distribution in the laser medium 110 becomes closer to a Gaussian function as shown in FIG. 4B, the output quality is improved.

一方、励起光入力距離Lの最適値は、励起光源2に用いられる半導体レーザの品質、光ファイバ20への入力結合時の損失、光ファイバ20の端末面200の端面形状等によって端末面200から出射される励起光LSRPMPのる放射角に個体差がある。
しかし、本発明により、このような個体差があっても、共振器組立体Wに励起光LSRPMPを入光して、パルス光LSRPLSの出力をモニタしながら励起光入光距離Lを調整することによって、出力の最適化を図ることができる。
On the other hand, the optimum value of the pumping light input distance L depends on the quality of the semiconductor laser used for the pumping light source 2, the loss at the time of input coupling to the optical fiber 20, the end face shape of the end face 200 of the optical fiber 20, etc. There is an individual difference in the radiation angle of the emitted excitation light LSR PMP .
However, according to the present invention, even if there is such individual difference, the pumping light LSR PMP is incident on the resonator assembly W, and the pumping light incident light distance L is adjusted while monitoring the output of the pulsed light LSR PLS. By doing so, the output can be optimized.

図6を参照して、本発明の第2の実施形態におけるレーザ発振装置6aの要部である、出力部1a、及び、励起光伝送部2aについて説明する。
本実施形態においては、前記実施形態と同様の構成を基本とし、励起光入光距離Lの調整を図るための調整手段と、最適な励起光入光距離Lを決定した後固定部材22aとハウジング16aとを固定するための固定手段25aが相違する。
このため、前記実施形態と同様の構成については、同じ符号を付し、本実施形態における特徴的な部分にアルファベットの枝番を付して示したので、特徴的な部分についてのみ説明する。なお、図6中では、光ファイバ20を覆う保護被覆21の図示を略している。以下の実施形態においても同様である。
With reference to FIG. 6, the output part 1a and the excitation light transmission part 2a which are the principal parts of the laser oscillation apparatus 6a in the 2nd Embodiment of this invention are demonstrated.
In this embodiment, based on the same configuration as that of the above-described embodiment, the adjusting means for adjusting the excitation light incident distance L, the fixing member 22a and the housing after determining the optimum excitation light incident distance L The fixing means 25a for fixing 16a is different.
For this reason, the same reference numerals are given to the same configurations as those in the above-described embodiment, and the characteristic portions in the present embodiment are indicated with alphabetical branch numbers, so only the characteristic portions will be described. In FIG. 6, the protective coating 21 covering the optical fiber 20 is not shown . The same applies to the following embodiments.

前記実施形態においては、励起光入光距離Lを調整するのに、鍔部221をクランプCLP1によって保持して、固定位置調整装置SVOによって、固定部材22を前後させ、レーザ溶接部25によって固定部材22とハウジング16とを直接的に固定した例を示したが、本実施形態においては、ハウジング16aのネジ部を設けた先端部163aに螺合するナット部250aと、ナット部250aを固定するロック部材251aとを設け、弾性部材23aを先端側に向かって縮径するテーパ面を設けた先端先細り形状とし、ハウジング16aのハウジング側径変部162aの一部にもテーパ面を設けた点が相違する。   In the above embodiment, in order to adjust the excitation light incident distance L, the flange 221 is held by the clamp CLP1, the fixing member 22 is moved back and forth by the fixing position adjusting device SVO, and the fixing member is fixed by the laser welding unit 25. In the present embodiment, a nut portion 250a that is screwed into a tip portion 163a provided with a screw portion of the housing 16a and a lock that fixes the nut portion 250a are shown. The member 251a is provided, and the elastic member 23a has a tapered shape with a tapered surface that reduces the diameter toward the distal side, and a tapered surface is also provided on a part of the housing side diameter changing portion 162a of the housing 16a. To do.

本実施形態では、ナット部250aをネジ締めすると、鍔部221が押し込まれ、励起光入光距離Lが短くなり、ナット部250aを緩めると、弾性部材23aの復元力によって、固定部側径変部222が基端側に押し戻され、励起光入光距離Lが長くなる。
前記実施形態においては、上述の組立装置ASMにおいて、転送部保持クランプCLP1によって鍔部221を保持して固定部材22を押し戻し移動させたが、本実施形態においては、ナット部250aの締め緩み移動するように固定位置調整装置SVOを構成することによって励起光入光距離Lを調整できる。
In this embodiment, when the nut portion 250a is tightened, the flange portion 221 is pushed in, the excitation light incident distance L is shortened, and when the nut portion 250a is loosened, the fixing portion side diameter changes due to the restoring force of the elastic member 23a. The portion 222 is pushed back to the base end side, and the excitation light incident distance L is increased.
In the above-described embodiment, in the above-described assembly device ASM, the fixing member 22 is pushed back by holding the flange portion 221 by the transfer portion holding clamp CLP1, but in this embodiment, the nut portion 250a is tightened and loosened. By configuring the fixed position adjusting device SVO as described above, the excitation light incident distance L can be adjusted.

本実施形態においては、前記実施形態と同様の効果に加え、ナット部250aを弾性部材23aがによって押圧されたときに、先端側に設けたテーパ面がハウジング側径変部162aのテーパ面に押し込まれ、径方向に向かう弾性圧力が発生し、固定部材22aが強固に保持される。
ロック部材251aは、前記実施形態と同様に共振器11内におけるビームプロファイルが最適となる位置でナット部250aを固定する。
本実施形態において、具体的なロック部材251aの固定方法を特に限定するものではないが、例えば、環状部材を固定部材基体220の基端側から圧入したり、固定部材22の基端側にネジ部を形成して、ロックナットでナット部250aを締め付けるようにしたり、ナット部250aと固定部材基体220とを溶接固定したりすることで実現できる。
In the present embodiment, in addition to the same effects as in the previous embodiment, when the nut portion 250a is pressed by the elastic member 23a, the tapered surface provided on the tip side is pushed into the tapered surface of the housing side diameter changing portion 162a. As a result, an elastic pressure in the radial direction is generated, and the fixing member 22a is firmly held.
The lock member 251a fixes the nut portion 250a at a position where the beam profile in the resonator 11 is optimal as in the above embodiment.
In the present embodiment, the specific fixing method of the lock member 251a is not particularly limited. For example, the annular member is press-fitted from the base end side of the fixing member base 220, or the base member side of the fixing member 22 is screwed. This can be realized by forming a portion and tightening the nut portion 250a with a lock nut or by fixing the nut portion 250a and the fixing member base 220 by welding.

図7を参照して、本発明の第3の実施形態におけるレーザ発振装置6bの要部である、出力部1b、及び、励起光伝送部2bについて説明する。
本実施形態では、第2の実施形態と同様の構成において、弾性部材23aに代えて、弾性部材23bとして、コイル状のバネ部材を用いた点が相違する。
本実施形態においては、第2の実施形態と同様の方法により励起光入光距離Lを最適化した後、固定部材22bをハウジング16bに対して所定位置に保持できる。
本実施形態においては、第2の実施形態のように、弾性部材23aの圧力を径方向の保持力に利用することはできないが、少なくとも、第1の実施形態と同様の効果が発揮できる。
With reference to FIG. 7, the output part 1b and the excitation light transmission part 2b which are the principal parts of the laser oscillation apparatus 6b in the 3rd Embodiment of this invention are demonstrated.
The present embodiment is different from the second embodiment in that a coiled spring member is used as the elastic member 23b in place of the elastic member 23a.
In the present embodiment, after the excitation light incident distance L is optimized by the same method as in the second embodiment, the fixing member 22b can be held at a predetermined position with respect to the housing 16b.
In this embodiment, unlike the second embodiment, the pressure of the elastic member 23a cannot be used for the holding force in the radial direction, but at least the same effect as that of the first embodiment can be exhibited.

図8を参照して、本発明の第4の実施形態におけるレーザ発振装置6cの要部である、出力部1c、及び、励起光伝送部2cについて説明する。
前記実施形態においては、弾性部材23、23a、23bを固定部材22、22a、22bの固定部材側径変部222と、ハウジング側径変部162、162aとによって区画された空間内に収容した例を示したが、本実施形態においては、その空間を弾性部材23cの収容空間として利用するのではなく、固定手段25cとして、エポキシ樹脂や、接着剤等のロック部材251cを充填するための空間として利用し、弾性部材23cは、ハウジング16cの基端部163cの上面と鍔部221及びナット部250aとの間に形成される空間内に収容した点が相違する。
With reference to FIG. 8, the output part 1c and the excitation light transmission part 2c which are the principal parts of the laser oscillation apparatus 6c in the 4th Embodiment of this invention are demonstrated.
In the embodiment, the elastic members 23, 23a, 23b are accommodated in a space defined by the fixing member side diameter changing portion 222 of the fixing members 22, 22a, 22b and the housing side diameter changing portions 162, 162a. However, in this embodiment, the space is not used as a housing space for the elastic member 23c, but is used as a space for filling the lock member 251c such as epoxy resin or adhesive as the fixing means 25c. The difference is that the elastic member 23c is housed in a space formed between the upper surface of the base end portion 163c of the housing 16c and the flange portion 221 and the nut portion 250a.

本実施形態においては、基端部163cに貫通孔162cを設け、固定部材22cとハウジング基端部162cとの間に形成された空間と連通させ、貫通孔162cから、ロック部材251cを流し込み、固化させて固定部材22cを所定位置に固定することができる。
本実施形態においても、第1、第3の実施形態と同様の効果が発揮される。
In the present embodiment, a through hole 162c is provided in the base end portion 163c to communicate with a space formed between the fixing member 22c and the housing base end portion 162c, and the lock member 251c is poured from the through hole 162c to be solidified. Thus, the fixing member 22c can be fixed at a predetermined position.
Also in this embodiment, the same effect as the first and third embodiments is exhibited.

図9を参照して、本発明のレーザ発振装置に適用可能な、励起光源の変形例3dと励起光伝送部2への入力結合手段について説明する。
前記実施形態においては、公知の励起光源3を使用し、出力部1には、励起光源3に内蔵された1つの半導体レーザから発振された励起光LSRPMPが入力される構成を示したが、本実施形態においては、励起光源3dが、複数の半導体レーザ30と、それぞれの半導体レーザ30から出射される励起光LSRPMPを集光する集光レンズ31と、複数の励起光LSRPMPをまとめて集光する集光手段32と、集光手段32を通過した励起光LSRPMPの光ファイバ20への入光角度を変化させる反射鏡33を具備する点が相違する。
本実施形態においては、励起光源3dから光ファイバ20に入光側の端末面203に入力結合される励起光LSRPMPの0入光角度を変化させることにより、光ファイバ20の出光側の端末面200から出射する励起光LSRPMPの放射角度θの安定化を図っている。
With reference to FIG. 9, a description will be given of a modification 3d of the excitation light source applicable to the laser oscillation apparatus of the present invention and an input coupling means to the excitation light transmission unit 2. FIG.
In the above embodiment, a known pumping light source 3 is used, and the output unit 1 is configured to receive pumping light LSR PMP oscillated from one semiconductor laser built in the pumping light source 3. In the present embodiment, the excitation light source 3d collects the plurality of semiconductor lasers 30, the condensing lens 31 that collects the excitation light LSR PMP emitted from each semiconductor laser 30, and the plurality of excitation lights LSR PMP. The difference is that the condensing unit 32 that condenses and the reflecting mirror 33 that changes the incident angle of the excitation light LSR PMP that has passed through the condensing unit 32 into the optical fiber 20 are different.
In the present embodiment, the light incident side terminal surface of the optical fiber 20 is changed by changing the zero incident angle of the pumping light LSR PMP that is coupled to the light incident side terminal surface 203 from the pumping light source 3d to the optical fiber 20. The radiation angle θ of the excitation light LSR PMP emitted from 200 is stabilized.

励起光源3dでは、ハウジング34内に、複数の半導体レーザ30が、球面上若しくは湾曲面上に配設されている。
それぞれの半導体レーザ30の出光方向には所定の屈折率を有するシリンドリカルレンズ31が配設されている。
シリンドリカルレンズ31を介して集光された複数の励起光LSRPMPは集光レンズ320とレンズホルダ321とからなる集光手段32を介して集光されながら、略すり鉢状の鏡面を有する反射鏡33内に導入され、光ファイバ20の入射側端末部203から光ファイバ20内に入力される。
In the excitation light source 3d, a plurality of semiconductor lasers 30 are arranged on a spherical surface or a curved surface in the housing 34.
A cylindrical lens 31 having a predetermined refractive index is disposed in the light output direction of each semiconductor laser 30.
The plurality of excitation lights LSR PMP collected through the cylindrical lens 31 are collected through the condenser means 32 including the condenser lens 320 and the lens holder 321, and the reflecting mirror 33 having a substantially mortar-like mirror surface. And is inputted into the optical fiber 20 from the incident side terminal portion 203 of the optical fiber 20.

光ファイバ20な内部は屈折率の高いコア201と相対的に屈折率の低いクラッド202によって構成されており、光ファイバ20内では、入光された励起光LSRPMPが、コア201とクラッド201との境界で反射を繰り返しながら伝送される。
このとき、本実施形態のように、複数の半導体レーザ30から出射された励起光LSRPMPがそれぞれ、異なる入射角で光ファイバ20内に入力されるので、コア201内に複数の伝送モードが存在することになり、コア201内で副屈折が促進され、合成波の形成により、出射側の端末面200から出射される励起光LSRPMPの放射角θが一定となる。
The inside of the optical fiber 20 is constituted by a core 201 having a high refractive index and a clad 202 having a relatively low refractive index. In the optical fiber 20, the pumping light LSR PMP that has entered the core 201, the clad 201, It is transmitted while repeating reflection at the boundary.
At this time, since the pumping light LSR PMP emitted from the plurality of semiconductor lasers 30 is input into the optical fiber 20 at different incident angles as in the present embodiment, there are a plurality of transmission modes in the core 201. As a result, the secondary refraction is promoted in the core 201, and the radiation angle θ of the excitation light LSR PMP emitted from the terminal surface 200 on the emission side becomes constant due to the formation of the composite wave.

図10、図11を参照して、本発明に用いられる励起光源と入力結合部の変形例3e、3fを具備するレーザ装置6e、6fについて説明する。
図9に示した構成では、半導体レーザ30を球面上に配設し、反射鏡33を反射面が略円錐面状に形成した例を示したが、図10に示す変形例3eでは、複数の半導体レーザを平板状に並べたレーザダイオードアレイ(レーザバーともいう。)30eと複数の集光レンズを各半導体レーザの光軸上に位置するように配設したレンズアレイ31eとによって励起光源3eを構成し、光ファイバ20との入力結合部に、曲率半径が光ファイバ20との連結側に向かって徐々に大きくなり、光軸に対して光源側に向かって凸となる湾曲面状の反射面を有する反射鏡33eが用いられている。
さらに、図11に示す変形例33fでは、平面状に複数の半導体レーザを配設した面発光レーザ30fと、複数の集光レンズを各半導体レーザの光軸上に位置するように配設したレンズアレイ31fとによって励起光源3fを構成し、光ファイバ20との入力結合部に、曲率半径が光ファイバ20との連結側に向かって徐々に大きくなり、光軸に対して光源側に向かって凸となる湾曲面状の反射面を有する反射鏡33fが用いられている。
このような構成とすることによって、励起光源3、3eから放射された励起光LSRPMPが反射鏡33e、33fで励起光源側に戻る戻り光の発生を抑制して、さらなる光ファイバ20へ結合される励起光LSRPMPの集光効率の向上を図ることもできる。
なお、本変形例は、上記実施形態におけるレーザ装置のいずれにも適宜採用し得るものである。
With reference to FIGS. 10 and 11, laser devices 6e and 6f including modifications 3e and 3f of the excitation light source and the input coupling unit used in the present invention will be described.
In the configuration shown in FIG. 9, an example in which the semiconductor laser 30 is disposed on a spherical surface and the reflecting mirror 33 is formed so that the reflecting surface has a substantially conical surface shape is shown. However, in the modified example 3e shown in FIG. An excitation light source 3e is constituted by a laser diode array (also called a laser bar) 30e in which semiconductor lasers are arranged in a flat plate shape and a lens array 31e in which a plurality of condensing lenses are arranged on the optical axis of each semiconductor laser. In addition, a curved reflecting surface whose radius of curvature gradually increases toward the connection side with the optical fiber 20 and protrudes toward the light source side with respect to the optical axis is provided at the input coupling portion with the optical fiber 20. A reflecting mirror 33e is used.
Further, in the modified example 33f shown in FIG. 11, a surface emitting laser 30f in which a plurality of semiconductor lasers are arranged in a planar shape, and a lens in which a plurality of condenser lenses are arranged on the optical axis of each semiconductor laser. The excitation light source 3f is constituted by the array 31f, and the radius of curvature gradually increases toward the connection side with the optical fiber 20 at the input coupling portion with the optical fiber 20, and protrudes toward the light source side with respect to the optical axis. A reflecting mirror 33f having a curved reflecting surface is used.
With such a configuration, the excitation light LSR PMP radiated from the excitation light sources 3 and 3e is coupled to the further optical fiber 20 by suppressing the generation of return light returning to the excitation light source side by the reflecting mirrors 33e and 33f. It is also possible to improve the light collection efficiency of the excitation light LSRPMP.
In addition, this modification can be suitably employed for any of the laser devices in the above embodiment.

前記実施形態においては、本発明のレーザ発振装置を内燃機関用の点火装置として用いた場合を例として説明したが、本発明のレーザ発振装置は、点火装置としての用途に限定されるものでなく、レーザ溶接機やレーザ切断機、レーザ加工機等の用途にも適宜採用し得るものである。
この場合においても、効率よくパルスレーザが発振されるので、共振器の発熱が抑制され、加工速度の向上を図ることができる。
また、共振器の冷却システムの小型化、低コスト化も可能となる。
In the above embodiment, the case where the laser oscillation device of the present invention is used as an ignition device for an internal combustion engine has been described as an example. However, the laser oscillation device of the present invention is not limited to an application as an ignition device. Also, it can be appropriately employed for applications such as laser welding machines, laser cutting machines, and laser processing machines.
Also in this case, since the pulse laser is efficiently oscillated, the heat generation of the resonator is suppressed, and the processing speed can be improved.
Also, the resonator cooling system can be reduced in size and cost.

1 出力部(点火部)
10 励起光集光手段
11 共振器
12 弾性保持部材
13 パルス光拡張手段
14 パルス光集光手段
15 保護カバー
16、17、18 ハウジング
2 励起光伝送部
20 光ファイバ
21 保護被覆
22 固定部材
220 固定部基体
221 距離調整手段(鍔部)
222 固定部材側径変部
223 嵌合部
224 基端部
225 光ファイバ挿入孔
3 励起光源
4 電子制御装置(ECU)
5 内燃機関
6 レーザ発振装置(レーザ点火装置)
1 Output part (ignition part)
DESCRIPTION OF SYMBOLS 10 Excitation light condensing means 11 Resonator 12 Elastic holding member 13 Pulse light expansion means 14 Pulse light condensing means 15 Protective covers 16, 17, 18 Housing 2 Excitation light transmission part 20 Optical fiber 21 Protective coating 22 Fixing member 220 Fixing part Base body 221 Distance adjusting means (buttock)
222 fixing member side diameter changing portion 223 fitting portion 224 base end portion 225 optical fiber insertion hole 3 excitation light source 4 electronic control unit (ECU)
5 Internal combustion engine 6 Laser oscillation device (laser ignition device)

特表2010−539530号公報Special table 2010-539530 gazette

Claims (12)

コヒーレントな励起光(LSRPMP)を放射する励起光源(3)と、
前記励起光(LSRPMP)を集光する励起光集光手段(10)と、集光された励起光(LSRPMP)を共振増幅してエネルギ密度の高いパルス光(LSRPLS)として発振する共振器(11)と、前記パルス光(LSRPLS)を拡張する拡張手段(13)と、拡張されたパルス光(LSRPLS)を集光するパルス光集光手段(14)と、保護カバー(15)とを同軸上に配設して、筒状のハウジング(16、16a、16b、16c、17、18)内に一体的に収容した出力部(1)と、
前記励起光源(3)と前記出力部(1)との間に設けられ前記励起光(LSRPMP)を伝送する励起光伝送部(2)と、を具備するレーザ発振装置であって、
前記励起光伝送部(2)が、光ファイバ(20)と、保護被覆(21)で覆われた前記光ファイバ(20)が圧入される筒状の固定部材(22)と、前記固定部材(22)の基端側(224)に固定されて該基端側(224)に露出する前記光ファイバ(20)の外周を保護する可撓性保護管(24)と、を含み、
前記固定部材(22)の先端に一致する前記光ファイバ(20)の端末面(200)から前記励起光集光手段(10)までの距離を励起光入光距離(L)とし、
前記固定部材(22)が、前記励起光入光距離(L)を調整するための距離調整手段として、前記固定部材(22)の押し戻し両方向への移動を容易とする固定部保持手段(221)と、前記固定部材(22)を戻り方向に押圧する弾性部材(23、23a、23b、23c)と、前記励起光入光距離(L)を所定の位置で固定すべく、前記固定部材(22)と前記出力部(1)とを固定する固定手段(25、25a、25c)を具備し、
前記固定部材(22)の先端側に設けた嵌合部(223)が、前記ハウジング(16、16a、16b、16c)の筒内に圧入され、前記嵌合部(223)より基端側において、前記固定部材(22)の外周面と前記ハウジング(16、16a、16b、16c)との間に区画される空間に、前記弾性部材(23、23a、23b、23c)が収容されていることを特徴とするレーザ発振装置(6、6a、6b、6c、6d、6e、6f)
An excitation light source (3) that emits coherent excitation light (LSR PMP );
Resonance for oscillating said excitation light (LSR PMP) the focused excitation light condensing means (10), focused excitation light (LSR PMP) and resonates amplified energy dense pulse light as (LSR PLS) a vessel (11), the pulsed light and (LSR PLS) expansion means for expanding (13), and extended pulsed light (LSR PLS) pulsed light condensing means for condensing the (14), a protective cover (15 And an output portion (1) integrally disposed in a cylindrical housing (16, 16a, 16b, 16c, 17, 18),
A laser oscillation device comprising: an excitation light transmission unit (2) that is provided between the excitation light source (3) and the output unit (1) and transmits the excitation light (LSR PMP );
The excitation light transmission unit (2) includes an optical fiber (20), a cylindrical fixing member (22) into which the optical fiber (20) covered with a protective coating (21) is press-fitted, and the fixing member ( 22) a flexible protective tube (24) fixed to the base end side (224) of the optical fiber (20) and protecting the outer periphery of the optical fiber (20) exposed to the base end side (224),
The distance from the end surface (200) of the optical fiber (20) that coincides with the tip of the fixing member (22) to the excitation light condensing means (10) is defined as an excitation light incident distance (L),
As the distance adjusting means for adjusting the excitation light incident distance (L), the fixing member (22) makes it easy to move the fixing member (22) in both directions of pushing back. And the elastic member (23, 23a, 23b, 23c) for pressing the fixing member (22) in the return direction, and the fixing member (22) to fix the excitation light incident distance (L) at a predetermined position. And fixing means (25, 25a, 25c) for fixing the output section (1),
A fitting portion (223) provided on the distal end side of the fixing member (22) is press-fitted into the cylinder of the housing (16, 16a, 16b, 16c), and on the proximal side from the fitting portion (223). The elastic member (23, 23a, 23b, 23c) is accommodated in a space defined between the outer peripheral surface of the fixing member (22) and the housing (16, 16a, 16b, 16c). Laser oscillation device characterized by (6, 6a, 6b, 6c, 6d, 6e, 6f)
前記弾性部材(23、23a)は、前記ハウジング(16、16a)の内周面と前記固定部材(22、22a)の外周面との間に区画した空間内に収容したシール部材である請求項1に記載のレーザ発振装置(6、6a、6d、6e、6f)   The elastic member (23, 23a) is a seal member accommodated in a space defined between an inner peripheral surface of the housing (16, 16a) and an outer peripheral surface of the fixing member (22, 22a). 1 (6, 6a, 6d, 6e, 6f) 前記固定手段が、前記ハウジング(16)の基端部(163)において前記固定部材(22)を溶接固定した溶接部(25)である請求項1に記載のレーザ発振装置(6、6d、6e、6f)   The laser oscillation device (6, 6d, 6e) according to claim 1, wherein the fixing means is a welded portion (25) in which the fixing member (22) is fixed by welding at a base end portion (163) of the housing (16). 6f) 前記固定手段(25a)が、前記ハウジング(16a、16b)の基端部(163a)に設けたネジ部に螺合して前記固定部材(22a、22b)を締め付け固定するナット部(250a)と、
該ナット部(250a)を固定するロック部材(251a)とである請求項1に記載のレーザ発振装置(6a、6b、6d、6e、6f)
A nut portion (250a) for fastening the fixing member (22a, 22b) by fastening the fixing means (25a) to a screw portion provided at a base end portion (163a) of the housing (16a, 16b); ,
The laser oscillation device (6a, 6b, 6d, 6e, 6f) according to claim 1, which is a lock member (251a) for fixing the nut portion (250a).
前記固定手段(25c)が、前記ハウジング(16c)の基端部(163c)に設けたネジ部に螺合して前記固定部材(22c)を締め付け固定するナット部(250c)と、
前記固定部材(22c)の外周面と前記ハウジング(16c)の内周面との間に区画した空間内に充填し、固化させたロック部材(251c)とである請求項1に記載のレーザ発振装置(6c、6d、6e、6f)
A nut portion (250c) in which the fixing means (25c) is screwed into a screw portion provided on a base end portion (163c) of the housing (16c) to fasten and fix the fixing member (22c);
The laser oscillation according to claim 1, which is a lock member (251c) filled and solidified in a space defined between an outer peripheral surface of the fixing member (22c) and an inner peripheral surface of the housing (16c). Device (6c, 6d, 6e, 6f)
前記励起光源(3d)が、複数の半導体レーザ(30)と、それぞれの半導体レーザ(30)から出射される励起光(LSRPMP)を集光する集光レンズ(31)と、複数の励起光(LSRPMP)をまとめて集光する集光手段(32)と、該集光手段(32)を通過した励起光(LSRPMP)の前記光ファイバ(20)への入光角度を変化させる反射鏡(33)を具備する請求項1ないし5のいずれか記載のレーザ発振装置(6d) The excitation light source (3d) includes a plurality of semiconductor lasers (30), a condensing lens (31) that collects excitation light (LSR PMP ) emitted from each semiconductor laser (30), and a plurality of excitation lights. and (LSR PMP) collectively condensed to the condensing means (32), reflection of changing the light incident angle to the optical fiber (20) of the excitation light that has passed through the light-concentrating means (32) (LSR PMP) The laser oscillation device (6d) according to any one of claims 1 to 5, further comprising a mirror (33). 前記励起光源(3d)が、複数の半導体レーザ(30)と、それぞれの半導体レーザ(30)から出射される励起光(LSRPMP)を集光する集光レンズ(31)と、複数の励起光(LSRPMP)をまとめて集光する集光手段(32)と、該集光手段(32)を通過した励起光(LSRPMP)の前記光ファイバ(20)への入光角度を変化させる反射鏡(33)を具備し、前記反射鏡(33)の反射面が光軸に対して光源側に向かって凸となる湾曲面を具備している請求項1ないし5のいずれか記載のレーザ発振装置(6e、6f) The excitation light source (3d) includes a plurality of semiconductor lasers (30), a condensing lens (31) that collects excitation light (LSR PMP ) emitted from each semiconductor laser (30), and a plurality of excitation lights. and (LSR PMP) collectively condensed to the condensing means (32), reflection of changing the light incident angle to the optical fiber (20) of the excitation light that has passed through the light-concentrating means (32) (LSR PMP) The laser oscillation according to any one of claims 1 to 5, further comprising a mirror (33), wherein the reflecting surface of the reflecting mirror (33) has a curved surface that is convex toward the light source with respect to the optical axis. Device (6e, 6f) 前記出力部(1、1a、1b、1c、1d)が内燃機関(5)に設けられ、燃焼室(530)内に導入した燃料空気混合気体の点火に用いるレーザ点火部である請求項1ないし6のいずれか記載のレーザ発振装置(6、6a、6b、6c、6d、6e、6f)   The output part (1, 1a, 1b, 1c, 1d) is a laser ignition part provided in the internal combustion engine (5) and used for ignition of a fuel-air mixed gas introduced into the combustion chamber (530). 6. The laser oscillation device according to any one of 6 (6, 6a, 6b, 6c, 6d, 6e, 6f) 少なくとも、保護被覆(21)で覆われた光ファイバ(20)を可撓性保護管(24)内に挿通しながら、筒状の固定部材(22)内に圧入し、前記光ファイバ(20)の端末面(200)が前記固定部材(22)の先端に一致するまで引き出し、前記可撓性保護管(24)を前記固定部材(22)の基端側(224)に固定すると共に、前記固定部材(22)の先端側に設けた嵌合部(223)を、筒状の第1のハウジング(16)内に圧入し、前記嵌合部(223)の基端側において、前記固定部材(22)の外周面と前記第1のハウジング(16)の内周面との間に区画される空間に、弾性部材(23)を収容して励起光伝送部(2)を形成する励起光伝送部形成工程と、
略筒状の第2のハウジング(17)内に弾性保持部材(12)と共振器(11)と励起光集光手段(10)とを収容し、弾性シールリング(190)を介して、略筒状の第1のハウジング(16)と前記第2のハウジング(17)とを螺結して共振器組立体(W)を形成する共振器組立体形成工程と、
前記弾性部材(23)を介して、前記励起光伝送部(2)と、前記共振器組立体(W)とを組み付ける伝送部固定工程と、を具備し、
前記伝送部固定工程が、前記弾性部材(23)を介した状態で、前記光ファイバ(20)の端末面(200)から前記励起光集光手段(10)までの励起光入光距離(L)を調整する励起光入光距離調整工程を具備することを特徴とするレーザ発振装置の製造方法
At least the optical fiber (20) covered with the protective coating (21) is press-fitted into the cylindrical fixing member (22) while being inserted into the flexible protective tube (24), and the optical fiber (20). The terminal surface (200) of the fixing member (22) is pulled out until it coincides with the distal end of the fixing member (22), the flexible protective tube (24) is fixed to the base end side (224) of the fixing member (22) The fitting portion (223) provided on the distal end side of the fixing member (22) is press-fitted into the cylindrical first housing (16), and the fixing member is disposed on the proximal end side of the fitting portion (223). the space defined between the inner circumferential surface of the outer peripheral surface of the (22) first housing (16), to form the excitation light transmitting portion to accommodate the elastic member (23) (2) excitation An optical transmission part forming step;
The elastic holding member (12), the resonator (11), and the excitation light condensing means (10) are accommodated in the substantially cylindrical second housing (17), and are substantially interposed via the elastic seal ring (190). A resonator assembly forming step of forming a resonator assembly (W) by screwing a cylindrical first housing (16) and the second housing (17);
A transmission unit fixing step for assembling the excitation light transmission unit (2) and the resonator assembly (W) through the elastic member (23) ;
Excitation light incident distance (L) from the end face (200) of the optical fiber (20) to the excitation light condensing means (10) in the state where the transmission unit fixing step is via the elastic member (23). And a pumping light incident distance adjusting step for adjusting the excitation light incident distance adjusting step.
前記伝送部固定工程が、前記共振器(11)内に前記励起光(LSRPMP)を導入して、前記励起光入光距離(L)を調整し、前記共振器(11)内のビームプロファイルをモニタしながら該出力が最大となる位置で、前記励起光伝送部(2)と前記共振器組立体(W)とを固定する請求項9記載のレーザ発振装置の製造方法 The transmission unit fixing step introduces the pumping light (LSR PMP ) into the resonator (11), adjusts the pumping light incident distance (L), and a beam profile in the resonator (11). at a position where the output is maximized while monitoring the manufacturing method of the excitation light transmitting portion (2) and the resonator assembly (W) and a laser oscillating apparatus of Ru solid Teisu claim 9, wherein 前記伝送部固定工程が、
前記共振器組立体(W)を保持固定する組み立体保持手段(CLP2、CLP3)と、
前記励起光伝送部(2)を保持する伝送部保持手段(CLP1)と、前記伝送部保持手段(CLP1)を駆動して前記伝送部(2)を押し戻し駆動する伝送部固定位置調整手段(SVO)と、
前記励起光伝送部(2)を介して励起光(LSRPMP)を前記組立体(W)に導入して、前記共振器(11)内のビームプロファイルを検出する励起光モニタ(MON)と、
前記励起光伝送部(2)と前記共振器組立体とを固定する固定装置(WLD)と、
前記伝送部固定位置調整手段(SVO)と前記励起光モニタ(MON)と前記固定装置(WLD)とを駆動制御する制御装置(CNT)とによって構成した組立装置(ASM)を具備し、
前記伝送部固定位置調整手段(SVO)を駆動させて前記励起光入光距離(L)を変化させながら前記励起光モニタ(MON)によって検出したビームプロファイルから出力が最大となる位置において、前記伝送部固定位置調整手段(SVO)を停止させ、
前記固定装置(WLD)を駆動して前記励起光伝送部(2)と前記共振器組立体(W)とを固定する請求項9又は10に記載のレーザ発振装置の製造方法
The transmission unit fixing step includes
Assembly solid holding means (CLP2, CLP3) for holding and fixing the resonator assembly (W);
Transmission unit holding means (CLP1) for holding the pumping light transmission unit (2), and transmission unit fixed position adjusting unit (SVO) for driving the transmission unit holding unit (CLP1) and driving the transmission unit (2) back. )When,
An excitation light monitor (MON) that introduces excitation light (LSR PMP ) into the assembly (W) via the excitation light transmission unit (2) and detects a beam profile in the resonator (11);
A fixing device (WLD) for fixing the pumping light transmission unit (2) and the resonator assembly;
An assembly device (ASM) configured by a control device (CNT) for driving and controlling the transmission unit fixed position adjusting means (SVO), the excitation light monitor (MON), and the fixing device (WLD);
In the output from the beam profile detected by the excitation light monitor (MON) is the maximum position while before Ki励 vary the force light incident distance (L) by driving the transmission portion securing position adjustment means (SVO), Stop the transmission unit fixed position adjusting means (SVO),
The method of manufacturing a laser oscillation device according to claim 9 or 10, wherein the fixing device (WLD) is driven to fix the pumping light transmission unit (2) and the resonator assembly (W).
前記励起光入光距離(L)の調整幅が30μm以上300μm以下である請求項11に記載のレーザ発振装置の製造方法   The method for manufacturing a laser oscillation device according to claim 11, wherein an adjustment width of the excitation light incident distance (L) is 30 µm or more and 300 µm or less.
JP2013019462A 2013-02-04 2013-02-04 Laser oscillation device and manufacturing method thereof Active JP6097584B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013019462A JP6097584B2 (en) 2013-02-04 2013-02-04 Laser oscillation device and manufacturing method thereof
DE201410201832 DE102014201832A1 (en) 2013-02-04 2014-02-03 Laser reciprocating device for use in laser igniter utilized in internal combustion engine, has elastic element, and fastening unit for fastening attachment member to output part such that distance is fixed to predetermined value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019462A JP6097584B2 (en) 2013-02-04 2013-02-04 Laser oscillation device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014150222A JP2014150222A (en) 2014-08-21
JP6097584B2 true JP6097584B2 (en) 2017-03-15

Family

ID=51206257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019462A Active JP6097584B2 (en) 2013-02-04 2013-02-04 Laser oscillation device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6097584B2 (en)
DE (1) DE102014201832A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002834B1 (en) * 2014-09-30 2019-09-25 Ricoh Company, Ltd. Laser device, ignition system, and internal combustion engine
US20160094006A1 (en) * 2014-09-30 2016-03-31 Kentaroh Hagita Laser device, ignition system, and internal combustion engine
JP2016072610A (en) * 2014-09-30 2016-05-09 株式会社リコー Laser apparatus, ignition apparatus and internal combustion engine
JP6741207B2 (en) * 2014-09-30 2020-08-19 株式会社リコー Laser device, ignition device and internal combustion engine
JP6638184B2 (en) * 2014-11-05 2020-01-29 株式会社リコー Laser module
EP3220494A4 (en) * 2014-11-10 2018-07-11 Sanhe Laserconn Tech Co., Ltd. High-power semiconductor laser based on vcsel and optical convergence method therefor
KR101706550B1 (en) * 2015-01-20 2017-02-14 김남성 High Efficiency Laser Ignition Apparatus
DE102015119216A1 (en) * 2015-11-09 2017-05-11 Volkswagen Ag Ignition device for an internal combustion engine
WO2017094778A1 (en) 2015-12-02 2017-06-08 株式会社リコー Laser device, ignition device, and internal combustion engine
JP2017111278A (en) * 2015-12-16 2017-06-22 株式会社リコー Optical window member, laser device, ignition device, and internal combustion engine
JP6930077B2 (en) * 2016-09-02 2021-09-01 株式会社リコー Laminate, light emitting device, light source unit, laser device, ignition device
JP2019165087A (en) * 2018-03-19 2019-09-26 株式会社リコー Laser device, ignition device, and internal combustion engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3514374A1 (en) * 1985-04-20 1986-10-23 Fa. Carl Zeiss, 7920 Heidenheim Connecting sleeve for launching a laser beam into an optical waveguide
JPH01181488A (en) * 1988-01-11 1989-07-19 Canon Inc Semiconductor laser device
JPH06201921A (en) * 1992-12-28 1994-07-22 Hitachi Cable Ltd Optical parts and its fixing method
JP2800963B2 (en) * 1994-01-21 1998-09-21 オグラ宝石精機工業株式会社 High energy light beam connector
JPH07261057A (en) * 1994-03-18 1995-10-13 Shinko Electric Ind Co Ltd Optical fiber terminal
JP3130435B2 (en) * 1994-11-11 2001-01-31 株式会社精工技研 Manufacturing method of optical coupling device between light source and optical fiber
JPH0943454A (en) * 1995-07-26 1997-02-14 Canon Inc Optical module
JP2002151765A (en) * 2000-11-08 2002-05-24 Rion Co Ltd Laser oscillator and optical scattering particle detector using the same
JP2003302555A (en) * 2002-04-11 2003-10-24 Oki Electric Ind Co Ltd Method and device for manufacturing collimator
JP2006261194A (en) * 2005-03-15 2006-09-28 Jtekt Corp Fiber laser oscillator
JP2007067271A (en) * 2005-09-01 2007-03-15 Fujifilm Corp Laser module
JP2007241093A (en) * 2006-03-10 2007-09-20 Tyco Electronics Amp Kk Optical connector
DE102007044011A1 (en) 2007-09-14 2009-03-19 Robert Bosch Gmbh Diode laser with a device for beam shaping
JP2011114005A (en) * 2009-11-24 2011-06-09 Central Glass Co Ltd Laser light source device
JP5729869B2 (en) * 2011-07-05 2015-06-03 株式会社日本自動車部品総合研究所 Solid laser fixing method and laser ignition device using the same

Also Published As

Publication number Publication date
DE102014201832A1 (en) 2014-08-07
JP2014150222A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP6097584B2 (en) Laser oscillation device and manufacturing method thereof
KR101102786B1 (en) Ignition device for an internal combustion engine
JP5873689B2 (en) Laser ignition device
EP2280408B1 (en) Light source device
JP6261471B2 (en) Laser processing equipment
US8746196B2 (en) Laser spark plug for an internal combustion engine
EP3002835A1 (en) Laser device, ignition system, and internal combustion engine
WO2019181304A1 (en) Laser ignition device
JP5729869B2 (en) Solid laser fixing method and laser ignition device using the same
JP2010014030A (en) Laser ignition device
JP6741207B2 (en) Laser device, ignition device and internal combustion engine
JP2009194076A (en) Laser ignition device
JP2019167888A5 (en)
JP2016072610A (en) Laser apparatus, ignition apparatus and internal combustion engine
JP5978053B2 (en) Laser ignition device
JP2005101504A (en) Laser apparatus
US6285705B1 (en) Solid-state laser oscillator and machining apparatus using the same
JP2020060725A (en) Laser oscillator and laser processing equipment using the same
TW211605B (en)
JP2011014646A (en) Passive q-switched solid-state laser oscillator and laser ignition device
JP2006147987A (en) Laser oscillator
JP2009188090A (en) Laser oscillator
JP6595712B2 (en) Solid state laser equipment
KR102058574B1 (en) Microchip laser oscillator device
WO2021125162A1 (en) Beam quality control device and laser device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6097584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250