JP2004281595A - Solid state laser apparatus - Google Patents

Solid state laser apparatus Download PDF

Info

Publication number
JP2004281595A
JP2004281595A JP2003069172A JP2003069172A JP2004281595A JP 2004281595 A JP2004281595 A JP 2004281595A JP 2003069172 A JP2003069172 A JP 2003069172A JP 2003069172 A JP2003069172 A JP 2003069172A JP 2004281595 A JP2004281595 A JP 2004281595A
Authority
JP
Japan
Prior art keywords
light
crystal
dielectric multilayer
multilayer film
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003069172A
Other languages
Japanese (ja)
Inventor
Takayoshi Ito
隆喜 伊東
Hironori Hirato
平等  拓範
Ichiro Shoji
庄司  一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakayama Prefecture
Original Assignee
Wakayama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakayama Prefecture filed Critical Wakayama Prefecture
Priority to JP2003069172A priority Critical patent/JP2004281595A/en
Publication of JP2004281595A publication Critical patent/JP2004281595A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a small-sized solid state laser apparatus having a short resonator length is obtained with the structure of an end face excitation type having a practical performance. <P>SOLUTION: The solid state laser apparatus A includes a potassium tungstate crystal 1, to which Yb is added for optically exciting by absorbing an exciting laser beam 7 from an exciting laser beam supply means 5. In the solid state laser apparatus A, a first dielectric multilayer film 3 having the reflectivity of a light having an oscillation wavelength of 99.4% or more and the transmittivity of the light in the exciting wavelength of 90% or more is vapor-deposited on the end face 9 of the potassium tungstate crystal 1 of the exciting laser incident side. A second dielectric multilayer film 4 which transmits the light of the oscillation wavelength and which has the reflectivity of the light in the exiting wavelength of 99.9% or more is vapor-deposited on the end face 10 of the potassium tungstate crystal of the laser beam emitting side. A light transmissive heat sink means 2 is fixed to the exciting laser beam incident side of the potassium tungstate crystal 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、加工用レーザ装置、学術研究用レーザ装置などの固体レーザ発生装置や、高密度記録媒体である光ディスク等の記録並びに再生を目的としたレーザ装置などに利用される固体レーザ装置に関する。
【0002】
【従来の技術】
これまでに知られている、Nd(ネオジム)を添加したYAl12 結晶を半導体レーザ光で励起する場合、励起波長808nmに対してレーザ発振波長は1064nmである。従って、フォトンエネルギーの比である量子効率は76%となり、当然にレーザの光−光変換効率は76%までにとどまる。これに伴って、吸収された励起パワーの24%(熱発生率)は不可逆的に熱に変換される。
【0003】
一方で、Nd以外のレーザ活性イオンを用いた波長1ミクロン帯の固体レーザの研究開発が活性化している。その中で、Yb (イッテルビウム )系の固体レーザ装置、特にYbを添加したYAl12 結晶(Yb:YAG)を用いたものは、940nmないし970nmの半導体レーザ光で励起して1030nmの発振レーザ光を出射し、前述の量子効率が90%を超えるため本質的に効率が良いことで知られている。
【0004】
しかしながら、Yb:YAG結晶はレーザ下準位に全Ybイオン数の5%ものイオンが熱励起された状態にあるため、レーザ発振に必要な反転分布を形成しにくいという不具合がある。更に、レーザ下準位が温度依存性を持つので、当然にレーザ発振閾値や出力特性も温度依存性を持つ。そのため、下記の特許文献1に示されたように、Yb:YAG結晶を−100℃で動作させる温度制御・冷却装置を備える必要がある。従って、装置が大型になり生産現場などに設置することが困難なため実用的でない。
【0005】
【特許文献1】
特開平10−294520号公報
【0006】
他方で、Ybを添加したタングステン酸イットリウムカリウム結晶(Yb:KY(WO)は量子効率が極めて高く蛍光幅が広いため、準四準位系の高効率レーザ媒質として期待されている。但し、励起波長981nmが発振波長1022nmと極めて近いため、レーザ光軸方向の端面間が短い結晶でのレーザ発振が困難である。
そこで、Yb:KY(WO結晶の励起レーザ光入側端面に蒸着膜を蒸着し、この蒸着膜を共振器の後部鏡として利用する試みがなされている。
【0007】
【発明が解決しようとする課題】
ところが、前記の蒸着膜は、図7に示した分光スペクトルのように、発振波長で高反射となっているのに対し、励起波長においては損失が20%以上あるために発振閾値が上がり、マイクロチップ化に必要な、いわゆる端面励起ができない。この問題を回避するために、従来はブリュースタ角に加工した結晶を共振器内に設置して励起を行っていたが、装置が大掛かりになるという欠点があった。
【0008】
そこで、前記のブリュースタ角に加工した結晶の使用を省くために、結晶のレーザ光出射側端面に無反射コートが蒸着される。この無反射コートは、図8の分光スペクトル中の矢印Kで示すように、励起波長(980nm)においてほとんど反射しない。そのため、レーザ光出射側に外部鏡を設けなければならず、かえって共振器の小型化を妨げる一因になっていた。
【0009】
本発明は、上記した従来の問題点に鑑みてなされたものであって、実用的な性能を有する端面励起方式の構成でありながら、共振器長が短い小型の固体レーザ装置の提供を目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る固体レーザ装置は、励起用レーザ光供給手段からの励起用レーザ光を吸収して光励起させる、Ybを添加したタングステン酸カリウム系結晶を備えた固体レーザ装置であって、前記タングステン酸カリウム系結晶の励起レーザ光入射側の端面に、発振波長における光の反射率が99.4%以上で、かつ、励起波長における光の透過率が90%以上である第1誘電体多層膜が蒸着された構成にしてある。
【0011】
また、前記構成に加えて、前記タングステン酸カリウム系結晶のレーザ光出射側の端面に、発振波長の光を部分透過し、かつ、励起波長における光の反射率が99.9%以上である第2誘電体多層膜が蒸着されたものである。
【0012】
そして、前記した各構成において、前記タングステン酸カリウム系結晶の励起レーザ光入射側に、光透過性の放熱手段を設けたものである。
【0013】
【発明の実施の形態】
本発明の実施の形態を図面に基づいて説明する。尚、以下に述べる実施形態は本発明を具体化した一形態に過ぎず、本発明の技術的範囲を限定するものでない。ここに、図1は本発明の一実施形態に係る固体レーザ装置の概略構成図である。
図において、この実施形態に係る固体レーザ装置Aは、結晶全体で原子数比5%のイッテルビウム(Yb)を添加したタングステン酸イットリウムカリウム結晶(5at.% Yb:KY(WO、結晶1)を有して成る共振器Bと、この結晶1の後方に配置された励起用レーザ光出射手段5と、結晶1と励起用レーザ光供給手段5の間に配置されて励起用レーザ光供給手段5からの励起用レーザ光7を集光して共振器Bに供給するレンズ6とを備えている。この固体レーザ装置Aは励起レーザ光軸と出射レーザ光軸が平行(この例では同軸)な端面励起方式に構成されている。結晶1の偏光方向はE//aである。E//aは光の電場Eと結晶1のa軸が平行であることを示している。また、この結晶1は立方晶系で2回対称軸を有する結晶(C2/c)である。
【0014】
結晶1の励起レーザ光入射側の端面9には第1誘電体多層膜3が蒸着されている。この第1誘電体多層膜3は公知の真空蒸着法により高屈折率膜と低屈折率膜を交互に蒸着して積層したものである。この場合、第1誘電体多層膜3は、発振波長(1020nmから1140nm)における反射率が99.4%以上で、かつ、励起波長(980nm)における透過率が90%以上となるように、前記の高屈折率膜および低屈折率膜の膜材料、膜厚、および積層数がそれぞれ設定されている。
ここでは、例えば、高屈折率膜と低屈折率膜の積層数を合計で約80層とした。高屈折率膜は五酸化タンタル(Ta)を膜材料として成膜し、低屈折率膜は酸化ケイ素(SiO)を膜材料として成膜した。そして、高屈折率膜の膜厚はλ(設計波長)/4を目標値とし、このλ/4から微小に変えてある。また、低屈折率膜も、高屈折率膜と同様に各層の膜厚を調整してある。これらにより、前記した特徴的な反射率範囲および透過率範囲を有する第1誘電体多層膜3を得ることができた。
【0015】
前記の第1誘電体多層膜3と対向する、結晶1のレーザ光出射側の端面10には第2誘電体多層膜4が蒸着されている。この第2誘電体多層膜4も第1誘電体多層膜3と同じ成膜法(真空蒸着法)により高屈折率膜と低屈折率膜が交互に蒸着して形成されていて、発振波長(中心波長1020nm)の光を部分透過し、かつ、励起波長(980nm)における光の反射率が99.9%以上となるように、高屈折率膜および低屈折率膜の膜材料(Ta/SiO)、膜厚(λ/4を目標値として各層ごとに微小に変化させた)、および積層数(約80層)がそれぞれ設定されている。
【0016】
上記の結晶1は前後方向の長さL(すなわち、第1誘電体多層膜3と第2誘電体多層膜4間の寸法)が例えば1mmとなるように形成されている。また、励起用レーザ光供給手段5は例えば波長980.8nmのTi:サファイアレーザ光(励起用レーザ光7)を出射するようになっている。そして、誘電体多層膜3の後面には光透過性の放熱手段2が取り付けられている。この放熱手段2は例えばサファイアから成り、光学接着剤により誘電体多層膜3の後面に固定されている。
【0017】
下記の表1に、本実施形態に用いた、Ybを添加したタングステン酸イットリウムカリウム結晶(Yb:KY(WO、結晶1)の分光特性に係るパラメータを示す。従来汎用の、Ybを添加したYAl12 (Yb:YAG)結晶の分光特性も比較して示す。
結晶1の最小励起率βminはYb:YAGと比べて高いため反転分布形成が困難になるが、高い吸収断面積を反映して励起光飽和強度が低くなる。そのため、反転分布形成に必要な最小励起強度IminはYb:YAGの数分の1となり、発振閾値を低く抑えることが可能になる。また、波長981nmでの吸収が強く、この波長における励起が実用的に可能なため、スロープ効率が高くなる。さらに、蛍光幅△λeがYb:YAGの約1.7倍と広く、超短パルス発生にも適している。
【0018】
【表1】

Figure 2004281595
【0019】
続いて、上記のように構成された固体レーザ装置Aの動作を説明する。まず、励起用レーザ光供給手段5から出射された励起用レーザ光7はレンズ6により集光されたのち放熱手段2および第1誘電体多層膜3を透過しスポット径63μmで結晶1に照射される。結晶1に照射された励起用レーザ光7は第1誘電体多層膜3および第2誘電体多層膜4で反射しながら結晶1でレーザ励起されることにより、波長1020nmの出射レーザ光8として第2誘電体多層膜4から放射される。
【0020】
この実施形態の固体レーザ装置Aにおける入出力特性を図2に示す。図2によれば、発振波長1022nmのレーザ光出力が発振閾値386mW(吸収励起パワー)で得られ、最大出力が56mWであり、スロープ効率(吸収励起パワーに対する出力の比)は45%であった。
【0021】
第1誘電体多層膜3の透過率特性を図3に示す。この第1誘電体多層膜3の透過率特性および後述する第2誘電体多層膜4の透過率特性は汎用の光スペクトラムアナライザ(分光器)を用いて測定した。
図3のグラフによると、第1誘電体多層膜3は波長980nm(グラフ中の曲線上の矢印Fで示す)での光の透過率が90%であり、波長1020nm(グラフ中の曲線上の矢印Gで示す)での光の反射率が99.5%であった。
【0022】
第2誘電体多層膜4の透過率特性を図4に示す。図4のグラフによれば、波長980nm(グラフ中の曲線上の矢印Hで示す)での光の透過率がほぼ0(反射率≒100%)であった。これにより、励起用レーザ光7は100%近くが結晶1に吸収されて励起されることがわかる。一方、波長1020nm(グラフ中の曲線上の矢印Jで示す)での光の反射率は98%であるため、中心波長1020nmのレーザ光8が出射される。
【0023】
上記したように、本実施形態に係る固体レーザ装置Aにおいて、結晶1の励起レーザ光入射側の結晶端面に形成された第1誘電体多層膜3は、励起光に対して高透過で損失が小さく、1020nmの光に対して高反射の特性を有しているため、質の良い端面励起に適した後部鏡となる。これと対向するレーザ光出射側の結晶端面に形成された第2誘電体多層膜4は、励起光に対して高反射であり、出射レーザ光に対して部分透過性を有しているために効率の良い出力鏡となる。
【0024】
従って、第1誘電体多層膜3と第2誘電体多層膜4の存在により結晶1での吸収効率が一定以上に確保されるから、第1誘電体多層膜3〜第2誘電体多層膜4間の結晶1の長さLが短くて済む。これにより、結晶1の長さL(共振器長)を1mm以下とした、いわゆるマイクロチップレーザを実現できたのである。
また、本実施形態に用いた結晶1は量子効率ひいては光−光変換効率が高いために、元来、レーザ動作時の発熱が少ないが、加えてサファイア製の放熱手段2を備えているので、結晶1の熱障害を確実に抑止することができる。
【0025】
尚、上記の実施形態では放熱手段としてサファイアを例示したが、本発明の放熱手段はサファイアに限らず、熱伝導性が良く、励起波長の光に対し透過率の良い結晶を用いることができる。
【0026】
あるいは、図5に示すように、放熱手段を備えていない共振器B1を有する固体レーザ装置A1も本発明に含まれる。かかる構成の場合でも、本発明で用いた、Ybを添加したタングステン酸カリウム系結晶は、Yb:YAGなどと比べ吸収効率がよくエネルギ損失が少ないから、放熱手段を用いなくても実用化が可能である。
【0027】
更には、図6に示すように、結晶1のレーザ光出射側端面に第2誘電体多層膜4のない共振器B2を有する固体レーザ装置A2も、本発明に含まれる。かかる構成の場合には、結晶1のレーザ光出射側に光部分透過性の外部鏡11が配備される。
【0028】
そして、本発明に用いるタングステン酸カリウム系結晶としては、Ybを添加したKY(WO結晶に限らない。例えば、Ybを添加したタングステン酸カリウムガドリニウム結晶(Yb:KGd(WO)を用いることもできる。尚、タングステン酸カリウム系結晶の切断方向は、結晶軸のa軸,b軸,c軸のいずれであっても良い。
【0029】
他方、第1誘電体多層膜と第2誘電体多層膜における高屈折率膜と低屈折率膜を成膜する方法としては、前記した真空蒸着法に限るものでなく、他に例えば、スパッタリング法、イオンプレーティング法、溶融法、CVD(Chemical Vapor Deposition)法、MBE(Molecular Beam Epitaxy)法、電子ビーム法、イオンビーム法など、公知の方法を用いることができる。
また、第1誘電体多層膜と第2誘電体多層膜における高屈折率膜と低屈折率膜を構成する膜材料としては、既述したTa/SiOに限らない。すなわち、他の膜材料として、高屈折率膜用では例えばZrO,TiO,Ta,Nb,HfO,CeOなどが挙げられ、低屈折率膜用では例えばAl,GeO,Y,MgF,AlFなどが挙げられる。また、第1誘電体多層膜の膜材料と第2誘電体多層膜の膜材料は、異なる種類の材料を用いても構わない。
高屈折率膜と低屈折率膜の積層数は特に限定されないが、例えば二十数層から二百数十層とすることが好ましい。積層数が二十数層を下回ると、本発明の特徴的な所定反射率と所定透過率が得られなくなるおそれがある。逆に、積層数が多すぎて二百数十層を超えると、製造コストが高騰して現実的でなくなる。
【0030】
【発明の効果】
以上詳述したように、本発明によれば、Ybを添加したタングステン酸カリウム系結晶のように励起波長と発振波長が極めて近いレーザ媒質(量子損失は4%未満)をマイクロチップレーザ化するにあたり、少なくとも励起レーザ光入射側端面での損失を抑えて吸収効率の良い共振器を構成したため、効率の良い小型の固体レーザ装置を実現できた。かかる本発明の固体レーザ装置を用いることにより、小型化された半導体レーザ励起の超短パルスレーザ、インジェクションシーディング、モードロックレーザへの応用が期待できる。更には、加工レーザ装置、学術研究用レーザ装置として利用される固体レーザ発生装置、高密度記録媒体である光ディスクの記録並びに再生を目的とするレーザ装置といった産業分野での応用が期待できる。
【0031】
また、前記した第1誘電体多層膜のみならず、レーザ光出射側の端面にも第2誘電体多層膜を設けた場合は、よりいっそうの小型化を図ることができる。
【0032】
そして、共振器の励起レーザ光入射側に光透過性の放熱手段を設けた場合は、高熱による結晶歪増大や結晶格子損傷などを確実に防いでレーザ性能の低下を抑止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る固体レーザ装置の概略構成図である。
【図2】本実施形態による固体レーザ装置の入出力特性を示すグラフである。
【図3】本実施形態による第1誘電体多層膜における分光スペクトルを示すグラフである。
【図4】本実施形態による第2誘電体多層膜における分光スペクトルを示すグラフである。
【図5】本発明の別の実施形態に係る固体レーザ装置の概略構成図である。
【図6】本発明の他の実施形態に係る固体レーザ装置の概略構成図である。
【図7】従来技術による励起レーザ光側の誘電体多層膜における分光スペクトルを示すグラフである。
【図8】従来技術によるレーザ光出射側の無反射コートにおける分光スペクトルを示すグラフである。
【符号の説明】
A,A1,A2 固体レーザ装置
B,B1,B2 共振器
1 結晶
2 放熱手段
3 第1誘電体多層膜
4 第2誘電体多層膜
5 励起用レーザ光供給手段
7 励起用レーザ光
8 出射レーザ光
9 端面
10 端面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is, for example, a solid-state laser device used in a solid-state laser generation device such as a processing laser device, a laser device for academic research, and a laser device for recording and reproducing an optical disk as a high-density recording medium. About.
[0002]
[Prior art]
When a known Y 3 Al 5 O 12 crystal doped with Nd (neodymium) is excited by a semiconductor laser beam, the laser oscillation wavelength is 1064 nm with respect to the excitation wavelength of 808 nm. Therefore, the quantum efficiency, which is the ratio of the photon energies, is 76%, and the light-to-light conversion efficiency of the laser is naturally limited to only 76%. Accordingly, 24% (heat generation rate) of the absorbed pump power is irreversibly converted to heat.
[0003]
On the other hand, research and development of solid-state lasers in the 1-micron wavelength band using laser active ions other than Nd have been activated. Among them, a Yb (ytterbium) -based solid-state laser device, particularly a device using a Y 3 Al 5 O 12 crystal (Yb: YAG) doped with Yb, is excited by a semiconductor laser beam of 940 nm to 970 nm to emit 1030 nm. It is known that the device emits an oscillating laser beam and has an inherently high efficiency because the above quantum efficiency exceeds 90%.
[0004]
However, since the Yb: YAG crystal is in a state in which as many as 5% of the total number of Yb ions are thermally excited at the lower level of the laser, there is a problem that it is difficult to form a population inversion required for laser oscillation. Further, since the lower level of the laser has temperature dependence, the laser oscillation threshold and output characteristics naturally have temperature dependence. Therefore, as shown in Patent Document 1 below, it is necessary to provide a temperature control / cooling device for operating the Yb: YAG crystal at −100 ° C. Therefore, it is not practical because the device becomes large and it is difficult to install it at a production site or the like.
[0005]
[Patent Document 1]
JP-A-10-294520
On the other hand, Yb-added yttrium potassium tungstate crystal (Yb: KY (WO 4 ) 2 ) has an extremely high quantum efficiency and a wide fluorescence width, and is therefore expected to be a quasi-four-level high-efficiency laser medium. However, since the excitation wavelength of 981 nm is very close to the oscillation wavelength of 1022 nm, it is difficult to oscillate the laser with a crystal having a short distance between the end faces in the laser optical axis direction.
Therefore, an attempt has been made to deposit a vapor deposition film on the end face of the Yb: KY (WO 4 ) 2 crystal on the entrance side of the excitation laser beam, and to use the vapor deposition film as a rear mirror of the resonator.
[0007]
[Problems to be solved by the invention]
However, the above-mentioned deposited film has high reflection at the oscillation wavelength as shown in the spectrum shown in FIG. The so-called end face excitation required for chip formation cannot be performed. In order to avoid this problem, conventionally, a crystal processed to a Brewster angle is placed in a resonator to perform excitation, but there is a disadvantage that the apparatus becomes large-scale.
[0008]
Therefore, in order to omit the use of the crystal processed at the Brewster angle, a non-reflection coating is deposited on the laser light emitting side end face of the crystal. This anti-reflection coat hardly reflects at the excitation wavelength (980 nm) as indicated by the arrow K in the spectrum of FIG. Therefore, an external mirror must be provided on the laser beam emission side, which has been a factor that hinders miniaturization of the resonator.
[0009]
The present invention has been made in view of the above-described conventional problems, and has as its object to provide a small-sized solid-state laser device having a short cavity length while having a configuration of an end face pumping method having practical performance. I do.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a solid-state laser device according to the present invention includes a solid-state laser including a potassium tungstate-based crystal doped with Yb, which absorbs and excites a laser beam for excitation from a laser beam supply unit for excitation. An apparatus in which the potassium tungstate-based crystal has an end face on the excitation laser light incident side with a light reflectance of 99.4% or more at an oscillation wavelength and a light transmittance of 90% or more at an excitation wavelength. It has a configuration in which a certain first dielectric multilayer film is deposited.
[0011]
In addition to the above-described structure, the potassium tungstate-based crystal partially transmits the light having the oscillation wavelength to the end face on the laser light emission side and has a light reflectance of 99.9% or more at the excitation wavelength. A two-dielectric multilayer film is deposited.
[0012]
In each of the above-described structures, a light-transmitting heat radiating means is provided on the side of the potassium tungstate-based crystal on which the excitation laser light is incident.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below are merely embodiments embodying the present invention, and do not limit the technical scope of the present invention. FIG. 1 is a schematic configuration diagram of a solid-state laser device according to an embodiment of the present invention.
In the figure, a solid-state laser device A according to this embodiment includes a crystal of yttrium potassium tungstate (5 at.% Yb: KY (WO 4 ) 2 , crystal 1) to which ytterbium (Yb) having an atomic ratio of 5% is added to the whole crystal. ), A pumping laser beam emitting unit 5 disposed behind the crystal 1, and a pumping laser beam supply unit disposed between the crystal 1 and the pumping laser beam supplying unit 5. A lens 6 for condensing the excitation laser light 7 from the means 5 and supplying it to the resonator B. The solid-state laser device A is configured as an end-pumping system in which the excitation laser optical axis and the emission laser optical axis are parallel (in this example, coaxial). The polarization direction of crystal 1 is E // a. E // a indicates that the electric field E of light and the a-axis of the crystal 1 are parallel. The crystal 1 is a cubic crystal (C2 / c) having a two-fold symmetry axis.
[0014]
A first dielectric multilayer film 3 is deposited on an end face 9 of the crystal 1 on the excitation laser beam incident side. The first dielectric multilayer film 3 is formed by alternately depositing high-refractive-index films and low-refractive-index films by a known vacuum deposition method and laminating them. In this case, the first dielectric multilayer film 3 has a reflectivity at an oscillation wavelength (1020 nm to 1140 nm) of 99.4% or more and a transmittance at an excitation wavelength (980 nm) of 90% or more. The film material, the film thickness, and the number of layers of the high refractive index film and the low refractive index film are respectively set.
Here, for example, the total number of layers of the high refractive index film and the low refractive index film is about 80. The high refractive index film was formed using tantalum pentoxide (Ta 2 O 5 ) as a film material, and the low refractive index film was formed using silicon oxide (SiO 2 ) as a film material. The target thickness of the high refractive index film is λ (design wavelength) / 4, which is slightly changed from λ / 4. The thickness of each layer of the low-refractive-index film is adjusted similarly to the high-refractive-index film. Thus, the first dielectric multilayer film 3 having the characteristic reflectance range and transmittance range described above could be obtained.
[0015]
A second dielectric multilayer film 4 is vapor-deposited on the end face 10 of the crystal 1 on the laser light emission side, which faces the first dielectric multilayer film 3. The second dielectric multilayer film 4 is also formed by alternately depositing high-refractive-index films and low-refractive-index films by the same deposition method (vacuum deposition method) as the first dielectric multilayer film 3, and has an oscillation wavelength ( The film material (Ta 2 O) of the high-refractive-index film and the low-refractive-index film is such that the light having a center wavelength of 1020 nm is partially transmitted and the light reflectance at the excitation wavelength (980 nm) is 99.9% or more. 5 / SiO 2 ), the film thickness (minutely changed for each layer with λ / 4 as a target value), and the number of layers (about 80 layers) are set.
[0016]
The crystal 1 is formed such that the length L in the front-rear direction (that is, the dimension between the first dielectric multilayer film 3 and the second dielectric multilayer film 4) is, for example, 1 mm. Further, the excitation laser light supply means 5 emits, for example, Ti: sapphire laser light (excitation laser light 7) having a wavelength of 980.8 nm. On the rear surface of the dielectric multilayer film 3, a light transmitting heat radiating means 2 is attached. The heat radiating means 2 is made of, for example, sapphire, and is fixed to the rear surface of the dielectric multilayer film 3 by an optical adhesive.
[0017]
Table 1 below shows parameters relating to the spectral characteristics of the Yb-added yttrium potassium tungstate crystal (Yb: KY (WO 4 ) 2 , crystal 1) used in the present embodiment. The spectral characteristics of a conventional Yb-added Y 3 Al 5 O 12 (Yb: YAG) crystal, which is commonly used, are also shown in comparison.
Since the minimum excitation rate βmin of the crystal 1 is higher than that of Yb: YAG, it is difficult to form a population inversion. However, the excitation light saturation intensity is reduced by reflecting a high absorption cross section. Therefore, the minimum excitation intensity Imin required for forming the population inversion is a fraction of Yb: YAG, and the oscillation threshold can be suppressed low. In addition, absorption at a wavelength of 981 nm is strong, and excitation at this wavelength is practically possible, so that the slope efficiency is increased. Further, the fluorescence width Δλe is about 1.7 times as wide as Yb: YAG, which is suitable for generating an ultrashort pulse.
[0018]
[Table 1]
Figure 2004281595
[0019]
Next, the operation of the solid-state laser device A configured as described above will be described. First, the excitation laser light 7 emitted from the excitation laser light supply means 5 is condensed by the lens 6 and then passes through the heat radiation means 2 and the first dielectric multilayer film 3 to irradiate the crystal 1 with a spot diameter of 63 μm. You. The excitation laser light 7 applied to the crystal 1 is laser-excited by the crystal 1 while being reflected by the first dielectric multilayer film 3 and the second dielectric multilayer film 4, so that the laser light 8 has a wavelength of 1020 nm. Radiated from the two-dielectric multilayer film 4.
[0020]
FIG. 2 shows the input / output characteristics of the solid-state laser device A of this embodiment. According to FIG. 2, a laser light output with an oscillation wavelength of 1022 nm was obtained at an oscillation threshold of 386 mW (absorption pump power), the maximum output was 56 mW, and the slope efficiency (the ratio of the output to the absorption pump power) was 45%. .
[0021]
FIG. 3 shows the transmittance characteristics of the first dielectric multilayer film 3. The transmittance characteristics of the first dielectric multilayer film 3 and the transmittance characteristics of the second dielectric multilayer film 4 described later were measured using a general-purpose optical spectrum analyzer (spectroscope).
According to the graph of FIG. 3, the first dielectric multilayer film 3 has a light transmittance of 90% at a wavelength of 980 nm (indicated by an arrow F on the curve in the graph) and a wavelength of 1020 nm (a curve on the curve in the graph). (Indicated by an arrow G) was 99.5%.
[0022]
FIG. 4 shows the transmittance characteristics of the second dielectric multilayer film 4. According to the graph of FIG. 4, the light transmittance at a wavelength of 980 nm (indicated by the arrow H on the curve in the graph) was almost 0 (reflectance 反射 100%). Thus, it can be seen that nearly 100% of the excitation laser light 7 is absorbed by the crystal 1 and is excited. On the other hand, since the reflectance of light at a wavelength of 1020 nm (indicated by the arrow J on the curve in the graph) is 98%, the laser light 8 having a center wavelength of 1020 nm is emitted.
[0023]
As described above, in the solid-state laser device A according to the present embodiment, the first dielectric multilayer film 3 formed on the crystal end face of the crystal 1 on the excitation laser light incident side has a high transmission with respect to the excitation light and a loss. Since it is small and has high reflection characteristics with respect to light of 1020 nm, the rear mirror is suitable for high-quality end face excitation. The second dielectric multilayer film 4 formed on the crystal end face on the laser light emission side opposite to this is highly reflective to the excitation light and partially transparent to the emitted laser light, It becomes an efficient output mirror.
[0024]
Therefore, since the absorption efficiency of the crystal 1 is maintained at a certain level or more by the presence of the first dielectric multilayer film 3 and the second dielectric multilayer film 4, the first dielectric multilayer film 3 and the second dielectric multilayer film 4 The length L of the crystal 1 between them can be short. Thus, a so-called microchip laser in which the length L (resonator length) of the crystal 1 was 1 mm or less was realized.
Further, the crystal 1 used in the present embodiment has a high quantum efficiency and thus a high light-to-light conversion efficiency, so that it originally generates little heat during laser operation, but additionally has a sapphire-made radiating means 2. Thermal damage of crystal 1 can be reliably suppressed.
[0025]
In the above embodiment, sapphire is exemplified as the heat dissipating means. However, the heat dissipating means of the present invention is not limited to sapphire, and it is possible to use a crystal having good thermal conductivity and good transmittance for light having an excitation wavelength.
[0026]
Alternatively, as shown in FIG. 5, the present invention also includes a solid-state laser device A1 having a resonator B1 having no heat radiation means. Even in such a configuration, the potassium tungstate-based crystal to which Yb is added used in the present invention has high absorption efficiency and low energy loss as compared with Yb: YAG or the like, so that it can be put to practical use without using a heat radiation means. It is.
[0027]
Further, as shown in FIG. 6, a solid-state laser device A2 having a resonator B2 without the second dielectric multilayer film 4 on the end face of the crystal 1 on the laser light emission side is also included in the present invention. In the case of such a configuration, an external mirror 11 that partially transmits light is provided on the laser light emission side of the crystal 1.
[0028]
The potassium tungstate-based crystal used in the present invention is not limited to the KY (WO 4 ) 2 crystal to which Yb is added. For example, potassium gadolinium tungstate crystal to which Yb is added (Yb: KGd (WO 4 ) 2 ) can be used. The cutting direction of the potassium tungstate-based crystal may be any of the a-axis, b-axis, and c-axis of the crystal axis.
[0029]
On the other hand, the method of forming the high-refractive-index film and the low-refractive-index film in the first dielectric multilayer film and the second dielectric multilayer film is not limited to the above-described vacuum deposition method. A known method such as an ion plating method, a melting method, a CVD (Chemical Vapor Deposition) method, a MBE (Molecular Beam Epitaxy) method, an electron beam method, and an ion beam method can be used.
Further, the film material forming the high refractive index film and the low refractive index film in the first dielectric multilayer film and the second dielectric multilayer film is not limited to Ta 2 O 5 / SiO 2 described above. That is, other film materials include, for example, ZrO 2 , TiO 2 , Ta 2 O 3 , Nb 2 O 5 , HfO 2 , and CeO 2 for high refractive index films, and Al 2 for low refractive index films. O 3 , GeO 2 , Y 2 O 3 , MgF 2 , AlF 3 and the like can be mentioned. Further, different types of materials may be used as the film material of the first dielectric multilayer film and the film material of the second dielectric multilayer film.
The number of layers of the high-refractive-index film and the low-refractive-index film is not particularly limited, but is preferably, for example, from twenty to several tens of layers. If the number of laminated layers is less than twenty and several layers, the predetermined reflectance and the predetermined transmittance characteristic of the present invention may not be obtained. Conversely, if the number of layers exceeds 200 and several tens of layers, the manufacturing cost rises and becomes impractical.
[0030]
【The invention's effect】
As described above in detail, according to the present invention, when a laser medium (quantum loss is less than 4%) whose excitation wavelength and oscillation wavelength are extremely close, such as a potassium tungstate-based crystal to which Yb is added, is converted into a microchip laser. Since a resonator having good absorption efficiency was formed by suppressing at least the loss at the end face on the pump laser light incident side, an efficient small solid-state laser device could be realized. By using such a solid-state laser device of the present invention, applications to miniaturized semiconductor laser-excited ultrashort pulse lasers, injection seeding, and mode-locked lasers can be expected. Furthermore, applications in industrial fields such as a processing laser device, a solid-state laser generator used as an academic research laser device, and a laser device for recording and reproducing an optical disk as a high-density recording medium can be expected.
[0031]
In addition, when the second dielectric multilayer film is provided not only on the first dielectric multilayer film but also on the end face on the laser light emission side, further downsizing can be achieved.
[0032]
When a light-transmitting heat-dissipating means is provided on the excitation laser beam incident side of the resonator, it is possible to reliably prevent an increase in crystal distortion or damage to a crystal lattice due to high heat and to suppress a decrease in laser performance.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a solid-state laser device according to an embodiment of the present invention.
FIG. 2 is a graph showing input / output characteristics of the solid-state laser device according to the present embodiment.
FIG. 3 is a graph showing a spectral spectrum of a first dielectric multilayer film according to the present embodiment.
FIG. 4 is a graph showing a spectrum of a second dielectric multilayer film according to the present embodiment.
FIG. 5 is a schematic configuration diagram of a solid-state laser device according to another embodiment of the present invention.
FIG. 6 is a schematic configuration diagram of a solid-state laser device according to another embodiment of the present invention.
FIG. 7 is a graph showing a spectrum of a conventional dielectric multilayer film on the side of an excitation laser beam.
FIG. 8 is a graph showing a spectral spectrum of a non-reflection coating on a laser light emission side according to a conventional technique.
[Explanation of symbols]
A, A1, A2 Solid-state laser devices B, B1, B2 Resonator 1 Crystal 2 Heat radiating means 3 First dielectric multilayer film 4 Second dielectric multilayer film 5 Exciting laser light supply means 7 Exciting laser light 8 Emitted laser light 9 End face 10 End face

Claims (3)

励起用レーザ光供給手段からの励起用レーザ光を吸収して光励起させる、Ybを添加したタングステン酸カリウム系結晶を備えた固体レーザ装置であって、前記タングステン酸カリウム系結晶の励起レーザ光入射側の端面に、発振波長における光の反射率が99.4%以上で、かつ、励起波長における光の透過率が90%以上である第1誘電体多層膜が蒸着されていることを特徴とする固体レーザ装置。What is claimed is: 1. A solid-state laser device comprising: a Yb-doped potassium tungstate-based crystal for absorbing and exciting a laser beam for excitation from an excitation laser light supply unit, wherein the potassium-tungstate-based crystal has an excitation laser beam incident side. Characterized in that a first dielectric multilayer film having a light reflectance of 99.4% or more at an oscillation wavelength and a light transmittance of 90% or more at an excitation wavelength is deposited on the end face of the first dielectric multilayer film. Solid state laser device. 前記タングステン酸カリウム系結晶のレーザ光出射側の端面に、発振波長の光を部分透過し、かつ、励起波長における光の反射率が99.9%以上である第2誘電体多層膜が蒸着されていることを特徴とする請求項1に記載の固体レーザ装置。A second dielectric multilayer film that partially transmits light having an oscillation wavelength and has a light reflectance of 99.9% or more at an excitation wavelength is deposited on an end face of the potassium tungstate-based crystal on a laser light emission side. The solid-state laser device according to claim 1, wherein 前記タングステン酸カリウム系結晶の励起レーザ光入射側に、光透過性の放熱手段を設けたことを特徴とする請求項1または請求項2に記載の固体レーザ装置。3. The solid-state laser device according to claim 1, wherein a light-transmitting heat radiating unit is provided on the side of the potassium tungstate-based crystal on which the excitation laser light is incident. 4.
JP2003069172A 2003-03-14 2003-03-14 Solid state laser apparatus Pending JP2004281595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069172A JP2004281595A (en) 2003-03-14 2003-03-14 Solid state laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003069172A JP2004281595A (en) 2003-03-14 2003-03-14 Solid state laser apparatus

Publications (1)

Publication Number Publication Date
JP2004281595A true JP2004281595A (en) 2004-10-07

Family

ID=33286278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069172A Pending JP2004281595A (en) 2003-03-14 2003-03-14 Solid state laser apparatus

Country Status (1)

Country Link
JP (1) JP2004281595A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003273A (en) * 2006-06-22 2008-01-10 Japan Science & Technology Agency Ultrashort pulse laser device provided with nonlinear optical crystal
KR101100434B1 (en) * 2005-05-07 2011-12-30 삼성전자주식회사 End-pumped vertical external cavity surface emitting laser
CN107910739A (en) * 2017-12-22 2018-04-13 广东华快光子科技有限公司 A kind of hundred picoseconds of microchip solid state lasers with temperature control device
CN111158202A (en) * 2018-11-08 2020-05-15 青岛海信激光显示股份有限公司 Laser speckle eliminating device and laser projection equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100434B1 (en) * 2005-05-07 2011-12-30 삼성전자주식회사 End-pumped vertical external cavity surface emitting laser
JP2008003273A (en) * 2006-06-22 2008-01-10 Japan Science & Technology Agency Ultrashort pulse laser device provided with nonlinear optical crystal
CN107910739A (en) * 2017-12-22 2018-04-13 广东华快光子科技有限公司 A kind of hundred picoseconds of microchip solid state lasers with temperature control device
CN111158202A (en) * 2018-11-08 2020-05-15 青岛海信激光显示股份有限公司 Laser speckle eliminating device and laser projection equipment
CN111158202B (en) * 2018-11-08 2022-12-27 青岛海信激光显示股份有限公司 Laser speckle eliminating device and laser projection equipment

Similar Documents

Publication Publication Date Title
EP1763116B1 (en) Mode control waveguide laser
EP1737088B1 (en) Multipath laser apparatus using a solid-state laser rod
JP6315887B2 (en) Optically pumped surface emitting laser with built-in high reflectivity / band-limited reflector
JP4422720B2 (en) Eye-safe solid state laser system
JP6215907B2 (en) Self-mode-locked semiconductor disk laser (SDL)
US20110176574A1 (en) Solid-state laser device
JP4407039B2 (en) Solid-state laser device and solid-state laser device system
JP2002057388A (en) Solid-state laser oscillator
WO2005091447A1 (en) Laser equipment
WO2018221083A1 (en) Passive q-switch pulse laser device, processing apparatus, and medical apparatus
JP7396299B2 (en) laser equipment
JP2010123819A (en) Laser medium
JP2004281595A (en) Solid state laser apparatus
JPH04137573A (en) Composite slab laser medium and laser device
JP2005039093A (en) Laser device
JP2011114005A (en) Laser light source device
CN108832472B (en) Intracavity pumped low-internal-heat solid laser system
WO1994029937A2 (en) Blue microlaser
CN108808429B (en) Low internal heat solid laser amplifier
Vatnik et al. High-efficiency lasing and spectroscopy of domestic 1% Nd: YAG and 1% Ho: YAG ceramics
JP3091342B2 (en) Glass light emitting device
JP2007507084A (en) Solid laser medium
KR100397599B1 (en) Non-linear single crystalline laser device
JPH1065237A (en) Solid-state laser device
JP2754101B2 (en) Laser diode pumped solid state laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602