WO2011065043A1 - Paste for electrostatic protection, electrostatic protection component, and method for producing same - Google Patents

Paste for electrostatic protection, electrostatic protection component, and method for producing same Download PDF

Info

Publication number
WO2011065043A1
WO2011065043A1 PCT/JP2010/059639 JP2010059639W WO2011065043A1 WO 2011065043 A1 WO2011065043 A1 WO 2011065043A1 JP 2010059639 W JP2010059639 W JP 2010059639W WO 2011065043 A1 WO2011065043 A1 WO 2011065043A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic protection
weight
parts
paste
protection component
Prior art date
Application number
PCT/JP2010/059639
Other languages
French (fr)
Japanese (ja)
Inventor
立樹 平野
孝宏 若狭
篤司 戸田
Original Assignee
釜屋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 釜屋電機株式会社 filed Critical 釜屋電機株式会社
Priority to KR1020127013499A priority Critical patent/KR101415477B1/en
Priority to JP2011543123A priority patent/JP5439500B2/en
Priority to CN201080053717.2A priority patent/CN102741948B/en
Publication of WO2011065043A1 publication Critical patent/WO2011065043A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/102Varistor boundary, e.g. surface layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors

Definitions

  • the present invention relates to an electrostatic protection paste, an electrostatic protection component, and a manufacturing method thereof.
  • electrostatic pulses generated when a terminal of an electronic device comes into contact with a charged human body, or external noise entering from an antenna of a portable information device Due to the overvoltage applied by the electronic device, there is a problem that an electronic circuit (electronic component) inside an electronic device such as a portable information device is destroyed, and the number of occurrences is increasing.
  • the electrostatic pulse and the external noise mean a voltage of several hundred to several kilovolts generated in a time of 1 nanosecond or less.
  • varistors In response to such demands, varistors generally have a problem that the capacitance increases because a structure in which ceramic films mainly composed of zinc oxide or the like are laminated is applied. Therefore, in order to reduce stray capacitance, it has already been proposed to use an antistatic component (static protection component) having a structure in which an electrostatic protection film is formed between electrodes facing each other through a narrow gap.
  • anti-static components electrostatic protection components
  • Patent Document 1 as a specific material for an electrostatic protection film applied in the structure of an anti-static component, aluminum in which a passivation layer (aluminum oxide) is formed on the surface to ensure high insulation is disclosed. The use of flour is disclosed.
  • Patent Document 2 as a material for an electrostatic protection film in an electrostatic protection element, a material which is composed mainly of zinc oxide (ZnO) and doped with a material made of manganese (Mn) or cobalt (Co) to become a semiconductor is disclosed.
  • Patent Document 3 Powder composition composed of bismuth (Bi), antimony (Sb), silicon (Si), calcium (Ca), barium (Ba), titanium (Ti) or aluminum (Al), or a minor component composed of these compounds It is disclosed to use a paste formed by mixing a powder such as a powder composition and glass frit.
  • Patent Document 3 as a material of an electrostatic absorber in an electrostatic protection element, zinc oxide (ZnO), a powder synthesized by mixing manganese (Mn) and cobalt (Co) for heat treatment and synthesizing the semiconductor, It is disclosed to use a material obtained by heat-mixing a carbide or oxide such as bismuth (Bi) or aluminum (Al) uniformly.
  • Patent Document 4 discloses forming a bank portion on an electrode in order to flatten the transient voltage protection film in a step of forming a transient voltage protection film by adhering and curing a transient voltage protection material on the electrode. Yes.
  • Patent Document 5 as an electrical overload protection material in an electrical overload protection device, an electrostatic protection material composed of an insulating binder, conductive particles, and semiconductor particles, an insulating binder, conductive particles, and semiconductor particles are insulated. Two types of materials are disclosed, which are roughly divided into electrostatic protection materials composed of conductive particles. Patent Document 5 describes that, from the viewpoint of particle size, the former electrostatic protection material has a maximum average particle size of conductive particles less than 10 ⁇ m and an average particle size of semiconductor particles less than 10 ⁇ m.
  • the conductive particles have a maximum average particle size of less than 10 ⁇ m
  • the semiconductor particles have an average particle size of less than 10 ⁇ m
  • the insulating particles have a range of about 200 angstroms to about 1000 angstroms.
  • Patent Document 6 discloses a structure in which a gap for separating a first electrode and a second electrode from each other is formed on an insulating substrate, a cavity is formed in the gap, and a voltage variable material is provided in the cavity.
  • An electrical circuit protection device is disclosed.
  • Patent Document 6 discloses the contents related to the thickness of the electrode.
  • a pair of first electrodes is formed in a thick state using a material having a small specific resistance on an insulating substrate, and a second thin film made of a refractory metal is used between the pair of electrodes.
  • An anti-static component having a structure in which a gap for providing an overvoltage protection material layer is formed in the second electrode is disclosed.
  • an overvoltage protection material layer is formed between a first ground electrode formed by printing and baking a gold resinate paste on an insulating substrate and a plurality of first upper surface electrodes, and the first ground is formed.
  • An antistatic component having a structure in which a second upper surface electrode covering an electrode and a second ground electrode covering the first ground electrode are formed by printing and baking a conductive paste mainly composed of silver is disclosed.
  • An electrostatic protection component having a structure in which an electrostatic protection film is formed between electrodes facing each other through the gap described above, forms at least two electrodes on a ceramic substrate such as alumina so as to face each other through the gap, and then An electrostatic protection film is formed by screen printing or the like so as to cover a part of the electrode and close the gap, and a protective film for protecting the electrostatic protection film from an external environment or the like It is formed so as to cover the entire electrostatic protection film. Further, a nickel plating film and a tin plating film are formed on the electrode portions not covered with the protective film by electroplating in order to improve the reliability as a terminal electrode.
  • the conventional materials for forming the electrostatic protection film in the above-mentioned electrostatic protection component are roughly classified into ceramic materials and materials obtained by kneading conductive particles, semiconductor particles, and insulating particles in a resin.
  • the electrostatic protection parts using ceramic materials as the material of the electrostatic protection film have a problem that the variation in capacitance is large.
  • the gap width (electrode spacing) varies greatly for each electrostatic protection component and the dielectric constant variation of the ceramic material is large. That is, assuming that the gap width (electrode spacing) is d, the dielectric constant of the electrostatic protection film is ⁇ , and the sectional area of the electrode is A, the electrostatic capacitance Cp of the electrostatic protection component can be expressed by ⁇ A / d.
  • the gap width d and the dielectric constant ⁇ vary greatly, the variation of the capacitance Cp also increases.
  • the temperature at which the ceramic material is heat-treated is 1000 ° C. to 1300 ° C. depending on the formation conditions, so that the heat treatment apparatus is large and expensive. There is also.
  • an object of the present invention is to provide an electrostatic protection paste that is inexpensive and can reduce variation in capacitance, an electrostatic protection component using the paste, and a method of manufacturing the same. To do.
  • the electrostatic protection paste of the first invention that solves the above problems is an electrostatic protection paste for forming an electrostatic protection film of an electrostatic protection component, It is a mixture of three components of silicone resin, conductive particles, and insulating particles.
  • the electrostatic protection paste of the second invention is characterized in that, in the electrostatic protection paste of the first invention, the conductive particles are aluminum powder and the insulating particles are zinc oxide powder.
  • the electrostatic protection paste of the third invention is the electrostatic protection paste of the second invention, wherein the silicone resin is 100 parts by weight, whereas the aluminum powder is 60 parts by weight to 200 parts by weight.
  • the zinc powder is 60 to 160 parts by weight.
  • an electrostatic protection component comprising: an insulating substrate; a surface electrode formed on the insulating substrate and facing the gap through a gap; and an electrostatic protection film formed in the gap and connected to the surface electrode
  • the electrostatic protection film is a mixture of three components of silicone resin, conductive particles, and insulating particles.
  • the electrostatic protection component of the fifth invention is the electrostatic protection component of the fourth invention.
  • the conductive particles are aluminum powder, and the insulating particles are zinc oxide powder.
  • the electrostatic protection component of the sixth invention is the electrostatic protection component of the fifth invention, wherein the silicone resin is 100 parts by weight, the aluminum powder is 60 to 200 parts by weight, and the zinc oxide powder is 60 to 160 parts by weight.
  • the manufacturing method of the electrostatic protection component of the seventh invention comprises a step of forming a surface electrode by applying and patterning an electrode paste on an insulating substrate by a screen printing method, Firing the surface electrode; Cutting the fired surface electrode to form a gap, and the surface electrode faces through the gap; and A step of forming an upper electrode by applying and patterning a conductive paste to each of the opposing front electrodes through the gap by a screen printing method; By applying a pattern for applying an electrostatic protection paste to the gap by screen printing, an electrostatic protection film is formed in the gap, and the electrostatic protection film is connected to the opposing surface electrode through the gap.
  • Process Baking the upper electrode and the electrostatic protection film simultaneously; It is characterized by having.
  • the manufacturing method of the electrostatic protection component of the eighth invention is the manufacturing method of the electrostatic protection component of the seventh invention.
  • the electrostatic protection paste is a mixture of three components of a silicone resin, conductive particles, and insulating particles.
  • the manufacturing method of the electrostatic protection component of the ninth invention is the manufacturing method of the electrostatic protection component of the eighth invention.
  • the conductive particles are aluminum powder, and the insulating particles are zinc oxide powder.
  • the manufacturing method of the electrostatic protection component of the tenth invention is the manufacturing method of the electrostatic protection component of the ninth invention, wherein the silicone resin is 100 parts by weight, the aluminum powder is 60 to 200 parts by weight, and the zinc oxide powder is 60 to 160 parts by weight.
  • the electrostatic protection paste of the first invention is an electrostatic protection paste for forming an electrostatic protection film of an electrostatic protection component, and comprises a silicone resin, conductive particles, , which is a mixture of three components of insulating particles, in which only two types of conductive particles and insulating particles are mixed in a silicone resin as a binder, and the conductive particles and the insulating particles Since no special surface treatment or the like is applied, an inexpensive antistatic paste can be realized. Therefore, an electrostatic protection component having an electrostatic protection film formed using this electrostatic protection paste is also inexpensive.
  • the electrostatic protection film using this electrostatic protection paste, the variation in the dielectric constant of the electrostatic protection film is reduced, so that the variation in the electrostatic capacitance of the electrostatic protection component having the electrostatic protection film is also reduced. . Therefore, when this electrostatic protection component is applied to an electronic device such as a portable information device as a countermeasure against electrostatic pulses or external noise, the stray capacitance and the variation regarding the electrostatic protection component can be reduced.
  • the conductive particles are aluminum powder
  • the insulating particles are zinc oxide powder.
  • an electrostatic protection paste can be manufactured at low cost.
  • the silicone resin is 100 parts by weight, whereas the aluminum powder is 60 parts by weight to 200 parts by weight, Since the zinc oxide powder is 60 parts by weight to 160 parts by weight, in addition to obtaining the effects of the first and second inventions, the electrostatic protection formed using the present electrostatic protection paste
  • an insulating substrate a surface electrode formed on the insulating substrate and facing each other through a gap, and static electricity formed in the gap and connected to the surface electrode
  • An electrostatic protection component having a protective film wherein the electrostatic protective film is a mixture of three components of silicone resin, conductive particles, and insulating particles.
  • An electrostatic protection film is formed of a material obtained by mixing only two kinds of conductive particles and insulating particles with silicone resin, and the conductive particles and insulating particles are not subjected to special surface treatment. Therefore, an electrostatic protection film can be formed at low cost, and an electrostatic protection component having this electrostatic protection film is also inexpensive.
  • the variation in the dielectric constant of the electrostatic protection film is reduced, the variation in the capacitance of the electrostatic protection component having the electrostatic protection film is also reduced. Therefore, when this electrostatic protection component is applied to an electronic device such as a portable information device as a countermeasure against electrostatic pulses or external noise, the stray capacitance and the variation regarding the electrostatic protection component can be reduced.
  • the conductive particles are aluminum powder, and the insulating particles are zinc oxide powder.
  • an electrostatic protection film can be formed at a low cost.
  • the silicone powder is 100 parts by weight, whereas the aluminum powder is 60 parts by weight to 200 parts by weight, Since the zinc powder is 60 parts by weight to 160 parts by weight, in addition to obtaining the effects of the fourth and fifth inventions, an electrostatic protection film formed using the present electrostatic protection paste is provided.
  • a step of forming a surface electrode by applying and patterning an electrode paste on an insulating substrate by a screen printing method A step of firing the surface electrode, a step of cutting the fired surface electrode to form a gap, and a structure in which the surface electrode is opposed to the gap through the gap, and a screen printing method, a conductive paste, Applying and patterning an electrostatic protection paste to the gap by a step of forming the upper electrode and screen printing by applying and patterning to each of the facing electrode facing through the gap Forming a static electricity protection film in the gap, connecting the static electricity protection film to a surface electrode facing the gap, and baking the upper electrode and the static electricity protection film at the same time.
  • the mechanical strength of the front electrode can be reinforced by the upper electrode, it is easy to form an electrostatic protection film by screen printing.
  • the upper electrode is screen-printed first and then the electrostatic protection film is screen-printed, the electrostatic protection film is screen-printed first, and then the upper electrodes 6a and 6b are screen-printed.
  • the number of times the screen mesh comes into contact with the membrane can be reduced. For this reason, it is possible to reduce the possibility that the electrical characteristics of the electrostatic protection film deteriorate due to the generation of static electricity that is larger than the desired static electricity resistance for the electrostatic protection film due to the charging of the screen mesh during screen printing.
  • the electrostatic protection paste comprises three components of silicone resin, conductive particles, and insulating particles.
  • silicone resin as the binder, only two types of conductive particles and insulating particles are mixed, and Since the conductive particles and insulating particles are not subjected to special surface treatment, an electrostatic protection film can be formed with an inexpensive electrostatic protection paste. It will be cheap.
  • the electrostatic protection film using this electrostatic protection paste, the variation in the dielectric constant of the electrostatic protection film is reduced, so that the variation in the electrostatic capacitance of the electrostatic protection component having the electrostatic protection film is also reduced. . Therefore, when this electrostatic protection component is applied to an electronic device such as a portable information device as a countermeasure against electrostatic pulses or external noise, the stray capacitance and the variation regarding the electrostatic protection component can be reduced.
  • the conductive particles are aluminum powder, and the insulating particles are zinc oxide powder. Therefore, in addition to obtaining the effects of the seventh and eighth inventions, an electrostatic protection film can be formed with an electrostatic protection paste using an inexpensive material such as the aluminum powder or zinc oxide powder.
  • the silicone resin is 100 parts by weight, whereas the aluminum powder is 60 parts by weight or more. Since 200 parts by weight and the zinc oxide powder is 60 parts by weight to 160 parts by weight, in addition to obtaining the effects of the seventh to ninth inventions, the present electrostatic protection paste is used.
  • FIG. 3 is a cross-sectional view (a cross-sectional view taken along line BB in FIG. 2) showing the structure of the electrostatic protection component according to the embodiment of the present invention. It is a top view (A direction arrow view of FIG. 1) which shows the structure of the electrostatic protection component which concerns on the example of embodiment of this invention. It is a flowchart which shows the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. It is 1st explanatory drawing of the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. It is 2nd explanatory drawing of the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. It is 3rd explanatory drawing of the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention.
  • the binder silicone resin is 100 parts by weight
  • the aluminum powder is 160 parts by weight
  • the zinc oxide powder parts by weight (parameters) are 0 parts by weight, 40 parts by weight, 80 parts by weight, and 120 parts by weight. It is a graph which shows the insulation resistance deterioration number of the electrostatic protection component of.
  • the binder silicone resin is 100 parts by weight
  • the aluminum powder is 160 parts by weight
  • surface which shows the measurement result of the electrostatic capacitance of this electrostatic protection component. It is the table
  • the parts by weight (parameters) of the zinc oxide powder are 60 parts by weight, 80 parts by weight, 120 parts by weight, 160 parts by weight, and 200 parts by weight. Parameter) is 40 parts by weight, 60 parts by weight, 100 parts by weight, 150 parts by weight, 200 parts by weight, and 240 parts by weight. It is a table
  • surface which shows the result of having confirmed the leakage current of the ESD protection component formed by applying ESD, and the ESD suppression peak voltage. It is sectional drawing which shows the other structure of the electrostatic protection component which concerns on the example of embodiment of this invention.
  • the electrostatic protection component shown in FIGS. 1 and 2 is a surface mounting component for surface mounting on a printed circuit board, and an electronic circuit (electronic component) mounted on the printed circuit board is protected from an overvoltage caused by electrostatic pulses or external noise. For protection, it is provided between the line to which the overvoltage is applied and the ground.
  • front electrodes 2a and 2b are formed on the front surface 1a of the ceramic substrate 1 which is an insulating substrate, and back electrodes 3a and 3b are formed on the back surface 1b of the ceramic substrate 1. Yes.
  • the front electrodes 2a and 2b are formed over the entire length of the substrate surface 1a, while the back electrodes 3a and 3b are formed at both ends of the substrate back surface 1b.
  • a gap (narrow portion) 4 is formed in the central portion (between the surface electrodes 2a and 2b) of the substrate surface 1a. That is, the surface electrodes 2 a and 2 b are opposed to each other with the gap 4 interposed therebetween.
  • the gap 4 is formed by cutting the surface electrode film by a laser method or the like, and has a width d of about 10 ⁇ m (7 ⁇ m in this embodiment).
  • An electrostatic protection film 5 is formed in the gap 4, and the surface electrodes 2a and 2b and the electrostatic protection film 5 are connected. That is, the electrostatic protection film 5 is formed between the front electrodes 2a and 2b facing each other through the gap 4.
  • the electrostatic protection film 5 is not only formed in the gap 4 but also partially overlapped with the surface electrodes 2a and 2b. That is, the electrostatic protection film 5 has a central portion 5c provided in the gap 4 and both side portions 5a and 5b superimposed on the end portions 2a-1 and 2b-1 of the surface electrodes 2a and 2b, respectively. Note that the protective function against static electricity can be exhibited only by providing the electrostatic protection film 5 in the gap 4.
  • the electrostatic protection film 5 is formed of a material obtained by mixing two kinds of conductive particles and insulating particles in a silicone resin as a binder.
  • Conductive particles and insulating particles are not subjected to special treatment such as surface treatment such as providing a passive layer on the surface of conductive particles, or treatment such as doping other materials on the surface of insulating particles.
  • the conductive particles are aluminum (Al) powder that is conductive metal particles, and the insulating particles are zinc oxide (ZnO) powder.
  • ZnO zinc oxide
  • JIS standard type 1 zinc oxide that is, zinc oxide having a volume resistivity of 200 M ⁇ cm or more is used.
  • the mixing ratio of the three components of silicone resin, aluminum powder, and zinc oxide powder is, for example, 100 parts by weight of silicone resin, 60 to 200 parts by weight of aluminum powder, and 60 parts by weight of zinc oxide powder. Parts to 160 parts by weight.
  • the ESD suppression peak voltage is a voltage generated at the start of discharge. Moreover, the detail about the search of the said mixture ratio is mentioned later.
  • Upper electrodes 6a and 6b are formed on the surface electrodes 2a and 2b, respectively. Since the surface electrodes 2a and 2b are thin films, the mechanical strength is reinforced by forming the upper electrodes 6a and 6b on the surface electrodes 2a and 2b. However, the upper electrodes 6a and 6b are formed so as not to contact the electrostatic protection film 5 (at a position away from the electrostatic protection film 5). The reason is that when the upper electrodes 6a and 6b are in contact with the electrostatic protection film 5, when an overvoltage due to electrostatic pulses or the like is applied to the electrostatic protection component, not between the surface electrodes 2a and 2b but between the upper electrodes 6a and 6b. Or the upper electrodes 6a, 6b and the surface electrodes 2a, 2b may start to discharge, and in that case, the original electrostatic protection function of the electrostatic protection component cannot be exhibited. is there.
  • the electrostatic protection film 5 is covered with an intermediate layer 7, and the intermediate layer 7 is covered with a protective film 8. Further, both end portions 8a and 8b of the protective film 8 are overlapped with part of the upper electrodes 6a and 6b (portions on the gap side), respectively.
  • the protective film 8 is excellent in moisture resistance and the like, and is provided to protect the electrostatic protective film 5 and the like from the external environment such as humidity. However, since the protective film 8 has insufficient heat resistance, the electrostatic protective film 5 that generates heat during discharge is not directly covered with the protective film 8, and the intermediate protective layer 7 is excellent in heat resistance.
  • the intermediate layer 7 is covered and covered with a protective film 8.
  • End face electrodes 9a, 9b are formed on both end faces 1c, 1d of the ceramic substrate 1, and the front electrodes 2a, 2b and the back electrodes 3a, 3b are electrically connected by the end face electrodes 9a, 9b. Further, the end portions 9a-1, 9a-2, 9b-1, 9b-2 of the end face electrodes 9a, 9b are connected to the end portions 2a-2, 2b-2 of the front electrodes 2a, 2b and the back electrodes 3a, 3b. Since they are superimposed on the end portions 3a-1 and 3b-1, respectively, the connection between the end surface electrodes 9a and 9b and the front electrodes 2a and 2b and the back electrodes 3a and 3b is more reliable.
  • nickel (Ni) plating films 10a and 10b and tin (Sn) plating films 11a and 11b are formed in this order in order to improve the reliability of the terminal electrodes with respect to the end face electrodes 9a and 9b. ing.
  • the nickel plating films 10a and 10b cover the end face electrodes 9a and 9b, the back electrodes 3a and 3b, the front electrodes 2a and 2b, and the upper electrodes 6a and 6b, respectively, and the tin plating film 11a.
  • 11b cover the nickel plating films 10a and 10b, respectively.
  • FIG. 3 Each manufacturing process (step) in the flowchart of FIG. 3 is denoted by reference numerals S1 to S18. 4 (a) to (d), FIG. 5 (a) to (d), and FIG. 6 (a) to (c) sequentially show the manufacturing state of the electrostatic protection component in each manufacturing process. ing.
  • a 1005 type electrostatic protection component (having a width W of 0.5 mm and a length L of 1.0 mm shown in FIG. 2) was manufactured.
  • step S1 the ceramic substrate 1 is received in a manufacturing process (not shown) of the electrostatic protection component.
  • an alumina substrate was used as the ceramic substrate 1.
  • This alumina substrate is manufactured using 96% alumina as a ceramic material.
  • FIG. 4A shows only one ceramic substrate 1 in one piece area corresponding to one piece of electrostatic protection component, but the actual ceramic substrate 1 before being primarily divided in step S13. Is a sheet-like shape in which a plurality of primary slits and secondary slits are formed vertically and horizontally, and a plurality of individual regions are connected vertically and horizontally.
  • step S2 the back electrodes 3a and 3b are formed on the back surface 1b of the ceramic substrate 1 as shown in FIG.
  • the back electrodes 3a and 3b are formed by applying and patterning an electrode paste on the substrate back surface 1b by screen printing.
  • a silver (Ag) paste was used as the electrode paste.
  • the screen printed back electrodes 3a and 3b are dried to evaporate the solvent in the electrode paste.
  • a surface electrode 2 (a film for forming the surface electrodes 2a and 2b later) is formed on the surface 1a of the ceramic substrate 1.
  • the front electrode 2 is formed by applying an electrode paste to the substrate surface 1a and patterning it by screen printing.
  • a gold resinate paste was used as the electrode paste.
  • the screen-printed front electrode 2 is dried to evaporate the solvent in the electrode paste.
  • an electrode paste for forming the surface electrode 2 a resinate paste (metal organic paste) other than gold can be used.
  • a resinate paste of platinum (Pt) or silver (Ag) can be used.
  • a silver / palladium (Ag / Pd) paste may be used.
  • step S4 the back electrodes 3a and 3b formed in step S2 and the front electrode 2 formed in step S3 are simultaneously fired at 850 ° C. for 40 minutes.
  • step S5 the center portion of the surface electrode 2 baked in step S4 is cut by a laser method using a laser having a UV wavelength region (not shown).
  • a gap (narrow portion) 4 is formed.
  • a third harmonic laser (wavelength: 355 nm) was used as a laser having a UV wavelength region.
  • the width d of the gap 4 was 7 ⁇ m.
  • step S6 a conductive paste is applied to each of the surface electrodes 2a and 2b by a screen printing method to form a pattern.
  • Upper electrodes 6a and 6b are formed on 2b.
  • the number of screen printings at this time is one.
  • the upper electrodes 6a and 6b are formed so as to overlap the surface electrodes 2a and 2b at positions away from the electrostatic protection film 5 so as not to contact the electrostatic protection film 5.
  • the upper electrodes 6a and 6b after screen printing are dried to evaporate the solvent in the conductive paste.
  • the screen mesh used in this screen printing has a mesh size of 400 and an emulsion thickness of 82 ⁇ m (product number: st400).
  • the conductive paste a paste obtained by kneading silver powder and an epoxy resin was used.
  • the present invention is not limited thereto, and a thick film electrode paste obtained by kneading nickel (Ni), copper (Cu) powder, and the like and an epoxy resin may be used as the conductive paste for the upper electrode.
  • step S7 the electrostatic protection paste is applied to the gap 4 and the surface electrodes 2a and 2b by a screen printing method and patterned to thereby protect the static electricity.
  • a film 5 is formed.
  • the electrostatic protection film 5 is formed in the gap 4 and connected to the surface electrodes 2a and 2b (that is, interposed between the surface electrodes 2a and 2b), and is partially overlapped with the surface electrodes 2a and 2b.
  • the electrostatic protection film 5 after screen printing is dried at 100 ° C. for 10 minutes to evaporate the solvent in the electrostatic protection paste.
  • the screen mesh used in this screen printing is a calendar mesh, which has a mesh size of 400, a wire diameter of 18 ⁇ m, and an emulsion thickness of 52 ⁇ m (product number: cal400 / 18).
  • the paste for electrostatic protection used here has a silicone resin binder as a basic material, and this silicone resin is kneaded with two types of powders: aluminum powder used as conductive particles and zinc oxide powder used as insulating particles. It is what. Furthermore, the compounding ratio of these three components was 100 parts by weight of the silicone resin, 160 parts by weight of the aluminum powder, and 120 parts by weight of the zinc oxide powder.
  • silicone resin an addition reaction type silicone resin having a volume resistivity of 2 ⁇ 10 15 ⁇ cm and a dielectric constant of 2.7 was used.
  • aluminum powder aluminum powder having an average particle diameter of 3.0 to 3.6 ⁇ m obtained by melting aluminum, spraying at high pressure and solidifying by cooling was used.
  • zinc oxide powder zinc oxide having JIS standard type 1 insulation (volume resistivity of 200 M ⁇ cm or more) was used.
  • zinc oxide powder having a particle size distribution of 0.3 to 1.5 ⁇ m, an average particle size of 0.6 ⁇ m, and a primary aggregation particle size of 1.5 ⁇ m is applied to the zinc oxide powder. did.
  • step S8 the upper electrodes 6a and 6b formed in step S6 and the electrostatic protection film 5 formed in step S7 are simultaneously baked at 200 ° C. for 30 minutes.
  • step S9 a silicone resin paste is applied to the electrostatic protection film 5 and the surface electrodes 2a and 2b by a screen printing method and patterned.
  • An intermediate layer 7 that covers the protective film 5 and the like is formed.
  • the number of screen printings at this time is one.
  • a silicone resin paste containing 40 to 50% silica was used as the silicone resin paste.
  • the screen mesh used in this screen printing is a calendar mesh having a mesh size of 400, a wire diameter of 18 ⁇ m, and an emulsion thickness of 52 ⁇ m (product number: cal400 / 18).
  • step S10 the intermediate layer 7 formed in step S9 is baked at 150 ° C. for 30 minutes.
  • step S11 the epoxy resin paste is applied to the intermediate layer 7, the surface electrodes 2a and 2b, and the upper electrodes 6a and 6b by a screen printing method to form a pattern.
  • the protective film 8 that covers the intermediate layer 7 and the like is formed.
  • the number of screen printings at this time is two.
  • the screen mesh used in this screen printing has a mesh size of 400 and an emulsion thickness of 102 ⁇ m (product number: 3DSus400 / 19).
  • step S12 the protective film 8 formed in step S11 is baked at 200 ° C. for 30 minutes.
  • the ceramic substrate 1 is primarily divided along the primary slit formed in the sheet-like ceramic substrate 1.
  • the ceramic substrate 1 has a strip shape in which a plurality of individual regions are arranged in a horizontal line, and end faces 1c and 1d are generated.
  • step S14 the conductive paste is transferred to the end surfaces 1c and 1d of the ceramic substrate 1, a part of the front electrodes 2a and 2b, the back electrode 3a, by a transfer method. It is applied to a part of 3b and is baked at 200 ° C. for 30 minutes in the next step (step S15), thereby forming end face electrodes 9a and 9b. At this time, the end face electrodes 9a and 9b are partially overlapped with the front electrodes 2a and 2b and the back electrodes 3a and 3b, and electrically connect the front electrodes 2a and 2b to the back electrodes 3a and 3b.
  • a paste obtained by kneading silver powder and an epoxy resin was used as the conductive paste.
  • step S16 the ceramic substrate 1 is secondarily divided along the secondary slit formed in the belt-shaped ceramic substrate 1. As a result, the ceramic substrate 1 is divided into individual pieces to form individual pieces.
  • step S17 end face electrodes 9a and 9b, back electrodes 3a and 3b, part of front electrodes 2a and 2b, and upper electrode are formed by barrel plating. Electroplating is performed on part of 6a and 6b to form nickel plating films 10a and 10b.
  • step S18 the tin plating films 11a and 11b are electroplated on the nickel plating films 10a and 10b formed in step S17 by a barrel plating method. Form.
  • each ESD protection component (the manufacturing process is as above) which has each ESD protection film 5 formed using the paste for ESD protection from which the weight part of these aluminum powders differs, and performs ESD test, ESD suppression peak The voltage was measured.
  • each of the electrostatic protection components does not contain zinc oxide and increases the mixing amount of aluminum powder in the order of 95 parts by weight, 160 parts by weight, 200 parts by weight, and 250 parts by weight.
  • ESD suppression peak voltages of 550V, 450V, 400V, and 300V were shown, respectively. The number of times of voltage application at this time is one. From this test result, in order to satisfy the target value of ESD suppression peak voltage of 500 V or less, the mixing amount of aluminum powder of conductive metal particles having an average particle size of 3.0 ⁇ m was set to 160 parts by weight.
  • the ESD suppression peak voltage of the electrostatic protection component is lowered due to the insulation resistance deterioration of the electrostatic protection film 5, and the ESD tolerance of the electrostatic protection component is not good.
  • the ESD suppression peak voltage was 450 V.
  • the ESD suppression peak voltage is lower than 450V for the second and subsequent voltage application. Therefore, as a countermeasure against the ESD suppression peak voltage drop due to the deterioration of the insulation resistance, zinc oxide powder, which is insulating particles, was also mixed, and the weight part thereof was searched.
  • insulating particles having a volume resistivity of 200 M ⁇ cm or more are used as an average particle diameter.
  • mixed zinc oxide powder which is 1.5 micrometer 5 weight part, 15 weight part, 40 weight part, 60 weight part, 80 weight part, 100 weight part, 120 weight part was manufactured, respectively.
  • each ESD protection part manufactured using the paste for ESD protection from which the weight part of these zinc oxide powders is different, and performs ESD test, and ESD protection It was confirmed whether or not the insulation resistance of the film 5 deteriorated. Regardless of the weight part of zinc oxide powder, the number of tests of the electrostatic protection component is 30. In addition, this ESD test was implemented also about the case where the mixing amount of zinc oxide powder is 0 weight part.
  • FIG. 8 shows the test results when the amount of zinc oxide powder mixed is 0, 40, 80, and 120 parts by weight. As shown in FIG.
  • FIG. 9 shows test results when the amount of zinc oxide powder mixed is 0, 40, 80, and 120 parts by weight. Regardless of the weight part of the zinc oxide powder, the difference between the maximum value and the minimum value of the capacitance Cp is small, and the variation in the capacitance Cp is small.
  • the variation in the electrostatic capacitance Cp of the electrostatic protection component is small because the gap 4 is formed by cutting the thin-film surface electrode 2 by a laser method or the like, so that the cross-sectional areas A and gaps of the surface electrodes 2a and 2b
  • the variation in the dielectric constant ⁇ of the electrostatic protection film 5 formed using the above-mentioned electrostatic protection paste is also a factor.
  • FIGS. 10 and 11 show the static electricity of the electrostatic protection component of the present invention (an example of using an electrostatic protection paste of 100 parts by weight of silicone resin, 160 parts by weight of aluminum powder, and 120 parts by weight of zinc oxide powder).
  • a comparison between the capacitance Cp and the capacitance Cp of the comparative example (varistor) is shown. This comparison also shows that the electrostatic protection component of the present invention has a small variation in the capacitance Cp.
  • 100 parts by weight of the silicone resin as the binder with respect to 100 parts by weight of the zinc oxide powder is 60 parts by weight, 80 parts by weight, 120 parts by weight, 160 parts by weight, 200 parts by weight, and 40 parts by weight, 60 parts by weight, 100 parts by weight, 150 parts by weight, 200 parts by weight of aluminum powder.
  • the printability is a state when the electrostatic protection film 5 is screen-printed using the electrostatic protection paste of each blending ratio.
  • “XX” indicates that blurring occurs in the electrostatic protection film 5
  • “X” indicates that blurring occurs in the electrostatic protection film 5. In these cases, it is determined to be defective.
  • the leakage current and the ESD suppression peak voltage are as compared with each electrostatic protection component (manufacturing process is as described above) having each electrostatic protection film 5 formed using the electrostatic protection paste of each blending ratio. It is the result of conducting an ESD test and measuring the leakage current and the ESD suppression peak voltage.
  • “ ⁇ ” indicates a case where the number of electrostatic protection components that did not satisfy the target value of the leakage current of 10 ⁇ A or less was 2 or more out of 10. In this case, it is determined to be defective.
  • “ ⁇ ” indicates that the number of electrostatic protection components that did not meet the target value of 10 ⁇ A or less of the leakage current was 1 out of 10; This is a case where the number of parts is 0 out of 10.
  • “ ⁇ ” indicates a case where the number of electrostatic protection components that did not satisfy the target value of the ESD suppression peak voltage 400V to 500V was 2 or more out of 10. In this case, it is determined to be defective.
  • “ ⁇ ” indicates the target value of the ESD suppression peak voltage 400V to 500V when the number of electrostatic protection components that did not satisfy the target value of the ESD suppression peak voltage 400V to 500V was 1 in 10. This is the case where the number of electrostatic protection components that did not satisfy the above is 0 out of 10.
  • the blending ratio of the three components is 100 parts by weight of the silicone resin, 60 parts by weight to 200 parts by weight of the aluminum powder, and 60 parts by weight to 160 parts by weight of the zinc oxide powder. It turns out that the range is sufficient. More desirably, the mixing ratio of the three components is 100 parts by weight of the silicone resin, aluminum powder is in the range of 60 parts by weight to 200 parts by weight, and zinc oxide powder is in the range of 120 parts by weight to 160 parts by weight. It turns out that the range is sufficient. In addition, it has also been confirmed that the electrostatic protection parts to which these mixing ratios are applied have small variations in electrostatic capacity.
  • the electrostatic protection paste is formed by kneading only two kinds of conductive particles and insulating particles in a silicone resin as a binder. Since the conductive particles and the insulating particles are not specially treated, they are inexpensive. Therefore, the electrostatic protection component having the electrostatic protection film 5 formed using this electrostatic protection paste is also inexpensive. Moreover, since the variation in the dielectric constant ⁇ of the electrostatic protection film 5 is reduced by forming the electrostatic protection film 5 using this electrostatic protection paste, the electrostatic capacity Cp of the electrostatic protection component having the electrostatic protection film 5 is reduced. The variation of the is also reduced.
  • the conductive particles are aluminum powder
  • the insulating particles are zinc oxide powder. Since these aluminum powder and zinc oxide powder are inexpensive materials, an electrostatic protection paste can be manufactured at low cost. Can do.
  • the blending ratio of the three components of the electrostatic protection paste is such that the silicone resin is 100 parts by weight, the aluminum powder is 60 parts by weight to 200 parts by weight, and the zinc oxide powder is 60 parts by weight to 160 parts by weight.
  • the electrostatic protection component having the electrostatic protection film 5 formed using this electrostatic protection paste has an ESD suppression peak voltage of 500 V or less and an ESD resistance.
  • the screen-printed upper electrodes 6a and 6b and the electrostatic protection film 5 are simultaneously baked, so that the manufacturing process is simplified and the electrostatic protection component is manufactured at a low cost. can do.
  • the upper electrodes 6a and 6b are screen-printed first and then the electrostatic protection film 5 is screen-printed thereafter, the following effects can be obtained. That is, since the mechanical strength of the front electrodes 2a and 2b can be reinforced by the dried upper electrodes 6a and 6b, it is easy to form the electrostatic protection film 5 by screen printing. In addition, the number of times the screen mesh contacts the electrostatic protection film 5 can be reduced as compared with the case where the electrostatic protection film 5 is screen-printed first and then the upper electrodes 6a and 6b are screen-printed. To reduce the possibility that the electrical characteristics of the electrostatic protection film 5 will deteriorate due to the static electricity larger than the desired static electricity resistance of the electrostatic protection film 5 due to the charging of the screen mesh at the time. Can do.
  • the present invention can be applied not only to the electrostatic protection component having the structure as shown in FIG. 1 but also to various electrostatic protection components having an electrostatic protection film.
  • the electrostatic protection having the structure as shown in FIG. It can also be applied to parts.
  • glass films 12a and 12b are interposed between the sides 5a and 5b of the electrostatic protection film and the surface electrodes 2a and 2b, respectively.
  • electrostatic protection component in which one electrostatic protection film 5 is formed on one ceramic substrate 1 has been described.
  • the present invention is not limited to this. Two or more electrostatic protection components are provided on one ceramic substrate 1.
  • the electrostatic protection component formed with the electrostatic protection film 5 is also within the scope of the present invention.
  • the present invention relates to a paste for an electrostatic protection film, an electrostatic protection component, and a manufacturing method thereof, and is useful when applied to an electrostatic protection component for protecting electronic devices such as portable information devices from electrostatic pulses and external noise. is there.

Abstract

Disclosed are: a paste for electrostatic protection, which can be obtained at low cost and is capable of suppressing variations in the capacitance; an electrostatic protection component which uses the paste for electrostatic protection; and a method for producing the electrostatic protection component. Specifically disclosed is a paste for electrostatic protection, which is used for the purpose of forming an electrostatic protection film. The paste for electrostatic protection is obtained by kneading only two kinds of particles, namely conductive particles and insulating particles, into a silicone resin that serves as a binder. The conductive particles and the insulating particles are not subjected to a special treatment. The conductive particles are composed of an aluminum powder, and the insulating particles are composed of a zinc oxide powder. Relative to 100 parts by weight of the silicone resin, the aluminum powder is contained in an amount of 60-200 parts by weight and the zinc oxide powder is contained in an amount of 60-160 parts by weight. When an electrostatic protection component is produced, an upper electrode is screen printed first, and then an electrostatic protection film is screen printed. In this connection, the screen printed upper electrode and electrostatic protection film are baked at the same time.

Description

静電気保護用ペースト、静電気保護部品及びその製造方法Electrostatic protective paste, electrostatic protective component and method for manufacturing the same
 本発明は静電気保護用ペースト、静電気保護部品及びその製造方法に関するものである。 The present invention relates to an electrostatic protection paste, an electrostatic protection component, and a manufacturing method thereof.
 近年、携帯情報機器等の電子機器の小型化、高機能化が急速に進んでいる。それに伴い、その電子機器の中に実装される電子部品の小型化も急速に進んでいる。しかしながら、それらによって電子機器や電子部品の耐電圧は低下しているため、例えば帯電している人体に電子機器の端子が接触したときに発生する静電気パルスや、携帯情報機器のアンテナから入る外来ノイズによって印加される過電圧により、携帯情報機器等の電子機器内部の電子回路(電子部品)が破壊されるという不具合が発生し、その発生件数も増加している。ここで、静電気パルス、外来ノイズとは、1ナノ秒以下の時間で発生する数百から数キロボルトの電圧をいう。 In recent years, electronic devices such as portable information devices have been rapidly reduced in size and functionality. Along with this, miniaturization of electronic components mounted in the electronic device is also progressing rapidly. However, since the withstand voltage of electronic devices and electronic components is reduced by them, for example, electrostatic pulses generated when a terminal of an electronic device comes into contact with a charged human body, or external noise entering from an antenna of a portable information device Due to the overvoltage applied by the electronic device, there is a problem that an electronic circuit (electronic component) inside an electronic device such as a portable information device is destroyed, and the number of occurrences is increasing. Here, the electrostatic pulse and the external noise mean a voltage of several hundred to several kilovolts generated in a time of 1 nanosecond or less.
 従来、このような静電気パルスや外来ノイズによる過電圧の対策として、電子機器に対し、前記過電圧が印加されるラインとグランドとの間にバリスタのような対策部品を設ける方法が採用されている。ところが、近年、更に携帯情報機器において授受する情報量が増加しており、それに伴って情報を授受するための信号の質の向上が求められている。そのため、前記対策部品に対して、浮遊容量とそのバラツキを低減することが求められている。 Conventionally, as a countermeasure against such an overvoltage caused by an electrostatic pulse or external noise, a method of providing a countermeasure component such as a varistor between the line to which the overvoltage is applied and the ground is adopted for an electronic device. However, in recent years, the amount of information exchanged in portable information devices has further increased, and accordingly, the quality of signals for exchanging information has been demanded. Therefore, it is required to reduce the stray capacitance and its variation with respect to the countermeasure component.
 このような要求に対して、一般的にバリスタは、例えば酸化亜鉛等を主成分としたセラミックス膜を積層した構造が適用されているため、その静電容量が増大するという問題がある。よって、浮遊容量を低減するため、狭いギャップを介して対向する電極の間に静電気保護膜を形成した構造の静電気対策部品(静電気保護部品)を用いることが、既に提案されている。かかる静電気対策部品(静電気保護部品)の具体例としては、例えば下記の特許文献1~8に開示されたものがある。 In response to such demands, varistors generally have a problem that the capacitance increases because a structure in which ceramic films mainly composed of zinc oxide or the like are laminated is applied. Therefore, in order to reduce stray capacitance, it has already been proposed to use an antistatic component (static protection component) having a structure in which an electrostatic protection film is formed between electrodes facing each other through a narrow gap. Specific examples of such anti-static components (electrostatic protection components) include those disclosed in Patent Documents 1 to 8 below.
 特許文献1には、静電気対策部品の構造において適用される静電気保護膜の特定の材料として、表面に不動態層(酸化アルミニウム)を形成して高絶縁性を確保することができるようにしたアルミニウム粉を用いることが開示されている。
 特許文献2には、静電気保護素子における静電気保護膜の材料として、酸化亜鉛(ZnO)を主成分とし、これにマンガン(Mn)又はコバルト(Co)から成る材料をドープして半導体化した材料に、ビスマス(Bi)、アンチモン(Sb)、シリコン(Si)、カルシウム(Ca)、バリウム(Ba)、チタニウム(Ti)又はアルミニウム(Al)からなる粉末組成物或いはそれらの化合物から成る副成分を混合した粉末組成物等の粉末と、ガラスフリットとを混合してなるペーストを用いることが開示されている。
 特許文献3には、静電気保護素子における静電気吸収体の材料として、酸化亜鉛(ZnO)に、その半導体化のためにマンガン(Mn)、コバルト(Co)を混合し熱処理して合成した粉末と、ビスマス(Bi)、アルミニウム(Al)等の炭化物或いは酸化物を均一に混合して熱処理した材料とを用いることが開示されている。
 特許文献4には、電極上に過渡電圧保護材料を付着硬化させ過渡電圧保護膜を形成する工程において、過渡電圧保護膜を平坦化するため、電極上に土手部を形成することが開示されている。
In Patent Document 1, as a specific material for an electrostatic protection film applied in the structure of an anti-static component, aluminum in which a passivation layer (aluminum oxide) is formed on the surface to ensure high insulation is disclosed. The use of flour is disclosed.
In Patent Document 2, as a material for an electrostatic protection film in an electrostatic protection element, a material which is composed mainly of zinc oxide (ZnO) and doped with a material made of manganese (Mn) or cobalt (Co) to become a semiconductor is disclosed. , Powder composition composed of bismuth (Bi), antimony (Sb), silicon (Si), calcium (Ca), barium (Ba), titanium (Ti) or aluminum (Al), or a minor component composed of these compounds It is disclosed to use a paste formed by mixing a powder such as a powder composition and glass frit.
In Patent Document 3, as a material of an electrostatic absorber in an electrostatic protection element, zinc oxide (ZnO), a powder synthesized by mixing manganese (Mn) and cobalt (Co) for heat treatment and synthesizing the semiconductor, It is disclosed to use a material obtained by heat-mixing a carbide or oxide such as bismuth (Bi) or aluminum (Al) uniformly.
Patent Document 4 discloses forming a bank portion on an electrode in order to flatten the transient voltage protection film in a step of forming a transient voltage protection film by adhering and curing a transient voltage protection material on the electrode. Yes.
 特許文献5には、電気過負荷保護装置における電気過負荷保護材料として、絶縁性バインダと導電性粒子と半導体粒子から構成される静電気保護材料と、絶縁性バインダと導電性粒子と半導体粒子と絶縁性粒子から構成される静電気保護材料との大別して2種の材料が開示されている。また、特許文献5には、粒径の観点から、前者の静電気保護材料に関しては、導電性粒子が10μm未満の最大平均値粒径、半導体粒子が10μm未満の平均値粒径であることが記述され、後者の静電気保護材料に関しては、導電性粒子が10μm未満の最大平均値粒径、半導体粒子が10μm未満の平均値粒径、絶縁性粒子が約200オングストロームから約1000オングストロームまでの範囲内の平均値粒径であり、導電性粒子が、10μm未満の最大平均値粒径の場合と、約4μmから約8μmまでの範囲内の平均値粒径が約4μm未満の平均値粒径の場合とがあることも記述されている。
 特許文献6には、絶縁基板上に、第1の電極と第2の電極を互いに離隔するギャップを形成し、そのギャップ内にキャビティを形成して、そのキャビティ中に電圧可変材料を備えた構造の電気回路保護デバイスが開示されている。また、特許文献6には、前記電極の厚さに関する内容が開示されている。
 特許文献7には、絶縁基板上に、比抵抗が小さい材料を用いて膜厚の厚い状態に一対の第1の電極を形成し、高融点金属からなる薄膜で前記一対の電極間に第2の電極を形成して、過電圧保護材料層を設けるためのギャップを、前記第2の電極に形成した構造の静電気対策部品が開示されている。
 特許文献8には、絶縁基板上に金レジネートペーストを印刷し焼成して形成した第1グラウンド電極と複数の第1上面電極との間に過電圧保護材料層を形成し、且つ、前記第1グランド電極を覆う第2上面電極と前記第1グラウンド電極を覆う第2グランド電極とを、銀を主成分とする導電ペーストを印刷し焼成して形成した構造の静電気対策部品が開示されている。
In Patent Document 5, as an electrical overload protection material in an electrical overload protection device, an electrostatic protection material composed of an insulating binder, conductive particles, and semiconductor particles, an insulating binder, conductive particles, and semiconductor particles are insulated. Two types of materials are disclosed, which are roughly divided into electrostatic protection materials composed of conductive particles. Patent Document 5 describes that, from the viewpoint of particle size, the former electrostatic protection material has a maximum average particle size of conductive particles less than 10 μm and an average particle size of semiconductor particles less than 10 μm. With respect to the latter electrostatic protection material, the conductive particles have a maximum average particle size of less than 10 μm, the semiconductor particles have an average particle size of less than 10 μm, and the insulating particles have a range of about 200 angstroms to about 1000 angstroms. The average particle size, the conductive particles having a maximum average particle size of less than 10 μm, and the average particle size in the range from about 4 μm to about 8 μm being an average particle size of less than about 4 μm It is also described that there is.
Patent Document 6 discloses a structure in which a gap for separating a first electrode and a second electrode from each other is formed on an insulating substrate, a cavity is formed in the gap, and a voltage variable material is provided in the cavity. An electrical circuit protection device is disclosed. Patent Document 6 discloses the contents related to the thickness of the electrode.
In Patent Document 7, a pair of first electrodes is formed in a thick state using a material having a small specific resistance on an insulating substrate, and a second thin film made of a refractory metal is used between the pair of electrodes. An anti-static component having a structure in which a gap for providing an overvoltage protection material layer is formed in the second electrode is disclosed.
In Patent Document 8, an overvoltage protection material layer is formed between a first ground electrode formed by printing and baking a gold resinate paste on an insulating substrate and a plurality of first upper surface electrodes, and the first ground is formed. An antistatic component having a structure in which a second upper surface electrode covering an electrode and a second ground electrode covering the first ground electrode are formed by printing and baking a conductive paste mainly composed of silver is disclosed.
特開2007-265713号公報JP 2007-265713 A 特開2008-294324号公報JP 2008-294324 A 特開2008-294325号公報JP 2008-294325 A 特開2001-230046号公報Japanese Patent Laid-Open No. 2001-230046 特表2001-523040号公報JP-T-2001-523040 特表2002-538601号公報Special table 2002-538601 gazette 特開2009-194130号公報JP 2009-194130 A 特開2009-147315号公報JP 2009-147315 A
 上述のギャップを介して対向する電極の間に静電気保護膜を形成した構造の静電気保護部品は、アルミナ等のセラミックス基板上に、ギャップを介して対向するように少なくとも2つの電極を形成し、その後、前記電極の一部を覆い且つ前記ギャップを塞ぐように静電気保護膜をスクリーン印刷法等により形成し、更に外部環境等から静電気保護膜を保護するための保護膜を、前記電極の一部と静電気保護膜全体とを覆うように形成して成るものである。更に、前記保護膜で覆われていない電極部分には、端子電極としての信頼性を向上させるため、ニッケルめっき膜、スズめっき膜を電気めっき法で形成する。 An electrostatic protection component having a structure in which an electrostatic protection film is formed between electrodes facing each other through the gap described above, forms at least two electrodes on a ceramic substrate such as alumina so as to face each other through the gap, and then An electrostatic protection film is formed by screen printing or the like so as to cover a part of the electrode and close the gap, and a protective film for protecting the electrostatic protection film from an external environment or the like It is formed so as to cover the entire electrostatic protection film. Further, a nickel plating film and a tin plating film are formed on the electrode portions not covered with the protective film by electroplating in order to improve the reliability as a terminal electrode.
 そして、上述の静電気保護部品における静電気保護膜を形成するための従来の材料としては、セラミックス材料と、樹脂に導電性粒子と半導体粒子と絶縁性粒子とを混練して成る材料とに大別される。 The conventional materials for forming the electrostatic protection film in the above-mentioned electrostatic protection component are roughly classified into ceramic materials and materials obtained by kneading conductive particles, semiconductor particles, and insulating particles in a resin. The
 これらのうち、セラミックス材料を静電気保護膜の材料として用いた静電気保護部品には、その静電容量のバラツキが大きいという課題がある。その原因としては、各静電気保護部品ごとに、ギャップ幅(電極間隔)のバラツキが大きいことや、セラミックス材料の誘電率のバラツキが大きいことなどが考えられる。つまり、ギャップ幅(電極間隔)をd、静電気保護膜の誘電率をε、電極の断面積をAとすると、静電気保護部品の静電容量CpはεA/dで表せるため、電極の断面積A、ギャップ幅d、誘電率εのバラツキが大きいと、静電容量Cpのバラツキも大きくなる。 Among these, the electrostatic protection parts using ceramic materials as the material of the electrostatic protection film have a problem that the variation in capacitance is large. As the cause, it is conceivable that the gap width (electrode spacing) varies greatly for each electrostatic protection component and the dielectric constant variation of the ceramic material is large. That is, assuming that the gap width (electrode spacing) is d, the dielectric constant of the electrostatic protection film is ε, and the sectional area of the electrode is A, the electrostatic capacitance Cp of the electrostatic protection component can be expressed by εA / d. When the gap width d and the dielectric constant ε vary greatly, the variation of the capacitance Cp also increases.
 また、バインダの樹脂に、導電性粒子と半導体粒子と絶縁性粒子の3種もの材料を混合する場合、導電性粒子の表面に不動態層の設ける表面処理や絶縁性粒子に他の物質をドープする処理などの特殊な処理を行なう場合には、静電気保護用ペーストが高価になるため、静電気保護部品のコストアップを招く。 In addition, when mixing three types of materials, conductive particles, semiconductor particles, and insulating particles, in the binder resin, surface treatment for providing a passive layer on the surface of the conductive particles and doping the insulating particles with other substances When special processing such as processing is performed, the electrostatic protection paste becomes expensive, leading to an increase in the cost of electrostatic protection components.
 更に、セラミックス材料を静電気保護膜材料として用いた静電気保護部品では、その形成条件により、セラミックス材料を熱処理する温度が1000℃から1300℃であるため、その熱処理装置が大型で且つ高価になるという問題もある。 Furthermore, in an electrostatic protection component using a ceramic material as an electrostatic protection film material, the temperature at which the ceramic material is heat-treated is 1000 ° C. to 1300 ° C. depending on the formation conditions, so that the heat treatment apparatus is large and expensive. There is also.
 従って本発明は上記の事情に鑑み、安価で、しかも静電容量のバラツキを小さすることなどが可能な静電気保護用ペースト、これを用いた静電気保護部品及びその製造方法を提供することを課題とする。 Accordingly, in view of the above circumstances, an object of the present invention is to provide an electrostatic protection paste that is inexpensive and can reduce variation in capacitance, an electrostatic protection component using the paste, and a method of manufacturing the same. To do.
 上記課題を解決する第1発明の静電気保護用ペーストは、静電気保護部品の静電気保護膜を形成するための静電気保護用ペーストであって、
 シリコーン樹脂と、導電性粒子と、絶縁性粒子の3成分を混合したものであることを特徴とする。
The electrostatic protection paste of the first invention that solves the above problems is an electrostatic protection paste for forming an electrostatic protection film of an electrostatic protection component,
It is a mixture of three components of silicone resin, conductive particles, and insulating particles.
 また、第2発明の静電気保護用ペーストは、第1発明の静電気保護用ペーストにおいて、前記導電性粒子がアルミニウム粉、前記絶縁性粒子が酸化亜鉛粉であることを特徴とする。 Further, the electrostatic protection paste of the second invention is characterized in that, in the electrostatic protection paste of the first invention, the conductive particles are aluminum powder and the insulating particles are zinc oxide powder.
 また、第3発明の静電気保護用ペーストは、第2発明の静電気保護用ペーストにおいて、前記シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が60重量部~200重量部、前記酸化亜鉛粉が60重量部~160重量部であることを特徴とする。 The electrostatic protection paste of the third invention is the electrostatic protection paste of the second invention, wherein the silicone resin is 100 parts by weight, whereas the aluminum powder is 60 parts by weight to 200 parts by weight. The zinc powder is 60 to 160 parts by weight.
 また、第4発明の静電気保護部品は、絶縁基板と、前記絶縁基板上に形成されギャップを介して対向している表電極と、前記ギャップに形成されて前記表電極に接続された静電気保護膜とを有している静電気保護部品において、
 前記静電気保護膜は、シリコーン樹脂と、導電性粒子と、絶縁性粒子の3成分を混合したものであることを特徴とする。
According to a fourth aspect of the present invention, there is provided an electrostatic protection component comprising: an insulating substrate; a surface electrode formed on the insulating substrate and facing the gap through a gap; and an electrostatic protection film formed in the gap and connected to the surface electrode In electrostatic protection parts having
The electrostatic protection film is a mixture of three components of silicone resin, conductive particles, and insulating particles.
 また、第5発明の静電気保護部品は、第4発明の静電気保護部品において、
 前記導電性粒子がアルミニウム粉、前記絶縁性粒子が酸化亜鉛粉であることを特徴とする。
The electrostatic protection component of the fifth invention is the electrostatic protection component of the fourth invention.
The conductive particles are aluminum powder, and the insulating particles are zinc oxide powder.
 また、第6発明の静電気保護部品は、第5発明の静電気保護部品において、
 前記シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が60重量部~200重量部、前記酸化亜鉛粉が60重量部~160重量部であることを特徴とする。
The electrostatic protection component of the sixth invention is the electrostatic protection component of the fifth invention,
Wherein the silicone resin is 100 parts by weight, the aluminum powder is 60 to 200 parts by weight, and the zinc oxide powder is 60 to 160 parts by weight.
 また、第7発明の静電気保護部品の製造方法は、スクリーン印刷法により、電極ペーストを絶縁基板上に塗布してパターン化することにより、表電極を形成する工程と、
 前記表電極を焼成する工程と、
 焼成した前記表電極を切断加工してギャップを形成し、このギャップを介して表電極が対向する構造とする工程と、
 スクリーン印刷法により、導電性ペーストを、前記ギャップを介して対向する表電極のそれぞれに塗布してパターン化することより、上部電極を形成する工程と、
 スクリーン印刷法により、静電気保護用ペーストを、前記ギャップに塗布してパターン化することにより、前記ギャップに静電気保護膜を形成し、前記ギャップを介して対向する表電極に前記静電気保護膜を接続する工程と、
 前記上部電極と前記静電気保護膜とを同時に焼付けする工程と、
を有することを特徴とする。
Moreover, the manufacturing method of the electrostatic protection component of the seventh invention comprises a step of forming a surface electrode by applying and patterning an electrode paste on an insulating substrate by a screen printing method,
Firing the surface electrode;
Cutting the fired surface electrode to form a gap, and the surface electrode faces through the gap; and
A step of forming an upper electrode by applying and patterning a conductive paste to each of the opposing front electrodes through the gap by a screen printing method;
By applying a pattern for applying an electrostatic protection paste to the gap by screen printing, an electrostatic protection film is formed in the gap, and the electrostatic protection film is connected to the opposing surface electrode through the gap. Process,
Baking the upper electrode and the electrostatic protection film simultaneously;
It is characterized by having.
 また、第8発明の静電気保護部品の製造方法は、第7発明の静電気保護部品の製造方法において、
 前記静電気保護用ペーストは、シリコーン樹脂と、導電性粒子と、絶縁性粒子の3成分を混合したものであることを特徴とする。
Moreover, the manufacturing method of the electrostatic protection component of the eighth invention is the manufacturing method of the electrostatic protection component of the seventh invention,
The electrostatic protection paste is a mixture of three components of a silicone resin, conductive particles, and insulating particles.
 また、第9発明の静電気保護部品の製造方法は、第8発明の静電気保護部品の製造方法において、
 前記導電性粒子がアルミニウム粉、前記絶縁性粒子が酸化亜鉛粉であることを特徴とする。
Moreover, the manufacturing method of the electrostatic protection component of the ninth invention is the manufacturing method of the electrostatic protection component of the eighth invention,
The conductive particles are aluminum powder, and the insulating particles are zinc oxide powder.
 また、第10発明の静電気保護部品の製造方法は、第9発明の静電気保護部品の製造方法において、
 前記シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が60重量部~200重量部、前記酸化亜鉛粉が60重量部~160重量部であることを特徴とする。
Moreover, the manufacturing method of the electrostatic protection component of the tenth invention is the manufacturing method of the electrostatic protection component of the ninth invention,
Wherein the silicone resin is 100 parts by weight, the aluminum powder is 60 to 200 parts by weight, and the zinc oxide powder is 60 to 160 parts by weight.
 第1発明の静電気保護用ペーストによれば、第1発明の静電気保護用ペーストは、静電気保護部品の静電気保護膜を形成するための静電気保護用ペーストであって、シリコーン樹脂と、導電性粒子と、絶縁性粒子の3成分を混合したものであることを特徴としており、バインダであるシリコーン樹脂に、導電性粒子と絶縁性粒子の2種だけが混合され、しかも、導電性粒子及び絶縁性粒子には特殊な表面処理などが施されていないため、安価な静電気保護用ペーストを実現することができる。従って、この静電気保護用ペーストを用いて形成した静電気保護膜を有する静電気保護部品も安価なものとなる。
 また、この静電気保護用ペーストを用いて静電気保護膜を形成することにより、静電気保護膜の誘電率のバラツキが小さくなるため、この静電気保護膜を有する静電気保護部品の静電容量のバラツキも小さくなる。従って、この静電気保護部品を静電気パルスや外来ノイズの対策品として携帯情報機器等の電子機器に適用した場合、静電気保護部品に関する浮遊容量とそのバラツキを低減することができる。
According to the electrostatic protection paste of the first invention, the electrostatic protection paste of the first invention is an electrostatic protection paste for forming an electrostatic protection film of an electrostatic protection component, and comprises a silicone resin, conductive particles, , Which is a mixture of three components of insulating particles, in which only two types of conductive particles and insulating particles are mixed in a silicone resin as a binder, and the conductive particles and the insulating particles Since no special surface treatment or the like is applied, an inexpensive antistatic paste can be realized. Therefore, an electrostatic protection component having an electrostatic protection film formed using this electrostatic protection paste is also inexpensive.
Further, by forming the electrostatic protection film using this electrostatic protection paste, the variation in the dielectric constant of the electrostatic protection film is reduced, so that the variation in the electrostatic capacitance of the electrostatic protection component having the electrostatic protection film is also reduced. . Therefore, when this electrostatic protection component is applied to an electronic device such as a portable information device as a countermeasure against electrostatic pulses or external noise, the stray capacitance and the variation regarding the electrostatic protection component can be reduced.
 また、第2発明の静電気保護用ペーストによれば、第1発明の静電気保護用ペーストにおいて、前記導電性粒子がアルミニウム粉、前記絶縁性粒子が酸化亜鉛粉であることを特徴としているため、上記第1発明の効果が得られることに加えて、前記アルミニウム粉や酸化亜鉛粉といった安価な材料を用いることにより、静電気保護用ペーストを安価に製造することができる。 Moreover, according to the electrostatic protection paste of the second invention, in the electrostatic protection paste of the first invention, the conductive particles are aluminum powder, and the insulating particles are zinc oxide powder. In addition to obtaining the effects of the first invention, by using an inexpensive material such as the aluminum powder or zinc oxide powder, an electrostatic protection paste can be manufactured at low cost.
 また、第3発明の静電気保護用ペーストによれば、第2発明の静電気保護用ペーストにおいて、前記シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が60重量部~200重量部、前記酸化亜鉛粉が60重量部~160重量部であることを特徴としているため、上記第1及び第2発明の効果が得られることに加えて、本静電気保護用ペーストを用いて形成した静電気保護膜を有する静電気保護部品は、ESD(Electrostatic discharge)抑制ピーク電圧が500V以下で、ESD耐量(20回電圧印加)が規格値のリーク電流10μA以下(絶縁抵抗R=3MΩ以上)という目標値を満足することができる。 Further, according to the electrostatic protection paste of the third invention, in the electrostatic protection paste of the second invention, the silicone resin is 100 parts by weight, whereas the aluminum powder is 60 parts by weight to 200 parts by weight, Since the zinc oxide powder is 60 parts by weight to 160 parts by weight, in addition to obtaining the effects of the first and second inventions, the electrostatic protection formed using the present electrostatic protection paste The electrostatic protection component with a film has an ESD (Electrostatic discharge) suppression peak voltage of 500 V or less, and an ESD resistance (20 times voltage application) satisfies the target value of a leakage current of 10 μA or less (insulation resistance R = 3 MΩ or more). can do.
 また、第4発明の静電気保護部品によれば、絶縁基板と、前記絶縁基板上に形成されギャップを介して対向している表電極と、前記ギャップに形成されて前記表電極に接続された静電気保護膜とを有している静電気保護部品において、前記静電気保護膜は、シリコーン樹脂と、導電性粒子と、絶縁性粒子の3成分を混合したものであることを特徴としており、静電気保護膜バインダであるシリコーン樹脂に、導電性粒子と絶縁性粒子の2種だけを混合した材料で静電気保護膜が形成され、しかも、導電性粒子及び絶縁性粒子には特殊な表面処理などが施されていないため、安価に静電気保護膜が形成することができ、この静電気保護膜を有する静電気保護部品も安価なものとなる。
 また、静電気保護膜の誘電率のバラツキが小さくなるため、この静電気保護膜を有する静電気保護部品の静電容量のバラツキも小さくなる。従って、この静電気保護部品を静電気パルスや外来ノイズの対策品として携帯情報機器等の電子機器に適用した場合、静電気保護部品に関する浮遊容量とそのバラツキを低減することができる。
According to the electrostatic protection component of the fourth aspect of the invention, an insulating substrate, a surface electrode formed on the insulating substrate and facing each other through a gap, and static electricity formed in the gap and connected to the surface electrode An electrostatic protection component having a protective film, wherein the electrostatic protective film is a mixture of three components of silicone resin, conductive particles, and insulating particles. An electrostatic protection film is formed of a material obtained by mixing only two kinds of conductive particles and insulating particles with silicone resin, and the conductive particles and insulating particles are not subjected to special surface treatment. Therefore, an electrostatic protection film can be formed at low cost, and an electrostatic protection component having this electrostatic protection film is also inexpensive.
Moreover, since the variation in the dielectric constant of the electrostatic protection film is reduced, the variation in the capacitance of the electrostatic protection component having the electrostatic protection film is also reduced. Therefore, when this electrostatic protection component is applied to an electronic device such as a portable information device as a countermeasure against electrostatic pulses or external noise, the stray capacitance and the variation regarding the electrostatic protection component can be reduced.
 また、第5発明の静電気保護部品によれば、第4発明の静電気保護部品において、前記導電性粒子がアルミニウム粉、前記絶縁性粒子が酸化亜鉛粉であることを特徴としているため、上記第4発明の効果が得られることに加えて、前記アルミニウム粉や酸化亜鉛粉といった安価な材料を用いることにより、静電気保護膜を安価に形成することができる。 According to the electrostatic protection component of the fifth invention, in the electrostatic protection component of the fourth invention, the conductive particles are aluminum powder, and the insulating particles are zinc oxide powder. In addition to obtaining the effects of the invention, by using an inexpensive material such as the aluminum powder or zinc oxide powder, an electrostatic protection film can be formed at a low cost.
 また、第6発明の静電気保護部品によれば、第5発明の静電気保護部品において、前記シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が60重量部~200重量部、前記酸化亜鉛粉が60重量部~160重量部であることを特徴としているため、上記第4及び第5発明の効果が得られることに加えて、本静電気保護用ペーストを用いて形成した静電気保護膜を有する静電気保護部品は、ESD抑制ピーク電圧が500V以下で、ESD耐量が規格値のリーク電流10μA以下(絶縁抵抗R=3MΩ以上)という目標値を満足することができる。 According to the electrostatic protection component of the sixth invention, in the electrostatic protection component of the fifth invention, the silicone powder is 100 parts by weight, whereas the aluminum powder is 60 parts by weight to 200 parts by weight, Since the zinc powder is 60 parts by weight to 160 parts by weight, in addition to obtaining the effects of the fourth and fifth inventions, an electrostatic protection film formed using the present electrostatic protection paste is provided. The electrostatic protection component has an ESD suppression peak voltage of 500 V or less, and can satisfy a target value of a leakage current of 10 μA or less (insulation resistance R = 3 MΩ or more) with an ESD tolerance of a standard value.
 また、第7発明の静電気保護部品の製造方法によれば、スクリーン印刷法により、電極ペーストを絶縁基板上に塗布してパターン化することにより、表電極を形成する工程と、
 前記表電極を焼成する工程と、焼成した前記表電極を切断加工してギャップを形成し、このギャップを介して表電極が対向する構造とする工程と、スクリーン印刷法により、導電性ペーストを、前記ギャップを介して対向する表電極のそれぞれに塗布してパターン化することより、上部電極を形成する工程と、スクリーン印刷法により、静電気保護用ペーストを、前記ギャップに塗布してパターン化することにより、前記ギャップに静電気保護膜を形成し、前記ギャップを介して対向する表電極に前記静電気保護膜を接続する工程と、前記上部電極と前記静電気保護膜とを同時に焼付けする工程とを有することを特徴としているため、次のような効果が得られる。
 即ち、上部電極によって表電極の機械的強度を補強することができるため、スクリーン印刷による静電気保護膜の形成が容易になる。
 また、先に上部電極をスクリーン印刷し、その後から静電気保護膜をスクリーン印刷するため、先に静電気保護膜をスクリーン印刷し、その後から上部電極6a,6bをスクリーン印刷する場合に比べて、静電気保護膜にスクリーンメッシュが接触する回数を低減することができる。このため、スクリーン印刷時のスクリーンメッシュの帯電によって、静電気保護膜に対する所望の静電気耐量よりも大きな静電気が発生することにより、静電気保護膜の電気的特性が劣化する可能性を低減することができる。
According to the manufacturing method of the electrostatic protection component of the seventh invention, a step of forming a surface electrode by applying and patterning an electrode paste on an insulating substrate by a screen printing method;
A step of firing the surface electrode, a step of cutting the fired surface electrode to form a gap, and a structure in which the surface electrode is opposed to the gap through the gap, and a screen printing method, a conductive paste, Applying and patterning an electrostatic protection paste to the gap by a step of forming the upper electrode and screen printing by applying and patterning to each of the facing electrode facing through the gap Forming a static electricity protection film in the gap, connecting the static electricity protection film to a surface electrode facing the gap, and baking the upper electrode and the static electricity protection film at the same time. The following effects can be obtained.
That is, since the mechanical strength of the front electrode can be reinforced by the upper electrode, it is easy to form an electrostatic protection film by screen printing.
In addition, since the upper electrode is screen-printed first and then the electrostatic protection film is screen-printed, the electrostatic protection film is screen-printed first, and then the upper electrodes 6a and 6b are screen-printed. The number of times the screen mesh comes into contact with the membrane can be reduced. For this reason, it is possible to reduce the possibility that the electrical characteristics of the electrostatic protection film deteriorate due to the generation of static electricity that is larger than the desired static electricity resistance for the electrostatic protection film due to the charging of the screen mesh during screen printing.
 また、第8発明の静電気保護部品の製造方法によれば、第7発明の静電気保護部品の製造方法において、前記静電気保護用ペーストは、シリコーン樹脂と、導電性粒子と、絶縁性粒子の3成分を混合したものであることを特徴としているため、上記第7発明の効果が得られることに加えて、バインダであるシリコーン樹脂に、導電性粒子と絶縁性粒子の2種だけが混合され、しかも、導電性粒子及び絶縁性粒子には特殊な表面処理などが施されていないことから、安価な静電気保護用ペーストによって静電気保護膜を形成することができ、この静電気保護膜を有する静電気保護部品も安価なものとなる。
 また、この静電気保護用ペーストを用いて静電気保護膜を形成することにより、静電気保護膜の誘電率のバラツキが小さくなるため、この静電気保護膜を有する静電気保護部品の静電容量のバラツキも小さくなる。従って、この静電気保護部品を静電気パルスや外来ノイズの対策品として携帯情報機器等の電子機器に適用した場合、静電気保護部品に関する浮遊容量とそのバラツキを低減することができる。
According to the method for manufacturing an electrostatic protection component of the eighth invention, in the method for manufacturing an electrostatic protection component according to the seventh invention, the electrostatic protection paste comprises three components of silicone resin, conductive particles, and insulating particles. In addition to obtaining the effects of the seventh invention, in addition to the silicone resin as the binder, only two types of conductive particles and insulating particles are mixed, and Since the conductive particles and insulating particles are not subjected to special surface treatment, an electrostatic protection film can be formed with an inexpensive electrostatic protection paste. It will be cheap.
Further, by forming the electrostatic protection film using this electrostatic protection paste, the variation in the dielectric constant of the electrostatic protection film is reduced, so that the variation in the electrostatic capacitance of the electrostatic protection component having the electrostatic protection film is also reduced. . Therefore, when this electrostatic protection component is applied to an electronic device such as a portable information device as a countermeasure against electrostatic pulses or external noise, the stray capacitance and the variation regarding the electrostatic protection component can be reduced.
 また、第9発明の静電気保護部品の製造方法によれば、第8発明の静電気保護部品の製造方法において、前記導電性粒子がアルミニウム粉、前記絶縁性粒子が酸化亜鉛粉であることを特徴としているため、上記第7及び第8発明の効果が得られることに加えて、前記アルミニウム粉や酸化亜鉛粉といった安価な材料を用いた静電気保護用ペーストによって静電気保護膜を形成することができる。 According to the method for manufacturing an electrostatic protection component of the ninth invention, in the method for manufacturing an electrostatic protection component according to the eighth invention, the conductive particles are aluminum powder, and the insulating particles are zinc oxide powder. Therefore, in addition to obtaining the effects of the seventh and eighth inventions, an electrostatic protection film can be formed with an electrostatic protection paste using an inexpensive material such as the aluminum powder or zinc oxide powder.
 また、第10発明の静電気保護部品の製造方法によれば、第9発明の静電気保護部品の製造方法において、前記シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が60重量部~200重量部、前記酸化亜鉛粉が60重量部~160重量部であることを特徴としているため、上記第7~第9発明の効果が得られることに加えて、本静電気保護用ペーストを用いて形成した静電気保護膜を有する静電気保護部品は、ESD抑制ピーク電圧が500V以下で、ESD耐量が規格値のリーク電流10μA以下(絶縁抵抗R=3MΩ以上)という目標値を満足することができる。 According to the method for manufacturing an electrostatic protection component of the tenth aspect of the invention, in the method for manufacturing an electrostatic protection component of the ninth aspect, the silicone resin is 100 parts by weight, whereas the aluminum powder is 60 parts by weight or more. Since 200 parts by weight and the zinc oxide powder is 60 parts by weight to 160 parts by weight, in addition to obtaining the effects of the seventh to ninth inventions, the present electrostatic protection paste is used. The electrostatic protection component having the formed electrostatic protection film can satisfy the target value of the ESD suppression peak voltage of 500 V or less and the ESD tolerance of 10 μA or less (insulation resistance R = 3 MΩ or more) of the standard value.
本発明の実施の形態例に係る静電気保護部品の構造を示す断面図(図2のB-B線矢視断面図)である。FIG. 3 is a cross-sectional view (a cross-sectional view taken along line BB in FIG. 2) showing the structure of the electrostatic protection component according to the embodiment of the present invention. 本発明の実施の形態例に係る静電気保護部品の構造を示す上面図(図1のA方向矢視図)である。It is a top view (A direction arrow view of FIG. 1) which shows the structure of the electrostatic protection component which concerns on the example of embodiment of this invention. 本発明の実施の形態例に係る静電気保護部品の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. 本発明の実施の形態例に係る静電気保護部品の製造工程の第1説明図である。It is 1st explanatory drawing of the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. 本発明の実施の形態例に係る静電気保護部品の製造工程の第2説明図である。It is 2nd explanatory drawing of the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. 本発明の実施の形態例に係る静電気保護部品の製造工程の第3説明図である。It is 3rd explanatory drawing of the manufacturing process of the electrostatic protection component which concerns on the embodiment of this invention. バインダであるシリコーン樹脂が100重量部に対して、酸化亜鉛を含有せず、アルミニウム粉の重量部(パラメータ)を95重量部/160重量部/200重量部/250重量部とした場合の静電気保護部品のESD抑制ピーク電圧(印加回数1回)の測定結果を示すグラフである。Electrostatic protection when 100 parts by weight of the silicone resin as the binder does not contain zinc oxide and the weight parts (parameters) of the aluminum powder are 95 parts by weight / 160 parts by weight / 200 parts by weight / 250 parts by weight. It is a graph which shows the measurement result of ESD suppression peak voltage (number of times of application 1 time) of components. バインダであるシリコーン樹脂が100重量部に対して、アルミニウム粉を160重量部とし、それに酸化亜鉛粉の重量部(パラメータ)を0重量部、40重量部、80重量部、120重量部とした場合の静電気保護部品の絶縁抵抗劣化数を示すグラフである。When the binder silicone resin is 100 parts by weight, the aluminum powder is 160 parts by weight, and the zinc oxide powder parts by weight (parameters) are 0 parts by weight, 40 parts by weight, 80 parts by weight, and 120 parts by weight. It is a graph which shows the insulation resistance deterioration number of the electrostatic protection component of. バインダであるシリコーン樹脂が100重量部に対して、アルミニウム粉を160重量部とし、それに酸化亜鉛粉の重量部(パラメータ)を0重量部、40重量部、80重量部、120重量部とした場合の静電気保護部品の静電容量の計測結果を示す表である。When the binder silicone resin is 100 parts by weight, the aluminum powder is 160 parts by weight, and the zinc oxide powder parts by weight (parameters) are 0 parts by weight, 40 parts by weight, 80 parts by weight, and 120 parts by weight. It is a table | surface which shows the measurement result of the electrostatic capacitance of this electrostatic protection component. 本発明の静電気保護部品の静電容量と比較例の静電気対策部品の静電容量とを比較した表である。It is the table | surface which compared the electrostatic capacitance of the electrostatic protection component of this invention, and the electrostatic capacitance of the electrostatic countermeasure component of a comparative example. 本発明の静電気保護部品の静電容量と比較例の静電気対策部品の静電容量とを比較したグラフである。It is the graph which compared the electrostatic capacitance of the electrostatic protection component of this invention with the electrostatic capacitance of the electrostatic countermeasure component of a comparative example. バインダであるシリコーン樹脂が100重量部に対して、酸化亜鉛粉の重量部(パラメータ)を60重量部、80重量部、120重量部、160重量部、200重量部とし、アルミニウム粉の重量部(パラメータ)を40重量部、60重量部、100重量部、150重量部、200重量部、240重量部とした場合の静電気保護膜を形成したときのスクリーン印刷性、更にそれらの場合の静電気保護膜を適用して成る静電気保護部品のリーク電流、ESD抑制ピーク電圧を確認した結果を示す表である。With respect to 100 parts by weight of the silicone resin as the binder, the parts by weight (parameters) of the zinc oxide powder are 60 parts by weight, 80 parts by weight, 120 parts by weight, 160 parts by weight, and 200 parts by weight. Parameter) is 40 parts by weight, 60 parts by weight, 100 parts by weight, 150 parts by weight, 200 parts by weight, and 240 parts by weight. It is a table | surface which shows the result of having confirmed the leakage current of the ESD protection component formed by applying ESD, and the ESD suppression peak voltage. 本発明の実施の形態例に係る静電気保護部品の他の構造を示す断面図である。It is sectional drawing which shows the other structure of the electrostatic protection component which concerns on the example of embodiment of this invention.
 以下、本発明の実施の形態例を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 まず、図1及び図2に基づき、本発明の実施の形態例に係る静電気保護部品の構造について説明する。 First, the structure of the electrostatic protection component according to the embodiment of the present invention will be described with reference to FIG. 1 and FIG.
 図1及び図2に示す静電気保護部品はプリント基板に表面実装するための表面実装用部品であり、前記プリント基板に実装されている電子回路(電子部品)を、静電気パルスや外来ノイズによる過電圧から保護するため、前記過電圧が印加されるラインとグランドとの間に設けられるものである。 The electrostatic protection component shown in FIGS. 1 and 2 is a surface mounting component for surface mounting on a printed circuit board, and an electronic circuit (electronic component) mounted on the printed circuit board is protected from an overvoltage caused by electrostatic pulses or external noise. For protection, it is provided between the line to which the overvoltage is applied and the ground.
 図1及び図2に示すように、絶縁基板であるセラミックス基板1の表面1aには、表電極2a,2bが形成され、セラミックス基板1の裏面1bには、裏電極3a,3bが形成されている。表電極2a,2bは、基板表面1aの長さ方向全体に亘って形成される一方、裏電極3a,3bは、基板裏面1bの両端部分に形成されている。 As shown in FIGS. 1 and 2, front electrodes 2a and 2b are formed on the front surface 1a of the ceramic substrate 1 which is an insulating substrate, and back electrodes 3a and 3b are formed on the back surface 1b of the ceramic substrate 1. Yes. The front electrodes 2a and 2b are formed over the entire length of the substrate surface 1a, while the back electrodes 3a and 3b are formed at both ends of the substrate back surface 1b.
 基板表面1aの中央部(表電極2a,2bの間)には、ギャップ(狭小部)4が形成されている。即ち、表電極2a,2bは、ギャップ4を介して対向している。ギャップ4はレーザ法等により表電極の膜を切断加工して形成されており、幅dが10μm程度(本実施の形態例では7μm)のものである。 A gap (narrow portion) 4 is formed in the central portion (between the surface electrodes 2a and 2b) of the substrate surface 1a. That is, the surface electrodes 2 a and 2 b are opposed to each other with the gap 4 interposed therebetween. The gap 4 is formed by cutting the surface electrode film by a laser method or the like, and has a width d of about 10 μm (7 μm in this embodiment).
 ギャップ4には静電気保護膜5が形成され、表電極2a,2bと静電気保護膜5が接続されている。即ち、ギャップ4を介して対向する表電極2a,2bの間に静電気保護膜5を形成した構造になっている。また、図示例では静電気保護膜5が、ギャップ4に形成されるだけでなく、表電極2a,2bにも一部重畳されている。つまり、静電気保護膜5は、中央部5cがギャップ4に設けられ、両側部5a,5bが表電極2a,2bの端部2a-1,2b-1にそれぞれ重畳されている。なお、静電気保護膜5をギャップ4に設けるだけでも静電気に対する保護機能を発揮することができる。 An electrostatic protection film 5 is formed in the gap 4, and the surface electrodes 2a and 2b and the electrostatic protection film 5 are connected. That is, the electrostatic protection film 5 is formed between the front electrodes 2a and 2b facing each other through the gap 4. In the illustrated example, the electrostatic protection film 5 is not only formed in the gap 4 but also partially overlapped with the surface electrodes 2a and 2b. That is, the electrostatic protection film 5 has a central portion 5c provided in the gap 4 and both side portions 5a and 5b superimposed on the end portions 2a-1 and 2b-1 of the surface electrodes 2a and 2b, respectively. Note that the protective function against static electricity can be exhibited only by providing the electrostatic protection film 5 in the gap 4.
 そして、本実施の形態例の静電気保護部品は、静電気保護膜5が、バインダであるシリコーン樹脂に、導電性粒子と絶縁性粒子の2種を混合してなる材料によって、形成されたものである。導電性粒子及び絶縁性粒子は、導電性粒子の表面に不動態層の設けるような表面処理や、絶縁性粒子の表面に他の物質をドープするような処理などの特殊な処理を行なっていないものである。
 また、導電性粒子は、導電性金属粒子であるアルミニウム(Al)粉であり、絶縁性粒子は酸化亜鉛(ZnO)粉である。酸化亜鉛粉には、JIS規格の第1種の絶縁性を有する酸化亜鉛、即ち体積抵抗率200MΩcm以上の酸化亜鉛を用いている。更に、シリコーン樹脂とアルミニウム粉と酸化亜鉛粉の3成分の配合比は、例えばシリコーン樹脂が100重量部であるのに対して、アルミニウム粉を60重量部~200重量部、酸化亜鉛粉が60重量部~160重量部とする。この静電気保護用ペーストの配合比はESD抑制ピーク電圧を500V以下で、ESD耐量(20回電圧印加)が規格値のリーク電流10μA以下(絶縁抵抗R=3MΩ以上)という目標値を満足するものである。なお、ESD抑制ピーク電圧とは、放電を開始時に生じる電圧である。また、前記配合比の探索についての詳細は、後述する。
In the electrostatic protection component of this embodiment, the electrostatic protection film 5 is formed of a material obtained by mixing two kinds of conductive particles and insulating particles in a silicone resin as a binder. . Conductive particles and insulating particles are not subjected to special treatment such as surface treatment such as providing a passive layer on the surface of conductive particles, or treatment such as doping other materials on the surface of insulating particles. Is.
The conductive particles are aluminum (Al) powder that is conductive metal particles, and the insulating particles are zinc oxide (ZnO) powder. As the zinc oxide powder, JIS standard type 1 zinc oxide, that is, zinc oxide having a volume resistivity of 200 MΩcm or more is used. Further, the mixing ratio of the three components of silicone resin, aluminum powder, and zinc oxide powder is, for example, 100 parts by weight of silicone resin, 60 to 200 parts by weight of aluminum powder, and 60 parts by weight of zinc oxide powder. Parts to 160 parts by weight. The blending ratio of this electrostatic protection paste satisfies the target value that the ESD suppression peak voltage is 500 V or less, and the ESD tolerance (20 times voltage application) is the standard value of leakage current of 10 μA or less (insulation resistance R = 3 MΩ or more). is there. The ESD suppression peak voltage is a voltage generated at the start of discharge. Moreover, the detail about the search of the said mixture ratio is mentioned later.
 表電極2a,2b上には、上部電極6a,6bがそれぞれ形成されている。表電極2a,2bは薄膜であるため、この表電極2a,2b上に上部電極6a,6bを形成することによって、機械的強度を補強している。但し、静電気保護膜5には接しないように(静電気保護膜5から離れた位置に)、上部電極6a,6bを形成している。その理由は、上部電極6a,6bが静電気保護膜5に接していると、静電気パルス等による過電圧が静電気保護部品に印加されたとき、表電極2a,2b間ではなく、上部電極6a,6b間や上部電極6a,6bと表電極2a,2bとの間で放電が開始されてしまうおそれがあり、その場合には静電気保護部品の本来の静電気保護機能を発揮することができなくなってしまうからである。 Upper electrodes 6a and 6b are formed on the surface electrodes 2a and 2b, respectively. Since the surface electrodes 2a and 2b are thin films, the mechanical strength is reinforced by forming the upper electrodes 6a and 6b on the surface electrodes 2a and 2b. However, the upper electrodes 6a and 6b are formed so as not to contact the electrostatic protection film 5 (at a position away from the electrostatic protection film 5). The reason is that when the upper electrodes 6a and 6b are in contact with the electrostatic protection film 5, when an overvoltage due to electrostatic pulses or the like is applied to the electrostatic protection component, not between the surface electrodes 2a and 2b but between the upper electrodes 6a and 6b. Or the upper electrodes 6a, 6b and the surface electrodes 2a, 2b may start to discharge, and in that case, the original electrostatic protection function of the electrostatic protection component cannot be exhibited. is there.
 静電気保護膜5は中間層7に覆われており、中間層7は保護膜8に覆われている。また、保護膜8は、両端部8a,8bが、上部電極6a,6bの一部(ギャップ側の部分)にそれぞれ重畳されている。保護膜8は耐湿性などに優れており、静電気保護膜5などを湿度など外部環境等から保護するために設けられている。しかし、保護膜8は耐熱性が不十分であるため、放電時に発熱する静電気保護膜5を直接保護膜8で覆うことはせず、耐熱性に優れている中間層7で静電気保護膜5を覆い、この中間層7を保護膜8で覆う構造としている。 The electrostatic protection film 5 is covered with an intermediate layer 7, and the intermediate layer 7 is covered with a protective film 8. Further, both end portions 8a and 8b of the protective film 8 are overlapped with part of the upper electrodes 6a and 6b (portions on the gap side), respectively. The protective film 8 is excellent in moisture resistance and the like, and is provided to protect the electrostatic protective film 5 and the like from the external environment such as humidity. However, since the protective film 8 has insufficient heat resistance, the electrostatic protective film 5 that generates heat during discharge is not directly covered with the protective film 8, and the intermediate protective layer 7 is excellent in heat resistance. The intermediate layer 7 is covered and covered with a protective film 8.
 セラミックス基板1の両端面1c,1dには端面電極9a,9bが形成されており、この端面電極9a,9bによって表電極2a,2bと裏電極3a,3bとを電気的に接続している。また、端面電極9a,9bの端部9a-1,9a-2,9b-1,9b-2が、表電極2a,2bの端部2a-2,2b-2と、裏電極3a,3bの端部3a-1,3b-1とにそれぞれ重畳されているため、端面電極9a,9bと表電極2a,2b及び裏電極3a,3bとの接続が、より確実になっている。 End face electrodes 9a, 9b are formed on both end faces 1c, 1d of the ceramic substrate 1, and the front electrodes 2a, 2b and the back electrodes 3a, 3b are electrically connected by the end face electrodes 9a, 9b. Further, the end portions 9a-1, 9a-2, 9b-1, 9b-2 of the end face electrodes 9a, 9b are connected to the end portions 2a-2, 2b-2 of the front electrodes 2a, 2b and the back electrodes 3a, 3b. Since they are superimposed on the end portions 3a-1 and 3b-1, respectively, the connection between the end surface electrodes 9a and 9b and the front electrodes 2a and 2b and the back electrodes 3a and 3b is more reliable.
 更に、端面電極9a,9bなどに対して、端子電極としての信頼性を向上させるため、ニッケル(Ni)のめっき膜10a,10bと、スズ(Sn)のめっき膜11a,11bとが順に形成されている。ニッケルめっき膜10a,10bは端面電極9a,9bと、裏電極3a,3bと、表電極2a,2bの一部と、上部電極6a,6bの一部とをそれぞれ覆っており、スズめっき膜11a,11bはニッケルめっき膜10a,10bをそれぞれ覆っている。 Furthermore, nickel (Ni) plating films 10a and 10b and tin (Sn) plating films 11a and 11b are formed in this order in order to improve the reliability of the terminal electrodes with respect to the end face electrodes 9a and 9b. ing. The nickel plating films 10a and 10b cover the end face electrodes 9a and 9b, the back electrodes 3a and 3b, the front electrodes 2a and 2b, and the upper electrodes 6a and 6b, respectively, and the tin plating film 11a. 11b cover the nickel plating films 10a and 10b, respectively.
 次に、図3~図6に基づき、本実施の形態例の静電気保護部品の製造方法について説明する。図3のフローチャートの各製造工程(ステップ)にはS1~S18の符号を付した。また、図4の(a)~(d)、図5の(a)~(d)、図6の(a)~(c)には、各製造工程における静電気保護部品の製造状態を順に示している。
 なお、本実施の形態例では1005タイプの静電気保護部品(図2に示す幅Wが0.5mm、長さLが1.0mmのもの)を製造した。
Next, a method for manufacturing the electrostatic protection component of this embodiment will be described with reference to FIGS. Each manufacturing process (step) in the flowchart of FIG. 3 is denoted by reference numerals S1 to S18. 4 (a) to (d), FIG. 5 (a) to (d), and FIG. 6 (a) to (c) sequentially show the manufacturing state of the electrostatic protection component in each manufacturing process. ing.
In this embodiment, a 1005 type electrostatic protection component (having a width W of 0.5 mm and a length L of 1.0 mm shown in FIG. 2) was manufactured.
 最初の工程(ステップS1)では、図4(a)に示すように、セラミックス基板1を、静電気保護部品の製造工程(図示省略)に受け入れる。ここではセラミックス基板1として、アルミナ基板を用いた。このアルミナ基板は、96%アルミナをセラミックス材料として用いて製造したをものである。
 なお、図4(a)には1個片の静電気保護部品に対応する1つの個片領域のセラミックス基板1のみを図示しているが、ステップS13で一次分割される前の実際のセラミックス基板1は、一次スリットと二次スリットが縦横に複数本形成されて、個片領域が縦横に複数個連なったようになっているシート状のものである。
In the first step (step S1), as shown in FIG. 4A, the ceramic substrate 1 is received in a manufacturing process (not shown) of the electrostatic protection component. Here, an alumina substrate was used as the ceramic substrate 1. This alumina substrate is manufactured using 96% alumina as a ceramic material.
FIG. 4A shows only one ceramic substrate 1 in one piece area corresponding to one piece of electrostatic protection component, but the actual ceramic substrate 1 before being primarily divided in step S13. Is a sheet-like shape in which a plurality of primary slits and secondary slits are formed vertically and horizontally, and a plurality of individual regions are connected vertically and horizontally.
 次の工程(ステップS2)では、図4(b)に示すように、セラミックス基板1の裏面1bに裏電極3a,3bを形成する。裏電極3a,3bは、スクリーン印刷法により、電極ペーストを基板裏面1bに塗布してパターン化することにより形成される。ここでは電極ペーストとして、銀(Ag)ペーストを用いた。スクリーン印刷した裏電極3a,3bは、乾燥させて電極ペースト中の溶剤を蒸発させる。 In the next step (step S2), the back electrodes 3a and 3b are formed on the back surface 1b of the ceramic substrate 1 as shown in FIG. The back electrodes 3a and 3b are formed by applying and patterning an electrode paste on the substrate back surface 1b by screen printing. Here, a silver (Ag) paste was used as the electrode paste. The screen printed back electrodes 3a and 3b are dried to evaporate the solvent in the electrode paste.
 次の工程(ステップS3)では、図4(c)に示すように、セラミックス基板1の表面1aに表電極2(後で表電極2a,2bを形成するための膜)を形成する。表電極2は、スクリーン印刷法により、電極ペーストを基板表面1aに塗布してパターン化することにより形成される。ここでは電極ペーストとして、金レジネートペーストを用いた。スクリーン印刷した表電極2は、乾燥させて電極ペースト中の溶剤を蒸発させる。 In the next step (step S3), as shown in FIG. 4C, a surface electrode 2 (a film for forming the surface electrodes 2a and 2b later) is formed on the surface 1a of the ceramic substrate 1. The front electrode 2 is formed by applying an electrode paste to the substrate surface 1a and patterning it by screen printing. Here, a gold resinate paste was used as the electrode paste. The screen-printed front electrode 2 is dried to evaporate the solvent in the electrode paste.
 なお、表電極2を形成するための電極ペーストとしては、金以外のレジネートペースト(金属有機物ペースト)を用いることもできる。例えば、白金(Pt)や銀(Ag)のレジネートペーストなどを用いることができる。裏電極3a,3bを形成するための電極ペーストとして、銀・パラジウム(Ag・Pd)ペーストを用いることもできる。 In addition, as an electrode paste for forming the surface electrode 2, a resinate paste (metal organic paste) other than gold can be used. For example, a resinate paste of platinum (Pt) or silver (Ag) can be used. As an electrode paste for forming the back electrodes 3a, 3b, a silver / palladium (Ag / Pd) paste may be used.
 次の工程(ステップS4)では、ステップS2で形成した裏電極3a,3bとステップS3で形成した表電極2とを、850℃で40分間、同時に焼成する。 In the next step (step S4), the back electrodes 3a and 3b formed in step S2 and the front electrode 2 formed in step S3 are simultaneously fired at 850 ° C. for 40 minutes.
 次の工程(ステップS5)では、図4(d)に示すように、UV波長領域を有するレーザ(図示省略)を用いたレーザ法により、ステップS4で焼成した表電極2の中央部を切断加工して、ギャップ(狭小部)4を形成する。ここではUV波長領域を有するレーザとして、第三次高調波レーザ(波長:355nm)を用いた。ギャップ4の幅dは7μmとした。ギャップ4を形成した結果、このギャップ4を介して一対の表電極2a,2bが対向する構造となる。 In the next step (step S5), as shown in FIG. 4D, the center portion of the surface electrode 2 baked in step S4 is cut by a laser method using a laser having a UV wavelength region (not shown). Thus, a gap (narrow portion) 4 is formed. Here, a third harmonic laser (wavelength: 355 nm) was used as a laser having a UV wavelength region. The width d of the gap 4 was 7 μm. As a result of forming the gap 4, the pair of front electrodes 2 a and 2 b face each other through the gap 4.
 次の工程(ステップS6)では、図5(a)に示すように、スクリーン印刷法により、導電性ペーストを、表電極2a,2bのそれぞれに塗布してパターン化することより、表電極2a,2bの上に上部電極6a,6bを形成する。このときのスクリーン印刷の回数は1回である。上部電極6a,6bは、静電気保護膜5に接触しなようにするため、静電気保護膜5から離れた位置において、表電極2a,2bに重畳するように形成される。スクリーン印刷後の上部電極6a,6bは、乾燥させて導電性ペースト中の溶剤を蒸発させる。
 このスクリーン印刷で用いたスクリーンメッシュは、メッシュサイズ400で、エマルジョン厚82μmのものである(品番:st400)。
 また、導電性ペーストとしては、銀粉とエポキシ樹脂とを混練したものを用いた。なお、これに限らず、ニッケル(Ni),銅(Cu)粉などと、エポキシ樹脂とを混練した厚膜電極ペーストなどを、上部電極用の導電性ペーストとして用いてもよい。
In the next step (step S6), as shown in FIG. 5A, a conductive paste is applied to each of the surface electrodes 2a and 2b by a screen printing method to form a pattern. Upper electrodes 6a and 6b are formed on 2b. The number of screen printings at this time is one. The upper electrodes 6a and 6b are formed so as to overlap the surface electrodes 2a and 2b at positions away from the electrostatic protection film 5 so as not to contact the electrostatic protection film 5. The upper electrodes 6a and 6b after screen printing are dried to evaporate the solvent in the conductive paste.
The screen mesh used in this screen printing has a mesh size of 400 and an emulsion thickness of 82 μm (product number: st400).
In addition, as the conductive paste, a paste obtained by kneading silver powder and an epoxy resin was used. However, the present invention is not limited thereto, and a thick film electrode paste obtained by kneading nickel (Ni), copper (Cu) powder, and the like and an epoxy resin may be used as the conductive paste for the upper electrode.
 次の工程(ステップS7)では、図5(b)に示すように、スクリーン印刷法により、静電気保護用ペーストを、ギャップ4及び表電極2a,2bに塗布してパターン化することにより、静電気保護膜5を形成する。この静電気保護膜5は、ギャップ4に形成されて表電極2a,2bに接続され(即ち表電極2a,2bの間に介設され)、且つ、表電極2a,2bに一部重畳される。スクリーン印刷後の静電気保護膜5は、100℃で10分間乾燥させて静電気保護用ペースト中の溶剤を蒸発させる。 In the next step (step S7), as shown in FIG. 5B, the electrostatic protection paste is applied to the gap 4 and the surface electrodes 2a and 2b by a screen printing method and patterned to thereby protect the static electricity. A film 5 is formed. The electrostatic protection film 5 is formed in the gap 4 and connected to the surface electrodes 2a and 2b (that is, interposed between the surface electrodes 2a and 2b), and is partially overlapped with the surface electrodes 2a and 2b. The electrostatic protection film 5 after screen printing is dried at 100 ° C. for 10 minutes to evaporate the solvent in the electrostatic protection paste.
 なお、このスクリーン印刷で用いたスクリーンメッシュはカレンダーメッシュであり、メッシュサイズ400で線径18μm、エマルジョン厚52μmのものである(品番:cal400/18)。
 そして、ここで用いた静電気保護用ペーストは、シリコーン樹脂のバインダを基本材料とし、このシリコーン樹脂に、導電性粒子として用いたアルミニウム粉と、絶縁性粒子として用いた酸化亜鉛粉の2種を混練したものである。更に、これら3成分の配合比は、シリコーン樹脂が100重量部であるのに対して、アルミニウム粉が160重量部、酸化亜鉛粉が120重量部とした。この場合、ESD抑制ピーク電圧が500V以下で、ESD耐量が規格値のリーク電流10μA以下(絶縁抵抗R=3MΩ以上)という目標値を満足する。
The screen mesh used in this screen printing is a calendar mesh, which has a mesh size of 400, a wire diameter of 18 μm, and an emulsion thickness of 52 μm (product number: cal400 / 18).
The paste for electrostatic protection used here has a silicone resin binder as a basic material, and this silicone resin is kneaded with two types of powders: aluminum powder used as conductive particles and zinc oxide powder used as insulating particles. It is what. Furthermore, the compounding ratio of these three components was 100 parts by weight of the silicone resin, 160 parts by weight of the aluminum powder, and 120 parts by weight of the zinc oxide powder. In this case, the ESD suppression peak voltage is 500 V or less, and the ESD tolerance satisfies the target value of a leakage current of 10 μA or less (insulation resistance R = 3 MΩ or more) with a standard value.
 また、シリコーン樹脂としては、体積抵抗率2×1015Ωcm、誘電率2.7の付加反応型シリコーン樹脂を用いた。
 アルミニウム粉としては、アルミニウムを溶融し、高圧噴霧し冷却固化して成る平均粒径3.0~3.6μmのアルミニウム粉を用いた。
 酸化亜鉛粉としては、JIS規格の第1種絶縁性(体積抵抗率200MΩcm以上)を有する酸化亜鉛を用いた。また、この酸化亜鉛粉には、粒径が0.3~1.5μmで分布し、平均粒径が0.6μmであり、一次凝集での粒径が1.5μmである酸化亜鉛粉を適用した。
As the silicone resin, an addition reaction type silicone resin having a volume resistivity of 2 × 10 15 Ωcm and a dielectric constant of 2.7 was used.
As the aluminum powder, aluminum powder having an average particle diameter of 3.0 to 3.6 μm obtained by melting aluminum, spraying at high pressure and solidifying by cooling was used.
As the zinc oxide powder, zinc oxide having JIS standard type 1 insulation (volume resistivity of 200 MΩcm or more) was used. In addition, zinc oxide powder having a particle size distribution of 0.3 to 1.5 μm, an average particle size of 0.6 μm, and a primary aggregation particle size of 1.5 μm is applied to the zinc oxide powder. did.
 そして、次の工程(ステップS8)では、ステップS6で形成した上部電極6a,6bとステップS7で形成した静電気保護膜5とを、200℃で30分間、同時に焼付けする。 In the next step (step S8), the upper electrodes 6a and 6b formed in step S6 and the electrostatic protection film 5 formed in step S7 are simultaneously baked at 200 ° C. for 30 minutes.
 次の工程(ステップS9)では、図5(c)に示すように、スクリーン印刷法により、シリコーン樹脂ペーストを、静電気保護膜5及び表電極2a,2bに塗布してパターン化することより、静電気保護膜5などを覆う中間層7を形成する。このときのスクリーン印刷の回数は1回である。
 ここではシリコーン樹脂ペーストとして、40~50%のシリカを含有するシリコーン樹脂ペーストを用いた。
 また、このスクリーン印刷で用いたスクリーンメッシュはカレンダーメッシュであり、メッシュサイズ400で線径18μm、エマルジョン厚52μmのものである(品番:cal400/18)。
In the next step (step S9), as shown in FIG. 5 (c), a silicone resin paste is applied to the electrostatic protection film 5 and the surface electrodes 2a and 2b by a screen printing method and patterned. An intermediate layer 7 that covers the protective film 5 and the like is formed. The number of screen printings at this time is one.
Here, a silicone resin paste containing 40 to 50% silica was used as the silicone resin paste.
The screen mesh used in this screen printing is a calendar mesh having a mesh size of 400, a wire diameter of 18 μm, and an emulsion thickness of 52 μm (product number: cal400 / 18).
 次の工程(ステップS10)では、ステップS9で形成した中間層7を、150℃で30分間焼付けをする。 In the next step (step S10), the intermediate layer 7 formed in step S9 is baked at 150 ° C. for 30 minutes.
 次の工程(ステップS11)では、図5(d)に示すように、スクリーン印刷法により、エポキシ樹脂ペーストを、中間層7、表電極2a,2b及び上部電極6a,6bに塗布してパターン化することにより、中間層7などを覆う保護膜8を形成する。このときのスクリーン印刷の回数は2回である。
 なお、このスクリーン印刷で用いたスクリーンメッシュは、メッシュサイズ400で、エマルジョン厚102μmのものである(品番:3DSus400/19)。
In the next step (step S11), as shown in FIG. 5 (d), the epoxy resin paste is applied to the intermediate layer 7, the surface electrodes 2a and 2b, and the upper electrodes 6a and 6b by a screen printing method to form a pattern. Thus, the protective film 8 that covers the intermediate layer 7 and the like is formed. The number of screen printings at this time is two.
The screen mesh used in this screen printing has a mesh size of 400 and an emulsion thickness of 102 μm (product number: 3DSus400 / 19).
 次の工程(ステップS12)では、ステップS11で形成した保護膜8を、200℃で30分間焼付けする。 In the next step (step S12), the protective film 8 formed in step S11 is baked at 200 ° C. for 30 minutes.
 次の工程(ステップS13)では、シート状のセラミックス基板1に形成されている1次スリットに沿って、セラミックス基板1を1次分割する。その結果、セラミックス基板1は複数個の個片領域が横一列に連なった帯状のものとなり、端面1c,1dが生じる。 In the next step (step S13), the ceramic substrate 1 is primarily divided along the primary slit formed in the sheet-like ceramic substrate 1. As a result, the ceramic substrate 1 has a strip shape in which a plurality of individual regions are arranged in a horizontal line, and end faces 1c and 1d are generated.
 次の工程(ステップS14)では、図6(a)に示すように、転写法により、導電性ペーストを、セラミックス基板1の端面1c,1d、表電極2a,2bの一部、裏電極3a,3bの一部に塗布し、これを次の工程(ステップS15)で、200℃で30分間焼付けすることにより、端面電極9a,9bを形成する。このとき端面電極9a,9bは表電極2a,2b及び裏電極3a,3bに一部重畳され、表電極2a,2bと裏電極3a,3bとを電気的に接続する。
 ここでは導電性ペーストとして、銀粉とエポキシ樹脂とを混練したペーストを用いた。
In the next step (step S14), as shown in FIG. 6A, the conductive paste is transferred to the end surfaces 1c and 1d of the ceramic substrate 1, a part of the front electrodes 2a and 2b, the back electrode 3a, by a transfer method. It is applied to a part of 3b and is baked at 200 ° C. for 30 minutes in the next step (step S15), thereby forming end face electrodes 9a and 9b. At this time, the end face electrodes 9a and 9b are partially overlapped with the front electrodes 2a and 2b and the back electrodes 3a and 3b, and electrically connect the front electrodes 2a and 2b to the back electrodes 3a and 3b.
Here, a paste obtained by kneading silver powder and an epoxy resin was used as the conductive paste.
 次の工程(ステップS16)では、帯状のセラミックス基板1に形成されている2次スリットに沿って、セラミックス基板1を2次分割する。その結果、セラミックス基板1は各個片領域ごとに分割されて、個片となる。 In the next step (step S16), the ceramic substrate 1 is secondarily divided along the secondary slit formed in the belt-shaped ceramic substrate 1. As a result, the ceramic substrate 1 is divided into individual pieces to form individual pieces.
 次の工程(ステップS17)では、図6(b)に示すように、バレルめっき方式により、端面電極9a,9bと、裏電極3a,3bと、表電極2a,2bの一部と、上部電極6a,6bの一部の上に電気めっきして、ニッケルめっき膜10a,10bを形成する。 In the next step (step S17), as shown in FIG. 6B, end face electrodes 9a and 9b, back electrodes 3a and 3b, part of front electrodes 2a and 2b, and upper electrode are formed by barrel plating. Electroplating is performed on part of 6a and 6b to form nickel plating films 10a and 10b.
 最後の工程(ステップS18)では、図6(c)に示すように、バレルめっき方式により、ステップS17で形成したニッケルめっき膜10a,10bの上に電気めっきして、スズめっき膜11a,11bを形成する。 In the last step (step S18), as shown in FIG. 6C, the tin plating films 11a and 11b are electroplated on the nickel plating films 10a and 10b formed in step S17 by a barrel plating method. Form.
 次に、図7~図11に基づき、静電気保護用ペーストの配合比の探索について説明する。 Next, the search for the blending ratio of the electrostatic protection paste will be described with reference to FIGS.
 静電気保護用ペーストの配合比を決定するための目標値として、静電気保護部品のESD抑制ピーク電圧を500V以下で、ESD耐量が規格値のリーク電流10μA以下(絶縁抵抗R=3MΩ以上)と設定した。 As target values for determining the blending ratio of the electrostatic protection paste, the ESD suppression peak voltage of the electrostatic protection component was set to 500 V or less, and the ESD resistance was set to a standard value leakage current of 10 μA or less (insulation resistance R = 3 MΩ or more). .
 まず、バインダであるシリコーン樹脂の中に混入するのに適切な導電性金属粒子のアルミニウム粉の重量部を探索した。 First, the weight part of the aluminum powder of the conductive metal particles suitable for mixing in the silicone resin as the binder was searched.
 バインダであるシリコーン樹脂が100重量部に対し、平均粒径3.0μmの導電性金属粒子であるアルミニウム粉を、95重量部、160重量部、200重量部、250重量部混練して、静電気保護用ペーストを製造した。そして、これらアルミニウム粉の重量部が異なる静電気保護用ペーストを用いて形成した各静電気保護膜5を有する各静電気保護部品(製造工程は上記のとおり)に対して、ESD試験を行い、ESD抑制ピーク電圧を測定した。 95 parts by weight, 160 parts by weight, 200 parts by weight, 250 parts by weight of aluminum powder, which is conductive metal particles having an average particle diameter of 3.0 μm, are mixed with 100 parts by weight of the silicone resin as a binder to protect against static electricity. A paste was produced. And each ESD protection component (the manufacturing process is as above) which has each ESD protection film 5 formed using the paste for ESD protection from which the weight part of these aluminum powders differs, and performs ESD test, ESD suppression peak The voltage was measured.
 図7に試験結果を示すように、酸化亜鉛を含有せず、アルミニウム粉の混入量を、95重量部、160重量部、200重量部、250重量部と順に増やしていくと、各静電気保護部品のESD抑制ピーク電圧が各々550V、450V、400V、300Vを示した。このときの電圧印加回数は1回である。この試験結果から、ESD抑制ピーク電圧500V以下という目標値を満たすため、平均粒径3.0μmの導電性金属粒子のアルミニウム粉の混入量を、160重量部とした。 As shown in the test results in FIG. 7, each of the electrostatic protection components does not contain zinc oxide and increases the mixing amount of aluminum powder in the order of 95 parts by weight, 160 parts by weight, 200 parts by weight, and 250 parts by weight. ESD suppression peak voltages of 550V, 450V, 400V, and 300V were shown, respectively. The number of times of voltage application at this time is one. From this test result, in order to satisfy the target value of ESD suppression peak voltage of 500 V or less, the mixing amount of aluminum powder of conductive metal particles having an average particle size of 3.0 μm was set to 160 parts by weight.
 しかしながら、電圧印加回数を増やすと、静電気保護膜5の絶縁抵抗劣化によって静電気保護部品のESD抑制ピーク電圧が低下してしまい、静電気保護部品のESD耐量は良好ではなかった。例えばアルミニウム粉が160重量部の場合、ESD抑制ピーク電圧は450Vであったが、電圧印加後に静電気保護膜5の絶縁抵抗が劣化して(絶縁抵抗が回復せずに)、リーク電流10μA以下(絶縁抵抗R=3MΩ以上)という目標値を満足することができなかった。この場合、2回目以降の電圧印加に対しては、ESD抑制ピーク電圧が450Vよりも低下してしまう。そこで、この絶縁抵抗劣化によるESD抑制ピーク電圧低下の対策として、絶縁性粒子である酸化亜鉛粉も混合することとし、その重量部について探索した。 However, when the number of times of voltage application is increased, the ESD suppression peak voltage of the electrostatic protection component is lowered due to the insulation resistance deterioration of the electrostatic protection film 5, and the ESD tolerance of the electrostatic protection component is not good. For example, when the aluminum powder is 160 parts by weight, the ESD suppression peak voltage was 450 V. However, the insulation resistance of the electrostatic protection film 5 deteriorates after the voltage application (the insulation resistance does not recover), and the leakage current is 10 μA or less ( The target value of insulation resistance R = 3 MΩ or more) could not be satisfied. In this case, the ESD suppression peak voltage is lower than 450V for the second and subsequent voltage application. Therefore, as a countermeasure against the ESD suppression peak voltage drop due to the deterioration of the insulation resistance, zinc oxide powder, which is insulating particles, was also mixed, and the weight part thereof was searched.
 バインダであるシリコーン樹脂が100重量部に対して、アルミニウム粉の重量部を160重量部とし、これらに更に、ESD抑制ピーク電圧の低下対策として、体積抵抗率200MΩcm以上の絶縁性粒子で平均粒径1.5μmである酸化亜鉛粉を、5重量部、15重量部、40重量部、60重量部、80重量部、100重量部、120重量部混練した静電気保護用ペーストを各々製造した。そして、これら酸化亜鉛粉の重量部が異なる静電気保護用ペーストを用いて形成した各静電気保護膜5を有する各静電気保護部品(製造工程は上記のとおり)に対して、ESD試験を行い、静電気保護膜5の絶縁抵抗劣化が生じるか否かを確認した。酸化亜鉛粉が何れの重量部でも、静電気保護部品の試験数は30個である。なお、このESD試験は酸化亜鉛粉の混入量が0重量部の場合についても実施した。 100 parts by weight of the silicone resin as the binder, 160 parts by weight of the aluminum powder, and furthermore, as a countermeasure for lowering the ESD suppression peak voltage, insulating particles having a volume resistivity of 200 MΩcm or more are used as an average particle diameter. The paste for electrostatic protection which knead | mixed zinc oxide powder which is 1.5 micrometer 5 weight part, 15 weight part, 40 weight part, 60 weight part, 80 weight part, 100 weight part, 120 weight part was manufactured, respectively. And each ESD protection part (manufacturing process is as above) which has each ESD protection film 5 formed using the paste for ESD protection from which the weight part of these zinc oxide powders is different, and performs ESD test, and ESD protection It was confirmed whether or not the insulation resistance of the film 5 deteriorated. Regardless of the weight part of zinc oxide powder, the number of tests of the electrostatic protection component is 30. In addition, this ESD test was implemented also about the case where the mixing amount of zinc oxide powder is 0 weight part.
 その結果、酸化亜鉛粉の重量部を増やすにしたがって、静電気保護膜5の絶縁抵抗が劣化した静電気保護部品、即ちリーク電流10μA以下(絶縁抵抗R=3MΩ以上)という目標値を満足することができない静電気保護部品の個数(以下、絶縁抵抗劣化数と称する)が、減少した。なお、酸化亜鉛粉が何れの重量部の場合でも、ESD抑制ピーク電圧500以下という目標値は満足していた。図8には、酸化亜鉛粉の混入量が、0重量部、40重量部、80重量部、120重量部の場合の試験結果を示す。
 図8に示すように、酸化亜鉛粉の混入量を120重量部とした場合には、ESD試験による静電気保護部品の絶縁抵抗劣化数が0個であった。即ち、30個の静電気保護部品の何れも、静電気保護膜5の絶縁抵抗劣化によるESD抑制ピーク電圧の低下が生じない。
As a result, as the weight part of the zinc oxide powder is increased, the electrostatic protection component whose insulation resistance of the electrostatic protection film 5 has deteriorated, that is, the target value of leakage current of 10 μA or less (insulation resistance R = 3 MΩ or more) cannot be satisfied. The number of electrostatic protection parts (hereinafter referred to as insulation resistance deterioration number) has decreased. Note that the target value of the ESD suppression peak voltage of 500 or less was satisfied regardless of the weight part of the zinc oxide powder. FIG. 8 shows the test results when the amount of zinc oxide powder mixed is 0, 40, 80, and 120 parts by weight.
As shown in FIG. 8, when the mixing amount of zinc oxide powder was 120 parts by weight, the number of deterioration of the insulation resistance of the electrostatic protection component by the ESD test was zero. That is, none of the 30 electrostatic protection components cause a decrease in the ESD suppression peak voltage due to the deterioration of the insulation resistance of the electrostatic protection film 5.
 また、酸化亜鉛粉の混入量を、0重量部、5重量部、15重量部、40重量部、60重量部、80重量部、100重量部、120重量部とした各静電気保護部品に対して、その静電容量Cpの測定試験も行なった。この測定試験の結果、何れの静電気保護部品も、静電容量Cpのバラツキが小さいことが確認できた。図9には、酸化亜鉛粉の混入量が、0重量部、40重量部、80重量部、120重量部の場合の試験結果を示す。酸化亜鉛粉が何れの重量部の場合でも、静電容量Cpの最大値と最小値の差は小さく、静電容量Cpのバラツキは小さい。
 このように静電気保護部品の静電容量Cpのバラツキが小さいのは、薄膜の表電極2をレーザ法等で切断加工してギャップ4を形成するため、表電極2a,2bの断面積Aやギャップ幅dのバラツキが小さいことに加えて、上記の静電気保護用ペーストを用いて形成された静電気保護膜5の誘電率εのバラツキが小さいことも、その要因である。
In addition, for each electrostatic protection component in which the amount of zinc oxide powder mixed is 0, 5, 15, 40, 60, 80, 100, 120 parts by weight. A measurement test of the capacitance Cp was also conducted. As a result of this measurement test, it was confirmed that all the electrostatic protection components had small variations in the capacitance Cp. FIG. 9 shows test results when the amount of zinc oxide powder mixed is 0, 40, 80, and 120 parts by weight. Regardless of the weight part of the zinc oxide powder, the difference between the maximum value and the minimum value of the capacitance Cp is small, and the variation in the capacitance Cp is small.
As described above, the variation in the electrostatic capacitance Cp of the electrostatic protection component is small because the gap 4 is formed by cutting the thin-film surface electrode 2 by a laser method or the like, so that the cross-sectional areas A and gaps of the surface electrodes 2a and 2b In addition to the small variation in the width d, the variation in the dielectric constant ε of the electrostatic protection film 5 formed using the above-mentioned electrostatic protection paste is also a factor.
 なお、図10及び図11には、本発明の静電気保護部品(シリコーン樹脂100重量部、アルミニウム粉160重量部、酸化亜鉛粉120重量部の静電気保護用ペーストを用いた場合の例)の静電容量Cpと、比較例(バリスタ)の静電容量Cpとの比較を示す。この比較からも、本発明の静電気保護部品は静電容量Cpのバラツキが小さいことが分かる。 10 and 11 show the static electricity of the electrostatic protection component of the present invention (an example of using an electrostatic protection paste of 100 parts by weight of silicone resin, 160 parts by weight of aluminum powder, and 120 parts by weight of zinc oxide powder). A comparison between the capacitance Cp and the capacitance Cp of the comparative example (varistor) is shown. This comparison also shows that the electrostatic protection component of the present invention has a small variation in the capacitance Cp.
 更に、図12には静電気保護用ペーストを構成するシリコーン樹脂とアルミニウム粉と酸化亜鉛粉の3成分の配合比に関し、バインダであるシリコーン樹脂が100重量部に対して、酸化亜鉛粉の重量部(パラメータ)を60重量部、80重量部、120重量部、160重量部、200重量部とし、アルミニウム粉の重量部(パラメータ)を40重量部、60重量部、100重量部、150重量部、200重量部、240重量部とした場合の静電気保護膜を形成したときのスクリーン印刷性、更にそれらの場合の静電気保護膜を適用して成る静電気保護部品のリーク電流、ESD抑制ピーク電圧を確認した結果を示す。 Furthermore, in FIG. 12, regarding the blending ratio of the three components of the silicone resin, the aluminum powder, and the zinc oxide powder constituting the electrostatic protection paste, 100 parts by weight of the silicone resin as the binder with respect to 100 parts by weight of the zinc oxide powder ( Parameter) is 60 parts by weight, 80 parts by weight, 120 parts by weight, 160 parts by weight, 200 parts by weight, and 40 parts by weight, 60 parts by weight, 100 parts by weight, 150 parts by weight, 200 parts by weight of aluminum powder. Results of confirming the screen printability when forming an electrostatic protection film in the case of parts by weight and 240 parts by weight, and the leakage current and ESD suppression peak voltage of an electrostatic protection component formed by applying the electrostatic protection film in those cases Indicates.
 図12において、印刷性とは各配合比の静電気保護用ペーストを用いて静電気保護膜5をスクリーン印刷したときの状態である。印刷性に関して、“××”は静電気保護膜5にニジミが生じた場合、“×”は静電気保護膜5にカスレが生じた場合である。これらの場合は不良と判定する。 In FIG. 12, the printability is a state when the electrostatic protection film 5 is screen-printed using the electrostatic protection paste of each blending ratio. Regarding the printability, “XX” indicates that blurring occurs in the electrostatic protection film 5, and “X” indicates that blurring occurs in the electrostatic protection film 5. In these cases, it is determined to be defective.
 また、図12において、リーク電流及びESD抑制ピーク電圧は、各配合比の静電気保護用ペーストを用いて形成した各静電気保護膜5を有する各静電気保護部品(製造工程は上記のとおり)に対して、ESD試験を行い、リーク電流及びESD抑制ピーク電圧を測定した結果である。リーク電流に関して、“×”はリーク電流10μA以下の目標値を満たさなかった静電気保護部品の個数が10個中2個以上であった場合である。この場合は不良と判定する。また、“△”はリーク電流10μA以下の目標値を満たさなかった静電気保護部品の個数が10個中1個であった場合、“○”はリーク電流10μA以下の目標値を満たさなかった静電気保護部品の個数が10個中0個の場合である。ESD抑制ピーク電圧に関して、“×”はESD抑制ピーク電圧400V~500Vの目標値を満たさなかった静電気保護部品の個数が10個中2個以上であった場合である。この場合は不良と判定する。また、“△”はESD抑制ピーク電圧400V~500Vの目標値を満たさなかった静電気保護部品の個数が10個中1個であった場合、“○”はESD抑制ピーク電圧400V~500Vの目標値を満たさなかった静電気保護部品の個数が10個中0個の場合である。 Moreover, in FIG. 12, the leakage current and the ESD suppression peak voltage are as compared with each electrostatic protection component (manufacturing process is as described above) having each electrostatic protection film 5 formed using the electrostatic protection paste of each blending ratio. It is the result of conducting an ESD test and measuring the leakage current and the ESD suppression peak voltage. Regarding the leakage current, “×” indicates a case where the number of electrostatic protection components that did not satisfy the target value of the leakage current of 10 μA or less was 2 or more out of 10. In this case, it is determined to be defective. “△” indicates that the number of electrostatic protection components that did not meet the target value of 10 μA or less of the leakage current was 1 out of 10; This is a case where the number of parts is 0 out of 10. Regarding the ESD suppression peak voltage, “×” indicates a case where the number of electrostatic protection components that did not satisfy the target value of the ESD suppression peak voltage 400V to 500V was 2 or more out of 10. In this case, it is determined to be defective. “△” indicates the target value of the ESD suppression peak voltage 400V to 500V when the number of electrostatic protection components that did not satisfy the target value of the ESD suppression peak voltage 400V to 500V was 1 in 10. This is the case where the number of electrostatic protection components that did not satisfy the above is 0 out of 10.
 図12から、3成分の配合比は、シリコーン樹脂が100重量部であるのに対して、アルミニウム粉を60重量部~200重量部の範囲とし、酸化亜鉛粉を60重量部~160重量部の範囲とすればよいことが分る。更に望ましくは、3成分の配合比を、シリコーン樹脂が100重量部であるのに対して、アルミニウム粉を60重量部~200重量部の範囲とし、酸化亜鉛粉を120重量部~160重量部の範囲とすればよいことが分る。なお、これらの配合比を適用した静電気保護部品は、何れも静電容量のバラツキが小さいことも確認している。 From FIG. 12, the blending ratio of the three components is 100 parts by weight of the silicone resin, 60 parts by weight to 200 parts by weight of the aluminum powder, and 60 parts by weight to 160 parts by weight of the zinc oxide powder. It turns out that the range is sufficient. More desirably, the mixing ratio of the three components is 100 parts by weight of the silicone resin, aluminum powder is in the range of 60 parts by weight to 200 parts by weight, and zinc oxide powder is in the range of 120 parts by weight to 160 parts by weight. It turns out that the range is sufficient. In addition, it has also been confirmed that the electrostatic protection parts to which these mixing ratios are applied have small variations in electrostatic capacity.
 以上のように、本実施の形態例によれば、静電気保護用ペーストは、バインダであるシリコーン樹脂に、導電性粒子と絶縁性粒子の2種だけを混練して成るものであり、また、これらの導電性粒子及び絶縁性粒子は特殊な処理を行なったものではないため、安価である。従って、この静電気保護用ペーストを用いて形成した静電気保護膜5を有する静電気保護部品も、安価なものとなる。
 また、この静電気保護用ペーストを用いて静電気保護膜5を形成することにより、静電気保護膜5の誘電率εのバラツキが小さくなるため、この静電気保護膜5を有する静電気保護部品の静電容量Cpのバラツキも小さくなる。従って、この静電気保護部品を、静電気パルスや外来ノイズの対策品として携帯情報機器等の電子機器に適用した場合、当該電子機器において、静電気保護部品に関する浮遊容量とそのバラツキを低減することができる。
 また、導電性粒子がアルミニウム粉、絶縁性粒子が酸化亜鉛粉であることを特徴としており、これらのアルミニウム粉や酸化亜鉛粉は安価な材料であるため、静電気保護用ペーストを安価に製造することができる。
 また、静電気保護用ペーストの3成分の配合比を、シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が60重量部~200重量部、前記酸化亜鉛粉が60重量部~160重量部(更に望ましくは120重量部~160重量部)とすれば、この静電気保護用ペーストを用いて形成した静電気保護膜5を有する静電気保護部品は、ESD抑制ピーク電圧が500V以下で、ESD耐量が規格値のリーク電流10μA以下(絶縁抵抗R=3MΩ以上)という目標値を満足することができる。
As described above, according to the present embodiment, the electrostatic protection paste is formed by kneading only two kinds of conductive particles and insulating particles in a silicone resin as a binder. Since the conductive particles and the insulating particles are not specially treated, they are inexpensive. Therefore, the electrostatic protection component having the electrostatic protection film 5 formed using this electrostatic protection paste is also inexpensive.
Moreover, since the variation in the dielectric constant ε of the electrostatic protection film 5 is reduced by forming the electrostatic protection film 5 using this electrostatic protection paste, the electrostatic capacity Cp of the electrostatic protection component having the electrostatic protection film 5 is reduced. The variation of the is also reduced. Therefore, when this static electricity protection component is applied to an electronic device such as a portable information device as a countermeasure against static electricity pulses or external noise, the stray capacitance and the variation of the static electricity protection component can be reduced in the electronic device.
In addition, the conductive particles are aluminum powder, and the insulating particles are zinc oxide powder. Since these aluminum powder and zinc oxide powder are inexpensive materials, an electrostatic protection paste can be manufactured at low cost. Can do.
The blending ratio of the three components of the electrostatic protection paste is such that the silicone resin is 100 parts by weight, the aluminum powder is 60 parts by weight to 200 parts by weight, and the zinc oxide powder is 60 parts by weight to 160 parts by weight. Parts (more desirably 120 parts by weight to 160 parts by weight), the electrostatic protection component having the electrostatic protection film 5 formed using this electrostatic protection paste has an ESD suppression peak voltage of 500 V or less and an ESD resistance. The target value of a standard value leakage current of 10 μA or less (insulation resistance R = 3 MΩ or more) can be satisfied.
 また、本実施の形態例によれば、スクリーン印刷した上部電極6a,6bと静電気保護膜5とを同時に焼付けすることを特徴としているため、製造工程が簡略化され、安価に静電気保護部品を製造することができる。 Further, according to the present embodiment, the screen-printed upper electrodes 6a and 6b and the electrostatic protection film 5 are simultaneously baked, so that the manufacturing process is simplified and the electrostatic protection component is manufactured at a low cost. can do.
 更には、先に上部電極6a,6bをスクリーン印刷し、その後から静電気保護膜5をスクリーン印刷することを特徴としているため、次のような効果が得られる。
 即ち、乾燥した状態の上部電極6a,6bによって表電極2a,2bの機械的強度を補強することができるため、スクリーン印刷による静電気保護膜5の形成が容易になる。
 また、先に静電気保護膜5をスクリーン印刷し、その後から上部電極6a,6bをスクリーン印刷する場合に比べて、静電気保護膜5にスクリーンメッシュが接触する回数を低減することができるため、スクリーン印刷時のスクリーンメッシュの帯電によって、静電気保護膜5の所望の静電気耐量よりも大きな静電気が発生することにより、静電気保護膜5の電気的特性が劣化するという不具合が発生する可能性を、低減することができる。
Furthermore, since the upper electrodes 6a and 6b are screen-printed first and then the electrostatic protection film 5 is screen-printed thereafter, the following effects can be obtained.
That is, since the mechanical strength of the front electrodes 2a and 2b can be reinforced by the dried upper electrodes 6a and 6b, it is easy to form the electrostatic protection film 5 by screen printing.
In addition, the number of times the screen mesh contacts the electrostatic protection film 5 can be reduced as compared with the case where the electrostatic protection film 5 is screen-printed first and then the upper electrodes 6a and 6b are screen-printed. To reduce the possibility that the electrical characteristics of the electrostatic protection film 5 will deteriorate due to the static electricity larger than the desired static electricity resistance of the electrostatic protection film 5 due to the charging of the screen mesh at the time. Can do.
 なお、本発明は図1に示すような構造の静電気保護部品だけでなく、静電気保護膜を有する種々の構造の静電気保護部品に適用することができ、例えば図13に示すような構造の静電気保護部品にも適用することができる。図13の静電気保護部品では、静電気保護膜の側部5a,5bと表電極2a,2bとの間にガラス膜12a,12bがそれぞれ介設されている。 The present invention can be applied not only to the electrostatic protection component having the structure as shown in FIG. 1 but also to various electrostatic protection components having an electrostatic protection film. For example, the electrostatic protection having the structure as shown in FIG. It can also be applied to parts. In the electrostatic protection component of FIG. 13, glass films 12a and 12b are interposed between the sides 5a and 5b of the electrostatic protection film and the surface electrodes 2a and 2b, respectively.
 また、上記では、1つのセラミックス基板1上に1つの静電気保護膜5を形成した静電気保護部品の実施例を述べたが、これに限定するものではなく、1つのセラミックス基板1上に2つ以上の静電気保護膜5を形成した静電気保護部品も、本発明の範囲内とする。 In the above description, the example of the electrostatic protection component in which one electrostatic protection film 5 is formed on one ceramic substrate 1 has been described. However, the present invention is not limited to this. Two or more electrostatic protection components are provided on one ceramic substrate 1. The electrostatic protection component formed with the electrostatic protection film 5 is also within the scope of the present invention.
 本発明は静電気保護膜用ペースト、静電気保護部品及びその製造方法に関するものであり、携帯情報機器等の電子機器を静電気パルスや外来ノイズから保護するための静電気保護部品に適用して有用なものである。 The present invention relates to a paste for an electrostatic protection film, an electrostatic protection component, and a manufacturing method thereof, and is useful when applied to an electrostatic protection component for protecting electronic devices such as portable information devices from electrostatic pulses and external noise. is there.
 1 セラミックス基板、 1a 基板表面、 1b 基板裏面、 1c,1d 基板端面、 2,2a,2b 表電極、 2a-1,2a-2,2b-1,2b-2 表電極の端部、 3a,3b 裏電極、 3a-1,3b-1 裏電極の端部、 4 ギャップ、 5 静電気保護膜、 5a,5b 静電気保護膜の側部、 5c 静電気保護膜の中央部、 6a,6b 上部電極、 7 中間層、 8 保護膜、 8a,8b 保護膜の端部、 9a,9b 端面電極、 9a-1,9a-2,9b-1,9b-2 端面電極の端部、 10a,10b ニッケルめっき膜、 11a,11b スズめっき膜、12a,12b ガラス膜 1 ceramic substrate, 1a substrate surface, 1b substrate back surface, 1c, 1d substrate end surface, 2, 2a, 2b surface electrode, 2a-1, 2a-2, 2b-1, 2b-2 surface electrode end, 3a, 3b Back electrode, 3a-1, 3b-1 End of back electrode, 4 gap, 5 electrostatic protective film, 5a, 5b electrostatic protective film side, 5c central part of electrostatic protective film, 6a, 6b upper electrode, 7 middle Layer, 8 protective film, 8a, 8b protective film end, 9a, 9b end face electrode, 9a-1, 9a-2, 9b-1, 9b-2 end face electrode end, 10a, 10b nickel plating film, 11a , 11b Tin plating film, 12a, 12b glass film

Claims (10)

  1.  静電気保護部品の静電気保護膜を形成するための静電気保護用ペーストであって、
     シリコーン樹脂と、導電性粒子と、絶縁性粒子の3成分を混合したものであることを特徴とする静電気保護用ペースト。
    An electrostatic protection paste for forming an electrostatic protection film of an electrostatic protection component,
    A paste for electrostatic protection, comprising a mixture of silicone resin, conductive particles, and insulating particles.
  2.  請求項1に記載する静電気保護用ペーストにおいて、
     前記導電性粒子がアルミニウム粉、前記絶縁性粒子が酸化亜鉛粉であることを特徴とする静電気保護用ペースト。
    In the electrostatic protection paste according to claim 1,
    The paste for electrostatic protection, wherein the conductive particles are aluminum powder and the insulating particles are zinc oxide powder.
  3.  請求項2に記載する静電気保護用ペーストにおいて、
     前記シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が60重量部~200重量部、前記酸化亜鉛粉が60重量部~160重量部であることを特徴とする静電気保護用ペースト。
    In the paste for electrostatic protection according to claim 2,
    A paste for electrostatic protection, wherein the silicone resin is 100 parts by weight, the aluminum powder is 60 to 200 parts by weight, and the zinc oxide powder is 60 to 160 parts by weight.
  4.  絶縁基板と、前記絶縁基板上に形成されギャップを介して対向している表電極と、前記ギャップに形成されて前記表電極に接続された静電気保護膜とを有している静電気保護部品において、
     前記静電気保護膜は、シリコーン樹脂と、導電性粒子と、絶縁性粒子の3成分を混合したものであることを特徴とする静電気保護部品。
    In an electrostatic protection component having an insulating substrate, a surface electrode formed on the insulating substrate and facing through a gap, and an electrostatic protection film formed in the gap and connected to the surface electrode,
    The electrostatic protection component according to claim 1, wherein the electrostatic protection film is a mixture of silicone resin, conductive particles, and insulating particles.
  5.  請求項4に記載する静電気保護部品において、
     前記導電性粒子がアルミニウム粉、前記絶縁性粒子が酸化亜鉛粉であることを特徴とする静電気保護部品。
    In the electrostatic protection component according to claim 4,
    The electrostatic protection component, wherein the conductive particles are aluminum powder, and the insulating particles are zinc oxide powder.
  6.  請求項5に記載する静電気保護部品において、
     前記シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が60重量部~200重量部、前記酸化亜鉛粉が60重量部~160重量部であることを特徴とする静電気保護部品。
    In the electrostatic protection component according to claim 5,
    An electrostatic protection component, wherein the silicone resin is 100 parts by weight, the aluminum powder is 60 parts by weight to 200 parts by weight, and the zinc oxide powder is 60 parts by weight to 160 parts by weight.
  7.  スクリーン印刷法により、電極ペーストを絶縁基板上に塗布してパターン化することにより、表電極を形成する工程と、
     前記表電極を焼成する工程と、
     焼成した前記表電極を切断加工してギャップを形成し、このギャップを介して表電極が対向する構造とする工程と、
     スクリーン印刷法により、導電性ペーストを、前記ギャップを介して対向する表電極のそれぞれに塗布してパターン化することより、上部電極を形成する工程と、
     スクリーン印刷法により、静電気保護用ペーストを、前記ギャップに塗布してパターン化することにより、前記ギャップに静電気保護膜を形成し、前記ギャップを介して対向する表電極に前記静電気保護膜を接続する工程と、
     前記上部電極と前記静電気保護膜とを同時に焼付けする工程と、
    を有することを特徴とする静電気保護部品の製造方法。
    A step of forming a surface electrode by applying and patterning an electrode paste on an insulating substrate by a screen printing method;
    Firing the surface electrode;
    Cutting the fired surface electrode to form a gap, and the surface electrode faces through the gap; and
    A step of forming an upper electrode by applying and patterning a conductive paste to each of the opposing front electrodes through the gap by a screen printing method;
    By applying a pattern for applying an electrostatic protection paste to the gap by screen printing, an electrostatic protection film is formed in the gap, and the electrostatic protection film is connected to the opposing surface electrode through the gap. Process,
    Baking the upper electrode and the electrostatic protection film simultaneously;
    A method for producing an electrostatic protection component, comprising:
  8.  請求項7に記載する静電気保護部品の製造方法において、
     前記静電気保護用ペーストは、シリコーン樹脂と、導電性粒子と、絶縁性粒子の3成分を混合したものであることを特徴とする静電気保護部品の製造方法。
    In the manufacturing method of the electrostatic protection component described in Claim 7,
    The method for producing an electrostatic protection component, wherein the electrostatic protection paste is a mixture of silicone resin, conductive particles, and insulating particles.
  9.  請求項8に記載する静電気保護部品の製造方法において、
     前記導電性粒子がアルミニウム粉、前記絶縁性粒子が酸化亜鉛粉であることを特徴とする静電気保護部品の製造方法。
    In the manufacturing method of the electrostatic protection component of Claim 8,
    The method for producing an electrostatic protection component, wherein the conductive particles are aluminum powder, and the insulating particles are zinc oxide powder.
  10.  請求項9に記載する静電気保護部品の製造方法において、
     前記シリコーン樹脂が100重量部であるのに対して、前記アルミニウム粉が60重量部~200重量部、前記酸化亜鉛粉が60重量部~160重量部であることを特徴とする静電気保護部品の製造方法。
    In the manufacturing method of the electrostatic protection component according to claim 9,
    Production of an electrostatic protection component, wherein the silicone resin is 100 parts by weight, the aluminum powder is 60 parts by weight to 200 parts by weight, and the zinc oxide powder is 60 parts by weight to 160 parts by weight. Method.
PCT/JP2010/059639 2009-11-26 2010-06-08 Paste for electrostatic protection, electrostatic protection component, and method for producing same WO2011065043A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127013499A KR101415477B1 (en) 2009-11-26 2010-06-08 Paste for electrostatic protection, electrostatic protection component, and method for producing same
JP2011543123A JP5439500B2 (en) 2009-11-26 2010-06-08 Electrostatic protective paste, electrostatic protective component and method for manufacturing the same
CN201080053717.2A CN102741948B (en) 2009-11-26 2010-06-08 Slurry, electrostatic protection parts and manufacture method thereof for electrostatic protection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-268487 2009-11-26
JP2009268487 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011065043A1 true WO2011065043A1 (en) 2011-06-03

Family

ID=44066146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059639 WO2011065043A1 (en) 2009-11-26 2010-06-08 Paste for electrostatic protection, electrostatic protection component, and method for producing same

Country Status (5)

Country Link
JP (1) JP5439500B2 (en)
KR (1) KR101415477B1 (en)
CN (1) CN102741948B (en)
TW (1) TWI509641B (en)
WO (1) WO2011065043A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5221794B1 (en) * 2012-08-09 2013-06-26 立山科学工業株式会社 Electrostatic protection element and manufacturing method thereof
CN103918144A (en) * 2011-09-28 2014-07-09 釜屋电机株式会社 Electrostatic protective component and method for manufacturing same
JP2016025086A (en) * 2014-07-16 2016-02-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. Paste for electrostatic protection and method of manufacturing the same
JP2016143884A (en) * 2015-01-29 2016-08-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. Paste for electrostatic protection element and method for producing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150044258A (en) * 2013-10-16 2015-04-24 삼성전기주식회사 Static-protective components and static-protective compositions
KR102445531B1 (en) * 2015-10-21 2022-09-21 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device
KR102218896B1 (en) * 2015-11-16 2021-02-24 삼성전기주식회사 Electrostatic discharge protection composition and electrostatic discharge protection device using the same
CN108878082B (en) * 2018-06-13 2020-10-23 南京萨特科技发展有限公司 Ultralow-capacitance electrostatic suppressor and preparation method thereof
CN113613481B (en) * 2021-08-06 2023-10-13 苏州晶讯科技股份有限公司 Preparation method of low-triggering low-capacitance sheet type electrostatic inhibitor
CN114394576A (en) * 2022-01-24 2022-04-26 深圳市科尔诺电子科技有限公司 Double-pole cooling combined plate type ozone generator
CN117393253A (en) 2022-07-04 2024-01-12 国巨电子(中国)有限公司 Surge-resistant resistor and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523040A (en) * 1997-11-08 2001-11-20 リッテルフューズ インコーポレイテッド Overvoltage protection polymer composition
JP2002538601A (en) * 1999-02-23 2002-11-12 リッテルフューズ,インコーポレイティド Surface mountable device to protect electronic components from electrostatic damage
JP2007265713A (en) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd Static electricity protective material paste and static electricity countermeasure part using it
WO2008016858A1 (en) * 2006-07-29 2008-02-07 Shocking Technologies Inc Voltage switchable dielectric material having conductive or semi-conductive organic material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697306B2 (en) * 2007-06-21 2011-06-08 パナソニック株式会社 Static electricity countermeasure parts and manufacturing method thereof
CN101548347A (en) * 2007-06-21 2009-09-30 松下电器产业株式会社 Static electricity resistant component and method for manufacturing the same
US20090231763A1 (en) * 2008-03-12 2009-09-17 Polytronics Technology Corporation Over-voltage protection device
JP2009267202A (en) * 2008-04-28 2009-11-12 Panasonic Corp Static electricity countermeasure component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523040A (en) * 1997-11-08 2001-11-20 リッテルフューズ インコーポレイテッド Overvoltage protection polymer composition
JP2002538601A (en) * 1999-02-23 2002-11-12 リッテルフューズ,インコーポレイティド Surface mountable device to protect electronic components from electrostatic damage
JP2007265713A (en) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd Static electricity protective material paste and static electricity countermeasure part using it
WO2008016858A1 (en) * 2006-07-29 2008-02-07 Shocking Technologies Inc Voltage switchable dielectric material having conductive or semi-conductive organic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918144A (en) * 2011-09-28 2014-07-09 釜屋电机株式会社 Electrostatic protective component and method for manufacturing same
JP5221794B1 (en) * 2012-08-09 2013-06-26 立山科学工業株式会社 Electrostatic protection element and manufacturing method thereof
JP2016025086A (en) * 2014-07-16 2016-02-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. Paste for electrostatic protection and method of manufacturing the same
JP2016143884A (en) * 2015-01-29 2016-08-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. Paste for electrostatic protection element and method for producing the same

Also Published As

Publication number Publication date
KR101415477B1 (en) 2014-07-04
JP5439500B2 (en) 2014-03-12
TW201118891A (en) 2011-06-01
JPWO2011065043A1 (en) 2013-04-11
CN102741948B (en) 2016-05-25
CN102741948A (en) 2012-10-17
KR20120092137A (en) 2012-08-20
TWI509641B (en) 2015-11-21

Similar Documents

Publication Publication Date Title
JP5439500B2 (en) Electrostatic protective paste, electrostatic protective component and method for manufacturing the same
WO2010061519A1 (en) Esd protection device and method for manufacturing same
JP2012142596A (en) Improved high voltage capacitors
US6184769B1 (en) Monolithic varistor
US7277003B2 (en) Electrostatic discharge protection component
JP5221794B1 (en) Electrostatic protection element and manufacturing method thereof
JP5671149B2 (en) Method for manufacturing electrostatic protection parts
JP5378589B2 (en) Static electricity protection component and method for manufacturing the same
JP2006269876A (en) Anti-electrrostatic component
JP5079394B2 (en) Electrostatic protection element and manufacturing method thereof
JP2009267202A (en) Static electricity countermeasure component
KR101808796B1 (en) Laminated device
CN112151273B (en) Multilayer ceramic electronic component
CN111834125B (en) Multilayer ceramic electronic component
JP5079632B2 (en) ESD protection element
JP2010027636A (en) Electrostatic countermeasure component
JP2007266478A (en) Electrostatic discharge protection element and manufacturing method thereof
JP4847918B2 (en) ESD protection element
JP6187001B2 (en) ESD protection parts
WO2021089816A2 (en) Varistor
JP2009194130A (en) Component for dealing with static electricity

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053717.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543123

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127013499

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832892

Country of ref document: EP

Kind code of ref document: A1