WO2011065013A1 - Ph adjustment device - Google Patents

Ph adjustment device Download PDF

Info

Publication number
WO2011065013A1
WO2011065013A1 PCT/JP2010/006912 JP2010006912W WO2011065013A1 WO 2011065013 A1 WO2011065013 A1 WO 2011065013A1 JP 2010006912 W JP2010006912 W JP 2010006912W WO 2011065013 A1 WO2011065013 A1 WO 2011065013A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
counter electrode
voltage
group
ions
Prior art date
Application number
PCT/JP2010/006912
Other languages
French (fr)
Japanese (ja)
Inventor
棚橋正和
棚橋正治
中野貴徳
Original Assignee
有限会社ターナープロセス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ターナープロセス filed Critical 有限会社ターナープロセス
Priority to JP2011509806A priority Critical patent/JPWO2011065013A1/en
Publication of WO2011065013A1 publication Critical patent/WO2011065013A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Definitions

  • the present invention relates to a pH adjusting device.
  • an object of the present invention is to provide an apparatus capable of easily adjusting the pH of a liquid in a place where the liquid exists.
  • the pH adjusting device of the present invention is a device for adjusting the pH of a liquid containing water, and includes an electrode group that can be charged into the liquid and a voltage for applying a voltage to the electrode group.
  • Application means, and the electrode group includes an ion adsorption electrode including a conductive material capable of reversibly adsorbing ions, a counter electrode, and a fixing member, and (i) the conductive material and the counter electrode
  • a voltage between the ion-adsorbing electrode and the counter electrode so that water is electrolyzed at the counter electrode while being in contact with a liquid, the amount of ions adsorbed on the conductive substance is reduced.
  • each of the ion adsorption electrode and the counter electrode is performed. There are fixed by the fixing member.
  • the pH of a liquid can be easily adjusted in an environment where the liquid exists. That is, according to the present invention, the pH of the liquid can be easily adjusted in situ.
  • FIG. 2A and 2B are a front view and a cross-sectional view, respectively, of an example of an ion adsorption electrode and a surrounding protective member. It is a front view which shows an example of an ion adsorption electrode. It is a front view which shows an example of a counter electrode and its surrounding protection member. It is a figure which shows the flow of the liquid in an example electrode group.
  • 6A and 6B are schematic views showing an example of pH adjustment using the apparatus of the present invention.
  • 7A and 7B are schematic views showing another example of pH adjustment using the apparatus of the present invention.
  • FIG. 8A is a side view showing an example of an electrode group.
  • FIG. 8B is a cross-sectional view of the electrode group shown in FIG. 8A.
  • FIG. 8C is another side view of the electrode group shown in FIG. 8A.
  • FIG. 8D is another side view of the electrode group shown in FIG. 8A.
  • FIG. 9 shows an average value of current efficiency when an example electrode group is used.
  • FIG. 10 shows an average value of current efficiency when another example electrode group is used.
  • the apparatus of the present invention is an apparatus for adjusting the pH of a liquid containing water.
  • the liquid containing water may be referred to as “aqueous liquid (A)”.
  • the apparatus of the present invention includes an electrode group that can be charged into the aqueous liquid (A), and a voltage applying means for applying a voltage to the electrode group.
  • the electrode group includes a counter electrode, a fixing member, and an ion-adsorbing electrode including a conductive substance that can adsorb ions reversibly.
  • the conductive material may be referred to as “conductive material (C)”.
  • the voltage application means is a means for applying a voltage between the ion adsorption electrode and the counter electrode. In the electrode group, each of the ion adsorption electrode and the counter electrode is fixed by a fixing member.
  • the pH of the aqueous liquid (A) is adjusted by performing step (i) described later.
  • the aqueous liquid (A) may contain at least one ion (L) in addition to hydrogen ions (H + ) and hydroxide ions (OH ⁇ ).
  • the cation contained in the ion (L) include alkali metal ions (such as sodium ion, potassium ion and lithium ion), alkaline earth metal ions (such as magnesium ion and calcium ion), transition metal ions (such as zinc ion and Cadmium ions), aluminum ions, and the like.
  • the anion contained in the ion (L) include, for example, chlorine ion, sulfate ion, nitrate ion, organic acid ion, PF 6 ⁇ , BF 4 ⁇ and the like.
  • cations other than hydrogen ions are referred to as “cations (L + )” regardless of valence
  • anions other than hydroxide ions are referred to as “anions (L ⁇ )” regardless of valence. May be described.
  • the number of ions (L) adsorbed on the conductive material (C) and the ions (L) released from the conductive material (C) may be one or more.
  • aqueous liquid (A) is water.
  • the aqueous liquid (A) may contain a solvent other than water.
  • the aqueous liquid (A) may be an aqueous solution containing a cation (L + ) and an anion (L ⁇ ).
  • water-based liquids (A) include water in PET bottles and cups, water in fish tanks, water in bathtubs, hot water, water in pools, water in ponds, etc. Contains liquid.
  • step (i) a voltage is applied between the ion adsorption electrode and the counter electrode so that electrolysis of water occurs in the counter electrode while the conductive substance (C) and the counter electrode are in contact with the aqueous liquid (A). To do. By applying this voltage, the amount of ions adsorbed on the conductive substance (C) is changed, and hydrogen ions or hydroxide ions are generated at the counter electrode, thereby changing the pH of the liquid. Below, two examples of process (i) are demonstrated.
  • a conductive substance (C) capable of adsorbing a sufficient amount of ions (L) for pH adjustment is used.
  • a conductive substance (C) that does not substantially adsorb ions (L) is used.
  • the aqueous liquid (A) is an aqueous solution containing ions (L).
  • ions (L) are adsorbed on the conductive substance (C).
  • the ions (L) are hardly adsorbed. Therefore, when the step (i) is repeated with one electrode group, or when the pH is greatly changed by a small amount of the conductive material (C), the ions (L) adsorbed on the conductive material (C). It is necessary to regenerate the conductive substance (C) by releasing the.
  • the electrode group may be immersed in a regenerating aqueous liquid (water or aqueous solution) and a voltage applied in the direction opposite to that in step (i).
  • the adsorbed ions are released from the adsorbed state by oxygen reduction or resin oxidation. There is. In such a case, it is desirable to wash away the ions whose adsorption state has been released by washing the conductive material (C) before use.
  • a conductive substance (C) in which a sufficient amount of ions (L) for adjusting the pH is adsorbed is used.
  • the aqueous liquid (A) may or may not contain ions (L).
  • a step (p) of adsorbing ions (L) to the conductive substance (C) may be performed before the step (i).
  • the ions (L) adsorbed on the conductive substance (C) in the step (p) are converted into the aqueous liquid (A). Released into.
  • a voltage is applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode becomes an anode (so that the counter electrode becomes a cathode). Apply. By applying this voltage, the negative ions (L ⁇ ) are adsorbed on the conductive substance (C), and water is electrolyzed at the counter electrode.
  • the ion adsorption electrode becomes a cathode (so that the counter electrode becomes an anode) between the ion adsorption electrode and the counter electrode.
  • Apply voltage By applying this voltage, positive ions (L + ) are adsorbed on the conductive substance (C), and electrolysis of water occurs at the counter electrode.
  • step (i) of the second example the ions (L) adsorbed on the conductive substance (C) are released into the aqueous liquid (A). Therefore, when the step (i) is repeated with one electrode group, or when the pH of the aqueous liquid (A) is greatly changed using a small amount of the conductive material (C), the conductive material ( It is necessary to perform a regeneration treatment for adsorbing ions (L) on C). The regeneration of the conductive substance (C) on which the ions (L) are adsorbed can be performed by the above step (p).
  • the ions (L) contained in the aqueous solution (S) and adsorbed on the conductive substance (C) may be selected according to the use of the aqueous liquid (A).
  • the aqueous liquid (A) is water in an aquarium for raising fish, it is preferable to select ions (L) that are less harmful to fish.
  • the apparatus of the present invention it is possible to adjust the pH of the liquid without using an ion exchange membrane (ion exchange material).
  • the apparatus of the present invention may include a separator for preventing a short circuit between the ion adsorption electrode and the counter electrode.
  • the voltage application in the pH adjusting device of the present invention may be performed by a constant voltage method or a constant current method.
  • the applied voltage is preferably a voltage that causes no or only a little electrolysis of water at the ion adsorption electrode.
  • the applied voltage is a direct current voltage and the flowing current is a direct current.
  • a pulse voltage may be applied in the apparatus of the present invention.
  • the potential of the counter electrode In order to cause electrolysis of water at the counter electrode, the potential of the counter electrode needs to be a potential at which electrolysis of water occurs.
  • the potential of the counter electrode is affected by a voltage drop (IR drop) due to liquid resistance between the electrodes. Therefore, in order to realize a fast process, it is preferable that the voltage applied between the counter electrode and the ion adsorption electrode is larger than 2V.
  • the conductive material (C) is in the form of a sheet.
  • the conductive substance (C) can adsorb ions reversibly. That is, the conductive substance (C) can release the adsorbed ions.
  • the conductive substance (C) for example, a substance that forms an electric double layer on the surface by adsorbing ions in a solution can be used.
  • ions having a sign opposite to the surface charge are adsorbed on the surface of the conductive material (C). For example, an anion is adsorbed when the surface charge is a positive charge, and a cation is adsorbed when the surface charge is a negative charge.
  • the conductive substance (C) a conductive substance having a large specific surface area can be used.
  • a carbon material can be used.
  • activated carbon is preferably used because of its large specific surface area.
  • the conductive material (C) may be a conductive sheet formed by agglomerating granular activated carbon, or a conductive sheet formed by aggregating granular activated carbon and conductive carbon.
  • it may be an activated carbon block formed by solidifying activated carbon particles, a sheet formed of activated carbon fibers, or a composite of these.
  • the sheet formed of activated carbon fibers include a cloth formed of activated carbon fibers.
  • the activated carbon fiber cloth include activated carbon fiber cloths manufactured by Nippon Kainol Co., Ltd. (product numbers such as ACC-5092-15, ACC-5092-20, and ACC-5092-25).
  • the specific surface area of the conductive substance (C) is, for example, 300 m 2 / g or more, and preferably 900 m 2 / g or more.
  • the upper limit of the specific surface area is not particularly limited, but may be, for example, 5000 m 2 / g or less or 2500 m 2 / g or less.
  • “specific surface area” is a value measured by the BET method using nitrogen gas.
  • the amount of the conductive material (C) contained in the electrode group may be determined according to pH adjustment conditions. However, even if the amount of the conductive material (C) is small, the pH can be adjusted by repeating the step (i) and the regeneration treatment of the conductive material (C).
  • the liquid resistance can be made low and uniform by arranging the ion-adsorbing electrode and the counter electrode in a flat plate shape and arranging them in parallel.
  • the flat ion adsorption electrode may be formed by fixing a conductive material containing granular activated carbon on a metal foil with a binder.
  • the conductive material may include conductive carbon such as acetylene black.
  • the ion adsorption electrode may include a wiring (current collector) arranged so as to be in contact with the conductive substance (C).
  • a wiring for example, a metal wiring can be used, and a metal wiring coated with a metal having high corrosion resistance (for example, a noble metal) may be used.
  • the metal constituting the wiring include at least one selected from the group consisting of Ti, Ta, and Nb.
  • the metal that coats the metal include at least one metal (including an alloy) selected from the group consisting of Au, Pt, Pd, and Rh.
  • an electrode that easily generates hydrogen gas or oxygen gas during electrolysis of water is used.
  • an electrode having Pt on the surface is used.
  • an electrode having a metal surface coated with Pt is used as a counter electrode.
  • an electrode coated with Ti or Nb with Pt may be used as the counter electrode.
  • the counter electrode may have an actual surface area (surface area measured by a BET method or the like) of 10 times or less (for example, 5 times or less) of its apparent surface area (surface area of the outer shape).
  • a counter electrode examples include a general metal electrode and a graphite electrode.
  • the surface area of the counter electrode increases, the amount of ions adsorbed on the counter electrode increases. Since the amount of electricity that contributes to the change in pH decreases by the amount of electricity of ions adsorbed on the counter electrode, it is preferable that the surface area of the counter electrode is small.
  • the actual surface area (surface area measured by the BET method or the like) of the conductive substance (C) may be 10 4 times or more the apparent surface area (surface area of the outer shape).
  • the shape of the counter electrode is not particularly limited.
  • the counter electrode may be a rod-shaped electrode or a sheet-shaped electrode. Further, the counter electrode may be a linear electrode arranged in a stripe shape or a lattice shape.
  • the counter electrode preferably has a shape in which gas generated on the surface of the counter electrode is easily detached from the surface of the counter electrode.
  • a counter electrode in which the total length of the linear electrodes arranged in the vertical direction is 50% or more (for example, 70% or more or 80% or more) of the total length of the linear electrodes constituting the counter electrode is used.
  • the gas generated on the surface of the counter electrode can be easily discharged upward.
  • “upper”, “lower”, “vertical direction” and “horizontal direction” in the electrode group are respectively the upper direction when the electrode group is disposed in the aqueous liquid (A) in order to perform each step, Means downward, vertical and horizontal.
  • the fixing member is not particularly limited as long as it can fix the ion-adsorbing electrode and the counter electrode. However, it is preferable to use a material that is resistant in the pH region to be adjusted, and the ion-adsorbing electrode and the counter electrode may be in contact with each other. It is preferred that the part uses at least an insulating material.
  • a material of the fixing member for example, a metal material, an inorganic material, a resin material, or a composite material thereof is used.
  • the fixing member may include a plate (fixing plate) to which at least one selected from the group consisting of the conductive substance (C) and the counter electrode is fixed.
  • the fixing member may include a plate (fixing plate) disposed so as to sandwich at least one selected from the group consisting of a conductive substance and a counter electrode.
  • a through hole may be formed in these fixing members (fixing plates). The aqueous liquid (A) passes through the fixed plate through the through hole.
  • the through hole formed in the fixing plate may be formed so that the gas generated at the electrode is easily detached from the surface of the electrode.
  • the upper side surface (and optionally the lower side surface) of the side surfaces of the through hole may be inclined upward from the inner side to the outer side of the electrode group.
  • the through hole may be formed so that gas generated in the electrode is easily discharged to the outside of the electrode group.
  • the upper side surface (and optionally the lower side surface) of the side surfaces of the through hole may be inclined upward from the inner side to the outer side of the electrode group. According to this configuration, the gas generated on the surface of the electrode is easily discharged to the outside of the electrode group. This gas flow generates a water flow from the inside of the electrode group to the outside of the electrode group.
  • the through-hole formed in the fixing plate may be long in the vertical direction, and may be, for example, an ellipse long in the vertical direction.
  • “inside” means the center side of the electrode group.
  • the “outside” means the side opposite to the center of the electrode group with the fixing member interposed therebetween.
  • the counter electrode may be disposed outside the fixed member.
  • the fixing member may include an insulating portion, and the shortest path connecting the ion adsorption electrode and the counter electrode may be blocked by the insulating portion. Note that all of the fixing members may be insulative (the same applies to the following examples).
  • the counter electrode is disposed outside the fixing member, the fixing member includes an insulating portion, and the shortest path connecting the ion adsorption electrode and the counter electrode is blocked by the insulating portion.
  • the fixing member may include an insulating portion, and the ion-adsorbing electrode and the counter electrode may face each other with the insulating portion interposed therebetween.
  • an electric field is applied so as to go around the fixed member.
  • gas generation is less likely to occur on the surface facing the inner side of the electrode group among the surfaces of the counter electrode.
  • ions hydrogen ions or hydroxide ions that affect pH
  • the electrode group may further include a protective member through which the aqueous liquid (A) can pass.
  • the protective member protects at least one selected from the group consisting of the conductive substance (C) and the counter electrode.
  • the protective member suppresses deformation and breakage of the conductive substance (C) and / or the counter electrode.
  • a soft material such as activated carbon fiber cloth
  • the activated carbon fiber cloth is sandwiched between protective members in order to give rigidity to the activated carbon fiber cloth and form a flat plate.
  • An activated carbon fiber cloth may be fixed on the surface.
  • the electrode group may include a plurality of different protective members.
  • the protective member that protects the conductive substance (C) may be different from the protective member that protects the counter electrode.
  • the material of the protective member is not particularly limited, but it is preferable to use a material that is resistant in the pH range to be adjusted. Moreover, it is preferable that the part which an ion adsorption electrode or a counter electrode may contact among protective members is formed with an insulating material.
  • a material that is resistant in the pH range to be adjusted for example, a metal material, an inorganic material, a resin material, or a composite material thereof is used.
  • a through hole may be formed in the protective member. Through the through-hole, the aqueous liquid (A) can reach the conductive substance (C).
  • the protective member is made of an insulating resin.
  • the protective member may be formed so that the gas generated at the electrode is easily detached from the surface of the electrode.
  • a through hole is formed in the protective member, and an upper side surface (and optionally a lower side surface) of the side surfaces of the through hole may be inclined upward from the electrode side toward the outside.
  • the protective member may be formed so that gas generated at the electrode is easily discharged to the outside of the electrode group.
  • a through hole is formed in the protective member, and an upper side surface (and optionally a lower side surface) of the side surfaces of the through hole is inclined upward from the inner side to the outer side of the electrode group. Good. According to this configuration, the gas generated on the surface of the electrode is easily discharged to the outside of the electrode group.
  • the through hole formed in the protective member may be long in the vertical direction, and may be, for example, an ellipse long in the vertical direction.
  • the electrode group of the present invention may include a member (gas induction member) for inducing gas generated at at least one electrode selected from the group consisting of an ion adsorption electrode and a counter electrode.
  • a member gas induction member
  • An example of the gas guiding member has a shape for promoting the separation of the gas generated at the electrode from the electrode.
  • Another example of the gas guiding member has a shape for promoting the gas generated at the electrodes to be discharged to the outside of the electrode group.
  • Examples of the gas guide member include a plate-like member having a through hole formed therein, and examples of the shape of the through hole include the specific shapes described for the through hole of the fixing plate and the through hole of the protective member. It is. Therefore, the fixing plate or the protection member can also serve as the gas induction member.
  • the fixing plate can also serve as a protective member, and can also serve as both the protective member and the gas guiding member.
  • the electrode group may further include a protective member and / or a gas guiding
  • the voltage applying means may be any device that can apply a necessary voltage between the ion adsorption electrode and the counter electrode.
  • the voltage applying means may be an AC / DC converter that converts an AC voltage from an outlet into a DC voltage.
  • the voltage applying means may be a dry battery, a rechargeable battery, or a fuel cell.
  • the voltage application means may be a power generation device, for example, a solar cell or a power generation device using electromagnetic induction.
  • the apparatus of the present invention may include a pH sensor for monitoring the pH of the aqueous liquid (A) or a timer for measuring a voltage application time.
  • the apparatus of the present invention may include a switch for switching the voltage application direction.
  • the apparatus of this invention may be equipped with the stirrer for separating the hydrogen ion and hydroxide ion which were produced
  • the voltage application means can be controlled manually, but may be controlled by a controller. That is, the apparatus of the present invention may include a controller for executing a predetermined process. The apparatus of the present invention may also include an input device for inputting a target pH value and voltage application time to the controller, and a display device for displaying the processing state.
  • the controller includes an arithmetic processing unit (may include an internal memory), and further includes a storage device such as an external memory or a hard disk drive as necessary.
  • a storage device for example, an internal memory, an external memory, or a hard disk drive
  • a program for executing each process is recorded.
  • the controller is connected to various devices (for example, a power source) and measuring instruments (for example, a pH sensor and a timer). The controller may execute each step by controlling various devices based on the output from the measuring instrument.
  • the apparatus of the present invention it is possible to adjust the pH of the aqueous liquid (A) simply by putting the electrode group into the aqueous liquid (A) and applying a voltage to the electrode group. Therefore, the pH can be adjusted without transferring the aqueous liquid (A) to a special tank. For example, when adjusting the pH of water in a PET bottle, an electrode group may be inserted into the PET bottle and a voltage may be applied to the electrode group. Moreover, when adjusting the pH of the water in the water tank which breeds a fish, an electrode group may be thrown into the water tank and a voltage may be applied to the electrode group. Therefore, the apparatus of the present invention does not require a special tank for pH adjustment.
  • the electrode group may include a member according to the application. Moreover, it is preferable that an electrode group is made into the shape according to a use. For example, when adjusting the pH of water in a plastic bottle, the electrode group has an elongated shape so that it can be inserted from the mouth of the plastic bottle. In that case, the electrode group may include a member (for example, a lid or a cap) for fixing the electrode group to the mouth of the PET bottle. At this time, in order to release the gas generated at the counter electrode from the inside of the plastic bottle, it is preferable not to seal the mouth of the plastic bottle. For example, a hole that allows the inside and outside of the PET bottle to communicate with each other may be provided in the lid or cap. Further, the electrode group may include a weight so as to be stable in the aqueous liquid (A).
  • A aqueous liquid
  • the apparatus of the present invention may include a plurality of at least one of an ion adsorption electrode and a counter electrode.
  • the device of the present invention may include a plurality of electrode groups.
  • FIG. 1 schematically shows the configuration of the pH adjusting device 10 of the first embodiment.
  • the apparatus 10 includes a DC power supply 11, a pH sensor 12, a controller 13, and an electrode group 20.
  • the pH sensor 12 may be fixed to the electrode group 20.
  • the pH sensor 12 and the controller 13 can be omitted.
  • the electrode group 20 includes an ion adsorption electrode 21, a counter electrode 22, a protection member 23, a fixing plate (fixing member) 24, and fixing members 25 and 26.
  • the DC power supply 11 is connected to the ion adsorption electrode 21 and the counter electrode 22.
  • the ion adsorption electrode 21, the protection member 23, and the fixing plate 24 are stacked in the order of fixing plate 24 / protection member 23 / ion adsorption electrode 21 / protection member 23 / fixation plate 24.
  • the counter electrode 22 and the fixed plate 24 are stacked in the order of fixed plate 24 / counter electrode 22 / fixed plate 24.
  • the ion adsorption electrode 21 and the counter electrode 22 are each sandwiched between two fixed plates 24.
  • the upper part of the fixing plate 24 is fixed by a fixing member 25, and the lower part of the fixing plate 24 is fixed by a fixing member 26.
  • the ion adsorption electrode 21 and the counter electrode 22 are fixed by the fixing members (the fixing plate 24, the fixing member 25, and the fixing member 26).
  • FIG. 2A is a front view of the ion adsorption electrode 21, the protection member 23, the fixing plate 24, and the fixing members 25 and 26 as viewed from the outside of the electrode group 20.
  • FIG. A cross-sectional view taken along line IIB-IIB in FIG. 2A is shown in FIG. 2B.
  • the electrode group 20 is arranged so that the direction of the line IIB-IIB (the vertical direction in FIG. 2A) is the vertical direction.
  • the protective member 23 is made of a lattice-shaped synthetic resin. That is, the protective member 23 is formed with a plurality of through holes through which liquid passes.
  • the fixing plate 24 and the fixing members 25 and 26 are made of a plate-shaped synthetic resin.
  • the fixing plate 24 has a plurality of through holes 24h.
  • the configuration of the ion adsorption electrode 21 is schematically shown in FIG.
  • the ion adsorption electrode 21 includes a wiring 21a and an activated carbon fiber cloth 21b.
  • the wiring 21a and the activated carbon fiber cloth 21b are arranged so that they are in sufficient contact with each other and the electrical contact resistance is reduced.
  • the wiring 21a may be sandwiched between a plurality of activated carbon fiber cloths 21b.
  • the wiring 21a may be disposed on the outermost surface of one activated carbon fiber cloth 21b or on the outermost surface of a plurality of overlapping activated carbon fiber cloths 21b.
  • FIG. 4 shows a front view of the counter electrode 22, the fixing plate 24, and the fixing members 25 and 26 as viewed from the outside of the electrode group 20.
  • the counter electrode 22 has a lattice shape and is sandwiched between two fixing plates 24.
  • the fixing plate 24 has a plurality of through holes 24h.
  • the cross-section parallel to the surface of the fixed plate 24 is an ellipse that is long in the vertical direction.
  • the side surface of the through hole 24 h of the fixing plate 24 is inclined so that the gas generated at the electrode is discharged to the outside of the electrode group 20.
  • the upper and lower side surfaces are inclined upward from the horizontal toward the outside from the inside of the electrode group 20.
  • the lower side of the electrode group 20 may be configured so that liquid can easily flow. For example, no electrode may be present in the lower through-hole 24 h on the fixed plate 24. By making the liquid easily flow under the electrode group 20, the liquid can easily circulate in the electrode group 20, and the rate of adsorption and release of ions can be increased.
  • the protection member 23 may be omitted. Moreover, as long as the ion adsorption electrode 21 and the counter electrode 22 can be fixed in the electrode group 20, one or two of the fixing members (the fixing plate 24, the fixing member 25, and the fixing member 26) may be omitted. Moreover, you may use the protection member and fixing plate of a shape different from the protection member 23 and fixing member (the fixing plate 24, the fixing member 25, and the fixing member 26).
  • a DC voltage is applied between the ion adsorption electrode 21 and the counter electrode 22.
  • a DC voltage is applied so that the ion adsorption electrode 21 becomes an anode.
  • the anion (L ⁇ ) is adsorbed to the ion adsorption electrode 21 (activated carbon fiber cloth 21b).
  • water is electrolyzed on the surface of the counter electrode 22 to generate hydroxide ions and hydrogen gas. As a result, the pH of the aqueous solution 60 increases.
  • the cation (L + ) is adsorbed on the activated carbon fiber cloth 21b by performing the step (p) before the step (i). Specifically, the electrode group 20 is immersed in an aqueous solution 71 containing a cation (L + ). Next, a DC voltage is applied so that the ion adsorption electrode 21 becomes a cathode. By applying this voltage, as shown in FIG. 7A, cations (L + ) are adsorbed on the activated carbon fiber cloth 21b.
  • the electrode group 20 is taken out from the aqueous solution 71 and immersed in the liquid 70. Then, a voltage is applied in the direction opposite to the voltage application direction in the step (p). Specifically, a DC voltage is applied so that the ion adsorption electrode 21 becomes an anode. By applying this voltage, the cation (L + ) adsorbed on the activated carbon fiber cloth 21 b is released into the liquid 70 as shown in FIG. 7B. In addition, water is electrolyzed on the surface of the counter electrode 22 to generate hydroxide ions and hydrogen gas. As a result, the pH of the liquid 70 increases. In addition, at the time of this voltage application, the anion (L ⁇ - >) in the aqueous solution 71 can be adsorbed by the activated carbon fiber cloth 21b.
  • the voltage application direction in the step (p) and the step (i) may be reversed to the voltage application direction in FIGS. 7A and 7B.
  • the pH sensor 12 is introduced into the liquid together with the electrodes.
  • the controller 13 monitors the pH of the liquid with the pH sensor 12, and stops the voltage application when the pH of the liquid reaches a desired value.
  • a pH test paper may be used instead of the pH sensor.
  • voltage application conditions necessary to obtain a target pH value under a specific use condition are obtained in advance, and the user or the controller 13 applies voltage according to the voltage application condition. May be.
  • FIG. 8A Another example of the electrode group is shown in FIG. 8A.
  • the electrode group 80 in FIG. 8A can be used in place of the electrode group 20 described above.
  • a cross-sectional view taken along line VIIIB-VIIIB in FIG. 8A is shown in FIG. 8B.
  • FIG. 8C the figure which looked at the electrode group 80 from the stationary plate 24a side
  • FIG. 8D the figure which looked at the electrode group 80 from the counter electrode 22 side.
  • the electrode group 80 includes an ion adsorption electrode 21, a counter electrode 22, a protection member 23, a fixing plate (fixing member) 24, and fixing members 25 to 27.
  • the fixed plate 24 includes a fixed plate 24a and a fixed plate 24b. A through hole 24h is formed in the fixed plate 24a.
  • the fixed plate 24a and the fixed plate 24b are fixed by fixing members 25 to 27.
  • the protective member 23 may be omitted.
  • the ion adsorption electrode 21 includes a wiring 21a and an activated carbon fiber cloth 21b.
  • the ion adsorption electrode 21 is sandwiched between two protective members 23.
  • the ion adsorption electrode 21 is fixed to the protection member 23 with a thread (not shown). Further, the ion adsorption electrode 21 is fixed to the fixed plate 24 a via the protective member 23.
  • a lead 21w is connected to the wiring 21a.
  • the counter electrode 22 includes two electrodes having a linear (rod-like) shape.
  • a lead 22 w is connected to the counter electrode 22.
  • the fixing plate 24b is two insulating resin members having a linear (rod-like) shape.
  • the counter electrode 22 is fixed to the outside of the fixed plate 24b. As shown in FIG. 8B, the shortest path connecting the ion adsorption electrode 21 and the counter electrode 22 is blocked by the fixing plate 24b. More specifically, the shortest path between an arbitrary surface of the counter electrode 22 and the ion adsorption electrode 21 is blocked by the fixing plate 24b. Therefore, when a voltage is applied between the ion adsorption electrode 21 and the counter electrode 22, an electric field is formed so as to go around the fixed plate 24b.
  • the electrode group 80 is used in a state where the longitudinal direction of the counter electrode 22 is arranged in the vertical direction.
  • gas is generated on the surface of the counter electrode 22, and hydrogen ions or hydroxide ions are generated.
  • the counter electrode 22 is disposed outside the fixed plate 24 b, the gas generated on the surface of the counter electrode 22 is difficult to enter the electrode group 80. Therefore, in the electrode group 80, the gas generated on the surface of the counter electrode 22 can be prevented from coming into contact with the ion adsorption electrode 21 or staying inside the electrode group 80. As a result, it is possible to suppress the hydrogen ions and hydroxide ions generated on the surface of the counter electrode 22 from approaching the activated carbon fiber cloth 21 b (conductive substance) of the ion adsorption electrode 21.
  • Example 1 In Example 1, an experiment was performed in which the pH of tap water was changed using an electrode group having the same form as the electrode group 20 shown in FIG.
  • the electrode group of the device of the present invention was put into 2 liters of tap water. At this time, an ion adsorption electrode in a state where ions were not adsorbed was used. Then, a DC voltage of 12 volts was applied for 30 minutes between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode (first voltage application).
  • the pH of tap water changed from 7.81 before voltage application to 9.03 by voltage application for 15 minutes, and to 9.40 by voltage application for 30 minutes.
  • the current flowing between the electrodes changed from 60 mA to 70 mA when the voltage was applied for 15 minutes from the start of voltage application. Further, the current flowing between the electrodes changed from 60 mA to 70 mA when the voltage was applied for 15 to 30 minutes after the start of voltage application. It is considered that anions were adsorbed on the ion adsorption electrode by this initial voltage application.
  • the electrode group was taken out from the treated tap water, and the taken out electrode group was put into 2 liters of new tap water (pH 7.81). Then, a DC voltage of 12 volts was applied for 45 minutes between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode (second voltage application). As a result, the pH of tap water changes from 7.81 before voltage application to 6.70 by voltage application for 15 minutes, to 6.38 by voltage application for 30 minutes, and by voltage application for 45 minutes. Changed to 6.12. Note that the current flowing between the electrodes changed from 60 mA to 80 mA when the voltage was applied for 15 minutes from the start of voltage application.
  • the current flowing between the electrodes changed from 50 mA to 80 mA when the voltage was applied for 15 to 30 minutes after the start of voltage application. Further, the current flowing between the electrodes changed from 50 mA to 80 mA when the voltage was applied for 30 to 45 minutes after the start of voltage application. In this second voltage application, it is considered that the anion adsorbed on the ion adsorption electrode in the first voltage application was released and the cation was adsorbed.
  • the electrode group was taken out from the treated tap water, and the taken out electrode group was put into 2 liters of new tap water (pH 7.81). As described above, it is considered that cations were adsorbed on the ion adsorption electrode of this electrode group. Then, a DC voltage was applied for 15 minutes between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode (third voltage application). At this time, a voltage was applied so that a constant current of 70 mA would flow between the electrodes. As a result, the pH of tap water changed from 7.81 before voltage application to 9.65 by voltage application for 15 minutes. When the voltage was applied, the voltage between the electrodes changed from 12.6 volts to 10.6 volts.
  • Example 2 In Example 2, an experiment for adjusting pH using an electrode group having no fixing member between the ion-adsorbing electrode and the counter electrode and an electrode group having the same form as the electrode group 80 shown in FIG. 8A is performed. went.
  • an electrode group having no fixing member between the ion adsorption electrode and the counter electrode is referred to as a “first electrode group”
  • an electrode group having the same form as the electrode group 80 illustrated in FIG. 8A is referred to as a “second electrode group”. May be referred to as an “electrode group”.
  • the first electrode group was formed by disposing an ion adsorption electrode and a counter electrode inside a cylindrical insulating resin member in which a plurality of through holes were formed. That is, the ion adsorption electrode and the counter electrode are disposed inside the fixing member.
  • the counter electrode was composed of three linear electrodes (diameter 1 mm, length 170 mm) made of titanium coated with platinum. The distance between the ion adsorption electrode and the counter electrode was about 5 mm, and there was no fixing member between them.
  • the second electrode group was an electrode group having the form shown in FIG. 8A. That is, the counter electrode was disposed outside the fixed member.
  • the counter electrode was composed of two linear electrodes (diameter 1 mm, length 170 mm) made of titanium coated with platinum. The distance between the ion-adsorbing electrode and the counter electrode was about 8 mm, and a fixing member made of an insulating resin was present in the shortest path connecting them as shown in FIG. 8A.
  • Experiment 2 a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode.
  • Experiment 1 was performed by immersing the first electrode group used in Experiment 2 in 500 ml of a new 0.05 wt% KCl aqueous solution as it was.
  • Experiment 3 a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode.
  • Experiment 4 was performed by immersing the first electrode group used in Experiment 3 in 500 ml of a new 0.05 wt% KCl aqueous solution as it was. In Experiment 4, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode.
  • Table 1 The experimental results are shown in Table 1.
  • the average current density in Table 1 is a value of (average current) / (projected area of the ion adsorption electrode).
  • Experiment 6 a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode.
  • Experiment 7 was performed by immersing the second electrode group used in Experiment 6 in 500 ml of a new 0.05 wt% KCl aqueous solution as it was.
  • a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode.
  • Experiment 8 was performed by immersing the second electrode group used in Experiment 7 in 500 ml of a new 0.05 wt% KCl aqueous solution as it was. In Experiment 8, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode.
  • Table 2 The experimental results are shown in Table 2.
  • the pH of the aqueous KCl solution having a concentration of 0 to 0.10% by weight was changed using the first electrode group and the second electrode group. And the current efficiency was calculated
  • theoretical pH value means that water is ideally electrolyzed by current (electric quantity) flowing between the electrodes to generate hydrogen ions (or hydroxide ions). It means a pH value calculated from the molar concentration of the generated hydrogen ions (or hydroxide ions).
  • FIG. 9 shows the average current efficiency when the first electrode group is used. Moreover, the average value of the current efficiency at the time of using a 2nd electrode group is shown in FIG. As is clear from FIGS. 9 and 10, the current efficiency was high when the second electrode group in which the counter electrode was fixed outside the fixing member was used.
  • the present invention can be used for a pH adjusting device.
  • the apparatus of the present invention it is possible to adjust the pH of the liquid simply by putting an electrode group into the liquid whose pH is to be adjusted and applying a voltage. Therefore, the pH of the liquid can be easily adjusted.
  • the pH adjusting device of the present invention can be used for pH adjustment of various liquids. For example, it can be used to adjust the pH of water in a fish tank or drinking water in a plastic bottle.

Abstract

Disclosed is a device that adjusts the pH of a water-containing liquid. Said device is provided with an electrode group (20) that can be inserted into the liquid and a DC power source (11) for applying a voltage to the electrode group (20). The electrode group (20) is provided with: an ion-adsorption electrode (21) that contains a conductive substance (21b) that can reversibly adsorb ions; an opposing electrode (22); and fixed members (a fixed plate (24) and fixed members (25 and 26)). With the conductive substance (21b) and the opposing electrode (22) in contact with the liquid, a voltage is applied such that water is electrolyzed at the opposing electrode (22), thereby changing the quantity of ions adsorbed by the conductive substance (21b) and generating hydrogen ions or hydroxide ions at the opposing electrode (22). As a result the pH of the liquid is changed. In the electrode group (20), the ion-adsorption electrode (21) and the opposing electrode (22) are fixed in place by the fixed members.

Description

pH調整装置pH adjuster
 本発明は、pH調整装置に関する。 The present invention relates to a pH adjusting device.
 従来から、液体のpHを調整する様々な装置が提案されてきた。たとえば、イオン透過性の隔膜を挟んで2つの電極を配置し、塩水を電気分解して酸性水とアルカリ性水とを調製する装置が提案されている(特開平7-299457号公報)。 Conventionally, various devices for adjusting the pH of a liquid have been proposed. For example, an apparatus has been proposed in which two electrodes are arranged with an ion-permeable diaphragm interposed therebetween, and acid water and alkaline water are prepared by electrolyzing salt water (Japanese Patent Laid-Open No. 7-299457).
 また、隔膜を用いないでpHを調整する装置も提案されている(特開平4-284889号公報および特開平8-19781号公報)。これらの装置では、複数の平板状電極が狭い間隔で配置され、その間を水が層流となって流れる。電極間を流れる水を電解することによってアルカリ性水の層流と、酸性水の層流とを形成し、それらを別々に取り出すことによって、アルカリ性水および酸性水が得られる。一方、隔膜を用いない装置も提案されている(国際公開WO2006/132160A1)。 In addition, apparatuses for adjusting pH without using a diaphragm have been proposed (Japanese Patent Laid-Open Nos. 4-2884889 and 8-19781). In these apparatuses, a plurality of flat electrodes are arranged at a narrow interval, and water flows in a laminar flow therebetween. By electrolyzing the water flowing between the electrodes, a laminar flow of alkaline water and a laminar flow of acidic water are formed, and alkaline water and acidic water are obtained by taking them out separately. On the other hand, an apparatus that does not use a diaphragm has also been proposed (International Publication WO2006 / 132160A1).
特開平7-299457号公報JP-A-7-299457 特開平4-284889号公報JP-A-4-284889 特開平8-19781号公報Japanese Patent Laid-Open No. 8-19781 国際公開WO2006/132160A1International Publication WO2006 / 132160A1
 このような状況において、本発明は、液体のpHを、その液体が存在する場において容易に調整できる装置を提供することを目的の1つとする。 In such a situation, an object of the present invention is to provide an apparatus capable of easily adjusting the pH of a liquid in a place where the liquid exists.
 上記目的を達成するため、本発明のpH調整装置は、水を含む液体のpHを調整する装置であって、前記液体に投入可能な電極群と、前記電極群に電圧を印加するための電圧印加手段とを備え、前記電極群は、イオンを可逆的に吸着できる導電性物質を含むイオン吸着電極と、対極と、固定部材とを備え、(i)前記導電性物質と前記対極とを前記液体に接触させた状態で、前記対極において水の電気分解が生じるように前記イオン吸着電極と前記対極との間に電圧を印加することによって、前記導電性物質に吸着されているイオンの量を変化させるとともに、前記対極で水素イオンまたは水酸化物イオンを発生させ、その結果、前記液体のpHを変化させる工程が行われ、前記電極群において前記イオン吸着電極および前記対極のそれぞれが前記固定部材で固定されている。 In order to achieve the above object, the pH adjusting device of the present invention is a device for adjusting the pH of a liquid containing water, and includes an electrode group that can be charged into the liquid and a voltage for applying a voltage to the electrode group. Application means, and the electrode group includes an ion adsorption electrode including a conductive material capable of reversibly adsorbing ions, a counter electrode, and a fixing member, and (i) the conductive material and the counter electrode By applying a voltage between the ion-adsorbing electrode and the counter electrode so that water is electrolyzed at the counter electrode while being in contact with a liquid, the amount of ions adsorbed on the conductive substance is reduced. And the step of generating hydrogen ions or hydroxide ions at the counter electrode and, as a result, changing the pH of the liquid is performed. In the electrode group, each of the ion adsorption electrode and the counter electrode is performed. There are fixed by the fixing member.
 本発明によれば、液体のpHを、その液体が存在する環境下において容易に調整できる。すなわち、本発明によれば、液体のpHをその場(in situ)において容易に調整できる。 According to the present invention, the pH of a liquid can be easily adjusted in an environment where the liquid exists. That is, according to the present invention, the pH of the liquid can be easily adjusted in situ.
本発明の装置の一例の構成を模式的に示す図である。It is a figure which shows typically the structure of an example of the apparatus of this invention. 図2Aおよび図2Bは、それぞれ、イオン吸着電極およびその周囲の保護部材の一例の、正面図および断面図である。2A and 2B are a front view and a cross-sectional view, respectively, of an example of an ion adsorption electrode and a surrounding protective member. イオン吸着電極の一例を示す正面図である。It is a front view which shows an example of an ion adsorption electrode. 対極およびその周囲の保護部材の一例を示す正面図である。It is a front view which shows an example of a counter electrode and its surrounding protection member. 一例の電極群における液体の流れを示す図である。It is a figure which shows the flow of the liquid in an example electrode group. 図6Aおよび図6Bは、本発明の装置を用いたpH調整の例を示す模式図である。6A and 6B are schematic views showing an example of pH adjustment using the apparatus of the present invention. 図7Aおよび図7Bは、本発明の装置を用いたpH調整の他の例を示す模式図である。7A and 7B are schematic views showing another example of pH adjustment using the apparatus of the present invention. 図8Aは、電極群の一例を示す側面図である。FIG. 8A is a side view showing an example of an electrode group. 図8Bは、図8Aに示した電極群の断面図である。FIG. 8B is a cross-sectional view of the electrode group shown in FIG. 8A. 図8Cは、図8Aに示した電極群の他の側面図である。FIG. 8C is another side view of the electrode group shown in FIG. 8A. 図8Dは、図8Aに示した電極群のその他の側面図である。FIG. 8D is another side view of the electrode group shown in FIG. 8A. 図9は、一例の電極群を用いた場合の電流効率の平均値を示す。FIG. 9 shows an average value of current efficiency when an example electrode group is used. 図10は、他の一例の電極群を用いた場合の電流効率の平均値を示す。FIG. 10 shows an average value of current efficiency when another example electrode group is used.
 以下、本発明の実施形態について説明する。なお、以下の説明では、本発明の実施形態について例を挙げて説明するが、本発明は以下で説明する例に限定されない。以下の説明において特定の数値や特定の材料を例示する場合があるが、本発明の効果が得られる限り、他の数値や他の材料を適用してもよい。 Hereinafter, embodiments of the present invention will be described. In the following description, embodiments of the present invention will be described by way of examples, but the present invention is not limited to the examples described below. In the following description, specific numerical values and specific materials may be exemplified, but other numerical values and other materials may be applied as long as the effect of the present invention is obtained.
 (pH調整装置)
 本発明の装置は、水を含む液体のpHを調整する装置である。水を含む液体を、以下では、「水性液体(A)」という場合がある。本発明の装置は、水性液体(A)に投入可能な電極群と、電極群に電圧を印加するための電圧印加手段とを備える。電極群は、対極と、固定部材と、イオンを可逆的に吸着できる導電性物質を含むイオン吸着電極とを備える。その導電性物質を、以下では、「導電性物質(C)」という場合がある。電圧印加手段は、イオン吸着電極と対極との間に電圧を印加するための手段である。電極群において、イオン吸着電極および対極のそれぞれが固定部材で固定されている。
(PH adjuster)
The apparatus of the present invention is an apparatus for adjusting the pH of a liquid containing water. Hereinafter, the liquid containing water may be referred to as “aqueous liquid (A)”. The apparatus of the present invention includes an electrode group that can be charged into the aqueous liquid (A), and a voltage applying means for applying a voltage to the electrode group. The electrode group includes a counter electrode, a fixing member, and an ion-adsorbing electrode including a conductive substance that can adsorb ions reversibly. Hereinafter, the conductive material may be referred to as “conductive material (C)”. The voltage application means is a means for applying a voltage between the ion adsorption electrode and the counter electrode. In the electrode group, each of the ion adsorption electrode and the counter electrode is fixed by a fixing member.
 本発明のpH調整装置では、後述する工程(i)が行われることによって、水性液体(A)のpHが調整される。水性液体(A)に特に限定はない。水性液体(A)は、水素イオン(H+)および水酸化物イオン(OH-)に加えて、少なくとも1種のイオン(L)を含んでもよい。イオン(L)に含まれる陽イオンの例には、アルカリ金属イオン(ナトリウムイオンやカリウムイオンやリチウムイオンなど)、アルカリ土類金属イオン(マグネシウムイオンやカルシウムイオンなど)、遷移金属イオン(亜鉛イオンおよびカドミウムイオンを含む)、アルミニウムイオンなどが含まれる。イオン(L)に含まれる陰イオンの例には、たとえば、塩素イオン、硫酸イオン、硝酸イオン、有機酸イオン、PF6 -、BF4 -などが含まれる。 In the pH adjusting device of the present invention, the pH of the aqueous liquid (A) is adjusted by performing step (i) described later. There is no particular limitation on the aqueous liquid (A). The aqueous liquid (A) may contain at least one ion (L) in addition to hydrogen ions (H + ) and hydroxide ions (OH ). Examples of the cation contained in the ion (L) include alkali metal ions (such as sodium ion, potassium ion and lithium ion), alkaline earth metal ions (such as magnesium ion and calcium ion), transition metal ions (such as zinc ion and Cadmium ions), aluminum ions, and the like. Examples of the anion contained in the ion (L) include, for example, chlorine ion, sulfate ion, nitrate ion, organic acid ion, PF 6 , BF 4 − and the like.
 以下では、水素イオン以外の陽イオンを価数にかかわらず「陽イオン(L+)」と記載し、水酸化物イオン以外の陰イオンを価数にかかわらず「陰イオン(L-)」と記載する場合がある。導電性物質(C)に吸着されるイオン(L)および導電性物質(C)から放出されるイオン(L)は、1種類であってもよいし、複数種であってもよい。 In the following, cations other than hydrogen ions are referred to as “cations (L + )” regardless of valence, and anions other than hydroxide ions are referred to as “anions (L )” regardless of valence. May be described. The number of ions (L) adsorbed on the conductive material (C) and the ions (L) released from the conductive material (C) may be one or more.
 水性液体(A)の一例は、水である。本発明の効果が得られる限り、水性液体(A)は水以外の溶媒を含んでもよい。水性液体(A)は、陽イオン(L+)および陰イオン(L-)を含む水溶液であってもよい。水性液体(A)の例には、ペットボトルやコップに入っている飲料水、魚を飼育する水槽の水、浴槽の水やお湯、プールの水、ため池の水など、任意の容器や空間に入っている液体が含まれる。 An example of the aqueous liquid (A) is water. As long as the effects of the present invention are obtained, the aqueous liquid (A) may contain a solvent other than water. The aqueous liquid (A) may be an aqueous solution containing a cation (L + ) and an anion (L ). Examples of water-based liquids (A) include water in PET bottles and cups, water in fish tanks, water in bathtubs, hot water, water in pools, water in ponds, etc. Contains liquid.
 工程(i)では、導電性物質(C)と対極とを水性液体(A)に接触させた状態で、対極において水の電気分解が生じるようにイオン吸着電極と対極との間に電圧を印加する。この電圧印加によって、導電性物質(C)に吸着されているイオンの量を変化させるとともに、対極で水素イオンまたは水酸化物イオンを発生させ、その結果、液体のpHを変化させる。以下に、工程(i)の2つの例について説明する。 In step (i), a voltage is applied between the ion adsorption electrode and the counter electrode so that electrolysis of water occurs in the counter electrode while the conductive substance (C) and the counter electrode are in contact with the aqueous liquid (A). To do. By applying this voltage, the amount of ions adsorbed on the conductive substance (C) is changed, and hydrogen ions or hydroxide ions are generated at the counter electrode, thereby changing the pH of the liquid. Below, two examples of process (i) are demonstrated.
 (第1の例)
 第1の例では、pH調整に充分な量のイオン(L)を吸着可能な導電性物質(C)が用いられる。たとえば、実質的にイオン(L)を吸着していない導電性物質(C)が用いられる。そして、水性液体(A)は、イオン(L)を含む水溶液である。
(First example)
In the first example, a conductive substance (C) capable of adsorbing a sufficient amount of ions (L) for pH adjustment is used. For example, a conductive substance (C) that does not substantially adsorb ions (L) is used. The aqueous liquid (A) is an aqueous solution containing ions (L).
 この場合に、イオン吸着電極がアノード(陽極)となるように(つまり、対極がカソード(陰極)となるように)電圧を印加すると、イオン吸着電極の導電性物質(C)には陰イオン(L-)が吸着され、対極では水酸化物イオンと水素ガスとが発生する。その結果、水性液体(A)のpHは上昇する。逆に、イオン吸着電極がカソードとなるように(つまり、対極がアノードとなるように)電圧を印加すると、イオン吸着電極の導電性物質(C)には陽イオン(L+)が吸着され、対極では水素イオンと酸素ガスとが発生する。その結果、水性液体(A)のpHは低下する。第1の例では、導電性物質(C)に吸着された分だけ、水性液体(A)のイオン濃度が減少する。 In this case, when a voltage is applied so that the ion-adsorbing electrode becomes an anode (ie, the counter electrode becomes a cathode), an anion (C) is applied to the conductive substance (C) of the ion-adsorbing electrode. L ) is adsorbed, and hydroxide ions and hydrogen gas are generated at the counter electrode. As a result, the pH of the aqueous liquid (A) increases. Conversely, when a voltage is applied so that the ion adsorption electrode becomes a cathode (that is, the counter electrode becomes an anode), the cation (L + ) is adsorbed on the conductive substance (C) of the ion adsorption electrode, At the counter electrode, hydrogen ions and oxygen gas are generated. As a result, the pH of the aqueous liquid (A) decreases. In the first example, the ion concentration of the aqueous liquid (A) decreases by the amount adsorbed on the conductive substance (C).
 上記の工程を行うことによって、導電性物質(C)にはイオン(L)が吸着される。導電性物質(C)に吸着されたイオン(L)の量が多くなると、イオン(L)が吸着されにくくなる。そのため、1つの電極群で工程(i)を繰り返し行う場合や、少ない量の導電性物質(C)によってpHを大きく変化させる場合には、導電性物質(C)に吸着されたイオン(L)を放出させて導電性物質(C)を再生する必要がある。導電性物質(C)の再生は、たとえば、電極群を再生用の水性液体(水または水溶液)に浸漬して、工程(i)とは逆方向に電圧を印加すればよい。なお、イオン(L)を吸着している導電性物質(C)を大気中に長時間放置した場合には、酸素の還元や樹脂の酸化によって、吸着されたイオンの吸着状態が解除されることがある。そのような場合には、使用前に導電性物質(C)を洗うことによって、吸着状態が解除されたイオンを洗い流すことが望ましい。 By performing the above steps, ions (L) are adsorbed on the conductive substance (C). When the amount of ions (L) adsorbed on the conductive substance (C) increases, the ions (L) are hardly adsorbed. Therefore, when the step (i) is repeated with one electrode group, or when the pH is greatly changed by a small amount of the conductive material (C), the ions (L) adsorbed on the conductive material (C). It is necessary to regenerate the conductive substance (C) by releasing the. For the regeneration of the conductive substance (C), for example, the electrode group may be immersed in a regenerating aqueous liquid (water or aqueous solution) and a voltage applied in the direction opposite to that in step (i). When the conductive substance (C) that adsorbs ions (L) is left in the atmosphere for a long time, the adsorbed ions are released from the adsorbed state by oxygen reduction or resin oxidation. There is. In such a case, it is desirable to wash away the ions whose adsorption state has been released by washing the conductive material (C) before use.
 (第2の例)
 第2の例では、pHの調整に充分な量のイオン(L)が吸着されている導電性物質(C)が用いられる。第2の例では、水性液体(A)は、イオン(L)を含んでもよいし、含んでいなくてもよい。
(Second example)
In the second example, a conductive substance (C) in which a sufficient amount of ions (L) for adjusting the pH is adsorbed is used. In the second example, the aqueous liquid (A) may or may not contain ions (L).
 導電性物質(C)に陽イオン(L+)が吸着されている場合について考える。この場合に、イオン吸着電極がアノードとなるように(つまり、対極がカソードとなるように)電圧を印加すると、導電性物質(C)に吸着されている陽イオン(L+)が水性液体(A)に放出され、対極では水酸化物イオンと水素ガスとが発生する。その結果、水性液体(A)のpHは上昇する。 Consider a case where cations (L + ) are adsorbed on the conductive substance (C). In this case, when a voltage is applied so that the ion-adsorbing electrode becomes the anode (that is, the counter electrode becomes the cathode), the cation (L + ) adsorbed on the conductive substance (C) is converted into the aqueous liquid ( A), and hydroxide ions and hydrogen gas are generated at the counter electrode. As a result, the pH of the aqueous liquid (A) increases.
 次に、導電性物質(C)に陰イオン(L-)が吸着されている場合について考える。この場合に、イオン吸着電極がカソードとなるように(つまり、対極がアノードとなるように)電圧を印加すると、導電性物質(C)に吸着されている陰イオン(L-)が水性液体(A)に放出され、対極では水素イオンと酸素ガスとが発生する。その結果、水性液体(A)のpHは低下する。第2の例では、導電性物質(C)から放出された分だけ、水性液体(A)のイオン濃度が上昇する。 Next, consider a case where an anion (L ) is adsorbed on the conductive substance (C). In this case, when a voltage is applied so that the ion-adsorbing electrode becomes a cathode (that is, the counter electrode becomes an anode), the anions (L ) adsorbed on the conductive substance (C) are converted into an aqueous liquid ( A) and hydrogen ions and oxygen gas are generated at the counter electrode. As a result, the pH of the aqueous liquid (A) decreases. In the second example, the ion concentration of the aqueous liquid (A) increases by the amount released from the conductive substance (C).
 第2の例では、工程(i)を行う前に、導電性物質(C)にイオン(L)を吸着させておく必要がある。そのため、第2の例では、工程(i)の前に、導電性物質(C)にイオン(L)を吸着させる工程(p)が行われてもよい。工程(p)における電圧印加方向と工程(i)における電圧印加方向とを逆にすることによって、工程(p)において導電性物質(C)に吸着されたイオン(L)が水性液体(A)中に放出される。 In the second example, it is necessary to adsorb ions (L) to the conductive substance (C) before performing the step (i). Therefore, in the second example, a step (p) of adsorbing ions (L) to the conductive substance (C) may be performed before the step (i). By reversing the voltage application direction in the step (p) and the voltage application direction in the step (i), the ions (L) adsorbed on the conductive substance (C) in the step (p) are converted into the aqueous liquid (A). Released into.
 工程(p)の一例では、イオン(L)を含む水溶液(S)中において、イオン吸着電極がアノードとなるように(対極がカソードとなるように)、イオン吸着電極と対極との間に電圧を印加する。この電圧印加によって、導電性物質(C)には、陰イオン(L-)が吸着され、対極では水の電気分解が生じる。工程(p)の他の一例では、イオン(L)を含む水溶液(S)中において、イオン吸着電極がカソードとなるように(対極がアノードとなるように)イオン吸着電極と対極との間に電圧を印加する。この電圧印加によって、導電性物質(C)には、陽イオン(L+)が吸着され、対極では水の電気分解が生じる。 In an example of the step (p), in the aqueous solution (S) containing ions (L), a voltage is applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode becomes an anode (so that the counter electrode becomes a cathode). Apply. By applying this voltage, the negative ions (L ) are adsorbed on the conductive substance (C), and water is electrolyzed at the counter electrode. In another example of the step (p), in the aqueous solution (S) containing ions (L), the ion adsorption electrode becomes a cathode (so that the counter electrode becomes an anode) between the ion adsorption electrode and the counter electrode. Apply voltage. By applying this voltage, positive ions (L + ) are adsorbed on the conductive substance (C), and electrolysis of water occurs at the counter electrode.
 第2の例の工程(i)を行うことによって、導電性物質(C)に吸着されていたイオン(L)は水性液体(A)中に放出される。そのため、1つの電極群で工程(i)を繰り返し行う場合や、少ない量の導電性物質(C)を用いて水性液体(A)のpHを大きく変化させる場合には、再度、導電性物質(C)にイオン(L)を吸着させる再生処理をする必要がある。イオン(L)が吸着されている導電性物質(C)の再生は、上記工程(p)によって行うことができる。 By performing step (i) of the second example, the ions (L) adsorbed on the conductive substance (C) are released into the aqueous liquid (A). Therefore, when the step (i) is repeated with one electrode group, or when the pH of the aqueous liquid (A) is greatly changed using a small amount of the conductive material (C), the conductive material ( It is necessary to perform a regeneration treatment for adsorbing ions (L) on C). The regeneration of the conductive substance (C) on which the ions (L) are adsorbed can be performed by the above step (p).
 水溶液(S)に含まれ導電性物質(C)に吸着されるイオン(L)は、水性液体(A)の用途に応じて選択してもよい。たとえば、水性液体(A)が、魚を飼育する水槽の水である場合には、魚に対する害が小さいイオン(L)を選択することが好ましい。 The ions (L) contained in the aqueous solution (S) and adsorbed on the conductive substance (C) may be selected according to the use of the aqueous liquid (A). For example, in the case where the aqueous liquid (A) is water in an aquarium for raising fish, it is preferable to select ions (L) that are less harmful to fish.
 本発明の装置によれば、イオン交換膜(イオン交換材料)を使用せずに液体のpHを調整することが可能である。ただし、本発明の装置は、イオン吸着電極と対極との短絡を防止するためのセパレータなどを備えてもよい。 According to the apparatus of the present invention, it is possible to adjust the pH of the liquid without using an ion exchange membrane (ion exchange material). However, the apparatus of the present invention may include a separator for preventing a short circuit between the ion adsorption electrode and the counter electrode.
 本発明のpH調整装置における電圧の印加は、定電圧法で行ってもよいし、定電流法で行ってもよい。定電流法を用いることによって、処理時間の長さでpHの制御を行うことが可能になる。印加電圧は、イオン吸着電極において水の電気分解が発生しないか少ししか発生しない電圧とすることが好ましい。通常、印加される電圧は直流電圧であり流れる電流は直流電流である。本発明の効果が得られる限り、本発明の装置において、パルス電圧が印加されてもよい。 The voltage application in the pH adjusting device of the present invention may be performed by a constant voltage method or a constant current method. By using the constant current method, it is possible to control the pH with a long processing time. The applied voltage is preferably a voltage that causes no or only a little electrolysis of water at the ion adsorption electrode. Usually, the applied voltage is a direct current voltage and the flowing current is a direct current. As long as the effect of the present invention is obtained, a pulse voltage may be applied in the apparatus of the present invention.
 対極において水の電気分解を生じさせるために、対極の電位を水の電気分解が生じる電位とする必要がある。対極の電位は、電極間の液抵抗による電圧降下(IRドロップ)の影響を受ける。そのため、速い処理を実現するためには、対極とイオン吸着電極との間に印加する電圧を、2Vよりも大きくすることが好ましい。 In order to cause electrolysis of water at the counter electrode, the potential of the counter electrode needs to be a potential at which electrolysis of water occurs. The potential of the counter electrode is affected by a voltage drop (IR drop) due to liquid resistance between the electrodes. Therefore, in order to realize a fast process, it is preferable that the voltage applied between the counter electrode and the ion adsorption electrode is larger than 2V.
 典型的な一例では、導電性物質(C)はシート状である。導電性物質(C)は、可逆的にイオンを吸着できる。すなわち、導電性物質(C)は、吸着したイオンを放出することが可能である。導電性物質(C)としては、たとえば、溶液内でイオンを吸着することによって表面に電気二重層が形成されるような物質を用いることができる。導電性物質(C)の表面に表面電荷が存在する場合、その表面電荷と反対の符号を有するイオンが導電性物質(C)の表面に吸着されると考えられる。たとえば、表面電荷がプラス電荷である場合には陰イオンが吸着され、表面電荷がマイナス電荷である場合には陽イオンが吸着されると考えられる。 In a typical example, the conductive material (C) is in the form of a sheet. The conductive substance (C) can adsorb ions reversibly. That is, the conductive substance (C) can release the adsorbed ions. As the conductive substance (C), for example, a substance that forms an electric double layer on the surface by adsorbing ions in a solution can be used. When surface charge is present on the surface of the conductive material (C), it is considered that ions having a sign opposite to the surface charge are adsorbed on the surface of the conductive material (C). For example, an anion is adsorbed when the surface charge is a positive charge, and a cation is adsorbed when the surface charge is a negative charge.
 導電性物質(C)には、比表面積が大きい導電性物質を用いることができ、たとえば、炭素材料を用いることができる。炭素材料の中でも、活性炭は比表面積が大きいため、好ましく用いられる。たとえば、導電性物質(C)は、粒状活性炭を凝集させることによって形成された導電性シートであってもよいし、粒状活性炭と導電性カーボンとを凝集させることによって形成された導電性シートであってもよいし、活性炭粒子を固めることによって形成された活性炭ブロックであってもよいし、活性炭繊維で形成されたシートであってもよいし、これらの複合体であってもよい。活性炭繊維で形成されたシートの例には、活性炭繊維で形成されたクロス(cloth)が含まれる。活性炭繊維クロスの例としては、日本カイノール株式会社製の活性炭繊維クロス(品番がたとえばACC-5092-15、ACC-5092-20、ACC-5092-25)などが挙げられる。 As the conductive substance (C), a conductive substance having a large specific surface area can be used. For example, a carbon material can be used. Among the carbon materials, activated carbon is preferably used because of its large specific surface area. For example, the conductive material (C) may be a conductive sheet formed by agglomerating granular activated carbon, or a conductive sheet formed by aggregating granular activated carbon and conductive carbon. Alternatively, it may be an activated carbon block formed by solidifying activated carbon particles, a sheet formed of activated carbon fibers, or a composite of these. Examples of the sheet formed of activated carbon fibers include a cloth formed of activated carbon fibers. Examples of the activated carbon fiber cloth include activated carbon fiber cloths manufactured by Nippon Kainol Co., Ltd. (product numbers such as ACC-5092-15, ACC-5092-20, and ACC-5092-25).
 導電性物質(C)の比表面積は、たとえば300m2/g以上であり、好ましくは900m2/g以上である。比表面積の上限に特に限定はないが、たとえば5000m2/g以下や2500m2/g以下であってもよい。なお、この明細書において、「比表面積」とは、窒素ガスを用いたBET法で測定された値である。 The specific surface area of the conductive substance (C) is, for example, 300 m 2 / g or more, and preferably 900 m 2 / g or more. The upper limit of the specific surface area is not particularly limited, but may be, for example, 5000 m 2 / g or less or 2500 m 2 / g or less. In this specification, “specific surface area” is a value measured by the BET method using nitrogen gas.
 電極群に含まれる導電性物質(C)の量は、pH調整の条件に応じて決定すればよい。ただし、導電性物質(C)の量が少なくても、工程(i)と導電性物質(C)の再生処理とを繰り返すことによってpHを調整することが可能である。 The amount of the conductive material (C) contained in the electrode group may be determined according to pH adjustment conditions. However, even if the amount of the conductive material (C) is small, the pH can be adjusted by repeating the step (i) and the regeneration treatment of the conductive material (C).
 イオン吸着電極および対極の形状を平板状とし、それらを平行に配置することによって、液抵抗を低く且つ均一にできる。平板状のイオン吸着電極は、金属箔上に粒状の活性炭を含む導電性材料を結着剤で固定することによって形成してもよい。その導電性材料は、アセチレンブラック等の導電性カーボンを含んでもよい。また、平板状のイオン吸着電極は、活性炭繊維クロスに配線(集電体)を取り付けることによっても形成してもよい。活性炭繊維クロスを用いたイオン吸着電極は、液中のイオンが通過しやすいため、溶液のイオン濃度やpHの均質化が計れる。そのため、そのような電極を用いることによって、pHを素早く変化させることができる。 The liquid resistance can be made low and uniform by arranging the ion-adsorbing electrode and the counter electrode in a flat plate shape and arranging them in parallel. The flat ion adsorption electrode may be formed by fixing a conductive material containing granular activated carbon on a metal foil with a binder. The conductive material may include conductive carbon such as acetylene black. Moreover, you may form a flat ion adsorption electrode also by attaching wiring (current collector) to activated carbon fiber cloth. Since the ion adsorption electrode using the activated carbon fiber cloth easily passes ions in the liquid, the ion concentration and pH of the solution can be homogenized. Therefore, the pH can be quickly changed by using such an electrode.
 pHを効率的に変化させるため、および、導電性物質(C)の劣化を抑制するために、導電性物質(C)の表面で過剰なガスが発生することを防止することが好ましい、導電性物質(C)におけるガスの発生は、導電性物質(C)の抵抗が大きい場合に起こりやすい。そのため、導電性物質(C)の抵抗が高いときには、イオン吸着電極は、導電性物質(C)に接するように配置された配線(集電体)を含んでもよい。配線には、たとえば金属配線を用いることができ、耐腐食性が高い金属(たとえば貴金属)でコートされた金属配線を用いてもよい。配線を構成する金属としては、たとえば、Ti、TaおよびNbからなる群より選ばれる少なくとも1つが挙げられる。また、その金属をコートする金属としては、Au、Pt、PdおよびRhからなる群より選ばれる少なくとも1つの金属(合金を含む)が挙げられる。 In order to change the pH efficiently and to suppress deterioration of the conductive material (C), it is preferable to prevent excessive gas from being generated on the surface of the conductive material (C). The generation of gas in the substance (C) is likely to occur when the resistance of the conductive substance (C) is large. Therefore, when the resistance of the conductive substance (C) is high, the ion adsorption electrode may include a wiring (current collector) arranged so as to be in contact with the conductive substance (C). For the wiring, for example, a metal wiring can be used, and a metal wiring coated with a metal having high corrosion resistance (for example, a noble metal) may be used. Examples of the metal constituting the wiring include at least one selected from the group consisting of Ti, Ta, and Nb. Examples of the metal that coats the metal include at least one metal (including an alloy) selected from the group consisting of Au, Pt, Pd, and Rh.
 対極(Counter Electrode)には、水の電気分解時に水素ガスまたは酸素ガスが発生しやすい電極が用いられ、たとえば表面にPtが存在する電極が用いられる。具体的には、金属の表面をPtでコートした電極を対極として用いることが好ましい。たとえば、TiやNbをPtでコートした電極を対極として用いてもよい。 For the counter electrode, an electrode that easily generates hydrogen gas or oxygen gas during electrolysis of water is used. For example, an electrode having Pt on the surface is used. Specifically, it is preferable to use an electrode having a metal surface coated with Pt as a counter electrode. For example, an electrode coated with Ti or Nb with Pt may be used as the counter electrode.
 別の観点では、対極は、その実際の表面積(BET法等で測定した表面積)が、その見かけ上の表面積(外形の表面積)の10倍以下(たとえば5倍以下)であってもよい。そのような対極としては、一般的な金属電極や黒鉛電極が挙げられる。対極の表面積が大きくなると対極に吸着されるイオンの量が多くなる。対極に吸着されたイオンの電気量分だけ、pHの変動に寄与する電気量が減少するため、対極の表面積は小さい方が好ましい。これに対して、導電性物質(C)は、その実際の表面積(BET法等で測定した表面積)が、その見かけ上の表面積(外形の表面積)の104倍以上であってもよい。 In another aspect, the counter electrode may have an actual surface area (surface area measured by a BET method or the like) of 10 times or less (for example, 5 times or less) of its apparent surface area (surface area of the outer shape). Examples of such a counter electrode include a general metal electrode and a graphite electrode. As the surface area of the counter electrode increases, the amount of ions adsorbed on the counter electrode increases. Since the amount of electricity that contributes to the change in pH decreases by the amount of electricity of ions adsorbed on the counter electrode, it is preferable that the surface area of the counter electrode is small. On the other hand, the actual surface area (surface area measured by the BET method or the like) of the conductive substance (C) may be 10 4 times or more the apparent surface area (surface area of the outer shape).
 対極の形状に特に限定はない。対極は、棒状の電極であってもよいし、シート状の電極であってもよい。また、対極は、ストライプ状や格子状に配置された線状の電極であってもよい。対極は、対極の表面で発生したガスが対極の表面から脱離しやすい形状であることが好ましい。たとえば、垂直方向に配置された線状の電極の長さの合計が対極を構成する線状の電極の長さの合計の50%以上(たとえば70%以上や80%以上)である対極を用いることによって、対極の表面で発生したガスを上方に排出しやすくなる。なお、電極群における「上方」、「下方」、「垂直方向」および「水平方向」とは、それぞれ、各工程を実施するために電極群を水性液体(A)中に配置したときの上方、下方、垂直方向および水平方向を意味する。 The shape of the counter electrode is not particularly limited. The counter electrode may be a rod-shaped electrode or a sheet-shaped electrode. Further, the counter electrode may be a linear electrode arranged in a stripe shape or a lattice shape. The counter electrode preferably has a shape in which gas generated on the surface of the counter electrode is easily detached from the surface of the counter electrode. For example, a counter electrode in which the total length of the linear electrodes arranged in the vertical direction is 50% or more (for example, 70% or more or 80% or more) of the total length of the linear electrodes constituting the counter electrode is used. As a result, the gas generated on the surface of the counter electrode can be easily discharged upward. Note that “upper”, “lower”, “vertical direction” and “horizontal direction” in the electrode group are respectively the upper direction when the electrode group is disposed in the aqueous liquid (A) in order to perform each step, Means downward, vertical and horizontal.
 固定部材は、イオン吸着電極および対極を固定できるものであれば特に限定はないが、調整したいpHの領域で耐性のある材料を用いることが好ましく、イオン吸着電極と対極が接触する可能性のある部分は少なくとも絶縁材料を使うことが好ましい。固定部材の材料には、たとえば、金属材料、無機材料、樹脂材料、またはそれらの複合材料が用いられる。 The fixing member is not particularly limited as long as it can fix the ion-adsorbing electrode and the counter electrode. However, it is preferable to use a material that is resistant in the pH region to be adjusted, and the ion-adsorbing electrode and the counter electrode may be in contact with each other. It is preferred that the part uses at least an insulating material. As the material of the fixing member, for example, a metal material, an inorganic material, a resin material, or a composite material thereof is used.
 固定部材は、導電性物質(C)および対極からなる群より選ばれる少なくとも1つが固定される板(固定板)を含んでもよい。また、固定部材は、導電性物質および対極からなる群より選ばれる少なくとも1つを挟むように配置される板(固定板)を含んでもよい。これらの固定部材(固定板)には、貫通孔が形成されていてもよい。その貫通孔を介して、水性液体(A)が固定板を通過する。 The fixing member may include a plate (fixing plate) to which at least one selected from the group consisting of the conductive substance (C) and the counter electrode is fixed. The fixing member may include a plate (fixing plate) disposed so as to sandwich at least one selected from the group consisting of a conductive substance and a counter electrode. A through hole may be formed in these fixing members (fixing plates). The aqueous liquid (A) passes through the fixed plate through the through hole.
 固定板に形成される貫通孔は、電極で発生したガスが電極の表面から離脱しやすいように形成されていてもよい。一例では、貫通孔の側面のうち上方の側面(および任意的に(optionally)下方の側面)が、電極群の内側から外側に向かって上方に傾いていてもよい。また、貫通孔は、電極で発生したガスが電極群の外部に排出されやすいように形成されていてもよい。一例では、貫通孔の側面のうち上方の側面(および任意的に下方の側面)が、電極群の内側から外側に向かって上方に傾いていてもよい。この構成によれば、電極の表面で発生したガスが電極群の外部に排出されやすくなる。このガスの流れによって、電極群の内部から電極群の外部に向かう水流が生じる。その結果、対極で発生した水素イオンや水酸化物イオンがイオン吸着電極に吸着される確率を小さくできる。固定板に形成される貫通孔は、垂直方向に長くてもよく、たとえば、垂直方向に長い楕円形であってもよい。ここで、「内側」とは、電極群の中心側を意味する。また、「外側」とは、固定部材を挟んで電極群の中心とは反対側を意味する。 The through hole formed in the fixing plate may be formed so that the gas generated at the electrode is easily detached from the surface of the electrode. In one example, the upper side surface (and optionally the lower side surface) of the side surfaces of the through hole may be inclined upward from the inner side to the outer side of the electrode group. Further, the through hole may be formed so that gas generated in the electrode is easily discharged to the outside of the electrode group. In one example, the upper side surface (and optionally the lower side surface) of the side surfaces of the through hole may be inclined upward from the inner side to the outer side of the electrode group. According to this configuration, the gas generated on the surface of the electrode is easily discharged to the outside of the electrode group. This gas flow generates a water flow from the inside of the electrode group to the outside of the electrode group. As a result, the probability that hydrogen ions and hydroxide ions generated at the counter electrode are adsorbed to the ion adsorption electrode can be reduced. The through-hole formed in the fixing plate may be long in the vertical direction, and may be, for example, an ellipse long in the vertical direction. Here, “inside” means the center side of the electrode group. The “outside” means the side opposite to the center of the electrode group with the fixing member interposed therebetween.
 本発明の装置の一形態では、対極が固定部材の外側に配置されていてもよい。本発明の装置の他の一形態では、固定部材は絶縁性部分を含み、イオン吸着電極と対極とを結ぶ最短経路が当該絶縁性部分によって遮られていてもよい。なお、固定部材のすべてが絶縁性であってもよい(以下の例においても同様である)。好ましい一形態では、対極が固定部材の外側に配置されており、固定部材は絶縁性部分を含み、イオン吸着電極と対極とを結ぶ最短経路が当該絶縁性部分によって遮られている。また、本発明の装置のその他の形態では、固定部材は絶縁性部分を含み、イオン吸着電極と対極とが当該絶縁性部分を挟んで対向していてもよい。これらの形態では、イオン吸着電極と対極との間に電圧を印加したときに、電場が固定部材を回り込むように印加される。この場合、対極の表面のうち、電極群の内側に向かう表面ではガス発生が生じにくくなる。その結果、対極の表面で生成されたイオン(pHに影響する水素イオンや水酸化物イオン)が電極群の内側に移動することを抑制できる。これによって、水素イオンや水酸化物イオンがイオン吸着電極に電気二重層として吸着されてpHの調整効率が低下することを抑制できる。なお、イオン吸着電極と対極との間の経路が、固定部材によって完全に遮断されることはない。すなわち、イオン吸着電極と対極とは水性液体(A)を介して接続される。 In one form of the device of the present invention, the counter electrode may be disposed outside the fixed member. In another embodiment of the apparatus of the present invention, the fixing member may include an insulating portion, and the shortest path connecting the ion adsorption electrode and the counter electrode may be blocked by the insulating portion. Note that all of the fixing members may be insulative (the same applies to the following examples). In a preferred embodiment, the counter electrode is disposed outside the fixing member, the fixing member includes an insulating portion, and the shortest path connecting the ion adsorption electrode and the counter electrode is blocked by the insulating portion. In another form of the apparatus of the present invention, the fixing member may include an insulating portion, and the ion-adsorbing electrode and the counter electrode may face each other with the insulating portion interposed therebetween. In these forms, when a voltage is applied between the ion adsorption electrode and the counter electrode, an electric field is applied so as to go around the fixed member. In this case, gas generation is less likely to occur on the surface facing the inner side of the electrode group among the surfaces of the counter electrode. As a result, it is possible to prevent ions (hydrogen ions or hydroxide ions that affect pH) generated on the surface of the counter electrode from moving to the inside of the electrode group. Thereby, it can suppress that the adjustment efficiency of pH falls because hydrogen ion and hydroxide ion are adsorbed by an ion adsorption electrode as an electric double layer. Note that the path between the ion adsorption electrode and the counter electrode is not completely blocked by the fixing member. That is, the ion adsorption electrode and the counter electrode are connected via the aqueous liquid (A).
 電極群は、水性液体(A)が通過可能な保護部材をさらに含んでもよい。保護部材によって、導電性物質(C)および対極からなる群より選ばれる少なくとも1つが保護される。保護部材は、導電性物質(C)および/または対極の変形や破損を抑制する。また、導電性物質(C)に活性炭繊維クロスのような軟性素材を用いるときは、活性炭繊維クロスに剛性をもたせて平板状にするために、活性炭繊維クロスを保護部材で挟み込んだり、保護部材の表面に活性炭繊維クロスを固定したりしてもよい。電極群は、異なる複数の保護部材を含んでもよい。たとえば、導電性物質(C)を保護する保護部材と、対極を保護する保護部材とは異なってもよい。 The electrode group may further include a protective member through which the aqueous liquid (A) can pass. The protective member protects at least one selected from the group consisting of the conductive substance (C) and the counter electrode. The protective member suppresses deformation and breakage of the conductive substance (C) and / or the counter electrode. When a soft material such as activated carbon fiber cloth is used for the conductive material (C), the activated carbon fiber cloth is sandwiched between protective members in order to give rigidity to the activated carbon fiber cloth and form a flat plate. An activated carbon fiber cloth may be fixed on the surface. The electrode group may include a plurality of different protective members. For example, the protective member that protects the conductive substance (C) may be different from the protective member that protects the counter electrode.
 保護部材の材料に特に限定はないが、調整したいpHの領域で耐性のある材料を用いることが好ましい。また、保護部材のうち、イオン吸着電極または対極が接触する可能性のある部分は絶縁材料で形成されることが好ましい。保護部材の材料には、たとえば、金属材料、無機材料、樹脂材料、またはそれらの複合材料が用いられる。保護部材には、貫通孔が形成されていてもよい。その貫通孔を通って、水性液体(A)が導電性物質(C)に到達できる。典型的には、保護部材は絶縁性の樹脂からなる。 The material of the protective member is not particularly limited, but it is preferable to use a material that is resistant in the pH range to be adjusted. Moreover, it is preferable that the part which an ion adsorption electrode or a counter electrode may contact among protective members is formed with an insulating material. As the material of the protective member, for example, a metal material, an inorganic material, a resin material, or a composite material thereof is used. A through hole may be formed in the protective member. Through the through-hole, the aqueous liquid (A) can reach the conductive substance (C). Typically, the protective member is made of an insulating resin.
 保護部材は、電極で発生したガスが電極の表面から離脱しやすいように形成されていてもよい。一例では、保護部材に貫通孔が形成されており、その貫通孔の側面のうち上方の側面(および任意的に下方の側面)が、電極側から外側に向かって上方に傾いていてもよい。また、保護部材は、電極で発生したガスが電極群の外部に排出されやすいように形成されていてもよい。一例では、保護部材に貫通孔が形成されており、その貫通孔の側面のうち上方の側面(および任意的に下方の側面)が、電極群の内側から外側に向かって上方に傾いていてもよい。この構成によれば、電極の表面で発生したガスが電極群の外部に排出されやすくなる。このガスの流れによって、電極群の内部から電極群の外部に向かう水流が生じる。その結果、対極で発生した水素イオンや水酸化物イオンがイオン吸着電極に吸着される確率を小さくできる。保護部材に形成される貫通孔は、垂直方向に長くてもよく、たとえば、垂直方向に長い楕円形であってもよい。 The protective member may be formed so that the gas generated at the electrode is easily detached from the surface of the electrode. In one example, a through hole is formed in the protective member, and an upper side surface (and optionally a lower side surface) of the side surfaces of the through hole may be inclined upward from the electrode side toward the outside. Further, the protective member may be formed so that gas generated at the electrode is easily discharged to the outside of the electrode group. In one example, a through hole is formed in the protective member, and an upper side surface (and optionally a lower side surface) of the side surfaces of the through hole is inclined upward from the inner side to the outer side of the electrode group. Good. According to this configuration, the gas generated on the surface of the electrode is easily discharged to the outside of the electrode group. This gas flow generates a water flow from the inside of the electrode group to the outside of the electrode group. As a result, the probability that hydrogen ions and hydroxide ions generated at the counter electrode are adsorbed to the ion adsorption electrode can be reduced. The through hole formed in the protective member may be long in the vertical direction, and may be, for example, an ellipse long in the vertical direction.
 本発明の電極群は、イオン吸着電極および対極からなる群より選ばれる少なくとも1つの電極で発生したガスを誘導するための部材(ガス誘導部材)を含んでもよい。ガス誘導部材の一例は、電極で発生したガスが電極から離脱することを促進するための形状を有する。ガス誘導部材の他の一例は、電極で発生したガスが電極群の外部に排出されることを促進するための形状を有する。ガス誘導部材の例には貫通孔が形成された板状の部材が含まれ、その貫通孔の形状の例には、固定板の貫通孔および保護部材の貫通孔について説明した特定の形状が含まれる。したがって、固定板または保護部材は、ガス誘導部材を兼ねることが可能である。また、固定板は、保護部材を兼ねることが可能であり、保護部材およびガス誘導部材の両方を兼ねることも可能である。しかし、電極群は、固定板に加えて、保護部材および/またはガス誘導部材をさらに備えてもよい。 The electrode group of the present invention may include a member (gas induction member) for inducing gas generated at at least one electrode selected from the group consisting of an ion adsorption electrode and a counter electrode. An example of the gas guiding member has a shape for promoting the separation of the gas generated at the electrode from the electrode. Another example of the gas guiding member has a shape for promoting the gas generated at the electrodes to be discharged to the outside of the electrode group. Examples of the gas guide member include a plate-like member having a through hole formed therein, and examples of the shape of the through hole include the specific shapes described for the through hole of the fixing plate and the through hole of the protective member. It is. Therefore, the fixing plate or the protection member can also serve as the gas induction member. The fixing plate can also serve as a protective member, and can also serve as both the protective member and the gas guiding member. However, the electrode group may further include a protective member and / or a gas guiding member in addition to the fixing plate.
 電圧印加手段は、イオン吸着電極と対極との間に必要な電圧を印加できる装置であればよい。たとえば、電圧印加手段は、コンセントからの交流電圧を直流電圧に変換するAC/DCコンバータであってもよい。また、電圧印加手段は、乾電池や充電池や燃料電池であってもよい。また、電圧印加手段は、発電装置であってもよく、たとえば、太陽電池や、電磁誘導を利用した発電装置であってもよい。 The voltage applying means may be any device that can apply a necessary voltage between the ion adsorption electrode and the counter electrode. For example, the voltage applying means may be an AC / DC converter that converts an AC voltage from an outlet into a DC voltage. The voltage applying means may be a dry battery, a rechargeable battery, or a fuel cell. Further, the voltage application means may be a power generation device, for example, a solar cell or a power generation device using electromagnetic induction.
 本発明の装置は、水性液体(A)のpHをモニタするためのpHセンサを備えてもよいし、電圧印加時間を測定するためのタイマを備えてもよい。また、本発明の装置は、電圧印加方向を切り替えるためのスイッチを備えてもよい。また、本発明の装置は、対極の表面で生成した水素イオンや水酸化物イオンを電極の近傍から離すための撹拌器を備えてもよい。 The apparatus of the present invention may include a pH sensor for monitoring the pH of the aqueous liquid (A) or a timer for measuring a voltage application time. The apparatus of the present invention may include a switch for switching the voltage application direction. Moreover, the apparatus of this invention may be equipped with the stirrer for separating the hydrogen ion and hydroxide ion which were produced | generated on the surface of the counter electrode from the vicinity of an electrode.
 電圧印加手段は、手動で制御することも可能であるが、コントローラによって制御してもよい。すなわち、本発明の装置は、所定の工程を実行するためのコントローラを備えてもよい。また、本発明の装置は、目標とするpH値や電圧印加時間をコントローラに入力するための入力装置や、処理の状態を表示するための表示装置を備えてもよい。 The voltage application means can be controlled manually, but may be controlled by a controller. That is, the apparatus of the present invention may include a controller for executing a predetermined process. The apparatus of the present invention may also include an input device for inputting a target pH value and voltage application time to the controller, and a display device for displaying the processing state.
 コントローラは、演算処理装置(内部メモリを含んでもよい)を備え、必要に応じてさらに外部メモリやハードディスクドライブなどの記憶装置を含む。記憶装置(たとえば、内部メモリ、外部メモリ、またはハードディスクドライブ)には、各工程を実行するためのプログラムが記録される。コントローラは、各種機器(たとえば電源)および計測器(たとえばpHセンサやタイマ)に接続される。コントローラは、計測器からの出力に基づいて各種機器を制御することによって各工程を実行してもよい。 The controller includes an arithmetic processing unit (may include an internal memory), and further includes a storage device such as an external memory or a hard disk drive as necessary. In a storage device (for example, an internal memory, an external memory, or a hard disk drive), a program for executing each process is recorded. The controller is connected to various devices (for example, a power source) and measuring instruments (for example, a pH sensor and a timer). The controller may execute each step by controlling various devices based on the output from the measuring instrument.
 本発明の装置では、水性液体(A)の中に電極群を投入して電極群に電圧を印加するだけで、水性液体(A)のpHを調整することが可能である。そのため、水性液体(A)を特別な槽に移すことなくpH調整が可能である。たとえば、ペットボトルの中の水のpHを調整する場合には、ペットボトルの中に電極群を投入し、その電極群に電圧を印加すればよい。また、魚を飼育する水槽の中の水のpHを調整する場合には、水槽の中に電極群を投入し、その電極群に電圧を印加すればよい。そのため、本発明の装置は、pH調整のための特別な槽を必要としない。 In the apparatus of the present invention, it is possible to adjust the pH of the aqueous liquid (A) simply by putting the electrode group into the aqueous liquid (A) and applying a voltage to the electrode group. Therefore, the pH can be adjusted without transferring the aqueous liquid (A) to a special tank. For example, when adjusting the pH of water in a PET bottle, an electrode group may be inserted into the PET bottle and a voltage may be applied to the electrode group. Moreover, when adjusting the pH of the water in the water tank which breeds a fish, an electrode group may be thrown into the water tank and a voltage may be applied to the electrode group. Therefore, the apparatus of the present invention does not require a special tank for pH adjustment.
 電極群は、用途に応じた部材を含んでもよい。また、電極群は、用途に応じた形状とされることが好ましい。たとえば、ペットボトルの中の水のpHを調整する場合には、電極群は、ペットボトルの口から挿入可能なように細長い形状とされる。また、その場合には、電極群は、ペットボトルの口に電極群を固定するための部材(たとえば蓋やキャップ)を含んでもよい。このとき、対極で発生したガスをペットボトル内から逃がすため、ペットボトルの口を密閉しないようにする方が好ましい。例えば、蓋やキャップにペットボトルの内部と外部とを連通させる孔を設けてもよい。また、電極群は、水性液体(A)の中で安定するように、重りを含んでもよい。 The electrode group may include a member according to the application. Moreover, it is preferable that an electrode group is made into the shape according to a use. For example, when adjusting the pH of water in a plastic bottle, the electrode group has an elongated shape so that it can be inserted from the mouth of the plastic bottle. In that case, the electrode group may include a member (for example, a lid or a cap) for fixing the electrode group to the mouth of the PET bottle. At this time, in order to release the gas generated at the counter electrode from the inside of the plastic bottle, it is preferable not to seal the mouth of the plastic bottle. For example, a hole that allows the inside and outside of the PET bottle to communicate with each other may be provided in the lid or cap. Further, the electrode group may include a weight so as to be stable in the aqueous liquid (A).
 以下では、本発明のpH調整装置の実施形態について図面を参照しながら説明する。以下の図面では、同様の部分について同一の符号を付して重複する説明を省略する場合がある。以下の実施形態では、1つのイオン吸着電極と1つまたは2つの対極とを含む1つの電極群を備える装置を示しているが、本発明はこれに限定されない。たとえば、本発明の装置は、イオン吸着電極および対極の少なくとも一方を複数個含んでもよい。また、本発明の装置は、複数の電極群を含んでもよい。 Hereinafter, embodiments of the pH adjusting device of the present invention will be described with reference to the drawings. In the following drawings, the same portions may be denoted by the same reference numerals and redundant description may be omitted. In the following embodiments, an apparatus including one electrode group including one ion adsorption electrode and one or two counter electrodes is shown, but the present invention is not limited to this. For example, the apparatus of the present invention may include a plurality of at least one of an ion adsorption electrode and a counter electrode. The device of the present invention may include a plurality of electrode groups.
 (実施形態1)
 実施形態1のpH調整装置10の構成を図1に模式的に示す。装置10は、直流電源11、pHセンサ12、コントローラ13、および電極群20を含む。pHセンサ12は電極群20に固定されていてもよい。なお、pHセンサ12およびコントローラ13は省略することが可能である。
(Embodiment 1)
FIG. 1 schematically shows the configuration of the pH adjusting device 10 of the first embodiment. The apparatus 10 includes a DC power supply 11, a pH sensor 12, a controller 13, and an electrode group 20. The pH sensor 12 may be fixed to the electrode group 20. The pH sensor 12 and the controller 13 can be omitted.
 電極群20は、イオン吸着電極21、対極22、保護部材23、固定板(固定部材)24、固定部材25および26を含む。直流電源11は、イオン吸着電極21および対極22に接続されている。イオン吸着電極21、保護部材23および固定板24は、固定板24/保護部材23/イオン吸着電極21/保護部材23/固定板24という順序で重ねられている。また、対極22および固定板24は、固定板24/対極22/固定板24という順序で重ねられている。イオン吸着電極21および対極22は、それぞれ、2枚の固定板24で挟まれている。固定板24の上方は固定部材25で固定され、固定板24の下方は固定部材26で固定されている。固定部材(固定板24、固定部材25、および固定部材26)によって、イオン吸着電極21および対極22が固定されている。 The electrode group 20 includes an ion adsorption electrode 21, a counter electrode 22, a protection member 23, a fixing plate (fixing member) 24, and fixing members 25 and 26. The DC power supply 11 is connected to the ion adsorption electrode 21 and the counter electrode 22. The ion adsorption electrode 21, the protection member 23, and the fixing plate 24 are stacked in the order of fixing plate 24 / protection member 23 / ion adsorption electrode 21 / protection member 23 / fixation plate 24. The counter electrode 22 and the fixed plate 24 are stacked in the order of fixed plate 24 / counter electrode 22 / fixed plate 24. The ion adsorption electrode 21 and the counter electrode 22 are each sandwiched between two fixed plates 24. The upper part of the fixing plate 24 is fixed by a fixing member 25, and the lower part of the fixing plate 24 is fixed by a fixing member 26. The ion adsorption electrode 21 and the counter electrode 22 are fixed by the fixing members (the fixing plate 24, the fixing member 25, and the fixing member 26).
 イオン吸着電極21、保護部材23、固定板24、固定部材25および26を、電極群20の外側から見た正面図を図2Aに示す。また、図2Aの線IIB-IIBにおける断面図を図2Bに示す。通常、各工程を実施する際には、電極群20は、線IIB-IIBの方向(図2Aの縦方向)が鉛直方向となるように配置される。 2A is a front view of the ion adsorption electrode 21, the protection member 23, the fixing plate 24, and the fixing members 25 and 26 as viewed from the outside of the electrode group 20. FIG. A cross-sectional view taken along line IIB-IIB in FIG. 2A is shown in FIG. 2B. Normally, when performing each step, the electrode group 20 is arranged so that the direction of the line IIB-IIB (the vertical direction in FIG. 2A) is the vertical direction.
 保護部材23は、格子状の合成樹脂からなる。すなわち、保護部材23には、液体が通過するための複数の貫通孔が形成されている。固定板24、固定部材25および26は、板状の合成樹脂からなる。固定板24には、複数の貫通孔24hが形成されている。イオン吸着電極21の構成を図3に模式的に示す。イオン吸着電極21は、配線21aと活性炭繊維クロス21bとを含む。配線21aおよび活性炭繊維クロス21bは、互いに充分に接触して電気的な接触抵抗が小さくなるように配設されている。配線21aは、複数の活性炭繊維クロス21bによって挟まれていてもよい。また、配線21aは、1枚の活性炭繊維クロス21bの最表面に、または、重なった複数の活性炭繊維クロス21bの最表面に配設されてもよい。 The protective member 23 is made of a lattice-shaped synthetic resin. That is, the protective member 23 is formed with a plurality of through holes through which liquid passes. The fixing plate 24 and the fixing members 25 and 26 are made of a plate-shaped synthetic resin. The fixing plate 24 has a plurality of through holes 24h. The configuration of the ion adsorption electrode 21 is schematically shown in FIG. The ion adsorption electrode 21 includes a wiring 21a and an activated carbon fiber cloth 21b. The wiring 21a and the activated carbon fiber cloth 21b are arranged so that they are in sufficient contact with each other and the electrical contact resistance is reduced. The wiring 21a may be sandwiched between a plurality of activated carbon fiber cloths 21b. Moreover, the wiring 21a may be disposed on the outermost surface of one activated carbon fiber cloth 21b or on the outermost surface of a plurality of overlapping activated carbon fiber cloths 21b.
 対極22、固定板24、固定部材25および26を電極群20の外側から見た正面図を図4に示す。対極22は、格子状の形状を有しており、2枚の固定板24で挟まれている。固定板24には、複数の貫通孔24hが形成されている。 FIG. 4 shows a front view of the counter electrode 22, the fixing plate 24, and the fixing members 25 and 26 as viewed from the outside of the electrode group 20. The counter electrode 22 has a lattice shape and is sandwiched between two fixing plates 24. The fixing plate 24 has a plurality of through holes 24h.
 貫通孔24hの断面のうち固定板24の表面に平行な断面は、垂直方向に長い楕円形である。固定板24の貫通孔24hの側面は、電極で発生したガスが電極群20の外側に排出されるように傾斜している。具体的には、貫通孔24hの側面のうち上側および下側となる側面は、電極群20の内側から外側に向かって水平よりも上向きに傾斜している。このように貫通孔24hの側面に傾斜を付けることによって、図5の矢印に示すように、電極の表面で発生したガスが電極群20の外側に排出されやすくなる。このように、固定板24は、ガス誘導部材の機能を有する。また、固定板24は、保護部材としての機能も有する。なお、イオン吸着電極21の表面では主にイオンの吸着が生じるが、わずかにガスが発生する場合がある。 Of the cross-sections of the through holes 24h, the cross-section parallel to the surface of the fixed plate 24 is an ellipse that is long in the vertical direction. The side surface of the through hole 24 h of the fixing plate 24 is inclined so that the gas generated at the electrode is discharged to the outside of the electrode group 20. Specifically, of the side surfaces of the through-hole 24h, the upper and lower side surfaces are inclined upward from the horizontal toward the outside from the inside of the electrode group 20. By inclining the side surface of the through hole 24h in this way, the gas generated on the surface of the electrode is easily discharged to the outside of the electrode group 20, as shown by the arrows in FIG. Thus, the fixing plate 24 has a function of a gas guiding member. The fixing plate 24 also has a function as a protective member. In addition, although adsorption of ions mainly occurs on the surface of the ion adsorption electrode 21, a slight gas may be generated.
 電極群20の下側は、液体が流れやすいような構成となっていてもよい。たとえば、固定板24の下側の貫通孔24hには、電極が存在しないようにしてもよい。電極群20の下側を液体が流れやすくすることによって、電極群20内を液体が循環しやすくなり、イオンの吸着および放出の速度を高めることができる。 The lower side of the electrode group 20 may be configured so that liquid can easily flow. For example, no electrode may be present in the lower through-hole 24 h on the fixed plate 24. By making the liquid easily flow under the electrode group 20, the liquid can easily circulate in the electrode group 20, and the rate of adsorption and release of ions can be increased.
 なお、装置10では、保護部材23を省略してもよい。また、イオン吸着電極21および対極22を電極群20において固定できる限り、固定部材(固定板24、固定部材25および固定部材26)のうちの1つまたは2つを省略してもよい。また、保護部材23および固定部材(固定板24、固定部材25および固定部材26)とは異なる形状の保護部材および固定板を用いてもよい。 In the device 10, the protection member 23 may be omitted. Moreover, as long as the ion adsorption electrode 21 and the counter electrode 22 can be fixed in the electrode group 20, one or two of the fixing members (the fixing plate 24, the fixing member 25, and the fixing member 26) may be omitted. Moreover, you may use the protection member and fixing plate of a shape different from the protection member 23 and fixing member (the fixing plate 24, the fixing member 25, and the fixing member 26).
 装置10を用いて水溶液のpH調整を行う第1および第2の例について以下に説明する。なお、以下の図面では、装置10を模式的に示し、構成要素の一部の図示を省略する場合がある。また、以下の図面では、液体のハッチングを省略する。また、以下の図面では、質量保存則および電荷保存則を考慮しない場合がある。 First and second examples in which the pH of the aqueous solution is adjusted using the apparatus 10 will be described below. In the following drawings, the device 10 is schematically shown, and some of the components may be omitted. In the following drawings, liquid hatching is omitted. Further, in the following drawings, the mass conservation law and the charge conservation law may not be considered.
 (第1の例)
 図6Aおよび図6Bを参照しながら第1の例について説明する。第1の例では、イオンを吸着していない活性炭繊維クロス21b(導電性物質(C))が用いられる。まず、対象となる水溶液60に電極群20を投入する。水溶液60には、陽イオン(L+)および陰イオン(L-)が溶解している。
(First example)
A first example will be described with reference to FIGS. 6A and 6B. In the first example, activated carbon fiber cloth 21b (conductive substance (C)) that does not adsorb ions is used. First, the electrode group 20 is thrown into the target aqueous solution 60. In the aqueous solution 60, cations (L + ) and anions (L ) are dissolved.
 次に、イオン吸着電極21と対極22との間に直流電圧を印加する。水溶液60のpHを上昇させる場合には、イオン吸着電極21がアノードとなるように直流電圧を印加する。この電圧印加によって、図6Aに示すように、イオン吸着電極21(活性炭繊維クロス21b)に陰イオン(L-)が吸着される。また、対極22の表面では水の電気分解が生じて水酸化物イオンと水素ガスとが発生する。その結果、水溶液60のpHが上昇する。一方、水溶液60のpHを低下させる場合には、イオン吸着電極21がカソードとなるように直流電圧を印加する。この電圧印加によって、図6Bに示すように、イオン吸着電極21(活性炭繊維クロス21b)に陽イオン(L+)が吸着される。また、対極22の表面では水の電気分解が生じて水素イオンと酸素ガスとが発生する。その結果、水溶液60のpHが低下する。 Next, a DC voltage is applied between the ion adsorption electrode 21 and the counter electrode 22. When raising the pH of the aqueous solution 60, a DC voltage is applied so that the ion adsorption electrode 21 becomes an anode. By this voltage application, as shown in FIG. 6A, the anion (L ) is adsorbed to the ion adsorption electrode 21 (activated carbon fiber cloth 21b). In addition, water is electrolyzed on the surface of the counter electrode 22 to generate hydroxide ions and hydrogen gas. As a result, the pH of the aqueous solution 60 increases. On the other hand, when lowering the pH of the aqueous solution 60, a DC voltage is applied so that the ion adsorption electrode 21 becomes a cathode. By applying this voltage, as shown in FIG. 6B, cations (L + ) are adsorbed to the ion adsorption electrode 21 (activated carbon fiber cloth 21b). Further, water is electrolyzed on the surface of the counter electrode 22 to generate hydrogen ions and oxygen gas. As a result, the pH of the aqueous solution 60 decreases.
 (第2の例)
 図7Aおよび図7Bを参照しながら第2の例について説明する。第2の例では、イオン(L)を吸着させた活性炭繊維クロス21b(導電性物質(C))が用いられる。
(Second example)
A second example will be described with reference to FIGS. 7A and 7B. In the second example, activated carbon fiber cloth 21b (conductive substance (C)) on which ions (L) are adsorbed is used.
 対象となる液体70のpHを上昇させる場合には、工程(i)の前に工程(p)を行うことによって、活性炭繊維クロス21bに陽イオン(L+)を吸着させる。具体的には、陽イオン(L+)を含む水溶液71中に電極群20を浸漬する。次に、イオン吸着電極21がカソードとなるように直流電圧を印加する。この電圧印加によって、図7Aに示すように、活性炭繊維クロス21bに陽イオン(L+)が吸着される。 When the pH of the target liquid 70 is increased, the cation (L + ) is adsorbed on the activated carbon fiber cloth 21b by performing the step (p) before the step (i). Specifically, the electrode group 20 is immersed in an aqueous solution 71 containing a cation (L + ). Next, a DC voltage is applied so that the ion adsorption electrode 21 becomes a cathode. By applying this voltage, as shown in FIG. 7A, cations (L + ) are adsorbed on the activated carbon fiber cloth 21b.
 次に、電極群20を水溶液71から取り出し、液体70中に浸漬する。そして、工程(p)の電圧印加方向とは逆方向に電圧を印加する。具体的には、イオン吸着電極21がアノードとなるように直流電圧を印加する。この電圧印加によって、図7Bに示すように、活性炭繊維クロス21bに吸着されていた陽イオン(L+)が液体70中に放出される。また、対極22の表面では水の電気分解が生じて水酸化物イオンと水素ガスとが発生する。その結果、液体70のpHが上昇する。なお、この電圧印加の際に、水溶液71中の陰イオン(L-)が活性炭繊維クロス21bに吸着されうる。 Next, the electrode group 20 is taken out from the aqueous solution 71 and immersed in the liquid 70. Then, a voltage is applied in the direction opposite to the voltage application direction in the step (p). Specifically, a DC voltage is applied so that the ion adsorption electrode 21 becomes an anode. By applying this voltage, the cation (L + ) adsorbed on the activated carbon fiber cloth 21 b is released into the liquid 70 as shown in FIG. 7B. In addition, water is electrolyzed on the surface of the counter electrode 22 to generate hydroxide ions and hydrogen gas. As a result, the pH of the liquid 70 increases. In addition, at the time of this voltage application, the anion (L < - >) in the aqueous solution 71 can be adsorbed by the activated carbon fiber cloth 21b.
 液体70のpHを低下させる場合には、工程(p)および工程(i)における電圧印加方向を、図7Aおよび図7Bにおける電圧印加方向の逆にすればよい。 When lowering the pH of the liquid 70, the voltage application direction in the step (p) and the step (i) may be reversed to the voltage application direction in FIGS. 7A and 7B.
 第1および第2の例において、pHセンサ12は、電極とともに液体に投入される。コントローラ13は、pHセンサ12によって液体のpHをモニタし、液体のpHが希望する値に到達した時点で電圧印加を停止する。なお、コントローラ13がない場合には、使用者がpHセンサ12の出力を見ながら電圧印加を停止すればよい。この場合、pHセンサの代わりにpH試験紙を用いてもよい。また、特定の使用条件(液体の量やpH値)において、目的のpH値にするのに必要な電圧印加条件を予め求めておき、その電圧印加条件に従って使用者またはコントローラ13が電圧印加を行ってもよい。 In the first and second examples, the pH sensor 12 is introduced into the liquid together with the electrodes. The controller 13 monitors the pH of the liquid with the pH sensor 12, and stops the voltage application when the pH of the liquid reaches a desired value. In addition, when there is no controller 13, what is necessary is just to stop a voltage application, a user watching the output of the pH sensor 12. FIG. In this case, a pH test paper may be used instead of the pH sensor. In addition, voltage application conditions necessary to obtain a target pH value under a specific use condition (amount of liquid or pH value) are obtained in advance, and the user or the controller 13 applies voltage according to the voltage application condition. May be.
 電極群の他の一例を図8Aに示す。図8Aの電極群80は、上述した電極群20の代わりに用いることができる。図8Aの線VIIIB-VIIIBにおける断面図を図8Bに示す。また、電極群80を固定板24a側から見た図を図8Cに示す。また、電極群80を対極22側から見た図を図8Dに示す。 Another example of the electrode group is shown in FIG. 8A. The electrode group 80 in FIG. 8A can be used in place of the electrode group 20 described above. A cross-sectional view taken along line VIIIB-VIIIB in FIG. 8A is shown in FIG. 8B. Moreover, the figure which looked at the electrode group 80 from the stationary plate 24a side is shown to FIG. 8C. Moreover, the figure which looked at the electrode group 80 from the counter electrode 22 side is shown to FIG. 8D.
 図8A~8Dを参照して、電極群80は、イオン吸着電極21、対極22、保護部材23、固定板(固定部材)24、固定部材25~27、を含む。固定板24は、固定板24aと固定板24bとを含む。固定板24aには貫通孔24hが形成されている。固定板24aおよび固定板24bは、固定部材25~27によって固定されている。なお、電極群80では、保護部材23を省略してもよい。 8A to 8D, the electrode group 80 includes an ion adsorption electrode 21, a counter electrode 22, a protection member 23, a fixing plate (fixing member) 24, and fixing members 25 to 27. The fixed plate 24 includes a fixed plate 24a and a fixed plate 24b. A through hole 24h is formed in the fixed plate 24a. The fixed plate 24a and the fixed plate 24b are fixed by fixing members 25 to 27. In the electrode group 80, the protective member 23 may be omitted.
 イオン吸着電極21は、配線21aと活性炭繊維クロス21bとを含む。イオン吸着電極21は、2枚の保護部材23で挟まれている。イオン吸着電極21は、糸(図示せず)によって保護部材23に固定されている。また、イオン吸着電極21は、保護部材23を介して固定板24aに固定されている。配線21aには、リード21wが接続されている。 The ion adsorption electrode 21 includes a wiring 21a and an activated carbon fiber cloth 21b. The ion adsorption electrode 21 is sandwiched between two protective members 23. The ion adsorption electrode 21 is fixed to the protection member 23 with a thread (not shown). Further, the ion adsorption electrode 21 is fixed to the fixed plate 24 a via the protective member 23. A lead 21w is connected to the wiring 21a.
 対極22は、線状(棒状)の形状を有する2つの電極を含む。対極22には、リード22wが接続されている。固定板24bは、線状(棒状)の形状を有する2つの絶縁性樹脂部材である。対極22は、固定板24bの外側に固定されている。図8Bに示すように、イオン吸着電極21と対極22とを結ぶ最短経路は固定板24bによって遮られている。より具体的には、対極22の任意の表面とイオン吸着電極21との最短経路が固定板24bによって遮られている。そのため、イオン吸着電極21と対極22との間に電圧を印加した場合、固定板24bを回り込むように電場が形成される。 The counter electrode 22 includes two electrodes having a linear (rod-like) shape. A lead 22 w is connected to the counter electrode 22. The fixing plate 24b is two insulating resin members having a linear (rod-like) shape. The counter electrode 22 is fixed to the outside of the fixed plate 24b. As shown in FIG. 8B, the shortest path connecting the ion adsorption electrode 21 and the counter electrode 22 is blocked by the fixing plate 24b. More specifically, the shortest path between an arbitrary surface of the counter electrode 22 and the ion adsorption electrode 21 is blocked by the fixing plate 24b. Therefore, when a voltage is applied between the ion adsorption electrode 21 and the counter electrode 22, an electric field is formed so as to go around the fixed plate 24b.
 通常、電極群80は、対極22の長手方向が鉛直方向となるように配置された状態で使用される。対極22の表面で水が電気分解された場合、対極22の表面でガスが発生するとともに、水素イオンまたは水酸化物イオンが発生する。対極22は固定板24bの外側に配置されているため、対極22の表面で発生したガスは、電極群80の内部に入りにくくなる。そのため、電極群80では、対極22の表面で発生したガスが、イオン吸着電極21と接触したり電極群80の内側に滞留したりすることを抑制できる。その結果、対極22の表面で発生した水素イオンおよび水酸化物イオンが、イオン吸着電極21の活性炭繊維クロス21b(導電性物質)に近づくことを抑制できる。 Usually, the electrode group 80 is used in a state where the longitudinal direction of the counter electrode 22 is arranged in the vertical direction. When water is electrolyzed on the surface of the counter electrode 22, gas is generated on the surface of the counter electrode 22, and hydrogen ions or hydroxide ions are generated. Since the counter electrode 22 is disposed outside the fixed plate 24 b, the gas generated on the surface of the counter electrode 22 is difficult to enter the electrode group 80. Therefore, in the electrode group 80, the gas generated on the surface of the counter electrode 22 can be prevented from coming into contact with the ion adsorption electrode 21 or staying inside the electrode group 80. As a result, it is possible to suppress the hydrogen ions and hydroxide ions generated on the surface of the counter electrode 22 from approaching the activated carbon fiber cloth 21 b (conductive substance) of the ion adsorption electrode 21.
 以下では、実施例によって本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail by way of examples.
 (実施例1)
 実施例1では、図1に示した電極群20と同様の形態の電極群を用いて水道水のpHを変化させる実験を行った。
Example 1
In Example 1, an experiment was performed in which the pH of tap water was changed using an electrode group having the same form as the electrode group 20 shown in FIG.
 まず、水道水2リットルに、本発明の装置の電極群を投入した。このとき、イオンを吸着していない状態のイオン吸着電極を用いた。そして、イオン吸着電極がアノードとなるように、イオン吸着電極と対極との間に12ボルトの直流電圧を30分間印加した(最初の電圧印加)。その結果、水道水のpHは、電圧印加前の7.81から、15分間の電圧印加によって9.03に変化し、30分間の電圧印加によって9.40に変化した。なお、電圧印加開始から15分間の電圧印加時において、電極間に流れた電流は、60mAから70mAに変化した。また、電圧印加開始後15分~30分の電圧印加時において、電極間に流れた電流は、60mAから70mAに変化した。この最初の電圧印加によって、イオン吸着電極には陰イオンが吸着されたと考えられる。 First, the electrode group of the device of the present invention was put into 2 liters of tap water. At this time, an ion adsorption electrode in a state where ions were not adsorbed was used. Then, a DC voltage of 12 volts was applied for 30 minutes between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode (first voltage application). As a result, the pH of tap water changed from 7.81 before voltage application to 9.03 by voltage application for 15 minutes, and to 9.40 by voltage application for 30 minutes. Note that the current flowing between the electrodes changed from 60 mA to 70 mA when the voltage was applied for 15 minutes from the start of voltage application. Further, the current flowing between the electrodes changed from 60 mA to 70 mA when the voltage was applied for 15 to 30 minutes after the start of voltage application. It is considered that anions were adsorbed on the ion adsorption electrode by this initial voltage application.
 次に、処理した水道水から電極群を取り出し、取り出した電極群を新しい水道水(pH7.81)2リットルに投入した。そして、イオン吸着電極がカソードとなるように、イオン吸着電極と対極との間に12ボルトの直流電圧を45分間印加した(2番目の電圧印加)。その結果、水道水のpHは、電圧印加前の7.81から、15分間の電圧印加によって6.70に変化し、30分間の電圧印加によって6.38に変化し、45分間の電圧印加によって6.12に変化した。なお、電圧印加開始から15分間の電圧印加時において、電極間に流れた電流は、60mAから80mAに変化した。また、電圧印加開始後15分~30分の電圧印加時において、電極間に流れた電流は、50mAから80mAに変化した。また、電圧印加開始後30分~45分の電圧印加時において、電極間に流れた電流は、50mAから80mAに変化した。この2番目の電圧印加では、最初の電圧印加でイオン吸着電極に吸着された陰イオンが放出され、陽イオンが吸着されたと考えられる。 Next, the electrode group was taken out from the treated tap water, and the taken out electrode group was put into 2 liters of new tap water (pH 7.81). Then, a DC voltage of 12 volts was applied for 45 minutes between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode (second voltage application). As a result, the pH of tap water changes from 7.81 before voltage application to 6.70 by voltage application for 15 minutes, to 6.38 by voltage application for 30 minutes, and by voltage application for 45 minutes. Changed to 6.12. Note that the current flowing between the electrodes changed from 60 mA to 80 mA when the voltage was applied for 15 minutes from the start of voltage application. Further, the current flowing between the electrodes changed from 50 mA to 80 mA when the voltage was applied for 15 to 30 minutes after the start of voltage application. Further, the current flowing between the electrodes changed from 50 mA to 80 mA when the voltage was applied for 30 to 45 minutes after the start of voltage application. In this second voltage application, it is considered that the anion adsorbed on the ion adsorption electrode in the first voltage application was released and the cation was adsorbed.
 次に、処理した水道水から電極群を取り出し、取り出した電極群を新しい水道水(pH7.81)2リットルに投入した。上述したように、この電極群のイオン吸着電極には、陽イオンが吸着されていたと考えられる。そして、イオン吸着電極がアノードとなるように、イオン吸着電極と対極との間に直流電圧を15分間印加した(3番目の電圧印加)。このとき、電極間に70mAの定電流が流れるように電圧を印加した。その結果、水道水のpHは、電圧印加前の7.81から、15分間の電圧印加によって9.65に変化した。なお、電圧印加時において、電極間の電圧は12.6ボルトから10.6ボルトに変化した。 Next, the electrode group was taken out from the treated tap water, and the taken out electrode group was put into 2 liters of new tap water (pH 7.81). As described above, it is considered that cations were adsorbed on the ion adsorption electrode of this electrode group. Then, a DC voltage was applied for 15 minutes between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode (third voltage application). At this time, a voltage was applied so that a constant current of 70 mA would flow between the electrodes. As a result, the pH of tap water changed from 7.81 before voltage application to 9.65 by voltage application for 15 minutes. When the voltage was applied, the voltage between the electrodes changed from 12.6 volts to 10.6 volts.
 最初の電圧印加では、15分間の電圧印加によって水道水のpHが7.81から9.03に変化した。また、3番目の電圧印加では、15分間の電圧印加によって水道水のpHが7.81から9.65に変化した。これらの結果は、イオン吸着電極に吸着されたイオンを放出しながらpHを変化させる方が、pHの変化が大きいことを示した。 In the first voltage application, the pH of tap water changed from 7.81 to 9.03 by applying the voltage for 15 minutes. In the third voltage application, the pH of tap water changed from 7.81 to 9.65 by the voltage application for 15 minutes. These results indicated that the change in pH was larger when the pH was changed while releasing ions adsorbed on the ion adsorption electrode.
 (実施例2)
 実施例2では、イオン吸着電極と対極との間に固定部材が存在しない電極群と、図8Aに示した電極群80と同様の形態を有する電極群とを用いて、pHを調整する実験を行った。以下では、イオン吸着電極と対極との間に固定部材が存在しない電極群を「第1の電極群」といい、図8Aに示した電極群80と同様の形態を有する電極群を「第2の電極群」という場合がある。
(Example 2)
In Example 2, an experiment for adjusting pH using an electrode group having no fixing member between the ion-adsorbing electrode and the counter electrode and an electrode group having the same form as the electrode group 80 shown in FIG. 8A is performed. went. Hereinafter, an electrode group having no fixing member between the ion adsorption electrode and the counter electrode is referred to as a “first electrode group”, and an electrode group having the same form as the electrode group 80 illustrated in FIG. 8A is referred to as a “second electrode group”. May be referred to as an “electrode group”.
 第1の電極群は、複数の貫通孔が形成された筒状の絶縁性樹脂部材の内部に、イオン吸着電極と対極とを配置することによって形成した。すなわち、イオン吸着電極と対極とは固定部材の内側に配置された。イオン吸着電極は、170mm×13mmの活性炭繊維クロスを3枚含んでいた。すなわち、活性炭繊維クロスの計算上の表面積は170×13×2×3=13260mm2であり、イオン吸着電極の投影面積は170×13=2210mm2であった。対極は、白金でコートされたチタンからなる線状の電極(直径1mm、長さ170mm)3本によって構成した。イオン吸着電極と対極との間隔は約5mmであり、それらの間には固定部材は存在しなかった。 The first electrode group was formed by disposing an ion adsorption electrode and a counter electrode inside a cylindrical insulating resin member in which a plurality of through holes were formed. That is, the ion adsorption electrode and the counter electrode are disposed inside the fixing member. The ion adsorption electrode contained three 170 mm × 13 mm activated carbon fiber cloths. That is, the calculated surface area of the activated carbon fiber cloth was 170 × 13 × 2 × 3 = 13260 mm 2 , and the projected area of the ion adsorption electrode was 170 × 13 = 2210 mm 2 . The counter electrode was composed of three linear electrodes (diameter 1 mm, length 170 mm) made of titanium coated with platinum. The distance between the ion adsorption electrode and the counter electrode was about 5 mm, and there was no fixing member between them.
 第2の電極群は、図8Aに示した形態を有する電極群であった。すなわち、対極は固定部材の外側に配置された。第2の電極群のイオン吸着電極は、170mm×10mmの活性炭繊維クロスを4枚含んでいた。すなわち、活性炭繊維クロスの計算上の表面積は170×10×2×4=13600mm2であり、イオン吸着電極の投影面積は170×10=1700mm2であった。対極は、白金でコートされたチタンからなる線状の電極(直径1mm、長さ170mm)2本によって構成した。イオン吸着電極と対極との間隔は約8mmであり、それらを結ぶ最短経路には、図8Aに示すように、絶縁性樹脂製の固定部材が存在した。 The second electrode group was an electrode group having the form shown in FIG. 8A. That is, the counter electrode was disposed outside the fixed member. The ion adsorption electrode of the second electrode group included four 170 mm × 10 mm activated carbon fiber cloths. That is, the calculated surface area of the activated carbon fiber cloth was 170 × 10 × 2 × 4 = 13600 mm 2 , and the projected area of the ion adsorption electrode was 170 × 10 = 1700 mm 2 . The counter electrode was composed of two linear electrodes (diameter 1 mm, length 170 mm) made of titanium coated with platinum. The distance between the ion-adsorbing electrode and the counter electrode was about 8 mm, and a fixing member made of an insulating resin was present in the shortest path connecting them as shown in FIG. 8A.
 0.05重量%KCl水溶液500mlが入れられているペットボトルに第1の電極群を投入し、12ボルトの定電圧を印加してKCl水溶液のpHを変化させる実験を行った。具体的には、まず、実験1において、イオン吸着電極がアノードとなるように、イオン吸着電極と対極との間に電圧を印加した。実験1の終了後、実験1で用いた第1の電極群をそのまま新たな0.05重量%KCl水溶液500mlに浸漬し、実験2を行った。実験2では、イオン吸着電極がカソードとなるように、イオン吸着電極と対極との間に電圧を印加した。実験2の終了後、実験2で用いた第1の電極群をそのまま新たな0.05重量%KCl水溶液500mlに浸漬し、実験3を行った。実験3では、イオン吸着電極がアノードとなるように、イオン吸着電極と対極との間に電圧を印加した。実験3の終了後、実験3で用いた第1の電極群をそのまま新たな0.05重量%KCl水溶液500mlに浸漬し、実験4を行った。実験4では、イオン吸着電極がカソードとなるように、イオン吸着電極と対極との間に電圧を印加した。 An experiment was conducted in which the first electrode group was placed in a PET bottle containing 500 ml of 0.05 wt% KCl aqueous solution, and the pH of the KCl aqueous solution was changed by applying a constant voltage of 12 volts. Specifically, first, in Experiment 1, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode. After the end of Experiment 1, Experiment 1 was conducted by immersing the first electrode group used in Experiment 1 in 500 ml of a new 0.05 wt% KCl aqueous solution as it was. In Experiment 2, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode. After the end of Experiment 2, Experiment 1 was performed by immersing the first electrode group used in Experiment 2 in 500 ml of a new 0.05 wt% KCl aqueous solution as it was. In Experiment 3, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode. After the end of Experiment 3, Experiment 4 was performed by immersing the first electrode group used in Experiment 3 in 500 ml of a new 0.05 wt% KCl aqueous solution as it was. In Experiment 4, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode.
 実験結果を表1に示す。なお、表1中の平均電流密度は、(平均電流)/(イオン吸着電極の投影面積)の値である。 The experimental results are shown in Table 1. In addition, the average current density in Table 1 is a value of (average current) / (projected area of the ion adsorption electrode).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、0.05重量%KCl水溶液500mlが入れられているペットボトルに第2の電極群を投入し、12ボルトの定電圧を印加してKCl水溶液のpHを変化させる実験を行った。具体的には、まず、実験5において、イオン吸着電極がアノードとなるように、イオン吸着電極と対極との間に電圧を印加した。実験5の終了後、実験5で用いた第2の電極群をそのまま新たな0.05重量%KCl水溶液500mlに浸漬し、実験6を行った。実験6では、イオン吸着電極がカソードとなるように、イオン吸着電極と対極との間に電圧を印加した。実験6の終了後、実験6で用いた第2の電極群をそのまま新たな0.05重量%KCl水溶液500mlに浸漬し、実験7を行った。実験7では、イオン吸着電極がアノードとなるように、イオン吸着電極と対極との間に電圧を印加した。実験7の終了後、実験7で用いた第2の電極群をそのまま新たな0.05重量%KCl水溶液500mlに浸漬し、実験8を行った。実験8では、イオン吸着電極がカソードとなるように、イオン吸着電極と対極との間に電圧を印加した。実験結果を表2に示す。 In addition, an experiment was conducted in which the second electrode group was placed in a PET bottle containing 500 ml of 0.05 wt% KCl aqueous solution, and the pH of the KCl aqueous solution was changed by applying a constant voltage of 12 volts. Specifically, first, in Experiment 5, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode. After the end of Experiment 5, Experiment 2 was performed by immersing the second electrode group used in Experiment 5 in 500 ml of a new 0.05 wt% KCl aqueous solution as it was. In Experiment 6, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode. After the end of Experiment 6, Experiment 7 was performed by immersing the second electrode group used in Experiment 6 in 500 ml of a new 0.05 wt% KCl aqueous solution as it was. In Experiment 7, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became an anode. After the end of Experiment 7, Experiment 8 was performed by immersing the second electrode group used in Experiment 7 in 500 ml of a new 0.05 wt% KCl aqueous solution as it was. In Experiment 8, a voltage was applied between the ion adsorption electrode and the counter electrode so that the ion adsorption electrode became a cathode. The experimental results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2から明らかなように、第2の電極群を用いた方が、第1の電極群を用いた場合と比べて、少ない電気量で同程度にpHを変化させることができた。 As is clear from Tables 1 and 2, it was possible to change the pH to the same extent with a smaller amount of electricity when the second electrode group was used than when the first electrode group was used. .
 濃度が0~0.10重量%のKCl水溶液について、第1の電極群および第2の電極群を用いてpHを変化させた。そして、それぞれについて、電流効率を求めた。なお、電流効率(%)は、以下の式で求めた。
電流効率(%)=(実測されたpH値)×100/(理論的なpH値)
The pH of the aqueous KCl solution having a concentration of 0 to 0.10% by weight was changed using the first electrode group and the second electrode group. And the current efficiency was calculated | required about each. The current efficiency (%) was obtained by the following formula.
Current efficiency (%) = (actually measured pH value) × 100 / (theoretical pH value)
 ここで、「理論的なpH値」とは、電極間を流れた電流(電気量)によって理想的に水が電気分解されて水素イオン(または水酸化物イオン)が生成すると仮定した場合に、生成した水素イオン(または水酸化物イオン)のモル濃度から算出されるpH値を意味する。 Here, “theoretical pH value” means that water is ideally electrolyzed by current (electric quantity) flowing between the electrodes to generate hydrogen ions (or hydroxide ions). It means a pH value calculated from the molar concentration of the generated hydrogen ions (or hydroxide ions).
 第1の電極群を用いた場合の電流効率の平均値を図9に示す。また、第2の電極群を用いた場合の電流効率の平均値を図10に示す。図9および図10から明らかなように、固定部材の外側に対極が固定されている第2の電極群を用いた場合には、電流効率が高かった。 FIG. 9 shows the average current efficiency when the first electrode group is used. Moreover, the average value of the current efficiency at the time of using a 2nd electrode group is shown in FIG. As is clear from FIGS. 9 and 10, the current efficiency was high when the second electrode group in which the counter electrode was fixed outside the fixing member was used.
 本発明は、pH調整装置に利用できる。本発明の装置を用いた場合、pHを調整しようとする液体に電極群を投入して電圧を印加するだけで、当該液体のpHを調整することが可能である。そのため、液体のpHを簡単に調整できる。本発明のpH調整装置は、様々な液体のpH調整に利用できる。たとえば、魚の水槽の中の水や、ペットボトルの中の飲料水のpH調整に利用できる。 The present invention can be used for a pH adjusting device. When the apparatus of the present invention is used, it is possible to adjust the pH of the liquid simply by putting an electrode group into the liquid whose pH is to be adjusted and applying a voltage. Therefore, the pH of the liquid can be easily adjusted. The pH adjusting device of the present invention can be used for pH adjustment of various liquids. For example, it can be used to adjust the pH of water in a fish tank or drinking water in a plastic bottle.

Claims (7)

  1.  水を含む液体のpHを調整する装置であって、
     前記液体に投入可能な電極群と、前記電極群に電圧を印加するための電圧印加手段とを備え、
     前記電極群は、イオンを可逆的に吸着できる導電性物質を含むイオン吸着電極と、対極と、固定部材とを備え、
     (i)前記導電性物質と前記対極とを前記液体に接触させた状態で、前記対極において水の電気分解が生じるように前記イオン吸着電極と前記対極との間に電圧を印加することによって、前記導電性物質に吸着されているイオンの量を変化させるとともに、前記対極で水素イオンまたは水酸化物イオンを発生させ、その結果、前記液体のpHを変化させる工程が行われ、
     前記電極群において前記イオン吸着電極および前記対極のそれぞれが前記固定部材で固定されている、pH調整装置。
    An apparatus for adjusting the pH of a liquid containing water,
    An electrode group that can be put into the liquid, and a voltage applying means for applying a voltage to the electrode group,
    The electrode group includes an ion adsorption electrode including a conductive substance capable of reversibly adsorbing ions, a counter electrode, and a fixing member.
    (I) by applying a voltage between the ion-adsorbing electrode and the counter electrode so that electrolysis of water occurs in the counter electrode while the conductive substance and the counter electrode are in contact with the liquid; A step of changing the amount of ions adsorbed on the conductive substance and generating hydrogen ions or hydroxide ions at the counter electrode, and as a result, changing the pH of the liquid;
    The pH adjusting device in which each of the ion adsorption electrode and the counter electrode is fixed by the fixing member in the electrode group.
  2.  前記対極が前記固定部材の外側に配置されている、請求項1に記載のpH調整装置。 The pH adjusting device according to claim 1, wherein the counter electrode is disposed outside the fixing member.
  3.  前記固定部材は絶縁性部分を含み、
     前記イオン吸着電極と前記対極とを結ぶ最短経路が前記絶縁性部分によって遮られている、請求項2に記載のpH調整装置。
    The fixing member includes an insulating portion;
    The pH adjusting device according to claim 2, wherein the shortest path connecting the ion-adsorbing electrode and the counter electrode is blocked by the insulating portion.
  4.  前記固定部材が、前記導電性物質および前記対極からなる群より選ばれる少なくとも1つが固定される固定板を含み、
     前記固定板に貫通孔が形成されており、
     前記貫通孔の側面のうち上方の側面が、電極群の内側から外側に向かって上方に傾いている、請求項1に記載のpH調整装置。
    The fixing member includes a fixing plate to which at least one selected from the group consisting of the conductive material and the counter electrode is fixed;
    A through hole is formed in the fixing plate,
    The pH adjusting device according to claim 1, wherein an upper side surface of the through holes is inclined upward from the inner side to the outer side of the electrode group.
  5.  前記電極群は、前記液体が通過可能な保護部材をさらに含み、
     前記導電性物質および前記対極からなる群より選ばれる少なくとも1つが前記保護部材によって保護されている、請求項1に記載のpH調整装置。
    The electrode group further includes a protective member through which the liquid can pass,
    The pH adjusting device according to claim 1, wherein at least one selected from the group consisting of the conductive substance and the counter electrode is protected by the protective member.
  6.  前記イオン吸着電極および前記対極からなる群より選ばれる少なくとも1つの電極で発生したガスを誘導するための部材を、前記電極群がさらに含む、請求項1に記載のpH調整装置。 The pH adjusting device according to claim 1, wherein the electrode group further includes a member for guiding gas generated at at least one electrode selected from the group consisting of the ion adsorption electrode and the counter electrode.
  7.  前記導電性物質が、活性炭繊維で形成されたシートである、請求項1に記載のpH調整装置。 The pH adjuster according to claim 1, wherein the conductive substance is a sheet formed of activated carbon fibers.
PCT/JP2010/006912 2009-11-27 2010-11-26 Ph adjustment device WO2011065013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011509806A JPWO2011065013A1 (en) 2009-11-27 2010-11-26 pH adjuster

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-269698 2009-11-27
JP2009269698 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011065013A1 true WO2011065013A1 (en) 2011-06-03

Family

ID=44066118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006912 WO2011065013A1 (en) 2009-11-27 2010-11-26 Ph adjustment device

Country Status (2)

Country Link
JP (1) JPWO2011065013A1 (en)
WO (1) WO2011065013A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190443A (en) * 1997-09-25 1999-04-06 Hoshizaki Electric Co Ltd Electrolytic bath
JPH11267647A (en) * 1998-03-20 1999-10-05 Shikishima Kiki Kk Electrochemical water treating device
WO2007037193A1 (en) * 2005-09-27 2007-04-05 Tanah Process Ltd. Ion concentration regulation method and ion concentration regulation apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785800B2 (en) * 2007-07-17 2011-10-05 三洋電機株式会社 Water treatment equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190443A (en) * 1997-09-25 1999-04-06 Hoshizaki Electric Co Ltd Electrolytic bath
JPH11267647A (en) * 1998-03-20 1999-10-05 Shikishima Kiki Kk Electrochemical water treating device
WO2007037193A1 (en) * 2005-09-27 2007-04-05 Tanah Process Ltd. Ion concentration regulation method and ion concentration regulation apparatus

Also Published As

Publication number Publication date
JPWO2011065013A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP4461271B2 (en) Portable hardness adjustment device for adjusting the hardness of drinking water
JP3994417B2 (en) Liquid pH adjusting method and pH adjusting device
US20110108437A1 (en) Disinfection method and disinfection device
JP5522798B2 (en) Ballast water purification method
KR102131094B1 (en) Secondary battery for manufacturing desalinated water
JP5486178B2 (en) humidifier
JP2011131118A (en) Method and apparatus for preparing spray water for plant
JP5868421B2 (en) Electrodeionization equipment
EP2036863A1 (en) Process for producing conductive substance with ion adsorbed thereon, method of regulating ion concentration, and ion supply source
WO2011065013A1 (en) Ph adjustment device
JP6373213B2 (en) Mist generator
KR20130081578A (en) Electrically regenerative water softening apparatus and method of operating the same
JP6391659B2 (en) Hydrogen water generator
KR101822465B1 (en) Electrode assembly to generate hydrogen water and portable hydrogen water generating device comprising the same
WO2014199849A1 (en) Method for producing functional water, device for producing functional water, and instrument equipped with said device
US20200017374A1 (en) Electrochemical adsorbtion with graphene nanocomposites
JP2016101579A (en) Apparatus for adjusting liquid quality of aqueous liquid
CN211372634U (en) A degerming mechanism for among air purifier
JP2006205016A (en) Method for obtaining ozone water
CN117663345A (en) Air purification assembly, air purifier and air conditioner
TH7903A3 (en) Electrolyte water generator
JPH049159A (en) Treatment of air
JP2012196650A (en) Sterilization system
KR20150063306A (en) Bipolar electrondes and seawater disalination apparatus and method using same
Dóra et al. ALKALINE RECYCLING WITH BOUNDARY LAYER SEPARATION METHOD (BLSM).

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011509806

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832862

Country of ref document: EP

Kind code of ref document: A1