WO2011064265A1 - Dispositif électrochimique pour la détermination de propriétés antioxydantes de la peau - Google Patents

Dispositif électrochimique pour la détermination de propriétés antioxydantes de la peau Download PDF

Info

Publication number
WO2011064265A1
WO2011064265A1 PCT/EP2010/068147 EP2010068147W WO2011064265A1 WO 2011064265 A1 WO2011064265 A1 WO 2011064265A1 EP 2010068147 W EP2010068147 W EP 2010068147W WO 2011064265 A1 WO2011064265 A1 WO 2011064265A1
Authority
WO
WIPO (PCT)
Prior art keywords
microelectrodes
microelectrode
skin
working
support element
Prior art date
Application number
PCT/EP2010/068147
Other languages
English (en)
Inventor
Emmanuel Questel
Anne Marie Schmitt
Céline CHRISTOPHE
Maurice Comtat
Pierre Gros
Jérôme LAUNAY
Pierre Temple-Boyer
Original Assignee
Pierre Fabre Dermo-Cosmetique
Universite Paul Sabatier Toulouse Iii
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierre Fabre Dermo-Cosmetique, Universite Paul Sabatier Toulouse Iii, Centre National De La Recherche Scientifique filed Critical Pierre Fabre Dermo-Cosmetique
Publication of WO2011064265A1 publication Critical patent/WO2011064265A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/442Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14539Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/307Disposable laminated or multilayered electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures

Definitions

  • the invention is in the field of determining the antioxidant properties of the skin, and in particular the measurement of the oxidation-reduction state and / or the pH of the cutaneous surface. It relates more particularly to a device for such a determination, a method of manufacturing an electrochemical cell used in the constitution of this device, and a method for detecting the antioxidant properties of the skin implementing this device.
  • the invention applies in particular to the detection of the markers of the antioxidant properties of the cutaneous surface which are ascorbic acid, uric acid, glutathione, as well as the detection of chloride ions.
  • the skin is part of the tissues in perpetual interaction with the environment. Its main function is to protect the human body against external aggressions of chemical, mechanical, microbial and luminous origins. Skin aging is largely related, like many other degenerative processes, to the accumulation of oxidative aggressions.
  • the skin has developed enzymatic defense systems, particularly involving superoxide dismutases, glutathione peroxidases and catalases, and non-enzymatic defense systems, notably involving antioxidant substances such as vitamins E and C, uric acid, glutathione . These substances are found in the superficial layers of the skin, where they react with oxidizing species that attack the skin.
  • This electrochemical device comprises a plurality of working microelectrodes formed of materials different from each other, which are associated with a reference microelectrode, and means for generating, regulating and processing voltages and electric currents.
  • the associated method provides for measuring by directly contacting the microelectrodes against the surface of the skin, without addition of solvent or gel.
  • This device and this method make it possible in particular to study the influence of the environment on the skin antioxidant potential by a non-invasive technology, implemented on reduced skin surfaces, with a measurement area of less than 10 -2 mm 2. .
  • this device is however delicate: this device is of a large volume and size, and it requires the use of a micromanipulator for the positioning of microelectrodes on the surface of the skin for each operation. measured.
  • an electrochemical device that simultaneously enables the detecting the presence of a plurality of ionic species and antioxidant molecules on the surface of the skin, and where appropriate the measurement of the pH of the cutaneous surface, which is easy and fast to use, in particular from the point of view of positioning of the electrodes on the skin, and which performs very localized and simultaneous measurements of several parameters, under well controlled and reproducible operating conditions from one measurement operation to another.
  • This device should also make it possible to carry out measurements in a resistive medium, that is to say by direct contact with the skin, and non-invasively.
  • the device and the method according to the present invention use the principle, known per se, of the qualitative and quantitative detection of a reducing or oxidizing target substance by the analysis of an electric current generated between a so-called working electrode, and a said auxiliary electrode, under the effect of a voltage applied between the working electrode and a reference electrode, said electrochemical current being induced by the presence of said target substance and can be correlated to a concentration of the latter.
  • the present invention advantageously applies this known principle for the electrochemical detection of antioxidant molecules present on the surface of the skin and the measurement of the cutaneous pH.
  • the device for the determination of antioxidant properties of the skin comprises an electrochemical cell comprising a plurality of electrodes of micrometric size, designated throughout the present description by the term microelectrodes, means for generating and treating a potential difference between one of said microelectrodes, said reference microelectrode, and at least one other microelectrode, said working microelectrode, and means for acquiring and processing an electric current flowing at the level of the working microelectrode in the presence of one or more target substances.
  • microelectrodes means for generating and treating a potential difference between one of said microelectrodes, said reference microelectrode, and at least one other microelectrode, said working microelectrode, and means for acquiring and processing an electric current flowing at the level of the working microelectrode in the presence of one or more target substances.
  • the device according to the invention is characterized in that the set of microelectrodes consist of deposits of electrically conductive materials formed on the same insulating support element, and in such a way that the microelectrodes are able to be applied simultaneously against a surface of skin.
  • the electrochemical cell according to the invention is advantageously produced according to the conventional microelectronic collective technologies, by a uniform deposition in a thin layer, that is to say of nanometric thickness, of electrode formulations on the surface of the support element.
  • the materials used to form the microelectrodes are preferably metallic, but any other material with electrical conduction capability can also be used in the context of the invention, provided however that it is compatible with use in contact with the skin and with can be implemented in microelectronics technologies.
  • the support element is itself formed of flexible material, semi-rigid or rigid. Particularly preferred in the context of the invention semiconductor substrates such as silicon, then covered with an insulating layer, or polymers conventionally used in microelectronics, such as polyimides, for example Kapton (trademark ), PET polyethylene terephthalates, etc.
  • semiconductor substrates such as silicon
  • insulating layer or polymers conventionally used in microelectronics, such as polyimides, for example Kapton (trademark ), PET polyethylene terephthalates, etc.
  • the microelectrodes are disposed on the same face of the support element, this face being preferably flat, so as to facilitate their simultaneous application against the surface of the skin.
  • Their active surfaces are preferably substantially included in the same plane.
  • the microelectrodes are furthermore arranged on the same longitudinal end portion of the support element.
  • the microelectrodes are connected, by electrically conductive tracks, preferably metallic tracks, deposited on the support element, to pads of connection to the means for generating and processing electrical voltages and the means for acquiring and processing the electrical currents of the device.
  • the microelectrodes thus form an integral part of a printed circuit, which furthermore comprises connection elements to the means for generating and processing electrical voltages and currents.
  • connection pads are arranged on a longitudinal end portion of the support member opposite the microelectrodes, so that these connection pads do not interfere with the application of microelectrodes against the surface of the skin.
  • connection pads and the metal tracks are formed on the same face of the support element as the microelectrodes, thus simplifying the manufacturing operations of the electrochemical cell by microelectronics techniques. .
  • the support element is fixed, by a longitudinal end portion opposite to the microelectrodes, on a printed circuit board providing an electrical connection of the microelectrodes with the means for generating and processing electrical voltages. and the means for acquiring and processing electric currents.
  • the printed circuit board is preferably flexible rigid or semi-rigid, and preferably of greater size than that of the support element, so that it advantageously constitutes a gripping means facilitating the handling of the support element to allow its adequate positioning against a skin surface, for the purpose of determining the antioxidant properties of the latter.
  • the support element is advantageously fixed on the wafer by a longitudinal end portion opposite the portion carrying the microelectrodes, which is also preferably the longitudinal end portion carrying the connection pads, and so that the portion of the support element on which the microelectrodes are formed protrudes from this wafer.
  • a characteristic advantageously facilitates the application of the microelectrodes against a skin surface, by an elastic deformation effect of the element support in this end part or skin.
  • the printed circuit board is therefore advantageously both a means of electrical connection of the microelectrodes to the other elements of the device, and a mechanical support for the handling of the support element.
  • the fixing of the support element on the wafer is for example made by gluing.
  • a layer of an electrically insulating material covers the conductive tracks formed on the support element, with the exception microelectrodes and connection pads.
  • This passivation layer preferably further covers the sidewalls of the conductive deposits constituting the microelectrodes, thus defining an active surface of each of the microelectrodes, that is to say the technically operating surface for the determination of the antioxidant properties of the skin, intended to be brought into contact with the skin surface.
  • Such a thickness of the passivation layer proves particularly advantageous in that it makes it possible on the one hand to isolate the electrically conductive tracks of the printed circuit from any possibility of contact with the skin during measurements, and on the other hand, to ensure that the microelectrodes, which in turn have a nanometric thickness, can be brought into contact with the skin during the application of the part of the support element which bears them on a cutaneous surface.
  • any insulating material conventionally used according to microelectronics technologies may be used for the formation of the passivation layer according to the invention, insofar as this material is compatible with use in contact with the skin surface.
  • This material can be both organic and inorganic polymer type.
  • the electrochemical cell includes a plurality of working microelectrodes made of different materials from each other. These materials can be gold, silver, platinum, tungsten, or any other metal or metal oxide conventionally used for the electrochemical detection of target substances present on the surface of the skin. Each microelectrode thus makes it possible to detect one or more target substances given on the surface of the skin.
  • the device according to the invention thus advantageously makes it possible to detect and dose simultaneously, by the application of the support element against a skin surface, made in such a way that the microelectrodes are in contact with the cutaneous surface, several markers of the antioxidant capacities. of the skin, as well as to measure the pH of the cutaneous surface, according to the materials chosen to constitute the microelectrodes of work.
  • Each working microelectrode preferably has an active surface area of between 1 and 2,000 ⁇ 2 .
  • the reference microelectrode preferably has an active surface area of between 10 and 80,000 ⁇ 2 .
  • This microelectrode is preferably formed of silver and silver chloride, for example by oxidation of a surface layer of a silver deposit formed on the support element.
  • the device further comprises a so-called auxiliary or counter-electrode microelectrode.
  • the electrochemical current resulting from the electrochemical reactions on the surface of the skin flows between the working microelectrode and this auxiliary microelectrode.
  • the active surface of this auxiliary microelectrode is preferably between 10 and 600 000 ⁇ 2 .
  • This auxiliary microelectrode is preferably made of platinum. In the absence of such an auxiliary microelectrode, it is the reference microelectrode, so called pseudo-reference, which assumes its function.
  • microelectrodes are preferably collected on a surface of the support element less than or equal to 10 mm 2 , which advantageously makes it possible to simultaneously perform precise point measurements. several parameters on very localized skin areas. A good temporal and spatial correlation is thus obtained between the measurement of the pH and the detection of the various markers of the antioxidant properties of the skin.
  • the electrochemical cell comprises a microelectrode of platinum, a gold microelectrode, a silver microelectrode, a tungsten and tungsten oxide microelectrode and a reference microelectrode of silver and silver chloride, all integrated in the same printed circuit on the same support element , and able to be applied simultaneously against a skin surface.
  • a method for determining the antioxidant properties of the skin implementing the device according to the invention comprises the steps of applying the support element against a skin surface, so that the microelectrodes are in direct and simultaneous contact with the skin applying a potential difference between the reference microelectrode and each of the working microelectrodes, and measuring the intensity of the electric current flowing in the working microelectrode, this current being induced by the presence of one or more substances targets on the surface of the skin.
  • microelectrodes touch the surface of the skin itself, and not a fluid that is deposited on the latter, for example but not limited to a sweat film.
  • the imposed voltage can be fixed or variable. It preferably varies linearly between two limit values chosen as a function of each target molecule.
  • the cyclic voltammetric technique is particularly particularly preferred in the context of the invention.
  • the changes in intensity of the electrochemical current between each working microelectrode and the auxiliary microelectrode are then measured as a function of the applied potential.
  • the measurements are advantageously carried out for a time less than two minutes, preferably less than or equal to one minute.
  • Such short measurement times are advantageously allowed thanks to the reduced size of each of the microelectrodes, which makes it possible to record voltammograms at scanning speed, notably as fast as 500 mV / s, which results in a good resolution in signal-to-noise ratio. .
  • the invention also relates to a method for manufacturing an electrochemical cell having the above characteristics, according to which the different materials constituting the microelectrodes are deposited one after the other on the support element during successive stages of photolithography and vapor deposition.
  • Microelectrodes are thus formed that can have any desired geometry.
  • Particularly preferred geometries and arrangements in the context of the invention are circular, square or comb-like shapes.
  • the successive conductive layers are deposited in the vapor phase, in micro zones delimited in accordance with photolithography processes, by means of the so-called "lift off” technology, which is conventional in itself and which advantageously makes it possible to obtain microelectrodes made of pure metals, avoiding any phenomenon of recovery of the tracks constituting the different microelectrodes.
  • one of the materials constituting the microelectrodes is silver, its deposit is preferably made last.
  • one of the materials constituting the microelectrodes is platinum, its deposition is preferably carried out first.
  • the characteristics above show a high electrochemical stability of the microelectrodes thus formed.
  • the method according to the invention may also comprise steps of functionalization of the microelectrodes according to the target substance targeted by groups and according to techniques known per se.
  • the general process of manufacturing an electrochemical cell according to the invention proceeds as follows.
  • a first step of cleaning and preparing the surface of the support member is generally necessary to ensure its functionalization and dielectric insulation qualities. It consists for example, in the case of a support made of semiconductor material such as silicon, to form a silicon oxide layer S102 on a so-called upper face of the support element, in order to isolate it electrically. of the electrochemical cell that will be created later.
  • a support consisting of a polymer material, for example of the Kapton (trademark) type, polyethylene terephthalate PET, etc.
  • it may be a surface treatment, in order to strengthen the adhesion of the various deposits. carried out during the manufacturing process.
  • the following steps are a succession of so-called "lift-off" photolithography processes, which are conventional in themselves, and which make it possible to produce, by vapor-phase physico-chemical deposition (evaporation, cathodic sputtering, or the like), a set of patterns. from metallic materials such as gold, titanium, platinum, silver, tungsten, etc., so as to form the microelectrodes, as well as the conductive tracks and the connection pads.
  • micro / nanolithography techniques such as photolithography and electrochemical deposition, screen printing, ink jet printing, micro / nanotamping, electronic lithography, etc., can also be used to deposit these various materials.
  • the most mechanically stressed deposits for example, platinum deposits
  • the "chemically fragile" materials such as silver, will preferably be treated at the end of the manufacturing process.
  • the materials used for this passivation may be of different types: inorganic, such as silicon nitride Si3N, silicon oxide S102, for example, or organic, such as epoxy polymer materials SU-8, or poly- imide.
  • Electrochemical microcell assemblies can thus be manufactured collectively on the same support element, by using technologies derived from microelectronics, in several copies, identical or different, and at low cost.
  • electrochemical cell unit requires a final step: assembly.
  • the support element is cut, the cell is thoroughly cleaned. It is then reported and connected to a printed circuit board, by connecting cables that are encapsulated to isolate them from the outside environment.
  • a connector adapted to the means for generating and processing the electrical signals of the device is also integrated in the printed circuit.
  • the device according to the invention and the method implementing it notably make it possible to advantageously evaluate the response of the skin to aggression, or to analyze the efficacy of treatments, by the detection and the determination of a plurality of substances. antioxidants and measuring the pH on the surface of the skin.
  • FIGS. 1 to 5f in which:
  • FIG. 1 represents an example of an electrochemical cell according to the invention
  • FIG. 2 shows a variant of an electrochemical cell according to the invention
  • FIG. 3 shows another variant of an electrochemical cell according to the invention
  • FIG. 4 illustrates the cell of FIG. 1 associated with a printed circuit board providing connection to means for generating and processing electrical signals
  • FIGS. 5a to 5f illustrate successive steps of a method of manufacturing the electrochemical cell of FIG. 1, seen in section along the plane A-A.
  • the device according to the invention comprises an electrochemical cell 1, an exemplary embodiment of which is shown in FIG.
  • This cell is in the form of a printed circuit, comprising microelectrodes formed by deposits of conductive materials on an insulating support element 2.
  • microelectrodes as well as the various other conductive tracks of the printed circuit, are preferably arranged on the same so-called upper face 21 of the support element 2, which is preferably substantially flat.
  • the electrochemical cell comprises a plurality of microelectrodes, including at least one reference microelectrode and a working microelectrode. In preferred embodiments of the invention, it also includes an auxiliary microelectrode.
  • microelectrodes are three in number. Any other number of microelectrodes is also within the scope of the invention, as are any combinations of materials chosen for their constitution. For example, without limitation, the following numbers and combinations of materials:
  • a gold working electrode a platinum auxiliary electrode, a reference electrode made of silver and silver chloride (Ag / AgCl),
  • a platinum working electrode a tungsten working electrode and W / WO 3 tungsten oxide, a platinum auxiliary electrode, an Ag / AgCl reference electrode, a gold working electrode, a pseudo-reference electrode made of Ag / AgCl.
  • the support element 2 whose function is strictly mechanical, can be obtained from silicon or any other material, whether organic or inorganic, (semi-) conductive or insulating. It can be both rigid and flexible.
  • Microelectrodes may have different geometries.
  • rings / discs comprising, for example, a platinum auxiliary microelectrode 31 forming the ring of larger diameter, a reference microelectrode 32 consisting of silver and silver chloride, forming a ring of intermediate diameter, and a working microelectrode 33, for example made of gold, forming a smaller diameter disc.
  • the rings of larger diameter are interrupted, so as to ensure that the different microelectrodes are not in contact with each other on the support element.
  • microelectrodes any other configuration of the microelectrodes also falls within the scope of the invention, in particular square, rectangular, etc.
  • the different microelectrodes may be made from any electrically conductive or semiconductor material, such as metals, carbon / diamond, certain polymers, etc., to which the thin-film deposition techniques of microelectronics.
  • microelectrodes are preferably assembled so as to be close to each other on a reduced surface, preferably less than 10 mm 2 , of the support element 2.
  • Their active surface intended to be applied to the skin, is preferably between 1 to 2,000 ⁇ 2 for working microelectrodes, between 10 and 600,000 ⁇ 2 for the auxiliary microelectrode, and between 10 and 80,000 ⁇ 2 for the reference microelectrode. In the circular configuration of microelectrodes shown in Figure 1, these surfaces result in diameters between 5 and 100 ⁇ for the working microelectrode 33, between 50 and 2000 ⁇ for the reference microelectrode 32, and between 100 and 5000 ⁇ for the auxiliary microelectrode 31 .
  • Each of the microelectrodes is connected via a metal track 4 to an electrical connection pad 5.
  • the microelectrodes are preferably arranged on the support element 2 as far as possible from the connection pads 5, the preferred configuration being that in which the microelectrodes are disposed near a longitudinal end of the support element, and the pads connecting to the vicinity 23 of an opposite longitudinal end. It is thus advantageously avoided that wires connecting the connection pads 5 to the other electrical elements of the device according to the invention, wires which are slightly protruding with respect to the plane of the upper face 21 of the support element, prevent the application of the microelectrodes. against a skin surface, especially in configurations in which the support member is formed of a rigid material.
  • FIG. 2 Another example of an electrochemical cell 1 'according to the invention is shown in FIG. 2.
  • This cell comprises two working microelectrodes 33', 34 ', in the form of small diameter discs, constituted for example by platinum and tungsten respectively. tungsten oxide, and a pseudo-reference 32 'microelectrode made of silver and silver chloride, in the form of a comb.
  • FIG. 3 A still different example of an electrochemical cell 1 "according to the invention is shown in FIG. 3.
  • This cell comprises a reference microelectrode 32" and an auxiliary microelectrode 31 ", respectively in the form of a disk of small diameter and of a rectangle, and constituted, for example, respectively silver / silver chloride and platinum, and a working microelectrode network 33 "in gold, in the form of a comb.
  • the cell 1 is preferably fixed, in particular by gluing, to a printed circuit board 6, preferably rigid, and preferably of larger size than that of the support element 2, and on a so-called upper face 61 of which electrically conductive tracks 62 are formed.
  • printed matter can be obtained by conventional methods of microelectronics.
  • the conductive tracks 62 are electrically connected on the one hand to the respective connection pads 5 of the cell 1, by connection wires 63, and on the other hand to conventional means for generating a potential difference between the microelectrode of the reference 32 and the working microelectrode 33 and means, also conventional in themselves, for measuring the intensity of a current generated between the working microelectrode 33 and the auxiliary microelectrode 31, in response to a present target substance on the surface of the skin against which the microelectrodes are applied, these various means not being shown in the figures.
  • the fixing of the support member 2 on the wafer 6 is performed by the longitudinal end portion 23 of the support member which carries the connection pads 5, away from the microelectrodes, and so that the part of the The support member carrying these latter entirely exceeds the wafer 6.
  • the application of the microelectrodes against a skin surface is thus facilitated by an elastic deformation effect of the skin or the support element in its end portion 22 carrying the microelectrodes. .
  • This effect of elastic deformation is all the more important in the particularly advantageous configurations in which the support element 2 is made of a flexible material.
  • connection wires 63 between the connection pads 5 and the conductive tracks 62 are protected by encapsulation in a coating 64 of a coating resin.
  • FIGS. 5a to 5f illustrate these different steps, for a cell electrochemical device comprising a gold working microelectrode 33, an auxiliary microelectrode 31 in platinum, and a microelectrode of reference 32 in silver and silver chloride.
  • any other configuration of the electrochemical cell according to the invention can be obtained in a similar manner, in particular by respecting the above recommendations concerning the order of deposition of metals, for example, in the case of the four following materials, in the following: successive order: platinum, gold, tungsten, silver.
  • a support element 2 in the form of a silicon wafer is firstly oxidized at high temperature, of the order of 1100 ° C, in order to form on its surface a layer 24, about 1 ⁇ , of silicon oxide S1O2, in order to electrically insulate the deposited metal tracks with respect to silicon, as illustrated in FIG. 5a.
  • the first three define the deposits of gold (Au), platinum (Pt) and silver (Ag) relative to the realization of the working, auxiliary and reference microelectrodes respectively.
  • a platinum thin film is deposited and structured using the lift-off process.
  • This procedure is carried out, in a conventional manner, in three steps: in a first step, a photosensitive resin is deposited and insolated through a mask on which are predefined the patterns corresponding to all the microelectrodes. Then, a deposit 71 of thin titanium, of the order of 20 nm, is produced by evaporation in order to improve the adhesion of the platinum layer 72 which is deposited following, still by evaporation.
  • This platinum layer 72 has for example a thickness of 200 nm.
  • the silicon wafer thus obtained is immersed in a solution which makes it possible to eliminate the resin and the excess of metal deposition.
  • the structure of the platinum auxiliary microelectrode 31 is defined, as shown in FIG. 5b.
  • a third lift-off and evaporation method makes it possible to define the reference microelectrode 32 by a silver deposit 74, of thickness for example of approximately 400 nm, on the titanium / platinum units already created, such as shown in Figure 5d.
  • the last photolithography step consists in depositing a passivation layer 75, for example consisting of a biocompatible epoxy polymer SU-8, of thickness for example equal to 850 nm.
  • a passivation layer 75 for example consisting of a biocompatible epoxy polymer SU-8, of thickness for example equal to 850 nm.
  • This passivation layer makes it possible both to isolate all the metal tracks of the study environment, to define the active zones of the electrochemical cell, and to define the welding / wiring zones and, where appropriate, the cutting paths. of the support element, in the case of a collective production of several cells on the same support element.
  • the silver is oxidized to silver chloride AgCl, using an electrochemical technique such as electrolysis at constant potential or at constant intensity, or cyclic or linear voltammetry, which can be carried out for example between 0 and 0.25 V / ECS in a solution of potassium chloride at 0.01 M.
  • This last step can be carried out collectively for the whole electrochemical cells present on the same support element, or individually after the step of assembly and conditioning in the liquid phase which will be described below.
  • a silver chloride surface layer 76 is then obtained on the silver layer 74, as shown in FIG. 5f.
  • a last step of assembly and conditioning in the liquid phase is necessary to recover the structures to the unit. It includes the cutting of the support element according to the previously defined cutting paths, the transfer and wiring of each component (corresponding to an electrochemical cell) on a printed circuit board 6, and the final packaging within a device specific to the application of the analysis of the antioxidant properties of the skin.
  • This device comprises means for generating and regulating electrical voltages such as a potentiostat, and means for acquiring and processing the electrical signals generated at the level of the microelectrodes by the electrolytic reaction of a target substance, which are conventional in themselves.
  • the device according to the invention allows the determination of markers of antioxidant properties on the surface of the skin, as well as the measurement of the pH at this surface. It can be implemented as described below.
  • the support element 2 is applied against a skin surface, by its upper face 21, so that the microelectrodes simultaneously come into direct contact with the skin. For this, it is advantageously handled by the wafer 6.
  • the contacting of the microelectrodes with the skin is allowed by the elastic deformation of the skin or of the end portion 22 of the element 2 which carries them, and which is not fixed against the wafer 6.
  • the hydrolipidic liquid film containing the antioxidant substances present on the surface of the skin, as well as the ions responsible for the cutaneous pH, creates a conductive channel between the different microelectrodes.
  • an electrochemical cell comprising a first working gold microelectrode, a second working microelectrode of tungsten and tungsten oxide. a third platinum working microelectrode, a fourth silver working microelectrode, a platinum auxiliary microelectrode and a silver and silver chloride reference microelectrode deposited on a silicon support member as described above.
  • This cell is connected to a multipotentiostat, which makes it possible to apply a variable potential difference ⁇ between each of the working microelectrodes and the reference microelectrode, and to measure the current I flowing through the circuit comprising the auxiliary microelectrode and each of the working microelectrodes. .
  • a linear scanning voltammetric analysis of the potential is carried out.
  • a cyclic voltammogram is recorded for each of the working microelectrodes for potentials between selected terminal values for each of the microelectrodes, at a scanning speed of between 10 mV / s and 1 V / s, preferably about 50 mV / s.
  • the voltammogram is conventionally defined as a curve indicating the electrolysis current I through the circuit consisting of a working microelectrode and the auxiliary microelectrode, as a function of the potential difference ⁇ applied.
  • the detection of the different species present on the surface of the skin is carried out via the half-wave potential, or the peak potential of the amperometric oxidation signal, on the voltammograms.
  • This potential is characteristic of each redox system.
  • the quantity of each species is related to the intensity of the current at the corresponding half-wave potential.
  • the potential sweep can be performed as follows: platinum working microelectrode: potential cycle between -0.4
  • the upper part of the curve corresponds conventionally to oxidation, and the lower part corresponds to the reduction.
  • the zero-current potential difference ⁇ is measured between the tungsten and tungsten oxide working microelectrode and the reference microelectrode.
  • the total measurement time is less than 1 minute.
  • the measurements are carried out by direct contact with the skin, without addition of solvent or gel or modification of the surface of the microelectrodes.
  • ascorbic acid is detected by measuring the oxidation current recorded at the platinum working microelectrode at the half-wave potential of 0.4 V / E ref .
  • the quantitative measurement is carried out at
  • the quantification of the uric acid is carried out by measuring the oxidation current recorded at the platinum microelectrode at the potential of 0.9 V / Eref, after subtraction of the oxidation current at the potential of 0.6 V / Eref corresponding to ascorbic acid,
  • glutathione is detected by measuring the oxidation current at the gold working microelectrode at the potential of 1, 2 V / E ref ,
  • the chloride ions are detected by measuring the oxidation current with the silver working microelectrode at a potential of 0.2 V / E ref .
  • the determination of the pH results from the measurement of the zero current potential difference between the tungsten working microelectrode and tungsten oxide and the reference microelectrode. This potential difference decreases when the pH increases, according to an equation determined by calculations within the reach of those skilled in the art, after prior calibration of the device.
  • This device makes it possible to determine, by a non-invasive method, and with a very good spatio-temporal resolution, simultaneously the pH and the oxidation state of the skin on an area of less than 10 mm 2 , for a time of analysis less than or equal to 1 minute. It is simple and fast to use, and in particular as regards the positioning of microelectrodes on the surface of the skin, in a perfectly reproducible configuration from one measuring operation to another.
  • the present invention achieves the objectives it has set for itself.
  • it provides an electrochemical device for the determination of the antioxidant properties of the skin, the electrochemical cell of which can be manufactured at low cost by microelectronic technologies, and which makes it possible to obtain, in a simple and rapid manner, information concerning the antioxidant properties of the skin, by a simultaneous noninvasive, localized, good resolution assay, and performed under reproducible conditions, a plurality of target substances present on a reduced skin surface.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

L'invention concerne un dispositif pour la détermination de propriétés antioxydantes de la peau, comprenant une cellule électrochimique (1) qui comporte une pluralité de microélectrodes (31, 32, 33), des moyens de génération et de traitement d'une tension électrique entre une des microélectrodes, dite microélectrode de référence (32), et au moins une autre microélectrode, dite microélectrode de travail (33), et des moyens d'acquisition et de traitement d'un courant électrique circulant entre une microélectrode auxiliaire (31) et ladite microélectrode de travail (33)en présence d'une substance cible. L'ensemble des microélectrodes sont constituées par des dépôts de matériaux électriquement conducteurs formés sur un même élément support isolant (2), de manière telle que les microélectrodes (31, 32, 33) soient aptes à être appliquées simultanément contre une surface de peau.

Description

DISPOSITIF ÉLECTROCHIMIQUE POUR LA DÉTERMINATION DE PROPRIÉTÉS ANTIOXYDANTES DE LA PEAU
L'invention s'inscrit dans le domaine de la détermination des propriétés antioxydantes de la peau, et notamment de la mesure de l'état d'oxydo- réduction et/ou du pH de la surface cutanée. Elle concerne plus particulièrement un dispositif pour une telle détermination, un procédé de fabrication d'une cellule électrochimique entrant dans la constitution de ce dispositif, et un procédé de détection des propriétés antioxydantes de la peau mettant en œuvre ce dispositif.
L'invention s'applique en particulier à la détection des marqueurs des propriétés antioxydantes de la surface cutanée que sont l'acide ascorbique, l'acide urique, le glutathion, ainsi que la détection des ions chlorures.
La peau fait partie des tissus en perpétuelle interaction avec l'environnement. Sa fonction principale est de protéger le corps humain contre les agressions extérieures d'origines chimique, mécanique, microbienne et lumineuse. Le vieillissement cutané est en grande partie lié, comme beaucoup d'autres processus dégénératifs, à l'accumulation d'agressions oxydantes. La peau a développé des systèmes de défense enzymatiques, impliquant en particulier les superoxydes dismutases, glutathion peroxydases et catalases, et des systèmes de défense non enzymatiques, impliquant notamment des substances antioxydantes telles que les vitamines E et C, l'acide urique, le glutathion. Ces substances se retrouvent dans les couches superficielles de la peau, où elles réagissent avec les espèces oxydantes venant agresser cette dernière.
Un certain nombre d'études concernant le stress oxydant rapporte une diminution des capacités antioxydantes de la peau suite à une exposition au stress. Par exemple, une irradiation de la couche cornée à des doses subérythémales entraîne une diminution de la teneur en cc-tocophérol. Des carences en acide ascorbique, également désigné vitamine C, ont également été rapportées suite à des expositions répétées à l'ozone. Cependant, une question majeure reste celle du lien entre le stress oxydant et les capacités réductrices de la surface cutanée.
De même, il est intéressant de connaître l'évolution des pH locaux sous l'influence ou en réponse à un stress. Des modifications de pH peuvent en effet traduire une possible régulation des enzymes antioxydantes de la fonction barrière.
L'influence de l'environnement sur le potentiel antioxydant cutané justifie donc l'intérêt porté au développement d'un dispositif électrochimique permettant des mesures directes, localisées et simultanées du pH, de la concentration en ions chlorures et de marqueurs des capacités antioxydantes de la peau, en particulier de l'acide ascorbique, l'acide urique, le glutathion.
A cet effet, il a été proposé par la présente déposante un dispositif et un procédé de détermination simultanée du pH et de marqueurs de propriétés antioxydantes de la peau, qui font en particulier l'objet du brevet FR-B- 2 891 131 . Ce dispositif électrochimique comporte une pluralité de microélectrodes de travail formées en matériaux différents les unes des autres, qui sont associées à une microélectrode de référence, et à des moyens de génération, de régulation et de traitement de tensions et de courants électriques. Le procédé associé prévoit de réaliser les mesures par mise en contact direct des microélectrodes contre la surface de la peau, sans addition de solvant ou de gel. Ce dispositif et ce procédé permettent notamment d'étudier l'influence de l'environnement sur le potentiel antioxydant cutané par une technologie non invasive, mise en œuvre sur des surfaces de peau réduites, avec une aire de mesure inférieure à 10"2 mm2.
La mise en œuvre de ce dispositif est cependant délicate : ce dispositif est d'un volume et d'un encombrement importants, et il nécessite l'utilisation d'un micromanipulateur pour le positionnement des microélectrodes à la surface de la peau pour chaque opération de mesure.
Par rapport aux technologies proposées par l'art antérieur, il subsiste un besoin pour un dispositif électrochimique permettant simultanément la détection de la présence d'une pluralité d'espèces ioniques et de molécules antioxydantes à la surface de la peau, et le cas échéant la mesure du pH de la surface cutanée, qui soit facile et rapide à utiliser, notamment du point de vue du positionnement des électrodes sur la peau, et qui réalise des mesures très localisées et simultanées de plusieurs paramètres, dans des conditions opératoires bien maîtrisées et reproductibles d'une opération de mesure à l'autre. Ce dispositif devrait en outre permettre de réaliser les mesures en milieu résistif, c'est-à-dire par contact direct avec la peau, et de façon non invasive.
Le dispositif et le procédé selon la présente invention utilisent le principe, connu en soi, de la détection qualitative et quantitative d'une substance cible réductrice ou oxydante par l'analyse d'un courant électrique généré entre une électrode dite de travail, et une électrode dite auxiliaire, sous l'effet d'une tension appliquée entre l'électrode de travail et une électrode dite de référence, ce courant électrochimique étant induit par la présence de ladite substance cible et pouvant être corrélé à une concentration de cette dernière.
La présente invention applique avantageusement ce principe connu pour la détection électrochimique de molécules antioxydantes présentes à la surface de la peau et la mesure du pH cutané.
Le dispositif pour la détermination de propriétés antioxydantes de la peau selon l'invention comprend une cellule électrochimique comportant une pluralité d'électrodes de taille micrométrique, désignées dans toute la présente description par le terme microélectrodes, des moyens de génération et de traitement d'une différence de potentiel entre une desdites microélectrodes, dite microélectrode de référence, et au moins une autre microélectrode, dite microélectrode de travail, et des moyens d'acquisition et de traitement d'un courant électrique circulant au niveau de la microélectrode de travail en présence d'une ou plusieurs substances cibles. Ces moyens de génération et de traitement des différences de potentiel et d'acquisition et de traitement des courants électriques sont classiques en eux-mêmes. Il peut s'agir notamment d'un multipotentiostat. Le dispositif selon l'invention se caractérise en ce que l'ensemble des microélectrodes sont constituées par des dépôts de matériaux électriquement conducteurs formés sur un même élément support isolant, et de manière telle que les microélectrodes soient aptes à être appliquées simultanément contre une surface de peau.
La cellule électrochimique selon l'invention est avantageusement réalisée selon les technologies collectives classiques de la microélectronique, par un dépôt uniforme en couche mince, c'est-à-dire d'épaisseur nanométrique, de formulations d'électrodes sur la surface de l'élément support. Les matériaux utilisés pour constituer les microélectrodes sont de préférence métalliques, tout autre matériau à capacité de conduction électrique pouvant cependant également être utilisé dans le cadre de l'invention, sous réserve toutefois d'être compatible avec une utilisation au contact de la peau et de pouvoir être mis en œuvre dans les technologies de la microélectronique.
L'élément support est lui-même formé en matière flexible, semi-rigide ou rigide. On privilégie notamment dans le cadre de l'invention les substrats semi-conducteurs tels que le silicium, alors recouvert d'une couche isolante, ou les polymères utilisés de façon classique en microélectronique, tels que les polyimides, par exemple le Kapton (marque déposée), les polyéthylène téréphtalates PET, etc.
Dans des modes de réalisation préférés de l'invention, les microélectrodes sont disposées sur une même face de l'élément support, cette face étant préférentiellement plane, de manière à faciliter leur application simultanée contre la surface de la peau. Leurs surfaces actives sont de préférence sensiblement comprises dans un même plan.
Dans des modes de réalisation préférés de l'invention, les microélectrodes sont en outre disposées sur une même partie d'extrémité longitudinale de l'élément support.
Selon une caractéristique avantageuse de l'invention, les microélectrodes sont reliées, par des pistes électriquement conductrices, de préférence métalliques, déposées sur l'élément support, à des plots de connexion vers les moyens de génération et de traitement des tensions électriques et les moyens d'acquisition et de traitement des courants électriques du dispositif. Les microélectrodes font ainsi partie intégrante d'un circuit imprimé, qui comporte en outre des éléments de connexion aux moyens de génération et de traitement des tensions et courants électriques.
De préférence, les plots de connexion sont disposés sur une partie d'extrémité longitudinale de l'élément support opposée aux microélectrodes, de sorte que ces plots de connexion ne gênent pas l'application des microélectrodes contre la surface de la peau.
Dans des modes de réalisation préférés de l'invention, les plots de connexion et les pistes métalliques sont formés sur la même face de l'élément support que les microélectrodes, simplifiant ainsi les opérations de fabrication de la cellule électrochimique par les techniques de la microélectronique.
Selon une caractéristique avantageuse de l'invention, l'élément support est fixé, par une partie d'extrémité longitudinale opposée aux microélectrodes, sur une plaquette de circuit imprimé assurant une connexion électrique des microélectrodes avec les moyens de génération et de traitement des tensions électriques et les moyens d'acquisition et de traitement des courants électriques. La plaquette de circuit imprimé est de préférence flexible rigide ou semi-rigide, et préférentiellement de taille supérieure à celle de l'élément support, si bien qu'elle constitue avantageusement un moyen de préhension facilitant la manipulation de l'élément support pour permettre son positionnement adéquat contre une surface de peau, en vue de la détermination des propriétés antioxydantes de cette dernière.
L'élément support est avantageusement fixé sur la plaquette par une partie d'extrémité longitudinale opposée à la partie portant les microélectrodes, qui est en outre de préférence la partie d'extrémité longitudinale portant les plots de connexion, et de telle sorte que la partie de l'élément support sur laquelle sont formées les microélectrodes dépasse de cette plaquette. Une telle caractéristique facilite avantageusement l'application des microélectrodes contre une surface de peau, par un effet de déformation élastique de l'élément support dans cette partie d'extrémité ou de la peau. La plaquette de circuit imprimé constitue de ce fait avantageusement à la fois un moyen de connexion électrique des microélectrodes aux autres éléments du dispositif, et un support mécanique pour la manipulation de l'élément support.
La fixation de l'élément support sur la plaquette est par exemple réalisée par collage.
Dans des modes de réalisation préférés de l'invention, une couche d'un matériau électriquement isolant, dite couche de passivation, d'épaisseur inférieure ou égale à 3 μιτι, recouvre les pistes conductrices formées sur l'élément support, à l'exception des microélectrodes et des plots de connexion. Cette couche de passivation recouvre en outre de préférence les flancs des dépôts conducteurs constituant les microélectrodes, définissant ainsi une surface active de chacune des microélectrodes, c'est-à-dire la surface techniquement opérante pour la détermination des propriétés antioxydantes de la peau, destinée à être mise en contact avec la surface cutanée.
Une telle épaisseur de la couche de passivation s'avère notamment tout à fait avantageuse en ce qu'elle permet d'une part d'isoler les pistes électriquement conductrices du circuit imprimé de toute possibilité de contact avec la peau lors des mesures, et d'autre part d'assurer que les microélectrodes, présentant quant à elles une épaisseur nanométrique, puissent être mises en contact avec la peau lors de l'application de la partie de l'élément support qui les porte sur une surface cutanée.
Tout matériau isolant utilisé de façon classique selon les technologies de la microélectronique peut être mis en œuvre pour la formation de la couche de passivation selon l'invention, dans la mesure toutefois où ce matériau est compatible avec une utilisation au contact de la surface cutanée. Ce matériau peut être aussi bien du type polymère organique qu'inorganique. Dans des modes de réalisation préférés de l'invention, on privilégie les résines époxydes du type désigné par le terme SU-8.
Dans des modes de réalisation préférés de l'invention, la cellule électrochimique comporte une pluralité de microélectrodes de travail constituées en des matériaux différents les unes des autres. Ces matériaux peuvent aussi bien être l'or, l'argent, le platine, le tungstène, ou tout autre métal ou oxyde métallique utilisé de façon classique pour la détection électrochimique de substances cibles présentes à la surface de la peau. Chaque microélectrode permet ainsi de détecter une ou plusieurs substances cibles données à la surface de la peau.
Le dispositif selon l'invention permet ainsi avantageusement de détecter et doser simultanément, par l'application de l'élément support contre une surface de peau, réalisée de manière telle que les microélectrodes soient en contact avec la surface cutanée, plusieurs marqueurs des capacités antioxydantes de la peau, ainsi que de mesurer le pH de la surface cutanée, en fonction des matériaux choisis pour constituer les microélectrodes de travail.
Chaque microélectrode de travail présente de préférence une surface active comprise entre 1 et 2 000 μιτι2. La microélectrode de référence présente quant à elle de préférence une surface active comprise entre 10 et 80 000 μιτι2. Cette microélectrode est préférentiellement formée en argent et chlorure d'argent, par exemple par oxydation d'une couche superficielle d'un dépôt d'argent formé sur l'élément support.
Dans des modes de réalisation préférés de l'invention, le dispositif comporte en outre une microélectrode dite auxiliaire, ou contre-électrode. Le courant électrochimique résultant des réactions électrochimiques à la surface de la peau circule entre la microélectrode de travail et cette microélectrode auxiliaire. La surface active de cette microélectrode auxiliaire est de préférence comprise entre 10 et 600 000 μιτι2. Cette microélectrode auxiliaire est de préférence constituée en platine. En l'absence d'une telle microélectrode auxiliaire, c'est la microélectrode de référence, alors dite de pseudo-référence, qui assume sa fonction.
Les microélectrodes sont de préférence rassemblées sur une surface de l'élément support inférieure ou égale à 10 mm2, ce qui permet avantageusement d'effectuer simultanément des mesures ponctuelles précises de plusieurs paramètres sur des zones de peau très localisées. On obtient par conséquent une bonne corrélation temporelle et spatiale entre la mesure du pH et la détection des différents marqueurs des propriétés antioxydantes de la peau.
Dans des modes de réalisation préférés de l'invention, particulièrement adaptés à la détection simultanée de l'acide ascorbique, de l'acide urique, du glutathion, des ions chlorures et à la mesure du pH cutané, la cellule électrochimique comporte une microélectrode de platine, une microélectrode d'or, une microélectrode d'argent, une microélectrode de tungstène et d'oxyde de tungstène et une microélectrode de référence d'argent et chlorure d'argent, toutes intégrées dans un même circuit imprimé sur le même élément support, et aptes à être appliquées simultanément contre une surface de peau.
Un procédé de détermination des propriétés antioxydantes de la peau mettant en œuvre le dispositif selon l'invention comprend les étapes consistant à appliquer l'élément support contre une surface de peau, de telle sorte que les microélectrodes soient en contact direct et simultané avec la peau, à appliquer une différence de potentiel entre la microélectrode de référence et chacune des microélectrodes de travail, et à mesurer l'intensité du courant électrique circulant au niveau de la microélectrode de travail, ce courant étant induit par la présence d'une ou plusieurs substances cibles à la surface de la peau.
Par contact direct avec la peau, on entend ici que les microélectrodes touchent la surface de la peau elle-même, et non un fluide qui est déposé sur cette dernière, par exemple mais non limitativement un film de sueur.
La tension imposée peut être fixe ou variable. Elle varie de préférence linéairement entre deux valeurs bornes choisies en fonction de chaque molécule cible. La technique de voltampérométrie cyclique est notamment particulièrement préférée dans le cadre de l'invention. On mesure alors les changements d'intensité du courant électrochimique entre chaque microélectrode de travail et la microélectrode auxiliaire en fonction du potentiel appliqué. Les mesures sont avantageusement réalisées pendant un temps inférieur à deux minutes, de préférence inférieur ou égal à une minute. Des temps de mesure aussi courts sont avantageusement permis grâce à la taille réduite de chacune des microélectrodes, qui permet d'enregistrer des voltammogrammes à vitesse de balayage notamment aussi rapide que 500 mV/s, dont il résulte une bonne résolution en rapport signal sur bruit.
L'invention concerne également un procédé de fabrication d'une cellule électrochimique répondant aux caractéristiques ci-avant, selon lequel les différents matériaux constituant les microélectrodes sont déposés l'un après l'autre sur l'élément support au cours d'étapes successives de photolithographie et de dépôt en phase vapeur. On forme ainsi des microélectrodes pouvant présenter toute géométrie souhaitée. Des géométries et agencements particulièrement préférés dans le cadre de l'invention sont des formes circulaires, carrées, ou encore de type peignes.
Dans des modes de mise en œuvre préférés de l'invention, les couches conductrices successives sont déposées en phase vapeur, dans des micro zones délimitées conformément à des procédés de photolithographie, au moyen de la technologie dite de « lift off », qui est classique en elle-même et qui permet avantageusement d'obtenir des microélectrodes constituées de métaux purs, en évitant tout phénomène de recouvrement des pistes constituant les différentes microélectrodes.
Dans le cas d'une pluralité de métaux différents, lorsque l'un des matériaux constituant les microélectrodes est l'argent, son dépôt est de préférence réalisé en dernier lieu. Lorsque l'un des matériaux constituant les microélectrodes est le platine, son dépôt est préférentiel lement réalisé en premier lieu.
Il résulte avantageusement des caractéristiques ci-avant une grande stabilité électrochimique des microélectrodes ainsi formées.
Le procédé selon l'invention peut également comprendre des étapes de fonctionnalisation des microélectrodes en fonction de la substance cible visée, par des groupements et selon des techniques connus en soi. De façon schématique, le processus général de fabrication d'une cellule électrochimique selon l'invention se déroule de la façon suivante.
Une première étape de nettoyage et de préparation de la surface de l'élément support est généralement nécessaire afin de s'assurer de ses qualités de fonctionnalisation et d'isolation diélectrique. Elle consiste par exemple, dans le cas d'un support réalisé en matériau semi-conducteur tel que le silicium, à former une couche d'oxyde de silicium S1O2 sur une face dite supérieure de l'élément support, afin de l'isoler électriquement de la cellule électrochimique qui sera créée par la suite. Dans le cas d'un support constitué en matériau polymère, par exemple du type Kapton (marque déposée), polyéthylène téréphtalate PET, etc., il peut s'agir d'un traitement de surface, afin de renforcer l'adhésion des différents dépôts effectués au cours du processus de fabrication.
Les étapes qui suivent sont une succession de procédés de photolithographie dits « lift-off », classiques en eux-mêmes, qui permettent de réaliser par dépôt physico-chimique en phase vapeur (évaporation, pulvérisation cathodique, ou autres) un ensemble de motifs à partir de matériaux métalliques tels que l'or, le titane, le platine, l'argent, le tungstène, etc., de sorte à former les microélectrodes, ainsi que les pistes conductrices et les plots de connexion.
D'autres techniques de micro/nanolithographie, telles que la photolithographie et le dépôt électrochimique, la sérigraphie, l'impression par jet d'encre, le micro/nanotamponnage, la lithographie électronique, etc., peuvent également être utilisées pour déposer ces divers matériaux. Les dépôts les plus mécaniquement contraints (par exemple, les dépôts de platine) sont préférentiellement déposés au cours des premières étapes, tandis que les matériaux « chimiquement fragiles », tels que l'argent, seront de préférence traités en fin de processus de fabrication.
Une fois l'ensemble des dépôts conducteurs réalisés, ces derniers doivent être isolés du milieu d'étude, seules les zones actives des microélectrodes ainsi que les plots de connexion devant être définis et dégagés. Les matériaux utilisés pour cette passivation peuvent être de différentes natures : inorganiques, tels que le nitrure de silicium Si3N , l'oxyde de silicium S1O2, par exemple, ou bien organiques, tels que les matériaux polymères époxydes SU-8, ou les poly-imides.
Des ensembles de microcellules électrochimiques peuvent ainsi être fabriqués collectivement sur un même élément support, en utilisant les technologies issues de la microélectronique, en plusieurs exemplaires, identiques ou différents, et à faible coût.
Enfin, l'obtention à l'unité d'une cellule électrochimique nécessite une dernière étape : l'assemblage. L'élément support est découpé, la cellule est soigneusement nettoyée. Elle est ensuite reportée et connectée sur une plaquette de circuit imprimé, par des câbles de connexion qui sont encapsulés afin de les isoler du milieu extérieur. Une connectique adaptée aux moyens de génération et de traitement des signaux électriques du dispositif est également intégrée au circuit imprimé.
Le dispositif selon l'invention et le procédé le mettant en œuvre permettent notamment avantageusement d'évaluer la réponse de la peau à des agressions, ou d'analyser l'efficacité de traitements, par la détection et le dosage d'une pluralité de substances antioxydantes et la mesure du pH à la surface de la peau.
L'écart entre les différentes microélectrodes étant toujours identique, ce dispositif permet d'obtenir des mesures stables et homogènes et parfaitement reproductibles d'une opération de mesure à l'autre.
L'invention sera maintenant plus précisément décrite dans le cadre de modes de réalisation préférés, qui n'en sont nullement limitatifs, représentés sur les figures 1 à 5f, dans lesquelles :
- la figure 1 représente un exemple de cellule électrochimique selon l'invention ;
- la figure 2 montre une variante d'une cellule électrochimique selon l'invention ;
- la figure 3 montre une autre variante d'une cellule électrochimique selon l'invention ;
- la figure 4 illustre la cellule de la figure 1 associée à une plaquette de circuit imprimé assurant la connexion à des moyens de génération et de traitement des signaux électriques ;
- et les figures 5a à 5f illustrent des étapes successives d'un procédé de fabrication de la cellule électrochimique de la figure 1 , vue en coupe selon le plan A-A.
Le dispositif selon l'invention comporte une cellule électrochimique 1 , dont un exemple de réalisation est représenté sur la figure 1 .
Cette cellule se présente sous la forme d'un circuit imprimé, comprenant des microélectrodes formées par des dépôts de matériaux conducteurs sur un élément support isolant 2.
Ces microélectrodes, ainsi que les différentes autres pistes conductrices du circuit imprimé, sont de préférence disposées sur une même face dite supérieure 21 de l'élément support 2, qui est de préférence sensiblement plane.
La cellule électrochimique comporte une pluralité de microélectrodes, dont au moins une microélectrode de référence et une microélectrode de travail. Dans des modes de réalisation préférés de l'invention, elle comporte également une microélectrode auxiliaire.
Dans l'exemple de réalisation représenté sur la figure 1 , les microélectrodes sont au nombre de trois. Tout autre nombre de microélectrodes entre également dans le cadre de l'invention, de même que toutes combinaisons de matériaux choisis pour leur constitution. On peut citer par exemple, à titre non limitatif, les nombres et combinaisons de matériaux suivants :
- une électrode de travail en or, une électrode auxiliaire en platine, une électrode de référence en argent et chlorure d'argent (Ag/AgCI),
- une électrode de travail en platine, une électrode de travail en tungstène et oxyde de tungstène W/WO3, une électrode auxiliaire en platine, une électrode de référence en Ag/AgCI, - une électrode de travail en or, une électrode de pseudo-référence en Ag/AgCI.
L'élément support 2, dont la fonction est strictement mécanique, peut être obtenu à partir de silicium ou de tout autre matériau, qu'il soit organique ou inorganique, (semi-)conducteur ou isolant. Il peut être aussi bien rigide que souple.
Les microélectrodes peuvent présenter différentes géométries.
Dans l'exemple de réalisation illustré sur la figure 1 , elles se présentent sous forme de d'anneaux / de disques concentriques, comprenant par exemple une microélectrode auxiliaire de platine 31 formant l'anneau de plus grand diamètre, une microélectrode de référence 32 constituée en argent et chlorure d'argent, formant un anneau de diamètre intermédiaire, et une microélectrode de travail 33, constituée par exemple en or, formant un disque de moindre diamètre. Les anneaux de plus grand diamètre sont interrompus, de manière à assurer que les différentes microélectrodes ne soient pas en contact les unes avec les autres sur l'élément support.
Toute autre configuration des microélectrodes entre également dans le cadre de l'invention, notamment carrée, rectangulaire, etc.
Les différentes microélectrodes peuvent être réalisées à partir de n'importe quel matériau électriquement conducteur ou semi-conducteur, tels que les métaux, le carbone/diamant, certains polymères, etc., auxquels peuvent s'appliquer les techniques de dépôt en couche mince de la microélectronique.
Les microélectrodes sont de préférence rassemblées de manière à être proches les unes des autres sur une surface réduite, de préférence inférieure à 10 mm2, de l'élément support 2.
Elles présentent avantageusement une épaisseur nanométrique. Leur surface active, destinée à être appliquée sur la peau, est de préférence comprise entre 1 à 2 000 μιτι2 pour les microélectrodes de travail, entre 10 et 600 000 μιτι2 pour la microélectrode auxiliaire, et entre 10 et 80 000 μιτι2 pour la microélectrode de référence. Dans la configuration circulaire des microélectrodes représentée sur la figure 1 , ces surfaces se traduisent par des diamètres compris entre 5 et 100 μιτι pour la microélectrode de travail 33, entre 50 et 2000 μιτι pour la microélectrode de référence 32, et entre 100 et 5000 μιτι pour la microélectrode auxiliaire 31 .
Chacune des microélectrodes est reliée par l'intermédiaire d'une piste métallique 4 à un plot de connexion électrique 5.
Les microélectrodes sont de préférence disposées sur l'élément support 2 le plus loin possible des plots de connexion 5, la configuration préférée étant celle dans laquelle les microélectrodes sont disposées au voisinage 22 d'une extrémité longitudinale de l'élément support, et les plots de connexion au voisinage 23 d'une extrémité longitudinale opposée. On évite ainsi avantageusement que des fils connectant les plots de connexion 5 aux autres éléments électriques du dispositif selon l'invention, fils qui sont légèrement proéminents par rapport au plan de la face supérieure 21 de l'élément support, empêchent l'application des microélectrodes contre une surface de peau, notamment dans les configurations dans lesquelles l'élément support est formé en un matériau rigide.
Un autre exemple de cellule électrochimique 1 ' selon l'invention est montré sur la figure 2. Cette cellule comprend deux microélectrodes de travail 33', 34', sous forme de disques de faible diamètre, constituées par exemple respectivement en platine et en tungstène et oxyde de tungstène, et une microélectrode de pseudo-référence 32' en argent et chlorure d'argent, se présentant sous la forme d'un peigne.
Un exemple encore différent d'une cellule électrochimique 1 " selon l'invention est montré sur la figure 3. Cette cellule comprend une microélectrode de référence 32" et une microélectrode auxiliaire 31 ", sous forme respectivement de disque de faible diamètre et de rectangle, et constituées, par exemple, respectivement en argent/chlorure d'argent et en platine, ainsi qu'un réseau de microélectrode de travail 33" en or, se présentant sous la forme d'un peigne.
En référence à la figure 4, la cellule 1 est de préférence fixée, notamment par collage, à une plaquette de circuit imprimé 6, de préférence rigide, et de préférence de taille supérieure à celle de l'élément support 2, et sur une face dite supérieure 61 de laquelle sont formées des pistes électriquement conductrices 62. Ce circuit imprimé peut être obtenu par des procédés classiques de la microélectronique. Les pistes conductrices 62 sont électriquement connectées d'une part aux plots de connexion 5 respectifs de la cellule 1 , par des fils de connexion 63, et d'autre part à des moyens classiques de génération d'une différence de potentiel entre la microélectrode de référence 32 et la microélectrode de travail 33 et à des moyens, également classiques en eux-mêmes, de mesure de l'intensité d'un courant généré entre la microélectrode de travail 33 et la microélectrode auxiliaire 31 , en réponse à une substance cible présente à la surface de la peau contre laquelle sont appliquées les microélectrodes, ces différents moyens n'étant pas représentés sur les figures.
La fixation de l'élément support 2 sur la plaquette 6 est réalisée par la partie d'extrémité longitudinale 23 de l'élément support qui porte les plots de connexion 5, à distance des microélectrodes, et de telle sorte que la partie de l'élément support portant ces dernières dépasse entièrement de la plaquette 6. L'application des microélectrodes contre une surface de peau est ainsi facilitée par un effet de déformation élastique de la peau ou de l'élément support dans sa partie d'extrémité 22 portant les microélectrodes. Cet effet de déformation élastique est d'autant plus important dans les configurations particulièrement avantageuses dans lesquelles l'élément support 2 est réalisé en une matière souple.
Les fils de connexion 63 entre les plots de connexion 5 et les pistes conductrices 62 sont protégés par encapsulation dans un revêtement 64 d'une résine d'enrobage.
A titre d'exemple, les différentes étapes d'un procédé de fabrication de la cellule électrochimique 1 de la figure 1 sont décrites de façon plus détaillée ci-après, en référence aux figures 5a à 5f qui illustrent ces différentes étapes, pour une cellule électrochimique comportant une microélectrode de travail 33 en or, une microélectrode auxiliaire 31 en platine, et une microélectrode de référence 32 en argent et chlorure d'argent.
Toute autre configuration de la cellule électrochimique selon l'invention peut être obtenue de manière similaire, en respectant notamment les préconisations ci-avant concernant l'ordre de dépôt des métaux, par exemple, dans le cas des quatre matériaux ci-après, dans l'ordre successif : platine, or, tungstène, argent.
Un élément support 2, sous forme d'une plaquette de silicium, est dans un premier temps oxydé à haute température, de l'ordre de 1 100 °C, afin de former à sa surface une couche 24, d'épaisseur d'environ 1 μιτι, d'oxyde de silicium S1O2, afin d'isoler électriquement vis-à-vis du silicium les pistes métalliques déposées par la suite, comme illustré sur la figure 5a.
Quatre étapes de photolithographie se succèdent ensuite : les trois premières définissent les dépôts d'or (Au), de platine (Pt) et d'argent (Ag) relatifs à la réalisation des microélectrodes de travail, auxiliaire et de référence respectivement.
Plus précisément, un film mince de platine est déposé et structuré en utilisant le procédé « lift-off ». Cette procédure se déroule, de façon classique, en trois étapes : dans un premier temps, une résine photosensible est déposée et insolée à travers un masque sur lequel sont prédéfinis les motifs correspondant à l'ensemble des microélectrodes. Puis, un dépôt 71 de titane de faible épaisseur, de l'ordre de 20 nm, est réalisé par évaporation afin d'améliorer l'adhérence de la couche de platine 72 qui est déposée en suivant, toujours par évaporation. Cette couche de platine 72 présente par exemple une épaisseur de 200 nm.
La plaquette de silicium ainsi obtenue est immergée dans une solution qui permet d'éliminer la résine et l'excédent de dépôt métallique.
A ce point du processus de fabrication, la structure de la microélectrode auxiliaire de platine 31 est définie, comme illustré sur la figure 5b.
Ensuite, pour concevoir la microélectrode de travail en or 33, un second procédé dit de lift-off est mis en œuvre. Le dépôt d'une couche d'or 73, d'épaisseur par exemple d'environ 800 nm, est directement déposé par évaporation sur la couche de titane/platine déjà existante, comme montré sur la figure 5c. Ce dépôt forme la microélectrode de travail 33.
Enfin, un troisième procédé de lift-off et évaporation permet de définir la microélectrode de référence 32, par un dépôt d'argent 74, d'épaisseur par exemple d'environ 400 nm, sur les motifs de titane/platine déjà créés, comme montré sur la figure 5d.
La dernière étape de photolithographie, illustrée sur la figure 5e, consiste à déposer une couche de passivation 75, par exemple constituée d'un polymère époxyde biocompatible SU-8, d'épaisseur par exemple égale à 850 nm. Cette couche de passivation permet à la fois d'isoler l'ensemble des pistes métalliques du milieu d'étude, de définir les zones actives de la cellule électrochimique, et de définir les zones de soudure/câblage et le cas échéant les chemins de découpe de l'élément support, dans le cas d'une fabrication collective de plusieurs cellules sur un même élément support.
Afin de finaliser le procédé, et plus exactement de réaliser la microélectrode de référence Ag/AgCI 32, l'argent est oxydé en chlorure d'argent AgCI, à l'aide d'une technique électrochimique telle que l'électrolyse à potentiel constant ou à intensité constante, ou la voltammétrie cyclique ou linéaire, qui peut être réalisée par exemple entre 0 et 0,25 V/ECS dans une solution de chlorure de potassium à 0,01 M. Cette dernière étape peut être réalisée collectivement pour l'ensemble des cellules électrochimiques présentes sur un même élément support, ou individuellement après l'étape d'assemblage et de conditionnement à la phase liquide qui sera décrite ci- après. On obtient alors sur la couche d'argent 74, une couche superficielle de chlorure d'argent 76, comme représenté sur la figure 5f.
Une fois ces étapes réalisées, le processus technologique de réalisation de la cellule électrochimique est terminé. On obtient des microélectrodes dont la surface active est formée de métal pur, et qui présentent de bonnes propriétés électrochimiques.
Dans le cas d'une fabrication collective d'une pluralité de cellules sur un même élément support, une dernière étape dite d'assemblage et de conditionnement à la phase liquide est nécessaire pour récupérer les structures à l'unité. Elle regroupe la découpe de l'élément support selon les chemins de découpe précédemment définis, le report et le câblage de chaque composant (correspondant à une cellule électrochimique) sur une plaquette de circuit imprimé 6, et le conditionnement final au sein d'un dispositif spécifique à l'application de l'analyse des propriétés antioxydantes de la peau.
Ce dispositif comprend des moyens de génération et de régulation des tensions électriques tels qu'un potentiostat, et des moyens d'acquisition et de traitement des signaux électriques générés au niveau des microélectrodes par la réaction électrolytique d'une substance cible, qui sont classiques en eux- mêmes.
La mise en œuvre d'une telle technologie de fabrication issue du domaine de la microélectronique offre notamment l'avantage d'une grande souplesse de fabrication du point de vue des géométries souhaitées pour les électrodes.
Toute autre méthode classique de fabrication des circuits imprimés entre également dans le cadre de l'invention, dans la mesure toutefois où il est assuré que tous les matériaux susceptibles d'entrer en contact avec la peau lors de l'utilisation du dispositif soient compatibles pour cette mise en contact.
Le dispositif selon l'invention permet le dosage de marqueurs des propriétés antioxydantes à la surface de la peau, ainsi que la mesure du pH à cette surface. Il peut être mis en œuvre de la façon décrite ci-après.
L'élément support 2 est appliqué contre une surface de peau, par sa face supérieure 21 , de telle sorte que les microélectrodes viennent simultanément en contact direct avec la peau. Pour cela, il est avantageusement manipulé par la plaquette 6.
La mise en contact des microélectrodes avec la peau est permise par la déformation élastique de la peau ou de la partie d'extrémité 22 de l'élément 2 qui les porte, et qui n'est pas fixée contre la plaquette 6.
Sous l'effet de la pression exercée sur la peau par l'élément support 2, le film liquide hydrolipidique, contenant les substances antioxydantes présentes à la surface de la peau, ainsi que les ions responsables du pH cutané, crée un canal conducteur entre les différentes microélectrodes.
A titre d'exemple, pour la détermination des propriétés antioxydantes et des ions chlorures de la peau, on utilise une cellule électrochimique selon l'invention, comportant une première microélectrode de travail en or, une deuxième microélectrode de travail en tungstène et oxyde de tungstène, une troisième microélectrode de travail en platine, une quatrième microélectrode de travail en argent, une microélectrode auxiliaire en platine et une microélectrode de référence en argent et chlorure d'argent, déposées sur un élément support de silicium comme décrit ci-avant. Cette cellule est reliée à un multipotentiostat, qui permet d'appliquer une différence de potentiel variable ΔΕ entre chacune des microélectrodes de travail et la microélectrode de référence, et de mesurer le courant I traversant le circuit comportant la microélectrode auxiliaire et chacune des microélectrodes de travail.
On réalise une analyse par voltammétrie à balayage linéaire du potentiel. On enregistre un voltammogramme cyclique pour chacune des microélectrodes de travail pour des potentiels compris entre des valeurs bornes choisies pour chacune des microélectrodes, à une vitesse de balayage comprise entre 10 mv/s et 1 V/s, de préférence environ égale à 50 mV/s. Le voltammogramme est défini de façon classique comme une courbe indiquant le courant I d'électrolyse traversant le circuit constitué d'une microélectrode de travail et de la microélectrode auxiliaire, en fonction de la différence de potentiel ΔΕ appliquée. La détection des différentes espèces présentes à la surface de la peau est effectuée par l'intermédiaire du potentiel de demi-vague, ou du potentiel de pic du signal ampérométrique d'oxydation, sur les voltammogrammes. Ce potentiel est caractéristique de chaque système oxydo- réducteur. La quantité de chacune des espèces est liée à l'intensité du courant au potentiel de demi-vague correspondant.
Par exemple, le balayage de potentiel peut être réalisé de la façon suivante : - microélectrode de travail en platine : cycle de potentiel entre -0,4
Figure imgf000022_0001
- microélectrode de travail en or : cycle de potentiel entre -0,2 V/Ef et 1 ,5 V/Eréf
- microélectrode de travail en argent : cycle de potentiel entre -0,8
V/Eréf et O,6 V/Eréf,
où Ef est le potentiel de la microélectrode de référence.
Sur les voltammogrammes obtenus, la partie haute de la courbe correspond de façon classique à l'oxydation, et la partie basse correspond à la réduction.
Simultanément, on réalise la mesure de la différence de potentiel ΔΕ à courant I nul entre la microélectrode de travail en tungstène et oxyde de tungstène et la microélectrode de référence.
Le temps de mesure total est inférieur à 1 minute. Les mesures s'effectuent par contact direct avec la peau, sans addition de solvant ou de gel ou de modification de la surface des microélectrodes.
A partir de ces mesures, de façon classique :
- l'acide ascorbique est détecté par la mesure du courant d'oxydation enregistré à la microélectrode de travail de platine au potentiel de demi-vague de 0,4 V/Ef. Préférentiellement, la mesure quantitative est effectuée à
- l'acide urique est détecté à un potentiel de demi-vague autour de 0,8 V/Eréf. Préférentiellement, la quantification de l'acide urique est effectuée par la mesure du courant d'oxydation enregistré à la microélectrode de platine au potentiel de 0,9 V/Eréf, après soustraction du courant d'oxydation au potentiel de 0,6 V/Eréf correspondant à l'acide ascorbique,
- le glutathion est détecté par la mesure du courant d'oxydation à la microélectrode de travail d'or au potentiel de 1 ,2 V/Ef,
- les ions chlorures sont détectés par la mesure du courant d'oxydation avec la microélectrode de travail en argent au potentiel de 0,2 V/Ef. La détermination du pH découle de la mesure de la différence de potentiel à courant nul, entre la microélectrode de travail de tungstène et oxyde de tungstène et la microélectrode de référence. Cette différence de potentiel diminue lorsque le pH augmente, selon une équation déterminée par des calculs à la portée de l'homme du métier, après calibrage préalable du dispositif.
Ce dispositif permet de déterminer, par une méthode non invasive, et avec une très bonne résolution spatio-temporelle, simultanément le pH et l'état d'oxydation de la peau sur une surface inférieure à 10 mm2, pour un temps d'analyse inférieur ou égal à 1 minute. Il est simple et rapide à utiliser, et notamment en ce qui concerne le positionnement des microélectrodes à la surface de la peau, dans une configuration parfaitement reproductible d'une opération de mesure à une autre.
La description ci-avant illustre clairement que par ses différentes caractéristiques et leurs avantages, la présente invention atteint les objectifs qu'elle s'était fixés. En particulier, elle fournit un dispositif électrochimique pour la détermination des propriétés antioxydantes de la peau, dont la cellule électrochimique peut être fabriquée à faible coût par les technologies de la microélectronique, et qui permet d'obtenir de façon simple et rapide des informations concernant les propriétés antioxydantes de la peau, par un dosage simultané non invasif, localisé, de bonne résolution, et effectué dans des conditions reproductibles, d'une pluralité de substances cibles présentes sur une surface de peau réduite.

Claims

REVENDICATIONS
1. Dispositif pour la détermination de propriétés antioxydantes de la peau, comprenant une cellule électrochimique (1 ) qui comporte une pluralité de microélectrodes (31 , 32, 33), des moyens de génération et de traitement d'une tension électrique entre une desdites microélectrodes, dite microélectrode de référence (32), et au moins une autre microélectrode, dite microélectrode de travail (33), et des moyens d'acquisition et de traitement d'un courant électrique circulant au niveau de ladite microélectrode de travail (33) en présence d'une substance cible, caractérisé en ce que l'ensemble desdites microélectrodes sont constituées par des dépôts de matériaux électriquement conducteurs formés sur un même élément support isolant (2), de manière telle que lesdites microélectrodes (31 , 32, 33) soient aptes à être appliquées simultanément contre une surface de peau.
2. Dispositif selon la revendication 1 , caractérisé en ce que les microélectrodes (31 , 32, 33) sont disposées sur une même partie d'extrémité longitudinale (22) de l'élément support (2).
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que les microélectrodes (31 , 32, 33) sont reliées, par des pistes électriquement conductrices (4) déposées sur l'élément support (2), à des plots (5) de connexion vers lesdits moyens de génération et de traitement d'une tension électrique et lesdits moyens d'acquisition et de traitement des courants électriques, lesdits plots de connexion (5) étant de préférence disposés sur une partie d'extrémité longitudinale (23) de l'élément support opposée auxdites microélectrodes.
4. Dispositif selon la revendication 2 ou 3, caractérisé en ce que l'élément support (2) est fixé, par une partie d'extrémité longitudinale (23) opposée auxdites microélectrodes, sur une plaquette de circuit imprimé (61 ) assurant une connexion électrique des microélectrodes (31 , 32, 33) avec lesdits moyens de génération et de traitement d'une tension électrique et lesdits moyens d'acquisition et de traitement des courants électriques.
5. Dispositif selon la revendication 3 ou 4, caractérisé en ce qu'une couche (75) d'un matériau électriquement isolant d'épaisseur inférieure ou égale à 3 μιτι recouvre l'ensemble des pistes conductrices formées sur l'élément support (2), à l'exception desdites microélectrodes (31 , 32, 33) et desdits plots de connexion (5).
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que chaque microélectrode de travail (33) présente une surface active comprise entre 1 et 2 000 μιτι2.
7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la microélectrode de référence (32) présente une surface active comprise entre 10 et 80 000 μιτι2.
8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'une des microélectrodes, dite microélectrode auxiliaire (31 ), présente une surface active comprise entre 10 et 600 000 μιτι2.
9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que lesdites microélectrodes (31 , 32, 33) sont rassemblées sur une surface de l'élément support (2) inférieure à 10 mm2.
10. Procédé de fabrication d'un dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les différents matériaux constituant les microélectrodes (31 , 32, 33) sont déposés l'un après l'autre sur l'élément support (2) au cours d'étapes successives de photolithographie et de dépôt en phase vapeur.
11. Procédé de détermination de propriétés antioxydantes de la peau au moyen d'un dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'on applique l'élément support (2) contre une surface de peau, de telle sorte que les surfaces actives desdites microélectrodes (31 , 32, 33) soient en contact direct et simultané avec la peau, et on mesure le courant électrique circulant au niveau d'une microélectrode de travail (33) sous l'effet d'une différence de potentiel appliquée entre la microélectrode de référence (32) et ladite microélectrode de travail (33).
12. Procédé selon la revendication 1 1 , caractérisé en ce que les mesures sont réalisées pendant un temps inférieur à 2 minutes, de préférence inférieur ou égal à 1 minute.
PCT/EP2010/068147 2009-11-25 2010-11-24 Dispositif électrochimique pour la détermination de propriétés antioxydantes de la peau WO2011064265A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0958336A FR2952800B1 (fr) 2009-11-25 2009-11-25 Dispositif electrochimique pour la determination de proprietes antioxydantes de la peau
FR0958336 2009-11-25

Publications (1)

Publication Number Publication Date
WO2011064265A1 true WO2011064265A1 (fr) 2011-06-03

Family

ID=42470633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068147 WO2011064265A1 (fr) 2009-11-25 2010-11-24 Dispositif électrochimique pour la détermination de propriétés antioxydantes de la peau

Country Status (2)

Country Link
FR (1) FR2952800B1 (fr)
WO (1) WO2011064265A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539501A (zh) * 2011-11-15 2012-07-04 厦门大学 一种测量细胞内pH的微电极及其制备方法
FR3043208A1 (fr) * 2015-11-03 2017-05-05 Univ De Lorraine Procede et dispositif de mesure de la capacite antioxydante et oxydante totale d'une matrice quelconque
WO2021110279A1 (fr) * 2019-12-06 2021-06-10 Bright Spark B.V. Capteur ampèremétrique de mesure du chlore libre avec électrode de référence présentant une surface d'électrode en or composée d'une chaîne de parties de surface espacées reliées électriquement
CN114113260A (zh) * 2021-11-11 2022-03-01 中南大学 一种检测金黄色葡萄球菌的微电极传感器及其制备方法与应用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094529A1 (fr) * 2005-03-11 2006-09-14 Edel Therapeutics S.A. Procede et dispositif pour le pseudotitrage de substances antioxydantes
FR2895226A1 (fr) * 2005-12-26 2007-06-29 Lvmh Rech Dispositif et procede electrochimiques de mesure de l'etat redox de la peau
WO2007115694A2 (fr) * 2006-04-10 2007-10-18 Diagnoswiss S.A. Biocapteur miniaturise avec detection amperometrique optimisee
FR2891131B1 (fr) 2005-09-23 2008-07-04 Fabre Pierre Dermo Cosmetique Dispositif et procede de determination du ph et de marqueurs de proprietes antioxydantes de la peau
EP2087838A1 (fr) * 2008-02-05 2009-08-12 Ikerlan, S. Coop. Processus de métallisation pour obtenir une microélectrode sur un substrat à mise en forme photo et son application biomédicale sur un dispositif de surveillance de transplantation d'un organe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094529A1 (fr) * 2005-03-11 2006-09-14 Edel Therapeutics S.A. Procede et dispositif pour le pseudotitrage de substances antioxydantes
FR2891131B1 (fr) 2005-09-23 2008-07-04 Fabre Pierre Dermo Cosmetique Dispositif et procede de determination du ph et de marqueurs de proprietes antioxydantes de la peau
FR2895226A1 (fr) * 2005-12-26 2007-06-29 Lvmh Rech Dispositif et procede electrochimiques de mesure de l'etat redox de la peau
WO2007115694A2 (fr) * 2006-04-10 2007-10-18 Diagnoswiss S.A. Biocapteur miniaturise avec detection amperometrique optimisee
EP2087838A1 (fr) * 2008-02-05 2009-08-12 Ikerlan, S. Coop. Processus de métallisation pour obtenir une microélectrode sur un substrat à mise en forme photo et son application biomédicale sur un dispositif de surveillance de transplantation d'un organe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539501A (zh) * 2011-11-15 2012-07-04 厦门大学 一种测量细胞内pH的微电极及其制备方法
FR3043208A1 (fr) * 2015-11-03 2017-05-05 Univ De Lorraine Procede et dispositif de mesure de la capacite antioxydante et oxydante totale d'une matrice quelconque
WO2017077237A1 (fr) * 2015-11-03 2017-05-11 Universite De Lorraine Procede et dispositif de mesure de la capacite antioxydante et oxydante totale d'une matrice quelconque
WO2021110279A1 (fr) * 2019-12-06 2021-06-10 Bright Spark B.V. Capteur ampèremétrique de mesure du chlore libre avec électrode de référence présentant une surface d'électrode en or composée d'une chaîne de parties de surface espacées reliées électriquement
CN114113260A (zh) * 2021-11-11 2022-03-01 中南大学 一种检测金黄色葡萄球菌的微电极传感器及其制备方法与应用方法

Also Published As

Publication number Publication date
FR2952800B1 (fr) 2012-02-03
FR2952800A1 (fr) 2011-05-27

Similar Documents

Publication Publication Date Title
JP4314319B2 (ja) インピーダンス測定を使用するセンサー
EP1872116B1 (fr) Procede utilisant un capteur electrochimique et electrodes formant ce capteur
JP5120453B2 (ja) 炭素電極、電気化学センサ、および炭素電極の製造方法
Revzin et al. Glucose, lactate, and pyruvate biosensor arrays based on redox polymer/oxidoreductase nanocomposite thin-films deposited on photolithographically patterned gold microelectrodes
Niwa Electroanalysis with interdigitated array microelectrodes
JP4283880B2 (ja) 電気化学測定用電極板、およびこの電極板を有する電気化学測定装置、ならびにこの電極板を用いて目的物質を定量する方法
Hepel et al. Electrochemical characterization of electrodes with submicrometer dimensions
Dijksma et al. Formation and electrochemical characterization of self-assembled monolayers of thioctic acid on polycrystalline gold electrodes in phosphate buffer pH 7.4
WO2010067083A9 (fr) Electrochimie à nanotubes
WO2011064265A1 (fr) Dispositif électrochimique pour la détermination de propriétés antioxydantes de la peau
WO2022136785A1 (fr) Dispositif de surveillance corporelle a gamme de detection etendue
Neubert et al. Faradaic effects in electrochemically gated graphene sensors in the presence of redox active molecules
EP0780684A1 (fr) Microcapteurs et microsystèmes électrochimiques intégrés fiables pour l'analyse chimique directe de composés en milieux aqueux complexes
WO2007077360A1 (fr) Dispositif et procede electrochimiques de mesure de l'etat redox de la peau
WO2008012197A1 (fr) Systeme electrochimique de dosage d'un compose biologique par une enzyme
Yu et al. An independently addressable microbiosensor array: What are the limits of sensing element density?
Griffith et al. Probing enzyme polymer biosensors using X-ray photoelectron spectroscopy: Determination of glucose oxidase in electropolymerised films
JPH03179248A (ja) 電気化学分析用微小孔アレイ電極およびその製造方法
FR2874385A1 (fr) Procede et dispositif de mesure d'une activite enzymatique dans un fluide biologique
Dawson et al. Nanofabrication of robust nanoelectrodes for electrochemical applications
WO2021105122A1 (fr) Detection d'une espece chimique dans la sueur d'un sujet
EP1551297B1 (fr) Dispositif et procede de mesure directe de ph et d'etat d'oxydation
JPH09127039A (ja) 電気化学検出器及びその製造方法
JP2590004B2 (ja) くし形修飾微小電極セルおよびその製造方法
WO2023187217A1 (fr) Réseaux de microélectrodes optiquement transparents pour des mesures ou une stimulation électrochimiques et électrophysiologiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10782599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10782599

Country of ref document: EP

Kind code of ref document: A1