WO2011063821A1 - Revêtement pour modules photovoltaïques - Google Patents
Revêtement pour modules photovoltaïques Download PDFInfo
- Publication number
- WO2011063821A1 WO2011063821A1 PCT/EP2009/008391 EP2009008391W WO2011063821A1 WO 2011063821 A1 WO2011063821 A1 WO 2011063821A1 EP 2009008391 W EP2009008391 W EP 2009008391W WO 2011063821 A1 WO2011063821 A1 WO 2011063821A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- coating
- transmittance
- photovoltaic modules
- module
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 23
- 239000011248 coating agent Substances 0.000 title claims abstract description 21
- 230000005855 radiation Effects 0.000 claims abstract description 22
- 238000002834 transmittance Methods 0.000 claims abstract description 18
- 229920002635 polyurethane Polymers 0.000 claims abstract description 9
- 239000004814 polyurethane Substances 0.000 claims abstract description 9
- 238000005299 abrasion Methods 0.000 claims abstract description 8
- 230000000694 effects Effects 0.000 claims abstract description 6
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 4
- 239000010431 corundum Substances 0.000 claims abstract description 4
- 230000009477 glass transition Effects 0.000 claims abstract description 4
- AIXMJTYHQHQJLU-UHFFFAOYSA-N chembl210858 Chemical compound O1C(CC(=O)OC)CC(C=2C=CC(O)=CC=2)=N1 AIXMJTYHQHQJLU-UHFFFAOYSA-N 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a coating for photovoltaic modules.
- Solar systems with photovoltaic modules represent emission-free and therefore environmentally friendly energy sources, which can also enable a decentralized and independent power supply. For this reason, photovoltaic modules for power generation in recent years enjoy increasing popularity. Meanwhile, they are also operated in regions where changeable weather conditions prevail and the profitability of such solar systems is limited.
- the efficiency of the modules also depends on their operating temperature. As the operating temperature rises, the efficiency of the modules drops sharply. Due to the infrared component in sunlight, it may therefore be the case that even in strong sunlight, the photovoltaic module is not operated with optimum yield and the UV radiation contained in sunlight is converted unsatisfactory in electrical energy.
- the two problems described above may occur together, for example in desert regions, which in themselves offer good conditions for the operation of solar systems due to the strong insolation.
- grains of sand produce a strong abrasion on the surfaces of the modules, resulting in the above-described effect of lowering the efficiency.
- the strong daytime heat in the desert leads to an excessive increase in the operating temperature, with the said episode of the further decline in the efficiency of energy production.
- the coating according to the invention is a layer based on an elastomeric polyurethane (PUR), which is applied to the surface of the module.
- PUR elastomeric polyurethane
- This layer may optionally be provided with suitable additives and form a layer or film optionally applied by hand or by machine to the module surface.
- the material of the layer is chosen so that a transmittance of about 0.5 is achieved for infrared radiation, while for ultraviolet radiation, a transmittance of at least 0.95, so approximately 1 is achieved. This means that only 50% of the incident infrared radiation is transmitted through the coating and penetrates to the module, thus contributing to the heating of the module. The remaining infrared radiation is preferably reflected. Since only the ultraviolet radiation contributes to the generation of electrical energy in the photovoltaic module, the transmittance of 0.5 for the infrared radiation does not affect the efficiency of the module by any means. In ultraviolet Rather, the radiation is transmitted to almost 100% to the module rich.
- the coating according to the invention blocks or reflects only the radiation components which reduce the efficiency of the module due to the introduction of heat, and allows the UV component contributing to the generation of electricity to pass through almost completely.
- the layer also has a high resistance, elasticity and repellency to foreign bodies on the surface.
- the abrasion resistance of the coating is defined so that after irradiation of 10 cm 2 of the surface of the layer over a period of 8 minutes at a pressure of 8 bar with corundum grains with a diameter of 200 ⁇ no damage to the surface are detectable , Further, deformation which is generated by impact load of 5 kg on a surface of the 10 cm 2 layer having a depth effect of 80 mm at a temperature of between -45 ° C and 120 ° C is self-reproduced back to the original surface shape before the impact load. This means that the layer, for example, after hailstorm can revert back to its original smooth shape.
- the surface energy of the layer is between 45 and 85 N / m, while the glass transition temperature is -83 ° C.
- the melting temperature is 125 ° C.
- the layer is advantageously designed so that the transmittances in the IR and in the UV range preferably remain constant even for a long period under adverse weather conditions.
- the coating is exposed to an average irradiance of 550 W / m 3 every hour at a wavelength of 290-800 nm.
- rain is simulated by periodically spraying or dipping the coating in water.
- the layer has a tensile strength of 41.4 N / mm 2 .
- a photovoltaic module is coated on its upper side with a layer based on an elastomeric polyurethane (PUR).
- PUR elastomeric polyurethane
- the polyurethane is an elastomer with elastic properties above a glass transition temperature of -83 ° C.
- the melting point of the polyurethane is 125 ° C. This results in a very large temperature range in which the material has elastic properties.
- This elasticity ensures that damage to the surface of the layer automatically regresses.
- the layer may have self-healing properties, such that occurring cracks in the layer close automatically to a certain extent.
- the elasticity is such that deformation exerted by a 5 kg impact load on a surface of the layer of 10 cm 2 such that a depression of 80 mm is formed is in a temperature range of -45 ° C and + 120 ° C automatically recovers and the prevailing before the impact of the original flat surface of the layer is restored.
- This elasticity property leads to a good resistance to hailstorm. Furthermore, the layer has a high abrasion resistance. This was tested by the inventors in an experiment that an area of 10 m 2 of the surface of the layer over a period of 8 minutes at a pressure of 8 bar was irradiated with corundum grains with a diameter of 200 ⁇ . Subsequently, the surface was inspected. It was found that no damage to the surface after irradiation was detectable.
- This abrasion resistance to sand is particularly important for applications in which the photovoltaic modules are to be operated in regions where sandstorms or similar adverse weather conditions can occur.
- the elastic properties and abrasion resistance of this material result in extremely good durability under extreme weather conditions.
- these may also include intensive ultraviolet radiation in the UV-A and UV-B range.
- intensive ultraviolet radiation in the UV-A and UV-B range.
- the layer is such that the ultraviolet radiation, which is converted by the photovoltaic module into electrical energy, is transmitted almost completely from the layer, but the infrared radiation likewise contained in sunlight is reflected approximately halfway. That is, the transmittance Tuv for ultraviolet radiation is approximately 1, while the transmittance TIR for infrared radiation is only about 0.5. In experiments, a transmittance Tuv for ultraviolet radiation of 0.9675 was achieved. This means that the UV radiation is allowed to penetrate to 96.75%, making the coating practically transparent in the UV range.
- the significantly lower transmittance TIR for infrared ensures that the photovoltaic module does not heat up as much as the previously known modules and can therefore be operated with a considerably reduced operating temperature. This significantly increases the efficiency of energy conversion.
- the above-mentioned transmittances TI and Tuv can be maintained for a long time.
- the coated photovoltaic modules tested in this experiment were moistened cyclically in a weathering chamber. It was found that, irrespective of the duration of the test under DIN EN ISO 1 1341 and regardless of the weathering conditions, no measurable changes in the transmittances TIR and Tuv occurred. This means that the transmittance in the IR and UV ranges is permanently maintained over a long service life of the photovoltaic modules.
- the layer is therefore designed to have a high surface energy of 45 to 85 N / m.
- the surface tension is so high that foreign matter such as pollen, dust or the like are rejected from the surface of the layer or washed off at the latest with the next precipitation.
- the tensile strength of the layer is calculated to be 41.4 N / mm 2 .
- the coating according to the invention for photovoltaic modules described in this exemplary embodiment has outstanding elastic properties which render the coated module insensitive to damage and the effects of weathering. Furthermore, the module imparts a different degree of transmission in the UV range and in the IR range due to the coating, so that the infrared radiation can not heat the photovoltaic module very strongly, but the conversion of UV radiation into electrical energy is not is hampered. Transmittances TIR and Tuv in the infrared and ultraviolet ranges are also maintained over the lifetime of the photovoltaic module.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
L'invention concerne un revêtement pour modules photovoltaïques constitué par une couche à base d'un polyuréthane élastomère, laquelle est appliquée sur la surface du module et présente un degré de transmission TiR d'environ 0,5 pour le rayonnement infrarouge et un degré de transmission Tuv d'environ 1 pour le rayonnement ultraviolet et est en outre caractérisée par les propriétés suivantes: une résistance à l'abrasion qui est définie en ce qu'après une projection de grains de corindon d'un diamètre de 200 µm sur 10 cm2 de la surface de la couche sur une période de temps de 8 min à une pression de 8 bar, aucun endommagement de la surface n'est détectable; une élasticité qui est définie en ce qu'une déformation, qui est produite par un choc avec un poids de 5 kg sur une surface de la couche de 10 cm2 avec un effet en profondeur de 80 mm à une température entre -45°C et 120°C, revient automatiquement à la forme de surface initiale; une énergie de surface entre 45 et 85 N/m; et une température de transition vitreuse entre -83° C et 125° C.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09759683A EP2504865A1 (fr) | 2009-11-25 | 2009-11-25 | Revêtement pour modules photovoltaïques |
PCT/EP2009/008391 WO2011063821A1 (fr) | 2009-11-25 | 2009-11-25 | Revêtement pour modules photovoltaïques |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2009/008391 WO2011063821A1 (fr) | 2009-11-25 | 2009-11-25 | Revêtement pour modules photovoltaïques |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011063821A1 true WO2011063821A1 (fr) | 2011-06-03 |
Family
ID=42288828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/008391 WO2011063821A1 (fr) | 2009-11-25 | 2009-11-25 | Revêtement pour modules photovoltaïques |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2504865A1 (fr) |
WO (1) | WO2011063821A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013009309A1 (fr) * | 2011-07-13 | 2013-01-17 | Voelkner Harold E | Panneau de cellules photovoltaïques cristallines flexible, à densité de puissance élevée et à longue durée |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5637156A (en) * | 1994-09-22 | 1997-06-10 | Semiconductor Energy Laboratory Co., Ltd. | Resin Composition and an electronic device using the same |
US20020148496A1 (en) * | 2001-01-17 | 2002-10-17 | Karl-Heinz Dorner | Solar modules with a transparent polyurethane front side and a process for producing same |
-
2009
- 2009-11-25 EP EP09759683A patent/EP2504865A1/fr not_active Withdrawn
- 2009-11-25 WO PCT/EP2009/008391 patent/WO2011063821A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5637156A (en) * | 1994-09-22 | 1997-06-10 | Semiconductor Energy Laboratory Co., Ltd. | Resin Composition and an electronic device using the same |
US20020148496A1 (en) * | 2001-01-17 | 2002-10-17 | Karl-Heinz Dorner | Solar modules with a transparent polyurethane front side and a process for producing same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013009309A1 (fr) * | 2011-07-13 | 2013-01-17 | Voelkner Harold E | Panneau de cellules photovoltaïques cristallines flexible, à densité de puissance élevée et à longue durée |
Also Published As
Publication number | Publication date |
---|---|
EP2504865A1 (fr) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2756526B1 (fr) | Matières polymères pour utilisations extérieures présentant des propriétés de surface autorégénératrices après la formation d'éraflures ou un endommagement par abrasion | |
EP2970558A1 (fr) | Traitement de surface à base de fluoropolymères réticulables | |
EP0281586B1 (fr) | Plaque stratifiee decorative et son procede de production | |
DE112012003531B4 (de) | Solarmodul und Verfahren zu seiner Herstellung | |
DE112014004063T5 (de) | Polyesterpolyol, Polyolpräparat für Kaschierkleber, Harzzusammensetzung, härtbare Harzzusammensetzung, Kaschierkleber, und Rückseitenfolie für Solarzellen | |
EP2421053A2 (fr) | Générateur photovoltaïque à surfaces libres tourné en direction du ciel | |
DE112010002848T5 (de) | Beschichtungsmittel für ein solarzellenmodul, solarzellenmodul undverfahren zum herstellen des solarzellenmoduls | |
DE102011003311A1 (de) | Langlebiger optischer Konzentrator auf Basis einer speziellen, aus polymeren Werkstoffen hergestellten, Fresnellinse für die solare Energiegewinnung | |
DE112009004290B4 (de) | Variable Sammellinsenvorrichtung und Solarzellenvorrichtung | |
WO2011063821A1 (fr) | Revêtement pour modules photovoltaïques | |
EP2529414A2 (fr) | Module concentrateur de luminescence à couche active renouvelable | |
DE102011101908A1 (de) | Glasloses Solarzellen-Laminat und Verfahren zu seiner Herstellung (extrusion coating) | |
EP1651584A1 (fr) | Protection de surface multicouche pour du beton arme, destinee a ameliorer la protection contre la corrosion d'edifices en beton arme ou de parties structurales en beton arme, et procede de production de ladite protection | |
EP3796397A1 (fr) | Élément photovoltaïque | |
DE102010015848A1 (de) | Solarmodul oder Solarzelle mit optisch funktionaler witterungsbeständiger Oberflächenschicht | |
DE102010025396A1 (de) | Mehrschichtiger Gegenstand | |
DE102009010990A1 (de) | Solarzellenmodul und Verfahren zu seiner Herstellung | |
EP2597681A1 (fr) | Couche de protection pour modules photovoltaïques et son procédé de fabrication | |
DE202011107554U1 (de) | Photovoltaik-Freiflächenanlage | |
EP0881384A1 (fr) | Rotor d'éolienne | |
DE102011006321A1 (de) | Photovoltaik-Modul mit selbstheilender Schutzschicht, Verfahren zum Herstellen des Photovoltaik-Moduls, Verfahren zum Heilen einer Schadstelle der Schutzschicht des Photovoltaik-Moduls und Verwendung des Photoviltaik-Moduls | |
EP2228098B1 (fr) | Plaque pour s'allonger destinée à un appareil de bronzage, appareil de bronzage et procédé de fabrication d'une plaque pour s'allonger | |
DE202012101113U1 (de) | Sandwich-Abdichtung | |
DE112020005265B4 (de) | Mikroeutektisches Verfahren zum Erhöhen eines Hochtemperatur- und Hochliniendrucks basierend auf der Festigkeit einer PTFE-Membran | |
CN209368175U (zh) | 一种多功能窗膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09759683 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009759683 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |