WO2011063616A1 - 运动目标自动跟踪的装置和方法 - Google Patents

运动目标自动跟踪的装置和方法 Download PDF

Info

Publication number
WO2011063616A1
WO2011063616A1 PCT/CN2010/070307 CN2010070307W WO2011063616A1 WO 2011063616 A1 WO2011063616 A1 WO 2011063616A1 CN 2010070307 W CN2010070307 W CN 2010070307W WO 2011063616 A1 WO2011063616 A1 WO 2011063616A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
template
image
feature
tracking
Prior art date
Application number
PCT/CN2010/070307
Other languages
English (en)
French (fr)
Inventor
全晓臣
贾永华
胡扬忠
邬伟琪
Original Assignee
杭州海康威视软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视软件有限公司 filed Critical 杭州海康威视软件有限公司
Publication of WO2011063616A1 publication Critical patent/WO2011063616A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/248Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Definitions

  • the present invention relates to an apparatus and method for automatically tracking a moving object. More specifically, the present application relates to a moving object that enables a fastball to automatically detect an abnormal moving target in a preset position, and can continuously adjust its own posture and magnification value. A device and method of tracking that keeps the target at a center of the target at a certain size, resulting in rich details of the target. Background technique
  • the fastball needs to have the function of automatic tracking, to automatically detect the abnormal target, and to automatically adjust the focal length and position so that the target is always at the center of the field of view with a predetermined size, and the target rich information is obtained, and the alarm is immediately notified.
  • Informing the relevant personnel to deal with it is an active monitoring method, which greatly exerts the practical application value of the fastball.
  • Fastball automatic tracking mainly involves two modules of image analysis and automatic control.
  • the image analysis module obtains the information of the fast track automatic tracking, which is executed by the automatic control module to control the fastball.
  • the analysis information of the master-slave camera tracking system comes from the static camera in the system, that is, the main camera. After the analysis information is transmitted to the fastball, the fastball is controlled to automatically track the target.
  • a single fastball tracking means that the fastball uses its own image information for analysis, and after receiving the information, the fastball itself is controlled to track the target.
  • the master-slave camera tracking system increases the cost by requiring the cooperation of at least one static camera, and the calibration between the static camera and the fastball is also a complicated process.
  • Single fast track tracking can be done automatically with only one fast ball, so the cost is low, and many research institutes and companies have also carried out research and application in this area.
  • Bosch's auto t rack fastball uses motion-based target tracking, which is used for small movements of moving targets, such as when moving against a fastball. The effect is not good, and it is easily interfered by the background moving target, such as the reflection of glass. Summary of the invention
  • a moving object automatic tracking device including: a tracking target selection unit, configured to select a moving target tracked by the moving target automatic tracking device; a target feature initializing unit, configured to perform tracking The moving target selected by the target selecting unit performs feature initialization to obtain a feature template of the moving target; and the template matching unit is configured to perform feature-based template matching according to the feature template of the moving target initialized by the target feature initializing unit to generate image matching a motion attribute calculation unit, configured to calculate a motion attribute of a feature template of the motion target; a template update unit, configured to update the feature template according to a motion attribute of the feature template of the motion target calculated by the motion attribute calculation unit; and target search a unit, configured to perform a search of the target to be tracked according to a motion attribute of the feature template of the motion target calculated by the motion attribute calculation unit; and a control module configured to generate the image matching information generated by the template matching unit Command system to automatically track moving targets.
  • a tracking target selection unit configured to select a moving target tracked by the moving target automatic tracking device
  • the motion attribute calculation unit further includes: a difference image calculation portion that performs image registration on the image of the previous frame to obtain a compensation map of the current frame, and performs the compensation map of the current frame and the image of the current frame.
  • the difference is obtained as a binary image;
  • the ratio calculation part calculates a foreground value of the difference image in a rectangular frame corresponding to the feature template, and counts a ratio of the number of the front attractions to the entire rectangular frame; wherein the motion attribute calculation unit is greater than the ratio
  • the motion attribute is determined to be dynamic, and when the ratio is less than a threshold, the motion attribute is determined to be static.
  • the template update unit performs update of the feature template.
  • the target search unit when the motion attribute calculation unit determines that the motion attribute of the feature template is static, performs a search for the feature template of the target to perform new tracking or end the current tracking.
  • a method for automatically tracking a moving object comprising: an image analyzing step of performing image analysis on an image as a tracking target by using a feature point based tracking method to generate an automatic motion target Tracking control information, the image analyzing step further comprising: a tracking target selecting step for selecting a moving target tracked by the moving target automatic tracking method; a target feature initializing step for selecting a target selected by the tracking target selecting step Performing feature initialization to obtain a feature template of the moving target; a template matching step of performing feature-based template matching according to the feature template of the moving target initialized by the target feature initializing step to generate image matching information; Calculating a motion attribute of the feature template of the moving target; a target drift determining step, determining whether the target has drift
  • the motion attribute calculation step further includes: a difference image calculation step of performing image registration on the image of the previous frame to obtain a compensation map of the current frame, and distinguishing the compensation map of the current frame from the image of the current frame. Obtaining a binary image; a proportional calculation step, calculating a foreground value of the difference image in a rectangular frame corresponding to the feature template, and counting the proportion of the number of the front attractions to the entire rectangular frame.
  • the target drift determination step determines that the motion attribute is dynamic when the ratio calculated by the proportional calculation step is greater than a threshold, and determines that the motion attribute is static when the ratio is less than a threshold of.
  • the invention adopts the method based on feature point tracking, and can obtain better tracking for the small movement or even the static state of the moving target, can effectively suppress the interference of the background motion, and obtain a relatively smooth and stable tracking.
  • FIG. 1 is a system block diagram showing an overall configuration of a moving object tracking device according to the present invention
  • FIG. 2 is a block diagram showing a specific configuration of an image analyzing module of a moving object tracking device according to the present invention
  • FIG. 3 is a block diagram showing a specific configuration of a control module 102 of the moving object tracking device 100 of the present invention.
  • 4 is a schematic view showing magnification control according to the present invention.
  • Fig. 5 is a specific flow chart showing image analysis in the moving object tracking method of the present invention. detailed description
  • the hardware used is a high speed ball, and mainly includes digital signal processing (DSP), ARM and motor and lens parts.
  • DSP digital signal processing
  • ARM ARM and motor and lens parts.
  • Fig. 1 is a system block diagram showing the overall configuration of a moving subject tracking device 100 according to the present invention.
  • the moving object tracking device 100 includes an image analysis module 101, a control module 102, and a step motor and a lens 103.
  • the image analysis module 101 is on the DSP and the control module 102 is on the ARM.
  • the control module 102 sends a control command to the stepping motor and the lens 103 according to the control information obtained by the image analyzing module 101 to drive the stepping motor and the lens 103, thereby continuously adjusting the panning value, the pitch value and the magnification value of the lens to make the target Always at the center of the image field of view at a predetermined size.
  • the panning value of the lens indicates the value of the panning angle (ie, the horizontal direction) of the lens
  • the pitch value of the lens indicates the value of the pitch angle of the lens (ie, the vertical direction)
  • the magnification value of the lens indicates the magnification of the lens (ie, The value of the enlargement/reduction magnification in the front-rear direction).
  • the image analysis module 101 receives images from the stepper motor and the lens 103 for image analysis.
  • the image analysis module 101 first detects an abnormal target in a preset position with a large field of view. If an abnormal target is detected, the feature template of the target is extracted, and the target is searched for in the subsequent image.
  • Fig. 2 is a block diagram showing a specific configuration of an image analysis module 101 of the moving object tracking device 100 according to the present invention.
  • the image analysis module 101 includes a tracking target selection unit 201, a target feature initialization unit 202, a template matching unit 203, a motion attribute calculation unit 204, a template update unit 205, and a target search unit 206.
  • a tracking target selection unit 201 the image analysis module 101 includes a tracking target selection unit 201, a target feature initialization unit 202, a template matching unit 203, a motion attribute calculation unit 204, a template update unit 205, and a target search unit 206.
  • each unit of the image analysis module 101 will be specifically described as follows.
  • a target to be tracked for image analysis is selected.
  • the target to be tracked there are two ways to select the target to be tracked: First, use the human-computer interaction method to specify the target in the video. The person can use the mouse to click on the target of interest in the video, and then the fastball automatically tracks. The second is to automatically obtain the tracking target through event detection. If there is an abnormal target, it triggers a warning rule that crosses the warning line and enters the warning area.
  • the target feature initializing unit 202 is connected to the tracking target selecting unit 201, and performs feature initialization on the target to be subjected to image analysis selected by the tracking target selecting unit 201. Due to the use of the present invention
  • the feature-based tracking method is such that the feature template of the target is a gray area near the target feature point, and the feature point is a manual point or a center point of the detection target.
  • the template matching unit 203 is connected to the target feature initializing unit 202, which performs feature-based template matching based on the feature initialized by the target feature initializing unit 202, and finds the region that best matches the target in the current image according to the template of the target.
  • the Lucas-Kanade feature point tracking method is employed.
  • the purpose of the Lucas-Kanade algorithm is to search the current image for the amount of displacement so that the matching error of the neighborhood associated with the corresponding point is minimized.
  • the feature point P in A is ( X , T , the offset is 6 ⁇ , 1 ⁇ , then the corresponding cost function is defined in the corresponding feature point P + on the local neighborhood WW of ⁇ :
  • Lucas-Kanade algorithm is a Newton gradient descent method that can obtain better solutions through multiple iterations.
  • the position of the target in the image may change greatly due to the change of magnification.
  • the image is pyramid-decomposed, and the target is searched from coarse to fine.
  • the motion attribute calculation unit 204 is connected to the template matching unit 203 to calculate the template motion attribute of the motion target.
  • the attitude of the target and the lighting of the environment will change. If the target's clue template is not updated, the target's change is not reflected in time, the reliability of the clue template is reduced, and the tracking failure is easy. . Therefore, the latest matching value of the target is also included in the target template.
  • the specific formula is as follows:
  • the present invention uses the motion properties of the template to determine whether the target has drifted. If the feature template motion attribute is dynamic, it indicates that no drift has occurred, and in normal tracking, the template update unit 205 operates. If the feature template motion attribute is static, then a drift has occurred and the target search unit 206 is operational.
  • the motion attribute calculation unit 204 may further include a difference image calculation portion 301 and a scale calculation portion 302.
  • the difference image calculation portion 301 calculates the compensated difference image, which compensates the previous frame image by the image registration method to obtain a compensation map with respect to the current frame, and then obtains a binary image by differentiating from the current frame image. Since the immobile background has been compensated by the image registration method, the binary image shows the information of the moving target.
  • the ratio calculating part 302 calculates the proportion of the motion attribute, wherein the foreground value of the difference image is calculated in the rectangular frame corresponding to the feature template, and the number of the pre-statistical points accounts for the proportion of the entire rectangular frame, and if the ratio is greater than a certain threshold, the motion attribute is Dynamically, if it is less than a certain threshold, the motion attribute is static.
  • the target search unit 206 if the feature template motion attribute is static, there are two possibilities, one is that the template drifts to the background, and the other is that the target leaves the monitoring range of the fastball and really disappears. Re-finding the target by the frame difference method. If the original moving target is found, it indicates that the template has drifted and a new tracking is started. If the original moving target is not found, it indicates that the target has disappeared and the tracking is ended.
  • control module 102 translates the image matching information from the image analysis module 101 into a control command of the stepper motor, which always faces the target.
  • 3 is a block diagram showing a specific configuration of a control module 102 of the moving object tracking device 100 of the present invention.
  • control module 102 includes an image coordinate conversion unit 401, a speed control unit 402, and a magnification control unit 403.
  • image coordinate conversion unit 401 the control module 102
  • speed control unit 402 the control module 102
  • the image coordinate conversion unit 401 since the information transmitted by the image analysis module 101 to the control module 102 is the coordinate information of the target in the current image, it is based on the image space, and the space controlled by the fastball is the PTZ space, so it is necessary to The image coordinates are converted to PTZ coordinates. If the internal parameters of the fastball, such as the CCD photosensitive element size and the focal length, are known, in the image coordinate conversion unit 401, the correspondence between the image coordinates and the PTZ coordinates can be obtained by the 3D circular rotation.
  • the speed control unit 402 is connected to the image coordinate conversion unit 401, and receives the PTZ coordinates of the target from the image coordinate conversion unit 401, thereby controlling the rotation of the motor. If you use absolute value control, it may cause the picture to be discontinuous.
  • the present invention uses a speed-based control method to differentiate the obtained target PT value from the current motor PT value, assuming that ⁇ is the target ⁇ value in the fast-ball coordinate system, ⁇ , ⁇ ⁇ is The current ⁇ state value of the fastball, ⁇ is the time required to process one frame, and the direction and speed of the fixed motor motion can be determined according to the following formula.
  • magnification control unit 403 since the distance of the moving target from the fastball changes during the tracking phase, appropriate magnification control is required, and if the target is far from the fastball, the magnification is increased if the target approaches the fastball , then the magnification is reduced, and the target is always in a certain size in the scene view.
  • the present invention assumes that the monitoring field of view is the ground plane, and a simple model as shown in Fig. 4 is used.
  • Fig. 4 shows a schematic diagram of the rate control.
  • the distance is proportional to the magnification and satisfies the following relationship: Where z . , . It is a scaling factor that is predetermined according to the actual scene, so if you know i, you can find the magnification ⁇ ⁇ at this time, and then the control module sets the lens to the magnification of ⁇ ⁇ .
  • the automatic tracking method based on the result of performing image analysis on the target image, the panning value, the pitch value, and the magnification value of the lens are constantly adjusted so that the target is always at the center of the image field of view with a certain size.
  • step S1 the target to be tracked is selected.
  • the target to be tracked is selected.
  • the target to be tracked there are two ways to select the target to be tracked: one is to specify the target in the video by means of human-computer interaction, and the person can click on the video to be interested in the video. Goal, then the fastball automatically goes to track. The second is to automatically obtain the tracking target through event detection. If an abnormal target triggers a warning rule that crosses the warning line and enters the warning area, it is preset.
  • step S20 the target feature is initialized. Since the present invention uses the feature-based tracking method, the feature template of the target is a gray area near the target feature point, and the feature point is an artificial target or a center point of the detection target.
  • step S30 feature-based template matching is performed.
  • an area that best matches the target is found in the current image based on the template of the target.
  • the present invention uses the Luca s-Kanade feature point tracking method. Since the Luca s-Kanade method has been described above, a repeated description thereof will be omitted herein.
  • the position of the target in the image may change greatly due to the change of the magnification.
  • the image is pyramid-decomposed, and the target is Thick to thin search.
  • step S40 the motion attribute of the template of the moving object is calculated.
  • the calculation of the motion attribute of the template of the moving object is the same as that described above in connection with the motion attribute calculating unit 204 of the image analyzing module 101, and a repetitive description thereof will be omitted herein.
  • step S50 the present invention judges whether or not the target has drifted by the motion attribute of the template calculated in the above step S40. If the motion attribute of the feature template is dynamic, it indicates that no drift has occurred, and the normal tracking is performed in step S60 to update the template. If the feature template motion attribute is static, it indicates that drift has occurred, and the process proceeds to step S70.
  • the motion attribute calculation of the template may include two specific steps of calculating the compensated difference image and calculating the ratio of the motion attribute, which is the same as described in the above-described difference image calculation portion and ratio calculation portion, where the repetition thereof will be omitted. description.
  • step S60 when the feature template motion attribute is dynamic, it indicates that the target does not drift.
  • step S70 when the feature template motion attribute is static, the target is searched. And it is judged at step S80 whether or not the target is found. For example, by re-finding the target by the frame difference method, if the original moving target is searched, it indicates that the template has drifted and a new tracking is started, that is, the step of returning to the initial target feature. If the original moving target is not found, it indicates that the target has disappeared, and the tracking is ended at step S90.
  • the moving object tracking method of the present invention automatic control is performed for the fastball based on the control information generated in the above-described image analyzing step.
  • the method based on feature point tracking is used in the above image analysis, and good tracking can be obtained for the small motion or even the static motion of the moving target, which can effectively suppress the interference of the background motion and obtain a relatively smooth and stable tracking. .
  • the series of operations described in the specification can be performed by hardware, software, or a combination of hardware and software.
  • the computer program therein can be installed into a memory in a computer embedded in the dedicated hardware, causing the computer to execute the computer program.
  • the computer program can be installed in a general purpose computer capable of performing various types of processing, causing the computer to execute the computer program.
  • the computer program can be stored in advance in a hard disk or a ROM (Read Only Memory) as a recording medium.
  • the computer program can be temporarily or permanently stored (recorded) into a removable recording medium such as a floppy disk, a CD-ROM (Compact Disc), an M0 (Magnetic Optical) disk, a DVD (Digital Versatile Disk), a disk, Or semiconductor memory.
  • a removable recording medium can be provided as package software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

提供了运动目标自动跟踪装置和方法。所述运动目标自动跟踪装置包括:跟踪目标选择单元,选择所跟踪的运动目标;目标特征初始化单元,用于对运动目标进行特征初始化,来获得运动目标的特征模板;模板匹配单元,用于根据所初始化的运动目标的特征模板进行基于特征的模板匹配,来产生图像匹配信息;运动属性计算单元,用于计算运动目标的特征模板的运动属性;模板更新单元,用于根据运动目标的特征模板的运动属性来进行特征模板的更新;和目标搜寻单元,用于根据所述特征模板的运动属性来进行目标的搜寻;所述运动目标自动跟踪装置还包括控制模块,其用于根据模板匹配单元产生的图像匹配信息产生控制命令,来进行运动目标的自动跟踪。

Description

运动目标自动跟踪的装置和方法 技术领域
本发明涉及运动目标自动跟踪的装置和方法, 更具体地说, 本申请涉及能 让快球在预置位自动检测异常的运动目标, 并能不断的调整自身的姿态和倍率 值的运动目标自动跟踪的装置和方法, 其使得目标始终以一定大小保持在目标 的中心, 得到目标丰富的细节。 背景技术
随着社会的不断进步, 视频监控系统的应用范围越来越广。 现有的数字监 控系统远远不能满足于许多应用场合的需要, 主要体现在智能化程度不够高, 还处于一种半自动化状态,很多场合还需要人工干预, 比如当发现异常情况(运 动目标等) 时, 不能自动的识别和跟踪目标, 不能自动的完成光圈调整和聚焦 功能, 这一切都需要人工来完成, 由于人工操作具有滞后性, 使许多重要的信 息丟失。 整个系统处于一种被动监控之中。 因此为了解决上述问题, 快球需要 有自动跟踪的功能, 要能自动检测异常目标, 并能自动的调整焦距和位置使目 标始终以预定尺寸处于视野的中心, 得到目标丰富的信息, 同时立即报警通知 相关人员来处理, 是一种主动的监控方式, 大大发挥了快球的实际应用价值。
快球自动跟踪主要涉及图像分析和自动控制两个模块。 图像分析模块得到 快球自动跟踪的信息, 经过自动控制模块执行来控制快球。 根据图像分析信息 的来源不同, 可以有两种方式实现自动跟踪: 一种是主从摄像机跟踪系统, 另 一种是单个快球跟踪系统。 主从摄像机跟踪系统的分析信息来自系统中的静态 摄像机, 也就是主摄像机, 这些分析信息传递给快球后, 控制快球自动跟踪目 标。 单个快球跟踪是指快球利用本身的图像信息进行分析, 得到信息后控制快 球本身去跟踪目标。
主从摄像机跟踪系统由于需要至少一个静态摄像机的配合, 增加了成本, 而且静态摄像机和快球之间的标定也是比较复杂的过程。 单个快球跟踪由于只 需一个快球就可以做自动跟踪的功能, 因此成本较低, 许多科研机构和公司也 开展了这方面的研究和应用。 例如博世公司的 auto t rack快球, 其釆用基于运 动检测的目标跟踪, 其对于运动目标微小运动, 如正对着快球的时候运动的时 候, 效果不好, 而且容易受到背景运动目标的干扰, 如玻璃的倒影等。 发明内容
因此, 本发明的目的是解决上述现有技术中的一个或多个问题和缺点。 为了解决现有技术中的问题, 本发明的目的是提供一种简单, 稳定的目标 自动跟踪装置和方法。
根据本发明的一个方面, 提供了一种运动目标自动跟踪装置, 包括: 跟踪 目标选择单元, 用于选择所述运动目标自动跟踪装置所跟踪的运动目标; 目标 特征初始化单元, 用于对由跟踪目标选择单元选择的运动目标进行特征初始化, 来获得运动目标的特征模板; 模板匹配单元, 用于根据由目标特征初始化单元 所初始化的运动目标的特征模板进行基于特征的模板匹配, 来产生图像匹配信 息; 运动属性计算单元, 用于计算运动目标的特征模板的运动属性; 模板更新 单元, 用于根据运动属性计算单元计算的运动目标的特征模板的运动属性来进 行特征模板的更新; 和目标搜寻单元, 用于根据运动属性计算单元计算的运动 目标的特征模板的运动属性来进行所要跟踪目标的搜寻; 和控制模块, 其用于 根据模板匹配单元产生的图像匹配信息产生控制命令, 来进行运动目标的自动 跟踪。
在本发明中, 所述运动属性计算单元进一步包括: 差分图像计算部分, 其 对于前一帧图像进行图像配准以得到当前帧的补偿图, 并将当前帧的补偿图与 当前帧的图像进行差分得到二值图像; 比例计算部分, 在特征模板相对应的矩 形框内计算差分图像的前景值, 并统计前景点数占整个矩形框的比例; 其中, 所述运动属性计算单元在所述比例大于一阔值时判定运动属性为动态的, 且在 所述比例小于一阔值时判定运动属性为静态的。
在本发明中, 当所述运动属性计算单元判定所述特征模板的运动属性是动 态的时, 由所述模板更新单元进行所述特征模板的更新。
在本发明中 , 当所述运动属性计算单元判定所述特征模板的运动属性是静 态时, 由所述目标搜寻单元进行目标的特征模板的搜寻, 以进行新的跟踪或结 束本次跟踪。
在本发明中, 当该目标搜寻单元搜寻到原来的运动目标时, 开始新的跟踪。 在本发明中, 当该目标搜寻单元没有搜寻到原来的运动目标时, 表明目标 离开自动跟踪范围, 结束本次跟踪。 根据本发明的另一方面, 提供了一种运动目标自动跟踪方法, 包括: 图像 分析步骤, 其釆用基于特征点的跟踪方法对作为跟踪目标的图像进行图像分析, 以产生用于运动目标自动跟踪的控制信息, 所述图像分析步骤进一步包括: 跟 踪目标选择步骤, 用于选择所述运动目标自动跟踪方法所跟踪的运动目标; 目 标特征初始化步骤, 用于对由跟踪目标选择步骤选择的目标进行特征初始化, 来获得所述运动目标的特征模板; 模板匹配步骤, 根据由目标特征初始化步骤 所初始化的运动目标的特征模板进行基于特征的模板匹配, 来产生图像匹配信 息; 运动属性计算步骤, 计算所述运动目标的特征模板的运动属性; 目标漂移 判定步骤, 根据运动属性计算步骤所计算的特征模板的运动属性, 判定目标是 否发生了漂移; 模板更新步骤, 其根据目标漂移判定步骤进行的目标没有发生 漂移的判定, 进行特征模板的更新; 和目标搜寻步骤, 其根据目标漂移判定步 骤进行的目标已经发生漂移的判定, 进行所跟踪的目标搜寻; 控制步骤, 用于 根据图像分析步骤产生的图像匹配信息产生控制命令, 来进行运动目标的自动 跟踪。
在本发明中, 所述运动属性计算步骤进一步包括: 差分图像计算步骤, 对 于前一帧图像进行图像配准以得到当前帧的补偿图, 并将当前帧的补偿图与当 前帧的图像进行差分得到二值图像; 比例计算步骤, 在特征模板相对应的矩形 框内计算差分图像的前景值, 并统计前景点数占整个矩形框的比例。
在本发明中, 所述目标漂移判定步骤在所述比例计算步骤所计算的所述比 例大于一阔值时判定运动属性为动态的, 且在所述比例小于一阔值时判定运动 属性为静态的。
本发明釆用基于特征点跟踪的方法, 对于运动目标微小运动甚至暂时静止 的情况也能获得较好的跟踪, 能有效抑制背景运动的干扰, 获得比较平滑稳定 的跟踪。 附图说明
图 1是示出根据本发明的运动目标跟踪装置的总体配置的系统框图; 图 2 是示出根据本发明的运动目标跟踪装置的图像分析模块的具体配置的 框图;
图 3是示出了本发明的运动目标跟踪装置 100的控制模块 102的具体配置 的框图; 图 4是示出了根据本发明的倍率控制的示意图; 和
图 5是示出了本发明的运动目标跟踪方法中图像分析的具体流程图。 具体实施方式
为了实现以上根据本发明的目的, 在本发明的运动目标自动跟踪的装置和 方法中, 其釆用的硬件为高速球, 且主要包含数字信号处理(DSP ), ARM和电机 及镜头部分。
图 1是示出根据本发明的运动目标跟踪装置 100的总体配置的系统框图。 如图 1所示, 运动目标跟踪装置 100包括图像分析模块 101、控制模块 102和步 进电机和镜头 103。 在图 1的运动目标跟踪装置 100中, 图像分析模块 101在 DSP上, 控制模块 102在 ARM上。 其中, 控制模块 102根据图像分析模块 101得 到的控制信息发送控制命令到步进电机和镜头 103以驱动步进电机和镜头 103 , 从而不断调整镜头的摇摄值、 俯仰值和倍率值, 使目标始终以预定尺寸处于图 像视野的中心。 这里, 镜头的摇摄值表示镜头的摇摄角 (即水平方向) 的值, 镜头的俯仰值表示镜头的俯仰角 (即垂直方向) 的值, 且镜头的倍率值表示镜 头的倍率(即, 前后方向的放大 /缩小倍率) 的值。 并且, 图像分析模块 1 01又 从步进电机和镜头 103接收图像, 以进行图像分析。
这里, 图像分析模块 101 先在视野较大的预置位检测异常目标, 如果有检 测到异常目标后, 就提取目标的特征模板, 并依此在以后的图像中搜索目标。
图 2是示出根据本发明的运动目标跟踪装置 100的图像分析模块 1 01的具 体配置的框图。
如图 2所示, 图像分析模块 101包括跟踪目标选择单元 201、 目标特征初始 化单元 202、 模板匹配单元 203、 运动属性计算单元 204、 模板更新单元 205和 目标搜寻单元 206。 下面, 将对图像分析模块 101的各个单元作具体描述如下。
在跟踪目标选择单元 201 中, 选择要跟踪以进行图像分析的目标。 这里, 选择要跟踪的目标有两种方式: 一是釆用人机交互的方式在视频中指定目标, 人员可以利用鼠标点击视频中感兴趣的目标, 然后快球自动去跟踪。 二是通过 事件检测自动获取跟踪目标, 如有异常目标触发了跨越警戒线, 进入警戒区域 等预先设置好的警戒规则等。
目标特征初始化单元 202连接到跟踪目标选择单元 201 ,并对于跟踪目标选 择单元 201 所选择的要进行图像分析的目标进行特征初始化。 由于本发明釆用 基于特征的跟踪方式, 因此目标的特征模板为目标特征点附近的一块灰度区域, 而特征点则为人工指定目标或者检测目标的中心点。
模板匹配单元 203连接到目标特征初始化单元 202,其基于由目标特征初始 化单元 202 进行初始化的特征, 进行基于特征的模板匹配, 根据目标的模板, 在当前图像寻找与目标最匹配的区域。 在本发明的模板匹配单元 203 中, 釆用 Lucas-Kanade特征点跟踪方法。 Lucas-Kanade算法的目的是在当前图像中搜索 位移量使得与对应点相关的邻域的匹配误差最小。 假设相邻两帧图像 ι , 对
A中的特征点 P = (XT,偏移量为6^^,1^,则在 中对应的特征点为 P + 在 Ρ 的局部邻域 WW上定义如下的代价函数:
c(d)= ∑ wir I.ir + d)-!^))2
公式 1
其中 r)为权函数。
对其优化得到所求解: ^ = G— /,其中
G= w(r)VI2VI2 T
, 公式 2 h= w(r)VI2AI
, 公式 3 公式 4 dr。 公式 5
Lucas-Kanade算法是一种 Newton梯度下降法,通过多次迭代可以得到较好 的解。
在自动跟踪过程中, 由于倍率的变化, 目标在图像中的位置可能变化较大, 为增加 Lucas-Kanade算法搜索的稳定性, 对图像进行金字塔分解, 对目标进行 由粗到细的搜索。
运动属性计算单元 204连接到模板匹配单元 203,计算运动目标的模板运动 属性。 在实际监控场景应用中, 目标在运动时, 目标的姿态和环境的光照等都 会发生变化, 如果目标的线索模板不更新, 没有及时反映目标的变化, 线索模 板的可靠性降低, 容易导致跟踪失败。 因此, 将目标最新的匹配值也包含在目 标模板中来, 具体公式如下:
Tk (X, = (1— o)Tk_x (X, y) + alk ( , y) 公式 6 其中 ,(χ, 和 (χ, 为目标 k-i时刻和 k时刻的模板, "x ' 为目标当前 时刻的匹配值, "为更新率, 即将新的匹配值融合到灰度模板中的速率, 当"比 较大时, 新的观测值很快就融入灰度模板, 当如果前一时刻目标跟踪不是很准 确, 则这不准确的观测值也很快融入灰度模板, 形成一个正反馈, 容易导致跟 踪失败。 而当"比较小时, 如果新的观测值没有及时反映到灰度模板中, 也容易 造成跟踪失误。 因此选取一个合适的更新率对整个跟踪结果起着重要的作用, 然而这个更新率很难做到自适应的取值。
由于目标特征模板基本上都是漂移到背景上, 本发明釆用模板的运动属性 来判断目标是否发生漂移。 如果特征模板运动属性是动的, 则表明没有发生漂 移, 在正常跟踪, 模板更新单元 205 工作。 如果特征模板运动属性为静态的, 则表明发生了漂移, 目标搜寻单元 206工作。
对于模板的运动属性计算, 所述运动属性计算单元 204 可进一步包括差分 图像计算部分 301和比例计算部分 302。
其中, 差分图像计算部分 301 计算补偿后的差分图像, 其将前一帧图通过 图像配准的方法补偿得到相对于当前帧的补偿图, 再与当前帧图像差分得到二 值图像。 由于不动的背景已经通过图像配准方式得到补偿, 因此二值图像显示 的是运动目标的信息。
并且, 比例计算部分 302 计算运动属性的比例, 其中, 在特征模板相对应 的矩形框里计算差分图像的前景值, 统计前景点数占整个矩形框的比例, 比例 如果大于一定阔值则运动属性为动态的, 如果小于一定阔值则运动属性为静态 的。
在模板更新单元 205 中, 如果特征模板运动属性是动态的, 则表明目标没 有发生漂移, 在正常跟踪, 进行特征模板更新, 将当前的观测值作为目标模板, 即" =1 , 然后开始下一帧的艮踪。
在目标搜寻单元 206 中, 如果特征模板运动属性是静态的, 则有两种可能 性, 一是模板漂移到背景上, 二是目标离开快球的监控范围, 真正消失了。 通 过帧差法重新寻找目标, 如果搜寻到原来的运动目标的话则表明此前是模板发 生漂移, 开始新的跟踪。 如果没有搜寻到原来的运动目标的话, 则表明目标已 经消失, 结束此次跟踪。
随后, 控制模块 102将来自图像分析模块 101 的图像匹配的信息翻译成步 进电机的控制命令, 驱动镜头始终对着目标。 图 3是示出了本发明的运动目标跟踪装置 1 00的控制模块 1 02的具体配置 的框图。
如图 3所示, 控制模块 1 02包括图像坐标转化单元 401、 速度控制单元 402 和倍率控制单元 403。 下面, 将详细描述控制模块 1 02的各个单元。
在图像坐标转化单元 401 中, 由于图像分析模块 1 01传递给控制模块 1 02 的信息是目标在当前图像的坐标信息, 是基于图像空间的, 而快球控制的空间 是 PTZ空间, 因此需要将图像坐标转化到 PTZ坐标。 如果已知快球的内部参数, 如 CCD感光元件大小和焦距, 在图像坐标转化单元 401中, 可以利用 3D圓型旋 转的方式得到图像坐标和 PTZ坐标之间的对应关系。
速度控制单元 402与图像坐标转化单元 401连接, 并从图像坐标转化单元 401接收目标的 PTZ坐标, 从而控制电机的转动。 如果釆用绝对值的方式控制, 则可能会造成画面不连续的情况。 为了得到平稳的图像, 本发明釆用基于速度 的控制方法,将得到的目标 PT值与当前电机的 PT值进行差分,假设 ρ 为 目标在快球坐标系下的 ΡΤ值, ρ , Ρ^为快球当前的 ρτ状态值, ^为处理一帧 所需的时间, 可以根据下面的公式确定定电机运动的方向和速度大小。
j ^ 一 AP一 P new - P cur
Pm Δί At 公式 7
一 ΔΓ一 Τ new -Τ cur
公式 8
随后, 在倍率控制单元 403 中, 由于在跟踪阶段中, 运动目标离快球的距 离会发生变化, 因此需要进行适当的倍率控制, 如果目标远离快球, 则放大倍 率, 如果目标走近快球, 则缩小倍率, 保证目标始终以一定的尺寸在场景视野 中。 本发明假设监控视野为地平面, 釆用如图 4所示的简单的模型, 这里, 图 4 示出了倍率控制的示意图。
距离和倍率是成正比的, 满足以下关系:
Figure imgf000009_0001
其中 z。, 。为根据实际场景预先确定的缩放系数, 因此如果知道了 i , 也就 可以求出此时的倍率 Ζι, 然后控制模块将镜头设置为 Ζι的倍率。
下面, 将描述根据本发明的运动目标自动跟踪方法。 在本发明的运动目标 自动跟踪方法中, 基于对于目标图像进行图像分析的结果进行控制, 从而不断 调整镜头的摇摄值、 俯仰值和倍率值, 使目标始终以一定的尺寸处于图像视野 的中心。
接下来将参考图 5 的流程图对本发明的运动目标自动跟踪方法中的图像分 析进行具体描述。
在步骤 S 1 0 ,选择要跟踪的目标,如上所述,选择要跟踪的目标有两种方式: 一是釆用人机交互的方式在视频中指定目标, 人员可以利用鼠标点击视频中感 兴趣的目标, 然后快球自动去跟踪。 二是通过事件检测自动获取跟踪目标, 如 有异常目标触发了跨越警戒线, 进入警戒区域等预先设置好的警戒规则。
随后,在步骤 S20 ,初始化目标特征。 由于本发明釆用基于特征的跟踪方式, 因此目标的特征模板为目标特征点附近的一块灰度区域, 而特征点则为人工指 定目标或者检测目标的中心点。
之后, 在步骤 S 30 , 进行基于特征的模板匹配。 在本发明中, 根据目标的模 板, 在当前图像寻找与目标最匹配的区域。 本发明釆用 Luca s-Kanade特征点跟 踪方法。 由于在上文中已经描述了 Luca s-Kanade方法, 这里将省略对其的重复 描述。
此外, 同上述相同, 在自动跟踪过程中, 由于倍率的变化, 目标在图像中 的位置可能变化较大, 为增加 Luca s-Kanade算法搜索的稳定性, 对图像进行金 字塔分解, 对目标进行由粗到细的搜索。
随后, 在步骤 S40 , 计算运动目标的模板的运动属性。 这里, 运动目标的模 板的运动属性的计算同上述结合图像分析模块 1 01 的运动属性计算单元 204所 述的相同, 这里, 将省略其重复描述。
随后, 在步骤 S50 , 本发明通过上述步骤 S40中计算的模板的运动属性来判 断目标是否发生漂移。 如果特征模板的运动属性是动的, 则表明没有发生漂移, 进入步骤 S60中正常跟踪, 对模板进行更新。 如果特征模板运动属性为静态的, 则表明发生了漂移, 进入步骤 S70。
如上所述, 模板的运动属性计算可包括计算补偿后差分图像和计算运动属 性的比例的两个具体步骤, 其与上述差分图像计算部分和比率计算部分中的描 述相同, 这里, 将省略其重复描述。
随后, 在步骤 S60 , 当特征模板运动属性是动态的时, 表明目标没有发生漂 移, 在正常跟踪, 进行特征模板更新, 将当前的观测值作为目标模板, 即" =0 , 然后开始下一帧的跟踪。
并且, 在步骤 S70, 当特征模板运动属性是静态的时, 对于目标进行搜寻。 并在步骤 S80 判断是否找到目标。 例如, 通过帧差法重新寻找目标, 如果搜寻 到原来的运动目标的话则表明此前是模板发生漂移, 开始新的跟踪, 即, 返回 到初始化目标特征的步骤。 而如果没有搜寻到原来的运动目标的话, 则表明目 标已经消失, 在步骤 S90结束此次跟踪。
之后, 在本发明的运动目标跟踪方法中, 根据上述图像分析步骤中所产生 的控制信息, 对于快球进行自动控制。 在本发明中, 上述图像分析中釆用基于 特征点跟踪的方法, 对于运动目标微小运动甚至暂时静止的情况也能获得较好 的跟踪, 能有效抑制背景运动的干扰, 获得比较平滑稳定的跟踪。
在说明书中说明的一系列操作能够通过硬件、 软件、 或者硬件与软件的组 合来执行。 当由软件执行该一系列操作时, 可以把其中的计算机程序安装到内 置于专用硬件的计算机中的存储器中, 使得计算机执行该计算机程序。 或者, 可以把计算机程序安装到能够执行各种类型的处理的通用计算机中, 使得计算 机执行该计算机程序。
例如, 可以把计算机程序预先存储到作为记录介质的硬盘或者 ROM (只读存 储器) 中。 或者, 可以临时或者永久地存储(记录)计算机程序到可移动记录 介质中, 诸如软盘、 CD-ROM (光盘只读存储器)、 M0 (磁光)盘、 DVD (数字多 功能盘)、 磁盘、 或半导体存储器。 可以把这样的可移动记录介质作为封装软件 提供。
本发明已经参考具体实施例进行了详细说明。 然而, 很明显, 在不背离本 发明的精神的情况下, 本领域技术人员能够对实施例执行更改和替换。 换句话 说, 本发明用说明的形式公开, 而不是被限制地解释。 要判断本发明的要旨, 应该考虑所附的权利要求。

Claims

权利要求
1. 一种运动目标自动跟踪装置, 包括:
跟踪目标选择单元, 用于选择所述运动目标自动跟踪装置所跟踪的运动目 标;
目标特征初始化单元, 用于对由跟踪目标选择单元选择的运动目标进行特 征初始化, 来获得运动目标的特征模板; 征模板进行基于特征的模板匹配, 来产生图像匹配信息;
运动属性计算单元, 用于计算运动目标的特征模板的运动属性;
模板更新单元, 用于根据运动属性计算单元计算的运动目标的特征模板的 运动属性来进行特征模板的更新;
目标搜寻单元, 用于根据运动属性计算单元计算的运动目标的特征模板的 运动属性来进行目标的搜寻; 和
控制模块, 其用于根据模板匹配单元产生的图像匹配信息产生控制命令, 来进行运动目标的自动跟踪。
2. 如权利要求 1所述的运动目标自动跟踪装置, 其中, 所述运动属性计算 单元进一步包括:
差分图像计算部分, 其对于前一帧图像进行图像配准以得到当前帧的补偿 图, 并将当前帧的补偿图与当前帧的图像进行差分得到二值图像;
比例计算部分, 在特征模板相对应的矩形框内计算差分图像的前景值, 并 统计前景点数占整个矩形框的比例;
其中, 所述运动属性计算单元在所述比例大于一阔值时判定运动属性为动 态的, 且在所述比例小于一阔值时判定运动属性为静态的。
3. 如权利要求 2所述的运动目标自动跟踪装置, 其中, 当所述运动属性计 算单元判定所述特征模板的运动属性是动态的时, 由所述模板更新单元进行所 述特征模板的更新。
4. 如权利要求 2所述的运动目标自动跟踪装置, 其中, 当所述运动属性计 算单元判定所述特征模板的运动属性是静态时, 由所述目标搜寻单元进行目标 的特征模板的搜寻, 以进行新的跟踪或结束本次跟踪。
5. 如权利要求 4所述的运动目标自动跟踪装置, 其中, 当该目标搜寻单元 搜寻到原来的运动目标时, 开始新的跟踪。
6. 如权利要求 4所述的运动目标自动跟踪装置, 其中, 当该目标搜寻单元 没有搜寻到原来的运动目标时, 表明目标离开自动跟踪范围, 结束本次跟踪。
7. 一种运动目标自动跟踪方法, 包括:
图像分析步骤, 其釆用基于特征点的跟踪方法对作为跟踪目标的图像进行 图像分析, 以产生用于运动目标自动跟踪的控制信息, 所述图像分析步骤进一 步包括:
跟踪目标选择步骤, 用于选择所述运动目标自动跟踪方法所跟踪的运动目 标;
目标特征初始化步骤, 用于对由跟踪目标选择步骤选择的目标进行特征初 始化, 来获得所述运动目标的特征模板;
模板匹配步骤, 根据由目标特征初始化步骤所初始化的运动目标的特征模 板进行基于特征的模板匹配, 来产生图像匹配信息;
运动属性计算步骤, 计算所述运动目标的特征模板的运动属性;
目标漂移判定步骤, 根据运动属性计算步骤所计算的特征模板的运动属性, 判定目标是否发生了漂移;
模板更新步骤, 其根据目标漂移判定步骤进行的目标没有发生漂移的判定, 进行特征模板的更新; 和
目标搜寻步骤, 其根据目标漂移判定步骤进行的目标已经发生漂移的判定, 进行所跟踪的目标搜寻;
控制步骤, 用于根据模板匹配步骤产生的图像匹配信息产生控制命令, 来 进行运动目标的自动跟踪。
8. 如权利要求 7所述的运动目标自动跟踪方法, 其中, 所述运动属性计算 步骤进一步包括:
差分图像计算步骤, 对于前一帧图像进行图像配准以得到当前帧的补偿图, 并将当前帧的补偿图与当前帧的图像进行差分得到二值图像;
比例计算步骤, 在特征模板相对应的矩形框内计算差分图像的前景值, 并 统计前景点数占整个矩形框的比例。
9. 如权利要求 8所述的运动目标自动跟踪方法, 其中, 所述目标漂移判定 步骤在所述比例计算步骤所计算的所述比例大于一阔值时判定运动属性为动态 的, 且在所述比例小于一阔值时判定运动属性为静态的。
PCT/CN2010/070307 2009-11-24 2010-01-21 运动目标自动跟踪的装置和方法 WO2011063616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102250180A CN102074016A (zh) 2009-11-24 2009-11-24 运动目标自动跟踪的装置和方法
CN200910225018.0 2009-11-24

Publications (1)

Publication Number Publication Date
WO2011063616A1 true WO2011063616A1 (zh) 2011-06-03

Family

ID=44032545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070307 WO2011063616A1 (zh) 2009-11-24 2010-01-21 运动目标自动跟踪的装置和方法

Country Status (2)

Country Link
CN (1) CN102074016A (zh)
WO (1) WO2011063616A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105046719A (zh) * 2015-07-03 2015-11-11 苏州科达科技股份有限公司 一种视频监控方法及系统
CN106980843A (zh) * 2017-04-05 2017-07-25 南京航空航天大学 目标跟踪的方法及装置
US20220208203A1 (en) * 2020-12-29 2022-06-30 Compal Electronics, Inc. Audiovisual communication system and control method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103679687A (zh) * 2012-09-18 2014-03-26 杭州海康威视数字技术股份有限公司 一种智能跟踪高速球机的目标跟踪的方法
CN103810692B (zh) * 2012-11-08 2016-12-21 杭州海康威视数字技术股份有限公司 视频监控设备进行视频跟踪的方法及该视频监控设备
CN104021569B (zh) * 2013-02-28 2018-03-20 杭州海康威视数字技术股份有限公司 人体目标锁定跟踪装置和方法
CN104408725B (zh) * 2014-11-28 2017-07-04 中国航天时代电子公司 一种基于tld优化算法的目标重捕获系统及方法
CN106296722B (zh) * 2015-05-25 2020-06-23 联想(北京)有限公司 一种信息处理方法及电子设备
CN106570892B (zh) * 2015-08-18 2019-05-28 航天图景(北京)科技有限公司 一种基于边缘增强模板匹配的运动目标主动跟踪方法
CN105578034A (zh) 2015-12-10 2016-05-11 深圳市道通智能航空技术有限公司 一种对目标进行跟踪拍摄的控制方法、控制装置及系统
CN105931263B (zh) * 2016-03-31 2019-09-20 纳恩博(北京)科技有限公司 一种目标跟踪方法及电子设备
CN105930858B (zh) * 2016-04-06 2021-03-26 吴晓军 一种带旋转、缩放的快速高精度几何模板匹配方法
CN105867371B (zh) * 2016-04-06 2019-05-21 北京小米移动软件有限公司 控制平衡车移动的方法及装置
CN106331625A (zh) * 2016-08-30 2017-01-11 天津天地伟业数码科技有限公司 一种室内单个人体目标ptz跟踪方法
CN108885469B (zh) * 2016-09-27 2022-04-26 深圳市大疆创新科技有限公司 用于在跟踪系统中初始化目标物体的系统和方法
CN107454316B (zh) * 2017-07-24 2021-10-15 艾普柯微电子(江苏)有限公司 运动检测方法及装置
JP7106282B2 (ja) 2018-01-30 2022-07-26 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
CN110930429B (zh) * 2018-09-19 2023-03-31 杭州海康威视数字技术股份有限公司 一种目标跟踪处理方法、装置及设备、可读介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157599A (ja) * 2000-11-17 2002-05-31 Nippon Telegr & Teleph Corp <Ntt> 物体検出認識方法,物体検出認識プログラムを記録した記録媒体および物体監視追跡装置
JP2004240762A (ja) * 2003-02-06 2004-08-26 Matsushita Electric Ind Co Ltd 物体追跡方法、プログラム、及び記録媒体
CN1738426A (zh) * 2005-09-09 2006-02-22 南京大学 一种视频运动目标分割与跟踪方法
CN101098465A (zh) * 2007-07-20 2008-01-02 哈尔滨工程大学 一种视频监控中运动目标检测与跟踪方法
CN101159855A (zh) * 2007-11-14 2008-04-09 南京优科漫科技有限公司 基于特征点分析的多目标分离预测方法
US20080118107A1 (en) * 2006-11-20 2008-05-22 Rexee, Inc. Method of Performing Motion-Based Object Extraction and Tracking in Video
US20080187175A1 (en) * 2007-02-07 2008-08-07 Samsung Electronics Co., Ltd. Method and apparatus for tracking object, and method and apparatus for calculating object pose information
CN101556697A (zh) * 2008-04-10 2009-10-14 上海宝康电子控制工程有限公司 一种基于快速特征点的运动目标跟踪方法与系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621929B1 (en) * 1999-06-22 2003-09-16 Siemens Corporate Research, Inc. Method for matching images using spatially-varying illumination change models
CN101369346B (zh) * 2007-08-13 2010-09-15 北京航空航天大学 一种视频运动目标自适应窗口的跟踪方法
CN101551909B (zh) * 2009-04-09 2011-02-02 上海交通大学 基于核及目标连续自适应分布特征的跟踪方法
CN101572803B (zh) * 2009-06-18 2010-11-10 中国科学技术大学 基于视频监控的可定制式自动跟踪系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157599A (ja) * 2000-11-17 2002-05-31 Nippon Telegr & Teleph Corp <Ntt> 物体検出認識方法,物体検出認識プログラムを記録した記録媒体および物体監視追跡装置
JP2004240762A (ja) * 2003-02-06 2004-08-26 Matsushita Electric Ind Co Ltd 物体追跡方法、プログラム、及び記録媒体
CN1738426A (zh) * 2005-09-09 2006-02-22 南京大学 一种视频运动目标分割与跟踪方法
US20080118107A1 (en) * 2006-11-20 2008-05-22 Rexee, Inc. Method of Performing Motion-Based Object Extraction and Tracking in Video
US20080187175A1 (en) * 2007-02-07 2008-08-07 Samsung Electronics Co., Ltd. Method and apparatus for tracking object, and method and apparatus for calculating object pose information
CN101098465A (zh) * 2007-07-20 2008-01-02 哈尔滨工程大学 一种视频监控中运动目标检测与跟踪方法
CN101159855A (zh) * 2007-11-14 2008-04-09 南京优科漫科技有限公司 基于特征点分析的多目标分离预测方法
CN101556697A (zh) * 2008-04-10 2009-10-14 上海宝康电子控制工程有限公司 一种基于快速特征点的运动目标跟踪方法与系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105046719A (zh) * 2015-07-03 2015-11-11 苏州科达科技股份有限公司 一种视频监控方法及系统
CN106980843A (zh) * 2017-04-05 2017-07-25 南京航空航天大学 目标跟踪的方法及装置
CN106980843B (zh) * 2017-04-05 2019-09-06 南京航空航天大学 目标跟踪的方法及装置
US20220208203A1 (en) * 2020-12-29 2022-06-30 Compal Electronics, Inc. Audiovisual communication system and control method thereof
US11501790B2 (en) * 2020-12-29 2022-11-15 Compal Electronics, Inc. Audiovisual communication system and control method thereof

Also Published As

Publication number Publication date
CN102074016A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2011063616A1 (zh) 运动目标自动跟踪的装置和方法
CN113194260B (zh) 一种视频稳定的方法及装置
US8396253B2 (en) Method and apparatus for recognizing location of user
US20070236570A1 (en) Method and apparatus for providing motion control signals between a fixed camera and a ptz camera
US10257402B2 (en) Control apparatus, method of controlling image sensing device, and non-transitory computer-readable storage medium that controls an image sensing device for tracking and sensing a tracking target
JP5483953B2 (ja) 焦点調節装置、焦点調節方法及びプログラム
US8391542B2 (en) Method for estimating the pose of a PTZ camera
JP2018517161A (ja) デュアルカメラオートフォーカス
US7423686B2 (en) Image pickup apparatus having auto-focus control and image pickup method
KR20170133269A (ko) 영상 처리장치, 영상 처리방법 및 프로그램
JPWO2018142496A1 (ja) 三次元計測装置
JP6540330B2 (ja) 追跡システム、追跡方法および追跡プログラム
KR20180040336A (ko) 카메라 시스템 및 이의 객체 인식 방법
RU2010122599A (ru) Устройство обработки изображений, устройство фотосъемки, устройство воспроизведения, интегральная схема и способ обработки изображений
TW200930098A (en) Camera control system capable of positioning and tracking object in space and method thereof
WO2017117749A1 (zh) 基于多种测距方式的跟焦系统、方法及拍摄系统
US10154176B1 (en) Calibrating depth cameras using natural objects with expected shapes
WO2019104569A1 (zh) 一种对焦方法、设备及可读存储介质
TW201929210A (zh) 半導體裝置、攝影系統及程式
WO2014131252A1 (zh) 人体目标锁定跟踪装置和方法
TWI726536B (zh) 影像擷取方法及影像擷取設備
JP2019165501A (ja) 追跡システム、追跡方法および追跡プログラム
WO2016026229A1 (zh) 对焦控制方法及装置
JP2006173872A (ja) カメラ制御装置
JP2021174089A (ja) 情報処理装置、情報処理システム、情報処理方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832523

Country of ref document: EP

Kind code of ref document: A1