WO2011063608A1 - 两级气化炉煤气化制甲烷的方法 - Google Patents

两级气化炉煤气化制甲烷的方法 Download PDF

Info

Publication number
WO2011063608A1
WO2011063608A1 PCT/CN2010/001890 CN2010001890W WO2011063608A1 WO 2011063608 A1 WO2011063608 A1 WO 2011063608A1 CN 2010001890 W CN2010001890 W CN 2010001890W WO 2011063608 A1 WO2011063608 A1 WO 2011063608A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasifier
coal
primary
gasification
gas product
Prior art date
Application number
PCT/CN2010/001890
Other languages
English (en)
French (fr)
Inventor
谷俊杰
叶明星
赵晓
郭启海
Original Assignee
新奥科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥科技发展有限公司 filed Critical 新奥科技发展有限公司
Publication of WO2011063608A1 publication Critical patent/WO2011063608A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0966Hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1662Conversion of synthesis gas to chemicals to methane

Definitions

  • the present invention relates to a process for the gasification of decane, and more particularly to a process for the gasification of decane by a two-stage gasifier.
  • coal gasification With the depletion of the world's petroleum resources and the need for environmental protection through sustainable human development, clean coal utilization technology represented by coal gasification will play an irreplaceable role in fossil energy in the future.
  • China's rich coal and lean oil coal storage accounts for the third place in the world, and the geographical distribution of coal resources is uneven.
  • Rational development and utilization of coal gasification technology has long-term strategic significance for safeguarding China's energy security and economic development.
  • synthetic decane Compared with existing natural gas, synthetic decane has attracted more and more industrial attention due to its low cost and abundant sources of (coal) raw materials.
  • the current methanation technology can be broadly divided into two-step method (indirect method) and one-step method (direct method).
  • the two-step method refers to the use of existing mature technologies (such as German-style entrained flow bed or Lurgi furnace technology) to first convert coal or coal water slurry into products such as H 2 and CO with an oxidant such as air or oxygen, and the product gas is cooled. After removing the acid gas (such as H 2 S), removing the entrained particles and other purification processes, adjusting the H/C ratio by water gas shift reaction, and finally synthesizing decane under the action of nickel or other catalyst.
  • existing mature technologies such as German-style entrained flow bed or Lurgi furnace technology
  • the advantage of the two-step process is that the two-step process of gasification and decaneization is operated separately, and the technology is relatively mature, such as Grea t Plains' synthetic decane technology (SNG).
  • SNG Grea t Plains' synthetic decane technology
  • the disadvantage is that the synthesis gas requires the addition of expensive and complicated purification equipment, the cost is relatively high, and the overall thermal efficiency of the process is low due to the introduction of the synthesis gas purification and water gas shifting device.
  • the two-step method that has been officially put into production is only the technology of Great Plains, and the others are relatively immature.
  • the one-step process is to gasify coal into a decane by direct reaction with steam under the action of a catalyst (usually an alkali metal catalyst).
  • a catalyst usually an alkali metal catalyst.
  • the general process of the process was to directly synthesize superheated steam and catalyst-mixed coal in a fluidized bed for catalytic gasification.
  • Decane In addition to coal, a material containing high fixed carbon such as petroleum coke can also be similarly processed.
  • US 2007/0083072 proposes a process for catalyzing the gasification of petroleum slag.
  • the one-step method Compared with the two-step method, the one-step method has the advantages of simple process and high thermal efficiency.
  • the disadvantage is the need to provide additional high temperature (800 - 900TC) superheated steam equipment and insulation to provide the heat needed for oxygen free and to compensate for heat loss from system cooling.
  • reaction formula (2) vaporization of steam and coal
  • reaction formula (3) water gas shift reaction
  • the traditional method of maintaining a suitable catalytic gasification temperature is to use a higher water vapor inlet temperature (800 ⁇ 900"C), such as Exxon's coal catalytic gasification technology, see for example, HA Marshall and FCRM Smits, "Exxon catalytic coal gasification coal gasification process and large pi lot plant development program," Pittsburgh, PA, USA 1982, pp. 357-377.
  • Preparation of superheated steam from 800 to 900 usually requires multi-stage superheaters and high-power boilers, resulting in The total energy consumption of the system is high.
  • Patent US4292048 proposed the use of one-step method for reforming Yue alkyl, i.e., the generation of CH 4 and H 2 0 reaction of CO and H 2 from the gasification furnace and the separated CO and H 2 into the gasifier, in order to improve The methane yield and the reaction are close to thermal neutral, thereby reducing the heat required for the endothermic reaction (mainly reaction formula (2)).
  • the disadvantage of this method is that the required amount of CO and H 2 circulation is relatively large, which increases the system energy consumption and equipment size.
  • the present invention provides a method for coal gasification to form decane, comprising the steps of: a. reacting coal and an oxygen-containing gas in a first-stage gasifier to produce C0, C0 2 , H 2 , H 2 0 Coal gasification product;
  • the primary gas product is passed to a secondary gasifier and reacted with coal and a catalyst to produce a secondary gas product comprising methane.
  • 1 is a flow chart of one embodiment of the method of the present invention.
  • Figure 2 is a schematic illustration of a primary gasifier used in the process of the present invention.
  • Figure 3 is a schematic view of a stage gasifier used in the method of the present invention, wherein
  • FIG. 3A is a front view of the furnace, and Fig. 3B is a plan view of the inside of the furnace.
  • step a of the present invention the coal and the oxygen-containing gas are reacted in a primary gasifier to produce a coal gasification gas product comprising C0, C0 2 , H 2 , H 2 0.
  • the coal may be introduced into the first-stage gasifier in the form of coal water slurry or dry coal powder, and the feeding equipment is a conventional slurry feeding equipment such as a high-pressure coal-water slurry pump (such as a diaphragm pump) and water. Coal slurry nozzles or solid feed equipment such as lock bucket feed and pressurized blow equipment.
  • an oxygen-containing gas is introduced into the first-stage gasification furnace, and the oxygen-containing gas may be air, oxygen-enriched air or pure oxygen.
  • the coal and oxygen gasification reaction occurs at a temperature of 900-1600 X in a first-stage gasifier and a pressure of 20-70 atm (referred to as absolute pressure, the same below) to form a gas containing C0, C0 2 , H 2 , H 2 0.
  • the coal gasification product if air or oxygen-enriched air is used, the coal gasification gas product also includes nitrogen and an inert gas.
  • the gasification reaction of coal and oxygen releases a large amount of heat, which is used to maintain the high temperature of the primary gasifier, and the other part is stored in the gasification gas product for later use.
  • the coal gasification gas product moves upward along the primary gasifier, and the slag produced after gasification is discharged from the bottom of the primary gasifier.
  • a coolant is introduced into the coal gasification gas product to be cooled to obtain a first-stage gas product.
  • the purpose of cooling the coolant is to adjust the temperature of the gas to a temperature slightly higher than the catalyst suitable for the secondary gasifier to function as a catalyst.
  • the coolant is liquid water or water vapor having a temperature of 200 to 350 or CO and H 2 separated from the gas separation process after the two-stage gasifier process of the present invention and recycled, or a mixture thereof.
  • the coolant is mainly water or steam
  • the recycled CO and H 2 serve as auxiliary cooling
  • the main purpose of circulating CO and H 2 is to increase the inside of the secondary gasifier. CH 4 yield.
  • the temperature of these coolants should be lower than the temperature of the coal gasification product.
  • the gas phase composition of the coal gasification gas product changes due to the water gas shift reaction (see Equation 3 above); when the coolant is recycled CO and H 2 , the gas The gas phase composition of the gas product will also vary accordingly.
  • the gas product after the gas phase composition is changed by being cooled by the addition of the coolant is referred to as a primary gas product.
  • the coolant may be introduced at any position between the middle of the primary gasifier to the outlet of the primary gasifier, for example by at least one between the middle of the primary gasifier and the outlet of the primary gasifier. Preference The discharged nozzle is passed into the primary gasifier.
  • the coolant may also be passed into a connecting pipe between the primary gasifier and the secondary gasifier.
  • Agent to achieve step b. The temperature of the primary gas product formed after cooling is 800-900X.
  • step c of the present invention the primary gas product is passed to a secondary gasifier and reacted with coal and a catalyst to obtain a secondary gas product comprising decane.
  • the temperature in the secondary gasifier is 650-750" €
  • the pressure is 20-40atm
  • the heat required to maintain the temperature in the secondary gasifier can be completely or partially provided by the primary gas product.
  • the catalyst used in step c is selected from the group consisting of alkali metal carbonates or alkali metal hydroxides or mixtures thereof. Coal and catalyst can be fed into a secondary gasifier separately or as a mixture into a secondary gasifier.
  • a two-stage gasifier in the form of a mixture, wherein the coal is mixed with the aqueous catalyst solution by conventional means in the art, and dried to obtain a mixture of coal and a catalyst.
  • the feeding equipment used is also in the art. Conventional feeding equipment, such as lock bucket feeding devices, etc.
  • Hot water vapor used to assist in maintaining the fluidization state and increasing the conversion rate of coal gasification.
  • the superheated steam has a temperature of 800 to 900 and a pressure of 20 to 40 atm, which can be directly passed to the secondary stage.
  • the furnace or in the connecting pipe between the primary gasifier and the secondary gasifier it is preferably directly passed into the secondary gasifier, for example, through a conical distribution plate located at the bottom of the secondary gasifier.
  • the pulverized coal reacts with the primary gas product under the action of a catalyst as shown in the following equation to produce a secondary gas product including decane, which leaves the secondary gasification
  • the furnace enters a subsequent gas separation process, and the ash produced in the secondary gasifier is discharged from the bottom of the secondary gasifier.
  • the secondary gas product is separated into C0, H 2 , C0 2 and the like by a conventional separation means in the subsequent gas separation step to finally obtain a high purity decane gas.
  • separation means are well known to the skilled person, and Let me repeat.
  • the gas such as CO and H 2 separated in the separation step may be used alone as a coolant, or as a supplement to other coolants such as liquid water or low-temperature steam to carry out step b.
  • the ash discharged from the secondary gasifier contains substances such as semi-coke, ash, and catalyst.
  • the catalyst can be separated therefrom by conventional separation means in the art, and the recovered catalyst can be recycled, which are well known to the skilled person and will not be described again.
  • the primary gasifier used in the process of the present invention may be an entrained flow bed, a fluidized bed or a transfer bed.
  • the entrained flow bed may be several types such as the egas entrained bed of Shell, GE or ConocoPhilips; the example of the fluidized bed may be a ugas fluidized bed or a KRW ash fusion fluidized bed; an example of a transport bed is KBR Conveying gasifiers, etc.
  • these gasifiers are used directly without any modification, it is necessary to pass a coolant into the connecting pipe between the primary gasifier and the secondary gasifier.
  • various gasification furnaces described above may be modified, which means that a coolant nozzle is added before the outlet of the gasification furnace, and at least a pair of nozzles placed in opposite positions are preferably added. These nozzles pass coolant into the primary gasifier for quenching the coal gasification product.
  • a coolant nozzle is added before the outlet of the gasification furnace, and at least a pair of nozzles placed in opposite positions are preferably added. These nozzles pass coolant into the primary gasifier for quenching the coal gasification product.
  • Figure 2 shows an example of a modified egas gas flow bed as a primary gasifier.
  • Figure 2 shows only the feed conditions for each material, and the specific internal structure of the gasifier is omitted.
  • the coal water slurry is mixed with oxygen and then enters the bottom of the primary gasifier, and a gasification reaction occurs at a high temperature (1400-1500) zone at the bottom of the primary gasifier.
  • a gasification reaction occurs at a high temperature (1400-1500) zone at the bottom of the primary gasifier.
  • Different from the steam coal slurry swirling feed mode at the second stage of the original egas at any position before the outlet of the primary gasifier, at least one pair of nozzles placed in opposite positions is provided, through which the coolant is placed Passing into the first-stage gasifier, this alignment method enhances the mixing of the coal gasification gas product and the coolant, thus achieving rapid cooling.
  • the secondary gasifier used in the method of the present invention may be a fluidized bed or a circulating fluidization Bed, but preferably a jet bed. Since the coal gasification gas product and the first-stage gas product are not subjected to dust removal treatment, coal ash or unreacted coal char particles are often entrained in the first-stage gas product entering the secondary gasifier, in order to prevent entrainment of particles from clogging.
  • the gas distribution plate of the gasification furnace, the secondary gasification furnace is preferably operated by a jet bed.
  • the jet bed also known as the jet fluidized bed, is a bed type consisting of a high velocity (vertical, horizontal or inclined) jet injected into a fluidized bed of a limited space.
  • Figure 3 shows an illustration of a jet bed:
  • the primary gas product is injected into the bed from the jet bed central tube, which not only avoids entrainment of particles blocking the gas distribution plate, but also adjusts the diameter and inlet flow of the central tube. Achieve separation of ash and coke of different densities.
  • the fluidized water vapor is passed from the bottom, and the coal and catalyst are introduced from a position in the middle of the secondary gasifier.
  • the present invention is applicable not only to coal but to a variety of carbonaceous materials such as petroleum coke and the like.
  • the petroleum coke refers to a product in which crude oil is separated by distillation and the heavy oil is separated by thermal cracking.
  • the main constituent element is carbon, which accounts for 80% by weight or more. For hydrogen, oxygen, nitrogen, sparse and metallic elements.
  • the advantages of the invention are as follows: (1) The high-temperature gas produced by the first-stage gasifier in the process can be directly used in the secondary gasifier after temperature adjustment, and the reaction heat required for the reaction is provided for the secondary gasifier, thereby reducing the secondary catalytic gasification. The overall thermal efficiency of the superheated steam boiler is higher than that of the traditional two-step methane process.
  • Syngas rich in CO and H 2 (60 - 80 vol%) produced by the first-stage gasifier can effectively improve the methane yield of the catalytic gasification of the secondary gasifier, compared with the one-step methanation process Reduces CO and H 2 circulation, thereby reducing energy consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Industrial Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

两级气化炉煤气化制甲垸的方法 发明领域
本发明涉及煤气化制曱烷的方法, 更具体地, 本发明涉及釆 用两级气化炉煤气化制曱烷的方法。
背景技术
随着世界石油资源的日益枯竭和人类可持续发展对环保的需 求, 以煤气化为代表的清洁煤利用技术将在未来化石能源中起着 不可替代的作用。 尤其我国富煤贫油, 煤炭储存量占世界第三, 且煤炭资源地域分布不均, 合理开发和利用煤气化技术对保障中 国能源安全和经济发展具有长远的战略意义。与现有天然气相比, 合成曱烷以其成本低, (煤)原料来源丰富等特点引起人们越来 越多的产业化关注。
目前的甲烷化技术可大体分为两步法(间接法)和一步法(直 接法) 两种。 两步法是指用现有的成熟技术(如德式气流床或鲁 奇炉技术)用空气或氧气等氧化剂将煤或水煤浆等先气化成 H2和 CO等产品, 产品气体经过降温、 脱酸性气体 (如 H2S等) 、 去除 夹带颗粒等净化工艺后, 通过水煤气变换反应调整 H/C比, 最后 在镍基或其他催化剂作用下合成曱烷。 两步法的优点是气化和曱 烷化两步工艺分开操作, 且技术相对比较成熟, 如 Grea t Pla ins 的合成曱烷技术(SNG )。 缺点是由于合成气需要添加 贵且复杂 的净化设备, 成本比较高, 且由于引入合成气净化和水煤气变换 装置, 工艺总体热效率较低。 目前已正式投入生产的两步法仅有 Great Pla ins的技术, 其他的都相对不成熟。
一步法是将煤在催化剂 (通常为碱金属催化剂)作用下和水 蒸气直接反应气化成曱烷。 Exxon 公司在美国能源部的资助下在 二十世纪七十到八十年代进行了大量的煤催化气化的研究工作, 其工艺的一般流程是将过热水蒸气和混有催化剂的煤在流化床内 进行催化气化反应直接合成曱烷。 除煤以外, 石油焦等含高固定 碳的物质也可以采用类似工艺,如 US2007/0083072提出了一种催 化气化石油渣的工艺流程。 与两步法相比, 一步法具有工艺简单, 热效率高等优点。 缺点是需要额外提供制备高温 ( 800 - 900TC ) 过热水蒸气设备以及保温装置, 以提供无氧气化所需的热量并弥 补系统散热造成的热损失。
煤与水反应生成曱烷是微吸热反应, 如反应式 (1) 所示:
C + H20→-CH4 +C02 5.4KJ/mol (1)
理论上仅需添加少量热量以维持系统散热造成的能量损失。 但气化过程同时伴随有水蒸气和煤的气化反应(反应式(2) )和水 煤气变换反应(反应式 (3) )等平行反应, 其中水蒸气和煤的气化 反应(反应式(2) )为强吸热反应, 且反应程度较大, 因此实际操 作需要更多的热量来维持恒温气化反应。
C + H20→H2 +CO 131KJ/mol (2)
CO + H20→C02 +H2 -41KJ/mol (3)
传统的维持适宜催化气化温度( ~ 700 )的方法是采用更高 的水蒸气的进气温度( 800 ~ 900"C ) , 如 Exxon的煤催化气化技 术, 例如参见 H. A. Marshall and F. C. R. M. Smits, "Exxon catalytic coal gasification coal gasification process and large pi lot plant development program, " Pittsburgh, PA, USA 1982, 357-377页。 制备 800 ~ 900 的过热水蒸气通常需要多级 过热器和高功率锅炉, 导致系统总能耗偏高。 另外, 在水蒸气从 饱和水蒸气至过热水蒸气的升温过程中, 存在高温高压下材料的 腐蚀问题, 因此对生产和输送过热水蒸气的设备的材料提出了更 高的要求。使用一步法的专利 US4292048提出用曱烷重整的方法, 即把 CH4和 H20反应生成的 CO和 H2以及从气化炉分离出的 CO和 H2通入气化炉, 以提高甲烷收率并使反应接近热中性, 从而减少 吸热反应(主要为反应式(2) )所需要的热量。 这种方法的缺点是 所需的 CO和 H2循环量比较大, 增大了系统能耗和设备尺寸。
发明概述
本发明提供了一种煤气化生成曱烷的方法, 包括以下步骤: a. 使煤和含氧气体在一级气化炉中发生反应, 生成包含 C0、 C02、 H2、 H20的煤气化气体产物;
b. 向所述煤气化气体产物中通入冷却剂进行降温,得到一级 气体产物;
c 将所述一级气体产物通入二级气化炉中并与煤和催化剂 反应, 得到包含甲烷的二级气体产物。
附图简述
图 1是本发明的方法的一个实施方案的流程图。
图 2是本发明的方法中使用的一级气化炉的示意图。
图 3是本发明的方法中使用的 级气化炉的示意图, 其中图
3A为该炉的主视图, 图 3B为该炉内部的俯视图。
这些图仅仅是说明性的, 不以任何方式限制本发明的范围。 发明详述
本发明的方法在串联连接的两级气化炉中进行。 下面结合图 1详细阐述本发明。
在本发明的步骤 a中, 使煤和含氧气体在一级气化炉中发生 反应, 生成包含 C0、 C02、 H2、 H20的煤气化气体产物。 其中煤可 以以水煤浆或干燥煤粉的形式通入一级气化炉中, 进料设备为本 领域常规的浆料进料设备如高压水煤浆输送泵(如隔膜泵) 和水 煤浆喷嘴或固体进料设备如锁斗进料和加压吹送设备。 同时, 从 向一级气化炉中通入含氧气体, 所述含氧气体可以是空气、 富氧 空气或纯氧气。 煤和氧气在一级气化炉的 900-1600 X的温度和 20-70atm的压力 (指绝对压力, 下同)下发生气化反应, 生成包 含 C0、 C02、 H2、 H20的煤气化气体产物, 若使用空气或富氧空气 的话, 则该煤气化气体产物还包括氮气以及惰性气体。 煤与氧气 的气化反应放出大量热量, 该热量一部分用于维持一级气化炉的 高温, 另一部分则蕴藏在煤气化气体产物中以备后用。 煤气化气 体产物沿一级气化炉向上运动, 而气化后产生的熔渣则从一级气 化炉底部排出。
在本发明的步骤 b中, 向所述煤气化气体产物中通入冷却剂 进行降温, 得到一级气体产物。 通入冷却剂降温的目的是将气体 的温度调节至略高于二级气化炉的催化剂适合发挥催化作用的温 度。 其中冷却剂是液态水或温度为 200 ~ 350 的水蒸气或从本发 明的两级气化炉工艺之后的气体分离工艺分离出来并再循环的 CO和 H2, 或它们的混合物。 在使用它们的混合物进行操作的实施 方案中, 冷却剂以水或水蒸气为主, 再循环的 CO和 H2起辅助冷 却作用,循环 CO和 H2的主要目的是提高二级气化炉内的 CH4收率。 顾名思义, 这些冷却剂的温度应当低于煤气化气体产物的温度。 当冷却剂是液态水或低温水蒸气时, 由于水煤气变换反应 (见前 述方程式 3 ) 的存在, 煤气化气体产物的气相组成会发生变化; 当冷却剂是再循环的 CO和 H2时, 煤气化气体产物的气相组成也 会因此发生变化。 将因掺入冷却剂冷却而使气相组成发生变化后 的气体产物称为一级气体产物。 其中冷却剂可以在一级气化炉的 中部至一级气化炉出口之间的任意位置处通入, 例如通过位于一 级气化炉的中部至一级气化炉出口之间的至少一对优选呈对位安 放的喷嘴通入一级气化炉中。 或者, 冷却剂也可以通入到一级气 化炉与二级气化炉之间的连接管道中。 又或者, 可以通过在在一 级气化炉的中部至一级气化炉出口之间的任意位置处和在一级气 化炉与二级气化炉之间的连接管道中都通入冷却剂来实现步骤 b。 冷却后形成的一级气体产物的温度为 800-900X 。
在本发明的步骤 c中, 将所述一级气体产物通入二级气化炉 中并与煤和催化剂反应, 得到包含曱烷的二级气体产物。 其中, 二级气化炉中的温度为 650-750"€, 压力为 20- 40atm, 维持二级 气化炉中的温度所需的热量可完全或部分地由一级气体产物来提 供。 该步骤 c中所使用的催化剂选自碱金属碳酸盐或碱金属氢氧 化物或它们的混合物。 煤和催化剂可以分别通入二级气化炉中或 以混合物的形式通入二级气化炉中, 优选以混合物的形式通入二 级气化炉中, 其中通过本领域常规手段将煤与催化剂水溶液混合 在一起, 干燥后得到煤与催化剂的混合物。 所采用的进料设备也 是本领域的常规进料设备, 例如锁斗进料装置等。 根据二级气化 炉中流态化以及催化气化反应所需的水煤比的要求, 可以优选地 额外向二级气化炉中通入过热水蒸气, 用于辅助维持流态化状态 并提高煤气化的转化率。 所述过热水蒸气的温度为 800 ~ 900 , 压力为 20 ~ 40atm, 它可以直接通入二级气化炉中或通入一级气 化炉与二级气化炉之间的连接管道中, 优选直接通入二级气化炉 中, 例如通过位于二级气化炉底部的锥形分布板进入二级气化炉 中。 煤粉在催化剂的作用下与一级气体产物发生如下列方程式所 示的反应, 生成包括曱烷在内的二级气体产物, 该二级气体产物 离开二级气化炉, 进入后续的气体分离工序, 而二级气化炉中产 生的灰渣则从二级气化炉底部排出。
C + H20 - H2 + CO (4) CO + H20 → C02 + H2 (3)
3H2 + CO → CH4 + H20 (5)
二级气体产物在后续的气体分离工序中采用本领域常规分 离手段进行分离出 C0、 H2、 C02等, 最终得到高纯度的曱烷气体, 这些分离手段是技术人员公知的, 在此不再赘述。 在分离工序中 分离出来的 CO和 H2等气体可以单独作为冷却剂, 或者, 作为其 它冷却剂如液态水或低温水蒸气的补充物, 以实施步骤 b。
从二级气化炉排出的灰渣中含有半焦、灰以及催化剂等物质。 可通过本领域常规分离手段从中分离回收催化剂, 并将回收的催 化剂循环使用, 这些都是技术人员公知的, 不再赘述。
本发明的方法中釆用的一级气化炉可以是气流床、 流化床或 输送床。 气流床的实例可以是 Shell、 GE或 ConocoPhilips公司 的 egas气流床等几种类型; 流化床的实例可以是 ugas流化床, 也可以是 KRW灰融聚流化床;输送床的实例是 KBR的输送气化炉, 等等。 当直接使用这些气化炉不对其进行任何改造时, 则需要在 一级气化炉和二级气化炉之间的连接管道中通入冷却剂。 作为本 发明的优选实施方案, 可以对上述各种气化炉进行改造, 所述改 造是指在这些气化炉的出口之前增设冷却剂喷嘴, 优选增设至少 一对呈对位安放的喷嘴, 通过这些喷嘴将冷却剂通入一级气化炉 中, 用于对煤气化气体产物进行急冷。 其中未经改造的 Shell、 GE或 ConocoPhilips的 egas气流床的具体结构分别参见以下参 考文献:
Schuurman, P. J的题为 "Apparatus for gasification of finely divided fuel" 的美国专利 4202672;
Schl inger, W. G. "Coal gasification development and commercial izat ion of the Texaco coal gasification process" , International Journal of Energy Research, 2007, vol 4(2), 127-136; 和
Rotter, Franz的题为 "Gasification apparatus" 的美国 专利 4306506;
输送床的实例见以下参考文献:
Brandon M. Davis, Roxann Leonard, P. Vimalchand, Guohai Liu, Peter V. Smith, Ron Breault, "Operation of the PSDF transport gasifier" , Twenty-second Annual Pittsburgh Coal Conference, Pittsburgh, PA, September 12-15,2005。
关于 ugas流化床和 KRW灰融聚流化床, 参见以下参考文献: Jequier, J. , Longchambon, L. , and Van De Putte, G., "The gasification of coal fines" , J. Inst. Fuel, 1960, 33 584-591, 和
Hartman, H. F., Belk, J. P. , Reagan, E. E. , Low Btu coal gasification processes, vol 2, Selected Process Descriptions, 1978, 11, A-139-151;
通过引用将这些专利或论文的内容并入本文。
图 2给出了改造后的 egas气流床作为一级气化炉的例子,图 2 中仅给出了各物料的进料情况, 而省略了具体的气化炉内部结 构。 水煤浆和氧气混合后进入一级气化炉的底部, 在一级气化炉 底部的高温 ( 1400-1500 ) 区发生气化反应。 与原来的 egas二 段位置处的水煤浆漩流进料方式不同, 在一级气化炉出口前的任 意位置处, 设有至少一对呈对位安放的喷嘴, 通过该喷嘴将冷却 剂通入一级气化炉中, 这种对位安放的方式强化了煤气化气体产 物与冷却剂的混合, 从而实现了迅速降温。
本发明的方法中采用的二级气化炉可以是射流床或循环流化 床, 但优选射流床。 由于煤气化气体产物以及一级气体产物都未 经除尘处理, 故进入二级气化炉的一级气体产物中常常夹带煤灰 或未反应完全的煤焦颗粒, 为防止夹带的颗粒堵塞二级气化炉的 气体分布板, 二级气化炉优选釆用射流床的操作方式。 射流床, 又叫射流流化床, 是由高速(垂直、 水平或倾斜)射流喷入一有 限空间的流化床所构成的床型。 实际应用中, 常见的是高速垂直 射流流体通过底部锥形分布板或平底分布板中心的平底喷口或插 入式喷嘴进入床层而形成射流与流化同时共存的两种流动状态。 关于射流床的结构和操作方式, 可参见以下两个参考文献:
Jequier, J. , Longchambon, L. , and Van De Put te, G. , "The gas if icat ion of coa l f ines" , J. Ins t. Fuel, 1960, 33 584-591 , 和
Har tman, H. F. , Belk, J. P. , Reagan, E. E. , Low Btu coa l gas if icat ion processes, vol 2, Selected Process Descr ipt ions, 1978, 11, A- 139-151 ;
通过引用将这些参考文献的全文并入本文。 图 3给出了一种 射流床的图示: 一级气体产物从射流床中心管注入床层, 不仅避 免了夹带颗粒堵塞气体分布板, 而且可以通过调整中心管的管径 和进气流量, 实现密度不同的灰与焦的分离。 而流化用水蒸气则 从底部通入, 煤和催化剂从二级气化炉中部某位置处通入。
本领域技术人员将会理解的是, 本发明不止适用于煤, 而是 可以扩展到多种含碳物质, 例如石油焦等。 其中石油焦是指是原 油经蒸馏将轻质油和重质油分离后, 重质油再经热裂的过程而转 化成的产品, 其主要的组成元素为碳, 占有 80wt%以上, 其余的 为氢、 氧、 氮、 疏和金属元素。
本发明的优点如下: ( 1 )本工艺中一级气化炉产生的高温气体通过温度调节后可 直接用于二级气化炉, 为二级气化炉提供反应所需的反应热, 减 轻了二级催化气化过热水蒸气锅炉的负荷, 总体热效率高于传统 两步法制甲烷工艺法。
( 2 )气体进入二级气化炉前无需添加单独的净化设备以去除 C02、 H2S或夹带颗粒, 减少了设备投资。
( 3 )一级气化炉产生的富含 CO和 H2 (60 - 80体积%)的合成气, 可有效地提高二级气化炉催化气化的甲烷收率, 与一步甲烷化工 艺比较减轻了 CO和 H2循环量, 从而降低了能耗。

Claims

权 利 要 求
1. 一种煤气化生成甲烷的方法, 包括以下步骤:
a. 使煤和含氧气体在一级气化炉中发生反应, 生成包含 C0、 C02、 H2、 H20的煤气化气体产物;
b. 向所述煤气化气体产物中通入冷却剂进行降温,得到一级 气体产物;
c 将所述一级气体产物通入二级气化炉中并与煤和催化剂 反应, 得到包含甲烷的二级气体产物。
2. 权利要求 1的方法, 其中所述含氧气体为空气、 富氧空气 或纯氧气。
3. 权利要求 1 的方法, 其中一级气化炉中的温度为 900 - 1600 Ό, 压力为 20-70a tm。
4. 权利要求 1的方法, 其中步骤 a中的煤以水煤浆或干燥煤 粉的形式通入一级气化炉中。
5. 权利要求 1的方法, 其中通过在一级气化炉的中部至一级 气化炉出口之间的任意位置处通入所述冷却剂来实现步骤 b。
6. 权利要求 5的方法, 其中通过位于一级气化炉的中部至一 级气化炉出口之间的至少一对对位安放的喷嘴将冷却剂通入一级 气化炉中。
7. 权利要求 1的方法, 其中通过在一级气化炉与二级气化炉 之间的连接管道中通入所述冷却剂来实现步骤 b。
8. 权利要求 1的方法, 其中通过在在一级气化炉的中部至一 级气化炉出口之间的任意位置处和在一级气化炉与二级气化炉之 间的连接管道中都通入冷却剂来实现步骤 b。
9. 权利要求 1 的方法, 其中所述冷却剂是液态水或温度为 200 ~ 350 的水蒸气或再循环的 CO和 Η2或它们的混合物。
10. 权利要求 1 的方法, 其中所述一级气体产物的温度为 800-900 Χ:。
11. 权利要求 1 的方法, 其中二级气化炉中的温度为 650 ~ 750 Ό , 压力为 20- 40atm。
12. 权利要求 1的方法, 其中步骤 c中的催化剂选自碱金属碳 酸盐或碱金属氢氧化物或它们的混合物。
13. 权利要求 1的方法, 其中步骤 c中的煤和催化剂分别通入 二级气化炉中或以混合物的形式通入二级气化炉中。
14. 权利要求 1的方法, 其中步骤 c中还额外地向二级气化炉 中通入过热水蒸气。
15. 权利要求 14的方法,其中所述过热水蒸气的温度为 800 ~ 900 "C , 压力为 20 ~ 40a tm。
16. 权利要求 1 3 的方法, 其中所述过热水蒸气直接通入二级 气化炉中或通入一级气化炉与二级气化炉之间的连接管道中。
17. 权利要求 5的方法, 其中所述一级气化炉为气流床、 流化 床或输送床, 其中在该一级气化炉的出口前增设冷却剂喷嘴。
18. 权利要求 7的方法, 其中所述一级气化炉为气流床、 流化 床或输送床, 任选地在该一级气化炉的出口前增设冷却剂喷嘴。
19. 权利要求 1的方法, 其中所述二级气化炉为射流床。
20. 权利要求 1的方法, 还包括对所述二级气体产物进行气体 分离以得到甲烷的步骤。
21. 前述权利要求之任一项的方法, 其中用石油焦来代替煤。
PCT/CN2010/001890 2009-11-26 2010-11-25 两级气化炉煤气化制甲烷的方法 WO2011063608A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910224298.3 2009-11-26
CN200910224298.3A CN102079685B (zh) 2009-11-26 2009-11-26 两级气化炉煤气化制甲烷的方法

Publications (1)

Publication Number Publication Date
WO2011063608A1 true WO2011063608A1 (zh) 2011-06-03

Family

ID=44065833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001890 WO2011063608A1 (zh) 2009-11-26 2010-11-25 两级气化炉煤气化制甲烷的方法

Country Status (2)

Country Link
CN (1) CN102079685B (zh)
WO (1) WO2011063608A1 (zh)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123827B2 (en) 2007-12-28 2012-02-28 Greatpoint Energy, Inc. Processes for making syngas-derived products
US8192716B2 (en) 2008-04-01 2012-06-05 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
US8202913B2 (en) 2008-10-23 2012-06-19 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8268899B2 (en) 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8328890B2 (en) 2008-09-19 2012-12-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8349039B2 (en) 2008-02-29 2013-01-08 Greatpoint Energy, Inc. Carbonaceous fines recycle
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
WO2013025812A1 (en) 2011-08-17 2013-02-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2013025808A1 (en) 2011-08-17 2013-02-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8479834B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8479833B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US8647402B2 (en) 2008-09-19 2014-02-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8648121B2 (en) 2011-02-23 2014-02-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652222B2 (en) 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
US8653149B2 (en) 2010-05-28 2014-02-18 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8669013B2 (en) 2010-02-23 2014-03-11 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
WO2014055351A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728183B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8734548B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US8733459B2 (en) 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8734547B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
US8748687B2 (en) 2010-08-18 2014-06-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8999020B2 (en) 2008-04-01 2015-04-07 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104479774B (zh) * 2014-11-10 2017-10-27 新奥科技发展有限公司 一种煤气化制甲烷的设备及方法
CN106590753B (zh) * 2015-10-19 2020-09-04 中国石油化工股份有限公司 用于煤制取富甲烷合成气的气化装置及其方法
CN106544061B (zh) * 2016-11-25 2022-04-12 上海泽玛克敏达机械设备有限公司 一种高产油熔渣气化炉和煤气化方法
CN107445785A (zh) * 2016-11-29 2017-12-08 中国神华能源股份有限公司 甲烷的合成方法与合成系统
CN109652152A (zh) * 2017-10-12 2019-04-19 中国石油化工股份有限公司 煤催化气化制甲烷的装置及方法
CN111621335A (zh) * 2020-06-02 2020-09-04 新奥科技发展有限公司 煤催化气化系统
CN112029544A (zh) * 2020-08-17 2020-12-04 新奥科技发展有限公司 催化气化方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746522A (en) * 1971-09-22 1973-07-17 Interior Gasification of carbonaceous solids
EP0259927A1 (en) * 1986-09-10 1988-03-16 ENIRICERCHE S.p.A. Process to produce a high methane content gas mixture from coal
US20100071262A1 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3922612C2 (de) * 1989-07-10 1998-07-02 Krupp Koppers Gmbh Verfahren zur Erzeugung von Methanol-Synthesegas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746522A (en) * 1971-09-22 1973-07-17 Interior Gasification of carbonaceous solids
EP0259927A1 (en) * 1986-09-10 1988-03-16 ENIRICERCHE S.p.A. Process to produce a high methane content gas mixture from coal
US20100071262A1 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US8123827B2 (en) 2007-12-28 2012-02-28 Greatpoint Energy, Inc. Processes for making syngas-derived products
US8652222B2 (en) 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US8349039B2 (en) 2008-02-29 2013-01-08 Greatpoint Energy, Inc. Carbonaceous fines recycle
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US8192716B2 (en) 2008-04-01 2012-06-05 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
US8999020B2 (en) 2008-04-01 2015-04-07 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
US8647402B2 (en) 2008-09-19 2014-02-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8328890B2 (en) 2008-09-19 2012-12-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
US8202913B2 (en) 2008-10-23 2012-06-19 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8734547B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
US8734548B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8268899B2 (en) 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728183B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8479834B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8479833B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8733459B2 (en) 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8669013B2 (en) 2010-02-23 2014-03-11 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US8653149B2 (en) 2010-05-28 2014-02-18 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8748687B2 (en) 2010-08-18 2014-06-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8648121B2 (en) 2011-02-23 2014-02-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2013025812A1 (en) 2011-08-17 2013-02-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2013025808A1 (en) 2011-08-17 2013-02-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2014055351A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
WO2020086258A1 (en) 2018-10-26 2020-04-30 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
WO2020131427A1 (en) 2018-12-18 2020-06-25 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea

Also Published As

Publication number Publication date
CN102079685A (zh) 2011-06-01
CN102079685B (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2011063608A1 (zh) 两级气化炉煤气化制甲烷的方法
US10113125B2 (en) Method and system for cogenerating gas-steam based on gasification and methanation of biomass
CA2755429C (en) High-temperature gasification process using biomass to produce synthetic gas and system therefor
CA2748677C (en) High temperature gasifying process with biomass and system thereof
WO2011029282A1 (zh) 多区煤气化制备含甲烷的气体的方法及设备
CA2748678C (en) High temperature gasifying process with biomass and system thereof
CN106590761B (zh) 煤催化气化制富甲烷合成气的流化床反应装置及反应方法
EP2016160A1 (en) Gasification reactor and its use
CA2748674C (en) High temperature gasifying process with biomass and system thereof
KR102032823B1 (ko) 열 교환기가 구비된 순환 유동층 가스화기
JP5827511B2 (ja) 石炭ガスの製造方法およびメタンの製造方法
CN107267218A (zh) 固体燃料热解气化的方法及系统
CN103484180B (zh) 一种燃煤自供热的催化气化制天然气的工艺和系统
CN105263891B (zh) 用于再循环甲烷的方法和装置
CN111621340A (zh) 煤炭高效催化气化系统及方法
CN109652145A (zh) 带喷嘴的流化床煤催化气化制甲烷的装置及方法
CN209872879U (zh) 干煤粉激冷干粉燃料气化热解装置
CN214496208U (zh) 煤炭催化气化综合利用系统
CN115627183A (zh) 一种回收co2的碳转化装置及其使用方法
AU2014101428A4 (en) High Temperature Gasifying Process With Biomass And System Thereof
CN107118806A (zh) 两段式水煤浆气流床反应器及两段式水煤浆气化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832515

Country of ref document: EP

Kind code of ref document: A1