WO2011062278A1 - Electronic circuit - Google Patents

Electronic circuit Download PDF

Info

Publication number
WO2011062278A1
WO2011062278A1 PCT/JP2010/070743 JP2010070743W WO2011062278A1 WO 2011062278 A1 WO2011062278 A1 WO 2011062278A1 JP 2010070743 W JP2010070743 W JP 2010070743W WO 2011062278 A1 WO2011062278 A1 WO 2011062278A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
terminal
circuit
distribution
terminals
Prior art date
Application number
PCT/JP2010/070743
Other languages
French (fr)
Japanese (ja)
Inventor
大平 孝
康太 山田
Original Assignee
マスプロ電工株式会社
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マスプロ電工株式会社, 国立大学法人豊橋技術科学大学 filed Critical マスプロ電工株式会社
Priority to CN2010800524454A priority Critical patent/CN102668371A/en
Publication of WO2011062278A1 publication Critical patent/WO2011062278A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • H03D1/08Demodulation of amplitude-modulated oscillations by means of non-linear two-pole elements
    • H03D1/10Demodulation of amplitude-modulated oscillations by means of non-linear two-pole elements of diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/185Phase-shifters using a diode or a gas filled discharge tube

Definitions

  • the present invention relates to an electronic circuit suitable for detecting or rectifying a high-frequency signal.
  • a detection / rectification circuit used to detect or rectify a high-frequency signal is usually provided with a diode for detection / rectification, and an input impedance of the detection / rectification circuit and a transmission path of the high-frequency signal. And a matching circuit that matches the output impedance (see, for example, Patent Documents 1 to 3).
  • JP 2009-94739 A Japanese Patent Laid-Open No. 2007-300262 Japanese Patent Laid-Open No. 11-124202
  • the matching circuit is generally composed of a stub, a microstrip line, etc., and its characteristics (line length, etc.) are set corresponding to the center frequency of the high-frequency signal to be detected or rectified. .
  • the input / output impedance of the detection / rectifying diode changes depending on the signal level of the high-frequency signal
  • the input impedance of the matching circuit cannot be matched even if the input impedance changes, and the high-frequency signal is transmitted. There was a problem of reflection on the route.
  • the impedance of the diode may fluctuate slightly if the ambient temperature changes or changes over time. There is a problem that the loss increases.
  • the present invention has been made in view of these problems, and an object thereof is to provide an electronic circuit capable of efficiently performing one of detection and rectification without reflecting a high-frequency signal on its transmission path.
  • the first aspect of the present invention made to achieve such an object is as follows: An electronic circuit, A first hybrid circuit; A second hybrid circuit, Each of the first hybrid circuit and the second hybrid circuit includes four terminals including an input terminal, a first distribution terminal, a second distribution terminal, and a passing terminal, and a target on which one of detection and rectification is performed. And a pair of first transmission lines having a transmission impedance set to a reference value among the four transmission lines. And a pair of second terminals, each having a transmission impedance set to 1 / ⁇ 2 of a reference value, connected between the input terminal and the passing terminal and between the first distribution terminal and the second distribution terminal.
  • An input terminal of the first hybrid circuit is connected to an input path of the high frequency signal
  • An input terminal of the second hybrid circuit is connected to a passing terminal of the first hybrid circuit;
  • the passing terminal of the second hybrid circuit is terminated by a termination circuit having a reference value of the transmission impedance
  • a first diode and a second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit, respectively.
  • a third diode and a fourth diode are connected to the first distribution terminal and the second distribution terminal of the second hybrid circuit with a polarity different from that of the first diode and the second diode, respectively.
  • the electronic circuit is The output from the terminal opposite to the distribution terminal of the first diode and the second diode and the output from the terminal opposite to the distribution terminal of the third diode and the fourth diode are combined with the negative phase power. It is characterized by being comprised so that it may output.
  • a second aspect of the present invention is the electronic circuit of the first aspect,
  • the first diode and the second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit with the same polarity
  • the third diode and the fourth diode are connected to the first distribution terminal and the second distribution terminal of the second hybrid circuit with a polarity different from that of the first diode and the second diode
  • Terminals opposite to the distribution terminals of the first diode and the second diode are connected to a first input terminal
  • terminals opposite to the distribution terminals of the third diode and the fourth diode are connected to a second input terminal.
  • a differential amplifier circuit that differentially amplifies the potential difference between the input terminals, It is provided with.
  • the first diode and the second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit in reverse polarity
  • the third diode and the fourth diode are connected to the first distribution terminal and the second distribution terminal of the second hybrid circuit with a polarity different from that of the first diode and the second diode
  • Terminals opposite to the distribution terminals of the first diode and the fourth diode are connected to a first input terminal
  • terminals opposite to the distribution terminals of the second diode and the third diode are connected to a second input terminal.
  • a differential amplifier circuit that differentially amplifies the potential difference between the input terminals, It is provided with.
  • the differential amplifier circuit includes an operational amplifier, and the diode connected to the non-inverting input terminal of the operational amplifier includes the non-inverting circuit.
  • a bias voltage is applied through a gain setting resistor connected to the input terminal.
  • each diode is connected to a terminal on the opposite side of each of the first to fourth diodes.
  • a semicircular or fan-shaped radial stub is provided for removing the high-frequency signal component that has passed.
  • an electronic circuit according to a sixth aspect of the present invention includes a plurality of stages of electronic circuits according to the first aspect, which are subordinately connected with the termination circuit removed, and the final stage of the plurality of stages of electronic circuits.
  • the passing terminal of the second hybrid circuit constituting the terminal is terminated by a termination circuit having a reference value of the transmission impedance.
  • each hybrid circuit is configured as described above, it functions as a distribution circuit (so-called hybrid ring) that distributes the high-frequency signal input to the input terminal into two and outputs the high-frequency signal from the first distribution terminal and the second distribution terminal. .
  • the first and second distribution terminals of each hybrid circuit are connected to the first and second diodes or the third and fourth diodes for each hybrid circuit.
  • the hybrid circuit configured as described above Hybrid ring
  • the output impedance of the distribution terminal is different from the input impedance of the diode connected to the distribution terminal. Even if a part of the output signal is reflected at the distribution terminal, the reflected signal is output to the passing terminal side. And does not return to the input terminal side.
  • the electronic circuit of the first aspect it is possible to prevent the high-frequency signal from being reflected on the input path without using the matching circuit. Further, when the high frequency signal is reflected on the input path, not only the power efficiency is deteriorated, but also a ripple is generated in the frequency characteristic of the high frequency signal. According to the present invention, such a problem can be prevented.
  • the electronic circuit of the first aspect since it is not necessary to use a matching circuit, it is possible to prevent the frequency band of a high-frequency signal that can be detected / rectified from being limited by the frequency characteristics of the matching circuit and to detect / rectify.
  • the frequency band of high frequency signals can be widened.
  • the first, second diode, and the third and fourth diodes are connected to the two distribution terminals of the first hybrid circuit and the second hybrid circuit, respectively.
  • the four diodes are connected to the distribution terminals so that the polarities are different between the hybrid circuits, and the outputs from the first and second diodes and the outputs from the third and fourth diodes are combined with opposite phase power,
  • the high-frequency signal input from the input terminal of the one hybrid circuit is full-wave rectified by the first and second diodes connected to the first hybrid circuit and the third and fourth diodes connected to the second hybrid circuit. Will be.
  • the output decrease caused by the reflection of the high-frequency signal at the connection point of each diode that is, the first and second distribution terminals of each hybrid circuit
  • It can be reduced by synthesis (in other words, full-wave rectification), and the power efficiency of the electronic circuit can be prevented from being lowered.
  • Each of the hybrid circuits can be formed on a substrate as a wiring pattern, each of the diodes can be mounted on a circuit substrate, and a circuit for reverse phase power synthesis is also formed on the substrate. And a component mounted on the board.
  • the electronic circuit of the first aspect can be configured by forming a predetermined wiring pattern on one side of the double-sided board and mounting the electronic component. And if the electronic circuit is configured in this way, it is not necessary to form a through hole in the substrate, so that the circuit pattern can be reduced, and the back surface of the double-sided substrate is a solid ground, so that stable characteristics can be obtained. It will be obtained.
  • full-wave rectification of the high-frequency signal input from the input terminal of the first hybrid circuit is performed by combining the outputs from the first and second diodes with the outputs from the third and fourth diodes.
  • a differential amplifier circuit can be used as the circuit.
  • the first diode and the second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit with the same polarity, and the third diode and the fourth diode are connected to the second hybrid circuit.
  • the differential amplification is performed as in the electronic circuit in the second aspect.
  • a terminal opposite to the distribution terminals of the first diode and the second diode is connected to one input terminal (first input terminal) of the circuit, and the other input terminal (second input terminal) of the differential amplifier circuit. If the terminals opposite to the distribution terminals of the third diode and the fourth diode are connected, the high-frequency signal input from the input terminal of the first hybrid circuit can be full-wave rectified.
  • the first diode and the second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit in reverse polarity, and the third diode and the fourth diode are connected to the first distribution terminal of the second hybrid circuit.
  • the second distribution terminal is connected with a polarity different from that of the first diode and the second diode and opposite to each other
  • one input of the differential amplifier circuit as in the electronic circuit in the third aspect A terminal (first input terminal) is connected to a terminal opposite to each distribution terminal of the first diode and the fourth diode, and the other input terminal (second input terminal) of the differential amplifier circuit is connected to the second diode and If the terminal opposite to each distribution terminal of the third diode is connected, the high-frequency signal input from the input terminal of the first hybrid circuit can be full-wave rectified.
  • each resistance value of the input resistance The input characteristics of the high frequency signal from the diode to each input terminal can be changed.
  • the resistance value of the input resistance connected to each input terminal of the differential amplifier circuit is adjusted even if the characteristics of each diode or hybrid circuit vary. As a result, variations in the characteristics of the diodes and the hybrid circuit can be absorbed and the output characteristics can be improved.
  • the differential amplifier circuit is configured by an operational amplifier, and the diode connected to the non-inverting input terminal of the operational amplifier has an amplification factor connected to the non-inverting input terminal.
  • a bias voltage is applied through a setting resistor.
  • a bias current can be passed through any of the first to fourth diodes to increase the sensitivity of each of these diodes (and thus the detection / rectification efficiency).
  • a semicircular or fan-shaped radial stub for removing the high-frequency signal component that has passed through each diode is provided on the terminal opposite to each distribution terminal of the first to fourth diodes. Is provided.
  • the electronic circuit of the fifth aspect even if the high frequency signal component leaks from the distribution terminal of each hybrid through the first to fourth diodes, the high frequency signal component can be removed by the radial stub. It is possible to prevent the high-frequency signal component from being superimposed on the detection / rectification signal obtained by combining the outputs from the diodes with the antiphase power.
  • the electronic circuit of the first aspect is connected in multiple stages by removing the termination circuit, and the passing terminal of the second hybrid circuit constituting the final stage electronic circuit is used as the termination circuit. It is constituted by terminating.
  • the reflected signal component generated at the passing terminal of the second hybrid circuit in the previous stage electronic circuit is input to the next stage electronic circuit by connecting the electronic circuit of the first stage in multiple stages. Then, by detecting / rectifying again, the power consumption (in other words, power loss) of the reflected signal consumed by the termination circuit connected to the final stage electronic circuit is suppressed.
  • the electronic circuit of the sixth aspect although a plurality of stages of the electronic circuit of the first aspect are required, the detection / rectification efficiency of the high-frequency signal can be increased according to the number of connection stages, An electronic circuit with good power efficiency can be realized.
  • the detection / rectification circuit of the present embodiment includes a first hybrid circuit 10 to which a high-frequency signal to be detected or rectified is input via a coupling capacitor C1, and a first hybrid circuit 10.
  • Two hybrid circuits are provided, including the second hybrid circuit 20 to which the passed high-frequency signal is input.
  • Each of these hybrids 10 and 20 is approximately 1 at the reference frequency of the high frequency signal to be detected or rectified, with four terminal portions including the input terminal Ti, the first distribution terminal T1, the second distribution terminal T2, and the passing terminal To. It consists of four transmission lines having a length of / 4 wavelength.
  • the transmission impedance is set to the same reference value as the high-frequency signal input path (50 ⁇ in this embodiment) between the input terminal Ti and the passing terminal To and between the first distribution terminal T1 and the second distribution terminal T2.
  • a pair of first transmission lines L1 are connected to each other, and between the input terminal Ti and the first distribution terminal T1 and between the passage terminal To and the second distribution terminal T2, the transmission impedance is approximately 1 of the reference value. They are connected by a pair of second transmission lines L2 set to a value of / ⁇ 2 (35 ⁇ in this embodiment).
  • each hybrid circuit 10, 20 is formed in a rectangular ring shape by alternately connecting a pair of first transmission lines L1 and a pair of second transmission lines L2. Since the transmission impedance of the first transmission line L1 and the transmission impedance of the second transmission line L2 are set to 1: 1 / ⁇ 2, each of the hybrid circuits 10 and 20 has a high frequency input to the input terminal Ti. It functions as a distribution circuit (so-called hybrid ring) that divides the signal into two and outputs it from the first distribution terminal T1 and the second distribution terminal T2.
  • the input terminal Ti of the second hybrid circuit 20 is connected to the pass terminal To of the first hybrid circuit 10, and the pass terminal To of the second hybrid circuit 20 is a reference value of transmission impedance (50 ⁇ in the present embodiment). ) Is connected to a radial stub RS0 for removing a high frequency signal.
  • the anodes of the detection / rectification diodes D1 and D2 are connected to the first distribution terminal T1 and the second distribution terminal T2 of the first hybrid circuit 10, respectively, and the cathodes of these diodes D1 and D2 are connected to the anodes.
  • the cathodes of these diodes D1 and D2 are connected to the anodes.
  • radial stubs RS1 and RS2 for high-frequency signal removal.
  • the cathodes of the detection / rectification diodes D3 and D4 are connected to the first distribution terminal T1 and the second distribution terminal T2 of the second hybrid circuit 20, respectively.
  • the anodes of the diodes D3 and D4 are connected to the anodes.
  • the high-frequency signal input path, the first hybrid circuit 10, the second hybrid circuit 20, and the radial stubs RS0 to RS4 are configured by a conductor pattern formed on one side of a double-sided board. , 20 sequentially arranges one first transmission line L1 of each of the hybrid circuits 10 and 20 on an extension line extending straight from the input path of the high-frequency signal, and sandwiches the extension line from both ends of the first transmission line L1.
  • a pair of second transmission lines L2 are extended in different directions, and the ends of the extended second transmission lines L2 are connected by the other first transmission line L1.
  • the cathodes of the diodes D1 and D2 whose anodes are connected to the distribution terminals T1 and T2 of the first hybrid circuit 10 are connected to the inverting input terminal ( ⁇ ) of the operational amplifier OP1 via the resistors R1 and R2, respectively.
  • the anodes of the diodes D3 and D4 whose cathodes are connected to the distribution terminals T1 and T2 of the second hybrid circuit 20 are respectively connected to the non-inverting input terminal (+) of the operational amplifier OP1 via the resistors R3 and R4. It is connected to the.
  • the operational amplifier OP1 constitutes the differential amplifier circuit 30.
  • An inverting input terminal ( ⁇ ) and an output terminal are connected via a resistor R6, and a resistor R8 is connected to a non-inverting input terminal (+).
  • a predetermined bias voltage is applied thereto.
  • the diodes D1 to D4 are connected to the distribution terminals T1 and T2 of the hybrid circuits 10 and 20, respectively.
  • the two distributed high frequency signals are detected / rectified by diodes D1, D2 or D3, D4, respectively.
  • the output impedance of the distribution terminals T1 and T2 is different from the input impedance of the diodes D1 and D2 or D3 and D4, and a part of the high-frequency signal is reflected at the distribution terminals T1 and T2.
  • the reflected signal is output to the passing terminal To side and does not return to the input terminal Ti side.
  • the detection / rectification circuit of the present embodiment it is possible to prevent the high-frequency signal from being reflected on the input path without using a matching circuit as in the prior art. Further, when the high frequency signal is reflected on the input path, not only the power efficiency is deteriorated, but also ripples are generated in the frequency characteristics of the high frequency signal. According to this embodiment, such a problem can be prevented.
  • the detection / rectification circuit of the present embodiment since it is not necessary to use a matching circuit, it is possible to prevent the frequency band of a high-frequency signal that can be detected / rectified from being limited by the frequency characteristics of the matching circuit. / The frequency band of the rectifiable high frequency signal can be widened.
  • the diodes D1 and D2 and the diodes D3 and D4 are connected to the distribution terminals T1 and T2 of the hybrid circuits 10 and 20 with different polarities, but the outputs from the diodes D1 and D2 and the diodes D3 and D4 Are respectively input to the inverting input terminal and the non-inverting input terminal of the operational amplifier OP1 constituting the differential amplifier circuit 30, and are combined with the negative phase power by the differential amplifier circuit 30, so that the first hybrid circuit 10
  • the high-frequency signal input to the input terminal Ti is full-wave rectified by the diodes D1 to D4 connected to the hybrid circuits 10 and 20.
  • the high frequency signal is reflected at the connection points between the first distribution terminal T1 and the second distribution terminal T2 of the hybrid circuits 10 and 20 and the diodes D1 to D4.
  • the high-frequency signal input path, the first hybrid circuit 10, the second hybrid circuit 20, and the radial stubs RS0 to RS4 are configured by the conductor pattern formed on one side of the double-sided board.
  • the detection / rectifier circuit of the present embodiment can be manufactured by mounting the coupling capacitor C1, the diodes D1 to D4, the resistors R0 to R8, the operational amplifier OP1, and the like on the substrate surface on which the conductor pattern is formed. it can.
  • the circuit pattern can be reduced, and a stable characteristic can be obtained by making the back surface of the double-sided substrate a solid ground. become.
  • the bias voltage is applied in the forward direction to the diodes D3, D4 and D1, D2. Current will flow. Therefore, according to the present embodiment, the sensitivity of each of the diodes D1 to D4, that is, the detection / rectification efficiency by the detection / rectification circuit can be increased.
  • each of the diodes D1 to D4 is connected to each input terminal of the operational amplifier OP1 constituting the differential amplifier circuit 30 via resistors (so-called input resistors) R1 to R4.
  • resistors so-called input resistors
  • the output characteristics can be improved due to variations in the characteristics of the diodes D1 to D4 by individually adjusting the resistance values of the input resistors R1 to R4.
  • each of the diodes D1 to D4 has a capacity, a high frequency signal component may leak out from each of the diodes D1 to D4.
  • a high frequency signal removal is provided on the output side of each of the diodes D1 to D4. Since the fan-shaped radial stubs RS1 to RS4 are provided, it is possible to prevent the high-frequency signal component from being superimposed on the output signal from the diodes D1 to D4 to the differential amplifier circuit 30.
  • the diode D1 is the first diode of the present invention
  • the diode D2 is the second diode of the present invention
  • the diode D3 is the third diode of the present invention
  • the diode D4 is the first diode of the present invention. It corresponds to 4 diodes, respectively.
  • the high frequency signal to be detected or rectified is a millimeter wave having a center frequency of 76.5 GHz and a bandwidth of ⁇ 9 GHz (that is, a millimeter wave of 67.5 GHz to 85.5 GHz).
  • the length of the input path from the high-frequency signal input terminal (Port 1) to the first hybrid circuit 10 is about 1 ⁇ 2 (about 0.84 mm) of the reference wavelength ⁇ g corresponding to the substantially center frequency of the high-frequency signal.
  • the lengths of the first transmission line L1 and the second transmission line L2 of each hybrid circuit 10 and 20 are about ⁇ g / 4 (about 0.42 mm or about 0.40 mm), and the back surface is a solid ground.
  • a circuit board formed on the surface of the substrate was used.
  • the distribution terminals of the hybrid circuits 10 and 20 to which the diodes D1 to D4 are connected are respectively Port2 to Port5, and the pass terminal To of the second hybrid circuit 20 to which the termination resistor R0 is connected is Port6.
  • the amount of coupling from Port 1 in each of Port 2 to Port 6 and the amount of reflection of the high-frequency signal reflected from Port 1 to the input path are center frequency 76.5 GHz, minimum frequency 67.5 GHz, maximum frequency 85.5 GHz, Each was evaluated.
  • this simulation is performed when the impedances of electronic components (high-frequency signal input circuits, diodes D1 to D4, termination resistors R0, etc.) connected to the respective Port1 to Port6 are all at a reference value (50 ⁇ ), and Port1 and Port6.
  • the impedance of the electronic component (high-frequency signal input circuit, termination resistor R0) connected to is a reference value (50 ⁇ )
  • the impedance of the diodes D1 to D4 connected to Port2 to Port5 is 6 ⁇ , which is significantly different from the reference value. And performed under two conditions.
  • the reflection amount of the high-frequency signal from Port 1 can be sufficiently reduced under any condition.
  • the impedances of the diodes D1 to D4 are 6 ⁇ that deviates from the reference value (50 ⁇ )
  • the reflection at the Port2 to Port5 increases, so In comparison, the amount of coupling of Port 2 and Port 3 to Port 1 is small, and the amount of coupling of Port 4 to Port 6 is large.
  • the amount of coupling at Port 6 representing the amount of power consumed by the terminating resistor R0 is 42% at the center frequency (76.5 GHz), 38.1% at the minimum frequency (67.5 GHz), and the maximum frequency (85.5 GHz). ) Is 37.1%.
  • FIG. 3 shows the configuration (excluding the differential amplifier circuit 30) of the detection / rectification circuit of the second embodiment to which the present invention is applied.
  • the detection / rectification circuit of the present embodiment is the same as the detection / rectification circuit of the first embodiment, comprising the first and second hybrid circuits 10 and 20, the diodes D1 to D4, and the radial stubs RS1 to RS4.
  • the second hybrid circuit 20 is arranged in two stages before and after the coupling capacitor C2, and is terminated by terminating the pass terminal To of the second hybrid circuit 20 constituting the latter basic circuit via a termination resistor R0.
  • the basic circuits arranged in the preceding stage and the basic circuit arranged in the subsequent stage with the coupling capacitor C2 interposed therebetween have opposite directions (polarities) of the diodes D1 to D4, so
  • the outputs of the diodes D3, D4, D3 and D4 connected to the second hybrid circuit 20 are connected by a common signal line, and the diodes D1 and D2 connected to the first hybrid circuit 10 are connected in the previous basic circuit.
  • the diodes D1 and D2 connected to the inverting input terminal ( ⁇ ) of the operational amplifier OP1 constituting the differential amplifier circuit 30 and connected to the first hybrid circuit 10 in the subsequent basic circuit constitute the differential amplifier circuit 30.
  • the operational amplifier OP1 is connected to the non-inverting input terminal (+).
  • the reflected signal component generated at the passing terminal To of the second hybrid circuit 20 in the preceding basic circuit is input to the succeeding basic circuit, and the succeeding basic circuit. It will be detected / rectified again in the circuit. As a result, the power consumption (in other words, power loss) of the reflected signal consumed by the termination resistor R0 connected to the basic circuit at the subsequent stage can be suppressed.
  • FIG. 4 shows the configuration of the detection / rectification circuit of the third embodiment to which the present invention is applied.
  • the detection / rectification circuit of the present embodiment basically has the same configuration as that of the detection / rectification circuit of the first embodiment shown in FIG. 1.
  • the difference from the first embodiment is that the diode D2 and D4 is connected to each of the hybrid circuits 10 and 20 with the opposite polarity to the first diodes D1 and D3, and the terminal (that is, the anode) opposite to the distribution terminal T2 of the diode D2 is connected to the operational amplifier OP1 via the resistor R4.
  • the terminal (that is, the cathode) opposite to the distribution terminal T2 of the diode D4 is connected to the non-inverting input terminal (+) and the inverting input terminal ( ⁇ ) of the operational amplifier OP1 through the resistor R2.
  • the connection directions of the diodes D1 and D2 in the first hybrid circuit 10 and the connection directions of the diodes D3 and D4 in the second hybrid circuit 20 are different. Since the anode of the diode D2 is connected to the non-inverting input terminal (+) of the operational amplifier OP1, and the cathode of the diode D4 is connected to the inverting input terminal ( ⁇ ) of the operational amplifier OP1, the first hybrid is the same as in the above embodiment.
  • the high-frequency signal input to the input terminal Ti of the circuit 10 can be full-wave rectified by the diodes D1 to D4 and the differential amplifier circuit 30 to increase the power efficiency of the detection / rectification circuit.
  • the power of the high frequency signal output from the distribution terminals T1 and T2 of the second hybrid circuit is input to the second hybrid circuit 20
  • the power of the high frequency signal output from the distribution terminals T1 and T2 of the second hybrid circuit Is lower than the power of the high-frequency signal output from the distribution terminals T1 and T2 of the first hybrid circuit 10.
  • the balance of input power to each input terminal (+, ⁇ ) of the operational amplifier OP1 may be lost, and rectification efficiency (and thus power efficiency) may be reduced.
  • the output from the first distribution terminal T1 of the first hybrid circuit 10 and the second hybrid circuit 20 the first hybrid circuit 10 and the input terminals (+, ⁇ ) of the operational amplifier OP1. Since the output from the second distribution terminal T2 of the second hybrid circuit 20 is input, the input power to each input terminal (+, ⁇ ) of the operational amplifier OP1 is balanced, and the rectification efficiency (and thus the power) (Efficiency) can be improved.
  • one first transmission line L1 of each of the hybrid circuits 10 and 20 is sequentially arranged on an extension line extending straight from the input path of the high-frequency signal, and from both ends of each first transmission line L1, By extending a pair of second transmission lines L2 in different directions for each first line L1, and connecting the ends of the pair of second transmission lines L2 with the other first transmission line L1, a pair of second transmission lines L2 is connected.
  • the hybrid circuits 10 and 20 have been described as being formed on the substrate.
  • the second transmission line L2 is arranged on an extension line extending straight from the input path of the high-frequency signal, and the tip thereof is the first distribution terminal. T1 is set.
  • the phase difference of the coupling amount at the distribution terminals T1 and T2 is set to a substantially designed value (90 °) at the design frequency of the hybrid circuit. It is because it can do.
  • the phase difference of the coupling amount at the distribution terminals T1 and T2 becomes, for example, 80 ° at the design frequency of the hybrid circuit, which may deviate from the design value. Conceivable.
  • the detection / rectification circuit of the present embodiment can widen the frequency band of a high-frequency signal that can be detected / rectified, even if the coupling amount phase difference at the distribution terminals T1 and T2 is slightly shifted as described above, although there is no particular problem, the high-frequency signal input path connected to the first hybrid circuit 10 may be formed as shown in FIG.
  • the detection / rectification circuit shown in FIG. 5 connects the input path Lin extending straight from the second transmission line to the input terminal Ti of the first hybrid circuit 10 in the detection rectification circuit of the first embodiment shown in FIG.
  • An input path for inputting a high frequency signal from the outside is connected to the tip of the input path Lin so as to be orthogonal.
  • the length of the input path Lin is substantially the same length (approximately 1 ⁇ 4 wavelength) as that of the second transmission line L2.
  • the phase difference between the coupling amounts at the distribution terminals T1 and T2 at the design frequency is approximately the design value (90 °) will be able to.
  • the basic circuit composed of the first and second hybrid circuits 10 and 20, the diodes D1 to D4, and the radial stubs RS1 to RS4 has been described as being arranged in two stages.
  • a basic circuit constituted by the first and second hybrid circuits 10 and 20, the diodes D1 to D4, and the radial stubs RS1 to RS4, or a multistage in which this basic circuit is connected in two stages in the front and rear.
  • a differential amplifier circuit 30 is provided, and the output from each of the diodes D1 to D4 is combined in the differential amplifier circuit 30 in this differential amplifier circuit 30.
  • a pair of power storage capacitors Ca and Cb may be provided.
  • the output from each of the diodes D1 to D4 is connected to the other end of the storage capacitor Ca, Cb having one end connected to the ground line having the same potential as the solid ground on the back surface of the double-sided substrate, whereby the storage capacitor Ca , Cb may be charged, and the charging voltages + V and ⁇ V may be output from a DC output terminal connected to the other ends of the storage capacitors Ca and Cb.
  • the outputs from the diodes D1 to D4 are combined with the reverse phase power by the storage capacitors Ca and Cb, so that the storage capacitors Ca and Cb can be charged with the opposite polarity.
  • a coaxial input terminal Tco is provided in the input path of the high-frequency signal to the detection / rectification circuit, and the coaxial input terminal Tco is coaxially connected.
  • the primary radiator 50 of the parabolic antenna 40 is connected via the cable Lco, the high frequency signal received by the parabolic antenna 40 is rectified and charged to the storage capacitors Ca and Cb, and the charging voltage (electric power) is set. It can be used as a power converter that outputs from a DC output terminal to an external load, and by extension, can be used for space power generation and non-contact power feeding that perform power transmission by wireless transmission of high-frequency signals.
  • the detection / rectification circuit shown in FIG. 6 is the same as the detection / rectification circuit of the second embodiment shown in FIG. Ca and Cb are provided, and the outputs (cathodes) of the diodes D1 and D2 on the side connected to the inverting input terminal ( ⁇ ) of the differential amplifier circuit 30 are connected to the other end of the storage capacitor Ca, The output (anode) of the diodes D1 and D2 connected to the non-inverting input terminal (+) of the differential amplifier circuit 30 is connected to the other end of the storage capacitor Cb.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Amplifiers (AREA)
  • Rectifiers (AREA)

Abstract

Disclosed is an electronic circuit, which is provided with a first hybrid circuit (10), and a second hybrid circuit (20). A first diode (D1) and a second diode (D2) are respectively connected to the first distribution terminal (T1) and the second distribution terminal (T2) of the first hybrid circuit. A third diode (D3) and a fourth diode (D4) are respectively connected to the first distribution terminal (T1) and the second distribution terminal (T2) of the second hybrid circuit with polarities different from those of the first diode and the second diode. The electronic circuit is so configured (30) as to output signals by performing reverse phase-power synthesis of output from the terminals of the first diode and the second diode, said terminals being on the sides opposite to the distribution terminals, respectively, and output from the terminals of the third diode and the fourth diode, said terminals being on the sides opposite to the distribution terminals, respectively.

Description

電子回路Electronic circuit 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2009年11月19日に日本国特許庁に出願された日本国特許出願第2009-264230号に基づく優先権を主張するものであり、日本国特許出願第2009-264230号の全内容を参照により本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2009-264230 filed with the Japan Patent Office on November 19, 2009, and is based on Japanese Patent Application No. 2009-264230. The entire contents are incorporated herein by reference.
 本発明は、高周波信号を検波若しくは整流するのに好適な電子回路に関する。 The present invention relates to an electronic circuit suitable for detecting or rectifying a high-frequency signal.
 高周波信号を検波若しくは整流するのに用いられる検波/整流回路は、通常、検波/整流用のダイオードと、このダイオードの前段に設けられて、検波/整流回路の入力インピーダンスと高周波信号の伝送経路の出力インピーダンスとを整合させる整合回路と、から構成されている(例えば、特許文献1~3等参照)。 A detection / rectification circuit used to detect or rectify a high-frequency signal is usually provided with a diode for detection / rectification, and an input impedance of the detection / rectification circuit and a transmission path of the high-frequency signal. And a matching circuit that matches the output impedance (see, for example, Patent Documents 1 to 3).
特開2009-94739号公報JP 2009-94739 A 特開2007-300262号公報Japanese Patent Laid-Open No. 2007-300262 特開平11-122042号公報Japanese Patent Laid-Open No. 11-124202
 ところで、一般に整合回路は、スタブやマイクロストリップ線路等にて構成されており、その特性(線路の長さ等)は、検波又は整流対象となる高周波信号の中心周波数に対応して設定されている。 Incidentally, the matching circuit is generally composed of a stub, a microstrip line, etc., and its characteristics (line length, etc.) are set corresponding to the center frequency of the high-frequency signal to be detected or rectified. .
 このため、従来の検波/整流回路では、検波又は整流対象となる高周波信号の周波数帯域が広くなると、高周波信号の全周波数帯域で入力インピーダンスを整合させることができず、高周波信号を伝送経路上に反射させてしまうという問題があった。 For this reason, in the conventional detection / rectification circuit, when the frequency band of the high-frequency signal to be detected or rectified becomes wide, the input impedance cannot be matched in the entire frequency band of the high-frequency signal, and the high-frequency signal is placed on the transmission path. There was a problem of reflection.
 また、検波/整流用のダイオードは、高周波信号の信号レベルによって入力インピーダンスが変化することから、この入力インピーダンスの変化によっても、整合回路の入力インピーダンスを整合させることができなくなって、高周波信号を伝送経路上に反射させてしまうという問題があった。 In addition, because the input / output impedance of the detection / rectifying diode changes depending on the signal level of the high-frequency signal, the input impedance of the matching circuit cannot be matched even if the input impedance changes, and the high-frequency signal is transmitted. There was a problem of reflection on the route.
 特に、ミリ波帯のような高い周波数においては、ダイオードのインピーダンスを測定すること自体も高価で精密な測定環境が必要であり、従来の回路形式では精度の高くないインピーダンスをもつダイオードとの整合をとることが難しいという問題もある。 In particular, at high frequencies such as the millimeter wave band, measuring the impedance of the diode itself is also expensive and requires a precise measurement environment, and matching with a diode having an impedance that is not high accuracy in the conventional circuit format is required. There is also a problem that it is difficult to take.
 また、同じダイオードであっても、周囲温度が変化する場合や経年変化がある場合には、ダイオードのインピーダンスが微妙に変動してしまうことがあり、この場合にも整合条件が崩れて、反射による損失が増えるという問題がある。 Even if the same diode is used, the impedance of the diode may fluctuate slightly if the ambient temperature changes or changes over time. There is a problem that the loss increases.
 そして、ダイオードから伝送線路上へ反射が生じると、電力効率が劣化するだけでなく、高周波信号の周波数特性にリップルが生じるという問題もある。
 本発明は、こうした問題に鑑みなされたものであり、高周波信号を、その伝送経路上に反射させることなく、効率よく検波及び整流のうちの一方を行うことのできる電子回路を提供することを目的とする。
When reflection occurs from the diode onto the transmission line, there is a problem that not only power efficiency is deteriorated, but also ripples are generated in the frequency characteristics of the high-frequency signal.
The present invention has been made in view of these problems, and an object thereof is to provide an electronic circuit capable of efficiently performing one of detection and rectification without reflecting a high-frequency signal on its transmission path. And
 かかる目的を達成するためになされた本発明の第1局面は、
 電子回路であって、
 第1ハイブリッド回路と、
 第2ハイブリッド回路と
 を備え、
 前記第1ハイブリッド回路及び前記第2ハイブリッド回路の各々は、入力端子、第1分配端子、第2分配端子、及び通過端子からなる4つの端子と、検波及び整流のうちの一方が行われる対象となる高周波信号の基準周波数において略1/4波長となる長さを有する4つの伝送線路とを備え、前記4つの伝送線路の内、伝送インピーダンスが基準値に設定された一対の第1伝送線路にて、前記入力端子と前記通過端子との間及び前記第1分配端子と前記第2分配端子との間をそれぞれ接続し、伝送インピーダンスが基準値の1/√2に設定された一対の第2伝送線路にて、前記入力端子と前記第1分配端子との間及び前記通過端子と前記第2分配端子との間をそれぞれ接続することにより、環状に形成され、
 前記第1ハイブリッド回路の入力端子は、前記高周波信号の入力経路に接続され、
 前記第2ハイブリッド回路の入力端子は、前記第1ハイブリッド回路の通過端子に接続され、
 前記第2ハイブリッド回路の通過端子は、前記伝送インピーダンスの基準値を有する終端回路にて終端され、
 前記第1ハイブリッド回路の第1分配端子及び第2分配端子には、第1ダイオード及び第2ダイオードがそれぞれ接続され、
 前記第2ハイブリッド回路の第1分配端子及び第2分配端子には、第3ダイオード及び第4ダイオードが、それぞれ、前記第1ダイオード及び第2ダイオードとは異なる極性で接続され、
 当該電子回路は、
 前記第1ダイオード及び第2ダイオードの前記各分配端子とは反対側端子からの出力と、前記第3ダイオード及び第4ダイオードの前記各分配端子とは反対側端子からの出力とを逆相電力合成して出力するように構成されていることを特徴とする。
The first aspect of the present invention made to achieve such an object is as follows:
An electronic circuit,
A first hybrid circuit;
A second hybrid circuit,
Each of the first hybrid circuit and the second hybrid circuit includes four terminals including an input terminal, a first distribution terminal, a second distribution terminal, and a passing terminal, and a target on which one of detection and rectification is performed. And a pair of first transmission lines having a transmission impedance set to a reference value among the four transmission lines. And a pair of second terminals, each having a transmission impedance set to 1 / √2 of a reference value, connected between the input terminal and the passing terminal and between the first distribution terminal and the second distribution terminal. By connecting between the input terminal and the first distribution terminal and between the passing terminal and the second distribution terminal, respectively, in the transmission line, it is formed in an annular shape,
An input terminal of the first hybrid circuit is connected to an input path of the high frequency signal,
An input terminal of the second hybrid circuit is connected to a passing terminal of the first hybrid circuit;
The passing terminal of the second hybrid circuit is terminated by a termination circuit having a reference value of the transmission impedance,
A first diode and a second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit, respectively.
A third diode and a fourth diode are connected to the first distribution terminal and the second distribution terminal of the second hybrid circuit with a polarity different from that of the first diode and the second diode, respectively.
The electronic circuit is
The output from the terminal opposite to the distribution terminal of the first diode and the second diode and the output from the terminal opposite to the distribution terminal of the third diode and the fourth diode are combined with the negative phase power. It is characterized by being comprised so that it may output.
 また、本発明の第2局面は、第1局面の電子回路において、
 前記第1ダイオード及び第2ダイオードは、前記第1ハイブリッド回路の第1分配端子及び第2分配端子に極性を揃えて接続され、
 前記第3ダイオード及び第4ダイオードは、前記第2ハイブリッド回路の第1分配端子及び第2分配端子に、前記第1ダイオード及び第2ダイオードとは異なる極性で接続されており、
 前記第1ダイオード及び第2ダイオードの前記各分配端子とは反対側端子が第1入力端子に接続され、前記第3ダイオード及び第4ダイオードの前記各分配端子とは反対側端子が第2入力端子に接続され、各入力端子間の電位差を差動増幅する差動増幅回路、
 を備えたことを特徴とする。
A second aspect of the present invention is the electronic circuit of the first aspect,
The first diode and the second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit with the same polarity,
The third diode and the fourth diode are connected to the first distribution terminal and the second distribution terminal of the second hybrid circuit with a polarity different from that of the first diode and the second diode,
Terminals opposite to the distribution terminals of the first diode and the second diode are connected to a first input terminal, and terminals opposite to the distribution terminals of the third diode and the fourth diode are connected to a second input terminal. A differential amplifier circuit that differentially amplifies the potential difference between the input terminals,
It is provided with.
 また、本発明の第3局面は、第1局面の電子回路において、
 前記第1ダイオード及び第2ダイオードは、前記第1ハイブリッド回路の第1分配端子及び第2分配端子に逆極性で接続され、
 前記第3ダイオード及び第4ダイオードは、前記第2ハイブリッド回路の第1分配端子及び第2分配端子に、前記第1ダイオード及び第2ダイオードとは異なる極性で接続されており、
 前記第1ダイオード及び第4ダイオードの前記各分配端子とは反対側端子が第1入力端子に接続され、前記第2ダイオード及び第3ダイオードの前記各分配端子とは反対側端子が第2入力端子に接続され、各入力端子間の電位差を差動増幅する差動増幅回路、
 を備えたことを特徴とする。
According to a third aspect of the present invention, in the electronic circuit of the first aspect,
The first diode and the second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit in reverse polarity,
The third diode and the fourth diode are connected to the first distribution terminal and the second distribution terminal of the second hybrid circuit with a polarity different from that of the first diode and the second diode,
Terminals opposite to the distribution terminals of the first diode and the fourth diode are connected to a first input terminal, and terminals opposite to the distribution terminals of the second diode and the third diode are connected to a second input terminal. A differential amplifier circuit that differentially amplifies the potential difference between the input terminals,
It is provided with.
 また、本発明の第4局面は、第2局面又は第3局面の電子回路において、前記差動増幅回路はオペアンプからなり、該オペアンプの非反転入力端子に接続されるダイオードには、前記非反転入力端子に接続される増幅率設定用の抵抗を介してバイアス電圧を印加するよう構成されたことを特徴とする。 According to a fourth aspect of the present invention, in the electronic circuit according to the second or third aspect, the differential amplifier circuit includes an operational amplifier, and the diode connected to the non-inverting input terminal of the operational amplifier includes the non-inverting circuit. A bias voltage is applied through a gain setting resistor connected to the input terminal.
 また、本発明の第5局面は、第1局面から第4局面のいずれか1つの局面の電子回路において、第1~第4ダイオードの前記各分配端子とは反対側端子には、各ダイオードを通過した高周波信号成分を除去するための半円状若しくは扇形のラジアルスタブが設けられていることを特徴とする。 According to a fifth aspect of the present invention, in the electronic circuit according to any one of the first to fourth aspects, each diode is connected to a terminal on the opposite side of each of the first to fourth diodes. A semicircular or fan-shaped radial stub is provided for removing the high-frequency signal component that has passed.
 一方、本発明の第6局面の電子回路は、前記終端回路を外して従属接続された、複数段の第1局面における電子回路を備え、前記複数段の電子回路のうちの最終段の電子回路を構成する第2ハイブリッド回路の通過端子は、前記伝送インピーダンスの基準値を有する終端回路にて終端されていることを特徴とする。 On the other hand, an electronic circuit according to a sixth aspect of the present invention includes a plurality of stages of electronic circuits according to the first aspect, which are subordinately connected with the termination circuit removed, and the final stage of the plurality of stages of electronic circuits. The passing terminal of the second hybrid circuit constituting the terminal is terminated by a termination circuit having a reference value of the transmission impedance.
 第1局面の電子回路においては、従来の整合回路を用いる代わりに、第1ハイブリッド回路と第2ハイブリッド回路とで構成される一対のハイブリッド回路を用いる。
 各ハイブリッド回路は、上記のように構成されているので、入力端子に入力された高周波信号を2分配して第1分配端子及び第2分配端子から出力する分配回路(所謂ハイブリッドリング)として機能する。
In the electronic circuit of the first aspect, a pair of hybrid circuits constituted by a first hybrid circuit and a second hybrid circuit are used instead of using the conventional matching circuit.
Since each hybrid circuit is configured as described above, it functions as a distribution circuit (so-called hybrid ring) that distributes the high-frequency signal input to the input terminal into two and outputs the high-frequency signal from the first distribution terminal and the second distribution terminal. .
 また、各ハイブリッド回路の第1、第2分配端子には、ハイブリッド回路毎に、第1,第2ダイオード又は第3,第4ダイオードが接続されるが、上記のように構成されたハイブリッド回路(ハイブリッドリング)では、分配端子の出力インピーダンスと分配端子に接続されるダイオードの入力インピーダンスとが異なり、分配端子で出力信号の一部が反射されたとしても、その反射信号は、通過端子側に出力され、入力端子側に戻ることはない。 The first and second distribution terminals of each hybrid circuit are connected to the first and second diodes or the third and fourth diodes for each hybrid circuit. The hybrid circuit configured as described above ( Hybrid ring), the output impedance of the distribution terminal is different from the input impedance of the diode connected to the distribution terminal. Even if a part of the output signal is reflected at the distribution terminal, the reflected signal is output to the passing terminal side. And does not return to the input terminal side.
 従って、第1局面の電子回路によれば、整合回路を用いることなく、高周波信号がその入力経路に反射されてしまうのを防止することができる。また、高周波信号が入力経路に反射されると、電力効率が劣化するだけでなく、高周波信号の周波数特性にリップルが生じるが、本発明によれば、こうした問題も防止できる。 Therefore, according to the electronic circuit of the first aspect, it is possible to prevent the high-frequency signal from being reflected on the input path without using the matching circuit. Further, when the high frequency signal is reflected on the input path, not only the power efficiency is deteriorated, but also a ripple is generated in the frequency characteristic of the high frequency signal. According to the present invention, such a problem can be prevented.
 また、第1局面の電子回路によれば、整合回路を用いる必要がないので、検波/整流可能な高周波信号の周波数帯域が整合回路の周波数特性で制限されるのを防止し、検波/整流可能な高周波信号の周波数帯域を広くすることができる。 Further, according to the electronic circuit of the first aspect, since it is not necessary to use a matching circuit, it is possible to prevent the frequency band of a high-frequency signal that can be detected / rectified from being limited by the frequency characteristics of the matching circuit and to detect / rectify. The frequency band of high frequency signals can be widened.
 一方、第1,第2ダイオード及び第3,第4ダイオードは、それぞれ、第1ハイブリッド回路及び第2ハイブリッド回路の2つの分配端子に接続されるが、第1,第2ダイオード及び第3,第4ダイオードは各ハイブリッド回路間で極性が異なるように分配端子に接続され、しかも、第1,第2ダイオードからの出力及び第3,第4ダイオードからの出力は逆相電力合成されるので、第1ハイブリッド回路の入力端子から入力された高周波信号は、第1ハイブリッド回路に接続された第1,第2ダイオードと、第2ハイブリッド回路に接続された第3,第4ダイオードとにより全波整流されることになる。 On the other hand, the first, second diode, and the third and fourth diodes are connected to the two distribution terminals of the first hybrid circuit and the second hybrid circuit, respectively. The four diodes are connected to the distribution terminals so that the polarities are different between the hybrid circuits, and the outputs from the first and second diodes and the outputs from the third and fourth diodes are combined with opposite phase power, The high-frequency signal input from the input terminal of the one hybrid circuit is full-wave rectified by the first and second diodes connected to the first hybrid circuit and the third and fourth diodes connected to the second hybrid circuit. Will be.
 このため、第1局面の電子回路によれば、高周波信号が各ダイオードの接続点(つまり、各ハイブリッド回路の第1、第2分配端子)で反射することによって生じる出力低下を、上記逆相電力合成(換言すれば全波整流)によって低減することができ、電子回路の電力効率が低下するのを防止できる。 For this reason, according to the electronic circuit of the first aspect, the output decrease caused by the reflection of the high-frequency signal at the connection point of each diode (that is, the first and second distribution terminals of each hybrid circuit) It can be reduced by synthesis (in other words, full-wave rectification), and the power efficiency of the electronic circuit can be prevented from being lowered.
 また、上記ハイブリッド回路の各々は配線パターンとして基板上に形成することができ、上記ダイオードの各々は回路基板に実装でき、しかも、逆相電力合成等のための回路も基板に形成された配線パターンと基板への実装部品とにより構成することができる。 Each of the hybrid circuits can be formed on a substrate as a wiring pattern, each of the diodes can be mounted on a circuit substrate, and a circuit for reverse phase power synthesis is also formed on the substrate. And a component mounted on the board.
 従って、第1局面の電子回路は、両面基板の片面に所定の配線パターンを形成して電子部品を実装することにより構成することができる。そして、電子回路をこのように構成すれば、基板にスルーホールを形成する必要がないので回路パターンを小さくすることができ、しかも、両面基板の裏面をベタグランドとすることで、安定した特性が得られるようになる。 Therefore, the electronic circuit of the first aspect can be configured by forming a predetermined wiring pattern on one side of the double-sided board and mounting the electronic component. And if the electronic circuit is configured in this way, it is not necessary to form a through hole in the substrate, so that the circuit pattern can be reduced, and the back surface of the double-sided substrate is a solid ground, so that stable characteristics can be obtained. It will be obtained.
 ここで、第1,第2ダイオードからの出力と第3,第4ダイオードからの出力とを逆相電力合成することで、第1ハイブリッド回路の入力端子から入力された高周波信号を全波整流する回路としては、差動増幅回路を用いることができる。 Here, full-wave rectification of the high-frequency signal input from the input terminal of the first hybrid circuit is performed by combining the outputs from the first and second diodes with the outputs from the third and fourth diodes. A differential amplifier circuit can be used as the circuit.
 具体的には、第1ダイオード及び第2ダイオードが、第1ハイブリッド回路の第1分配端子及び第2分配端子に極性を揃えて接続され、第3ダイオード及び第4ダイオードが、第2ハイブリッド回路の第1分配端子及び第2分配端子に、第1ダイオード及び第2ダイオードとは異なる極性で、互いに極性を揃えて接続されている場合には、第2局面における電子回路のように、差動増幅回路の一方の入力端子(第1入力端子)に、第1ダイオード及び第2ダイオードの各分配端子とは反対側端子を接続し、差動増幅回路の他方の入力端子(第2入力端子)に、第3ダイオード及び第4ダイオードの各分配端子とは反対側端子を接続するようにすれば、第1ハイブリッド回路の入力端子から入力された高周波信号を全波整流することができる。 Specifically, the first diode and the second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit with the same polarity, and the third diode and the fourth diode are connected to the second hybrid circuit. When the first distribution terminal and the second distribution terminal are connected with the same polarity as the first diode and the second diode, the differential amplification is performed as in the electronic circuit in the second aspect. A terminal opposite to the distribution terminals of the first diode and the second diode is connected to one input terminal (first input terminal) of the circuit, and the other input terminal (second input terminal) of the differential amplifier circuit. If the terminals opposite to the distribution terminals of the third diode and the fourth diode are connected, the high-frequency signal input from the input terminal of the first hybrid circuit can be full-wave rectified.
 また、第1ダイオード及び第2ダイオードが、第1ハイブリッド回路の第1分配端子及び第2分配端子に逆極性で接続され、第3ダイオード及び第4ダイオードが、第2ハイブリッド回路の第1分配端子及び第2分配端子に、第1ダイオード及び第2ダイオードとは異なる極性で、互いに逆極性で接続されている場合には、第3局面における電子回路のように、差動増幅回路の一方の入力端子(第1入力端子)に、第1ダイオード及び第4ダイオードの各分配端子とは反対側端子を接続し、差動増幅回路の他方の入力端子(第2入力端子)に、第2ダイオード及び第3ダイオードの各分配端子とは反対側端子を接続するようにすれば、第1ハイブリッド回路の入力端子から入力された高周波信号を全波整流することができる。 The first diode and the second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit in reverse polarity, and the third diode and the fourth diode are connected to the first distribution terminal of the second hybrid circuit. When the second distribution terminal is connected with a polarity different from that of the first diode and the second diode and opposite to each other, one input of the differential amplifier circuit as in the electronic circuit in the third aspect A terminal (first input terminal) is connected to a terminal opposite to each distribution terminal of the first diode and the fourth diode, and the other input terminal (second input terminal) of the differential amplifier circuit is connected to the second diode and If the terminal opposite to each distribution terminal of the third diode is connected, the high-frequency signal input from the input terminal of the first hybrid circuit can be full-wave rectified.
 また、このように、電子回路に差動増幅回路を設けた場合、差動増幅回路の第1、第2入力端子には通常入力抵抗が設けられることから、その入力抵抗の抵抗値により、各ダイオードから各入力端子への高周波信号の入力特性を変化させることができる。 Further, when the differential amplifier circuit is provided in the electronic circuit in this way, since the first and second input terminals of the differential amplifier circuit are usually provided with the input resistance, each resistance value of the input resistance The input characteristics of the high frequency signal from the diode to each input terminal can be changed.
 このため、第2局面又は第3局面の電子回路によれば、各ダイオードやハイブリッド回路に特性のバラツキがあっても、差動増幅回路の各入力端子に接続された入力抵抗の抵抗値を調整することにより、各ダイオードやハイブリッド回路の特性のバラツキを吸収し、出力特性を改善することができる。 For this reason, according to the electronic circuit of the second aspect or the third aspect, the resistance value of the input resistance connected to each input terminal of the differential amplifier circuit is adjusted even if the characteristics of each diode or hybrid circuit vary. As a result, variations in the characteristics of the diodes and the hybrid circuit can be absorbed and the output characteristics can be improved.
 次に、第4局面の電子回路においては、差動増幅回路がオペアンプにて構成されており、このオペアンプの非反転入力端子に接続されるダイオードには、非反転入力端子に接続される増幅率設定用の抵抗を介してバイアス電圧が印加される。 Next, in the electronic circuit of the fourth aspect, the differential amplifier circuit is configured by an operational amplifier, and the diode connected to the non-inverting input terminal of the operational amplifier has an amplification factor connected to the non-inverting input terminal. A bias voltage is applied through a setting resistor.
 このため、第4局面の電子回路によれば、オペアンプの非反転入力端子に接続されるダイオードから、各ハイブリッド回路及び他方のダイオードを通って、オペアンプの反転入力端子に至る経路で電流が流れることになり、第1~第4ダイオードのいずれのダイオードにもバイアス電流を流して、これら各ダイオードの感度(延いては、検波/整流効率)を高めることができる。 For this reason, according to the electronic circuit of the fourth aspect, current flows in a path from the diode connected to the non-inverting input terminal of the operational amplifier to the inverting input terminal of the operational amplifier through each hybrid circuit and the other diode. Thus, a bias current can be passed through any of the first to fourth diodes to increase the sensitivity of each of these diodes (and thus the detection / rectification efficiency).
 また、第5局面の電子回路においては、第1~第4ダイオードの各分配端子とは反対側端子に、各ダイオードを通過した高周波信号成分を除去するための半円状若しくは扇形のラジアルスタブが設けられている。 In the electronic circuit of the fifth aspect, a semicircular or fan-shaped radial stub for removing the high-frequency signal component that has passed through each diode is provided on the terminal opposite to each distribution terminal of the first to fourth diodes. Is provided.
 このため、第5局面の電子回路によれば、各ハイブリッドの分配端子から第1~第4ダイオードを通って高周波信号成分が漏れ出したとしても、その高周波信号成分をラジアルスタブにより除去することができ、各ダイオードからの出力を逆相電力合成することにより得られる検波/整流信号に高周波信号成分が重畳されるのを防止できる。 For this reason, according to the electronic circuit of the fifth aspect, even if the high frequency signal component leaks from the distribution terminal of each hybrid through the first to fourth diodes, the high frequency signal component can be removed by the radial stub. It is possible to prevent the high-frequency signal component from being superimposed on the detection / rectification signal obtained by combining the outputs from the diodes with the antiphase power.
 また次に、第6局面の電子回路は、第1局面の電子回路を、終端回路を外して複数段従属接続し、最終段の電子回路を構成する第2ハイブリッド回路の通過端子を終端回路にて終端することにより構成される。 Next, in the electronic circuit of the sixth aspect, the electronic circuit of the first aspect is connected in multiple stages by removing the termination circuit, and the passing terminal of the second hybrid circuit constituting the final stage electronic circuit is used as the termination circuit. It is constituted by terminating.
 つまり、第6局面の電子回路では、第1局面の電子回路を複数段従属接続することにより、前段の電子回路における第2ハイブリッド回路の通過端子に生じる反射信号成分を次段の電子回路に入力し、再度検波/整流させることで、最終段の電子回路に接続される終端回路で消費される反射信号の消費電力量(換言すれば電力損失)を抑制している。 That is, in the electronic circuit of the sixth aspect, the reflected signal component generated at the passing terminal of the second hybrid circuit in the previous stage electronic circuit is input to the next stage electronic circuit by connecting the electronic circuit of the first stage in multiple stages. Then, by detecting / rectifying again, the power consumption (in other words, power loss) of the reflected signal consumed by the termination circuit connected to the final stage electronic circuit is suppressed.
 このため、第6局面の電子回路によれば、第1局面の電子回路が複数段必要になるものの、その接続段数に応じて、高周波信号の検波/整流効率を高めることができるようになり、電力効率のよい電子回路を実現できることになる。 For this reason, according to the electronic circuit of the sixth aspect, although a plurality of stages of the electronic circuit of the first aspect are required, the detection / rectification efficiency of the high-frequency signal can be increased according to the number of connection stages, An electronic circuit with good power efficiency can be realized.
第1実施形態の検波/整流回路の構成を表す回路図である。It is a circuit diagram showing the structure of the detection / rectifier circuit of 1st Embodiment. 第1実施形態の検波/整流回路各部の特性を解析した結果を表す説明図である。It is explanatory drawing showing the result of having analyzed the characteristic of each part of the detection / rectifier circuit of 1st Embodiment. 第2実施形態の検波/整流回路の構成を表す回路図である。It is a circuit diagram showing the structure of the detection / rectifier circuit of 2nd Embodiment. 第3実施形態の検波/整流回路の構成を表す回路図である。It is a circuit diagram showing the structure of the detection / rectifier circuit of 3rd Embodiment. 第1実施形態の変形例を表す回路図である。It is a circuit diagram showing the modification of 1st Embodiment. 検波/整流回路を電力変換器として利用する変形例を表す説明図である。It is explanatory drawing showing the modification which utilizes a detection / rectifier circuit as a power converter.
 10…第1ハイブリッド回路、20…第2ハイブリッド回路、Ti…入力端子、To…通過端子、T1…第1分配端子、T2…第2分配端子、L1…第1伝送線路、L2…第2伝送線路、D1~D4…ダイオード、R0…終端抵抗、RS0~RS4…ラジアルスタブ、C1,C2…カップリングコンデンサ、30…差動増幅回路、40…パラボラアンテナ、50…一次放射器、OP1…オペアンプ、R1~R4,R6,R8…抵抗、Lin…入力経路、Tco…同軸入力端子、Ca,Cb…蓄電用コンデンサ DESCRIPTION OF SYMBOLS 10 ... 1st hybrid circuit, 20 ... 2nd hybrid circuit, Ti ... Input terminal, To ... Passing terminal, T1 ... 1st distribution terminal, T2 ... 2nd distribution terminal, L1 ... 1st transmission line, L2 ... 2nd transmission Line, D1 to D4 ... Diode, R0 ... Terminating resistor, RS0 to RS4 ... Radial stub, C1, C2 ... Coupling capacitor, 30 ... Differential amplifier circuit, 40 ... Parabolic antenna, 50 ... Primary radiator, OP1 ... Operational amplifier, R1 to R4, R6, R8 ... resistor, Lin ... input path, Tco ... coaxial input terminal, Ca, Cb ... capacitor for storage
 以下に本発明の実施形態を図面と共に説明する。
[第1実施形態]
 図1に示すように、本実施形態の検波/整流回路には、検波若しくは整流対象となる高周波信号がカップリングコンデンサC1を介して入力される第1ハイブリッド回路10と、第1ハイブリッド回路10を通過した高周波信号が入力される第2ハイブリッド回路20との、2つのハイブリッド回路が設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
As shown in FIG. 1, the detection / rectification circuit of the present embodiment includes a first hybrid circuit 10 to which a high-frequency signal to be detected or rectified is input via a coupling capacitor C1, and a first hybrid circuit 10. Two hybrid circuits are provided, including the second hybrid circuit 20 to which the passed high-frequency signal is input.
 これら各ハイブリッド10、20は、入力端子Ti、第1分配端子T1、第2分配端子T2、及び通過端子Toからなる4つの端子部と、検波若しくは整流対象となる高周波信号の基準周波数において略1/4波長となる長さを有する4つの伝送線路とからなる。 Each of these hybrids 10 and 20 is approximately 1 at the reference frequency of the high frequency signal to be detected or rectified, with four terminal portions including the input terminal Ti, the first distribution terminal T1, the second distribution terminal T2, and the passing terminal To. It consists of four transmission lines having a length of / 4 wavelength.
 そして、入力端子Tiと通過端子Toとの間及び第1分配端子T1と第2分配端子T2との間は、伝送インピーダンスが高周波信号の入力経路と同じ基準値(本実施形態では50Ω)に設定された一対の第1伝送線路L1にてそれぞれ接続され、入力端子Tiと第1分配端子T1との間及び通過端子Toと第2分配端子T2との間は、伝送インピーダンスが基準値の略1/√2の値(本実施形態では35Ω)に設定された一対の第2伝送線路L2にてそれぞれ接続されている。 The transmission impedance is set to the same reference value as the high-frequency signal input path (50Ω in this embodiment) between the input terminal Ti and the passing terminal To and between the first distribution terminal T1 and the second distribution terminal T2. A pair of first transmission lines L1 are connected to each other, and between the input terminal Ti and the first distribution terminal T1 and between the passage terminal To and the second distribution terminal T2, the transmission impedance is approximately 1 of the reference value. They are connected by a pair of second transmission lines L2 set to a value of / √2 (35Ω in this embodiment).
 つまり、本実施形態において、各ハイブリッド回路10、20は、一対の第1伝送線路L1と一対の第2伝送線路L2とを交互に連結することにより、矩形のリング状に形成されている。そして、第1伝送線路L1の伝送インピーダンスと第2伝送線路L2の伝送インピーダンスは、1:1/√2に設定されているので、各ハイブリッド回路10、20は、入力端子Tiに入力された高周波信号を2分配して第1分配端子T1及び第2分配端子T2から出力する分配回路(所謂ハイブリッドリング)として機能する。 That is, in this embodiment, each hybrid circuit 10, 20 is formed in a rectangular ring shape by alternately connecting a pair of first transmission lines L1 and a pair of second transmission lines L2. Since the transmission impedance of the first transmission line L1 and the transmission impedance of the second transmission line L2 are set to 1: 1 / √2, each of the hybrid circuits 10 and 20 has a high frequency input to the input terminal Ti. It functions as a distribution circuit (so-called hybrid ring) that divides the signal into two and outputs it from the first distribution terminal T1 and the second distribution terminal T2.
 また、第2ハイブリッド回路20の入力端子Tiは、第1ハイブリッド回路10の通過端子Toに接続されており、第2ハイブリッド回路20の通過端子Toは、伝送インピーダンスの基準値(本実施形態では50Ω)を有する終端抵抗R0を介して、高周波信号除去用のラジアルスタブRS0に接続されている。 The input terminal Ti of the second hybrid circuit 20 is connected to the pass terminal To of the first hybrid circuit 10, and the pass terminal To of the second hybrid circuit 20 is a reference value of transmission impedance (50Ω in the present embodiment). ) Is connected to a radial stub RS0 for removing a high frequency signal.
 一方、第1ハイブリッド回路10の第1分配端子T1及び第2分配端子T2には、それぞれ、検波/整流用のダイオードD1,D2のアノードが接続されており、これら各ダイオードD1,D2のカソードには、高周波信号除去用のラジアルスタブRS1、RS2が接続されている。 On the other hand, the anodes of the detection / rectification diodes D1 and D2 are connected to the first distribution terminal T1 and the second distribution terminal T2 of the first hybrid circuit 10, respectively, and the cathodes of these diodes D1 and D2 are connected to the anodes. Are connected to radial stubs RS1 and RS2 for high-frequency signal removal.
 また、第2ハイブリッド回路20の第1分配端子T1及び第2分配端子T2には、それぞれ、検波/整流用のダイオードD3,D4のカソードが接続されており、これら各ダイオードD3,D4のアノードには、高周波信号除去用のラジアルスタブRS3、RS4が接続されている。 The cathodes of the detection / rectification diodes D3 and D4 are connected to the first distribution terminal T1 and the second distribution terminal T2 of the second hybrid circuit 20, respectively. The anodes of the diodes D3 and D4 are connected to the anodes. Are connected to radial stubs RS3 and RS4 for high-frequency signal removal.
 なお、高周波信号の入力経路、第1ハイブリッド回路10、第2ハイブリッド回路20、及び、ラジアルスタブRS0~RS4は、両面基板の片面に形成された導電体パターンにより構成されており、各ハイブリッド回路10、20は、高周波信号の入力経路から真っ直ぐ延びる延長線上に、各ハイブリッド回路10、20の一方の第1伝送線路L1を順次配置し、その第1伝送線路L1の両端から、延長線を挟んで異なる方向に一対の第2伝送線路L2を延設し、その延設された第2伝送線路L2の端部同士をもう一方の第1伝送線路L1で接続したものとして形成されている。 The high-frequency signal input path, the first hybrid circuit 10, the second hybrid circuit 20, and the radial stubs RS0 to RS4 are configured by a conductor pattern formed on one side of a double-sided board. , 20 sequentially arranges one first transmission line L1 of each of the hybrid circuits 10 and 20 on an extension line extending straight from the input path of the high-frequency signal, and sandwiches the extension line from both ends of the first transmission line L1. A pair of second transmission lines L2 are extended in different directions, and the ends of the extended second transmission lines L2 are connected by the other first transmission line L1.
 次に、第1ハイブリッド回路10の各分配端子T1,T2にアノードが接続されたダイオードD1,D2のカソードは、それぞれ、抵抗R1,R2を介して、オペアンプOP1の反転入力端子(-)に接続されており、第2ハイブリッド回路20の各分配端子T1,T2にカソードが接続されたダイオードD3,D4のアノードは、それぞれ、抵抗R3,R4を介して、オペアンプOP1の非反転入力端子(+)に接続されている。 Next, the cathodes of the diodes D1 and D2 whose anodes are connected to the distribution terminals T1 and T2 of the first hybrid circuit 10 are connected to the inverting input terminal (−) of the operational amplifier OP1 via the resistors R1 and R2, respectively. The anodes of the diodes D3 and D4 whose cathodes are connected to the distribution terminals T1 and T2 of the second hybrid circuit 20 are respectively connected to the non-inverting input terminal (+) of the operational amplifier OP1 via the resistors R3 and R4. It is connected to the.
 オペアンプOP1は、差動増幅回路30を構成するものであり、反転入力端子(-)と出力端子とが抵抗R6を介して接続されており、非反転入力端子(+)には、抵抗R8を介して所定のバイアス電圧が印加されている。 The operational amplifier OP1 constitutes the differential amplifier circuit 30. An inverting input terminal (−) and an output terminal are connected via a resistor R6, and a resistor R8 is connected to a non-inverting input terminal (+). A predetermined bias voltage is applied thereto.
 このように構成された本実施形態の検波/整流回路においては、ハイブリッド回路10,20の分配端子T1,T2に、それぞれ、ダイオードD1~D4が接続されているため、各ハイブリッド回路10、20で2分配された高周波信号は、それぞれ、ダイオードD1,D2或いはD3,D4にて検波/整流される。 In the detection / rectification circuit of the present embodiment configured as described above, the diodes D1 to D4 are connected to the distribution terminals T1 and T2 of the hybrid circuits 10 and 20, respectively. The two distributed high frequency signals are detected / rectified by diodes D1, D2 or D3, D4, respectively.
 そして、ハイブリッド回路10、20において、各分配端子T1,T2の出力インピーダンスとダイオードD1,D2或いはD3,D4の入力インピーダンスとが異なり、各分配端子T1,T2で高周波信号の一部が反射されたとしても、その反射信号は、通過端子To側に出力され、入力端子Ti側に戻ることはない。 In the hybrid circuits 10 and 20, the output impedance of the distribution terminals T1 and T2 is different from the input impedance of the diodes D1 and D2 or D3 and D4, and a part of the high-frequency signal is reflected at the distribution terminals T1 and T2. However, the reflected signal is output to the passing terminal To side and does not return to the input terminal Ti side.
 従って、本実施形態の検波/整流回路によれば、従来のように整合回路を用いることなく、高周波信号がその入力経路に反射されてしまうのを防止することができる。また、高周波信号が入力経路に反射されると、電力効率が劣化するだけでなく、高周波信号の周波数特性にリップルが生じるが、本実施形態によれば、こうした問題も防止できる。 Therefore, according to the detection / rectification circuit of the present embodiment, it is possible to prevent the high-frequency signal from being reflected on the input path without using a matching circuit as in the prior art. Further, when the high frequency signal is reflected on the input path, not only the power efficiency is deteriorated, but also ripples are generated in the frequency characteristics of the high frequency signal. According to this embodiment, such a problem can be prevented.
 また、本実施形態の検波/整流回路によれば、整合回路を用いる必要がないので、検波/整流可能な高周波信号の周波数帯域が、整合回路の周波数特性で制限されるのを防止し、検波/整流可能な高周波信号の周波数帯域を広くすることができる。 Further, according to the detection / rectification circuit of the present embodiment, since it is not necessary to use a matching circuit, it is possible to prevent the frequency band of a high-frequency signal that can be detected / rectified from being limited by the frequency characteristics of the matching circuit. / The frequency band of the rectifiable high frequency signal can be widened.
 また、ダイオードD1とD2、及び、ダイオードD3とD4は、各ハイブリッド回路10,20の分配端子T1,T2に、異なる極性で接続されるが、ダイオードD1,D2からの出力とダイオードD3,D4からの出力は、それぞれ、差動増幅回路30を構成するオペアンプOP1の反転入力端子及び非反転入力端子に入力され、差動増幅回路30にて逆相電力合成されることから、第1ハイブリッド回路10の入力端子Tiに入力された高周波信号は、各ハイブリッド回路10,20に接続されたダイオードD1~D4により全波整流されることになる。 The diodes D1 and D2 and the diodes D3 and D4 are connected to the distribution terminals T1 and T2 of the hybrid circuits 10 and 20 with different polarities, but the outputs from the diodes D1 and D2 and the diodes D3 and D4 Are respectively input to the inverting input terminal and the non-inverting input terminal of the operational amplifier OP1 constituting the differential amplifier circuit 30, and are combined with the negative phase power by the differential amplifier circuit 30, so that the first hybrid circuit 10 The high-frequency signal input to the input terminal Ti is full-wave rectified by the diodes D1 to D4 connected to the hybrid circuits 10 and 20.
 このため、本実施形態の検波/整流回路によれば、各ハイブリッド回路10,20の第1分配端子T1及び第2分配端子T2と各ダイオードD1~D4との接続点で高周波信号が反射することによって生じる出力低下を、上記逆相電力合成(換言すれば全波整流)によって低減することができ、延いては、検波/整流回路の電力効率を高めることができる。 Therefore, according to the detection / rectifier circuit of the present embodiment, the high frequency signal is reflected at the connection points between the first distribution terminal T1 and the second distribution terminal T2 of the hybrid circuits 10 and 20 and the diodes D1 to D4. Can be reduced by the above-described reverse-phase power combining (in other words, full-wave rectification), and as a result, the power efficiency of the detection / rectification circuit can be increased.
 また、上記のように、高周波信号の入力経路、第1ハイブリッド回路10、第2ハイブリッド回路20、及び、ラジアルスタブRS0~RS4は、両面基板の片面に形成された導電体パターンにより構成されるため、本実施形態の検波/整流回路は、カップリングコンデンサC1、ダイオードD1~D4、抵抗R0~R8、オペアンプOP1等を、その導電体パターンが形成された基板面に実装することにより作製することができる。 Further, as described above, the high-frequency signal input path, the first hybrid circuit 10, the second hybrid circuit 20, and the radial stubs RS0 to RS4 are configured by the conductor pattern formed on one side of the double-sided board. The detection / rectifier circuit of the present embodiment can be manufactured by mounting the coupling capacitor C1, the diodes D1 to D4, the resistors R0 to R8, the operational amplifier OP1, and the like on the substrate surface on which the conductor pattern is formed. it can.
 そして、このようにすれば、基板にスルーホールを形成する必要がないので、回路パターンを小さくすることができ、しかも、両面基板の裏面をベタグランドとすることで、安定した特性が得られるようになる。 In this way, since it is not necessary to form a through hole in the substrate, the circuit pattern can be reduced, and a stable characteristic can be obtained by making the back surface of the double-sided substrate a solid ground. become.
 また、このオペアンプOP1の非反転入力端子には、抵抗R8を介してバイアス電圧が印加されることから、ダイオードD3,D4及びD1,D2には、このバイアス電圧が順方向に印加されて、バイアス電流が流れることになる。このため、本実施形態によれば、各ダイオードD1~D4の感度、延いては、検波/整流回路による検波/整流効率を、高めることができる。 Since a bias voltage is applied to the non-inverting input terminal of the operational amplifier OP1 via the resistor R8, the bias voltage is applied in the forward direction to the diodes D3, D4 and D1, D2. Current will flow. Therefore, according to the present embodiment, the sensitivity of each of the diodes D1 to D4, that is, the detection / rectification efficiency by the detection / rectification circuit can be increased.
 また、各ダイオードD1~D4は、差動増幅回路30を構成するオペアンプOP1の各入力端子に、抵抗(所謂入力抵抗)R1~R4を介して接続されるため、各ダイオードD1~D4に特性のバラツキがある場合には、この入力抵抗R1~R4の抵抗値を個々に調整することで、各ダイオードD1~D4の特性のバラツキによる出力特性の劣化を改善できる。 Further, each of the diodes D1 to D4 is connected to each input terminal of the operational amplifier OP1 constituting the differential amplifier circuit 30 via resistors (so-called input resistors) R1 to R4. When there is a variation, the output characteristics can be improved due to variations in the characteristics of the diodes D1 to D4 by individually adjusting the resistance values of the input resistors R1 to R4.
 また更に、各ダイオードD1~D4には容量があるので、各ダイオードD1~D4から高周波信号成分が漏れ出すことがあるが、本実施形態では、各ダイオードD1~D4の出力側に高周波信号除去用の扇形のラジアルスタブRS1~RS4が設けられているので、ダイオードD1~D4から差動増幅回路30への出力信号に高周波信号成分が重畳されるのを防止できる。 Furthermore, since each of the diodes D1 to D4 has a capacity, a high frequency signal component may leak out from each of the diodes D1 to D4. In this embodiment, a high frequency signal removal is provided on the output side of each of the diodes D1 to D4. Since the fan-shaped radial stubs RS1 to RS4 are provided, it is possible to prevent the high-frequency signal component from being superimposed on the output signal from the diodes D1 to D4 to the differential amplifier circuit 30.
 なお、上記ダイオードD1~D4の内、ダイオードD1は本発明の第1ダイオードに、ダイオードD2は本発明の第2ダイオードに、ダイオードD3は本発明の第3ダイオードに、ダイオードD4は本発明の第4ダイオードに、それぞれ相当する。
(回路特性の解析)
 本実施形態の検波/整流回路によれば、整合回路の代わりに、ハイブリッド回路10,20を用いているので、ダイオードD1~D4と各ハイブリッド回路10,20との接続点で、高周波信号の一部が反射されたとしても、その反射信号は入力端子Ti側に戻ることはない筈であるが、この効果を確認するために、本実施形態の検波/整流回路各部の高周波信号入力端(図2に示すPort1)からの結合量、及び、高周波信号入力端(図2に示すPort1)からの反射量を、電磁界シミュレーションにより解析した。
Of the diodes D1 to D4, the diode D1 is the first diode of the present invention, the diode D2 is the second diode of the present invention, the diode D3 is the third diode of the present invention, and the diode D4 is the first diode of the present invention. It corresponds to 4 diodes, respectively.
(Analysis of circuit characteristics)
According to the detection / rectifier circuit of the present embodiment, since the hybrid circuits 10 and 20 are used instead of the matching circuit, one high-frequency signal is connected at the connection point between the diodes D1 to D4 and each of the hybrid circuits 10 and 20. Even if the part is reflected, the reflected signal should not return to the input terminal Ti side, but in order to confirm this effect, the high-frequency signal input terminal of each part of the detection / rectifier circuit of this embodiment (FIG. The amount of coupling from Port 1) shown in FIG. 2 and the amount of reflection from the high-frequency signal input terminal (Port 1 shown in FIG. 2) were analyzed by electromagnetic field simulation.
 その解析に用いた回路パターン及び解析結果は図2に示す通りである。
 すなわち、このシミュレーションでは、検波若しくは整流対象となる高周波信号は、中心周波数が76.5GHzで、その帯域幅が±9GHzのミリ波(つまり、67.5GHz~85.5GHzのミリ波)であるとして、高周波信号の入力端(Port1)からの第1ハイブリッド回路10までの入力経路の長さを、その高周波信号の略中心周波数に対応した基準波長λgの約1/2(約0.84mm)とし、各ハイブリッド回路10、20の第1伝送線路L1及び第2伝送線路L2の長さを、約λg/4(約0.42mm若しくは約0.40mm)とし、裏面がベタグランドとなっている両面基板の表面に回路パターンを形成したものを利用した。
The circuit pattern and analysis result used for the analysis are as shown in FIG.
That is, in this simulation, the high frequency signal to be detected or rectified is a millimeter wave having a center frequency of 76.5 GHz and a bandwidth of ± 9 GHz (that is, a millimeter wave of 67.5 GHz to 85.5 GHz). The length of the input path from the high-frequency signal input terminal (Port 1) to the first hybrid circuit 10 is about ½ (about 0.84 mm) of the reference wavelength λg corresponding to the substantially center frequency of the high-frequency signal. The lengths of the first transmission line L1 and the second transmission line L2 of each hybrid circuit 10 and 20 are about λg / 4 (about 0.42 mm or about 0.40 mm), and the back surface is a solid ground. A circuit board formed on the surface of the substrate was used.
 そして、シミュレーションでは、各ダイオードD1~D4が接続される各ハイブリッド回路10,20の分配端子を、それぞれ、Port2~Port5とし、終端抵抗R0が接続される第2ハイブリッド回路20の通過端子ToをPort6とし、これら各Port2~Port6におけるPort1からの結合量と、Port1から入力経路に反射される高周波信号の反射量とを、中心周波数76.5GHz、最小周波数67.5GHz、最大周波数85.5GHzで、それぞれ評価した。 In the simulation, the distribution terminals of the hybrid circuits 10 and 20 to which the diodes D1 to D4 are connected are respectively Port2 to Port5, and the pass terminal To of the second hybrid circuit 20 to which the termination resistor R0 is connected is Port6. The amount of coupling from Port 1 in each of Port 2 to Port 6 and the amount of reflection of the high-frequency signal reflected from Port 1 to the input path are center frequency 76.5 GHz, minimum frequency 67.5 GHz, maximum frequency 85.5 GHz, Each was evaluated.
 また、このシミュレーションは、各Port1~Port6に接続される電子部品(高周波信号の入力回路、ダイオードD1~D4、終端抵抗R0等)のインピーダンスが全て基準値(50Ω)である場合と、Port1、Port6に接続される電子部品(高周波信号の入力回路、終端抵抗R0)のインピーダンスは基準値(50Ω)で、Port2~Port5に接続されるダイオードD1~D4のインピーダンスが基準値とは大きく異なる6Ωである場合との2つの条件下で行った。 In addition, this simulation is performed when the impedances of electronic components (high-frequency signal input circuits, diodes D1 to D4, termination resistors R0, etc.) connected to the respective Port1 to Port6 are all at a reference value (50Ω), and Port1 and Port6. The impedance of the electronic component (high-frequency signal input circuit, termination resistor R0) connected to is a reference value (50Ω), and the impedance of the diodes D1 to D4 connected to Port2 to Port5 is 6Ω, which is significantly different from the reference value. And performed under two conditions.
 その結果、何れの条件下でも、Port1からの高周波信号の反射量を充分小さくできることが確認できた。
 一方、ダイオードD1~D4のインピーダンスが基準値(50Ω)から外れた6Ωである場合は、Port2~Port5での反射が大きくなるため、ダイオードD1~D4のインピーダンスが基準値(50Ω)である場合に比べ、Port1に対するPort2、Port3の結合量が小さくなり、Port4~Port6の結合量が大きくなる。
As a result, it was confirmed that the reflection amount of the high-frequency signal from Port 1 can be sufficiently reduced under any condition.
On the other hand, when the impedances of the diodes D1 to D4 are 6Ω that deviates from the reference value (50Ω), the reflection at the Port2 to Port5 increases, so In comparison, the amount of coupling of Port 2 and Port 3 to Port 1 is small, and the amount of coupling of Port 4 to Port 6 is large.
 しかし、終端抵抗R0で消費される電力量を表すPort6での結合量は、中心周波数(76.5GHz)で42%、最小周波数(67.5GHz)で38.1%、最大周波数(85.5GHz)で37.1%となっている。 However, the amount of coupling at Port 6 representing the amount of power consumed by the terminating resistor R0 is 42% at the center frequency (76.5 GHz), 38.1% at the minimum frequency (67.5 GHz), and the maximum frequency (85.5 GHz). ) Is 37.1%.
 このため、本実施形態の検波/整流回路によれば、電力効率を、広帯域に渡って所定値(略60%)に保持できることが判る。
[第2実施形態]
 次に、図3は本発明が適用された第2実施形態の検波/整流回路の構成(差動増幅回路30を除く)を表している。
For this reason, according to the detection / rectifier circuit of this embodiment, it can be seen that the power efficiency can be maintained at a predetermined value (approximately 60%) over a wide band.
[Second Embodiment]
Next, FIG. 3 shows the configuration (excluding the differential amplifier circuit 30) of the detection / rectification circuit of the second embodiment to which the present invention is applied.
 本実施形態の検波/整流回路は、上記第1実施形態において、第1,第2ハイブリッド回路10,20とダイオードD1~D4とラジアルスタブRS1~RS4により構成される検波/整流回路の基本回路を、カップリングコンデンサC2を介して前後2段に配置し、後段の基本回路を構成する第2ハイブリッド回路20の通過端子Toを、終端抵抗R0を介して終端することにより構成されている。 The detection / rectification circuit of the present embodiment is the same as the detection / rectification circuit of the first embodiment, comprising the first and second hybrid circuits 10 and 20, the diodes D1 to D4, and the radial stubs RS1 to RS4. The second hybrid circuit 20 is arranged in two stages before and after the coupling capacitor C2, and is terminated by terminating the pass terminal To of the second hybrid circuit 20 constituting the latter basic circuit via a termination resistor R0.
 また、カップリングコンデンサC2を挟んで前段に配置される基本回路と、後段に配置される基本回路とでは、ダイオードD1~D4の向き(極性)がそれぞれ逆方向になっており、前後の基本回路においてそれぞれ第2ハイブリッド回路20に接続されるダイオードD3,D4,D3,D4の出力を共通の信号線にて接続し、前段の基本回路において第1ハイブリッド回路10に接続されるダイオードD1,D2を、差動増幅回路30を構成するオペアンプOP1の反転入力端子(-)に接続し、後段の基本回路において第1ハイブリッド回路10に接続されるダイオードD1,D2を、差動増幅回路30を構成するオペアンプOP1の非反転入力端子(+)に接続するようにされている。 In addition, the basic circuits arranged in the preceding stage and the basic circuit arranged in the subsequent stage with the coupling capacitor C2 interposed therebetween have opposite directions (polarities) of the diodes D1 to D4, so The outputs of the diodes D3, D4, D3 and D4 connected to the second hybrid circuit 20 are connected by a common signal line, and the diodes D1 and D2 connected to the first hybrid circuit 10 are connected in the previous basic circuit. The diodes D1 and D2 connected to the inverting input terminal (−) of the operational amplifier OP1 constituting the differential amplifier circuit 30 and connected to the first hybrid circuit 10 in the subsequent basic circuit constitute the differential amplifier circuit 30. The operational amplifier OP1 is connected to the non-inverting input terminal (+).
 このように構成された本実施形態の検波/整流回路によれば、前段の基本回路において第2ハイブリッド回路20の通過端子Toに生じる反射信号成分が、後段の基本回路に入力され、後段の基本回路にて再度検波/整流されることになる。この結果、後段の基本回路に接続される終端抵抗R0で消費される反射信号の消費電力量(換言すれば電力損失)を抑制することができる。 According to the detection / rectifier circuit of the present embodiment configured as described above, the reflected signal component generated at the passing terminal To of the second hybrid circuit 20 in the preceding basic circuit is input to the succeeding basic circuit, and the succeeding basic circuit. It will be detected / rectified again in the circuit. As a result, the power consumption (in other words, power loss) of the reflected signal consumed by the termination resistor R0 connected to the basic circuit at the subsequent stage can be suppressed.
 よって、第2実施形態の検波/整流回路によれば、第1実施形態の検波/整流回路に比べ、第1,第2ハイブリッド回路10,20とダイオードD1~D4とラジアルスタブRS1~RS4とにより構成される基本回路の数が増えるものの、2つの基本回路で2段階に高周波信号を検波/整流するので、検波/整流回路の電力効率を高めることができる。
[第3実施形態]
 次に、図4は本発明が適用された第3実施形態の検波/整流回路の構成を表している。
Therefore, according to the detection / rectification circuit of the second embodiment, compared with the detection / rectification circuit of the first embodiment, the first and second hybrid circuits 10 and 20, the diodes D1 to D4, and the radial stubs RS1 to RS4. Although the number of configured basic circuits is increased, high frequency signals are detected / rectified in two stages by two basic circuits, so that the power efficiency of the detection / rectifier circuit can be increased.
[Third Embodiment]
Next, FIG. 4 shows the configuration of the detection / rectification circuit of the third embodiment to which the present invention is applied.
 本実施形態の検波/整流回路は、基本的には、図1に示した第1実施形態の検波/整流回路と同様の構成をしており、第1実施形態と異なる点は、ダイオードD2及びD4を、第1ダイオードD1及びD3とは逆極性で各ハイブリッド回路10、20へ接続し、ダイオードD2の分配端子T2とは反対側の端子(つまりアノード)を、抵抗R4を介してオペアンプOP1の非反転入力端子(+)に接続し、ダイオードD4の分配端子T2とは反対側の端子(つまりカソード)を、抵抗R2を介してオペアンプOP1の反転入力端子(-)に接続した点である。 The detection / rectification circuit of the present embodiment basically has the same configuration as that of the detection / rectification circuit of the first embodiment shown in FIG. 1. The difference from the first embodiment is that the diode D2 and D4 is connected to each of the hybrid circuits 10 and 20 with the opposite polarity to the first diodes D1 and D3, and the terminal (that is, the anode) opposite to the distribution terminal T2 of the diode D2 is connected to the operational amplifier OP1 via the resistor R4. This is in that the terminal (that is, the cathode) opposite to the distribution terminal T2 of the diode D4 is connected to the non-inverting input terminal (+) and the inverting input terminal (−) of the operational amplifier OP1 through the resistor R2.
 このように構成された本実施形態の検波/整流回路によれば、第1ハイブリッド回路10におけるダイオードD1,D2の接続方向、及び、第2ハイブリッド回路20におけるダイオードD3,D4の接続方向が異なるものの、ダイオードD2のアノードがオペアンプOP1の非反転入力端子(+)に接続され、ダイオードD4のカソードがオペアンプOP1の反転入力端子(-)に接続されることから、上記実施形態と同様、第1ハイブリッド回路10の入力端子Tiに入力された高周波信号を、ダイオードD1~D4及び差動増幅回路30により全波整流して、検波/整流回路の電力効率を高めることができる。 According to the detection / rectifier circuit of the present embodiment configured as described above, the connection directions of the diodes D1 and D2 in the first hybrid circuit 10 and the connection directions of the diodes D3 and D4 in the second hybrid circuit 20 are different. Since the anode of the diode D2 is connected to the non-inverting input terminal (+) of the operational amplifier OP1, and the cathode of the diode D4 is connected to the inverting input terminal (−) of the operational amplifier OP1, the first hybrid is the same as in the above embodiment. The high-frequency signal input to the input terminal Ti of the circuit 10 can be full-wave rectified by the diodes D1 to D4 and the differential amplifier circuit 30 to increase the power efficiency of the detection / rectification circuit.
 ところで、第2ハイブリッド回路20には、第1ハイブリッド回路10のダイオードD1,D2で反射した高周波信号が入力されることから、第2ハイブリッド回路の分配端子T1,T2から出力される高周波信号の電力は、第1ハイブリッド回路10の分配端子T1,T2から出力される高周波信号の電力よりも低くなる。このため、第1実施形態では、オペアンプOP1の各入力端子(+,-)への入力電力のバランスが崩れ、整流効率(延いては電力効率)が低下することも考えられる。 By the way, since the high frequency signal reflected by the diodes D1 and D2 of the first hybrid circuit 10 is input to the second hybrid circuit 20, the power of the high frequency signal output from the distribution terminals T1 and T2 of the second hybrid circuit. Is lower than the power of the high-frequency signal output from the distribution terminals T1 and T2 of the first hybrid circuit 10. For this reason, in the first embodiment, the balance of input power to each input terminal (+, −) of the operational amplifier OP1 may be lost, and rectification efficiency (and thus power efficiency) may be reduced.
 これに対し、本実施形態では、オペアンプOP1の各入力端子(+,-)に、第1ハイブリッド回路10及び第2ハイブリッド回路20の第1分配端子T1からの出力と、第1ハイブリッド回路10及び第2ハイブリッド回路20の第2分配端子T2からの出力とが入力されることから、オペアンプOP1の各入力端子(+,-)への入力電力のバランスがとれて、整流効率(延いては電力効率)を高めることができる、といった効果も期待できる。 On the other hand, in this embodiment, the output from the first distribution terminal T1 of the first hybrid circuit 10 and the second hybrid circuit 20, the first hybrid circuit 10 and the input terminals (+, −) of the operational amplifier OP1. Since the output from the second distribution terminal T2 of the second hybrid circuit 20 is input, the input power to each input terminal (+, −) of the operational amplifier OP1 is balanced, and the rectification efficiency (and thus the power) (Efficiency) can be improved.
 以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内にて種々の態様をとることができる。
 例えば、上記各実施形態においては、高周波信号の入力経路から真っ直ぐ延びる延長線上に、各ハイブリッド回路10,20の一方の第1伝送線路L1を順次配置し、各第1伝送線路L1の両端から、第1線路L1毎に異なる方向にそれぞれ一対の第2伝送線路L2を延設し、その一対の第2伝送線路L2の端部同士をもう一方の第1伝送線路L1で接続することにより、一対のハイブリッド回路10,20を基板上に形成するものとして説明した。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various aspect can be taken in the range which does not deviate from the summary of this invention.
For example, in each of the above embodiments, one first transmission line L1 of each of the hybrid circuits 10 and 20 is sequentially arranged on an extension line extending straight from the input path of the high-frequency signal, and from both ends of each first transmission line L1, By extending a pair of second transmission lines L2 in different directions for each first line L1, and connecting the ends of the pair of second transmission lines L2 with the other first transmission line L1, a pair of second transmission lines L2 is connected. The hybrid circuits 10 and 20 have been described as being formed on the substrate.
 しかし、この種のハイブリッド回路(分配回路を構成するハイブリッドリング)においては、通常、高周波信号の入力経路から真っ直ぐ延びる延長線上に、第2伝送線路L2を配置して、その先端を第1分配端子T1とするようにされている。 However, in this type of hybrid circuit (hybrid ring constituting the distribution circuit), normally, the second transmission line L2 is arranged on an extension line extending straight from the input path of the high-frequency signal, and the tip thereof is the first distribution terminal. T1 is set.
 これは、高周波信号の入力経路に対してハイブリッド回路をこのように配置すると、ハイブリッド回路の設計周波数において、分配端子T1,T2での結合量の位相差を略設計値(90°)にすることができるためである。 This is because, when the hybrid circuit is arranged in this way with respect to the input path of the high-frequency signal, the phase difference of the coupling amount at the distribution terminals T1 and T2 is set to a substantially designed value (90 °) at the design frequency of the hybrid circuit. It is because it can do.
 このため、上記実施形態のようにハイブリッド回路を形成すると、ハイブリッド回路の設計周波数において、分配端子T1,T2での結合量の位相差が例えば80°となって、設計値からずれてしまうことが考えられる。 For this reason, when the hybrid circuit is formed as in the above embodiment, the phase difference of the coupling amount at the distribution terminals T1 and T2 becomes, for example, 80 ° at the design frequency of the hybrid circuit, which may deviate from the design value. Conceivable.
 本実施形態の検波/整流回路は、検波/整流可能な高周波信号の周波数帯域を広くすることができるので、上記のように分配端子T1,T2での結合量の位相差が多少ずれても、特に問題になることはないが、このずれを考慮して、第1ハイブリッド回路10に接続される高周波信号の入力経路を、図5に示すように形成してもよい。 Since the detection / rectification circuit of the present embodiment can widen the frequency band of a high-frequency signal that can be detected / rectified, even if the coupling amount phase difference at the distribution terminals T1 and T2 is slightly shifted as described above, Although there is no particular problem, the high-frequency signal input path connected to the first hybrid circuit 10 may be formed as shown in FIG.
 すなわち、図5に示す検波/整流回路は、図1に示した第1実施形態の検波整流回路において、第1ハイブリッド回路10の入力端子Tiに、第2伝送線路から真っ直ぐ延びる入力経路Linを接続し、この入力経路Linの先端に、外部から高周波信号を入力するための入力経路を直交するように接続したものである。なお、図5では、入力経路Linの長さは、第2伝送線路L2と略同じ長さ(略1/4波長)となっている。 That is, the detection / rectification circuit shown in FIG. 5 connects the input path Lin extending straight from the second transmission line to the input terminal Ti of the first hybrid circuit 10 in the detection rectification circuit of the first embodiment shown in FIG. An input path for inputting a high frequency signal from the outside is connected to the tip of the input path Lin so as to be orthogonal. In FIG. 5, the length of the input path Lin is substantially the same length (approximately ¼ wavelength) as that of the second transmission line L2.
 そして、検波/整流回路への高周波信号の入力経路をこのように構成すれば、第1ハイブリッド回路10において、その設計周波数における分配端子T1,T2での結合量の位相差を略設計値(90°)にすることができるようになる。 If the high-frequency signal input path to the detection / rectifier circuit is configured in this way, in the first hybrid circuit 10, the phase difference between the coupling amounts at the distribution terminals T1 and T2 at the design frequency is approximately the design value (90 °) will be able to.
 また、第2実施形態では、第1,第2ハイブリッド回路10,20とダイオードD1~D4とラジアルスタブRS1~RS4とにより構成される基本回路を、前後2段に配置するものとして説明したが、この基本回路の数を更に増加することにより、検波/整流回路の電力効率をより高めることができる。 In the second embodiment, the basic circuit composed of the first and second hybrid circuits 10 and 20, the diodes D1 to D4, and the radial stubs RS1 to RS4 has been described as being arranged in two stages. By further increasing the number of basic circuits, the power efficiency of the detection / rectification circuit can be further increased.
 一方、上記各実施形態では、第1,第2ハイブリッド回路10,20とダイオードD1~D4とラジアルスタブRS1~RS4とにより構成される基本回路、若しくは、この基本回路を前後2段に接続した多段回路に対し、差動増幅回路30を設け、この差動増幅回路30にて、各ダイオードD1~D4からの出力を逆相電力合成するものとして説明したが、例えば、図6に示すように、差動増幅回路30に代えて、一対の蓄電用コンデンサCa、Cbを設けるようにしてもよい。 On the other hand, in each of the above embodiments, a basic circuit constituted by the first and second hybrid circuits 10 and 20, the diodes D1 to D4, and the radial stubs RS1 to RS4, or a multistage in which this basic circuit is connected in two stages in the front and rear. In the circuit, a differential amplifier circuit 30 is provided, and the output from each of the diodes D1 to D4 is combined in the differential amplifier circuit 30 in this differential amplifier circuit 30. For example, as shown in FIG. Instead of the differential amplifier circuit 30, a pair of power storage capacitors Ca and Cb may be provided.
 つまり、各ダイオードD1~D4からの出力を、両面基板の裏面のベタグランドと同電位のグランドラインに一端が接続された蓄電用コンデンサCa、Cbの他端に接続することで、蓄電用コンデンサCa、Cbを充電し、その充電電圧+V、-Vを、蓄電用コンデンサCa、Cbの他端に接続されたDC出力端子から出力するようにしてもよい。 In other words, the output from each of the diodes D1 to D4 is connected to the other end of the storage capacitor Ca, Cb having one end connected to the ground line having the same potential as the solid ground on the back surface of the double-sided substrate, whereby the storage capacitor Ca , Cb may be charged, and the charging voltages + V and −V may be output from a DC output terminal connected to the other ends of the storage capacitors Ca and Cb.
 この場合、各ダイオードD1~D4からの出力は、蓄電用コンデンサCa、Cbにて逆相電力合成され、各蓄電用コンデンサCa、Cbを、それぞれ逆極性で充電することができるようになる。 In this case, the outputs from the diodes D1 to D4 are combined with the reverse phase power by the storage capacitors Ca and Cb, so that the storage capacitors Ca and Cb can be charged with the opposite polarity.
 そして、検波/整流回路をこのように構成した場合、例えば、図6に示すように、検波/整流回路への高周波信号の入力経路に同軸入力端子Tcoを設け、この同軸入力端子Tcoに、同軸ケーブルLcoを介して、パラボラアンテナ40の一次放射器50を接続すれば、パラボラアンテナ40にて受信された高周波信号を整流して蓄電用コンデンサCa、Cbに充電し、その充電電圧(電力)をDC出力端子から外部負荷に出力する電力変換器として使用することができ、延いては、高周波信号の無線伝送によって電力伝送を行う宇宙発電や非接触給電に利用することができるようになる。 When the detection / rectification circuit is configured in this way, for example, as shown in FIG. 6, a coaxial input terminal Tco is provided in the input path of the high-frequency signal to the detection / rectification circuit, and the coaxial input terminal Tco is coaxially connected. If the primary radiator 50 of the parabolic antenna 40 is connected via the cable Lco, the high frequency signal received by the parabolic antenna 40 is rectified and charged to the storage capacitors Ca and Cb, and the charging voltage (electric power) is set. It can be used as a power converter that outputs from a DC output terminal to an external load, and by extension, can be used for space power generation and non-contact power feeding that perform power transmission by wireless transmission of high-frequency signals.
 なお、図6に示す検波/整流回路は、図3に示した第2実施形態の検波/整流回路において、差動増幅回路30の代わりに、一端がグランドラインに接続された一対の蓄電用コンデンサCa、Cbを設けたものであり、差動増幅回路30の反転入力端子(-)に接続される側のダイオードD1,D2の出力(カソード)を、蓄電用コンデンサCaの他端に接続し、差動増幅回路30の非反転入力端子(+)に接続される側のダイオードD1,D2の出力(アノード)を、蓄電用コンデンサCbの他端に接続することにより構成されている。 Note that the detection / rectification circuit shown in FIG. 6 is the same as the detection / rectification circuit of the second embodiment shown in FIG. Ca and Cb are provided, and the outputs (cathodes) of the diodes D1 and D2 on the side connected to the inverting input terminal (−) of the differential amplifier circuit 30 are connected to the other end of the storage capacitor Ca, The output (anode) of the diodes D1 and D2 connected to the non-inverting input terminal (+) of the differential amplifier circuit 30 is connected to the other end of the storage capacitor Cb.

Claims (6)

  1.  電子回路であって、
     第1ハイブリッド回路と、
     第2ハイブリッド回路と
     を備え、
     前記第1ハイブリッド回路及び前記第2ハイブリッド回路の各々は、入力端子、第1分配端子、第2分配端子、及び通過端子からなる4つの端子と、検波及び整流のうちの一方が行われる対象となる高周波信号の基準周波数において略1/4波長となる長さを有する4つの伝送線路とを備え、前記4つの伝送線路の内、伝送インピーダンスが基準値に設定された一対の第1伝送線路にて、前記入力端子と前記通過端子との間及び前記第1分配端子と前記第2分配端子との間をそれぞれ接続し、伝送インピーダンスが基準値の1/√2に設定された一対の第2伝送線路にて、前記入力端子と前記第1分配端子との間及び前記通過端子と前記第2分配端子との間をそれぞれ接続することにより、環状に形成され、
     前記第1ハイブリッド回路の入力端子は、前記高周波信号の入力経路に接続され、
     前記第2ハイブリッド回路の入力端子は、前記第1ハイブリッド回路の通過端子に接続され、
     前記第2ハイブリッド回路の通過端子は、前記伝送インピーダンスの基準値を有する終端回路にて終端され、
     前記第1ハイブリッド回路の第1分配端子及び第2分配端子には、第1ダイオード及び第2ダイオードがそれぞれ接続され、
     前記第2ハイブリッド回路の第1分配端子及び第2分配端子には、第3ダイオード及び第4ダイオードが、それぞれ、前記第1ダイオード及び第2ダイオードとは異なる極性で接続され、
     当該電子回路は、
     前記第1ダイオード及び第2ダイオードの前記各分配端子とは反対側端子からの出力と、前記第3ダイオード及び第4ダイオードの前記各分配端子とは反対側端子からの出力とを逆相電力合成して出力するように構成されている
     ことを特徴とする電子回路。
    An electronic circuit,
    A first hybrid circuit;
    A second hybrid circuit,
    Each of the first hybrid circuit and the second hybrid circuit includes four terminals including an input terminal, a first distribution terminal, a second distribution terminal, and a passing terminal, and a target on which one of detection and rectification is performed. A pair of first transmission lines having a transmission impedance set to a reference value among the four transmission lines. A pair of second terminals, each having a transmission impedance set to 1 / √2 of a reference value, connected between the input terminal and the passing terminal and between the first distribution terminal and the second distribution terminal. By connecting between the input terminal and the first distribution terminal and between the passing terminal and the second distribution terminal, respectively, in the transmission line, it is formed in an annular shape,
    An input terminal of the first hybrid circuit is connected to an input path of the high frequency signal,
    An input terminal of the second hybrid circuit is connected to a passing terminal of the first hybrid circuit;
    The passing terminal of the second hybrid circuit is terminated by a termination circuit having a reference value of the transmission impedance,
    A first diode and a second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit, respectively.
    A third diode and a fourth diode are connected to the first distribution terminal and the second distribution terminal of the second hybrid circuit, respectively, with different polarities from the first diode and the second diode,
    The electronic circuit is
    The output from the terminal opposite to the distribution terminal of the first diode and the second diode and the output from the terminal opposite to the distribution terminal of the third diode and the fourth diode are combined with a negative phase power. An electronic circuit characterized by being configured to output as
  2.  前記第1ダイオード及び第2ダイオードは、前記第1ハイブリッド回路の第1分配端子及び第2分配端子に極性を揃えて接続され、
     前記第3ダイオード及び第4ダイオードは、前記第2ハイブリッド回路の第1分配端子及び第2分配端子に、前記第1ダイオード及び第2ダイオードとは異なる極性で接続されており、
     前記第1ダイオード及び第2ダイオードの前記各分配端子とは反対側端子が第1入力端子に接続され、前記第3ダイオード及び第4ダイオードの前記各分配端子とは反対側端子が第2入力端子に接続され、各入力端子間の電位差を差動増幅する差動増幅回路、
     を備えたことを特徴とする請求項1に記載の電子回路。
    The first diode and the second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit with the same polarity,
    The third diode and the fourth diode are connected to the first distribution terminal and the second distribution terminal of the second hybrid circuit with a polarity different from that of the first diode and the second diode,
    Terminals opposite to the distribution terminals of the first diode and the second diode are connected to a first input terminal, and terminals opposite to the distribution terminals of the third diode and the fourth diode are connected to a second input terminal. A differential amplifier circuit that differentially amplifies the potential difference between the input terminals,
    The electronic circuit according to claim 1, further comprising:
  3.  前記第1ダイオード及び第2ダイオードは、前記第1ハイブリッド回路の第1分配端子及び第2分配端子に逆極性で接続され、
     前記第3ダイオード及び第4ダイオードは、前記第2ハイブリッド回路の第1分配端子及び第2分配端子に、前記第1ダイオード及び第2ダイオードとは異なる極性で接続されており、
     前記第1ダイオード及び第4ダイオードの前記各分配端子とは反対側端子が第1入力端子に接続され、前記第2ダイオード及び第3ダイオードの前記各分配端子とは反対側端子が第2入力端子に接続され、各入力端子間の電位差を差動増幅する差動増幅回路、
     を備えたことを特徴とする請求項1に記載の電子回路。
    The first diode and the second diode are connected to the first distribution terminal and the second distribution terminal of the first hybrid circuit in reverse polarity,
    The third diode and the fourth diode are connected to the first distribution terminal and the second distribution terminal of the second hybrid circuit with a polarity different from that of the first diode and the second diode,
    Terminals opposite to the distribution terminals of the first diode and the fourth diode are connected to a first input terminal, and terminals opposite to the distribution terminals of the second diode and the third diode are connected to a second input terminal. A differential amplifier circuit that differentially amplifies the potential difference between the input terminals,
    The electronic circuit according to claim 1, further comprising:
  4.  前記差動増幅回路はオペアンプからなり、該オペアンプの非反転入力端子に接続されるダイオードには、前記非反転入力端子に接続される増幅率設定用の抵抗を介してバイアス電圧を印加するよう構成されたことを特徴とする請求項2又は請求項3に記載の電子回路。 The differential amplifier circuit is composed of an operational amplifier, and a bias voltage is applied to a diode connected to a non-inverting input terminal of the operational amplifier via a gain setting resistor connected to the non-inverting input terminal. The electronic circuit according to claim 2, wherein the electronic circuit is provided.
  5.  前記第1~第4ダイオードの前記各分配端子とは反対側端子には、各ダイオードを通過した高周波信号成分を除去するための半円状若しくは扇形のラジアルスタブが設けられていることを特徴とする請求項1~請求項4の何れか1項に記載の電子回路。 The first to fourth diodes are provided with semicircular or fan-shaped radial stubs at terminals opposite to the respective distribution terminals for removing high-frequency signal components that have passed through the respective diodes. The electronic circuit according to any one of claims 1 to 4.
  6.  前記終端回路を外して従属接続された、複数段の請求項1に記載の電子回路を備え、
     前記複数段の電子回路のうちの最終段の電子回路を構成する第2ハイブリッド回路の通過端子は、前記伝送インピーダンスの基準値を有する終端回路にて終端されている
     ことを特徴とする電子回路。
    The electronic circuit according to claim 1, wherein the electronic circuit according to claim 1 is connected in a cascade manner with the termination circuit removed.
    An electronic circuit, wherein a passing terminal of a second hybrid circuit constituting a final stage electronic circuit among the plurality of stages of electronic circuits is terminated by a termination circuit having a reference value of the transmission impedance.
PCT/JP2010/070743 2009-11-19 2010-11-19 Electronic circuit WO2011062278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800524454A CN102668371A (en) 2009-11-19 2010-11-19 Electronic circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-264230 2009-11-19
JP2009264230 2009-11-19

Publications (1)

Publication Number Publication Date
WO2011062278A1 true WO2011062278A1 (en) 2011-05-26

Family

ID=44059750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070743 WO2011062278A1 (en) 2009-11-19 2010-11-19 Electronic circuit

Country Status (4)

Country Link
JP (1) JP2011130430A (en)
KR (1) KR20120104996A (en)
CN (1) CN102668371A (en)
WO (1) WO2011062278A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207208A (en) * 1990-11-28 1992-07-29 Matsushita Electric Ind Co Ltd Directional coupler and detecting circuit
JPH06276025A (en) * 1993-03-17 1994-09-30 Nec Corp Microwave detecting circuit
JP2006033185A (en) * 2004-07-13 2006-02-02 Fujitsu Ltd Diode detection circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166604A (en) * 1987-12-23 1989-06-30 Tokyo Keiki Co Ltd Detection circuit
US4853643A (en) * 1988-10-26 1989-08-01 Hewlett-Packard Company High signal to noise ratio amplitude detector
US5208564A (en) * 1991-12-19 1993-05-04 Hughes Aircraft Company Electronic phase shifting circuit for use in a phased radar antenna array
JP3581607B2 (en) * 1999-09-24 2004-10-27 松下電器産業株式会社 Send / receive switch
CN100508379C (en) * 2002-10-10 2009-07-01 双信电机株式会社 Variable delay line
JP5426811B2 (en) * 2006-11-22 2014-02-26 パール工業株式会社 High frequency power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207208A (en) * 1990-11-28 1992-07-29 Matsushita Electric Ind Co Ltd Directional coupler and detecting circuit
JPH06276025A (en) * 1993-03-17 1994-09-30 Nec Corp Microwave detecting circuit
JP2006033185A (en) * 2004-07-13 2006-02-02 Fujitsu Ltd Diode detection circuit

Also Published As

Publication number Publication date
JP2011130430A (en) 2011-06-30
CN102668371A (en) 2012-09-12
KR20120104996A (en) 2012-09-24

Similar Documents

Publication Publication Date Title
US7265717B2 (en) Ultra-wideband antenna and ultrahigh frequency circuit module
US6005454A (en) Radio frequency power divider/combiner circuit having conductive lines and lumped circuits
US7692512B2 (en) Balun with series-connected balanced-signal lines
US9543760B2 (en) Power distribution circuit
KR20170010728A (en) System and method for a directional coupler
KR101698240B1 (en) System and method for a transformer and a phase-shift network
US8598964B2 (en) Balun with intermediate non-terminated conductor
US8493162B1 (en) Combiner/divider with coupled transmission line
US6489859B1 (en) Power divider/combiner
US9666929B2 (en) Balun for converting between multiple differential signal pairs and a single ended signal
JP2000101332A (en) Antenna power feeding circuit
US8248180B2 (en) Balun with intermediate conductor
US8907702B1 (en) System and method for a phase detector
JP2013509597A (en) Detector system
WO2011062278A1 (en) Electronic circuit
JP2017135465A (en) Single-ended microstrip line, differential microstrip line, and balanced unbalanced conversion element
JP3811551B2 (en) High output power amplifier
EP2418726B1 (en) Broadband balun
US7369834B2 (en) Impedance-matched IQ network for an image rejection circuit
US8542080B2 (en) All-pass network
TWI632769B (en) Multiple power amplifier circuit
CN106410352B (en) Power divider and method for acquiring device parameters in power divider
JP2007174376A (en) Distribution circuit
JP2021019217A (en) Four-phase power distributor and electronic apparatus
US20070090868A1 (en) Current squaring cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052445.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127015185

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10831670

Country of ref document: EP

Kind code of ref document: A1