WO2011062097A1 - Non-contact power-feed device - Google Patents

Non-contact power-feed device Download PDF

Info

Publication number
WO2011062097A1
WO2011062097A1 PCT/JP2010/069992 JP2010069992W WO2011062097A1 WO 2011062097 A1 WO2011062097 A1 WO 2011062097A1 JP 2010069992 W JP2010069992 W JP 2010069992W WO 2011062097 A1 WO2011062097 A1 WO 2011062097A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
secondary coil
coil
alternating
Prior art date
Application number
PCT/JP2010/069992
Other languages
French (fr)
Japanese (ja)
Inventor
浩康 北村
恭平 加田
Original Assignee
パナソニック電工 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工 株式会社 filed Critical パナソニック電工 株式会社
Publication of WO2011062097A1 publication Critical patent/WO2011062097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge

Definitions

  • the present invention relates to a non-contact power feeding apparatus that performs electromagnetic transmission between devices in a non-contact manner using electromagnetic induction.
  • Such a contactless power supply device has been widely known in recent years as a device that can charge a secondary battery (battery) built in a portable device such as a mobile phone or a digital camera in a contactless manner.
  • the portable device and the charger corresponding to the portable device are each provided with a coil for transferring power for charging, and the charger is provided by electromagnetic induction between the two coils.
  • the AC power transmitted from the mobile device to the mobile device is converted into DC power by the mobile device, so that the secondary battery as the power source of the mobile device is charged.
  • the connection terminal for electrically connecting the charger and the portable device can be omitted by such non-contact charging, it is not easy to grasp the charging state of the secondary battery by the charger. Managing the amount of charge is also difficult.
  • Patent Document 1 a technique for adjusting the state of charge of the secondary battery on the mobile device side has been proposed, and an example thereof is described in Patent Document 1. That is, in the non-contact power supply device described in Patent Document 1, two taps with different numbers of windings are provided in the coil on the portable device side so that different electric power can be extracted from the taps. When a battery is charged, the power suitable for each charge can be taken out by selecting those taps according to the state of charge of the battery. As a result, the charge amount of the secondary battery can be adjusted on the portable device side, but the charger side continues to supply constant power to the coil regardless of such charge adjustment by the portable device. In addition, there is a problem that power is wasted.
  • Patent Document 2 the non-contact power feeding device described in Patent Document 2 is connected in parallel to a power supply unit of a charger that controls oscillation of a primary coil, and a secondary coil that is supplied with power from the oscillated primary coil. And a load unit of a portable device having a secondary battery (storage battery). The secondary coil is connected in parallel with load control means for changing its output load.
  • this load control means changes the power supply characteristic for the secondary coil, that is, the power reception characteristic of the secondary coil, by switching between opening and shorting of the parallel circuit of the secondary coil according to the state of charge of the secondary battery.
  • the non-contact power supply device described in Patent Document 3 is for signal transmission that controls connection / disconnection of a resistor having a predetermined resistance value in parallel with an output of a secondary coil of a portable device that supplies power to a load. It has a load circuit. The output load is varied by connecting / disconnecting the resistor to change the power receiving characteristic of the secondary coil.
  • the change in the power reception characteristics of the secondary coil of the portable device according to the state of charge of the secondary battery is the output voltage of the primary coil of the charger that is electromagnetically coupled to the secondary coil.
  • the power supplied to the primary coil by the charger can be controlled through the change in the output voltage of the primary coil.
  • the charger supplies unnecessary power to the corresponding portable device by adjusting the power supplied to the portable device based on the change of the power reception characteristic on the portable device side, that is, the information from the portable device side.
  • This makes it possible to reduce the waste of electric power generated by this.
  • the output of the secondary coil is short-circuited for information transmission, or if the resistor is connected in parallel to the output of the secondary coil, the output power of the secondary coil is unnecessarily consumed and the same output Even in a load such as a secondary battery that receives power supply, inconveniences such as power supply being stopped or reduced are inevitable.
  • the first aspect of the present invention is a non-contact power feeding device.
  • the apparatus receives a primary coil that generates an alternating magnetic flux, and a secondary that receives the alternating power corresponding to the alternating magnetic flux from the primary coil in a non-contact manner at a position that intersects the alternating magnetic flux generated in the primary coil.
  • a resonance circuit unit including a coil and configured to be able to change a circuit constant, and the secondary coil receives power by changing the circuit constant of the resonance circuit unit based on information to be transmitted to the primary coil.
  • a modulation control device that modulates the amplitude of the alternating power, and a change in the amplitude of the alternating power generated in the primary coil in response to a change in the amplitude of the alternating power in the secondary coil.
  • a demodulation control device for demodulating information.
  • the modulation control device changes the circuit constant of the resonance circuit unit based on information desired to transmit the amplitude of the alternating power voltage received by the secondary coil to the primary coil.
  • the demodulation control device acquires predetermined information transmitted from the modulation control device based on the change in the voltage amplitude at the primary coil caused by the change in the voltage amplitude at the secondary coil.
  • information from the modulation control device is transmitted to the demodulation control device.
  • a primary coil and a demodulation control device are provided in a first device such as a charger, and a secondary coil, a resonance circuit unit, and a modulation control device are provided in a second device such as a portable device including a secondary battery and a load.
  • the demodulation control device can suitably control the power transmitted to the secondary coil by controlling the drive of the primary coil according to the situation of the secondary battery or load connected to the modulation control device. become.
  • the circuit constant of the resonant circuit unit including the secondary coil is changed, the DC power converted into a state suitable for supply to the load after receiving power at the secondary coil through adjustment such as rectification and smoothing is obtained. It is avoided that a large amount is consumed for information transmission. That is, when transmitting information from the secondary coil to the primary coil, the DC power to be supplied to the load such as the secondary battery is changed by changing the characteristics of the secondary coil due to the load fluctuation with respect to the DC power as in the past. Is suppressed from being consumed. As a result, there is a possibility that information transmission may adversely affect the supply of DC power to the load, for example, the risk of stopping the power supply to the load or significantly reducing the supply amount.
  • the circuit constant of the resonance circuit unit including the secondary coil is changed, it becomes easy to adjust or change the power receiving characteristics applied to the secondary coil. This facilitates the design and adjustment of the power reception characteristics of the resonance circuit unit, and also improves the possibility of implementing and adopting the non-contact power feeding device having such a resonance circuit unit.
  • a second aspect of the present invention is a power receiving unit that receives power from a power transmission unit including a primary coil in a contactless manner.
  • the power receiving unit includes a secondary coil that receives the alternating power corresponding to the alternating magnetic flux from the primary coil in a non-contact manner at a position that intersects the alternating magnetic flux generated in the primary coil, and the circuit constant can be changed.
  • modulation control for modulating the amplitude of the alternating power received by the secondary coil by changing the circuit constant of the resonant circuit unit based on information to be transmitted to the primary coil.
  • the electric power receiving part suitable for the non-contact electric power feeder of an above-mentioned 1st aspect can be provided.
  • FIG. 1 is a circuit diagram schematically showing a circuit configuration of a first embodiment that embodies a contactless power feeding device according to the present invention. It is a graph which shows the voltage change of the alternating power of the electric power receiving part of the embodiment, Comprising: (a) shows the case where a power receiving characteristic is optimal, (b) shows the case where a power receiving characteristic is not optimal.
  • FIG. 3 is a graph showing a state similar to FIG. 2 for a longer period than that of FIG. 2, where (a) shows a case where the power reception characteristics are optimum, and (b) shows a case where the power reception characteristics are not optimum.
  • FIG. 1 It is a graph which shows the reception state of the signal by the electric power transmission part of the embodiment, (a) is a graph which shows the voltage change of alternating power, (b) shows the signal demodulated based on the voltage change of (a).
  • Figure. The circuit diagram which shows schematically the circuit structure of the electric power receiving part about 2nd Embodiment which actualized the non-contact electric power feeder which concerns on this invention. The circuit diagram which shows roughly the circuit structure of the electric power receiving part about 3rd Embodiment which actualized the non-contact electric power feeder which concerns on this invention. The circuit diagram which shows roughly the circuit structure of the electric power receiving part about 4th Embodiment which actualized the non-contact electric power feeder which concerns on this invention.
  • the circuit diagram which shows roughly the circuit structure of the electric power receiving part about 5th Embodiment which actualized the non-contact electric power feeder which concerns on this invention.
  • the circuit diagram which shows schematically the circuit structure of the electric power receiving part about 6th Embodiment which actualized the non-contact electric power feeder which concerns on this invention.
  • FIG. 1 is a diagram illustrating a schematic configuration of an electric circuit of the contactless power supply device according to the first embodiment.
  • the non-contact power supply apparatus is roughly divided into a power transmission unit 10 and a power reception unit 20.
  • the power transmission unit 10 includes a primary coil L1, and a resonance capacitor C4 is connected in parallel to the primary coil L1 to form a primary LC circuit.
  • An LC circuit on the primary side, a parallel circuit of a diode D2 and a resistor R5, an N-channel MOS transistor FET1 as a switching element, and a resistor R7 are connected in series to form a series circuit.
  • the DC power supply E is connected in parallel.
  • an RC circuit including a series connection of a resistor R6 and a capacitor C5 is connected in parallel to the resistor R7.
  • a capacitor C1 is connected in parallel to the DC power source E, and a series circuit including a starting resistor R1 and a capacitor C2 is also connected in parallel.
  • the node N1 between the starting resistor R1 and the capacitor C2 is connected to the gate terminal of the MOS transistor FET1 through a series circuit including a feedback coil L3 that constitutes an oscillation transformer together with the primary coil L1 and a resistor R3. ing.
  • the power transmission unit 10 further includes a bias control transistor TR2 made of an NPN transistor, the collector terminal of which is connected to the gate terminal of the MOS transistor FET1, and the emitter terminal of which is connected to the negative terminal (ground) of the DC power supply E. ing.
  • the base terminal of the bias control transistor TR2 is connected to a connection point N3 between the resistor R6 and the capacitor C5 constituting the RC circuit.
  • the power transmission unit 10 configured as described above is a self-excited voltage resonance type inverter circuit of one stone, that is, a so-called voltage resonance circuit.
  • a so-called voltage resonance circuit By the oscillation operation of this voltage resonance circuit, an alternating current having a constant frequency is generated from the primary coil L1. Magnetic flux is generated. This oscillation operation will be briefly described below.
  • the power transmission unit 10 When the power transmission unit 10 is supplied with a power supply voltage, for example, a voltage of 5 V, from the DC power supply E, a voltage is applied to the gate terminal of the MOS transistor FET1 via the starting resistor R1, the feedback coil L3, and the resistor R3.
  • a voltage applied to the gate terminal of the MOS transistor FET1 is increased to an ON voltage at which current flows between the drain and source of the MOS transistor FET1, the MOS transistor FET1 is turned on and current flows between the drain and source. Flows. As a result, a current flows through the primary coil L1, and a magnetic flux is generated.
  • a voltage that maintains the ON voltage of the MOS transistor FET1 is generated in the feedback coil L3 that receives the magnetic flux, and the gate voltage of the MOS transistor FET1 is maintained at the ON voltage. Then, the ON state of the MOS transistor FET1 is maintained.
  • the voltage at the base terminal of the bias control transistor TR2 rises and the current flows between the collector and the emitter, the current flows between the collector and the emitter, and the potential difference between the collector and the emitter is reduced. Decrease to approximately “0”.
  • the voltage at the collector terminal of the bias control transistor TR2 is lowered to the level of the minus terminal (ground) of the DC power supply E, and the voltage at the gate terminal of the MOS transistor FET1 connected to the collector terminal also becomes the ground level.
  • the MOS transistor FET1 is turned off so that no current flows between the drain and the source.
  • the MOS transistor FET1 When the MOS transistor FET1 is turned off, the magnetic flux generated by the primary coil L1 decreases, so that the voltage direction of the feedback coil L3 changes to generate a voltage that maintains the off state, and the voltage is applied to the gate terminal.
  • the MOS transistor FET1 is kept off.
  • the MOS transistor FET1 When the MOS transistor FET1 is turned off, the current flowing through the primary coil L1 flows into the resonance capacitor C4, and the LC circuit including the primary coil L1 and the resonance capacitor C4 resonates. Due to the resonance of the LC circuit, the voltage on the drain side of the MOS transistor FET1 increases and reaches a peak, and then decreases. At this time, the same voltage fluctuation as that of the primary coil L1 occurs between the terminals of the feedback coil L3.
  • the voltage drops to reach a peak and then rises.
  • a voltage capable of turning on the MOS transistor FET1 is generated at the first terminal of the feedback coil L3, and the MOS transistor FET1 is turned on again.
  • the MOS transistor FET1 is switched by repeating the ON and OFF of the MOS transistor FET1, and the primary coil L1 is oscillated by the switching.
  • the frequency at which the MOS transistor FET1 is switched is adjusted to be 100 kHz (kilohertz) to 200 kHz.
  • the power transmission unit 10 is provided with a primary control device 11 as a demodulation control device.
  • the primary-side control device 11 is mainly composed of a microcomputer having a central processing unit (CPU) and a storage device (nonvolatile memory ROM, volatile memory RAM, etc.), and various types stored in the storage device.
  • Various controls such as oscillation control of the LC circuit of the power transmission unit 10 are executed based on the data and the program.
  • the communication signal from the power receiving unit 20 is demodulated, the demodulated signal is analyzed, and the oscillation of the LC circuit is controlled based on the analysis result. .
  • nonvolatile memory ROM is necessary for a threshold value for comparison with the voltage at the connection point N2, a demodulation of a communication signal with the power receiving unit 20 described in detail later, and an analysis of the demodulated signal.
  • Various parameters to be stored are stored in advance.
  • the primary side control device 11 is supplied with driving power from a DC power source E by a circuit (not shown), and is connected to the negative terminal of the DC power source E and is composed of a diode D1 and a resistor R2. Is connected to a connection point N2 between the LC circuit on the primary side and the parallel circuit of the diode D2 and the resistor R5. That is, the power at the connection point N2 is supplied to the primary side control device 11 after being half-wave rectified, and the primary side control device 11 is driven by the oscillation of the primary coil L1 through the connection point N2.
  • the maximum voltage or the like can be acquired from the voltage waveform of the generated alternating power.
  • the power transmission unit 10 is provided with a bias control transistor TR3 made of an NPN transistor, the collector terminal of which is connected to the gate terminal of the MOS transistor FET1, and the emitter terminal of the DC power supply E. Is connected to the negative terminal (ground).
  • the bias control transistor TR3 has its base terminal connected to the primary side control device 11, and the control current supplied from the primary side control device 11 turns on and off the current flowing between the collector and the emitter. -It can be switched off so that no current flows between the emitters.
  • the power receiving unit 20 controls a resonance circuit unit 22A that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23A that converts alternating power (AC power) to DC power, and supply of DC power to a load.
  • a supply control unit 24A and a battery BA as a load to which power is supplied from the supply control unit 24A are provided.
  • the resonance circuit unit 22A includes a secondary coil L2 that outputs an alternating power induced in the alternating magnetic field of the primary coil L1, a capacitor C6 (passive element) connected in parallel to the secondary coil L2, and a secondary coil. It has a series circuit consisting of a capacitor C8 (passive element) and a switch SW1 connected in parallel to the coil L2. Accordingly, the resonance circuit unit 22A is configured as a secondary resonance circuit (LC circuit) including the secondary coil L2 and the capacitor C6 when the switch SW1 is opened, and when the switch SW1 is closed, The secondary side resonance circuit (LC circuit) is configured by parallel connection of the secondary coil L2, the capacitor C6, and the capacitor C8.
  • LC circuit secondary resonance circuit
  • the circuit constant of the resonance circuit (LC circuit) is changed depending on the presence or absence of the capacitor C8, and the secondary coil L2 receives power from the primary coil L1 due to the change of the circuit constant.
  • the amplitude of the alternating power is changed (modulated). That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed.
  • the value of the capacitor C6 is such that when the secondary side resonance circuit (LC circuit) is formed by the secondary coil L2 and the capacitor C6, the secondary coil L2 and the primary coil L1
  • the magnetic coupling property of is set to a value that can be obtained satisfactorily.
  • the value of the capacitor C8 is the magnetic value of the secondary coil L2 and the primary coil L1.
  • the connectivity is set to a value that degrades compared to the resonance circuit composed of the secondary coil L2 and the capacitor C6.
  • the power receiving unit 20 can receive a large amount of power efficiently.
  • the secondary coil L2 is 1 A large amount of power can be received from the secondary coil L1. That is, a large amount of DC power (current) can be supplied to the battery BA.
  • the power receiving unit 20 has a reduced efficiency of receiving power, and the secondary coil L2 can receive power from the primary coil L1. Electric power decreases. That is, the DC power (current) supplied to the battery BA also decreases.
  • a resistor is connected in parallel to the battery BA or the DC power is short-circuited. As compared with, a decrease in the DC power supplied to the battery BA is suppressed.
  • the power receiving unit 20 when the power receiving characteristic of the secondary coil L2 changes, not only the amplitude of the power waveform of the alternating power received by the secondary coil L2 changes, but also the secondary coil L2 becomes magnetic.
  • the amplitude of the power waveform of the alternating power of the primary coil L1 coupled to is also changed. That is, the amplitude of the power waveform (voltage waveform) of the alternating power generated in the primary coil L1 also changes in accordance with the change in the amplitude of the power waveform (voltage waveform) of the alternating power in the secondary coil L2.
  • the amplitude (maximum voltage value) of the voltage waveform of the alternating power generated at the connection point N2 of the power transmission unit 10 changes. Specifically, the amplitude of the voltage waveform generated at the connection point N2 of the power transmission unit 10 is suppressed to a small value when the magnetic coupling between the primary coil L1 and the secondary coil L2 is good, and vice versa. It increases when the magnetic coupling between the primary coil L1 and the secondary coil L2 is degraded.
  • the power (voltage) generated between the terminals of the secondary coil L2 of the resonance circuit unit 22A is supplied to the rectification circuit unit 23A.
  • the rectifier circuit unit 23A includes a rectifier diode D3 connected in series to the resonance circuit unit 22A and a smoothing capacitor C7 that smoothes the power rectified by the rectifier diode D3, and is input from the resonance circuit unit 22A. It is configured as a so-called half-wave rectifier circuit that converts alternating power (AC power) into DC power.
  • the configuration of the rectifier circuit unit 23A is merely an example of a rectifier circuit that converts AC power into DC power, and is not limited to this configuration.
  • a full-wave rectifier circuit using a diode bridge or other You may have the structure of a known rectifier circuit.
  • the supply control unit 24A turns on / off the P-channel MOS transistor FET3 that switches between supply and non-supply of the DC power rectified by the rectification circuit unit 23A to the battery BA and the MOS transistor FET3 according to the state of charge of the battery BA. And a secondary side control device 21 as a modulation control device to be switched.
  • the drain terminal of the MOS transistor FET3 is connected to the positive side of the rectifier circuit unit 23A, the source terminal thereof is connected to the positive side of the battery BA, and the gate terminal thereof is connected to the secondary side control device 21.
  • the secondary-side control device 21 is mainly composed of a microcomputer having a central processing unit (CPU) and a storage device (nonvolatile memory ROM, volatile memory RAM, etc.), and various data stored in the memory. And based on a program, while determining the charge condition of battery BA of the electric power receiving part 20, various control, such as the charge amount control, is performed.
  • a communication signal to the power transmission unit 10 is generated based on the state of charge of the battery BA, and the circuit constant of the resonance circuit is changed based on the generated communication signal to change the secondary coil L2. Control is also performed to modulate the alternating power that is received.
  • the nonvolatile memory ROM also determines the state of charge of the battery BA, generates a threshold value required for charge amount control, generates a communication signal with the power transmission unit 10 described later, Various parameters required for modulation based on the parameters are stored in advance.
  • the secondary-side control device 21 is connected to the positive and negative electrodes of the battery BA, respectively, and receives power for driving from the battery BA.
  • the secondary-side control device 21 receives the battery BA from the voltage across the terminals of the battery BA. It is possible to grasp the state of charge. Further, the secondary side control device 21 performs on / off control of the MOS transistor FET3 by changing the control voltage applied to the gate terminal of the MOS transistor FET3 in accordance with the state of charge of the battery BA. For example, when it is determined that it is preferable to charge the battery BA because the voltage between the terminals of the battery BA is lower than a preset threshold value for determining the state of charge, an on-voltage is applied to the gate terminal of the MOS transistor FET3.
  • the MOS transistor FET3 is turned on so that DC power is supplied from the rectifier circuit unit 23A to the battery BA.
  • a voltage lower than the ON voltage is applied to the gate terminal of the MOS transistor FET3 This is applied to turn off the MOS transistor FET3 so that the DC power from the rectifier circuit unit 23A is not supplied to the battery BA.
  • the secondary side control device 21 is connected to the switch SW1 of the resonance circuit unit 22A.
  • the secondary side control device 21 controls the switching of the switch SW1 to connect / disconnect the capacitor C8 by the switch SW1. Switch the connection. That is, when the secondary side control device 21 controls opening and closing of the switch SW1, the circuit constant of the secondary side resonance circuit (LC circuit) of the resonance circuit unit 22A is changed, and the alternating power received by the secondary coil L2 is changed. The amplitude of the alternating power transmitted by the primary coil L1 is changed by changing the amplitude of the first coil L1.
  • the switching control of the switch SW1 by the secondary-side control device 21 causes the oscillation period (for example, frequency 100) of the primary coil L1 so that interference with the resonance of the secondary-side resonance circuit (LC circuit) does not occur.
  • the communication period is longer than, for example, 10 Hz (100 ms).
  • FIGS. 2A and 2B are graphs showing changes in the voltage amplitude generated in the alternating power according to the power reception characteristics of the power reception unit 20, where FIG. 2A shows a case where the power reception characteristics are good, and FIG. 2B shows that the power reception characteristics are degraded. It shows the case.
  • FIG. 3 is a graph showing a longer time in the same state as FIG. 2, where (a) shows a case where the power reception characteristics are good, and (b) shows a case where the power reception characteristics are deteriorated.
  • Show. 4 is a graph showing a signal reception state by the power transmission unit 10 in a longer time than FIG. 3, wherein (a) is a graph showing a voltage waveform of alternating power of the power transmission unit 10, and (b) is ( The signal calculated
  • the secondary control device 21 of the power receiving unit 20 normally receives power
  • the secondary coil L2 and the primary coil L1 are magnetically coupled so as to receive a large amount of power efficiently.
  • the switch SW1 is opened in order to improve the resistance.
  • the secondary coil L2 receives the alternating power having the maximum voltage of the voltage VL2.
  • the switch SW1 is connected to deteriorate the magnetic coupling between the secondary coil L2 and the primary coil L1 from a good state.
  • the secondary coil L2 receives alternating power having a maximum voltage VH2 higher than the voltage VL2.
  • the secondary side control device 21 changes the power reception characteristics of the secondary coil L2 at a communication cycle longer than the oscillation cycle of the primary coil L1. That is, when the maximum voltage of the alternating power of the secondary coil L2 is set to the voltage VL2 for communication, the secondary-side control device 21 has one cycle for communication as shown in FIG. For example, during the period P1 from time t0 to time t1, the switch SW1 is opened. Further, when the maximum voltage of the alternating power of the secondary coil L2 is set to the voltage VH2 for communication, the secondary-side control device 21 becomes one cycle for communication as shown in FIG. For example, during the period P2 from time t1 to time t2, the switch SW1 is connected.
  • the secondary-side control device 21 can transmit power.
  • the alternating power of the secondary coil L2 can be modulated based on a binary communication signal generated based on a communication rule common between the unit 10 and the power receiving unit 20.
  • the amplitude of the alternating power voltage of the primary coil L ⁇ b> 1 of the power transmission unit 10 depends on the amplitude of the alternating power voltage modulated by the power receiving unit 20 in the communication cycle.
  • the maximum value appears as the voltage VL1 or the voltage VH1.
  • the power receiving unit 20 sets the maximum voltage of the alternating power to the voltage VL2 during the period P1 that is one cycle of the communication cycle, the maximum voltage of the alternating power of the primary coil L1 in the power transmitting unit 10 during the same period P1. Becomes the voltage VL1.
  • the power receiving unit 20 sets the maximum voltage of the alternating power to the voltage VH2 during the period P2, which is one cycle of the communication cycle
  • the primary coil L1 of the power transmitting unit 10 alternates during the synchronization P2.
  • the maximum power voltage becomes a voltage VH1 higher than the voltage VL1.
  • the maximum voltage of the alternating power of the primary coil L1 of the power transmitting unit 10 becomes the voltage VL1, respectively.
  • the maximum voltage of the alternating power of the primary coil L1 of the power transmission unit 10 becomes the voltage VH1.
  • the power transmission part 10 acquires the maximum voltage of the alternating power of the primary coil L1 in the primary side control apparatus 11, and the signal demodulation which sets the acquired maximum voltage between the voltage VL1 and the voltage VH1
  • the voltage VL1 is demodulated as the signal level L and the voltage VH1 as the signal level H as shown in FIG.
  • a communication signal generated based on the communication rule by the power receiving unit 20 is received by the power receiving unit 20 through processing such as reading the demodulated signal at a communication cycle, and the content is transmitted to an internal circuit (not shown).
  • the signal level L is expressed as “0” and the signal level H is expressed as “1”
  • the waveform shown in FIG. 4B is expressed as a signal “010010”.
  • the communication rule common between the electric power transmission part 10 and the electric power receiving part 20 For example, based on the known communication rule using a communication signal of 4 bits, 8 bits, and 16 bits. Can now communicate.
  • the secondary side control device 21 changes the amplitude of the voltage of the alternating power received by the secondary coil L2 in the resonance circuit unit 22A based on the information to be transmitted to the primary coil L1, and the amplitude of the voltage
  • the primary-side control device 11 acquires information transmitted from the secondary-side control device 21 based on the voltage change of the primary coil L1 accompanying the change of.
  • the primary side control device 11 is a secondary battery connected to the secondary side control device 21, It also becomes possible to suitably control the power transmitted to the secondary coil L2 by controlling the driving of the primary coil L1 according to the situation such as the load.
  • the rectification circuit unit 23A performs adjustment such as rectification and smoothing. It is avoided that the DC power converted into a state suitable for supply to the load is consumed in large quantities for information transmission. That is, when transmitting information from the secondary coil L2 to the primary coil L1, as in the past, the characteristics of the secondary coil should be changed by changing the load with respect to the DC power to supply the load to the secondary battery or the like. The consumption of direct current power is suppressed. As a result, the possibility that information transmission may adversely affect the supply of direct-current power to the load, for example, the possibility of stopping the supply of power to the load such as the battery BA or greatly reducing the supply amount, is alleviated.
  • the amplitude of the alternating power received by the secondary coil L2 can be set by the combination of the capacitor C6 and the capacitor C8, the amplitude of the alternating power can be easily changed.
  • FIG. 5 is a diagram illustrating a circuit configuration of the power receiving unit 20 according to the non-contact power feeding device of the second embodiment.
  • the configuration of the resonance circuit unit 22B of the power receiving unit 20 is different from that of the first embodiment, but the other configurations are the same. Therefore, in the second embodiment, differences from the first embodiment will be mainly described, the same reference numerals are given to the same configurations as those in the first embodiment, and for the convenience of description, the detailed description will be given. Omitted.
  • the power receiving unit 20 includes a resonant circuit unit 22B that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23B that converts alternating power (AC power) to DC power, A supply control unit 24B that controls supply to the load and a battery BA as a load to which power is supplied from the supply control unit 24B are provided.
  • the rectifier circuit unit 23B and the supply control unit 24B of the second embodiment have the same configurations as the rectifier circuit unit 23A and the supply control unit 24A of the first embodiment, respectively, and therefore detailed descriptions thereof are omitted. To do.
  • the resonance circuit unit 22B is a series composed of a secondary coil L2 that outputs an alternating power induced by an alternating magnetic field of the primary coil L1, and a capacitor C6 and a switch SW2 connected in parallel to the secondary coil L2. And a series circuit including a capacitor C8 and a switch SW1, which are connected in parallel to the secondary coil L2. Accordingly, the resonance circuit unit 22B is configured as a secondary-side resonance circuit (LC circuit) including the secondary coil L2 and the capacitor C6 when the switch SW1 is opened and the switch SW2 is closed. Further, when the switch SW1 is closed and the switch SW2 is opened, it is configured as a secondary side resonance circuit (LC circuit) composed of the secondary coil L2 and the capacitor C8.
  • LC circuit secondary-side resonance circuit
  • the circuit constant of the resonance circuit (LC circuit) of the resonance circuit unit 22B is changed by the capacitor (capacitor C6 or capacitor C8) connected to the secondary coil L2.
  • the amplitude of the alternating power received by the secondary coil L2 from the primary coil L1 is changed (modulated) by the change. That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed. Further, power (voltage) generated between the terminals of the secondary coil L2 of the resonance circuit unit 22B is supplied to the rectification circuit unit 23B.
  • the value of the capacitor C6 is such that when the secondary coil L2 and the capacitor C6 form a secondary resonance circuit (LC circuit), the secondary coil L2 and the primary coil L1 Is set to a value that provides good magnetic coupling.
  • the value of the capacitor C8 is such that when the secondary resonance circuit (LC circuit) is formed by the secondary coil L2 and the capacitor C8, the magnetic coupling between the secondary coil L2 and the primary coil L1 is high. The value is set so as to deteriorate as compared with the resonance circuit composed of the secondary coil L2 and the capacitor C6.
  • the secondary-side control device 21 is connected to the switches SW1 and SW2 of the resonance circuit unit 22B.
  • the switch SW1 and SW2 are individually controlled to be opened / closed, and the capacitor SW8 is connected / disconnected by the switch SW1.
  • the connection / disconnection of the capacitor C6 by the switch SW2 is switched separately. That is, the secondary-side control device 21 controls the opening / closing of the switches SW1 and SW2, thereby changing the circuit constant of the secondary-side resonance circuit (LC circuit) of the resonance circuit unit 22B.
  • the maximum voltage of the voltage waveform of the alternating power of L2 is changed to a different voltage VL2 or voltage VH2.
  • the amplitude of the alternating power of the primary coil L1 is changed to, for example, the voltage VL1 or the voltage VH1.
  • the switches SW1 and SW2 are controlled to be opened and closed so that at least one of the switches SW1 and SW2 is closed, whereby the circuit constant changes within a predetermined range. So that it is controlled.
  • the switching control of the switch SW1 by the secondary side control device 21 is similar to the first embodiment in that the primary coil is not interfered with the resonance of the secondary side resonance circuit (LC circuit).
  • the communication is performed in a cycle longer than the oscillation cycle of L1, for example, a communication cycle of 10 Hz (100 ms).
  • the secondary-side control device 21 can The alternating power of the secondary coil L2 can be modulated based on the binary communication signal generated based on the communication rule. Then, the power transmission unit 10 demodulates the communication signal by the primary side control device 11 from the modulated maximum voltage of the primary coil L1, and acquires the content of the communication signal generated by the power reception unit 20.
  • the effects equivalent to or equivalent to the effects (1) to (5) of the first embodiment can be obtained, and the effects listed below. Can be obtained.
  • the switches SW1 and SW2 are provided on the capacitor C8 and the capacitor C6 connected in parallel to the load, respectively. Accordingly, the circuit constant of the resonance circuit unit 22B, that is, the power reception characteristic of the secondary coil L2 can be changed based on the capacitor C8 or the capacitor C6.
  • FIG. 6 is a diagram illustrating a circuit configuration of the power receiving unit 20 according to the non-contact power feeding device of the third embodiment.
  • the configuration of the resonance circuit unit 22C of the power receiving unit 20 is different from that of the first embodiment, but the other configurations are the same. Therefore, in the third embodiment, differences from the first embodiment will be mainly described.
  • the same components as those in the first embodiment will be denoted by the same reference numerals, and detailed description will be given for convenience of description. Omitted.
  • the power receiving unit 20 includes a resonant circuit unit 22C that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23C that converts alternating power (AC power) into DC power, and DC power A supply control unit 24C that controls supply to the load and a battery BA as a load to which power is supplied from the supply control unit 24C are provided.
  • the rectifier circuit unit 23C and the supply control unit 24C of the third embodiment have the same configurations as the rectifier circuit unit 23A and the supply control unit 24A of the first embodiment, respectively, and therefore detailed description thereof is omitted. To do.
  • the resonance circuit unit 22C includes a secondary coil L2 that outputs an alternating power induced in the alternating magnetic field of the primary coil L1, and the secondary coil L2 includes a series circuit including a capacitor C6 and a switch SW2.
  • a parallel circuit composed of a series circuit composed of a capacitor C8 and a switch SW1 is connected in series.
  • the resonance circuit unit 22C is configured as a secondary-side resonance circuit (LC circuit) including the secondary coil L2 and the capacitor C6 when the switch SW1 is opened and the switch SW2 is closed. Further, when the switch SW1 is closed and the switch SW2 is opened, it is configured as a secondary side resonance circuit (LC circuit) composed of the secondary coil L2 and the capacitor C8.
  • the circuit constant of the resonance circuit (LC circuit) of the resonance circuit unit 22C is changed by the capacitor (capacitor C6 or capacitor C8) connected to the secondary coil L2.
  • the amplitude of the alternating power received by the secondary coil L2 from the primary coil L1 is changed (modulated) by the change. That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed. Further, power (voltage) generated between the terminals of the LC circuit on the secondary side of the resonance circuit unit 22C is supplied to the rectification circuit unit 23C.
  • the value of the capacitor C6 is determined by the secondary coil L2 and the primary coil L1. Is set to a value that provides good magnetic coupling.
  • the value of the capacitor C8 is such that when the secondary resonance circuit (LC circuit) is formed by the secondary coil L2 and the capacitor C8, the magnetic coupling between the secondary coil L2 and the primary coil L1 is high. The value is set so as to deteriorate as compared with the resonance circuit composed of the secondary coil L2 and the capacitor C6.
  • the secondary-side control device 21 is connected to the switches SW1 and SW2 of the resonance circuit unit 22C, and controls the switching of each switch SW1 and SW2 to connect / disconnect the capacitor C8 by the switch SW1.
  • the connection / disconnection of the capacitor C6 by the switch SW2 is switched separately. That is, the secondary-side control device 21 controls opening / closing of the switches SW1 and SW2, thereby changing the circuit constant of the secondary-side resonance circuit (LC circuit) of the resonance circuit unit 22C, thereby the secondary coil.
  • the maximum voltage of the voltage waveform of the alternating power of L2 is changed to a different voltage VL2 or voltage VH2. Accordingly, the amplitude of the alternating power of the primary coil L1 is changed to, for example, the voltage VL1 or the voltage VH1.
  • the switches SW1 and SW2 are controlled to be closed so that at least one of the switches SW1 and SW2 is closed, whereby the circuit constant changes within a predetermined range. So that it is controlled.
  • the switching control of the switch SW1 by the secondary side control device 21 is similar to the first embodiment in that the primary coil is not interfered with the resonance of the secondary side resonance circuit (LC circuit).
  • the communication is performed in a cycle longer than the oscillation cycle of L1, for example, a communication cycle of 10 Hz (100 ms).
  • the secondary-side control device 21 can The alternating power of the secondary coil L2 can be modulated based on the binary communication signal generated based on the communication rule. Then, the power transmission unit 10 demodulates the communication signal by the primary side control device 11 from the modulated maximum voltage of the primary coil L1, and acquires the content of the communication signal generated by the power reception unit 20.
  • the effects equivalent to or equivalent to the effects (1) to (5) of the first embodiment can be obtained, and the effects listed below. Can be obtained.
  • the switches SW1 and SW2 are provided on the capacitor C8 and the capacitor C6 connected in series with the load, respectively. This also makes it possible to change the circuit constant of the resonance circuit unit 22C, that is, the power reception characteristic of the secondary coil L2, based on the capacitor C8 or the capacitor C6.
  • FIG. 7 is a diagram illustrating a circuit configuration of the power receiving unit 20 according to the contactless power supply device of the fourth embodiment.
  • the configuration of the resonance circuit unit 22D of the power receiving unit 20 is different from that of the first embodiment, but the other configurations are the same. Therefore, in the fourth embodiment, differences from the first embodiment will be mainly described.
  • the same components as those in the first embodiment will be denoted by the same reference numerals, and detailed description will be given for convenience of description. Omitted.
  • the power receiving unit 20 includes a resonant circuit unit 22D that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23D that converts alternating power (AC power) into DC power, and DC power A supply control unit 24D for controlling supply to the load and a battery BA as a load to which power is supplied from the supply control unit 24D are provided.
  • the rectifier circuit unit 23D and the supply control unit 24D of the fourth embodiment have the same configurations as the rectifier circuit unit 23A and the supply control unit 24A of the first embodiment, respectively, and thus detailed description thereof is omitted. To do.
  • the resonance circuit unit 22D includes a secondary coil L2 that outputs an alternating power induced in the alternating magnetic field of the primary coil L1, a capacitor C6 that is connected in series to the secondary coil L2, a secondary coil L2, and a capacitor C6. And a series circuit composed of a capacitor C8 and a switch SW1 connected in parallel to the series circuit constituted by Accordingly, the resonance circuit unit 22D is configured as a secondary-side resonance circuit (LC circuit) including a series connection of the secondary coil L2 and the capacitor C6 when the switch SW1 is opened. Further, when the switch SW1 is closed, it is configured as a secondary side resonance circuit (LC circuit) including a series circuit including the secondary coil L2 and the capacitor C6 and a capacitor C8 connected in parallel to the series circuit.
  • LC circuit secondary-side resonance circuit
  • the circuit constant of the resonance circuit (LC circuit) is changed depending on the presence or absence of the capacitor C8, and the secondary coil L2 receives power from the primary coil L1 due to the change of the circuit constant.
  • the amplitude of the alternating power is changed (modulated). That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed.
  • the rectifier circuit unit 23D is supplied with electric power (voltage) generated between terminals connected in series between the secondary coil L2 and the capacitor C6.
  • the value of the capacitor C6 is such that when the secondary coil L2 and the capacitor C6 form a secondary resonance circuit (LC circuit), the secondary coil L2 and the primary coil L1 Is set to a value that provides good magnetic coupling.
  • the value of the capacitor C8 is the magnetic value of the secondary coil L2 and the primary coil L1.
  • the connectivity is set to a value that degrades compared to the resonance circuit composed of the secondary coil L2 and the capacitor C6.
  • the secondary side control device 21 is connected to the switch SW1 of the resonance circuit unit 22D, and controls the switch SW1 to switch the connection / disconnection of the capacitor C8 by the switch SW1. That is, when the secondary side control device 21 controls opening and closing of the switch SW1, the circuit constant of the secondary side resonance circuit (LC circuit) of the resonance circuit unit 22D is changed, whereby the alternating coil of the secondary coil L2 is changed.
  • the maximum voltage of the voltage waveform of power is changed to a different voltage VL2 or voltage VH2. Accordingly, the amplitude of the alternating power of the primary coil L1 is changed to, for example, the voltage VL1 or the voltage VH1.
  • the switching control of the switch SW1 by the secondary side control device 21 is similar to the first embodiment in that the primary coil is not interfered with the resonance of the secondary side resonance circuit (LC circuit).
  • the communication is performed in a cycle longer than the oscillation cycle of L1, for example, a communication cycle of 10 Hz (100 ms).
  • the secondary-side control device 21 can The alternating power of the secondary coil L2 can be modulated based on the binary communication signal generated based on the communication rule. Then, the power transmission unit 10 demodulates the communication signal by the primary side control device 11 from the modulated maximum voltage of the primary coil L1, and acquires the content of the communication signal generated by the power reception unit 20.
  • FIG. 8 is a diagram illustrating a circuit configuration of the power receiving unit 20 according to the contactless power supply device of the fifth embodiment.
  • the configuration of the resonance circuit unit 22E of the power receiving unit 20 is different from that of the first embodiment, but the other configurations are the same. Therefore, in the fifth embodiment, differences from the first embodiment will be mainly described.
  • the same components as those in the first embodiment will be denoted by the same reference numerals, and detailed description will be given for convenience of description. Omitted.
  • the power receiving unit 20 includes a resonant circuit unit 22E that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23E that converts alternating power (AC power) into DC power, A supply control unit 24E that controls supply to a load and a battery BA as a load to which electric power is supplied from the supply control unit 24E are provided.
  • the rectifier circuit unit 23E and the supply control unit 24E of the fifth embodiment have the same configurations as the rectifier circuit unit 23A and the supply control unit 24A of the first embodiment, respectively, and thus detailed description thereof is omitted. To do.
  • the resonance circuit unit 22E includes a secondary coil L2 that outputs an alternating power induced in the alternating magnetic field of the primary coil L1, and a coil L4 as an inductor and a switch SW3 that are connected in series to the secondary coil L2. And a capacitor C6 connected in parallel to a series circuit constituted by the parallel circuit and the secondary coil L2.
  • the resonance circuit unit 22E has a secondary side resonance circuit including a series circuit of the secondary coil L2 and the coil L4 and a capacitor C6 connected in parallel to the series circuit. (LC circuit).
  • the switch SW3 when the switch SW3 is closed, it is configured as a secondary resonance circuit (LC circuit) composed of a parallel circuit of the secondary coil L2 and the capacitor C6.
  • the circuit constant of the resonance circuit (LC circuit) is changed depending on the presence or absence of the coil L4, and the secondary coil L2 receives power from the primary coil L1 due to the change of the circuit constant.
  • the amplitude of the alternating power is changed (modulated). That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed. Further, power (voltage) generated between the terminals of the capacitor C6 of the resonance circuit unit 22E is supplied to the rectification circuit unit 23E.
  • the value of the capacitor C6 is such that when the secondary side resonance circuit (LC circuit) is formed by the secondary coil L2 and the capacitor C6, the secondary coil L2 and the primary coil L1 Is set to a value that provides good magnetic coupling.
  • the value of the coil L4 is such that when a secondary side resonance circuit (LC circuit) is formed by a series circuit of the secondary coil L2 and the coil L4 and a capacitor C6 connected in parallel to the series circuit, The magnetic coupling between the secondary coil L2 and the primary coil L1 is set to a value that deteriorates as compared with the resonance circuit including the secondary coil L2 and the capacitor C6.
  • the secondary-side control device 21 is connected to the switch SW3 of the resonance circuit unit 22E, and controls the switching of the switch SW3 to switch the connection / disconnection of the coil L4 by the switch SW3. That is, when the secondary side control device 21 controls opening / closing of the switch SW3, the circuit constant of the secondary side resonance circuit (LC circuit) of the resonance circuit unit 22E is changed, and thereby the secondary coil L2 is alternated.
  • the maximum voltage of the voltage waveform of power is changed to a different voltage VL2 or voltage VH2. Accordingly, the amplitude of the alternating power of the primary coil L1 is changed to, for example, the voltage VL1 or the voltage VH1.
  • the switching control of the switch SW3 by the secondary side control device 21 is similar to the first embodiment in that the primary coil is not interfered with the resonance of the secondary side resonance circuit (LC circuit).
  • the communication is performed in a cycle longer than the oscillation cycle of L1, for example, a communication cycle of 10 Hz (100 ms).
  • the secondary-side control device 21 can The alternating power of the secondary coil L2 can be modulated based on the binary communication signal generated based on the communication rule. Then, the power transmission unit 10 demodulates the communication signal by the primary side control device 11 from the modulated maximum voltage of the primary coil L1, and acquires the content of the communication signal generated by the power reception unit 20.
  • effects equivalent to or equivalent to the effects (1) to (4) of the first embodiment can be obtained, and the effects listed below. Can be obtained.
  • the circuit constant of the resonance circuit unit 22E based on the secondary coil L2 and the capacitor C6, that is, the amplitude of the alternating power received by the secondary coil L2, is represented by the coil L4 by the switch SW3 connected in series to the secondary coil L2. It can be changed by connecting / disconnecting. As a result, the change in the amplitude of the alternating power received by the secondary coil L2 can be easily performed with a small number of switches SW3.
  • FIG. 9 is a diagram illustrating a circuit configuration of the power receiving unit 20 according to the contactless power supply device of the sixth embodiment.
  • the configuration of the resonance circuit unit 22F of the power receiving unit 20 is different from that of the first embodiment, but the other configurations are the same. Therefore, in the sixth embodiment, differences from the first embodiment will be mainly described, the same components as those in the first embodiment will be denoted by the same reference numerals, and the detailed description will be given for convenience of description. Omitted.
  • the power receiving unit 20 includes a resonant circuit unit 22F that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23F that converts alternating power (AC power) to DC power, and DC power A supply control unit 24F that controls supply to the load and a battery BA as a load to which power is supplied from the supply control unit 24F are provided.
  • the rectifier circuit unit 23F and the supply control unit 24F of the sixth embodiment have the same configurations as the rectifier circuit unit 23A and the supply control unit 24A of the first embodiment, respectively, and thus detailed description thereof is omitted. To do.
  • the resonant circuit unit 22F includes a secondary coil L2 that outputs an alternating power induced in the alternating magnetic field of the primary coil L1, a resistor R8 as a resistance element, and a switch SW4 that are connected in series to the secondary coil L2. And a capacitor C6 connected in parallel to a series circuit of the parallel circuit and the secondary coil L2.
  • the resonance circuit unit 22F has a secondary resonance circuit including a series circuit of the secondary coil L2 and the resistor R8 and a capacitor C6 connected in parallel to the series circuit. (RLC circuit).
  • the switch SW4 when the switch SW4 is closed, it is configured as a secondary resonance circuit (LC circuit) composed of a parallel circuit of the secondary coil L2 and the capacitor C6.
  • the circuit constant of the resonance circuit (RLC circuit or LC circuit) is changed depending on the presence or absence of the resistor R8, and the secondary coil L2 is changed to the primary coil by the change of the circuit constant.
  • the amplitude of the alternating power received from L1 is changed (modulated). That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed. Further, power (voltage) generated between the terminals of the capacitor C6 of the resonance circuit unit 22F is supplied to the rectification circuit unit 23F.
  • the value of the capacitor C6 is determined by the secondary coil L2 and the primary coil L1. Is set to a value that provides good magnetic coupling.
  • the value of the resistor R8 is such that when a secondary resonance circuit (RLC circuit) is formed by a series circuit of the secondary coil L2 and the resistor R8 and a capacitor C6 connected in parallel to the series circuit, The magnetic coupling between the secondary coil L2 and the primary coil L1 is set to a value that deteriorates as compared with the resonance circuit including the secondary coil L2 and the capacitor C6.
  • the secondary-side control device 21 is connected to the switch SW4 of the resonance circuit unit 22F, and controls the switching of the switch SW4 to switch connection / disconnection of the resistor R8 by the switch SW4. That is, the secondary-side control device 21 controls opening / closing of the switch SW4, whereby the circuit constant of the secondary-side resonance circuit of the resonance circuit unit 22F is changed, whereby the voltage waveform of the alternating power of the secondary coil L2 is changed. Is changed to a different voltage VL2 or VH2. Accordingly, the amplitude of the alternating power of the primary coil L1 changes to, for example, the voltage VL1 or the voltage VH1.
  • the switching control of the switch SW4 by the secondary-side control device 21 is similar to the first embodiment, so that interference with the resonance of the secondary-side resonance circuit (RLC circuit and LC circuit) does not occur.
  • the communication is performed at a cycle longer than the oscillation cycle of the primary coil L1, for example, a communication cycle of 10 Hz (100 ms).
  • the secondary-side control device 21 can The alternating power of the secondary coil can be modulated based on the binary communication signal generated based on the communication rule. Then, the power transmission unit 10 demodulates the communication signal by the primary side control device 11 from the modulated maximum voltage of the primary coil L1, and acquires the content of the communication signal generated by the power reception unit 20.
  • effects equivalent to or equivalent to the effects (1) to (4) of the first embodiment can be obtained, and the effects listed below. Can be obtained.
  • the circuit constant of the resonance circuit unit 22F based on the secondary coil L2 and the capacitor C6, that is, the amplitude of the alternating power received by the secondary coil L2, is a resistance R8 by a switch SW4 connected in series to the secondary coil L2. It can be changed by connecting / disconnecting. As a result, it is possible to easily change the amplitude of the alternating power received by the secondary coil L2 with a small number of switches SW4.
  • each said embodiment can also be changed as follows, for example.
  • the power transmission unit 10 may detect a change that occurs in the amplitude of the alternating power of the primary coil L1 according to a change in the amplitude of the received power in the secondary coil L2 by another method.
  • the power transmission unit 10 may detect a change in the amplitude based on the average voltage of the alternating power in the primary coil L1.
  • the communication signal from the power receiving unit 20 can be demodulated regardless of the alternating power modulation method. Thereby, the freedom degree of the structure of the electric power transmission part 10 comes to be raised.
  • the present invention is not limited to this, and any passive element can be used for the resonance circuit unit as long as the circuit constant of the resonance circuit unit can be changed.
  • the coil L4 in FIG. 8 or the resistor R8 in FIG. 9 may be changed to a capacitor.
  • one of the two capacitors of the resonance circuit unit may be changed to a resistance element or a coil (inductor).
  • one of the two capacitors of the resonant capacitor may be a resistance element and the other may be an inductor such as a coil.
  • the two capacitors of the resonance circuit unit may both be a resistance element or a coil (inductor).
  • the circuit configuration of the resonance circuit unit can be simplified because the passive elements are composed only of inductance.
  • the passive elements are composed only of the resistance elements, so that the circuit configuration of the resonance circuit unit can be simplified.
  • the resonance circuit units 22A to 22F change their circuit constants by the secondary coil L2 and one or two other passive elements (capacitor C6, capacitor C8, coil L4, resistor R8, etc.).
  • capacitor C6, capacitor C8, coil L4, resistor R8, etc. The case was illustrated.
  • the present invention is not limited to this, and the circuit constant of the resonance circuit unit may be changed in cooperation with three or more passive elements in addition to the secondary coil L2.
  • the power receiving unit 20 is used for a portable device or the like.
  • the present invention is not limited to this, and the power receiving unit 20 may be used for a mobile body such as an electric vehicle in which non-contact power supply is desired. Thereby, the freedom degree of application of such a non-contact electric power feeder is raised.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a non-contact power-feed device that has: a primary coil (L1) that generates an alternating magnetic flux; and a secondary coil (L2) that receives, from the primary coil (L1), alternating power corresponding to the alternating magnetic flux, without contact, at a location that intersects the alternating magnetic flux generated by the primary coil (L1). The secondary coil (L2) is provided in a resonant circuit section (22A) that is configured so as to have a changeable circuit constant. A modulation control device (21) changes the circuit constant of the resonant circuit section (22A) on the basis of information to be conveyed by the primary coil (L1), thereby modulating the amplitude of the alternating power received by the secondary coil (L2). Based on the changes in the amplitude of the alternating power in the secondary coil (L2), a demodulation control device (11) demodulates the information conveyed by the primary coil (L1) from the changes in the amplitude of the alternating power generated by the primary coil (L1).

Description

非接触給電装置Non-contact power feeding device
 本発明は、電磁誘導を利用して、機器間の電力伝送を非接触にて行う非接触給電装置に関するものである。 The present invention relates to a non-contact power feeding apparatus that performs electromagnetic transmission between devices in a non-contact manner using electromagnetic induction.
 このような非接触給電装置は、携帯電話やデジタルカメラ等の携帯機器に内蔵される二次電池(バッテリ)を非接触で充電することのできる装置として、近年広く知られている。このような非接触給電装置では、携帯機器及びこの携帯機器に対応する充電器には、充電のための電力を授受するコイルがそれぞれ備えられており、それら両コイル間での電磁誘導により充電器から携帯機器に伝送された交流電力が携帯機器にて直流電力に変換されることで、携帯機器の電源である二次電池への充電が行なわれるようになっている。ただし、このような非接触充電によって充電器と携帯機器とを電気的に接続するための接続端子が省略可能とはなるものの、充電器による二次電池の充電状態の把握は容易ではなく、その充電量の管理も難しい。 Such a contactless power supply device has been widely known in recent years as a device that can charge a secondary battery (battery) built in a portable device such as a mobile phone or a digital camera in a contactless manner. In such a non-contact power supply device, the portable device and the charger corresponding to the portable device are each provided with a coil for transferring power for charging, and the charger is provided by electromagnetic induction between the two coils. The AC power transmitted from the mobile device to the mobile device is converted into DC power by the mobile device, so that the secondary battery as the power source of the mobile device is charged. However, although the connection terminal for electrically connecting the charger and the portable device can be omitted by such non-contact charging, it is not easy to grasp the charging state of the secondary battery by the charger. Managing the amount of charge is also difficult.
 そこで従来は、二次電池の充電状態を携帯機器側にて調整する技術なども提案されており、その一例が特許文献1に記載されている。すなわち特許文献1に記載の非接触給電装置では、携帯機器側のコイルに巻き線数の異なるタップを2つ設けてそれらタップから各異なる電力を取り出すことができるようにし、携帯機器では、二次電池を充電する際に、当該電池の充電状態に応じたそれらタップの選択によって、その都度の充電に適した電力を取り出すことができるようにしている。これにより、携帯機器側にて二次電池の充電量を調整することができるようにはなるが、携帯機器によるこうした充電調整に関わらず、充電器側ではそのコイルに一定の電力を供給し続けることともなり、電力に無駄を生じてしまうという課題が生じることにもなっている。 Therefore, conventionally, a technique for adjusting the state of charge of the secondary battery on the mobile device side has been proposed, and an example thereof is described in Patent Document 1. That is, in the non-contact power supply device described in Patent Document 1, two taps with different numbers of windings are provided in the coil on the portable device side so that different electric power can be extracted from the taps. When a battery is charged, the power suitable for each charge can be taken out by selecting those taps according to the state of charge of the battery. As a result, the charge amount of the secondary battery can be adjusted on the portable device side, but the charger side continues to supply constant power to the coil regardless of such charge adjustment by the portable device. In addition, there is a problem that power is wasted.
 このようなことから、従来はさらに、充電器側にて二次電池の充電状態を把握しつつ、携帯機器に供給する電力そのものを調整するようにした技術なども提案されており、その一例が特許文献2や特許文献3に記載されている。まず、特許文献2に記載の非接触給電装置は、1次コイルを発振制御する充電器の電源部と、この発振される1次コイルからの電力が供給される2次コイルとともにこれに並列接続された二次電池(蓄電池)を有する携帯機器の負荷部とを備えている。また、上記2次コイルには、その出力負荷を変更するための負荷制御手段が並列に接続されている。そして、この負荷制御手段が2次コイルの並列回路の開放と短絡とを二次電池の充電状態に応じて切り換えることによって2次コイルに対する電力供給特性、すなわち二次コイルの受電特性を変化させるようにしている。また、特許文献3に記載の非接触給電装置は、負荷に電力を供給する携帯機器の2次コイルの出力に並列に所定の抵抗値からなる抵抗を接続/非接続可能に制御する信号伝送用負荷回路を有している。そして、上記抵抗の接続/非接続により出力負荷を変動させて2次コイルの受電特性を変化させるようにしている。これらいずれの場合においても、二次電池の充電状態に応じた携帯機器の2次コイルの受電特性の変化が、当該2次コイルに電磁的に結合されている充電器の1次コイルの出力電圧の変化を引き起こし、この1次コイルの出力電圧の変化を通じて、充電器が1次コイルに供給する電力を制御することができるようになる。 For this reason, there has been proposed a technique that adjusts the power itself supplied to the portable device while grasping the charging state of the secondary battery on the charger side. It is described in Patent Document 2 and Patent Document 3. First, the non-contact power feeding device described in Patent Document 2 is connected in parallel to a power supply unit of a charger that controls oscillation of a primary coil, and a secondary coil that is supplied with power from the oscillated primary coil. And a load unit of a portable device having a secondary battery (storage battery). The secondary coil is connected in parallel with load control means for changing its output load. Then, this load control means changes the power supply characteristic for the secondary coil, that is, the power reception characteristic of the secondary coil, by switching between opening and shorting of the parallel circuit of the secondary coil according to the state of charge of the secondary battery. I have to. Further, the non-contact power supply device described in Patent Document 3 is for signal transmission that controls connection / disconnection of a resistor having a predetermined resistance value in parallel with an output of a secondary coil of a portable device that supplies power to a load. It has a load circuit. The output load is varied by connecting / disconnecting the resistor to change the power receiving characteristic of the secondary coil. In any of these cases, the change in the power reception characteristics of the secondary coil of the portable device according to the state of charge of the secondary battery is the output voltage of the primary coil of the charger that is electromagnetically coupled to the secondary coil. The power supplied to the primary coil by the charger can be controlled through the change in the output voltage of the primary coil.
特開平11-89103号公報Japanese Patent Laid-Open No. 11-89103 特許3247199号公報Japanese Patent No. 3247199 特開平11-341711号公報Japanese Patent Laid-Open No. 11-341711
 このように、充電器が携帯機器側での受電特性の変更、いわば携帯機器側からの情報に基づいて携帯機器に供給する電力を調整することで、対応する携帯機器に不要な電力を供給することにより生じる電力の無駄などを減少させることができるようになる。しかし、情報伝達のために2次コイルの出力を短絡させたり、同2次コイルの出力に上記抵抗を並列に接続したりすると、2次コイルの出力電力が不要に消費されるとともに、同出力電力の供給を受ける二次電池などの負荷においても電力供給が停止されたり、減らされたりする等の不都合も避けられない。 In this way, the charger supplies unnecessary power to the corresponding portable device by adjusting the power supplied to the portable device based on the change of the power reception characteristic on the portable device side, that is, the information from the portable device side. This makes it possible to reduce the waste of electric power generated by this. However, if the output of the secondary coil is short-circuited for information transmission, or if the resistor is connected in parallel to the output of the secondary coil, the output power of the secondary coil is unnecessarily consumed and the same output Even in a load such as a secondary battery that receives power supply, inconveniences such as power supply being stopped or reduced are inevitable.
 本発明は、このような実情に鑑みてなされたものであり、その目的は、1次コイルから2次コイルへ電力を非接触で供給する場合に、その電力供給に用いられる回路を共用しつつ、より少ない消費電力で2次コイルから1次コイルへの情報伝達を行なうことのできる非接触給電装置を提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to share a circuit used for power supply when supplying power from a primary coil to a secondary coil in a contactless manner. Another object of the present invention is to provide a non-contact power feeding apparatus capable of transmitting information from a secondary coil to a primary coil with less power consumption.
 本発明の第1の態様は、非接触給電装置である。当該装置は、交番磁束を発生する1次コイルと、前記1次コイルに発生した交番磁束と交差する位置で、前記交番磁束に対応する交番電力を前記1次コイルから非接触で受電する2次コイルを含み、回路定数が変更可能に構成された共振回路部と、前記1次コイルに伝達すべき情報に基づいて前記共振回路部の回路定数を変更することにより前記2次コイルに受電される交番電力の振幅を変調する変調制御装置と、前記2次コイルでの交番電力の振幅の変化に応じて前記1次コイルに生じた交番電力の振幅の変化から、前記1次コイルに伝達された情報を復調する復調制御装置とを備える。 The first aspect of the present invention is a non-contact power feeding device. The apparatus receives a primary coil that generates an alternating magnetic flux, and a secondary that receives the alternating power corresponding to the alternating magnetic flux from the primary coil in a non-contact manner at a position that intersects the alternating magnetic flux generated in the primary coil. A resonance circuit unit including a coil and configured to be able to change a circuit constant, and the secondary coil receives power by changing the circuit constant of the resonance circuit unit based on information to be transmitted to the primary coil. A modulation control device that modulates the amplitude of the alternating power, and a change in the amplitude of the alternating power generated in the primary coil in response to a change in the amplitude of the alternating power in the secondary coil. A demodulation control device for demodulating information.
 このような構成によれば、変調制御装置は、共振回路部の回路定数を変更することにより、2次コイルに受電される交番電力の電圧の振幅を1次コイルに伝達したい情報に基づいて変化させる。復調制御装置は、この2次コイルでの電圧の振幅の変化により生じる1次コイルでの電圧の振幅の変化に基づいて、変調制御装置から伝達された所定の情報を取得する。これにより変調制御装置からの情報が復調制御装置に伝達される。例えば、1次コイル及び復調制御装置が充電器等の第1機器に備えられ、2次コイル、共振回路部、及び変調制御装置が二次電池や負荷を含む携帯機器等の第2機器に備えられる場合、復調制御装置は変調制御装置に接続された二次電池や負荷などの状況に応じて1次コイルの駆動を制御して2次コイルに伝達させる電力を好適に制御することができるようになる。 According to such a configuration, the modulation control device changes the circuit constant of the resonance circuit unit based on information desired to transmit the amplitude of the alternating power voltage received by the secondary coil to the primary coil. Let The demodulation control device acquires predetermined information transmitted from the modulation control device based on the change in the voltage amplitude at the primary coil caused by the change in the voltage amplitude at the secondary coil. As a result, information from the modulation control device is transmitted to the demodulation control device. For example, a primary coil and a demodulation control device are provided in a first device such as a charger, and a secondary coil, a resonance circuit unit, and a modulation control device are provided in a second device such as a portable device including a secondary battery and a load. In such a case, the demodulation control device can suitably control the power transmitted to the secondary coil by controlling the drive of the primary coil according to the situation of the secondary battery or load connected to the modulation control device. become.
 また、2次コイルを含む共振回路部の回路定数を変更することから、2次コイルでの受電後、整流や平滑化などの調整を経て負荷への供給に適する状態に変換された直流電力が情報伝達のために大量に消費されることが避けられる。すなわち、2次コイルから1次コイルへの情報伝達の際、従来のように、2次コイルの特性を直流電力に対する負荷変動により変化させることにより、二次電池などの負荷に供給すべき直流電力が消費されることが抑制される。これにより、情報伝達が負荷への直流電力の供給に悪影響を及ぼすおそれ、例えば負荷への電力供給の停止や供給量の大幅な減少などのおそれが軽減されるようになる。 In addition, since the circuit constant of the resonant circuit unit including the secondary coil is changed, the DC power converted into a state suitable for supply to the load after receiving power at the secondary coil through adjustment such as rectification and smoothing is obtained. It is avoided that a large amount is consumed for information transmission. That is, when transmitting information from the secondary coil to the primary coil, the DC power to be supplied to the load such as the secondary battery is changed by changing the characteristics of the secondary coil due to the load fluctuation with respect to the DC power as in the past. Is suppressed from being consumed. As a result, there is a possibility that information transmission may adversely affect the supply of DC power to the load, for example, the risk of stopping the power supply to the load or significantly reducing the supply amount.
 さらに、2次コイルを含む共振回路部の回路定数を変化させるので、2次コイルに付与する受電特性の調整や変更等が行ないやすくもなる。これにより、共振回路部の受電特性の設計や調整が容易になり、このような共振回路部を有する非接触給電装置の実施や採用の可能性も向上するようになる。 Furthermore, since the circuit constant of the resonance circuit unit including the secondary coil is changed, it becomes easy to adjust or change the power receiving characteristics applied to the secondary coil. This facilitates the design and adjustment of the power reception characteristics of the resonance circuit unit, and also improves the possibility of implementing and adopting the non-contact power feeding device having such a resonance circuit unit.
 本発明の第2の態様は、1次コイルを含む電力送電部から電力を非接触で受信する電力受電部である。電力受電部は、前記1次コイルに発生した交番磁束と交差する位置で、前記交番磁束に対応する交番電力を前記1次コイルから非接触で受電する2次コイルを含み、回路定数が変更可能に構成された共振回路部と、前記1次コイルに伝達すべき情報に基づいて前記共振回路部の回路定数を変更することにより前記2次コイルに受電される交番電力の振幅を変調する変調制御装置とを備える。この構成によれば、上記した第1の態様の非接触給電装置に適した電力受電部を提供することができる。 A second aspect of the present invention is a power receiving unit that receives power from a power transmission unit including a primary coil in a contactless manner. The power receiving unit includes a secondary coil that receives the alternating power corresponding to the alternating magnetic flux from the primary coil in a non-contact manner at a position that intersects the alternating magnetic flux generated in the primary coil, and the circuit constant can be changed. And modulation control for modulating the amplitude of the alternating power received by the secondary coil by changing the circuit constant of the resonant circuit unit based on information to be transmitted to the primary coil. Device. According to this structure, the electric power receiving part suitable for the non-contact electric power feeder of an above-mentioned 1st aspect can be provided.
本発明に係る非接触給電装置を具体化した第1の実施形態について、その回路構成を概略的に示す回路図。1 is a circuit diagram schematically showing a circuit configuration of a first embodiment that embodies a contactless power feeding device according to the present invention. 同実施形態の電力受電部の交番電力の電圧変化を示すグラフであって、(a)は受電特性が最適な場合を示し、(b)は受電特性が最適ではない場合を示す。It is a graph which shows the voltage change of the alternating power of the electric power receiving part of the embodiment, Comprising: (a) shows the case where a power receiving characteristic is optimal, (b) shows the case where a power receiving characteristic is not optimal. 図2と同様の状態を同図よりも長い期間示すグラフであって、(a)は受電特性が最適な場合を示し、(b)は受電特性が最適ではない場合を示す。FIG. 3 is a graph showing a state similar to FIG. 2 for a longer period than that of FIG. 2, where (a) shows a case where the power reception characteristics are optimum, and (b) shows a case where the power reception characteristics are not optimum. 同実施形態の電力送電部による信号の受信状態を示すグラフであって、(a)は交番電力の電圧変化を示すグラフ、(b)は(a)の電圧変化に基づき復調される信号を示す図。It is a graph which shows the reception state of the signal by the electric power transmission part of the embodiment, (a) is a graph which shows the voltage change of alternating power, (b) shows the signal demodulated based on the voltage change of (a). Figure. 本発明に係る非接触給電装置を具体化した第2の実施形態について、その電力受電部の回路構成を概略的に示す回路図。The circuit diagram which shows schematically the circuit structure of the electric power receiving part about 2nd Embodiment which actualized the non-contact electric power feeder which concerns on this invention. 本発明に係る非接触給電装置を具体化した第3の実施形態について、その電力受電部の回路構成を概略的に示す回路図。The circuit diagram which shows roughly the circuit structure of the electric power receiving part about 3rd Embodiment which actualized the non-contact electric power feeder which concerns on this invention. 本発明に係る非接触給電装置を具体化した第4の実施形態について、その電力受電部の回路構成を概略的に示す回路図。The circuit diagram which shows roughly the circuit structure of the electric power receiving part about 4th Embodiment which actualized the non-contact electric power feeder which concerns on this invention. 本発明に係る非接触給電装置を具体化した第5の実施形態について、その電力受電部の回路構成を概略的に示す回路図。The circuit diagram which shows roughly the circuit structure of the electric power receiving part about 5th Embodiment which actualized the non-contact electric power feeder which concerns on this invention. 本発明に係る非接触給電装置を具体化した第6の実施形態について、その電力受電部の回路構成を概略的に示す回路図。The circuit diagram which shows schematically the circuit structure of the electric power receiving part about 6th Embodiment which actualized the non-contact electric power feeder which concerns on this invention.
 (第1の実施形態)
 以下、本発明に係る非接触給電装置を具体化した第1の実施形態について図に従って説明する。図1は、第1の実施形態の非接触給電装置についてその電気回路の概略構成を示した図である。
(First embodiment)
Hereinafter, a first embodiment embodying a non-contact power feeding device according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a schematic configuration of an electric circuit of the contactless power supply device according to the first embodiment.
 図1に示すように、非接触給電装置は、大きく分けて、電力送電部10と電力受電部20とを備えている。まず、電力送電部10について説明する。
 電力送電部10は、1次コイルL1を有し、該1次コイルL1に共振用コンデンサC4が並列に接続されて1次側のLC回路を構成している。1次側のLC回路と、ダイオードD2と抵抗R5の並列回路と、スイッチング素子としてのNチャネルMOSトランジスタFET1と、抵抗R7とは直列に接続されて直列回路を構成しており、この直列回路が直流電源Eに並列に接続されている。なお、抵抗R7には、抵抗R6とコンデンサC5との直列接続よりなるRC回路が並列に接続されている。
As shown in FIG. 1, the non-contact power supply apparatus is roughly divided into a power transmission unit 10 and a power reception unit 20. First, the power transmission unit 10 will be described.
The power transmission unit 10 includes a primary coil L1, and a resonance capacitor C4 is connected in parallel to the primary coil L1 to form a primary LC circuit. An LC circuit on the primary side, a parallel circuit of a diode D2 and a resistor R5, an N-channel MOS transistor FET1 as a switching element, and a resistor R7 are connected in series to form a series circuit. The DC power supply E is connected in parallel. Note that an RC circuit including a series connection of a resistor R6 and a capacitor C5 is connected in parallel to the resistor R7.
 また、直流電源Eには、コンデンサC1が並列に接続されるとともに、起動抵抗R1とコンデンサC2とから構成される直列回路も並列に接続されている。起動抵抗R1とコンデンサC2との接続点N1には、1次コイルL1とともに発振トランスを構成する帰還コイルL3と、抵抗R3とから構成される直列回路を介してMOSトランジスタFET1のゲート端子が接続されている。 In addition, a capacitor C1 is connected in parallel to the DC power source E, and a series circuit including a starting resistor R1 and a capacitor C2 is also connected in parallel. The node N1 between the starting resistor R1 and the capacitor C2 is connected to the gate terminal of the MOS transistor FET1 through a series circuit including a feedback coil L3 that constitutes an oscillation transformer together with the primary coil L1 and a resistor R3. ing.
 さらに、電力送電部10は、NPNトランジスタよりなるバイアス制御用トランジスタTR2を有し、そのコレクタ端子がMOSトランジスタFET1のゲート端子に接続され、エミッタ端子が直流電源Eのマイナス端子(グランド)に接続されている。また、バイアス制御用トランジスタTR2のベース端子がRC回路を構成する抵抗R6とコンデンサC5との接続点N3に接続されている。 The power transmission unit 10 further includes a bias control transistor TR2 made of an NPN transistor, the collector terminal of which is connected to the gate terminal of the MOS transistor FET1, and the emitter terminal of which is connected to the negative terminal (ground) of the DC power supply E. ing. The base terminal of the bias control transistor TR2 is connected to a connection point N3 between the resistor R6 and the capacitor C5 constituting the RC circuit.
 このように構成された電力送電部10は、1石の自励式電圧共振型のインバータ回路、いわゆる電圧共振回路となっており、この電圧共振回路の発振動作により1次コイルL1から一定周波数の交番磁束が発生される。そこで、この発振動作について以下に簡単に説明する。 The power transmission unit 10 configured as described above is a self-excited voltage resonance type inverter circuit of one stone, that is, a so-called voltage resonance circuit. By the oscillation operation of this voltage resonance circuit, an alternating current having a constant frequency is generated from the primary coil L1. Magnetic flux is generated. This oscillation operation will be briefly described below.
 電力送電部10は、直流電源Eから電源電圧、例えば電圧5Vが供給されることで、起動抵抗R1、帰還コイルL3、抵抗R3を介して、MOSトランジスタFET1のゲート端子に電圧が印加される。MOSトランジスタFET1のゲート端子に印加された電圧が、同MOSトランジスタFET1のドレイン・ソース間に電流が流れるようになるオン電圧まで上昇されると同MOSトランジスタFET1がオンされてドレイン・ソース間に電流が流れる。これにより1次コイルL1に電流が流れて磁束が発生し、同磁束を受ける帰還コイルL3にはMOSトランジスタFET1のオン電圧を維持させる電圧が発生してMOSトランジスタFET1のゲート電圧がオン電圧に維持され、同MOSトランジスタFET1のオン状態が維持される。 When the power transmission unit 10 is supplied with a power supply voltage, for example, a voltage of 5 V, from the DC power supply E, a voltage is applied to the gate terminal of the MOS transistor FET1 via the starting resistor R1, the feedback coil L3, and the resistor R3. When the voltage applied to the gate terminal of the MOS transistor FET1 is increased to an ON voltage at which current flows between the drain and source of the MOS transistor FET1, the MOS transistor FET1 is turned on and current flows between the drain and source. Flows. As a result, a current flows through the primary coil L1, and a magnetic flux is generated. A voltage that maintains the ON voltage of the MOS transistor FET1 is generated in the feedback coil L3 that receives the magnetic flux, and the gate voltage of the MOS transistor FET1 is maintained at the ON voltage. Then, the ON state of the MOS transistor FET1 is maintained.
 MOSトランジスタFET1のオンによりドレイン・ソース間に電流が流れると、抵抗R7に発生する電圧が抵抗R6とコンデンサC5とからなるRC回路に印加され、当該RC回路は、そのコンデンサC5の充電に伴ってコンデンサC5の端子間電圧を上昇させる。この端子間電圧の上昇により、RC回路の抵抗R6とコンデンサC5との間の接続点N3の電圧が上昇されて、同接続点N3に接続されているバイアス制御用トランジスタTR2のベース端子の電圧が上昇される。バイアス制御用トランジスタTR2は、そのベース端子の電圧が上昇してコレクタ・エミッタ間に電流が流れるオン状態にされると、コレクタ・エミッタ間に電流が流れるようになり、コレクタ・エミッタ間の電位差を低下させて略「0」にする。これにより、バイアス制御用トランジスタTR2のコレクタ端子の電圧が直流電源Eのマイナス端子(グランド)のレベルに低下されて、同コレクタ端子に接続されるMOSトランジスタFET1のゲート端子の電圧もグランドのレベルとなり、同MOSトランジスタFET1はドレイン・ソース間に電流を流さないオフの状態とされるようになる。 When a current flows between the drain and source when the MOS transistor FET1 is turned on, a voltage generated in the resistor R7 is applied to an RC circuit including the resistor R6 and the capacitor C5, and the RC circuit is charged with the charging of the capacitor C5. The voltage between terminals of the capacitor C5 is increased. Due to the increase in the voltage between the terminals, the voltage at the connection point N3 between the resistor R6 and the capacitor C5 of the RC circuit is increased, and the voltage at the base terminal of the bias control transistor TR2 connected to the connection point N3 is increased. Be raised. When the voltage at the base terminal of the bias control transistor TR2 rises and the current flows between the collector and the emitter, the current flows between the collector and the emitter, and the potential difference between the collector and the emitter is reduced. Decrease to approximately “0”. As a result, the voltage at the collector terminal of the bias control transistor TR2 is lowered to the level of the minus terminal (ground) of the DC power supply E, and the voltage at the gate terminal of the MOS transistor FET1 connected to the collector terminal also becomes the ground level. The MOS transistor FET1 is turned off so that no current flows between the drain and the source.
 MOSトランジスタFET1がオフされると、1次コイルL1の発生する磁束が減少するため、帰還コイルL3の電圧方向が変化してオフを維持させる電圧が生じるとともに、当該電圧がゲート端子に印加されてMOSトランジスタFET1のオフが維持される。また同MOSトランジスタFET1がオフされると、1次コイルL1に流れていた電流が共振用コンデンサC4に流れ、1次コイルL1と共振用コンデンサC4とからなるLC回路が共振するようになる。このLC回路の共振により、MOSトランジスタFET1のドレイン側の電圧は上昇してピークに達し、その後に降下するようになる。このとき、帰還コイルL3の端子間にも、1次コイルL1と同様の電圧変動が生じる。すなわち、MOSトランジスタFET1のゲート端子に結合される帰還コイルL3の第1の端子では、電圧が下降してピークに達し、その後上昇する。そして暫くすると、帰還コイルL3の当該第1の端子には、MOSトランジスタFET1をオンすることのできる電圧が生じて、MOSトランジスタFET1が再度オンされるようになる。このようなMOSトランジスタFET1のオンとオフとの繰り返しによりMOSトランジスタFET1がスイッチングされるとともに、同スイッチングにより1次コイルL1が発振されるようになる。なお、第1の実施形態では、MOSトランジスタFET1がスイッチングされる周波数、すなわち1次コイルL1が発振される周波数は100kHz(キロヘルツ)~200kHzになるように調整されている。 When the MOS transistor FET1 is turned off, the magnetic flux generated by the primary coil L1 decreases, so that the voltage direction of the feedback coil L3 changes to generate a voltage that maintains the off state, and the voltage is applied to the gate terminal. The MOS transistor FET1 is kept off. When the MOS transistor FET1 is turned off, the current flowing through the primary coil L1 flows into the resonance capacitor C4, and the LC circuit including the primary coil L1 and the resonance capacitor C4 resonates. Due to the resonance of the LC circuit, the voltage on the drain side of the MOS transistor FET1 increases and reaches a peak, and then decreases. At this time, the same voltage fluctuation as that of the primary coil L1 occurs between the terminals of the feedback coil L3. That is, at the first terminal of the feedback coil L3 coupled to the gate terminal of the MOS transistor FET1, the voltage drops to reach a peak and then rises. After a while, a voltage capable of turning on the MOS transistor FET1 is generated at the first terminal of the feedback coil L3, and the MOS transistor FET1 is turned on again. The MOS transistor FET1 is switched by repeating the ON and OFF of the MOS transistor FET1, and the primary coil L1 is oscillated by the switching. In the first embodiment, the frequency at which the MOS transistor FET1 is switched, that is, the frequency at which the primary coil L1 is oscillated is adjusted to be 100 kHz (kilohertz) to 200 kHz.
 また、電力送電部10には復調制御装置としての1次側制御装置11が設けられている。1次側制御装置11は、中央演算処理装置(CPU)、記憶装置(不揮発性メモリーROM、揮発性メモリーRAMなど)を有するマイクロコンピュータを中心に構成されており、記憶装置に格納されている各種データ及びプログラムに基づいて、電力送電部10のLC回路の発振制御などの各種制御を実行する。なお、第1の実施形態では、電力受電部20からの通信信号を復調するとともに、復調された信号を解析して、同解析結果に基づいてLC回路の発振を制御するようにもなっている。また、不揮発性メモリーROMには、接続点N2の電圧と比較するための閾値や、後に詳述する電力受電部20との間の通信信号の復調、同復調された信号の解析などに必要とされる各種のパラメータなどが予め保存されている。 Further, the power transmission unit 10 is provided with a primary control device 11 as a demodulation control device. The primary-side control device 11 is mainly composed of a microcomputer having a central processing unit (CPU) and a storage device (nonvolatile memory ROM, volatile memory RAM, etc.), and various types stored in the storage device. Various controls such as oscillation control of the LC circuit of the power transmission unit 10 are executed based on the data and the program. In the first embodiment, the communication signal from the power receiving unit 20 is demodulated, the demodulated signal is analyzed, and the oscillation of the LC circuit is controlled based on the analysis result. . In addition, the nonvolatile memory ROM is necessary for a threshold value for comparison with the voltage at the connection point N2, a demodulation of a communication signal with the power receiving unit 20 described in detail later, and an analysis of the demodulated signal. Various parameters to be stored are stored in advance.
 1次側制御装置11は、図示しない回路により直流電源Eから駆動用電力が供給されるようになっており、直流電源Eのマイナス端子に接続されるとともに、ダイオードD1と抵抗R2とから構成される直列回路を介して、1次側のLC回路と、ダイオードD2と抵抗R5の並列回路との間の接続点N2に接続されている。すなわち、1次側制御装置11には、接続点N2の電力が半波整流されて供給されるようになっており、1次側制御装置11は、接続点N2を通じて1次コイルL1の発振により生じる交番電力の電圧波形から最大電圧などを取得することができるようになっている。 The primary side control device 11 is supplied with driving power from a DC power source E by a circuit (not shown), and is connected to the negative terminal of the DC power source E and is composed of a diode D1 and a resistor R2. Is connected to a connection point N2 between the LC circuit on the primary side and the parallel circuit of the diode D2 and the resistor R5. That is, the power at the connection point N2 is supplied to the primary side control device 11 after being half-wave rectified, and the primary side control device 11 is driven by the oscillation of the primary coil L1 through the connection point N2. The maximum voltage or the like can be acquired from the voltage waveform of the generated alternating power.
 さらに、電力送電部10には、トランジスタTR2と同様に、NPNトランジスタよりなるバイアス制御用トランジスタTR3が設けられており、そのコレクタ端子がMOSトランジスタFET1のゲート端子に接続され、エミッタ端子が直流電源Eのマイナス端子(グランド)に接続されている。またバイアス制御用トランジスタTR3は、そのベース端子が1次側制御装置11に接続されており、1次側制御装置11から供給される制御電流により、コレクタ・エミッタ間に電流を流すオンと、コレクタ・エミッタ間に電流を流さないオフとが切換えられるようになっている。 Further, similarly to the transistor TR2, the power transmission unit 10 is provided with a bias control transistor TR3 made of an NPN transistor, the collector terminal of which is connected to the gate terminal of the MOS transistor FET1, and the emitter terminal of the DC power supply E. Is connected to the negative terminal (ground). The bias control transistor TR3 has its base terminal connected to the primary side control device 11, and the control current supplied from the primary side control device 11 turns on and off the current flowing between the collector and the emitter. -It can be switched off so that no current flows between the emitters.
 次に、電力受電部20について説明する。
 電力受電部20は、電力送電部10から交番電力を受電する共振回路部22Aと、交番電力(交流電力)を直流電力に変換する整流回路部23Aと、直流電力の負荷への供給を制御する供給制御部24Aと、供給制御部24Aから電力が供給される負荷としてのバッテリBAとを備えている。
Next, the power receiving unit 20 will be described.
The power receiving unit 20 controls a resonance circuit unit 22A that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23A that converts alternating power (AC power) to DC power, and supply of DC power to a load. A supply control unit 24A and a battery BA as a load to which power is supplied from the supply control unit 24A are provided.
 共振回路部22Aは、1次コイルL1の交番磁界に誘起された交番電力を出力する2次コイルL2と、その2次コイルL2に並列に接続されるコンデンサC6(受動素子)と、同じく2次コイルL2に並列に接続される、コンデンサC8(受動素子)と開閉器SW1とからなる直列回路とを有している。これにより共振回路部22Aは、開閉器SW1が開放されたとき、2次コイルL2とコンデンサC6とからなる2次側の共振回路(LC回路)として構成され、開閉器SW1が閉じられたとき、2次コイルL2とコンデンサC6とコンデンサC8との並列接続により構成される2次側の共振回路(LC回路)として構成される。このようなことから共振回路部22Aでは、その共振回路(LC回路)の回路定数がコンデンサC8の有無により変更されることとなり、その回路定数の変更により2次コイルL2が1次コイルL1から受電する交番電力の振幅が変化(変調)させられる。すなわち共振回路の回路定数の変更により、1次コイルL1から供給される電力を受け取る2次コイルL2の受電特性が変更されるようになる。 The resonance circuit unit 22A includes a secondary coil L2 that outputs an alternating power induced in the alternating magnetic field of the primary coil L1, a capacitor C6 (passive element) connected in parallel to the secondary coil L2, and a secondary coil. It has a series circuit consisting of a capacitor C8 (passive element) and a switch SW1 connected in parallel to the coil L2. Accordingly, the resonance circuit unit 22A is configured as a secondary resonance circuit (LC circuit) including the secondary coil L2 and the capacitor C6 when the switch SW1 is opened, and when the switch SW1 is closed, The secondary side resonance circuit (LC circuit) is configured by parallel connection of the secondary coil L2, the capacitor C6, and the capacitor C8. For this reason, in the resonance circuit unit 22A, the circuit constant of the resonance circuit (LC circuit) is changed depending on the presence or absence of the capacitor C8, and the secondary coil L2 receives power from the primary coil L1 due to the change of the circuit constant. The amplitude of the alternating power is changed (modulated). That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed.
 なお、第1の実施形態では、コンデンサC6の値は、2次コイルL2とコンデンサC6とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が良好に得られる値に設定されている。一方、コンデンサC8の値は、2次コイルL2とコンデンサC6とコンデンサC8とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が、先の2次コイルL2とコンデンサC6とからなる共振回路と比較して、劣化するような値に設定されている。 In the first embodiment, the value of the capacitor C6 is such that when the secondary side resonance circuit (LC circuit) is formed by the secondary coil L2 and the capacitor C6, the secondary coil L2 and the primary coil L1 The magnetic coupling property of is set to a value that can be obtained satisfactorily. On the other hand, when the secondary side resonance circuit (LC circuit) is formed by the secondary coil L2, the capacitor C6, and the capacitor C8, the value of the capacitor C8 is the magnetic value of the secondary coil L2 and the primary coil L1. The connectivity is set to a value that degrades compared to the resonance circuit composed of the secondary coil L2 and the capacitor C6.
 すなわち、2次コイルL2と1次コイルL1との磁気的な結合性が良好な場合、電力受電部20は、効率良く多くの電力を受電することができ、このとき、2次コイルL2は1次コイルL1から多くの電力を受電することができる。すなわち、バッテリBAにも多くの直流電力(電流)を供給することができるようになる。 That is, when the magnetic coupling between the secondary coil L2 and the primary coil L1 is good, the power receiving unit 20 can receive a large amount of power efficiently. At this time, the secondary coil L2 is 1 A large amount of power can be received from the secondary coil L1. That is, a large amount of DC power (current) can be supplied to the battery BA.
 一方、2次コイルL2と1次コイルL1との磁気的な結合性が劣化する場合、電力受電部20は、電力を受電する効率が低下し、2次コイルL2が1次コイルL1から受電できる電力が減少する。すなわち、バッテリBAに供給される直流電力(電流)も減少するようになる。しかしながら、従来のように2次コイルL2と1次コイルL1との磁気的な結合性を負荷変動により劣化させるために、バッテリBAに並列に抵抗を接続させたり、直流電力を短絡させたりする場合と比較すると、バッテリBAに供給される直流電力の減少は抑制されるようになる。 On the other hand, when the magnetic coupling between the secondary coil L2 and the primary coil L1 deteriorates, the power receiving unit 20 has a reduced efficiency of receiving power, and the secondary coil L2 can receive power from the primary coil L1. Electric power decreases. That is, the DC power (current) supplied to the battery BA also decreases. However, when the magnetic coupling between the secondary coil L2 and the primary coil L1 is deteriorated due to load fluctuation as in the conventional case, a resistor is connected in parallel to the battery BA or the DC power is short-circuited. As compared with, a decrease in the DC power supplied to the battery BA is suppressed.
 ところで、上記電力受電部20の構成において、2次コイルL2の受電特性が変化すると、2次コイルL2が受電する交番電力の電力波形の振幅が変化するのみならず、2次コイルL2に磁気的に結合されている1次コイルL1の交番電力の電力波形の振幅も変化する。すなわち、2次コイルL2での交番電力の電力波形(電圧波形)の振幅の変化に応じて1次コイルL1に生じる交番電力の電力波形(電圧波形)の振幅も変化する。このことにより、電力送電部10の接続点N2に生じる交番電力の電圧波形の振幅(最大電圧値)に変化が生じるようになる。具体的には、電力送電部10の接続点N2に生じる電圧波形の振幅は、1次コイルL1と2次コイルL2との間の磁気的な結合が良好なときには小さく抑えられ、その逆に、1次コイルL1と2次コイルL2との間の磁気的な結合が劣化しているときには大きくなる。 By the way, in the configuration of the power receiving unit 20, when the power receiving characteristic of the secondary coil L2 changes, not only the amplitude of the power waveform of the alternating power received by the secondary coil L2 changes, but also the secondary coil L2 becomes magnetic. The amplitude of the power waveform of the alternating power of the primary coil L1 coupled to is also changed. That is, the amplitude of the power waveform (voltage waveform) of the alternating power generated in the primary coil L1 also changes in accordance with the change in the amplitude of the power waveform (voltage waveform) of the alternating power in the secondary coil L2. As a result, the amplitude (maximum voltage value) of the voltage waveform of the alternating power generated at the connection point N2 of the power transmission unit 10 changes. Specifically, the amplitude of the voltage waveform generated at the connection point N2 of the power transmission unit 10 is suppressed to a small value when the magnetic coupling between the primary coil L1 and the secondary coil L2 is good, and vice versa. It increases when the magnetic coupling between the primary coil L1 and the secondary coil L2 is degraded.
 整流回路部23Aには、共振回路部22Aの2次コイルL2の端子間に生じる電力(電圧)が供給される。整流回路部23Aは、共振回路部22Aに直列接続される整流ダイオードD3と、整流ダイオードD3にて整流された電力を平滑化させる平滑コンデンサC7とを備えており、共振回路部22Aから入力された交番電力(交流電力)を直流電力に変換する、いわゆる半波整流回路として構成されている。なお、この整流回路部23Aの構成は、交流電力を直流電力に変換する整流回路としての一例に過ぎず、この構成に限定されるものではなく、ダイオードブリッジを用いた全波整流回路やその他の周知の整流回路の構成を有していてもよい。 The power (voltage) generated between the terminals of the secondary coil L2 of the resonance circuit unit 22A is supplied to the rectification circuit unit 23A. The rectifier circuit unit 23A includes a rectifier diode D3 connected in series to the resonance circuit unit 22A and a smoothing capacitor C7 that smoothes the power rectified by the rectifier diode D3, and is input from the resonance circuit unit 22A. It is configured as a so-called half-wave rectifier circuit that converts alternating power (AC power) into DC power. The configuration of the rectifier circuit unit 23A is merely an example of a rectifier circuit that converts AC power into DC power, and is not limited to this configuration. A full-wave rectifier circuit using a diode bridge or other You may have the structure of a known rectifier circuit.
 供給制御部24Aは、整流回路部23Aの整流した直流電力のバッテリBAへの供給と非供給とを切換えるPチャンネルMOSトランジスタFET3と、バッテリBAの充電状態に応じてMOSトランジスタFET3のオン/オフを切換える変調制御装置としての2次側制御装置21とを備えている。MOSトランジスタFET3は、そのドレイン端子が整流回路部23Aの正側に接続され、そのソース端子がバッテリBAの正側に接続され、そのゲート端子が2次側制御装置21に接続されている。 The supply control unit 24A turns on / off the P-channel MOS transistor FET3 that switches between supply and non-supply of the DC power rectified by the rectification circuit unit 23A to the battery BA and the MOS transistor FET3 according to the state of charge of the battery BA. And a secondary side control device 21 as a modulation control device to be switched. The drain terminal of the MOS transistor FET3 is connected to the positive side of the rectifier circuit unit 23A, the source terminal thereof is connected to the positive side of the battery BA, and the gate terminal thereof is connected to the secondary side control device 21.
 2次側制御装置21は、中央演算処理装置(CPU)、記憶装置(不揮発性メモリーROM、揮発性メモリーRAMなど)を有するマイクロコンピュータを中心に構成されており、メモリーに格納されている各種データ及びプログラムに基づいて、電力受電部20のバッテリBAの充電状態を判定するとともにその充電量制御などの各種制御を実行する。なお、本実施形態では、バッテリBAの充電状態に基づいて電力送電部10への通信信号を生成するとともに、同生成された通信信号に基づいて共振回路の回路定数を変化させて2次コイルL2の受電する交番電力を変調させる制御も行なうようにもなっている。また、不揮発性メモリーROMには、バッテリBAの充電状態を判定したり、充電量制御に必要とされる閾値や、後に述べる電力送電部10との間の通信信号の生成や、同通信信号に基づく変調のために必要とされる各種のパラメータなどが予め保存されている。 The secondary-side control device 21 is mainly composed of a microcomputer having a central processing unit (CPU) and a storage device (nonvolatile memory ROM, volatile memory RAM, etc.), and various data stored in the memory. And based on a program, while determining the charge condition of battery BA of the electric power receiving part 20, various control, such as the charge amount control, is performed. In the present embodiment, a communication signal to the power transmission unit 10 is generated based on the state of charge of the battery BA, and the circuit constant of the resonance circuit is changed based on the generated communication signal to change the secondary coil L2. Control is also performed to modulate the alternating power that is received. The nonvolatile memory ROM also determines the state of charge of the battery BA, generates a threshold value required for charge amount control, generates a communication signal with the power transmission unit 10 described later, Various parameters required for modulation based on the parameters are stored in advance.
 2次側制御装置21には、バッテリBAの正極及び負極がそれぞれ接続され、バッテリBAから駆動用の電力供給を受けるとともに、2次側制御装置21は、バッテリBAの端子間電圧などからバッテリBAの充電状態を把握することができるようになっている。また、2次側制御装置21は、バッテリBAの充電状態に応じてMOSトランジスタFET3のゲート端子に印加する制御電圧を変化させてMOSトランジスタFET3のオン/オフ制御を行なう。例えば、バッテリBAの端子間電圧が予め設定された充電状態判定用の閾値よりも低いことからバッテリBAを充電することが好ましいと判断される場合、MOSトランジスタFET3のゲート端子にオン電圧を印加してMOSトランジスタFET3をオンさせ、整流回路部23Aから直流電力がバッテリBAに供給されるようにする。一方、バッテリBAの端子間電圧が上記の充電状態判定用の閾値よりも高いことなどからバッテリBAを充電する必要が無いと判断される場合、オン電圧未満の電圧をMOSトランジスタFET3のゲート端子に印加してMOSトランジスタFET3をオフさせ、整流回路部23Aからの直流電力がバッテリBAに供給されないようにする。 The secondary-side control device 21 is connected to the positive and negative electrodes of the battery BA, respectively, and receives power for driving from the battery BA. The secondary-side control device 21 receives the battery BA from the voltage across the terminals of the battery BA. It is possible to grasp the state of charge. Further, the secondary side control device 21 performs on / off control of the MOS transistor FET3 by changing the control voltage applied to the gate terminal of the MOS transistor FET3 in accordance with the state of charge of the battery BA. For example, when it is determined that it is preferable to charge the battery BA because the voltage between the terminals of the battery BA is lower than a preset threshold value for determining the state of charge, an on-voltage is applied to the gate terminal of the MOS transistor FET3. Then, the MOS transistor FET3 is turned on so that DC power is supplied from the rectifier circuit unit 23A to the battery BA. On the other hand, when it is determined that there is no need to charge the battery BA because the voltage between the terminals of the battery BA is higher than the threshold value for determining the charging state, a voltage lower than the ON voltage is applied to the gate terminal of the MOS transistor FET3 This is applied to turn off the MOS transistor FET3 so that the DC power from the rectifier circuit unit 23A is not supplied to the battery BA.
 また、2次側制御装置21には、共振回路部22Aの開閉器SW1が接続されており、2次側制御装置21は開閉器SW1を開閉制御して開閉器SW1によるコンデンサC8の接続/非接続を切換える。すなわち、2次側制御装置21が開閉器SW1を開閉制御することにより、共振回路部22Aの2次側の共振回路(LC回路)の回路定数が変更され、2次コイルL2の受電する交番電力の振幅を変化させることを通じて、1次コイルL1の送電する交番電力の振幅を変化させるようになっている。なお、2次側制御装置21による開閉器SW1の開閉制御は、2次側の共振回路(LC回路)の共振との干渉が生じないように、1次コイルL1の発振周期(例えば、周波数100~200kHz)よりも長い周期、例えば、10Hz(100ms)である通信用の周期にて行なうようにしている。 The secondary side control device 21 is connected to the switch SW1 of the resonance circuit unit 22A. The secondary side control device 21 controls the switching of the switch SW1 to connect / disconnect the capacitor C8 by the switch SW1. Switch the connection. That is, when the secondary side control device 21 controls opening and closing of the switch SW1, the circuit constant of the secondary side resonance circuit (LC circuit) of the resonance circuit unit 22A is changed, and the alternating power received by the secondary coil L2 is changed. The amplitude of the alternating power transmitted by the primary coil L1 is changed by changing the amplitude of the first coil L1. Note that the switching control of the switch SW1 by the secondary-side control device 21 causes the oscillation period (for example, frequency 100) of the primary coil L1 so that interference with the resonance of the secondary-side resonance circuit (LC circuit) does not occur. The communication period is longer than, for example, 10 Hz (100 ms).
 次に、電力受電部20から電力送電部10への通信信号の伝達による情報伝達について、図2~図4に従って説明する。図2は、電力受電部20の受電特性に応じて交番電力に生じる電圧振幅の変化を示すグラフであって、(a)は受電特性が良好な場合を示し、(b)は受電特性が劣化している場合を示している。図3は、図2と同様の状態において同図よりも長い時間を示すグラフであって、(a)は受電特性が良好な場合を示し、(b)は受電特性が劣化している場合を示している。図4は、図3よりも長い時間において電力送電部10による信号の受信状態を示すグラフであって、(a)は電力送電部10の交番電力の電圧波形を示すグラフ、(b)は(a)の電圧波形の振幅に基づき求められる信号を示している。 Next, information transmission by transmission of communication signals from the power receiving unit 20 to the power transmitting unit 10 will be described with reference to FIGS. 2A and 2B are graphs showing changes in the voltage amplitude generated in the alternating power according to the power reception characteristics of the power reception unit 20, where FIG. 2A shows a case where the power reception characteristics are good, and FIG. 2B shows that the power reception characteristics are degraded. It shows the case. FIG. 3 is a graph showing a longer time in the same state as FIG. 2, where (a) shows a case where the power reception characteristics are good, and (b) shows a case where the power reception characteristics are deteriorated. Show. 4 is a graph showing a signal reception state by the power transmission unit 10 in a longer time than FIG. 3, wherein (a) is a graph showing a voltage waveform of alternating power of the power transmission unit 10, and (b) is ( The signal calculated | required based on the amplitude of the voltage waveform of a) is shown.
 まず、電力受電部20における通信用の信号の変調について説明する。
 電力受電部20の2次側制御装置21は、通常に電力を受電しているときには、効率良く多くの電力を受電するように、2次コイルL2と1次コイルL1との磁気的な結合性を良好とさせるため開閉器SW1を開放している。このとき、図2(a)に示すように、2次コイルL2には最大電圧が電圧VL2となる交番電力が受電される。一方、電力送電部10に情報を通信したい場合、2次コイルL2と1次コイルL1との磁気的な結合性を良好な状態から劣化させるため開閉器SW1を接続する。このとき、図2(b)に示すように、2次コイルL2には最大電圧が電圧VL2よりも高い電圧VH2となる交番電力が受電される。
First, communication signal modulation in the power receiving unit 20 will be described.
When the secondary control device 21 of the power receiving unit 20 normally receives power, the secondary coil L2 and the primary coil L1 are magnetically coupled so as to receive a large amount of power efficiently. The switch SW1 is opened in order to improve the resistance. At this time, as shown in FIG. 2A, the secondary coil L2 receives the alternating power having the maximum voltage of the voltage VL2. On the other hand, when it is desired to communicate information to the power transmission unit 10, the switch SW1 is connected to deteriorate the magnetic coupling between the secondary coil L2 and the primary coil L1 from a good state. At this time, as shown in FIG. 2 (b), the secondary coil L2 receives alternating power having a maximum voltage VH2 higher than the voltage VL2.
 なお第1実施形態では、2次側制御装置21は、1次コイルL1の発振周期よりも長い周期の通信用の周期で2次コイルL2の受電特性を変化させる。すなわち、2次側制御装置21は、通信のために2次コイルL2の交番電力の最大電圧を電圧VL2にする場合、図3(a)に示すように、通信用の周期の一周期となる、例えば時間t0から時間t1までの期間P1の間、開閉器SW1を開放させる。また、2次側制御装置21は、通信のために2次コイルL2の交番電力の最大電圧を電圧VH2にする場合、図3(b)に示すように、通信用の周期の一周期となる、例えば時間t1から時間t2までの期間P2の間、開閉器SW1を接続させる。このようにして、通信用の周期毎に2次コイルL2の交番電力の最大電圧を電圧VL2と電圧VH2とのいずれかに選択的に変化させることにより、2次側制御装置21は、電力送電部10と電力受電部20との間で共通する通信ルールに基づいて生成した2値の通信用信号に基づいて2次コイルL2の交番電力を変調することができるようになる。 In the first embodiment, the secondary side control device 21 changes the power reception characteristics of the secondary coil L2 at a communication cycle longer than the oscillation cycle of the primary coil L1. That is, when the maximum voltage of the alternating power of the secondary coil L2 is set to the voltage VL2 for communication, the secondary-side control device 21 has one cycle for communication as shown in FIG. For example, during the period P1 from time t0 to time t1, the switch SW1 is opened. Further, when the maximum voltage of the alternating power of the secondary coil L2 is set to the voltage VH2 for communication, the secondary-side control device 21 becomes one cycle for communication as shown in FIG. For example, during the period P2 from time t1 to time t2, the switch SW1 is connected. In this way, by selectively changing the maximum voltage of the alternating power of the secondary coil L2 to either the voltage VL2 or the voltage VH2 for each communication cycle, the secondary-side control device 21 can transmit power. The alternating power of the secondary coil L2 can be modulated based on a binary communication signal generated based on a communication rule common between the unit 10 and the power receiving unit 20.
 次に、電力受電部20にて生成された通信用信号の電力送電部10による受信について説明する。図4(a)に示すように、電力送電部10の1次コイルL1の交番電力の電圧の振幅は、電力受電部20にて通信用の周期で変調される交番電力の電圧の振幅に応じて、その最大値が電圧VL1又は電圧VH1として現れる。例えば、通信用の周期の一周期である期間P1に電力受電部20が交番電力の最大電圧を電圧VL2とする場合、同期間P1に電力送電部10では1次コイルL1の交番電力の最大電圧が電圧VL1となる。また、通信用の周期の一周期である期間P2の間に電力受電部20が交番電力の最大電圧を電圧VH2とする場合、同期間P2の間に電力送電部10の1次コイルL1では交番電力の最大電圧が電圧VL1より高い電圧VH1となる。同様に、電力受電部20が交番電力の最大電圧を電圧VL2とする各期間P3,P4,P6には、電力送電部10の1次コイルL1の交番電力の最大電圧がそれぞれ電圧VL1となり、電力受電部20が交番電力の最大電圧を電圧VH2とする期間P5には、電力送電部10の1次コイルL1の交番電力の最大電圧が電圧VH1となる。 Next, reception of the communication signal generated by the power receiving unit 20 by the power transmitting unit 10 will be described. As shown in FIG. 4A, the amplitude of the alternating power voltage of the primary coil L <b> 1 of the power transmission unit 10 depends on the amplitude of the alternating power voltage modulated by the power receiving unit 20 in the communication cycle. The maximum value appears as the voltage VL1 or the voltage VH1. For example, when the power receiving unit 20 sets the maximum voltage of the alternating power to the voltage VL2 during the period P1 that is one cycle of the communication cycle, the maximum voltage of the alternating power of the primary coil L1 in the power transmitting unit 10 during the same period P1. Becomes the voltage VL1. Further, when the power receiving unit 20 sets the maximum voltage of the alternating power to the voltage VH2 during the period P2, which is one cycle of the communication cycle, the primary coil L1 of the power transmitting unit 10 alternates during the synchronization P2. The maximum power voltage becomes a voltage VH1 higher than the voltage VL1. Similarly, in each period P3, P4, P6 in which the power receiving unit 20 sets the maximum voltage of the alternating power to the voltage VL2, the maximum voltage of the alternating power of the primary coil L1 of the power transmitting unit 10 becomes the voltage VL1, respectively. In the period P5 in which the power reception unit 20 sets the maximum voltage of the alternating power to the voltage VH2, the maximum voltage of the alternating power of the primary coil L1 of the power transmission unit 10 becomes the voltage VH1.
 そして電力送電部10は、1次側制御装置11にて1次コイルL1の交番電力の最大電圧を取得して、取得された最大電圧を電圧VL1と電圧VH1との間に設定される信号復調用の閾値と比較させることなどにより、図4(b)に示すように、電圧VL1を信号レベルL、電圧VH1を信号レベルHとして復調するようになっている。この復調された信号を通信用の周期にて読みとるなどの処理を通じて電力受電部20により通信ルールに基づき生成された通信信号が電力送電部10に受信されるとともにその内容が図示しない内部回路に伝達されることとなる。例えば、信号レベルLを「0」、信号レベルHを「1」と表記すると、図4(b)に示される波形は、「010010」の信号として表されるようになる。なお、電力送電部10と電力受電部20との間で共通する通信ルールについて、特に制限はないが、例えば、4ビット、8ビット、16ビットの通信信号を用いた周知の通信ルールに基づいての通信を行なうことができるようになる。 And the power transmission part 10 acquires the maximum voltage of the alternating power of the primary coil L1 in the primary side control apparatus 11, and the signal demodulation which sets the acquired maximum voltage between the voltage VL1 and the voltage VH1 For example, the voltage VL1 is demodulated as the signal level L and the voltage VH1 as the signal level H as shown in FIG. A communication signal generated based on the communication rule by the power receiving unit 20 is received by the power receiving unit 20 through processing such as reading the demodulated signal at a communication cycle, and the content is transmitted to an internal circuit (not shown). Will be. For example, when the signal level L is expressed as “0” and the signal level H is expressed as “1”, the waveform shown in FIG. 4B is expressed as a signal “010010”. In addition, although there is no restriction | limiting in particular about the communication rule common between the electric power transmission part 10 and the electric power receiving part 20, For example, based on the known communication rule using a communication signal of 4 bits, 8 bits, and 16 bits. Can now communicate.
 以上説明したように、第1実施形態の非接触給電装置によれば、以下に列記するような効果が得られるようになる。
 (1)2次側制御装置21が、共振回路部22Aにて2次コイルL2に受電される交番電力の電圧の振幅を1次コイルL1に伝達したい情報に基づいて変化させ、その電圧の振幅の変化に伴う1次コイルL1の電圧変化に基づいて1次側制御装置11が2次側制御装置21から伝達される情報を取得するようにした。これにより、2次側制御装置21からの情報が1次側制御装置11に伝達されるようになり、例えば、1次側制御装置11は2次側制御装置21に接続された二次電池や負荷などの状況に応じて1次コイルL1の駆動を制御して2次コイルL2に伝達させる電力を好適に制御することができるようにもなる。
As described above, according to the contactless power supply device of the first embodiment, the effects listed below can be obtained.
(1) The secondary side control device 21 changes the amplitude of the voltage of the alternating power received by the secondary coil L2 in the resonance circuit unit 22A based on the information to be transmitted to the primary coil L1, and the amplitude of the voltage The primary-side control device 11 acquires information transmitted from the secondary-side control device 21 based on the voltage change of the primary coil L1 accompanying the change of. As a result, information from the secondary side control device 21 is transmitted to the primary side control device 11, for example, the primary side control device 11 is a secondary battery connected to the secondary side control device 21, It also becomes possible to suitably control the power transmitted to the secondary coil L2 by controlling the driving of the primary coil L1 according to the situation such as the load.
 (2)また、2次コイルL2を含む共振回路部22Aの回路定数を変更する構成としたことから、2次コイルL2での受電後、整流回路部23Aにより整流や平滑化などの調整を経て負荷への供給に適する状態に変換された直流電力が情報伝達のために大量に消費するようなことが避けられる。すなわち、2次コイルL2から1次コイルL1への情報伝達の際、従来のように、2次コイルの特性を直流電力に対する負荷変動により変化させることにより、二次電池などの負荷に供給すべき直流電力を消費してしまうようことが抑制される。これにより、情報伝達が負荷への直流電力の供給に悪影響を及ぼすおそれ、例えばバッテリBAなどの負荷への電力供給の停止や供給量の大幅な減少などのおそれが軽減されるようになる。 (2) Since the circuit constant of the resonance circuit unit 22A including the secondary coil L2 is changed, after receiving power at the secondary coil L2, the rectification circuit unit 23A performs adjustment such as rectification and smoothing. It is avoided that the DC power converted into a state suitable for supply to the load is consumed in large quantities for information transmission. That is, when transmitting information from the secondary coil L2 to the primary coil L1, as in the past, the characteristics of the secondary coil should be changed by changing the load with respect to the DC power to supply the load to the secondary battery or the like. The consumption of direct current power is suppressed. As a result, the possibility that information transmission may adversely affect the supply of direct-current power to the load, for example, the possibility of stopping the supply of power to the load such as the battery BA or greatly reducing the supply amount, is alleviated.
 (3)さらに、2次コイルL2を含む共振回路部22Aの回路定数を変化させるので、2次コイルL2に付与する受電特性の調整や変更等が行ないやすくもなる。これにより、共振回路部22Aとしてその受電特性の設計や調整が容易になり、このような共振回路部22Aを有する非接触給電装置の実施や採用の可能性も向上するようになる。 (3) Furthermore, since the circuit constant of the resonance circuit unit 22A including the secondary coil L2 is changed, it is easy to adjust or change the power reception characteristics applied to the secondary coil L2. This facilitates the design and adjustment of the power reception characteristics of the resonance circuit unit 22A, and improves the possibility of implementing and adopting a non-contact power feeding apparatus having such a resonance circuit unit 22A.
 (4)2次コイルL2とコンデンサC6とに基づく共振回路部22Aの回路定数、すなわち2次コイルL2の受電する交番電力の振幅を、開閉器SW1によるコンデンサC8の接続/非接続により変化させることができるようになる。これにより、2次コイルL2の受電する交番電力の振幅の変更を数少ない開閉器SW1により容易に行なうことができるようになる。 (4) Changing the circuit constant of the resonance circuit unit 22A based on the secondary coil L2 and the capacitor C6, that is, the amplitude of the alternating power received by the secondary coil L2, by connecting / disconnecting the capacitor C8 by the switch SW1. Will be able to. As a result, the change in the amplitude of the alternating power received by the secondary coil L2 can be easily performed by the few switches SW1.
 (5)2次コイルL2の受電する交番電力の振幅をコンデンサC6及びコンデンサC8の組み合わせにより設定できるのでその交番電力の振幅の変更が容易に行えるようになる。 (5) Since the amplitude of the alternating power received by the secondary coil L2 can be set by the combination of the capacitor C6 and the capacitor C8, the amplitude of the alternating power can be easily changed.
 (第2の実施形態)
 次に、本発明に係る非接触給電装置を具体化した第2の実施形態について図5に従って説明する。図5は、第2の実施形態の非接触給電装置に係る電力受電部20の回路構成について示す図である。
(Second Embodiment)
Next, a second embodiment in which the non-contact power feeding device according to the present invention is embodied will be described with reference to FIG. FIG. 5 is a diagram illustrating a circuit configuration of the power receiving unit 20 according to the non-contact power feeding device of the second embodiment.
 なお、第2の実施形態は、その電力受電部20の共振回路部22Bの構成が、先の第1の実施形態と相違するが、それ以外の構成については同様である。そこで第2の実施形態では主に、第1の実施形態との相違点について説明し、第1の実施形態と同様の構成については同一の符号を付し、説明の便宜上、詳細な説明については省略する。 In the second embodiment, the configuration of the resonance circuit unit 22B of the power receiving unit 20 is different from that of the first embodiment, but the other configurations are the same. Therefore, in the second embodiment, differences from the first embodiment will be mainly described, the same reference numerals are given to the same configurations as those in the first embodiment, and for the convenience of description, the detailed description will be given. Omitted.
 図5に示すように、電力受電部20は、電力送電部10から交番電力を受電する共振回路部22Bと、交番電力(交流電力)を直流電力に変換する整流回路部23Bと、直流電力の負荷への供給を制御する供給制御部24Bと、供給制御部24Bから電力が供給される負荷としてのバッテリBAとを備えている。なお、第2の実施形態の整流回路部23B及び供給制御部24Bは、第1の実施形態の整流回路部23A及び供給制御部24Aとそれぞれ同様の構成であることからその詳細な説明については割愛する。 As shown in FIG. 5, the power receiving unit 20 includes a resonant circuit unit 22B that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23B that converts alternating power (AC power) to DC power, A supply control unit 24B that controls supply to the load and a battery BA as a load to which power is supplied from the supply control unit 24B are provided. Note that the rectifier circuit unit 23B and the supply control unit 24B of the second embodiment have the same configurations as the rectifier circuit unit 23A and the supply control unit 24A of the first embodiment, respectively, and therefore detailed descriptions thereof are omitted. To do.
 共振回路部22Bは、1次コイルL1の交番磁界に誘起された交番電力を出力する2次コイルL2と、その2次コイルL2に並列に接続される、コンデンサC6と開閉器SW2とからなる直列回路と、同じく2次コイルL2に並列に接続される、コンデンサC8と開閉器SW1とからなる直列回路とを有している。これにより共振回路部22Bは、開閉器SW1が開放されるとともに開閉器SW2が閉じられるとき、2次コイルL2とコンデンサC6とからなる2次側の共振回路(LC回路)として構成される。また、開閉器SW1が閉じられるとともに開閉器SW2が開放されるとき、2次コイルL2とコンデンサC8とからなる2次側の共振回路(LC回路)として構成される。このようなことから共振回路部22Bは、その共振回路(LC回路)の回路定数が、2次コイルL2に接続されるコンデンサ(コンデンサC6又はコンデンサC8)により変更されることとなり、その回路定数の変更により2次コイルL2が1次コイルL1から受電する交番電力の振幅が変化(変調)される。すなわち共振回路の回路定数の変更により、1次コイルL1から供給される電力を受け取る2次コイルL2の受電特性が変更されるようになる。また、整流回路部23Bには、共振回路部22Bの2次コイルL2の端子間に生じる電力(電圧)が供給される。 The resonance circuit unit 22B is a series composed of a secondary coil L2 that outputs an alternating power induced by an alternating magnetic field of the primary coil L1, and a capacitor C6 and a switch SW2 connected in parallel to the secondary coil L2. And a series circuit including a capacitor C8 and a switch SW1, which are connected in parallel to the secondary coil L2. Accordingly, the resonance circuit unit 22B is configured as a secondary-side resonance circuit (LC circuit) including the secondary coil L2 and the capacitor C6 when the switch SW1 is opened and the switch SW2 is closed. Further, when the switch SW1 is closed and the switch SW2 is opened, it is configured as a secondary side resonance circuit (LC circuit) composed of the secondary coil L2 and the capacitor C8. As a result, the circuit constant of the resonance circuit (LC circuit) of the resonance circuit unit 22B is changed by the capacitor (capacitor C6 or capacitor C8) connected to the secondary coil L2. The amplitude of the alternating power received by the secondary coil L2 from the primary coil L1 is changed (modulated) by the change. That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed. Further, power (voltage) generated between the terminals of the secondary coil L2 of the resonance circuit unit 22B is supplied to the rectification circuit unit 23B.
 なお、第2の実施形態では、コンデンサC6の値は、2次コイルL2とコンデンサC6とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が良好となる値に設定されている。一方、コンデンサC8の値は、2次コイルL2とコンデンサC8とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が、先の2次コイルL2とコンデンサC6とからなる共振回路と比較して、劣化するような値に設定されている。 In the second embodiment, the value of the capacitor C6 is such that when the secondary coil L2 and the capacitor C6 form a secondary resonance circuit (LC circuit), the secondary coil L2 and the primary coil L1 Is set to a value that provides good magnetic coupling. On the other hand, the value of the capacitor C8 is such that when the secondary resonance circuit (LC circuit) is formed by the secondary coil L2 and the capacitor C8, the magnetic coupling between the secondary coil L2 and the primary coil L1 is high. The value is set so as to deteriorate as compared with the resonance circuit composed of the secondary coil L2 and the capacitor C6.
 2次側制御装置21は、共振回路部22Bの開閉器SW1,SW2に接続されており、各開閉器SW1,SW2を各別に開閉制御して開閉器SW1によるコンデンサC8の接続/非接続、及び、開閉器SW2によるコンデンサC6の接続/非接続を各別に切換える。すなわち、2次側制御装置21が各開閉器SW1,SW2を開閉制御することにより、共振回路部22Bの2次側の共振回路(LC回路)の回路定数が変更され、それにより、2次コイルL2の交番電力の電圧波形の最大電圧が、異なる電圧VL2又は電圧VH2に変化される。これにともなって、1次コイルL1の交番電力の振幅が、例えば電圧VL1や電圧VH1に変化されるようになる。なお、第2の実施形態では、開閉器SW1,SW2の少なくともいずれか一方が閉じられるように各開閉器SW1,SW2が開閉制御されており、これにより回路定数が予め定められた範囲で変化するように制御している。 The secondary-side control device 21 is connected to the switches SW1 and SW2 of the resonance circuit unit 22B. The switch SW1 and SW2 are individually controlled to be opened / closed, and the capacitor SW8 is connected / disconnected by the switch SW1. The connection / disconnection of the capacitor C6 by the switch SW2 is switched separately. That is, the secondary-side control device 21 controls the opening / closing of the switches SW1 and SW2, thereby changing the circuit constant of the secondary-side resonance circuit (LC circuit) of the resonance circuit unit 22B. The maximum voltage of the voltage waveform of the alternating power of L2 is changed to a different voltage VL2 or voltage VH2. Accordingly, the amplitude of the alternating power of the primary coil L1 is changed to, for example, the voltage VL1 or the voltage VH1. In the second embodiment, the switches SW1 and SW2 are controlled to be opened and closed so that at least one of the switches SW1 and SW2 is closed, whereby the circuit constant changes within a predetermined range. So that it is controlled.
 また、2次側制御装置21による開閉器SW1の開閉制御は、第1の実施形態と同様に、2次側の共振回路(LC回路)の共振との干渉が生じないように、1次コイルL1の発振周期よりも長い周期、例えば、10Hz(100ms)である通信用の周期にて行なうようにしている。 Further, the switching control of the switch SW1 by the secondary side control device 21 is similar to the first embodiment in that the primary coil is not interfered with the resonance of the secondary side resonance circuit (LC circuit). The communication is performed in a cycle longer than the oscillation cycle of L1, for example, a communication cycle of 10 Hz (100 ms).
 このようにして、通信用の周期毎に2次コイルL2の交番電力の最大電圧を、例えば、電圧VL2と電圧VH2とのいずれかに選択的に変化させることにより、2次側制御装置21は、通信ルールに基づいて生成した2値の通信用信号に基づいて2次コイルL2の交番電力を変調することができるようになる。そして、電力送電部10は、変調された1次コイルL1の最大電圧から、1次側制御装置11により通信信号を復調して、電力受電部20により生成された通信信号の内容を取得する。 In this way, by selectively changing the maximum voltage of the alternating power of the secondary coil L2 to, for example, either the voltage VL2 or the voltage VH2 for each communication cycle, the secondary-side control device 21 can The alternating power of the secondary coil L2 can be modulated based on the binary communication signal generated based on the communication rule. Then, the power transmission unit 10 demodulates the communication signal by the primary side control device 11 from the modulated maximum voltage of the primary coil L1, and acquires the content of the communication signal generated by the power reception unit 20.
 以上説明したように、第2の実施形態によっても先の第1の実施形態の前記(1)~(5)の効果と同等もしくはそれに準じた効果が得られるとともに、以下に列記するような効果が得られるようになる。 As described above, according to the second embodiment, the effects equivalent to or equivalent to the effects (1) to (5) of the first embodiment can be obtained, and the effects listed below. Can be obtained.
 (6)負荷に並列接続されるコンデンサC8及びコンデンサC6にそれぞれ開閉器SW1,SW2を設けるようにした。これによりコンデンサC8又はコンデンサC6に基づいて共振回路部22Bの回路定数、すなわち2次コイルL2の受電特性を変化させることができるようになる。 (6) The switches SW1 and SW2 are provided on the capacitor C8 and the capacitor C6 connected in parallel to the load, respectively. Accordingly, the circuit constant of the resonance circuit unit 22B, that is, the power reception characteristic of the secondary coil L2 can be changed based on the capacitor C8 or the capacitor C6.
 (第3の実施形態)
 次に、本発明に係る非接触給電装置を具体化した第3の実施形態について図6に従って説明する。図6は、第3の実施形態の非接触給電装置に係る電力受電部20の回路構成について示す図である。
(Third embodiment)
Next, a third embodiment embodying the non-contact power feeding device according to the present invention will be described with reference to FIG. FIG. 6 is a diagram illustrating a circuit configuration of the power receiving unit 20 according to the non-contact power feeding device of the third embodiment.
 なお、第3の実施形態は、その電力受電部20の共振回路部22Cの構成が、先の第1の実施形態と相違するが、それ以外の構成については同様である。そこで第3の実施形態では主に、第1の実施形態との相違点について説明し、第1の実施形態と同様の構成については同一の符号を付し、説明の便宜上、詳細な説明については省略する。 In the third embodiment, the configuration of the resonance circuit unit 22C of the power receiving unit 20 is different from that of the first embodiment, but the other configurations are the same. Therefore, in the third embodiment, differences from the first embodiment will be mainly described. The same components as those in the first embodiment will be denoted by the same reference numerals, and detailed description will be given for convenience of description. Omitted.
 図6に示すように、電力受電部20は、電力送電部10から交番電力を受電する共振回路部22Cと、交番電力(交流電力)を直流電力に変換する整流回路部23Cと、直流電力の負荷への供給を制御する供給制御部24Cと、供給制御部24Cから電力が供給される負荷としてのバッテリBAとを備えている。なお、第3の実施形態の整流回路部23C及び供給制御部24Cは、第1の実施形態の整流回路部23A及び供給制御部24Aとそれぞれ同様の構成であることからその詳細な説明については割愛する。 As shown in FIG. 6, the power receiving unit 20 includes a resonant circuit unit 22C that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23C that converts alternating power (AC power) into DC power, and DC power A supply control unit 24C that controls supply to the load and a battery BA as a load to which power is supplied from the supply control unit 24C are provided. Note that the rectifier circuit unit 23C and the supply control unit 24C of the third embodiment have the same configurations as the rectifier circuit unit 23A and the supply control unit 24A of the first embodiment, respectively, and therefore detailed description thereof is omitted. To do.
 共振回路部22Cは、1次コイルL1の交番磁界に誘起された交番電力を出力する2次コイルL2を有し、その2次コイルL2には、コンデンサC6と開閉器SW2とからなる直列回路と、コンデンサC8と開閉器SW1とからなる直列回路とから構成される並列回路が直列に接続されている。これにより共振回路部22Cは、開閉器SW1が開放されるとともに開閉器SW2が閉じられたとき、2次コイルL2とコンデンサC6とからなる2次側の共振回路(LC回路)として構成される。また、開閉器SW1が閉じられるとともに開閉器SW2が開放されるとき、2次コイルL2とコンデンサC8とからなる2次側の共振回路(LC回路)として構成される。このようなことから共振回路部22Cは、その共振回路(LC回路)の回路定数が、2次コイルL2に接続されるコンデンサ(コンデンサC6又はコンデンサC8)により変更されることとなり、その回路定数の変更により2次コイルL2が1次コイルL1から受電する交番電力の振幅が変化(変調)される。すなわち共振回路の回路定数の変更により、1次コイルL1から供給される電力を受け取る2次コイルL2の受電特性が変更されるようになる。また、整流回路部23Cには、共振回路部22Cの2次側のLC回路の端子間に生じる電力(電圧)が供給される。 The resonance circuit unit 22C includes a secondary coil L2 that outputs an alternating power induced in the alternating magnetic field of the primary coil L1, and the secondary coil L2 includes a series circuit including a capacitor C6 and a switch SW2. A parallel circuit composed of a series circuit composed of a capacitor C8 and a switch SW1 is connected in series. Thus, the resonance circuit unit 22C is configured as a secondary-side resonance circuit (LC circuit) including the secondary coil L2 and the capacitor C6 when the switch SW1 is opened and the switch SW2 is closed. Further, when the switch SW1 is closed and the switch SW2 is opened, it is configured as a secondary side resonance circuit (LC circuit) composed of the secondary coil L2 and the capacitor C8. For this reason, the circuit constant of the resonance circuit (LC circuit) of the resonance circuit unit 22C is changed by the capacitor (capacitor C6 or capacitor C8) connected to the secondary coil L2. The amplitude of the alternating power received by the secondary coil L2 from the primary coil L1 is changed (modulated) by the change. That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed. Further, power (voltage) generated between the terminals of the LC circuit on the secondary side of the resonance circuit unit 22C is supplied to the rectification circuit unit 23C.
 なお、第3の実施形態では、コンデンサC6の値は、2次コイルL2とコンデンサC6とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が良好となる値に設定されている。一方、コンデンサC8の値は、2次コイルL2とコンデンサC8とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が、先の2次コイルL2とコンデンサC6とからなる共振回路と比較して、劣化するような値に設定されている。 In the third embodiment, when the secondary side resonance circuit (LC circuit) is formed by the secondary coil L2 and the capacitor C6, the value of the capacitor C6 is determined by the secondary coil L2 and the primary coil L1. Is set to a value that provides good magnetic coupling. On the other hand, the value of the capacitor C8 is such that when the secondary resonance circuit (LC circuit) is formed by the secondary coil L2 and the capacitor C8, the magnetic coupling between the secondary coil L2 and the primary coil L1 is high. The value is set so as to deteriorate as compared with the resonance circuit composed of the secondary coil L2 and the capacitor C6.
 2次側制御装置21は、共振回路部22Cの開閉器SW1,SW2に接続されており、各開閉器SW1,SW2を各別に開閉制御して開閉器SW1によるコンデンサC8の接続/非接続、及び、開閉器SW2によるコンデンサC6の接続/非接続を各別に切換える。すなわち、2次側制御装置21が各開閉器SW1,SW2を開閉制御することにより、共振回路部22Cの2次側の共振回路(LC回路)の回路定数が変更され、それによって、2次コイルL2の交番電力の電圧波形の最大電圧が、異なる電圧VL2又は電圧VH2に変化される。これにともなって、1次コイルL1の交番電力の振幅が、例えば電圧VL1や電圧VH1に変化されるようになる。なお、第3の実施形態では、開閉器SW1,SW2の少なくともいずれか一方が閉じられるように各開閉器SW1,SW2が開閉制御されており、これにより回路定数が予め定められた範囲で変化するように制御している。 The secondary-side control device 21 is connected to the switches SW1 and SW2 of the resonance circuit unit 22C, and controls the switching of each switch SW1 and SW2 to connect / disconnect the capacitor C8 by the switch SW1. The connection / disconnection of the capacitor C6 by the switch SW2 is switched separately. That is, the secondary-side control device 21 controls opening / closing of the switches SW1 and SW2, thereby changing the circuit constant of the secondary-side resonance circuit (LC circuit) of the resonance circuit unit 22C, thereby the secondary coil. The maximum voltage of the voltage waveform of the alternating power of L2 is changed to a different voltage VL2 or voltage VH2. Accordingly, the amplitude of the alternating power of the primary coil L1 is changed to, for example, the voltage VL1 or the voltage VH1. In the third embodiment, the switches SW1 and SW2 are controlled to be closed so that at least one of the switches SW1 and SW2 is closed, whereby the circuit constant changes within a predetermined range. So that it is controlled.
 また、2次側制御装置21による開閉器SW1の開閉制御は、第1の実施形態と同様に、2次側の共振回路(LC回路)の共振との干渉が生じないように、1次コイルL1の発振周期よりも長い周期、例えば、10Hz(100ms)である通信用の周期にて行なうようにしている。 Further, the switching control of the switch SW1 by the secondary side control device 21 is similar to the first embodiment in that the primary coil is not interfered with the resonance of the secondary side resonance circuit (LC circuit). The communication is performed in a cycle longer than the oscillation cycle of L1, for example, a communication cycle of 10 Hz (100 ms).
 このようにして、通信用の周期毎に2次コイルL2の交番電力の最大電圧を、例えば、電圧VL2と電圧VH2とのいずれかに選択的に変化させることにより、2次側制御装置21は、通信ルールに基づいて生成した2値の通信用信号に基づいて2次コイルL2の交番電力を変調することができるようになる。そして、電力送電部10は、変調された1次コイルL1の最大電圧から、1次側制御装置11により通信信号を復調して、電力受電部20により生成された通信信号の内容を取得する。 In this way, by selectively changing the maximum voltage of the alternating power of the secondary coil L2 to, for example, either the voltage VL2 or the voltage VH2 for each communication cycle, the secondary-side control device 21 can The alternating power of the secondary coil L2 can be modulated based on the binary communication signal generated based on the communication rule. Then, the power transmission unit 10 demodulates the communication signal by the primary side control device 11 from the modulated maximum voltage of the primary coil L1, and acquires the content of the communication signal generated by the power reception unit 20.
 以上説明したように、第3の実施形態によっても先の第1の実施形態の前記(1)~(5)の効果と同等もしくはそれに準じた効果が得られるとともに、以下に列記するような効果が得られるようになる。 As described above, according to the third embodiment, the effects equivalent to or equivalent to the effects (1) to (5) of the first embodiment can be obtained, and the effects listed below. Can be obtained.
 (7)負荷に直列接続されるコンデンサC8及びコンデンサC6にそれぞれ開閉器SW1,SW2を設けるようにした。これによってもコンデンサC8又はコンデンサC6に基づいて共振回路部22Cの回路定数、すなわち2次コイルL2の受電特性を変化させることができるようになる。 (7) The switches SW1 and SW2 are provided on the capacitor C8 and the capacitor C6 connected in series with the load, respectively. This also makes it possible to change the circuit constant of the resonance circuit unit 22C, that is, the power reception characteristic of the secondary coil L2, based on the capacitor C8 or the capacitor C6.
 (第4の実施形態)
 次に、本発明に係る非接触給電装置を具体化した第4の実施形態について図7に従って説明する。図7は、第4の実施形態の非接触給電装置に係る電力受電部20の回路構成について示す図である。
(Fourth embodiment)
Next, a fourth embodiment embodying the non-contact power feeding device according to the present invention will be described with reference to FIG. FIG. 7 is a diagram illustrating a circuit configuration of the power receiving unit 20 according to the contactless power supply device of the fourth embodiment.
 なお、第4の実施形態は、その電力受電部20の共振回路部22Dの構成が、先の第1の実施形態と相違するが、それ以外の構成については同様である。そこで第4の実施形態では主に、第1の実施形態との相違点について説明し、第1の実施形態と同様の構成については同一の符号を付し、説明の便宜上、詳細な説明については省略する。 In the fourth embodiment, the configuration of the resonance circuit unit 22D of the power receiving unit 20 is different from that of the first embodiment, but the other configurations are the same. Therefore, in the fourth embodiment, differences from the first embodiment will be mainly described. The same components as those in the first embodiment will be denoted by the same reference numerals, and detailed description will be given for convenience of description. Omitted.
 図7に示すように、電力受電部20は、電力送電部10から交番電力を受電する共振回路部22Dと、交番電力(交流電力)を直流電力に変換する整流回路部23Dと、直流電力の負荷への供給を制御する供給制御部24Dと、供給制御部24Dから電力が供給される負荷としてのバッテリBAとを備えている。なお、第4の実施形態の整流回路部23D及び供給制御部24Dは、第1の実施形態の整流回路部23A及び供給制御部24Aとそれぞれ同様の構成であることからその詳細な説明については割愛する。 As shown in FIG. 7, the power receiving unit 20 includes a resonant circuit unit 22D that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23D that converts alternating power (AC power) into DC power, and DC power A supply control unit 24D for controlling supply to the load and a battery BA as a load to which power is supplied from the supply control unit 24D are provided. Note that the rectifier circuit unit 23D and the supply control unit 24D of the fourth embodiment have the same configurations as the rectifier circuit unit 23A and the supply control unit 24A of the first embodiment, respectively, and thus detailed description thereof is omitted. To do.
 共振回路部22Dは、1次コイルL1の交番磁界に誘起された交番電力を出力する2次コイルL2と、その2次コイルL2に直列接続されたコンデンサC6と、2次コイルL2とコンデンサC6とにより構成された直列回路に並列に接続される、コンデンサC8と開閉器SW1とからなる直列回路とを有している。これにより共振回路部22Dは、開閉器SW1が開放されたとき、2次コイルL2とコンデンサC6との直列接続からなる2次側の共振回路(LC回路)として構成される。また、開閉器SW1が閉じられるとき、2次コイルL2とコンデンサC6とからなる直列回路と、その直列回路に並列に接続されたコンデンサC8とからなる2次側の共振回路(LC回路)として構成される。このようなことから共振回路部22Dでは、その共振回路(LC回路)の回路定数がコンデンサC8の有無により変更されることとなり、その回路定数の変更により2次コイルL2が1次コイルL1から受電する交番電力の振幅が変化(変調)される。すなわち共振回路の回路定数の変更により、1次コイルL1から供給される電力を受け取る2次コイルL2の受電特性が変更されるようになる。また、整流回路部23Dには、2次コイルL2とコンデンサC6との直列接続の端子間に生じる電力(電圧)が供給される。 The resonance circuit unit 22D includes a secondary coil L2 that outputs an alternating power induced in the alternating magnetic field of the primary coil L1, a capacitor C6 that is connected in series to the secondary coil L2, a secondary coil L2, and a capacitor C6. And a series circuit composed of a capacitor C8 and a switch SW1 connected in parallel to the series circuit constituted by Accordingly, the resonance circuit unit 22D is configured as a secondary-side resonance circuit (LC circuit) including a series connection of the secondary coil L2 and the capacitor C6 when the switch SW1 is opened. Further, when the switch SW1 is closed, it is configured as a secondary side resonance circuit (LC circuit) including a series circuit including the secondary coil L2 and the capacitor C6 and a capacitor C8 connected in parallel to the series circuit. Is done. For this reason, in the resonance circuit unit 22D, the circuit constant of the resonance circuit (LC circuit) is changed depending on the presence or absence of the capacitor C8, and the secondary coil L2 receives power from the primary coil L1 due to the change of the circuit constant. The amplitude of the alternating power is changed (modulated). That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed. The rectifier circuit unit 23D is supplied with electric power (voltage) generated between terminals connected in series between the secondary coil L2 and the capacitor C6.
 なお、第4の実施形態では、コンデンサC6の値は、2次コイルL2とコンデンサC6とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が良好となる値に設定されている。一方、コンデンサC8の値は、2次コイルL2とコンデンサC6とコンデンサC8とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が、先の2次コイルL2とコンデンサC6とからなる共振回路と比較して、劣化するような値に設定されている。 In the fourth embodiment, the value of the capacitor C6 is such that when the secondary coil L2 and the capacitor C6 form a secondary resonance circuit (LC circuit), the secondary coil L2 and the primary coil L1 Is set to a value that provides good magnetic coupling. On the other hand, when the secondary side resonance circuit (LC circuit) is formed by the secondary coil L2, the capacitor C6, and the capacitor C8, the value of the capacitor C8 is the magnetic value of the secondary coil L2 and the primary coil L1. The connectivity is set to a value that degrades compared to the resonance circuit composed of the secondary coil L2 and the capacitor C6.
 2次側制御装置21は、共振回路部22Dの開閉器SW1に接続されており、開閉器SW1を開閉制御して開閉器SW1によるコンデンサC8の接続/非接続を切換える。すなわち、2次側制御装置21が開閉器SW1を開閉制御することにより、共振回路部22Dの2次側の共振回路(LC回路)の回路定数が変更され、それによって、2次コイルL2の交番電力の電圧波形の最大電圧が、異なる電圧VL2又は電圧VH2に変化される。これにともなって、1次コイルL1の交番電力の振幅が、例えば電圧VL1や電圧VH1に変化されるようになる。 The secondary side control device 21 is connected to the switch SW1 of the resonance circuit unit 22D, and controls the switch SW1 to switch the connection / disconnection of the capacitor C8 by the switch SW1. That is, when the secondary side control device 21 controls opening and closing of the switch SW1, the circuit constant of the secondary side resonance circuit (LC circuit) of the resonance circuit unit 22D is changed, whereby the alternating coil of the secondary coil L2 is changed. The maximum voltage of the voltage waveform of power is changed to a different voltage VL2 or voltage VH2. Accordingly, the amplitude of the alternating power of the primary coil L1 is changed to, for example, the voltage VL1 or the voltage VH1.
 また、2次側制御装置21による開閉器SW1の開閉制御は、第1の実施形態と同様に、2次側の共振回路(LC回路)の共振との干渉が生じないように、1次コイルL1の発振周期よりも長い周期、例えば、10Hz(100ms)である通信用の周期にて行なうようにしている。 Further, the switching control of the switch SW1 by the secondary side control device 21 is similar to the first embodiment in that the primary coil is not interfered with the resonance of the secondary side resonance circuit (LC circuit). The communication is performed in a cycle longer than the oscillation cycle of L1, for example, a communication cycle of 10 Hz (100 ms).
 このようにして、通信用の周期毎に2次コイルL2の交番電力の最大電圧を、例えば、電圧VL2と電圧VH2とのいずれかに選択的に変化させることにより、2次側制御装置21は、通信ルールに基づいて生成した2値の通信用信号に基づいて2次コイルL2の交番電力を変調することができるようになる。そして、電力送電部10は、変調された1次コイルL1の最大電圧から、1次側制御装置11により通信信号を復調して、電力受電部20により生成された通信信号の内容を取得する。 In this way, by selectively changing the maximum voltage of the alternating power of the secondary coil L2 to, for example, either the voltage VL2 or the voltage VH2 for each communication cycle, the secondary-side control device 21 can The alternating power of the secondary coil L2 can be modulated based on the binary communication signal generated based on the communication rule. Then, the power transmission unit 10 demodulates the communication signal by the primary side control device 11 from the modulated maximum voltage of the primary coil L1, and acquires the content of the communication signal generated by the power reception unit 20.
 以上説明したように、第4の実施形態によっても先の第1の実施形態の前記(1)~(5)の効果と同等もしくはそれに準じた効果が得られるとともに、以下に列記するような効果が得られるようになる。 As described above, according to the fourth embodiment, effects similar to or equivalent to the effects (1) to (5) of the first embodiment can be obtained, and the effects listed below are obtained. Can be obtained.
 (8)2次コイルL2とコンデンサC6とに基づく共振回路部22Dの回路定数、すなわち2次コイルL2で受電する交番電力の振幅を、開閉器SW1によるコンデンサC8の接続/非接続により変動させることができる。これにより、2次コイルL2で受電する交番電力の振幅の変更を少ない開閉器により容易に行なうことができるようになる。 (8) The circuit constant of the resonance circuit unit 22D based on the secondary coil L2 and the capacitor C6, that is, the amplitude of the alternating power received by the secondary coil L2, is changed by connecting / disconnecting the capacitor C8 by the switch SW1. Can do. As a result, it is possible to easily change the amplitude of the alternating power received by the secondary coil L2 with a small number of switches.
 (第5の実施形態)
 次に、本発明に係る非接触給電装置を具体化した第5の実施形態について図8に従って説明する。図8は、第5の実施形態の非接触給電装置に係る電力受電部20の回路構成について示す図である。
(Fifth embodiment)
Next, a fifth embodiment of the non-contact power feeding device according to the present invention will be described with reference to FIG. FIG. 8 is a diagram illustrating a circuit configuration of the power receiving unit 20 according to the contactless power supply device of the fifth embodiment.
 なお、第5の実施形態は、その電力受電部20の共振回路部22Eの構成が、先の第1の実施形態と相違するが、それ以外の構成については同様である。そこで第5の実施形態では主に、第1の実施形態との相違点について説明し、第1の実施形態と同様の構成については同一の符号を付し、説明の便宜上、詳細な説明については省略する。 In the fifth embodiment, the configuration of the resonance circuit unit 22E of the power receiving unit 20 is different from that of the first embodiment, but the other configurations are the same. Therefore, in the fifth embodiment, differences from the first embodiment will be mainly described. The same components as those in the first embodiment will be denoted by the same reference numerals, and detailed description will be given for convenience of description. Omitted.
 図8に示すように、電力受電部20は、電力送電部10から交番電力を受電する共振回路部22Eと、交番電力(交流電力)を直流電力に変換する整流回路部23Eと、直流電力の負荷への供給を制御する供給制御部24Eと、供給制御部24Eから電力が供給される負荷としてのバッテリBAとを備えている。なお、第5の実施形態の整流回路部23E及び供給制御部24Eは、第1の実施形態の整流回路部23A及び供給制御部24Aとそれぞれ同様の構成であることからその詳細な説明については割愛する。 As shown in FIG. 8, the power receiving unit 20 includes a resonant circuit unit 22E that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23E that converts alternating power (AC power) into DC power, A supply control unit 24E that controls supply to a load and a battery BA as a load to which electric power is supplied from the supply control unit 24E are provided. Note that the rectifier circuit unit 23E and the supply control unit 24E of the fifth embodiment have the same configurations as the rectifier circuit unit 23A and the supply control unit 24A of the first embodiment, respectively, and thus detailed description thereof is omitted. To do.
 共振回路部22Eは、1次コイルL1の交番磁界に誘起された交番電力を出力する2次コイルL2と、その2次コイルL2に直列接続される、インダクタとしてのコイルL4と開閉器SW3とからなる並列回路と、この並列回路と2次コイルL2とにより構成される直列回路に並列に接続されるコンデンサC6とを有している。これにより共振回路部22Eは、開閉器SW3が開放されたとき、2次コイルL2とコイルL4との直列回路と、その直列回路に並列に接続されるコンデンサC6とからなる2次側の共振回路(LC回路)として構成される。また、開閉器SW3が閉じられたとき、2次コイルL2とコンデンサC6との並列回路からなる2次側の共振回路(LC回路)として構成される。このようなことから共振回路部22Eでは、その共振回路(LC回路)の回路定数がコイルL4の有無により変更されることとなり、その回路定数の変更により2次コイルL2が1次コイルL1から受電する交番電力の振幅が変化(変調)される。すなわち共振回路の回路定数の変更により、1次コイルL1から供給される電力を受け取る2次コイルL2の受電特性が変更されるようになる。また、整流回路部23Eには、共振回路部22EのコンデンサC6の端子間に生じる電力(電圧)が供給される。 The resonance circuit unit 22E includes a secondary coil L2 that outputs an alternating power induced in the alternating magnetic field of the primary coil L1, and a coil L4 as an inductor and a switch SW3 that are connected in series to the secondary coil L2. And a capacitor C6 connected in parallel to a series circuit constituted by the parallel circuit and the secondary coil L2. Thereby, when the switch SW3 is opened, the resonance circuit unit 22E has a secondary side resonance circuit including a series circuit of the secondary coil L2 and the coil L4 and a capacitor C6 connected in parallel to the series circuit. (LC circuit). Further, when the switch SW3 is closed, it is configured as a secondary resonance circuit (LC circuit) composed of a parallel circuit of the secondary coil L2 and the capacitor C6. For this reason, in the resonance circuit unit 22E, the circuit constant of the resonance circuit (LC circuit) is changed depending on the presence or absence of the coil L4, and the secondary coil L2 receives power from the primary coil L1 due to the change of the circuit constant. The amplitude of the alternating power is changed (modulated). That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed. Further, power (voltage) generated between the terminals of the capacitor C6 of the resonance circuit unit 22E is supplied to the rectification circuit unit 23E.
 なお、第5の実施形態では、コンデンサC6の値は、2次コイルL2とコンデンサC6とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が良好となる値に設定されている。一方、コイルL4の値は、2次コイルL2とコイルL4との直列回路と、その直列回路に並列に接続されるコンデンサC6とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が、先の2次コイルL2とコンデンサC6とからなる共振回路と比較して、劣化するような値に設定されている。 In the fifth embodiment, the value of the capacitor C6 is such that when the secondary side resonance circuit (LC circuit) is formed by the secondary coil L2 and the capacitor C6, the secondary coil L2 and the primary coil L1 Is set to a value that provides good magnetic coupling. On the other hand, the value of the coil L4 is such that when a secondary side resonance circuit (LC circuit) is formed by a series circuit of the secondary coil L2 and the coil L4 and a capacitor C6 connected in parallel to the series circuit, The magnetic coupling between the secondary coil L2 and the primary coil L1 is set to a value that deteriorates as compared with the resonance circuit including the secondary coil L2 and the capacitor C6.
 2次側制御装置21は、共振回路部22Eの開閉器SW3に接続されており、開閉器SW3を開閉制御して開閉器SW3によるコイルL4の接続/非接続を切換える。すなわち、2次側制御装置21が開閉器SW3を開閉制御することにより、共振回路部22Eの2次側の共振回路(LC回路)の回路定数が変更され、それによって、2次コイルL2の交番電力の電圧波形の最大電圧が、異なる電圧VL2又は電圧VH2に変化される。これにともなって、1次コイルL1の交番電力の振幅が、例えば電圧VL1や電圧VH1に変化されるようになる。 The secondary-side control device 21 is connected to the switch SW3 of the resonance circuit unit 22E, and controls the switching of the switch SW3 to switch the connection / disconnection of the coil L4 by the switch SW3. That is, when the secondary side control device 21 controls opening / closing of the switch SW3, the circuit constant of the secondary side resonance circuit (LC circuit) of the resonance circuit unit 22E is changed, and thereby the secondary coil L2 is alternated. The maximum voltage of the voltage waveform of power is changed to a different voltage VL2 or voltage VH2. Accordingly, the amplitude of the alternating power of the primary coil L1 is changed to, for example, the voltage VL1 or the voltage VH1.
 また、2次側制御装置21による開閉器SW3の開閉制御は、第1の実施形態と同様に、2次側の共振回路(LC回路)の共振との干渉が生じないように、1次コイルL1の発振周期よりも長い周期、例えば、10Hz(100ms)である通信用の周期にて行なうようにしている。 The switching control of the switch SW3 by the secondary side control device 21 is similar to the first embodiment in that the primary coil is not interfered with the resonance of the secondary side resonance circuit (LC circuit). The communication is performed in a cycle longer than the oscillation cycle of L1, for example, a communication cycle of 10 Hz (100 ms).
 このようにして、通信用の周期毎に2次コイルL2の交番電力の最大電圧を、例えば、電圧VL2と電圧VH2とのいずれかに選択的に変化させることにより、2次側制御装置21は、通信ルールに基づいて生成した2値の通信用信号に基づいて2次コイルL2の交番電力を変調することができるようになる。そして、電力送電部10は、変調された1次コイルL1の最大電圧から、1次側制御装置11により通信信号を復調して、電力受電部20により生成された通信信号の内容を取得する。 In this way, by selectively changing the maximum voltage of the alternating power of the secondary coil L2 to, for example, either the voltage VL2 or the voltage VH2 for each communication cycle, the secondary-side control device 21 can The alternating power of the secondary coil L2 can be modulated based on the binary communication signal generated based on the communication rule. Then, the power transmission unit 10 demodulates the communication signal by the primary side control device 11 from the modulated maximum voltage of the primary coil L1, and acquires the content of the communication signal generated by the power reception unit 20.
 以上説明したように、第5の実施形態によっても先の第1の実施形態の前記(1)~(4)の効果と同等もしくはそれに準じた効果が得られるとともに、以下に列記するような効果が得られるようになる。 As described above, according to the fifth embodiment, effects equivalent to or equivalent to the effects (1) to (4) of the first embodiment can be obtained, and the effects listed below. Can be obtained.
 (9)2次コイルL2とコンデンサC6とに基づく共振回路部22Eの回路定数、すなわち2次コイルL2の受電する交番電力の振幅を、2次コイルL2に直列接続された開閉器SW3によるコイルL4の接続/非接続により変動させることができる。これにより、2次コイルL2で受電する交番電力の振幅の変更を少ない開閉器SW3により容易に行なうことができるようになる。 (9) The circuit constant of the resonance circuit unit 22E based on the secondary coil L2 and the capacitor C6, that is, the amplitude of the alternating power received by the secondary coil L2, is represented by the coil L4 by the switch SW3 connected in series to the secondary coil L2. It can be changed by connecting / disconnecting. As a result, the change in the amplitude of the alternating power received by the secondary coil L2 can be easily performed with a small number of switches SW3.
 (10)2次コイルL2で受電する交番電力の振幅をコンデンサC6とコイルL4との組み合わせにより設定できるのでその交番電力の振幅を変更させるための設定の自由度が高められる。 (10) Since the amplitude of the alternating power received by the secondary coil L2 can be set by the combination of the capacitor C6 and the coil L4, the degree of freedom of setting for changing the amplitude of the alternating power is increased.
 (第6の実施形態)
 次に、本発明に係る非接触給電装置を具体化した第6の実施形態について図9に従って説明する。図9は、第6の実施形態の非接触給電装置に係る電力受電部20の回路構成について示す図である。
(Sixth embodiment)
Next, a sixth embodiment of the non-contact power feeding device according to the present invention will be described with reference to FIG. FIG. 9 is a diagram illustrating a circuit configuration of the power receiving unit 20 according to the contactless power supply device of the sixth embodiment.
 なお、第6の実施形態は、その電力受電部20の共振回路部22Fの構成が、先の第1の実施形態と相違するが、それ以外の構成については同様である。そこで第6の実施形態では主に、第1の実施形態との相違点について説明し、第1の実施形態と同様の構成については同一の符号を付し、説明の便宜上、詳細な説明については省略する。 In the sixth embodiment, the configuration of the resonance circuit unit 22F of the power receiving unit 20 is different from that of the first embodiment, but the other configurations are the same. Therefore, in the sixth embodiment, differences from the first embodiment will be mainly described, the same components as those in the first embodiment will be denoted by the same reference numerals, and the detailed description will be given for convenience of description. Omitted.
 図9に示すように、電力受電部20は、電力送電部10から交番電力を受電する共振回路部22Fと、交番電力(交流電力)を直流電力に変換する整流回路部23Fと、直流電力の負荷への供給を制御する供給制御部24Fと、供給制御部24Fから電力が供給される負荷としてのバッテリBAとを備えている。なお、第6の実施形態の整流回路部23F及び供給制御部24Fは、第1の実施形態の整流回路部23A及び供給制御部24Aとそれぞれ同様の構成であることからその詳細な説明については割愛する。 As shown in FIG. 9, the power receiving unit 20 includes a resonant circuit unit 22F that receives alternating power from the power transmitting unit 10, a rectifier circuit unit 23F that converts alternating power (AC power) to DC power, and DC power A supply control unit 24F that controls supply to the load and a battery BA as a load to which power is supplied from the supply control unit 24F are provided. Note that the rectifier circuit unit 23F and the supply control unit 24F of the sixth embodiment have the same configurations as the rectifier circuit unit 23A and the supply control unit 24A of the first embodiment, respectively, and thus detailed description thereof is omitted. To do.
 共振回路部22Fは、1次コイルL1の交番磁界に誘起された交番電力を出力する2次コイルL2と、その2次コイルL2に直列接続される、抵抗素子としての抵抗R8と開閉器SW4との並列回路と、この並列回路と2次コイルL2との直列回路に並列に接続されるコンデンサC6とを有している。これにより共振回路部22Fは、開閉器SW4が開放されたとき、2次コイルL2と抵抗R8との直列回路と、その直列回路に並列に接続されるコンデンサC6とからなる2次側の共振回路(RLC回路)として構成される。また、開閉器SW4が閉じられたとき、2次コイルL2とコンデンサC6との並列回路からなる2次側の共振回路(LC回路)として構成される。このようなことから共振回路部22Fでは、その共振回路(RLC回路又はLC回路)の回路定数が抵抗R8の有無により変更されることとなり、その回路定数の変更により2次コイルL2が1次コイルL1から受電する交番電力の振幅が変化(変調)される。すなわち共振回路の回路定数の変更により、1次コイルL1から供給される電力を受け取る2次コイルL2の受電特性が変更されるようになる。また、整流回路部23Fには、共振回路部22FのコンデンサC6の端子間に生じる電力(電圧)が供給される。 The resonant circuit unit 22F includes a secondary coil L2 that outputs an alternating power induced in the alternating magnetic field of the primary coil L1, a resistor R8 as a resistance element, and a switch SW4 that are connected in series to the secondary coil L2. And a capacitor C6 connected in parallel to a series circuit of the parallel circuit and the secondary coil L2. Thus, when the switch SW4 is opened, the resonance circuit unit 22F has a secondary resonance circuit including a series circuit of the secondary coil L2 and the resistor R8 and a capacitor C6 connected in parallel to the series circuit. (RLC circuit). Further, when the switch SW4 is closed, it is configured as a secondary resonance circuit (LC circuit) composed of a parallel circuit of the secondary coil L2 and the capacitor C6. For this reason, in the resonance circuit unit 22F, the circuit constant of the resonance circuit (RLC circuit or LC circuit) is changed depending on the presence or absence of the resistor R8, and the secondary coil L2 is changed to the primary coil by the change of the circuit constant. The amplitude of the alternating power received from L1 is changed (modulated). That is, by changing the circuit constant of the resonance circuit, the power reception characteristic of the secondary coil L2 that receives the power supplied from the primary coil L1 is changed. Further, power (voltage) generated between the terminals of the capacitor C6 of the resonance circuit unit 22F is supplied to the rectification circuit unit 23F.
 なお、第6の実施形態では、コンデンサC6の値は、2次コイルL2とコンデンサC6とにより2次側の共振回路(LC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が良好となる値に設定されている。一方、抵抗R8の値は、2次コイルL2と抵抗R8との直列回路と、その直列回路に並列に接続されるコンデンサC6とにより2次側の共振回路(RLC回路)が形成されたとき、2次コイルL2と1次コイルL1との磁気的な結合性が、先の2次コイルL2とコンデンサC6とからなる共振回路と比較して、劣化するような値に設定されている。 In the sixth embodiment, when the secondary side resonance circuit (LC circuit) is formed by the secondary coil L2 and the capacitor C6, the value of the capacitor C6 is determined by the secondary coil L2 and the primary coil L1. Is set to a value that provides good magnetic coupling. On the other hand, the value of the resistor R8 is such that when a secondary resonance circuit (RLC circuit) is formed by a series circuit of the secondary coil L2 and the resistor R8 and a capacitor C6 connected in parallel to the series circuit, The magnetic coupling between the secondary coil L2 and the primary coil L1 is set to a value that deteriorates as compared with the resonance circuit including the secondary coil L2 and the capacitor C6.
 2次側制御装置21は、共振回路部22Fの開閉器SW4に接続されており、開閉器SW4を開閉制御して開閉器SW4による抵抗R8の接続/非接続を切換える。すなわち、2次側制御装置21が開閉器SW4を開閉制御することにより、共振回路部22Fの2次側の共振回路の回路定数が変更され、それによって、2次コイルL2の交番電力の電圧波形の最大電圧が、異なる電圧VL2又は電圧VH2に変化される。それにともなって、1次コイルL1の交番電力の振幅が、例えば電圧VL1や電圧VH1に変化することとなる。 The secondary-side control device 21 is connected to the switch SW4 of the resonance circuit unit 22F, and controls the switching of the switch SW4 to switch connection / disconnection of the resistor R8 by the switch SW4. That is, the secondary-side control device 21 controls opening / closing of the switch SW4, whereby the circuit constant of the secondary-side resonance circuit of the resonance circuit unit 22F is changed, whereby the voltage waveform of the alternating power of the secondary coil L2 is changed. Is changed to a different voltage VL2 or VH2. Accordingly, the amplitude of the alternating power of the primary coil L1 changes to, for example, the voltage VL1 or the voltage VH1.
 また、2次側制御装置21による開閉器SW4の開閉制御は、第1の実施形態と同様に、2次側の共振回路(RLC回路及びLC回路)の共振との干渉が生じないように、1次コイルL1の発振周期よりも長い周期、例えば、10Hz(100ms)である通信用の周期にて行なうようにしている。 Further, the switching control of the switch SW4 by the secondary-side control device 21 is similar to the first embodiment, so that interference with the resonance of the secondary-side resonance circuit (RLC circuit and LC circuit) does not occur. The communication is performed at a cycle longer than the oscillation cycle of the primary coil L1, for example, a communication cycle of 10 Hz (100 ms).
 このようにして、通信用の周期毎に2次コイルL2の交番電力の最大電圧を、例えば、電圧VL2と電圧VH2とのいずれかに選択的に変化させることにより、2次側制御装置21は、通信ルールに基づいて生成した2値の通信用信号に基づいて2次コイルの交番電力を変調することができる。そして、電力送電部10は、変調された1次コイルL1の最大電圧から、1次側制御装置11により通信信号を復調して、電力受電部20により生成された通信信号の内容を取得する。 In this way, by selectively changing the maximum voltage of the alternating power of the secondary coil L2 to, for example, either the voltage VL2 or the voltage VH2 for each communication cycle, the secondary-side control device 21 can The alternating power of the secondary coil can be modulated based on the binary communication signal generated based on the communication rule. Then, the power transmission unit 10 demodulates the communication signal by the primary side control device 11 from the modulated maximum voltage of the primary coil L1, and acquires the content of the communication signal generated by the power reception unit 20.
 以上説明したように、第6の実施形態によっても先の第1の実施形態の前記(1)~(4)の効果と同等もしくはそれに準じた効果が得られるとともに、以下に列記するような効果が得られるようになる。 As described above, according to the sixth embodiment, effects equivalent to or equivalent to the effects (1) to (4) of the first embodiment can be obtained, and the effects listed below. Can be obtained.
 (11)2次コイルL2とコンデンサC6とに基づく共振回路部22Fの回路定数、すなわち2次コイルL2の受電する交番電力の振幅を、2次コイルL2に直列接続された開閉器SW4による抵抗R8の接続/非接続により変動させることができる。これにより、2次コイルL2で受電する交番電力の振幅の変更を、少ない開閉器SW4により容易に行なうことができるようになる。 (11) The circuit constant of the resonance circuit unit 22F based on the secondary coil L2 and the capacitor C6, that is, the amplitude of the alternating power received by the secondary coil L2, is a resistance R8 by a switch SW4 connected in series to the secondary coil L2. It can be changed by connecting / disconnecting. As a result, it is possible to easily change the amplitude of the alternating power received by the secondary coil L2 with a small number of switches SW4.
 (12)2次コイルL2で受電する交番電力の振幅をコンデンサC6と抵抗R8との組み合わせにより設定できるのでその交番電力の振幅を変更させるための設定の自由度が高められる。 (12) Since the amplitude of the alternating power received by the secondary coil L2 can be set by the combination of the capacitor C6 and the resistor R8, the degree of freedom of setting for changing the amplitude of the alternating power is increased.
 なお、上記各実施形態は、例えば以下のように変更することもできる。
 ・上記各実施形態では、電力送電部10は、1次コイルL1の交番電力の最大電圧に基づいて電力受電部20からの通信信号を復調する場合について例示した。しかしこれに限らず、電力送電部10は、2次コイルL2での受電電力の振幅の変化に応じて1次コイルL1の交番電力の振幅に生じる変化を他の方法で検出してもよい。例えば、電力送電部10は、1次コイルL1での交番電力の平均電圧に基づいてその振幅の変化を検出してもよい。この方法では、交番電力の変調方法にかかわらず、電力受電部20からの通信信号を復調することができる。これにより、電力送電部10の構成の自由度が高められるようになる。
In addition, each said embodiment can also be changed as follows, for example.
In each of the above embodiments, the case where the power transmission unit 10 demodulates the communication signal from the power reception unit 20 based on the maximum voltage of the alternating power of the primary coil L1 is illustrated. However, the present invention is not limited to this, and the power transmission unit 10 may detect a change that occurs in the amplitude of the alternating power of the primary coil L1 according to a change in the amplitude of the received power in the secondary coil L2 by another method. For example, the power transmission unit 10 may detect a change in the amplitude based on the average voltage of the alternating power in the primary coil L1. In this method, the communication signal from the power receiving unit 20 can be demodulated regardless of the alternating power modulation method. Thereby, the freedom degree of the structure of the electric power transmission part 10 comes to be raised.
 ・上記各実施形態では、コンデンサC6やコンデンサC8などにより共振回路部22A~22Fの回路定数を変更する場合について例示した。しかしこれに限らず、共振回路部の回路定数を変更することができるのであれば、共振回路部に任意の受動素子を用いることができる。例えば、図8のコイルL4や図9の抵抗R8をコンデンサに変更してもよい。または、共振回路部の2つのコンデンサのうちの一方を抵抗素子やコイル(インダクタ)に変更してもよい。または、共振コンデンサの2つのコンデンサの一方を抵抗素子に、他方をコイルなどのインダクタにしてもよい。あるいは、共振回路部の2つのコンデンサを、両方とも抵抗素子やコイル(インダクタ)にしてもよい。 In each of the embodiments described above, the case where the circuit constants of the resonance circuit units 22A to 22F are changed by the capacitor C6, the capacitor C8, or the like is illustrated. However, the present invention is not limited to this, and any passive element can be used for the resonance circuit unit as long as the circuit constant of the resonance circuit unit can be changed. For example, the coil L4 in FIG. 8 or the resistor R8 in FIG. 9 may be changed to a capacitor. Alternatively, one of the two capacitors of the resonance circuit unit may be changed to a resistance element or a coil (inductor). Alternatively, one of the two capacitors of the resonant capacitor may be a resistance element and the other may be an inductor such as a coil. Alternatively, the two capacitors of the resonance circuit unit may both be a resistance element or a coil (inductor).
 例えば、2つの受動素子をコイルとした場合には、受動素子がインダクタンスのみからなるため共振回路部の回路構成を簡単にすることができる。また、2つの受動素子を抵抗素子とした場合にも、受動素子が抵抗素子のみからなるため共振回路部の回路構成を簡単にすることができる。 For example, when two passive elements are coils, the circuit configuration of the resonance circuit unit can be simplified because the passive elements are composed only of inductance. In addition, when the two passive elements are resistance elements, the passive elements are composed only of the resistance elements, so that the circuit configuration of the resonance circuit unit can be simplified.
 ・上記各実施形態では、共振回路部22A~22Fは、2次コイルL2とその他の1つもしくは2つの受動素子(コンデンサC6、コンデンサC8、コイルL4、抵抗R8など)によりその回路定数を変更する場合について例示した。しかしこれに限らず、共振回路部の回路定数を、2次コイルL2の他に、3つ以上の受動素子との協働により変更するようにしてもよい。 In each of the above embodiments, the resonance circuit units 22A to 22F change their circuit constants by the secondary coil L2 and one or two other passive elements (capacitor C6, capacitor C8, coil L4, resistor R8, etc.). The case was illustrated. However, the present invention is not limited to this, and the circuit constant of the resonance circuit unit may be changed in cooperation with three or more passive elements in addition to the secondary coil L2.
 ・上記各実施形態では、直流電力がバッテリBAに充電される場合について例示した。しかしこれに限らず、直流電力は、そのまま消費されてもよい。これにより、このような非接触給電装置の適用可能性が高められる。 In each of the above embodiments, the case where DC power is charged to the battery BA has been illustrated. However, the present invention is not limited to this, and the DC power may be consumed as it is. Thereby, the applicability of such a non-contact electric power feeder is improved.
 ・上記各実施形態では、電力受電部20は、携帯機器等に用いられる場合について例示した。しかしこれに限らず、電力受電部20は、非接触による電力供給も望まれる、例えば、電気自動車などの移動体に用いられてもよい。これにより、このような非接触給電装置の適用の自由度が高められる。 In each of the above embodiments, the case where the power receiving unit 20 is used for a portable device or the like is illustrated. However, the present invention is not limited to this, and the power receiving unit 20 may be used for a mobile body such as an electric vehicle in which non-contact power supply is desired. Thereby, the freedom degree of application of such a non-contact electric power feeder is raised.

Claims (12)

  1.  非接触給電装置であって、
     交番磁束を発生する1次コイルと、
     前記1次コイルに発生した交番磁束と交差する位置で、前記交番磁束に対応する交番電力を前記1次コイルから非接触で受電する2次コイルを含み、回路定数が変更可能に構成された共振回路部と、
     前記1次コイルに伝達すべき情報に基づいて前記共振回路部の回路定数を変更することにより前記2次コイルに受電される交番電力の振幅を変調する変調制御装置と、
     前記2次コイルでの交番電力の振幅の変化に応じて前記1次コイルに生じた交番電力の振幅の変化から、前記1次コイルに伝達された情報を復調する復調制御装置と
    を備える非接触給電装置。
    A non-contact power feeding device,
    A primary coil that generates alternating magnetic flux;
    A resonance that includes a secondary coil that receives the alternating power corresponding to the alternating magnetic flux from the primary coil in a non-contact manner at a position that intersects with the alternating magnetic flux generated in the primary coil, and is configured so that the circuit constant can be changed. A circuit section;
    A modulation control device that modulates the amplitude of the alternating power received by the secondary coil by changing the circuit constant of the resonant circuit unit based on information to be transmitted to the primary coil;
    A non-contact control device for demodulating information transmitted to the primary coil from a change in the amplitude of the alternating power generated in the primary coil in response to a change in the amplitude of the alternating power in the secondary coil Power supply device.
  2.  前記共振回路部は、第1の受動素子と第2の受動素子とからなり前記2次コイルに並列接続される並列回路を含み、
     前記並列回路は、前記第1の受動素子及び前記第2の受動素子の少なくとも一方に直列接続されて該並列回路を開閉する開閉器を含み、
     前記変調制御装置は、前記開閉器の開閉制御を通じて前記共振回路部の回路定数を変更する、請求項1に記載の非接触給電装置。
    The resonant circuit unit includes a parallel circuit composed of a first passive element and a second passive element and connected in parallel to the secondary coil,
    The parallel circuit includes a switch connected in series to at least one of the first passive element and the second passive element to open and close the parallel circuit,
    The non-contact power feeding device according to claim 1, wherein the modulation control device changes a circuit constant of the resonance circuit unit through switching control of the switch.
  3.  前記共振回路部は、第1の受動素子と第2の受動素子とからなり前記2次コイルに直列接続される並列回路を含み、
     前記並列回路は、前記第1の受動素子及び前記第2の受動素子の少なくとも一方に直列接続されて該並列回路を開閉する開閉器を含み、
     前記変調制御装置は、前記開閉器の開閉制御を通じて前記共振回路部の回路定数を変更する、請求項1に記載の非接触給電装置。
    The resonant circuit unit includes a parallel circuit composed of a first passive element and a second passive element and connected in series to the secondary coil,
    The parallel circuit includes a switch connected in series to at least one of the first passive element and the second passive element to open and close the parallel circuit,
    The non-contact power feeding device according to claim 1, wherein the modulation control device changes a circuit constant of the resonance circuit unit through switching control of the switch.
  4.  前記共振回路部は、前記2次コイルと第1の受動素子とからなる第1の直列回路と、前記第1の直列回路に並列接続され、第2の受動素子と開閉器とからなる第2の直列回路とを含み、
     前記変調制御装置は、前記開閉器の開閉制御を通じて前記共振回路部の回路定数を変更する、請求項1に記載の非接触給電装置。
    The resonance circuit unit is connected in parallel to the first series circuit including the secondary coil and the first passive element, and is connected in parallel to the first series circuit, and includes a second passive element and a switch. A series circuit of
    The non-contact power feeding device according to claim 1, wherein the modulation control device changes a circuit constant of the resonance circuit unit through switching control of the switch.
  5.  前記共振回路部は、第1の受動素子と開閉器とからなり前記2次コイルに直列接続される並列回路と、該並列回路と前記2次コイルとの直列回路に並列接続される第2の受動素子とを含み、
     前記変調制御装置は、前記開閉器の開閉制御を通じて前記共振回路部の回路定数を変更する、請求項1に記載の非接触給電装置。
    The resonant circuit unit includes a first passive element and a switch, a parallel circuit connected in series to the secondary coil, and a second circuit connected in parallel to a series circuit of the parallel circuit and the secondary coil. Including passive elements,
    The non-contact power feeding device according to claim 1, wherein the modulation control device changes a circuit constant of the resonance circuit unit through switching control of the switch.
  6.  前記第1の受動素子と前記第2の受動素子とはいずれもコンデンサからなる、請求項2~5のいずれか一項に記載の非接触給電装置。 The contactless power supply device according to any one of claims 2 to 5, wherein each of the first passive element and the second passive element includes a capacitor.
  7.  前記第1の受動素子と前記第2の受動素子とは、いずれか一方がコンデンサからなり他方がインダクタからなる、請求項2~5のいずれか一項に記載の非接触給電装置。 6. The non-contact power feeding device according to claim 2, wherein one of the first passive element and the second passive element is a capacitor and the other is an inductor.
  8.  前記第1の受動素子と前記第2の受動素子とは、いずれか一方がコンデンサからなり他方が抵抗素子からなる、請求項2~5のいずれか一項に記載の非接触給電装置。 The contactless power feeding device according to any one of claims 2 to 5, wherein one of the first passive element and the second passive element is a capacitor and the other is a resistance element.
  9.  前記第1の受動素子と前記第2の受動素子とはいずれもインダクタからなる、請求項2~5のいずれか一項に記載の非接触給電装置。 The contactless power feeding device according to any one of claims 2 to 5, wherein each of the first passive element and the second passive element includes an inductor.
  10.  前記第1の受動素子と前記第2の受動素子とはいずれも抵抗素子からなる、請求項2~5のいずれか一項に記載の非接触給電装置。 The contactless power feeding device according to any one of claims 2 to 5, wherein each of the first passive element and the second passive element includes a resistive element.
  11.  前記発振回路部の出力に接続され、前記2次コイルで受電された交番電力を直流電力に変換する整流回路部をさらに備え、前記変調制御装置は、前記発振回路部から前記整流回路部に伝達される交番電力の振幅を変調する、請求項1に記載の非接触給電装置。 The rectifier circuit unit further includes a rectifier circuit unit that is connected to the output of the oscillator circuit unit and converts alternating power received by the secondary coil into DC power, and the modulation control device transmits the oscillating circuit unit to the rectifier circuit unit. The non-contact electric power feeder of Claim 1 which modulates the amplitude of the alternating power to be performed.
  12.  1次コイルを含む電力送電部から電力を非接触で受信する電力受電部であって、
     前記1次コイルに発生した交番磁束と交差する位置で、前記交番磁束に対応する交番電力を前記1次コイルから非接触で受電する2次コイルを含み、回路定数が変更可能に構成された共振回路部と、
     前記1次コイルに伝達すべき情報に基づいて前記共振回路部の回路定数を変更することにより前記2次コイルに受電される交番電力の振幅を変調する変調制御装置と、
    を備える電力受電部。
    A power receiving unit that receives power in a non-contact manner from a power transmission unit including a primary coil,
    A resonance that includes a secondary coil that receives the alternating power corresponding to the alternating magnetic flux from the primary coil in a non-contact manner at a position that intersects with the alternating magnetic flux generated in the primary coil, and is configured so that the circuit constant can be changed. A circuit section;
    A modulation control device that modulates the amplitude of the alternating power received by the secondary coil by changing the circuit constant of the resonant circuit unit based on information to be transmitted to the primary coil;
    A power receiving unit comprising:
PCT/JP2010/069992 2009-11-17 2010-11-10 Non-contact power-feed device WO2011062097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-262364 2009-11-17
JP2009262364A JP2011109810A (en) 2009-11-17 2009-11-17 Noncontact power supply

Publications (1)

Publication Number Publication Date
WO2011062097A1 true WO2011062097A1 (en) 2011-05-26

Family

ID=44059576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069992 WO2011062097A1 (en) 2009-11-17 2010-11-10 Non-contact power-feed device

Country Status (3)

Country Link
JP (1) JP2011109810A (en)
TW (1) TW201131926A (en)
WO (1) WO2011062097A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2779358A3 (en) * 2013-03-13 2014-11-26 Freescale Semiconductor, Inc. Wireless charging systems, devices, and methods
CN105187761A (en) * 2014-06-16 2015-12-23 福兴达科技实业(深圳)有限公司 Wi-Fi monitoring system and monitoring method thereof
CN105932888A (en) * 2015-02-26 2016-09-07 立锜科技股份有限公司 Resonant Wireless Power Receiver Circuit And Control Circuit And Method Thereof
CN105978170A (en) * 2016-06-02 2016-09-28 东南大学 Bidirectional wireless electric power efficiency transmission system efficiency improvement method through adoption of voltage ratio control
US9973039B2 (en) 2014-01-20 2018-05-15 Stmicroelectronics S.R.L. Power receiver, wireless power system and related method of transmitting information with a power receiver
FR3067529A1 (en) * 2017-06-13 2018-12-14 Continental Automotive France TELE-POWER, POSITION SENSOR AND WIRELESS COMMUNICATION DEVICE FOR A MOTOR VEHICLE DEPLOYING DOOR HANDLE
CN109586734A (en) * 2018-08-30 2019-04-05 富达通科技股份有限公司 Interpretation method and its signal processing circuit for signal processing circuit
US11742673B2 (en) 2012-12-13 2023-08-29 Semiconductor Energy Laboratory Co., Ltd. Power storage system and power storage device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020869B1 (en) 2011-08-24 2019-09-11 삼성전자주식회사 Communication system using wireless power
JP2013070477A (en) 2011-09-21 2013-04-18 Panasonic Corp Non-contact power supply system
US9847675B2 (en) * 2011-12-16 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and power feeding system
DE102011090131B4 (en) * 2011-12-29 2017-07-20 Conti Temic Microelectronic Gmbh Charger for charging the energy storage of a portable electrical device
TWI577104B (en) * 2012-01-06 2017-04-01 通路實業集團國際公司 Wireless power receiver system and method of the same
WO2013111430A1 (en) * 2012-01-24 2013-08-01 村田機械株式会社 Non-contact power supply system and non-contact power supply method
DE102012020466B4 (en) 2012-10-18 2014-04-30 Panasonic Corporation Contactless power supply system and power receiving device
JPWO2014103430A1 (en) * 2012-12-27 2017-01-12 株式会社村田製作所 Wireless power transmission system
JP6165009B2 (en) * 2013-09-27 2017-07-19 エスアイアイ・セミコンダクタ株式会社 Power supply system, power supply apparatus, and power supply method
JP6276128B2 (en) * 2014-07-29 2018-02-07 京セラ株式会社 Portable terminal, control method, and charging system
JP6528234B2 (en) * 2015-03-13 2019-06-12 エイブリック株式会社 POWER SUPPLY SYSTEM, POWER SUPPLY DEVICE, AND POWER SUPPLY METHOD
JP6120117B2 (en) * 2015-10-02 2017-04-26 パナソニックIpマネジメント株式会社 Wireless power transmission system
JP7164934B2 (en) * 2016-10-05 2022-11-02 ラピスセミコンダクタ株式会社 Power transmission device and power transmission method
JP6764764B2 (en) * 2016-11-08 2020-10-07 ローム株式会社 Wireless power receiving device and its control method, power receiving control circuit, electronic device
JP6781076B2 (en) * 2017-03-01 2020-11-04 エイブリック株式会社 Power supply system, power receiving device, and power supply method
JP6914595B2 (en) * 2017-09-20 2021-08-04 エイブリック株式会社 Power supply system and power supply method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200615A (en) * 1982-05-18 1983-11-22 Nippon Denzai Kogyo Kenkyusho:Kk Signal transmitting device
JPH06339232A (en) * 1993-05-26 1994-12-06 Matsushita Electric Works Ltd Charger
EP0829940A2 (en) * 1996-09-13 1998-03-18 Hitachi, Ltd. Power transmission system, IC card and information communication system using IC card
JPH1189103A (en) * 1997-09-11 1999-03-30 Sanyo Electric Co Ltd Non-contact type charger
JPH11341711A (en) * 1998-05-21 1999-12-10 Sony Corp Noncontact power supply circuit
JP2000287369A (en) * 1999-03-31 2000-10-13 Matsushita Electric Works Ltd Charger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3392016B2 (en) * 1996-09-13 2003-03-31 株式会社日立製作所 Power transmission system and power transmission and information communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200615A (en) * 1982-05-18 1983-11-22 Nippon Denzai Kogyo Kenkyusho:Kk Signal transmitting device
JPH06339232A (en) * 1993-05-26 1994-12-06 Matsushita Electric Works Ltd Charger
EP0829940A2 (en) * 1996-09-13 1998-03-18 Hitachi, Ltd. Power transmission system, IC card and information communication system using IC card
JPH1189103A (en) * 1997-09-11 1999-03-30 Sanyo Electric Co Ltd Non-contact type charger
JPH11341711A (en) * 1998-05-21 1999-12-10 Sony Corp Noncontact power supply circuit
JP2000287369A (en) * 1999-03-31 2000-10-13 Matsushita Electric Works Ltd Charger

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742673B2 (en) 2012-12-13 2023-08-29 Semiconductor Energy Laboratory Co., Ltd. Power storage system and power storage device
EP2779358A3 (en) * 2013-03-13 2014-11-26 Freescale Semiconductor, Inc. Wireless charging systems, devices, and methods
US9667084B2 (en) 2013-03-13 2017-05-30 Nxp Usa, Inc. Wireless charging systems, devices, and methods
US9973039B2 (en) 2014-01-20 2018-05-15 Stmicroelectronics S.R.L. Power receiver, wireless power system and related method of transmitting information with a power receiver
CN105187761A (en) * 2014-06-16 2015-12-23 福兴达科技实业(深圳)有限公司 Wi-Fi monitoring system and monitoring method thereof
CN105187761B (en) * 2014-06-16 2018-05-15 深圳市福智软件技术有限公司 A kind of Wi-Fi monitoring systems and its monitoring method
CN105932888A (en) * 2015-02-26 2016-09-07 立锜科技股份有限公司 Resonant Wireless Power Receiver Circuit And Control Circuit And Method Thereof
CN105932888B (en) * 2015-02-26 2018-11-09 立锜科技股份有限公司 Resonance type wireless power supply receiving circuit and its control circuit and method
CN105978170A (en) * 2016-06-02 2016-09-28 东南大学 Bidirectional wireless electric power efficiency transmission system efficiency improvement method through adoption of voltage ratio control
WO2018229394A1 (en) * 2017-06-13 2018-12-20 Continental Automotive France Remote power supply, position sensor and wireless communication device for a door with an extendable handle of a motor vehicle
US10847998B2 (en) 2017-06-13 2020-11-24 Continental Automotive France Remote power supply, position sensor and wireless communication device for a door with an extendable handle of a motor vehicle
FR3067529A1 (en) * 2017-06-13 2018-12-14 Continental Automotive France TELE-POWER, POSITION SENSOR AND WIRELESS COMMUNICATION DEVICE FOR A MOTOR VEHICLE DEPLOYING DOOR HANDLE
CN109586734A (en) * 2018-08-30 2019-04-05 富达通科技股份有限公司 Interpretation method and its signal processing circuit for signal processing circuit
CN109586734B (en) * 2018-08-30 2022-11-25 富达通科技股份有限公司 Decoding method for signal processing circuit and signal processing circuit thereof

Also Published As

Publication number Publication date
TW201131926A (en) 2011-09-16
JP2011109810A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
WO2011062097A1 (en) Non-contact power-feed device
US10199877B2 (en) System and method for bidirectional wireless power transfer
US10411517B2 (en) Wireless power transfer method, apparatus and system for low and medium power
US20200274453A1 (en) Techniques for controlling a power converter using multiple controllers
JP5577896B2 (en) Wireless power supply apparatus and wireless power transmission system
CN106560975B (en) Power receiving device and wireless power transmission system
JP5276755B1 (en) Power transmission device, power receiving device, non-contact power transmission system, and control method of transmitted power in non-contact power transmission system
JP5419857B2 (en) Secondary power receiving circuit of non-contact power supply equipment
US20220255358A1 (en) Wireless charging receiver, system, and control method
KR20130106840A (en) Wireless energy transfer device and wireless energy transfer system
JP5472249B2 (en) Wireless power supply apparatus and wireless power transmission system
JP5472400B2 (en) Wireless power supply apparatus and wireless power transmission system
JP2006325350A (en) Power supply device
US20180006567A1 (en) Control method for power transmitter, power transmitter and noncontact power transfer apparatus
US10164475B2 (en) Wireless power receiver
WO2019037334A1 (en) Wireless power supply system for cooking appliance, and cooking appliance
KR102538434B1 (en) Power feeding system
JP6593648B2 (en) Power receiving apparatus and wireless power transmission system
US20210351624A1 (en) Local supply voltage regulation of a rechargeable medical implant via resonance tuning
JP6984523B2 (en) Wireless power receiving device and wireless power transmission system
JP2003037950A (en) Non-contact power transmission device
JP2003037949A (en) Non-contact power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831492

Country of ref document: EP

Kind code of ref document: A1