WO2011061422A1 - Installation de liaisons fond-surface disposees en eventail - Google Patents

Installation de liaisons fond-surface disposees en eventail Download PDF

Info

Publication number
WO2011061422A1
WO2011061422A1 PCT/FR2010/052197 FR2010052197W WO2011061422A1 WO 2011061422 A1 WO2011061422 A1 WO 2011061422A1 FR 2010052197 W FR2010052197 W FR 2010052197W WO 2011061422 A1 WO2011061422 A1 WO 2011061422A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
nth
float
flexible
floats
Prior art date
Application number
PCT/FR2010/052197
Other languages
English (en)
Inventor
Gianluca Sintini
Gianmarco Rota
Floriano Casola
Giulio Fatica
Original Assignee
Saipem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem S.A. filed Critical Saipem S.A.
Priority to BR112012011697A priority Critical patent/BR112012011697B1/pt
Priority to EP10785475.4A priority patent/EP2501889B1/fr
Priority to US13/510,380 priority patent/US8647019B2/en
Publication of WO2011061422A1 publication Critical patent/WO2011061422A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/015Non-vertical risers, e.g. articulated or catenary-type

Definitions

  • the present invention relates to an installation of multiple bottom-surface connections between submarine pipes resting at the bottom of the sea and a floating support surface, comprising a multiplicity of hybrid towers consisting of a flexible pipe connected to a rising rigid pipe, or vertical riser, whose lower end is integral with an anchoring device comprising a base resting at the bottom of the sea.
  • the technical sector of the invention is more particularly the field of the manufacture and installation of columns.
  • the main and immediate application of the invention being in the field of oil production.
  • the floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and waves. It also generally comprises oil storage and processing means as well as means of unloading to removal tankers, the latter being present at regular intervals to carry out the removal of the production.
  • the common name of these floating supports is the Anglo-Saxon term “Floating Production Storage Offloading” (meaning “floating medium of storage, production and unloading"), which is used the abbreviated term "FPSO" in the whole of the following description.
  • a tour-hybrid link comprising:
  • a connecting pipe generally a flexible connecting pipe, between the upper end of said riser and a floating support on the surface, said flexible connecting pipe taking, if appropriate, by its own weight in the form of a curve in a plunging chain, that is to say descending widely below the float and then up to that floating support.
  • bottom-surface connections made by going up continuously to the subsurface of the resistant and rigid conduits consisting of tubular elements of thick steel welded or screwed together, in a chain configuration with a curvature continuously variable throughout their length in suspension, commonly called “Steel Catenary Riser” (SCR) meaning "chain-shaped steel riser” and also commonly called “catenary type rigid pipe” or “SCR type riser”.
  • SCR Step Catenary Riser
  • Such a catenary duct may go up to the floating support surface or only to a subsurface float that tensions its upper end, which upper end is then connected to a floating support by a plunger flexible connecting pipe.
  • WO 00/49267 it has been proposed as connecting pipe between the riser whose top is tensioned by a float immersed surface and the floating support, rigid pipes SCR type and installs the float head of the riser at a distance larger of the surface especially at least 300 m from the surface, preferably at least 500 m.
  • a multiple hybrid tower comprising an anchoring system with a tendon vertical consisting of a cable or a metal bar, or a pipe stretched at its upper end by a float. The lower end of the tendon is attached to a base resting at the bottom.
  • Said tendon comprises guiding means distributed over its entire length through which passes a plurality of said risers vertical.
  • Said base can be placed simply on the seabed and stay in place by its own weight, or remain anchored by means of batteries or any other device to keep it in place.
  • the lower end of the vertical riser is adapted to be connected to the end of a bent sleeve, movable, between a high position and a low position, with respect to said base, to which this cuff is suspended and associated with a return means bringing it up in the absence of the riser.
  • This mobility of the bent sleeve makes it possible to absorb the length variations of the riser under the effects of temperature and pressure.
  • a stop device integral with it, comes to rest on the support guide installed at the head of the float and thus maintains the entire riser in suspension.
  • connection with the submarine pipe resting on the seabed is generally effected by a pig-shaped or S-shaped pipe portion, said S being then made in a vertical or horizontal plane, the connection with said underwater pipe being generally carried out via an automatic connector.
  • a pig-shaped or S-shaped pipe portion for connecting underwater wellheads to an FPSO-type floating support
  • several wellheads are connected in parallel to a single base connection. surface so as to limit the occupation of the FPSO plating, because each of said bottom-surface links must be removed from its immediate neighbors to avoid any interference and shock, not only at the level of the floats, but also at the level of the flexible pipes and electrical cables connecting with said FPSO.
  • a multiple hybrid tower comprising an anchoring system with a vertical tendon consisting of either a cable or a metal bar, or a pipe stretched at its upper end by a float.
  • the lower end of the tendon is attached to a base resting at the bottom.
  • Said tendon comprises guiding means distributed over its entire length through which pass a plurality of said risers vertical.
  • Said base can be placed simply on the seabed and stay in place by its own weight, or remain anchored by means of batteries or any other device to keep it in place.
  • the lower end of the vertical riser is adapted to be connected to the end of a bent sleeve, movable, between a high position and a low position, with respect to said base, to which this cuff is suspended and associated with a return means bringing it up in the absence of the riser.
  • This mobility of the bent sleeve makes it possible to absorb the length variations of the riser under the effects of temperature and pressure.
  • a stop device integral with it, comes to rest on the support guide installed at the head of the float and thus maintains the entire riser in suspension.
  • the connection with the submarine pipe resting on the seabed is generally effected by a pig-shaped or S-shaped pipe portion, said S being then made in a vertical or horizontal plane, the connection with said underwater pipe being generally carried out via an automatic connector.
  • This embodiment comprising a multiplicity of vertical risers held by a central structure comprising guide means is relatively expensive and complex to install.
  • the installation must be prefabricated on the ground before being towed at sea, then once on site, cabane to be put in place.
  • its maintenance also requires relatively high operating costs.
  • multi-riser towers have been described with vertical riser anchoring systems able to receive two risers side by side from the same base plate. anchoring, and whose floats at the head of said risers are integral and fixed to each other by means of a hinged structure in the form of a parallelogram.
  • the two risers are also connected by means of tubular collars fixed on one of the risers and connected by rings sliding freely around the second riser, so that the two risers can follow substantially the same lateral movements while being relatively more independent in their vertical movements.
  • the respective bases of the two hybrid towers when anchored by suction anchors anchored to the sea floor must be spaced a distance of at least 5 times, preferably at least 10 times , the diameter of said anchors to avoid interference in the solidity of the sea floor and ensure reliable anchoring, and
  • the floats at the top of the risers are subject to displacements in a cone whose top is located at the level of the anchoring system, and whose angle requires to provide a sufficient distance between the different floats in head vertical risers to prevent them from coming up against each other.
  • An object of the present invention is therefore to provide an installation of a large amount of multiple bottom-surface bonds and of various types on one side of an FPSO for preferably individually connecting a plurality of well heads and underwater installations installed at the bottom of the sea at great depth, that is to say beyond 1000m of water depth.
  • the problem posed according to the present invention is therefore to provide an installation with a multiplicity of bottom-surface connections from the same floating support, whose methods of installation and installation of the installation allow that time :
  • the number of bottom-surface links and their organization is defined with respect to estimated needs, said needs being almost systematically revised upward after the production of the field, either for the recovery of crude oil, or for the need to inject more water into the tank, or to recover or reinject more gas.
  • the reservoir is depleted, it is generally necessary to drill new wells to reinject water or gas, or to drill production wells in new areas of the field, so that increase the overall recovery rate, which complicates all the bottom-surface links connected to the FPSO.
  • Another problem posed according to the present invention is to be able to make and install such bottom-surface connections for submarine pipes at great depths, such as beyond 1,000 meters for example, and of type comprising a vertical hybrid tower and the transported fluid must be maintained above a minimum temperature until it reaches the surface, minimizing components subject to heat loss, avoiding the disadvantages created by the clean thermal expansion, or differential, of various components of said tower, so as to withstand extreme stresses and cumulative fatigue phenomena over the life of the structure, which currently exceeds 20 years.
  • Another problem of the present invention is also to provide a facility of multiple bottom-surface connections with hybrid towers whose anchoring system is of high strength and low cost, and whose manufacturing processes and implementation In place of the various constituent elements are simplified and also of low cost, and can be achieved at sea from a laying ship.
  • the present invention provides a bottom-surface bonding arrangement comprising a plurality of bottom-surface bonds arranged in a fan from the same floating support to a plurality of submarine pipes lying at the bottom of the sea, said bottom-surface links comprising at least:
  • first hybrid tower each comprising:
  • a first rigid pipe consisting of a first vertical riser, whose lower end is fixed to a first base anchored to the seabed and connected to a first underwater pipe resting at the bottom of the sea and whose end upper is tensioned substantially vertically by a first submerged submerged float, preferably at least 100m deep, to which it is connected, and
  • a second rigid pipe consisting of a riser comprising a second vertical riser or a second SCR type rigid catenary pipe, the lower end of which is connected to a second submarine pipe resting at the bottom of the sea and whose upper end is tensioned by a second buoyancy element submerged in subsurface, preferably at least 50m deep, to which it is connected, and
  • a second flexible connection line providing the connection between said floating support and the upper end of said second rigid pipe, each said second flexible pipe passing through a chute fixed to a said first float thus delimiting two portions of second flexible plunging pipe, respectively on either side of said first float, the hooked point of each said second flexible pipe on said plating being located in proximity, preferably juxtaposed against, the point of attachment of said first flexible pipe in connection with said first float supporting said second flexible pipe.
  • the bottom-surface connection installation according to the invention comprises:
  • first floats serve as intermediate support for said second flexible pipes longer than said first flexible pipes and thus to reduce the horizontal tension generated by said second flexible pipe at the upper end of said second rigid pipe, and without substantially increasing the horizontal tension at said first float, because they are balanced.
  • the horizontal tensions generated by said flexible pipes at the upper ends of the rigid pipes and at the level of the floats to which they are connected are at the origin of the movements, lurching and lateral deflections of said upper ends of rigid pipes, in case of sea agitated.
  • the essential function of the plunging flexible pipes is to absorb at least in part the movements of the upper ends of rigid pipes to which one of their ends is connected and / or the floating support movements to which their other end is connected. by mechanically decoupling the respective movements of the upper ends of rigid pipes to which they are connected and floating supports to which they are also connected at their other end.
  • first portions of said second flexible ducts extending between the floating support and said first float are situated above said first flexible ducts insofar as said first float is located above the upper end of said first one. rigid pipe to which is connected an end of said flexible pipe.
  • a said flexible connecting pipe takes by its own weight the form of a plunging chain curve, that is to say falling well below its points hooked at each end with the support respectively. floating and the end upper of the rigid pipe to which it is connected, as long as the length of said flexible pipe is greater than the distance between its point of attachment to the floating support and the upper end of said rigid pipe to which it is connected.
  • said first float preferably each said first float, supports at least two said second flexible conduits preferably passing through respectively at least two said troughs attached to the same said first float.
  • said second rigid pipe consists of a second vertical riser, whose lower end is fixed to a second base anchored to the seabed and connected to a said second underwater pipe resting at the bottom of the sea and whose upper end is tensioned substantially vertically by a second float immersed in subsurface, preferably at least 50m deep, to which it is connected.
  • the distance between the floating support and the closest of said second bases is greater than the distance between said floating support and the farthest of said first bases.
  • said first floats are not located equidistant from the same flat edging of said floating support to which the ends of said first flexible pipes are connected, and preferably, said first floats are all equidistant from the point of intersection C 0 of said vertical planes Pi of said first flexible pipes hung on the same plating of said floating support, thus forming a first circular row Ri of said first floats.
  • first floats are not all located substantially equidistant from said intersection point C 0 located beyond the edge of said floating support, this means that said first floats are not aligned with each other in a straight row parallel to the said flat edged.
  • a plurality of said second floats preferably at least the majority of said second floats, are situated at approximately the same distance L 2 from the point of intersection C 0 of said vertical planes Pi of said first flexible pipes hung on the same bordered by said floating support with which said second floats are connected, thus forming a second circular row R 2 of said second floats.
  • first floats and / or said second floats are arranged in an order including a circular row, then said first bases and / or said respective second bases are also arranged in the same order, in particular in a circular row the case applicable.
  • second flexible pipe in connection with a second float or “second flexible pipe in connection with a second base”, that said second flexible pipe and said second float or so-called second base respectively belong to the same second connection base- area.
  • the different said second floats in connection with the same said first float are not all located at the same distance from said first float and the different said second bases in connection with the same said first float, are not all located at the same distance from the point of hanging on the floating support of said second bottom-surface link corresponding.
  • second float or second base in connection with the same first float that said second bottom-surface links comprising said second floats and / or said second bases comprise said second flexible pipes supported by the same said first float.
  • said second floats form at least a second circular row R 2 of second floats and a second third circular row R ' 2 of second floats further away the 2 than said second circular row of second floats.
  • said second bases form at least a second circular row of said second bases and a third circular row of said second bases further from the floating support than said second circular row of second bases.
  • At least two said second flexible pipes passing through the same said first float are attached to chutes arranged at different heights on said first float.
  • At least two said second flexible pipes passing through the same said first float are attached to chutes disposed on opposite sides of said first float.
  • an installation according to the invention further comprises at least one nth bottom-surface bond, n being an integer at least equal to 3 comprising:
  • an upright rigid duct consisting of a riser comprising an uth vertical riser or an nth rigid catenary duct of the SCR type, the lower end of which is connected to an nth underwater pipe resting at the bottom of the sea and whose upper end is tensioned by an nth submerged submerged buoyancy element, preferably an nth end float, immersed at least 100m deep to which it is connected, and
  • each of said n-1 intermediate floats being preferably a tensioning float of at least one, preferably all, of the (nl) ths rigid conduits, respectively (nl) ths bottom-surface bonds.
  • a second or nth rigid pipe is a catenary type pipe constituted by the end of a second or respectively nth underwater pipe resting at the bottom. from the sea up to the subsurface along a chain curve, essentially in a continuously variable curve to a said second or respectively nth end float.
  • said second or nth end float at the top of a said second or nth rigid catenary-type pipe is integral and fixed rigidly to at least one other said second or nth float in connection with a said second or respectively nth vertical riser, the different second, respectively nth end floats rigidly fixed together being in connection with the same said first float or the same n-1 said intermediate floats.
  • the term "rigidly fixed” means that said two second floats are secured to each other in their movements by a rigid connection, and in particular any degree of freedom in rotation or translation of one of said second floats relative to the other is removed in the manner of a recess.
  • the installation according to the present invention thus has reduced bulk and movements and increased stability as described in WO 2007/023233.
  • This system of arrangement and cooperation of two so-called second rigid pipes constituted by two so-called second vertical risers each with a so-called second clean float at the top of the independent anchors allows on the one hand to manufacture the entire installation at sea from a laying and driving vessel and to simplify their respective installation at sea and on the other hand gives them a stability in operation by the mutual attachment of their floats, with identical movements of only the upper ends and the second floats, the minimum distance respected from the ground support points or second bases, although reduced, also contributing to the stabilization movements at the head of second risers. This allows to bring the two second floats without risk of interception between the 2 second floats in their respective movements.
  • At least two so-called second or respectively nth floats in connection with the same first float are fixed rigidly to each other and two said second or respective nth respective bases in connection with respectively said two second or nth end floats being spaced apart from each other by a distance sufficient to secure the reliability of the anchoring, in particular by a distance of at least 5 times, preferably at least 10 times the diameter of said anchors .
  • said second closest bases are located at a distance from each other of at most 50 m, preferably 25 to 50 m.
  • said bases comprise suction anchors driven into the seabed.
  • the two second vertical risers are linked at their upper end but comprise different anchors and spaced from each other, so that, in case of differential expansion due to different temperatures in each of the two vertical risers, it results in a deformation of the triangle whose vertex is the set of two second floats and whose base formed by the substantially horizontal line connecting the two said second bases.
  • the bottom-surface connection installation comprises a said second rigid pipe of the catenary type constituted by the end of a said second underwater pipe resting at the bottom of the sea going back up to in subsurface according to a chain curve essentially in a continuously variable curvature, up to a said second float.
  • the point of support and ground contact substantially variable at the discretion of the movements of the upper part of said chain, from which said second catenary duct (or SCR) back in subsurface, stabilizes the base of said chain in a limited area and thus serves as a second base.
  • said second float at the top of said second rigid catenary or SCR pipe is integral and rigidly attached to another second float in connection with another second rigid pipe, but vertical riser type on the one hand , the different second floats rigidly attached to each other being in connection with the same said first float.
  • said second floats are fixed together by fixing means located at 2 points on each second float vertically distant so as to secure the respective movements of the second two floats, preferably fixing means located in 2 points close respectively to the upper and lower ends of the cylindrical containers constituting said second floats.
  • the at least two so-called floats fixed together are inserted inside a peripheral screen of hydrodynamic shape, preferably cylindrical.
  • the hooking points of said second flexible connection lines at the upper ends respectively of the second rigid pipes are located at different heights and preferably, said second flexible connection pipes have different lengths and curvatures.
  • This configuration makes it possible to avoid the collision between the second flexible connection lines when they are animated by the effect of the swell, currents and / or the movement of the floating support.
  • the hooking points of said second flexible connection pipes at the upper ends respectively of vertical risers and SCR-type rigid ducts are substantially at the same height and the second flexible ducts are of substantially the same length, of the same curvature. , and are connected to each other to be substantially integral with each other, so as to be subject, if necessary, to synchronous movements and to avoid any interference and shock between the second flexible pipes in case of motion related to the swell, currents and / or movements of the floating support.
  • an installation according to the invention is characterized in that:
  • one end of a second or nth flexible pipe is directly connected, preferably by a system of flanges, to the upper end of a second or respectively nth vertical riser, and
  • the lower end of the second or ninth vertical riser comprises a terminal pipe element forming an inertial transition piece whose variation of inertia is such that the inertia of said terminal pipe element at its upper end is substantially identical to that of the pipe element of the running part of the second vertical riser to which it is connected, said inertia of the terminal pipe element gradually increasing to the lower end of said inertial transition piece, comprising a first fixing flange for fixing and embedding the lower end of said second or respectively nth vertical riser to a support and connection device secured to said second or respectively nth base anchored to the seabed, and an end portion of said second or respectively nth flexible pipe, on the side of its junction to the extr upper mity of said second or respectively nth riser, has a positive buoyancy, and at least the upper portion of the second or nth vertical riser also has a positive buoyancy, so that the positive buoyancy of said end portion of said second or nth flexible pipe and of said upper part of said second or
  • said terminal portion of said second or n-th flexible conduit having positive buoyancy extends over a portion of the total length of said second or n-th flexible conduit, such as the portion of said second conduit extending between said first or second flexible conduit, respectively (nl) th float and the top of said second or respectively nth vertical riser has an S-shaped configuration, with a portion of the side of said first or (nl) th float having a concave curvature in the form of a chain with a plunging chain configuration and the remaining end portion of said second flexible pipe having a convex curvature in the form of a chain inverted by its positive buoyancy, the end of said end portion of said second or respectively nth flexible pipe, at the upper end of said second or respectively nnote riser, being located preferably above and substantially in alignment with the inclined axis Z X Z of said second riser at its upper end.
  • vertical riser is used here to account for the substantially vertical theoretical position of the second or nth riser when the latter is at rest, provided that the axis of the second or nth riser can experience angular movements with respect to the vertical and move in a cone angle ⁇ 2 , the apex of which corresponds to the point of attachment of the lower end of the second or nth riser on said base.
  • the upper end of said second or ninth vertical riser may be slightly curved. Therefore, the term “second or nth flexible pipe end portion substantially in alignment with the axis ⁇ of said second or nth upper riser” that the end of the inverted chain curve of said second or nth flexible pipe is substantially tangent at the end of said second or ninth vertical riser. In any case, in continuity of variation of curvature, that is to say without singular point, in the mathematical sense.
  • inertia is meant here the moment of inertia of said inertial transition line element with respect to an axis perpendicular to the axis of said inertial transition conductor element, which reflects the bending stiffness in each planes perpendicular to the axis XX 'of symmetry of said pipe element, this moment of inertia being proportional to the product of the section of material by the square of its distance from said axis of the pipe element.
  • the slope of the curve formed by the second or nth flexible pipe is such that the inclination of its tangent relative to the axis Z X Z of the upper part of said second or nth vertical riser increases continuously and progressively since the connection point between the upper end of the second or nth vertical riser and the end of said end portion of the second or nth flexible positive buoyancy pipe, no inflection point and no bend inversion point.
  • the installation according to the present invention thus makes it possible to prevent the tensioning of the second or nth vertical riser by a second or nth surface or subsurface float, to which its upper end would be suspended, on the one hand, and, on the other hand, to avoid the connection to said second or nth flexible pipe plunging via a device of gooseneck type.
  • this type of installation confers increased stability in terms of angular variation (y 2 ) of the angle of excursion of the upper end of the second or nth vertical riser relative to a theoretical position of vertical rest, because this angular variation is reduced in practice to a maximum angle not exceeding 5 °, in practice of the order of 1 to 4 ° with the installation according to the invention, whereas, in the embodiments of the prior art, the angular excursion could reach 5 to 10 ° or more.
  • Another advantage of the present invention is that, due to this small angular variation of the upper end of the second or nth vertical riser, it is possible to implement, at its lower end, a rigid recess on a second or nth base resting at the bottom of the sea, without having recourse to a transition piece of inertia of dimension too important and therefore too expensive. It is therefore possible to avoid the implementation of a flexible hinge, in particular of the spherical flexible ball type, provided that the junction between the lower end of the second or nth riser and said recess comprises an inertial transition piece .
  • the positive buoyancy of the second or nth riser and the second or nth flexible pipe can be made in a known manner by coaxial peripheral floats surrounding said pipes, or, preferably, with respect to the second or nth rigid pipe of the vertical riser, a coating of positive buoyancy material, preferably also constituting an insulating material, such as syntactic foam, in the form of a shell enclosing said pipe.
  • Such buoyancy elements resistant to very high pressures that is to say at pressures of about lOMPa per 1000m of water, are known to those skilled in the art and are available from the BALMORAL company (UK).
  • the positive buoyancy will be distributed evenly and uniformly over the entire length of said end portion 10a of the second or n-th flexible pipe and at least said upper portion 9b of said second or n-th rigid pipe.
  • said end portion of the second or n-th flexible pipe having a positive buoyancy extends over a length of 30 to 60% of the length of the portion of second or nth flexible pipe extending between the first float and the upper end of the second or nth vertical riser, preferably about half this portion length second or nth flexible pipe.
  • an installation according to the invention is characterized in that:
  • said second or respectively nth vertical riser is connected at its lower end to at least a second or respectively nth underwater line resting at the bottom of the sea
  • said second or ninth underwater line lying at the bottom of the sea comprises a first rigid elbow pipe element secured to said second or nth base resting at the bottom of the sea and said first rigid elbow pipe element is fixedly held relative to said second or nth base, with at its end a first connecting element part, preferably a male or female element of an automatic connector, and said first fastening flange at the lower end of said inertial transition piece is fixed to a second fastening flange at the end of a second rigid elbow pipe element secured to said fixed support and connection device; on said second or n-base and rigidly and rigidly supporting said second bent rigid pipe element, whose other end comprises a second connecting element part complementary to said first connecting element part and connected to it when said support and connection device is attached to said base.
  • first rigid pipe element terminating said second or nth underwater pipe resting at the bottom of the sea with respect to said second or nth base, and the static geometry of said first and second pipe elements.
  • said first end pipe member of said bottom-lying pipe may preferably also be bent to coincide with the end of said second bent rigid pipe member and allow easy connection by a underwater automaton type ROV at the bottom of the sea.
  • the subject of the present invention is a method for operating a petroleum field using at least one installation according to the invention in which fluids are transferred between a floating support and ducts under -marines resting at the bottom of the sea, fluids comprising oil, preferably a plurality of said installations, in particular from 3 to 20 said installations according to the invention connected to the same floating support.
  • connection elements including the type automatic connectors, comprising the lock between a male part and a complementary female part, this lock being designed to be very simply at the bottom of the sea using a ROV, robot controlled from the surface, without requiring direct manual intervention of personnel.
  • FIG. 1 is a view from above of a fan-base bottom-fan connection installation according to the invention
  • FIG. 2 is a side view of two of the second bottom-surface bonds of the second bond-bonding group G3 of the bottom-surface links of FIG. 1.
  • Figure 2A is a sectional view along the XOZ plane of a said first float of said first bottom-surface connection of Figure 2 showing the passage of the three second flexible pipes.
  • FIG. 3 is a side view in the ZOY plane of the background-surface bond group G1 of FIG. 1.
  • FIG. 3A is a view in the XOZ plane of vertical risers tensioned at their upper end by floats rigidly fixed to one another and only one of which is shown in the side view of FIG. 3.
  • FIG. 3B is an alternative embodiment of the trunking arrangement for the first float of Figure 3.
  • FIG. 4 is a variant of FIG. 2 in which the second bottom-surface connection does not comprise said second head float, but a second buoyancy element consisting of a distributed buoyancy along the end portion of the second conduit. flexible link connected to the upper part of the second rigid pipe.
  • FIG. 1 there is shown in plan view a floating support 1, anchored by twelve rows of anchors and having on its side a structure lb integral with the edge of said floating support.
  • Said structure 1b supports a plurality of connection interfaces 2.2-1 to 2-8 which are connected to a plurality of first flexible conduits 3a-1 to 3a-8 and second flexible lines 4a-1 to 4a-11 being part of first and second bottom-surface bonds 3-1 to 3-8 and 4-1 to 4-11, respectively.
  • These pipes are mainly flexible pipes intended to convey crude oil, gas, or water that is injected into certain wells of the oil field. These pipes may be supplemented by umbilicals intended to control wellheads and other underwater equipment, or electric cables to provide power, for example to pumps or submarine valves.
  • Said first floats are all spaced apart from each other by the same distance ⁇ _ ⁇ and are all situated at equal distance Li from the point of intersection C 0 of the vertical planes Pi of said first flexible pipes hung on the same plating of said floating support, thus forming a first circular row Ri of said first floats.
  • first floats 3c-3,3c-5 and 3c-6 each support three so-called second flexible ducts passing through respectively three chutes fixed to each of said first floats, namely:
  • Two of said second floats 4c-7 and 4c-9 form a third circular row R ' 2 of second floats farther away L' 2 than said second circular row of second floats.
  • the two portions 4a '-j and 4a "-j second flexible pipes in connection with said second floats or said second bases are not necessarily located in the same vertical plane relative to each other and the second plunging portion of second flexible pipe 4a -j will pass through a vertical plane forming an angle diverging or converging with the vertical plane in which extends the first portion of second flexible pipe 4a'-j passing through a chute fixed on the same face of said same first float.
  • a said second rigid pipe 4b-2 is a catenary type pipe or SCR formed by the end of a second underwater pipe 4e-2 resting at the bottom of the sea up to the subsurface along a chain curve, essentially according to a continuously variable curve to a said second terminal float 4c-2.
  • Said second end float 4c-2 at the top of said second catenary-type rigid pipe 4b-2 is secured to and rigidly attached to said two second floats 4c-1 and 4c-3 in connection with the two vertical risers 4b-1 and 4b-2.
  • Said second flexible pipes 4a-1, 4a-2 and 4a-3 pass through said first float 3c-3 on a chute 6a, 6b, 6c fixed above the chute 6a supporting the flexible pipe 4a-1, the latter being at the same level and on the face opposite the chute 6b of the other two second pipes 4a-1 and 4a-3.
  • the different bottom-surface connections are installed along the edge of the floating support fan, which allows to increase the number of the fact that the connection interfaces between said second Flexible pipes and said second rigid pipes are farther away L 2 from the floating support than the connection interfaces between the first flexible pipes and the first rigid pipes situated at a distance l_i from the floating support.
  • the axis of a corridor is distant from the axis of the neighboring corridor: of a length I, at the level of the interface supports 2b-2c between the flexible pipes and the floating support 2 , and
  • the axes of said corridors extend in the vertical plane Pi containing the first flexible pipes and two corridor axes consecutive pass through the planes Pi and Pi + 1 spaced an angle ai, the different angles ai here being all of the same value, of the order of 5 to 10 °.
  • the angle a'i of the angular sector of a corridor is less than or equal to the value of the angles ai between two axes of consecutive corridors.
  • the angle of angular displacement a'i has the same vertex C 0 as the angle ai between two planes Pi and Pi + 1.
  • the angle a'i has a bisector passing through said plane Pi.
  • a ' i depends on the angular deflection angles ⁇ of the first rigid pipes or first vertical risers 3 bi with respect to their anchoring point at the bottom of the sea in a vertical plane XOZ or XOY and the height of said first rigid pipe or riser vertical 3 bi and / or water level under said first float 3ci, for a height h of first float of 1000 to 3500 m.
  • less than 5 °, preferably from 3 to 5 °, to implement spacings of first floats such that the angles ⁇ 1 have a value of 5 to 10 °.
  • Some second floats 4c-7,4c-9 and connection interfaces between second flexible pipes and second rigid pipes are connected to a third row R ' 2 similar to the second row R 2 , but slightly outwardly shifted, so as to increasing the distance between two neighboring second floats to reach a distance 13 as shown on the second link group G3 in Fig. 1, further increasing the safety distance from the dreaded impacts and interferences between the various second floats and various second flexible pipes.
  • FIG. 2 shows in side view 2 second connections, namely 4-7 and 4-8 of the group G3 of the second bottom-surface connection of FIG. 1.
  • a first ground-surface connection 3-6 consisting of a rigid riser 3b-6 connected to a first base 3d-6, for example a suction anchor, via a flexible mechanical connection capable of taking up the vertical traction forces created by the float 3c- 6 in solidarity with the upper end of said riser by means of a chain 5a.
  • the riser 3b-6 is connected in a known manner, using a gooseneck device 8, at its upper end 3b ', and at its lower end to a first submarine pipe 3e-6 resting at the bottom. from the sea 12, via an S-shaped junction conduit 5c.
  • FIG. 2A which is a side view along the axis YY 'of the first float 3c-6, the latter comprises three main chutes 6a-6b-6c intended to support said second flexible pipes 4a-7,4a. 8 and 4a-9, and a fourth smaller chute 6d for supporting electrical cables or various other umbilicals to reach the second row R 2 .
  • the different chutes 6a, 6b, 6c and 6d are supported by a support structure 6-1.
  • the two second pipes 4a-7 and 4a-8 shown in FIG. 2 are arranged on the two troughs 6a, 6c juxtaposed on the same face 7a of the float, the second flexible pipe 4a-9, not shown in FIG. FIG. 2A passing on the chute 6b on the diametrically opposite face 7b of the float 3c-6.
  • FIGS. 3, 3A and 3B there is shown in side view the group G1 of the second bonds 4-1, 4, 2,4-3 of FIG. 1 in connection with the first bottom-surface bond 3-3. wherein in the second row R2, there are three second floats 4c-1, 4c-2 and 4c-3 interconnected as previously described.
  • the two risers 4b-1, 4b-3 in FIG. 3A together form an angle ⁇ of 1 to 10 ° by the spacing L4 of their bases 4d-1, 4d-3.
  • 1 to 10 ° by the spacing L4 of their bases 4d-1, 4d-3.
  • the first rigid pipes of the first bottom-surface connections 3 can take a slope that is positive or negative depending on the effects of the swell, the current and the wind on the floating support and on each of the first floats, the dimensions of which are considerable.
  • FIG. 1 shows grouping variants of a plurality of second bottom-surface bonds, as follows:
  • the three second floats 4c-4,4c-5 and 4c-6 are substantially regularly spaced apart from one another on the second row R2 because the second flexible pipe 4a-5 is deflected in its second portion 4a-5 after passage of the chute 6 on the first float 3c-5.
  • the second flexible pipe 4a-6 extends substantially in the same plane Pb for these two portions 4a'6 and 4a-6.
  • second additional bottom-surface connections can be installed, in particular connection interfaces between the second flexible pipes and second rigid pipes arranged at rows R 2 or R ' 2 , and passing second flexible pipes at the free ducts of the first floats 3c-1, 3c-2,3c-4,3c-7 and 3c-8 .
  • the first row Ri and the second row R 2 have been described as circles of center C 0 . But it is clear that the purpose of the invention is to physically separate from each other the connection interfaces of the bottom-surface connections of the same row Ri or R 2 -R ' 2 , any rectilinear or curvilinear arrangement can be adopted for each of those rows. Similarly, it is understood that one can advantageously consider additional rows to arrange the second floats.
  • FIG. 4 there is shown an alternative embodiment in which the second rigid duct or second vertical riser 4b is tensioned not by a second float, but by a second buoyancy element consisting of an end portion 10a of the portion flexible pipe extending from the first float 3c to the upper end 4b 'of the vertical riser 4b.
  • the second buoyancy element is not a float, but a portion of flexible pipe of positive buoyancy is described in the patent application on behalf of the applicant FR-2930587 filed April 24, 2008. More specifically, the portion 10 of the second flexible connecting pipe 4a extending from the first float 3c to the upper end 4b 'of the vertical riser 4b comprises:
  • a first concave part 10b, 4a up to a substantially median point of inflection 10f, approximately half of the flexible pipe portion 10, in the form of a pipe in a plunging-pit configuration due to its negative buoyancy.
  • a convex terminal portion 10a extending from the central inflection point 10f to the end 10c of the second pipe flexible, has a positive buoyancy by a plurality of floats lOd, preferably evenly spaced along and around the convex end portion 10a of the flexible pipe.
  • the rigid steel rising pipe or "vertical riser” 4b is equipped with buoyancy means, not shown, such as semi-shells of syntactic foam distributed preferably uniformly over all or part of the length of said rigid pipe, and comprising at its lower end an inertia transition piece 14 equipped with a first fastening flange 14a at its lower end.
  • the first fastening flange 14a is fixed on a second fastening flange 15a constituting the upper part of a support and connection device 15, itself anchored on a pile 16 integral with the base 4d resting at the bottom of the sea. 12, said support device and connection 15 for connecting the lower end of the riser 4 to a 4th pipe resting at the bottom of the sea, as explained below.
  • the flexible pipe portion 10 has a variation of continuous curvature, first concave in the plunge chain configuration portion 10b, and then convex in the positive buoyancy end portion 10a with a point of inflection 10f between the two, thereby forming a S disposed in a substantially vertical plane.
  • the advantage of this flexible pipe is to allow its initial portion 10b plunging to dampen the excursions of the first risers 3b and floating support 1 so as to stabilize the end 10c of the flexible pipe connected to the second rigid pipe rising 4b .
  • the end of the portion of the floating end portion 10c of the flexible pipe carries a first fastening flange member 13 with the upper end of a rigid pipe extending from the seabed recessed at a 4d base resting at the bottom of the sea.
  • the vertical riser 4b is "tensioned" on the one hand by the buoyancy of the end portion 10a of the flexible pipe, but on the other hand and above all by floats regularly distributed at least over the upper part 4b ', preferably all along the rigid pipe, especially in the form of syntactic foam advantageously acting as both an insulation and buoyancy system.
  • floats and this syntactic foam can be distributed along and around the rigid pipe over its entire length or, preferably, only on a portion of its upper part.
  • the base 4d if it is at a depth of 2500 meters, it can be limited to coating the rigid pipe 4b of syntactic foam over a length of 1000 m from its upper end, which allows to implement a syntactic foam that must withstand less pressure than if it had to withstand pressures up to 2500 m, and therefore a radically reduced cost compared to a syntactic foam to withstand said depth of 2500 m.
  • the rigid pipe 4b according to the invention is therefore “tensioned" by a said second buoyancy element consisting in the convex end portion with positive buoyancy of said flexible pipe, but without implementation of a float surface or subsurface as in the prior art, which limits the effects of the current and the swell, and thus drastically reduces the excursion of the upper part of the vertical riser and therefore the efforts at the bottom of riser at the recess.
  • the fastening flange system 13 between the upper end of the vertical riser 4b and the flexible pipe 4a, and the connection of the fastening flanges 14a, 15a between the lower end to the inertia transition piece 14 and the support connection make sealed connections between the relevant conduits.
  • the base 4d resting at the bottom of the sea supports a first curved or curved end pipe element 5b of said underwater pipe 4c resting at the bottom of the sea.
  • This first curved or curved end pipe element 5b comprises at its end a first male or female part of an automatic connector 15b, which is disengaged laterally with respect to an orifice 16a and pile 16 passing through said base, but positioned in a fixed manner and determined with respect to the axis ZZ 'of said pile.
  • the support and connection device 15 supports a second rigid elbow pipe element 5b having at its upper end said second attachment flange 15a and at its lower end, a second complementary female or male portion of an automatic connector 15b.
  • the support and connection device 15 consists of structural elements supporting said second rigid bent pipe element 5b, said rigid structure elements also ensuring the connection between said second attachment flange 15a and a lower support plate 15d supporting face a tubular pile 16 called tubular anchoring insert.
  • the fixing system of the upper end of the rigid pipe 4b with the flexible pipe 4a, 10 and the tensioning of said pipes gives greater stability to the upper end of the rigid pipe 4b with an angular variation ⁇ not exceeding operation at 5 ° C.
  • the lower end pipe element of the rigid pipe 4b comprises a conical transition piece 14 whose inertia in cross section increases gradually from a value substantially identical to the inertia of the pipe element of the riser 4b to which it is connected, in the tapered upper part of the transition piece 14, to a value 3 to 10 times greater than the level of its lower part connected to said first fastening flange 14a.
  • inertia The coefficient of variation of inertia essentially depends on the bending moment that the vertical riser must bear at said transition piece, said moment being a function of the maximum excursion of the upper part of the rigid steel pipe 4b, thus of the angle ⁇ .
  • transition piece 14 To achieve this transition piece 14 is used high yield strength steels and in extreme cases of stress, it may be necessary to manufacture transition parts 14 of titanium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Earth Drilling (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

La présente invention concerne une installation de liaisons fond- surface comprenant une pluralité de liaisons fond-surface disposées en éventail depuis un même support flottant (1) comprenant au moins: ) un premier nombre (k)de premières liaisons fond-surface (3,3-i avec i = 1 à k), comprenant chacune: a) un premier riser,(3b,3b-i) reliée à une première conduite sous- marine (3e-i) reposant au fond de la mer et tensionnée de façon sensiblement verticale par un premier flotteur (3c-i), et10 b) une première conduite de liaison flexible (3a,3a-i)plongeante, assurant la liaison entre leditsupport flottant et ledit premier riser, et 2) un deuxième nombre (m) de deuxième liaison fond-surface (4,4-j avec j = 1 à m) comprenant:1 2a) une deuxièmeconduite rigide (4b,4b-j)reliéeà une deuxième conduite sous-marine(4e-j) reposant au fond de lamer et tensionnée par un deuxième élément de flottabilité (4c,4c-j), et 2b) une deuxièmeconduite de liaison flexible(4a,4a-j avec j= 1 à m) assurant la liaison entre leditsupport flottant (1) et ladite 20 deuxième conduite rigide, chaque dite deuxième conduite flexible passant par une goulotte (6,6a-6b) fixée à un dit premier flotteur.

Description

INSTALLATION DE LIAISONS FOND-SURFACE DISPOSEES
EN EVENTAIL
La présente invention concerne une installation de liaisons fond- surface multiples entre des conduites sous-marines reposant au fond de la mer et un support flottant en surface, comprenant une multiplicité de tours hybrides constituées d'une conduite flexible reliée à une conduite rigide montante, ou riser vertical, dont l'extrémité inférieure est solidaire d'un dispositif d'ancrage comprenant une embase reposant au fond de la mer. Le secteur technique de l'invention est plus particulièrement le domaine de la fabrication et de l'installation de colonnes montantes (« riser ») de production pour l'extraction sous-marine de pétrole, de gaz ou autre matériau soluble ou fusible ou d'une suspension de matière minérale à partir de tête de puits immergé jusqu'à un support flottant, pour le développement de champs de production installés en pleine mer au large des côtes. L'application principale et immédiate de l'invention étant dans le domaine de la production pétrolière.
Le support flottant comporte en général des moyens d'ancrage pour rester en position malgré les effets des courants, des vents et de la houle. Il comporte aussi en général des moyens de stockage et de traitement du pétrole ainsi que des moyens de déchargement vers des pétroliers enleveurs, ces derniers se présentant à intervalle régulier pour effectuer l'enlèvement de la production. L'appellation courante de ces supports flottants est le terme anglo-saxon "Floating Production Storage Offloading" (signifiant "moyen flottant de stockage, de production et de déchargement"), dont on utilise le terme abrégé "FPSO" dans l'ensemble de la description suivante.
On connaît des liaisons fond-surface d'une conduite sous-marine reposant au fond de la mer, liaison du type tour-hybride comprenant :
- un riser vertical dont l'extrémité inférieure est ancrée au fond de la mer par le biais d'une articulation flexible, et relié à une dite conduite reposant au fond de la mer, et l'extrémité supérieure est tendue par un flotteur immergé en subsurface auquel elle est reliée, et
- une conduite de liaison, en général une conduite de liaison flexible, entre l'extrémité supérieure dudit riser et un support flottant en surface, ladite conduite de liaison flexible prenant, le cas échéant, de par son propre poids la forme d'une courbe en chaînette plongeante, c'est-à- dire descendant largement en dessous du flotteur pour remonter ensuite jusqu'audit support flottant.
On connaît également des liaisons fond-surface réalisées en remontant de manière continue jusqu'en subsurface des conduites résistantes et rigides constituées d'éléments tubulaires en acier de forte épaisseur soudés ou vissés entre eux, en configuration de chaînette avec une courbure continûment variable dans toute leur longueur en suspension, communément appelés « Steel Catenary Riser » (SCR) signifiant « riser en acier en forme de chaînette » et aussi communément appelés « conduite rigide du type caténaire » ou « riser du type SCR ».
Une telle conduite caténaire peut remonter jusqu'au support flottant en surface ou seulement jusqu'à un flotteur en subsurface qui tensionne son extrémité supérieure, laquelle extrémité supérieure est alors reliée à un support flottant par une conduite de liaison flexible plongeante.
Des risers caténaires à configuration renforcée sont décrits dans WO 03/102350 de la demanderesse.
Dans WO 00/49267, on a proposé comme conduite de liaison entre le riser dont le sommet est tensionné par un flotteur immergé en surface et le support flottant, des conduites rigides de type SCR et on installe le flotteur en tête du riser à une distance plus grande de la surface notamment à au moins 300 m de la surface, de préférence au moins 500 m. Dans WO 00/49267 de la demanderesse, on a décrit une tour hybride multiple comportant un système d'ancrage avec un tendon vertical constitué soit d'un câble, soit d'une barre métallique, soit encore d'une conduite tendue à son extrémité supérieure par un flotteur. L'extrémité inférieure du tendon est fixée à une embase reposant au fond. Ledit tendon comporte des moyens de guidage répartis sur toute sa longueur à travers lesquels passe une pluralité de dits risers verticaux. Ladite embase peut être posée simplement sur le fond de la mer et rester en place par son propre poids, ou rester ancrée au moyen de piles ou tout autre dispositif propre à la maintenir en place. Dans WO 00/49267, l'extrémité inférieure du riser vertical est apte à être connectée à l'extrémité d'une manchette coudée, mobile, entre une position haute et une position basse, par rapport à ladite embase, à laquelle cette manchette est suspendue et associée à un moyen de rappel la ramenant en position haute en l'absence du riser. Cette mobilité de la manchette coudée permet d'absorber les variations de longueur du riser sous les effets de la température et de la pression. En tête du riser vertical, un dispositif de butée, solidaire de celui-ci, vient s'appuyer sur le guide support installé en tête du flotteur et maintient ainsi la totalité du riser en suspension.
La liaison avec la conduite sous-marine reposant sur le fond de la mer est en général effectuée par une portion de conduite en forme de queue de cochon ou en forme de S, ledit S étant alors réalisé dans un plan soit vertical soit horizontal, la liaison avec ladite conduite sous- marine étant en général réalisée par l'intermédiaire d'un connecteur automatique. Ainsi, il existe une grande variété de liaisons fond-surface permettant de relier des têtes de puits sous-marines à un support flottant de type FPSO et dans certains développements de champs, on relie plusieurs têtes de puits en parallèle à une même liaison fond-surface de manière à limiter l'occupation du bordé du FPSO, car chacune desdites liaisons fond-surface doit être écartée de ses voisines immédiates pour éviter toute interférence et tout choc, non seulement au niveau des flotteurs, mais aussi au niveau des conduites flexibles et des câbles électriques de liaison avec ledit FPSO. Dans certains développements de champs, on est obligé de relier chacune des tête de puits individuellement au dit FPSO et on se retrouve alors avec une très grande quantité de liaisons fond-surface que l'on ne sait alors plus installer car la longueur du bordé du FPSO est limitée et n'accepte qu'un nombre limité de liaisons fond-surface.
On cherche à mettre en œuvre un maximum de liaisons fond- surface à partir d'un même support flottant pour optimiser l'exploitation des champs pétroliers. C'est pourquoi on a proposé différents systèmes pouvant associer plusieurs risers verticaux ensemble afin de réduire l'encombrement du champ d'exploitation et pouvoir mettre en œuvre un plus grand nombre de liaisons fond-surface reliés à un même support flottant. Typiquement il est nécessaire de pouvoir installer jusqu'à 30, voire 40 liaisons fond- surface à partir d'un même support flottant.
Dans WO 00/49267, on a décrit une tour hybride multiple comportant un système d'ancrage avec un tendon vertical constitué soit d'un câble, soit d'une barre métallique, soit encore d'une conduite tendue à son extrémité supérieure par un flotteur. L'extrémité inférieure du tendon est fixée à une embase reposant au fond. Ledit tendon comporte des moyens de guidage répartis sur toute sa longueur à travers lesquels passent une pluralité de dits risers verticaux. Ladite embase peut être posée simplement sur le fond de la mer et rester en place par son propre poids, ou rester ancrée au moyen de piles ou tout autre dispositif propre à la maintenir en place. Dans WO 00/49267, l'extrémité inférieure du riser vertical est apte à être connectée à l'extrémité d'une manchette coudée, mobile, entre une position haute et une position basse, par rapport à ladite embase, à laquelle cette manchette est suspendue et associée à un moyen de rappel la ramenant en position haute en l'absence du riser. Cette mobilité de la manchette coudée permet d'absorber les variations de longueur du riser sous les effets de la température et de la pression. En tête du riser vertical, un dispositif de butée, solidaire de celui-ci, vient s'appuyer sur le guide support installé en tête du flotteur et maintient ainsi la totalité du riser en suspension. La liaison avec la conduite sous-marine reposant sur le fond de la mer est en général effectuée par une portion de conduite en forme de queue de cochon ou en forme de S, ledit S étant alors réalisé dans un plan soit vertical soit horizontal, la liaison avec ladite conduite sous- marine étant en général réalisée par l'intermédiaire d'un connecteur automatique.
Ce mode de réalisation comprenant une multiplicité de risers verticaux maintenus par une structure centrale comportant des moyens de guidage est relativement coûteux et complexe à installer. D'autre part, l'installation doit être préfabriquée à terre avant d'être remorquée en mer, puis une fois sur site, cabanée en vue d'être mise en place. En outre, sa maintenance requiert également des coûts d'exploitation relativement élevés.
Dans WO02/66786 et WO02/103153 au nom de la demanderesse, on a décrit des tours-hybrides à risers multiples avec des systèmes d'ancrage de risers verticaux aptes à recevoir 2 risers côte à côte à partir d'une même embase d'ancrage, et dont les flotteurs en tête desdits risers sont solidaires et fixés l'un à l'autre au moyen d'une structure articulée en forme de parallélogramme. Les 2 risers sont par ailleurs reliés à l'aide de colliers tubulaires fixés sur l'un des risers et relié par des bagues coulissant librement autour du deuxième riser, de sorte que les 2 risers peuvent suivre sensiblement les mêmes mouvements latéraux tout en étant relativement plus indépendants dans leurs mouvements verticaux.
En effet, lorsque l'on souhaite associer une pluralité de risers à un même support flottant, se pose le problème de l'interférence des mouvements desdits risers qui sont soumis au même mouvement que leur flotteur de tensionnement en tête sous l'effet des déplacements du support flottant en surface soumis à la houle, au vent et aux courants.
Lorsque l'on met en œuvre une multiplicité de liaisons fond-surface de type tour-hybride comprenant chacune un unique riser vertical, il est nécessaire en pratique d'espacer les différences liaisons les unes par rapport aux autres, ceci pour au moins les 2 raisons suivantes : 1- Tout d'abord les embases respectives des 2 tours hybrides lorsqu'elles sont ancrées par des ancres à succion ancrées au fond de la mer, doivent être espacées d'une distance d'au moins 5 fois, de préférence au moins 10 fois, le diamètre desdites ancres pour éviter des interférences au niveau de la solidité du sol marin et garantir un ancrage fiable, et
2- d'autre part, les flotteurs au sommet des risers sont soumis à des déplacements dans un cône dont le sommet est situé au niveau du système d'ancrage, et dont l'angle nécessite de prévoir une distance suffisante entre les différents flotteurs en tête des risers verticaux pour éviter que ceux-ci ne viennent se heurter les uns contre les autres.
Ces contraintes impliquent un étalement de la zone d'exploitation et une limitation du nombre de liaisons fond-surface pouvant être reliées sur un même support flottant, au niveau des bordés pour éviter les interférences entre les différentes liaisons.
De plus, le pétrole brut cheminant sur de très grandes distances, plusieurs kilomètres, on doit leur fournir un niveau d'isolation extrême coûteux pour, d'une part minimiser l'augmentation de viscosité qui conduirait à une réduction de la production horaire des puits, et d'autre part d'éviter le blocage du flot par dépôt de paraffine, ou formation d'hydrates dès lors que la température descend aux alentours de 30- 40°C. Ces derniers phénomènes sont d'autant plus critiques, particulièrement en Afrique de l'Ouest, que la température du fond de la mer est de l'ordre de 4°C et que les pétroles bruts sont de type paraffinique. Il est donc souhaitable que les liaisons fond-surface soient de longueurs réduites et donc que l'encombrement des différentes liaisons reliées à un même support flottant soient limités.
C'est pourquoi on cherche à fournir une installation apte à exploiter depuis un même support flottant une pluralité de liaisons fond-surface de type tour-hybride d'encombrement et mouvement réduits et qui soit aussi plus simple à poser et pouvant être fabriquée en mer depuis un navire de pose de conduite, ceci afin d'éviter une préfabrication à terre suivie d'un remorquage sur site et d'un cabanage pour la mise en place finale de l'installation.
Un but de la présente invention est donc de fournir une installation d'une grande quantité de liaisons fond-surface multiples et de types divers d'un côté d'un FPSO permettant de relier de préférence individuellement une pluralité de têtes de puits et d'installations sous- marines installées au fond de la mer à grande profondeur, c'est-à-dire au-delà de 1000m de profondeur d'eau.
Plus particulièrement encore, le problème posé selon la présente invention est donc de fournir une installation avec une multiplicité de liaisons fond-surface à partir d'un même support flottant, dont les procédés de pose et de mise en place de l'installation permettent à la fois :
- de réduire la distance d'implantation entre les différentes liaisons fond-surface, c'est-à-dire permettent d'installer une pluralité de liaisons fond-surface dans un espace le plus réduit possible ou en d'autres termes avec une emprise au sol réduite, ceci afin, entre autre, d'augmenter le nombre de liaisons fond-surface qu'il est possible d'installer le long du bordé d'un FPSO, sans que lesdites liaisons fond-surface n'interfèrent entre elles, et,
- une fabrication et mise en place aisée par fabrication et pose séquentielle des différentes conduites à partir d'un navire de pose en surface équipé d'une tour de pose en J, et enfin
- d'optimiser la mise en œuvre des moyens de flottabilité dans le cas d'une mise en place étalée dans le temps sur une longue période de temps entre la mise en place des différentes liaisons fond-surface et ce, sans qu'il soit nécessaire de connaître au départ le nombre de liaisons qui sont à poser, ni leurs caractéristiques en termes de dimensions, et de poids unitaire. En effet, lors de la phase d'ingénierie du développement d'un champ pétrolifère, le réservoir de pétrole n'est connu à ce stade que de manière incomplète, la production à plein régime impose alors bien souvent de reconsidérer, au bout de quelques années, les schémas initiaux de production et l'organisation des équipements associés. Ainsi, lors de l'installation du système initial, le nombre de liaisons fond-surface et leur organisation est défini par rapport à des besoins estimés, lesdits besoins étant de manière quasi-systématique revus à la hausse après la mise en production du champ, soit pour la récupération du pétrole brut, soit pour la nécessité d'injecter davantage d'eau dans le réservoir, soit encore pour récupérer ou réinjecter davantage de gaz. Au fur et à mesure de l'épuisement du réservoir, on est en général amené à forer de nouveaux puits pour réinjecter de l'eau ou du gaz, ou encore à forer des puits de production en de nouveaux endroits du champ, de manière à augmenter le taux de récupération global, ce qui complique d'autant l'ensemble des liaisons fond-surface reliées au bordé du FPSO.
Un autre problème posé selon la présente invention est de pouvoir réaliser et installer de telles liaisons fond-surface pour conduites sous- marines à grandes profondeurs, telles qu'au delà de 1 000 mètres par exemple, et de type comportant une tour hybride verticale et dont le fluide transporté doit être maintenu au dessus d'une température minimale jusqu'à son arrivée en surface, en réduisant au minimum les composants sujets à déperdition thermique, en évitant les inconvénients créés par l'expansion thermique propre, ou différentielle, des divers composants de ladite tour, de manière à résister aux contraintes extrêmes et aux phénomènes de fatigue cumulée sur la durée de vie de l'ouvrage, qui dépasse couramment 20 années. Un autre problème de la présente invention est aussi de fournir une installation de liaisons fond-surface multiples avec des tours hybrides dont le système d'ancrage soit d'une grande résistance et d'un faible coût, et dont les procédés de fabrication et mise en place des différents éléments constitutifs soient simplifié et également d'un faible coût, et puisse être réalisé en mer depuis un navire de pose.
Pour ce faire, la présente invention fournit, une installation de liaisons fond-surface comprenant une pluralité de liaisons fond-surface disposées en éventail depuis un même support flottant jusqu'à une pluralité de conduites sous-marines reposant au fond de la mer, lesdites liaisons fond-surface comprenant au moins :
1) un premier nombre k d'au moins 2, de préférence de 5 à 50, de préférence encore au moins 10, premières liaisons fond-surface, chaque dite première liaison fond-surface formant une première tour hybride comprenant chacune :
la) une première conduite rigide consistant en un premier riser vertical, dont l'extrémité inférieure est fixée à une première embase ancrée au fond de la mer et reliée à une première conduite sous-marine reposant au fond de la mer et dont l'extrémité supérieure est tensionnée de façon sensiblement verticale par un premier flotteur immergé en subsurface, de préférence à au moins 100m de profondeur, auquel elle est reliée, et
lb) une première conduite de liaison flexible plongeante, assurant la liaison entre ledit support flottant et l'extrémité supérieure dudit premier riser, lesdites premières conduites flexibles étant accrochées au niveau d'un bordé dudit support flottant, deux points d'accrochés dites premières conduites flexibles successives étant espacées l'une de l'autre, les différentes dites premières conduites flexibles étant de préférence régulièrement espacées d'une même distance, et deux plans verticaux virtuels passant respectivement par deux dites premières conduites de liaison flexibles successives au repos, étant disposés angulairement l'un par rapport à l'autre d'un premier angle ai avec i = 1 à k, les différents plans verticaux des différentes dites premières conduites de liaison flexibles étant en intersection sensiblement au niveau d'un même point C0 dans un plan de section horizontale, de préférence les différents angles ai étant tous de même valeur, et 2) un deuxième nombre m d'au moins 1 deuxième liaison fond-surface, chaque dite deuxième liaison fond-surface formant une deuxième tour hybride comprenant :
2a. une deuxième conduite rigide consistant en une colonne montante comprenant un deuxième riser vertical ou une deuxième conduite rigide caténaire de type SCR, dont l'extrémité inférieure est reliée à une deuxième conduite sous-marine reposant au fond de la mer et dont l'extrémité supérieure est tensionnée par un deuxième élément de flottabilité immergé en subsurface, de préférence à au moins 50m de profondeur, auquel elle est reliée, et
2b. une deuxième conduite de liaison flexible assurant la liaison entre ledit support flottant et l'extrémité supérieure de ladite deuxième conduite rigide, chaque dite deuxième conduite flexible passant par une goulotte fixée à un dit premier flotteur délimitant ainsi deux portions de deuxièmes conduite flexible plongeante, respectivement de part et d'autre dudit premier flotteur, le point d'accroché de chaque dite deuxième conduite flexible sur le dit bordé étant situé à proximité, de préférence juxtaposé contre, le point d'accroché de ladite première conduite flexible en liaison avec ledit premier flotteur supportant ladite deuxième conduite flexible.
De préférence, l'installation de liaison fond-surface selon l'invention comprend :
- au moins 2, de préférence 5 à 50, de préférence encore au moins 10 dites deuxièmes liaisons fond-surface, et
- la distance la plus courte entre un point d'accroché d'une dite deuxième conduite flexible sur le support flottant et l'extrémité supérieure de ladite deuxième conduite rigide à laquelle elle est reliée, est supérieure à la distance la plus longue entre un point d'accroché d'une dite première conduite flexible sur le support flottant et l'extrémité supérieure de ladite première conduite rigide à laquelle elle est reliée. On entend par « point d'accroché de deuxième conduite flexible située à proximité du point d'accroché de la première conduite flexible », que la distance entre le point d'accroché de la deuxième conduite flexible et le point d'accroché de la première conduite flexible est inférieure à la distance entre deux points d'accroché successifs de deux premières conduites flexibles successivement accrochées au bordé du support flottant.
On comprend que lesdits premiers flotteurs, dites premières conduites rigides et dites premières conduites flexibles sont dimensionnés en terme de flottabilité et de longueurs développées des conduites flexibles et positionnés entre eux de telle sorte que lesdits premiers angles ai-1 et ai avec i = 2 à k, sont supérieurs aux deuxièmes angles a'i de débattement angulaire latéral desdits premiers flotteurs ou dites extrémités supérieures desdites premières conduites rigides respectives, en cas de mer agitée par courant, vagues ou houle, l'angle de débattement angulaire a'i étant un angle de même sommet C0 que lesdits premiers angles ai et tel que la bissectrice de a'i passe par ledit plan vertical Pi de ladite première conduite flexible respective.
En pratique, en espaçant les points d'accroché desdites premières conduites flexibles, disposées en éventail, on crée des corridors formant des secteurs angulaires au sein desquels les différents éléments de première liaison fond-surface et deuxième liaison fond-surface ne risquent pas d'heurter les éléments d'une autre dite première liaison fond-surface et/ou autre dite deuxième liaison fond-surface. La présente invention est particulièrement avantageuse en ce qu'elle permet de tirer partie de la mise en œuvre desdits premiers flotteurs pour servir de support intermédiaire à desdites deuxièmes conduites flexibles plus longues que lesdites premières conduites flexibles et ainsi de réduire la tension horizontale générée par ladite deuxième conduite flexible au niveau de l'extrémité supérieure de ladite deuxième conduite rigide, et ce sans augmenter sensiblement les tension horizontales au niveau dudit premier flotteur, car celles-ci s'équilibrent. Or, les tensions horizontales générées par lesdites conduites flexibles au niveau des extrémités supérieures des conduites rigides et au niveau des flotteurs auxquelles elles sont reliées sont à l'origine des mouvements, embardées et débattements latéraux desdites extrémités supérieures de conduites rigides, en cas de mer agitée.
On rappelle à ce propos que la fonction essentielle des conduites flexibles plongeantes est d'absorber au moins en partie les mouvements des extrémités supérieures de conduites rigides auxquelles une de leurs extrémités est reliée et/ou les mouvements de support flottant auquel leur autre extrémité est reliée en découplant mécaniquement les mouvements respectifs des extrémités supérieures de conduites rigides auxquelles elles sont reliées et des supports flottants auxquels elles sont également reliées à leur autre extrémité.
Un autre avantage de ce type d'installation est de :
- tolérer un plus grand débattement latéral des extrémités supérieures desdites deuxièmes conduites rigides compte tenu de leur plus grand éloignement du support flottant par rapport aux extrémités supérieures desdites premières conduites rigides, et/ou
- permettre de mettre en œuvre une pluralité de deuxièmes conduites rigides reliées à une pluralité de deuxièmes conduites flexibles fixées à un même premier flotteur.
On comprend que les premières portions desdites deuxièmes conduites flexibles s'étendant entre le support flottant et ledit premier flotteur sont situées au-dessus desdites premières conduites flexibles dans la mesure où ledit premier flotteur est situé au-dessus de l'extrémité supérieure de ladite première conduite rigide à laquelle est reliée une extrémité de ladite conduite flexible.
De façon connue, une dite conduite de liaison flexible prend de par son propre poids la forme d'une courbe en chaînette plongeante, c'est-à- dire descendant largement en dessous de ses points d'accroché à chaque extrémité avec respectivement le support flottant et l'extrémité supérieure de la conduite rigide à laquelle elle est reliée, pour autant que la longueur de ladite conduite flexible soit supérieure à la distance entre son point d'accroché au support flottant et l'extrémité supérieure de ladite conduite rigide à laquelle elle est reliée. En effet, avantageusement ledit premier flotteur, de préférence chaque dit premier flotteur supporte au moins deux dites deuxièmes conduites flexibles passant de préférence par respectivement au moins deux dites goulottes fixées au même dit premier flotteur.
Avantageusement, ladite deuxième conduite rigide consiste en un deuxième riser vertical, dont l'extrémité inférieure est fixée à une deuxième embase ancrée au fond de la mer et reliée à une dite deuxième conduite sous-marine reposant au fond de la mer et dont l'extrémité supérieure est tensionnée de façon sensiblement verticale par un deuxième flotteur immergé en subsurface, de préférence à au moins 50m de profondeur, auquel elle est reliée.
De préférence, la distance entre le support flottant et la plus proche desdites deuxièmes embases est supérieure à la distance entre ledit support flottant et la plus éloignée desdites premières embases.
Avantageusement, lesdits premiers flotteurs ne sont pas situés à égale distance d'un même bordé plat dudit support flottant auquel les extrémités desdites premières conduites flexibles sont reliées, et de préférence, lesdits premiers flotteurs sont tous situés à égale distance l_i du point d'intersection C0 desdits plans verticaux Pi desdites premières conduites flexibles accrochées sur un même bordé dudit support flottant, formant ainsi une première rangée circulaire Ri de dits premiers flotteurs.
On comprend que si lesdits premiers flotteurs ne sont pas situés tous sensiblement à égale distance dudit point d'intersection C0 situé au- delà du bordé dudit support flottant, cela signifie que lesdits premiers flotteurs ne sont pas alignés entre eux en rangée rectiligne parallèle au dit bordé plat. De préférence, qu'une pluralité de dits deuxièmes flotteurs, de préférence au moins la majorité desdits deuxièmes flotteurs, sont situés sensiblement à une même distance L2 du point d'intersection C0 desdits plans verticaux Pi desdites premières conduites flexibles accrochées sur un même bordé dudit support flottant avec lesquelles lesdits deuxièmes flotteurs sont en liaison, formant ainsi une deuxième rangée circulaire R2 de dits deuxièmes flotteurs.
On comprend que si lesdits premiers flotteurs et/ou dits deuxièmes flotteurs sont disposés selon un ordre notamment une rangée circulaire, alors lesdites premières embases et/ou dites deuxièmes embases respectives correspondantes sont également rangées selon un même ordre, notamment selon une rangée circulaire le cas échéant.
On entend ici par « deuxième conduite flexible en liaison avec un deuxième flotteur » ou « deuxième conduite flexibles en liaison avec une deuxièmes embase », que ladite deuxième conduite flexible et ledit deuxième flotteur ou respectivement dite deuxième embase appartiennent à une même deuxième liaison fond-surface.
De préférence encore, les différents dits deuxièmes flotteurs en liaison avec un même dit premier flotteur ne sont pas situés tous à une même distance dudit premier flotteur et les différentes dites deuxièmes embases en liaison avec un même dit premier flotteur, ne sont pas toutes situés à une même distance du point d'accroché sur le support flottant de ladite deuxième liaison fond-surface correspondante.
On entend ici par « deuxième flotteur ou deuxième embase en liaison avec un même premier flotteur » que lesdites deuxièmes liaisons fond-surface comprenant lesdits deuxièmes flotteurs et/ou dites deuxièmes embases comprennent desdites deuxièmes conduites flexibles supportées par un même dit premier flotteur.
De préférence encore, lesdits deuxièmes flotteurs forment au moins une deuxième rangée circulaire R2 de deuxièmes flotteurs et une troisième rangée circulaire R'2 de deuxièmes flotteurs plus éloignée L'2 que ladite deuxième rangée circulaire de deuxièmes flotteurs.
On comprend que de la même manière, lesdites deuxièmes embases forment au moins une deuxième rangée circulaire de dites deuxièmes embases et une troisième rangée circulaire de dites deuxièmes embases plus éloignée du support flottant que ladite deuxième rangée circulaire de deuxièmes embases.
Avantageusement encore, moins deux dites deuxièmes conduites flexibles passant par un même dit premier flotteur sont fixées à des goulottes disposées à des hauteurs différentes sur ledit premier flotteur.
On comprend que cette disposition permet d'éviter les interférences entre deux conduites flexibles proches l'une de l'autre en cas d'agitation.
Avantageusement encore, au moins deux dites deuxièmes conduites flexibles passant par un même dit premier flotteur sont fixées à des goulottes disposées sur des faces opposées dudit premier flotteur.
Plus particulièrement, une installation selon l'invention comprend en outre au moins une nième liaison fond-surface, n étant un entier au moins égal à 3 comprenant :
a) une nième conduite rigide consistant en une colonne montante comprenant un nième riser vertical ou une nième conduite rigide caténaire de type SCR, dont l'extrémité inférieure est reliée à une nième conduite sous-marine reposant au fond de la mer et dont l'extrémité supérieure est tensionnée par un nième élément de flottabilité immergé en subsurface, de préférence un nième flotteur terminal, immergé au moins à 100m de profondeur auquel elle est reliée, et
b) une nième conduite de liaison flexible assurant la liaison entre le support flottant et l'extrémité supérieure de ladite nième conduite rigide, chaque dite nième conduite flexible passant par n-1 goulottes fixées respectivement à n-1 flotteurs intermédiaire immergés en subsurface délimitant ainsi n portions plongeantes de dites nième conduite flexible, chacun desdits n-1 flotteurs intermédiaires étant de préférence un flotteur de tensionnement d'au moins une, de préférence de la totalité, des (n-l)ièmes conduites rigides, de respectivement (n-l)ièmes liaisons fond-surface. On comprend que la liaison fond-surface d'ordre n-1 correspond à ladite première liaison fond-surface et la liaison fond-surface d'ordre n-1 correspond à une n-lième liaison fond-surface.
Dans un mode de réalisation particulier, une dite deuxième ou nième conduite rigide, n étant un entier au moins égal à 3, est une conduite de type caténaire constituée par l'extrémité d'une deuxième ou respectivement nième conduite sous-marine reposant au fond de la mer remontant jusqu'en subsurface selon une courbe en chaînette, essentiellement selon une courbe continûment variable jusqu'à un dit deuxième ou respectivement nième flotteur terminal. De préférence, ledit deuxième ou nième flotteur terminal au sommet d'une dite deuxième ou nième conduite rigide de type caténaire est solidaire et fixée rigidement à au moins un autre dit deuxième ou nième flotteur en liaison avec un dit deuxième ou respectivement nième riser vertical, les différents deuxièmes, respectivement nièmes flotteurs terminaux fixés rigidement ensemble étant en liaison avec un même dit premier flotteur ou les mêmes n-1 dits flotteurs intermédiaires.
On entend ici par « fixé rigidement » que les 2 dits deuxièmes flotteurs sont rendus solidaires entre eux dans leurs mouvements par une liaison rigide, et qu'en particulier tout degré de liberté en rotation ou translation de l'un desdits deuxièmes flotteurs par rapport à l'autre est supprimé à la manière d'un encastrement.
L'installation selon la présente invention présente ainsi un encombrement et des mouvements réduits et une stabilité accrue comme décrit dans WO 2007/023233. Ce système de disposition et coopération de deux dites deuxièmes conduites rigides constituées de deux dits deuxièmes risers verticaux avec chacun un dit deuxième flotteur propre au sommet des ancrages indépendants, permet d'une part de fabriquer toute l'installation en mer depuis un navire de pose et de conduite et de simplifier leur pose respective en mer et d'autre part leur confère une stabilité en opération de par la fixation mutuelle de leurs flotteurs, avec des mouvements identiques des seules extrémités supérieures et des deuxièmes flotteurs, l'écart minimal respecté des points d'appui au sol ou deuxièmes embases, bien que réduit, contribuant aussi à la stabilisation des mouvements en tête de deuxièmes risers. Ceci permet de rapprocher les deux deuxièmes flotteurs sans risquer d'entrechoquement entre les 2 deuxièmes flotteurs dans leurs mouvements respectifs.
De préférence, Plus particulièrement, au moins deux dits deuxièmes ou respectivement nièmes flotteurs en liaison avec un même premier flotteur sont fixés rigidement entre eux l'un à l'autre et deux dites deuxièmes ou respectivement nièmes embases correspondantes en liaison avec respectivement les deux dits deuxièmes ou nièmes flotteurs terminaux étant espacées l'une de l'autre d'une distance suffisante pour sécuriser la fiabilité de l'ancrage, notamment d'une distance d'au moins 5 fois, de préférence au moins 10 fois le diamètre desdites ancres.
De préférence, lesdites deuxièmes embases les plus proches sont situées à une distance l'une de l'autre d'au plus 50m, de préférence 25 à 50m.
Plus particulièrement, lesdites embases comprennent des ancres à succion enfoncées dans le fond de la mer.
Ainsi, les deux deuxièmes risers verticaux sont liées à leur extrémité supérieure mais comprennent des ancrages différents et espacés l'un de l'autre, de sorte que, en cas de dilatation différentielle due à des températures différentes dans chacun des deux risers verticaux, il en résulte une déformation du triangle dont le sommet est l'ensemble des deux deuxièmes flotteurs et dont la base constituée par la droite sensiblement horizontale reliant les deux dites deuxièmes embases.
Dans un mode de réalisation, l'installation de liaison fond-surface selon l'invention comprend une dite deuxième conduite rigide du type caténaire constituée par l'extrémité d'une dite deuxième conduite sous- marine reposant au fond de la mer remontant jusqu'en subsurface selon une courbe en chaînette essentiellement selon une courbure continûment variable, jusqu'à un dit deuxième flotteur. Dans ce mode de réalisation, le point d'appui et de contact au sol, sensiblement variable au gré des mouvements de la partie haute de ladite chaînette, à partir duquel ladite deuxième conduite caténaire (ou SCR) remonte en subsurface, stabilise la base de ladite chaînette dans une zone limitée et fait ainsi office de deuxième embase.
Dans ce mode de réalisation, de préférence, ledit deuxième flotteur au sommet de ladite deuxième conduite rigide caténaire ou SCR est solidaire et fixé rigidement à un autre deuxième flotteur en liaison avec une autre deuxième conduite rigide, mais de type riser vertical d'une part, les différents deuxièmes flotteurs fixés rigidement les uns aux autres étant en liaison avec un même dit premier flotteur. Dans ce mode de réalisation, c'est ledit deuxième riser vertical qui stabilise ladite deuxième conduite rigide de type SCR sans nécessiter que le sommet de cette conduite de type SCR soit stabilisée par un câble ou tirant ancré au fond de la mer.
Dans un mode préféré de réalisation, lesdits deuxièmes flotteurs sont fixés entre eux par des moyens de fixation situés au niveau de 2 points sur chaque deuxième flotteur distants verticalement de manière à solidariser les mouvements respectifs des 2 deuxièmes flotteurs, de préférence des moyens de fixation situés en 2 points proches respectivement des extrémités supérieure et inférieure des bidons cylindriques constituant lesdits deuxièmes flotteurs. Avantageusement encore, les au moins deux dits flotteurs fixés ensemble sont insérés à l'intérieur d'un écran périphérique de forme hydrodynamique, de préférence cylindrique.
Pour relier les conduites flexibles auxdites conduite rigide ou riser on intercale des dispositifs de type col de cygne connu de l'homme de l'art et dont un exemple amélioré est décrit dans FR 2 809 136 au nom de la demanderesse.
Dans une variante avantageuse de réalisation, les points d'accroché desdites deuxièmes conduites de liaison flexibles aux extrémités supérieures respectivement des deuxièmes conduites rigides sont situés à des hauteurs différentes et de préférence, lesdites deuxièmes conduites de liaison flexibles ont des longueurs et des courbures différentes.
Cette configuration permet d'éviter le choc entre les deuxièmes conduites de liaison flexibles lorsqu'elles sont animées de mouvement sous l'effet de la houle, de courants et/ou du mouvement du support flottant.
Dans une autre variante de réalisation, les points d'accroché desdites deuxièmes conduites de liaison flexibles aux extrémités supérieures respectivement des risers verticaux et conduites rigides de type SCR sont sensiblement à même hauteur et les deuxièmes conduites flexibles sont sensiblement de même longueur, de même courbure, et sont reliées l'une à l'autre pour être sensiblement solidaires l'une de l'autre, de manière à être soumis le cas échéant, à des mouvements synchrones et éviter toute interférence et choc entre les deuxièmes conduites flexibles en cas de mouvement lié à la houle, aux courants et/ou aux mouvements du support flottant.
Dans un mode de réalisation, une installation selon l'invention est caractérisée en ce que :
- une extrémité d'une dite deuxième ou nième conduite flexible est directement raccordée, de préférence par un système de brides, à l'extrémité supérieure d'un deuxième ou respectivement nième riser vertical, et
- l'extrémité inférieure du deuxième ou nième riser vertical comprend un élément de conduite terminal formant une pièce de transition d'inertie dont la variation de l'inertie est telle que l'inertie dudit élément de conduite terminal, à son extrémité supérieure, soit sensiblement identique à celle de l'élément de conduite de la partie courante du deuxième riser vertical auquel elle est reliée, ladite inertie de l'élément de conduite terminal augmentant progressivement jusqu'à l'extrémité inférieure de ladite pièce de transition d'inertie, comprenant une première bride de fixation permettant la fixation et l'encastrement de l'extrémité inférieure dudit deuxième ou respectivement nième riser vertical à un dispositif de support et de raccordement solidaire de ladite deuxième ou respectivement nième embase ancrée au fond de la mer, et - une partie terminale de ladite deuxième ou respectivement nième conduite flexible, du coté de sa jonction à l'extrémité supérieure dudit deuxième ou respectivement nième riser, présente une flottabilité positive, et au moins la partie supérieure du deuxième ou nième riser vertical présente également une flottabilité positive, de sorte que les flottabilités positives de ladite partie terminale de ladite deuxième ou nième conduite flexible et de ladite partie supérieure dudit deuxième ou nième riser vertical permettent le tensionnement dudit deuxième ou nième riser en position sensiblement verticale et l'alignement ou la continuité de courbure entre l'extrémité de ladite partie terminale de ladite deuxième ou nième conduite flexible et la partie supérieure dudit deuxième ou nième riser vertical au niveau de leur raccordement, ladite flottabilité positive étant apportée par une pluralité de flotteurs périphériques coaxiaux, régulièrement espacés et/ou un revêtement continu en matériau de flottabilité positive, et
- ladite partie terminale de ladite deuxième ou nième conduite flexible présentant une flottabilité positive, s'étend sur une partie de la longueur totale de ladite deuxième ou nième conduite flexible, telle que la portion de dite deuxième conduite s'étendant entre ledit premier ou respectivement (n-l)ième flotteur et le sommet dudit deuxième ou respectivement nième riser vertical présente une configuration en S, avec une partie du côté dudit premier ou (n-l)ième flotteur présentant une courbure concave en forme de chaînette à configuration de chaînette plongeante et la partie terminale restante de ladite deuxième conduite flexible présentant une courbure convexe en forme de chaînette inversée de par sa flottabilité positive, l'extrémité de ladite partie terminale de ladite deuxième ou respectivement nième conduite flexible, au niveau de l'extrémité supérieure dudit deuxième ou respectivement nième riser, étant située de préférence au dessus et sensiblement dans l'alignement de l'axe incliné ZXZ dudit deuxième riser à son extrémité supérieure.
On utilise ici le terme "riser vertical" pour rendre compte de la position théorique sensiblement verticale du deuxième ou nième riser lorsque celui-ci est au repos étant entendu que l'axe du deuxième ou nième riser peut connaître des mouvements angulaires par rapport à la verticale et se mouvoir dans un cône d'angle γ2 dont le sommet correspond au point de fixation de l'extrémité inférieure du deuxième ou nième riser sur ladite embase. L'extrémité supérieure dudit deuxième ou nième riser vertical peut être légèrement incurvée. On entend donc par « partie terminale de deuxième ou nième conduite flexible sensiblement dans l'alignement de l'axe ΖιΖΊ dudit deuxième ou nième riser supérieur » que l'extrémité de la courbe de chaînette inversée de ladite deuxième ou nième conduite flexible est sensiblement tangente à l'extrémité dudit deuxième ou nième riser vertical. En tout état de cause, en continuité de variation de courbure, c'est-à-dire sans point singulier, au sens mathématique.
On entend ici par "inertie", le moment d'inertie dudit élément de conduite de transition d'inertie par rapport à un axe perpendiculaire à l'axe dudit élément de conduite de transition d'inertie, lequel reflète la raideur en flexion dans chacun des plans perpendiculaires à l'axe XX' de symétrie dudit élément de conduite, ce moment d'inertie étant proportionnel au produit de la section de matière par le carré de son éloignement par rapport au dit axe de l'élément de conduite. On entend par "continuité de courbure" entre l'extrémité supérieure du deuxième riser vertical et la partie de la deuxième conduite flexible présentant une flottabilité positive, que ladite variation de courbure ne présente pas de point singulier, tel une variation brusque de l'angle d'inclinaison de sa tangente ou un point d'inflexion.
De préférence, la pente de la courbe formée par la deuxième ou nième conduite flexible est telle que l'inclinaison de sa tangente par rapport à l'axe ZXZ de la partie supérieure dudit deuxième ou nième riser vertical augmente continûment et progressivement depuis le point de raccordement entre l'extrémité supérieure du deuxième ou nième riser vertical et l'extrémité de ladite partie terminale de la deuxième ou nième conduite flexible de flottabilité positive, sans point d'inflexion et sans point d'inversion de courbure.
L'installation selon la présente invention permet donc d'éviter le tensionnement du deuxième ou nième riser vertical par un deuxième ou nième flotteur en surface ou subsurface, auquel son extrémité supérieure serait suspendue, d'une part, et, d'autre part, d'éviter la liaison à ladite deuxième ou nième conduite flexible plongeante par l'intermédiaire d'un dispositif de type col de cygne. Il en résulte non seulement une plus grande fiabilité intrinsèque en termes de résistance mécanique dans le temps de la liaison entre le deuxième ou nième riser vertical et la deuxième ou nième conduite flexible, car les dispositifs de type col de cygne sont fragiles. Mais surtout, ce type d'installation confère une stabilité accrue en termes de variation angulaire (y2) de l'angle d'excursion de l'extrémité supérieure du deuxième ou nième riser vertical par rapport à une position théorique de repos vertical, car cette variation angulaire est réduite en pratique à un angle maximal ne dépassant pas 5°, en pratique de l'ordre de 1 à 4° avec l'installation selon l'invention, alors que, dans les modes de réalisation de la technique antérieure, l'excursion angulaire pouvait atteindre 5 à 10°, voire plus.
Un autre avantage de la présente invention tient en ce que, du fait de cette faible variation angulaire de l'extrémité supérieure du deuxième ou nième riser vertical, il est possible de mettre en œuvre, au niveau de son extrémité inférieure, un encastrement rigide sur une deuxième ou nième embase reposant au fond de la mer, sans avoir recours à une pièce de transition d'inertie de dimension trop importante et donc trop coûteuse. Il est donc possible d'éviter la mise en œuvre d'une articulation flexible, notamment du type rotule sphérique flexible, pour autant que la jonction entre l'extrémité inférieure du deuxième ou nième riser et ledit encastrement comprenne une pièce de transition d'inertie.
Les flottabilités positives du deuxième ou nième riser et de la deuxième ou nième conduite flexible peuvent être apportées de façon connue par des flotteurs périphériques coaxiaux entourant lesdites conduites, ou, de préférence, s'agissant de la deuxième ou nième conduite rigide du riser vertical, d'un revêtement en matériau de flottabilité positive, de préférence constituant également un matériau isolant, tel que de la mousse syntactique, sous forme de coquille enveloppant ladite conduite. De tels éléments de flottabilité résistant à de très fortes pressions, c'est-à-dire à des pressions d'environ lOMPa par tranche de 1000m d'eau, sont connues de l'homme de l'art et sont disponibles auprès de la Société BALMORAL (UK). Plus particulièrement, la flottabilité positive sera répartie régulièrement et uniformément sur l'ensemble de la longueur de ladite partie terminale 10a de la deuxième ou nième conduite flexible et d'au moins ladite partie supérieure 9b de ladite deuxième ou nième conduite rigide. De préférence, pour donner le maximum de flexibilité à l'ensemble de la liaison fond-surface, ladite partie terminale de la deuxième ou nième conduite flexible présentant une flottabilité positive s'étend sur une longueur de 30 à 60% de la longueur de la portion de deuxième ou nième conduite flexible s'étendant entre le premier flotteur et l'extrémité supérieure du deuxième ou nième riser vertical, de préférence environ la moitié de cette longueur de portion de deuxième ou nième conduite flexible. Plus particulièrement, pour donner à l'ensemble de la liaison fond- surface la souplesse appropriée, ladite flottabilité positive exercée sur la partie terminale de la deuxième ou nième conduite flexible et au moins la partie supérieure dudit deuxième ou nième riser, doit exercer une tension verticale sur la fondation de la deuxième embase à l'extrémité inférieure de ladite deuxième ou nième conduite rigide en fonction de la profondeur d'eau selon la formulation suivante : F = kH, F étant ladite tension verticale exprimée en tonnes, H étant ladite profondeur exprimée en mètres, et k étant un facteur compris entre 0.15 et 0.05, de préférence égal à environ 0.1.
Si la flottabilité positive globale est répartie uniformément et régulièrement sur toute la longueur de la deuxième ou nième conduite rigide et sur une dite partie terminale de deuxième ou nième conduite flexible, ladite flottabilité positive devant permettre d'obtenir une poussée résultante verticale de 50 à 150 kg/m, c'est-à-dire que ladite flottabilité requise devra correspondre au poids apparent de ladite deuxième ou nième conduite rigide et ladite partie terminale de deuxième conduite ou nième flexible additionnée d'une flottabilité additionnelle de 50 à 150 kg/m. Plus particulièrement encore, une installation selon l'invention est caractérisée en ce :
- ledit deuxième ou respectivement nième riser vertical est relié à son extrémité inférieure à au moins une deuxième ou respectivement nième conduite sous-marine reposant au fond de la mer, et - ladite deuxième ou nième conduite sous-marine reposant au fond de la mer comprend un premier élément de conduite rigide coudé terminal solidaire de ladite deuxième ou nième embase reposant au fond de la mer et ledit premier élément de conduite rigide coudé terminal est maintenu fixement par rapport à ladite deuxième ou nième embase, avec, à son extrémité, une première partie d'élément de raccordement, de préférence un élément mâle ou femelle d'un connecteur automatique, et - ladite première bride de fixation à l'extrémité inférieure de ladite pièce de transition d'inertie est fixée à une deuxième bride de fixation à l'extrémité d'un deuxième élément de conduite rigide coudé, solidaire dudit dispositif de support et de raccordement fixé sur ladite deuxième ou nième embase et supportant, de façon fixe et rigide, ledit deuxième élément de conduite rigide coudé, dont l'autre extrémité comprend une deuxième partie d'élément de raccordement complémentaire de ladite première partie d'élément de raccordement et raccordée à celle-ci lorsque ledit dispositif de support et de raccordement est fixé à ladite embase. On comprend que la géométrie statique dudit premier élément de conduite rigide en terminaison de ladite deuxième ou nième conduite sous-marine reposant au fond de la mer, par rapport à ladite deuxième ou nième embase, et la géométrie statique desdits premier et deuxième éléments de conduite rigide coudé, par rapport audit dispositif de support et raccordement fixé à ladite deuxième embase, permettent de positionner les extrémités respectives desdits premier et deuxième éléments de conduites rigides, de manière à faciliter le raccordement des parties complémentaires de connecteurs automatiques une fois que le dispositif de support est raccordement est fixé à ladite embase. Dans ce mode de réalisation, ledit premier élément de conduite terminal de ladite conduite reposant au fond de la mer peut, de préférence, être également coudé pour bien coïncider avec l'extrémité dudit deuxième élément de conduite rigide coudé et permettre un raccordement aisé par un automate sous-marin de type ROV au fond de la mer.
Selon un autre aspect plus particulier la présente invention, a pour objet un procédé d'exploitation de champ de pétrole à l'aide d'au moins une installation selon l'invention dans lequel on transfert des fluides entre un support flottant et des conduites sous-marines reposant au fond de la mer, fluides comprenant du pétrole, de préférence une pluralité de dites installation, notamment de 3 à 20 dites installation selon l'invention reliées au même support flottant. De façon connue, pour relier entre elles les différentes conduites on utilise des éléments de raccordement, notamment du type connecteurs automatiques, comprenant le verrouillage entre une partie mâle et une partie femelle complémentaire, ce verrouillage étant conçu pour se faire très simplement au fond de la mer à l'aide d'un ROV, robot commandé depuis la surface, sans nécessiter une intervention directe manuelle de personnel.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière de la description détaillée qui va suivre, en référence aux figures suivantes dans lesquelles :
- La figure 1 est une vue de dessus d'une installation de liaison fond-surface en éventail selon l'invention,
- La figure 2 est une vue de côté de deux des secondes liaisons fond-surface du groupe G3 de liaison de secondes liaisons fond-surface de la figure 1.
- La figure 2A est une vue en coupe selon le plan XOZ d'un dit premier flotteur de ladite première liaison fond-surface de la figure 2 montrant le passage des trois deuxièmes conduites flexibles.
- La figure 3 est une vue de côté dans le plan ZOY du groupe Gl de liaison fond-surface de la figure 1.
- La figure 3A est une vue dans le plan XOZ de risers verticaux tensionnés à leur extrémité supérieure par des flotteurs fixés l'un à l'autre rigidement et dont un seul est représenté sur la vue de côté de la figure 3.
- La figure 3B est une variante de réalisation d'agencement des goulottes pour le premier flotteur de la figure 3.
- La figure 4 est une variante de la figure 2 dans laquelle la deuxième liaison fond-surface ne comporte pas de dit deuxième flotteur en tête, mais un deuxième élément de flottabilité consistant en une flottabilité répartie le long de la partie terminale de la seconde conduite de liaison flexible connectée à la partie supérieure de la deuxième conduite rigide.
Sur la figure 1, on a représenté en vue de dessus un support flottant 1, ancré par douze lignes d'ancres le et présentant sur sa face latérale une structure lb solidaire du bordé la dudit support flottant. Ladite structure lb supporte une pluralité d'interfaces de connexion 2,2-1 à 2-8 auxquels viennent se raccorder une pluralité de premières conduites flexibles 3a-l à 3a-8 et deuxièmes conduites flexibles 4a-l à 4a-ll faisant partie des premières et respectivement deuxièmes liaisons fond- surface 3-1 à 3-8 et respectivement 4-1 à 4-11. Ces conduites sont principalement des conduites flexibles destinées à véhiculer du pétrole brut, du gaz, ou encore de l'eau que l'on injecte dans certains puits du champ pétrolier. A Ces conduites peuvent s'ajouter des ombilicaux destinés à piloter les têtes de puits et autres équipements sous-marins, ou encore des câbles électriques pour fournir de la puissance, par exemple à des pompes ou des vannes sous-marines.
Plus précisément, sur la figure 1 on décrit une installation de liaisons fond-surface qui comprend une pluralité de liaisons fond-surface 3-i avec i = 1 à k et k = 8, 4-j avec j = 1 à m et m = 11, disposées en éventail depuis un même support flottant 1 jusqu'à une pluralité de conduites sous-marines 3e-i avec i = 1 à k, 4e-j avec j = 1 à m reposant au fond de la mer 12, lesdites liaisons fond-surface comprenant au moins :
1) un premier nombre k = 8, premières liaisons fond-surface 3, 3-i avec i = 1 à 8, chaque dite première liaison fond-surface formant une première tour hybride comprenant chacune :
la) une première conduite rigide consistant en un premier riser vertical 3b,3b-i avec i = 1 à k dont l'extrémité inférieure est fixée à une première embase 3d-i avec i = 1 à k ancrée au fond de la mer et reliée à une première conduite sous-marine 3e-i avec i = 1 à k reposant au fond de la mer et dont l'extrémité supérieure 3b' est tensionnée de façon sensiblement verticale par un premier flotteur 3c-i avec i = 1 à k immergé en subsurface, de préférence à au moins 50m de profondeur, auquel elle est reliée par une chaîne 5a, et
lb) une première conduite de liaison flexible 3a,3a-i avec i = 1 à k plongeante, assurant la liaison entre ledit support flottant et l'extrémité supérieure dudit premier riser, lesdites premières conduites flexibles étant accrochées au niveau 2,2-i avec i = 1 à k d'un bordé la dudit support flottant, deux points d'accrochés dites premières conduites flexibles successives étant régulièrement espacées d'une même distance I, et deux plans verticaux virtuels Pi,Pi+i avec i = 1 à (k-1) passant respectivement par deux dites premières conduites de liaison flexibles 3a-i,3a-(i + l) avec i = 1 à k-1 successives au repos, étant disposés angulairement régulièrement l'un par rapport à l'autre d'un premier angle ai avec i = 1 à k-1 d'une même valeur entre les différents ai, les différents plans verticaux Pi étant en intersection sensiblement au niveau d'un même point C0 dans un plan de section horizontale, et
un deuxième nombre m de deuxième liaison fond-surface 4,4-j avec j = 1 à m et m = 11, et dite deuxième liaison fond-surface formant une deuxième tour hybride comprenant :
a. une deuxième conduite rigide (4b,4b-j avec j = 1 à 11) consistant en une colonne montante comprenant un deuxième riser (4b-l,4b- 2) vertical, dont l'extrémité inférieure est fixée à une deuxième embase 4d-j ancrée au fond de la mer 12 et reliée à une deuxième conduite sous-marine 4e-j avec j = 1 à m reposant au fond de la mer et dont l'extrémité supérieure 4b' est tensionnée par un deuxième flotteur 4c,4c-j avec j = 1 à m immergé en subsurface, de préférence à au moins 50m de profondeur, auquel elle est reliée, et
b. une deuxième conduite de liaison flexible 4a,4a-j avec j = 1 à m assurant la liaison entre ledit support flottant 1 et l'extrémité supérieure 4b' de ladite deuxième conduite rigide, chaque dite deuxième conduite flexible passant par une goulotte 6,6a-6b-6c fixée à un dit premier flotteur délimitant ainsi deux portions 4a'- j,4a"-j avec j = 1 à m de deuxièmes conduite flexible plongeante, respectivement de part et d'autre dudit premier flotteur, le point d'accroché de chaque dite deuxième conduite flexible étant situé juxtaposé contre le point d'accroché de ladite première conduite flexible en liaison avec ledit premier flotteur supportant ladite deuxième conduite flexible.
Lesdits premiers flotteurs sont tous espacés les uns des autres d'une même distance Ι_Ί et sont tous situés à égale distance Li du point d'intersection C0 des plans verticaux Pi desdites premières conduites flexibles accrochées sur le même bordé dudit support flottant, formant ainsi une première rangée circulaire Ri de dits premiers flotteurs.
Neuf desdits deuxièmes flotteurs 4c-l à 4c-6,4c-8 et 4c-10 à 4c-ll, sont situés sensiblement à une même distance L2 du point d'intersection C0 des plans verticaux Pi desdites premières conduites flexibles accrochées en 2-3,2-5,2-6,2-7 et 2-8 sur le support flottant avec lesquelles lesdits deuxièmes flotteurs sont en liaison, formant ainsi une deuxième rangée circulaire R2 de dits deuxièmes flotteurs. Trois dits premiers flotteurs 3c-3,3c-5 et 3c-6 supportent chacun trois dites deuxièmes conduites flexibles passant par respectivement trois goulottes fixées à chacun desdits premiers flotteurs à savoir :
- pour le premier flotteur 3c-3, les deuxièmes conduites 4a- l,4a-2 et 4a-3,
- pour le premier flotteur 3c-5, les deuxièmes conduites 4a- 4,4a-5 et 4a-6, et
- pour le premier flotteur 3c-6, les deuxièmes conduites 4a- 7,4a-8 et 4a-9.
Deux desdits deuxièmes flotteurs 4c-7 et 4c-9 forment une troisième rangée circulaire R'2 de deuxièmes flotteurs plus éloignée L'2 que ladite deuxième rangée circulaire de deuxièmes flotteurs. Les deux portions 4a'-j et 4a"-j de deuxièmes conduites flexibles en liaison avec lesdits deuxièmes flotteurs ou dites deuxièmes embases ne sont pas nécessairement situés dans un même plan vertical l'une par rapport à l'autre et la deuxième portion plongeante de deuxième conduite flexible 4a"-j passera par un plan vertical formant un angle divergeant ou convergeant avec le plan vertical dans lequel s'étend la première portion de deuxième conduite flexible 4a'-j passant par une goulotte fixée sur la même face dudit même premier flotteur.
Du fait que l'on a éloigné d'une distance L2 les deuxièmes flotteurs par rapport au support flottant, les deuxièmes flotteurs sur un cercle R2 sont relativement éloignés les uns des autres de sorte qu'il est possible à partir d'un même premier flotteur 3ci de disposer au moins 3 deuxièmes conduites ka-j, sans que les deuxièmes flotteurs 4c-j voisins n'interfèrent entre eux en cas d'agitation. Une dite deuxième conduite rigide 4b-2 est une conduite de type caténaire ou SCR constituée par l'extrémité d'une deuxième conduite sous-marine 4e-2 reposant au fond de la mer remontant jusqu'en subsurface selon une courbe en chaînette, essentiellement selon une courbe continûment variable jusqu'à un dit deuxième flotteur terminal 4c- 2.
Ledit deuxième flotteur terminal 4c-2 au sommet de ladite deuxième conduite rigide de type caténaire 4b-2 est solidaire et fixée rigidement aux deux dits deuxièmes flotteurs 4c-l et 4c-3 en liaison avec les deux risers verticaux 4b-l et 4b-3. Lesdites deuxièmes conduites flexibles 4a-l,4a-2 et 4a-3 passent par ledit premier flotteur 3c-3 sur une goulotte 6a, 6b, 6c fixée au-dessus de la goulotte 6a supportant la conduite flexible 4a-l, cette dernière étant au même niveau et sur la face opposée à la goulotte 6b des deux autres deuxièmes conduites 4a-l et 4a-3. Les différentes liaisons fond-surface sont installées le long du bordé la du support flottant en éventail, ce qui permet d'en augmenter le nombre du fait que les interfaces de connexion entre lesdites deuxièmes conduites flexibles et dites deuxièmes conduites rigides sont plus éloignées L2 du support flottant que les interfaces de connexion entre les premières conduites flexibles et les premières conduites rigides situées à une distance l_i du support flottant. Ceci permet que chacune des liaisons fond-surface soit à une distance latérale de sécurité par rapport à sa voisine directe, par exemple avec Ι_Ί d'au moins 40m pour la distance entre les premiers flotteurs. Ainsi, sous les effets des courants, du vent et de la houle sur le support flottant ainsi que sur lesdites liaisons fond- surface, il n'y aura ni chocs ni interférences entre les flotteurs desdites liaisons fond-surface, ni entre lesdites conduites flexibles de liaison.
A titre illustratif, la première rangée d'interface de connexion entre lesdites premières conduites flexibles et dites premières conduites rigides, ainsi donc que lesdites premières embases s'étendent sur un cercle Ri situé à une distance du bordé du support flottant de l_i = 350m, tandis que la deuxième rangée R2 d'interface de connexion entre les deuxièmes conduites flexibles et deuxièmes conduites rigides, ainsi que les deuxièmes embases s'étendent sur un cercle R2 situé au-delà du cercle Ri, par exemple à 300m du cercle Ri, donc à L2 = 650m du support flottant. Ainsi, on définit une pluralité de corridors de débattement latéral possible des premiers flotteurs en cas de vent, houle ou courant, dont la largeur augmente au fur et à mesure que l'on s'éloigne du support flottant. Comme représenté sur ladite figure 1, l'axe d'un corridor est distant de l'axe du corridor voisin : - d'une longueur I, au niveau des supports d'interfaces 2b-2c entre les conduites flexibles et le support flottant 2, et
- d'une longueur au niveau de la première rangée RI de dits premiers flotteurs, et
- d'une longueur l2 au niveau de la deuxième rangée R2 de dits deuxièmes flotteurs.
Les axes desdits corridors s'étendent dans le plan vertical Pi contenant les premières conduites flexibles et deux axes de corridors consécutifs passent par les plans Pi et Pi + 1 écartés d'un angle ai, les différents angles ai étant ici tous d'une même valeur, de l'ordre de 5 à 10°. Et, l'angle a'i du secteur angulaire d'un corridor est inférieur ou égal à la valeur des angles ai entre deux axes de corridors consécutifs. L'angle de débattement angulaire a'i est de même sommet C0 que l'angle ai entre deux plans Pi et Pi + 1. Et l'angle a'i présente une bissectrice passant par ledit plan Pi. La valeur de a'i dépend des angles de débattement angulaires γΐ des premières conduites rigides ou premiers risers verticaux 3 bi par rapport à leur point d'ancrage au fond de la mer dans un plan vertical XOZ ou XOY et de la hauteur de ladite première conduite rigide ou riser vertical 3 b i et/ou hauteur d'eau sous ledit premier flotteur 3ci, pour une hauteur h de premier flotteur de 1000 à 3500 m. En pratique, aux distances Ll mentionnées ci-dessus, il est possible, avec des valeurs γι inférieures à 5°, de préférence de 3 à 5°, de mettre en œuvre des espacements de premiers flotteurs tels que les angles ai présentent une valeur de 5 à 10°.
Certains deuxièmes flotteurs 4c-7,4c-9 et interfaces de raccordement entre deuxièmes conduites flexibles et deuxièmes conduites rigides sont reliées à une troisième rangée R'2 similaire à la deuxième rangée R2, mais légèrement décalée vers l'extérieur, de manière à augmenter la distance entre deux deuxièmes flotteurs voisins pour atteindre une distance 13 comme représenté sur le groupe G3 de deuxième liaison sur la figure 1, ce qui augmente encore la distance de sécurité contre les impacts et les interférences redoutées entre les divers deuxièmes flotteurs et diverses deuxièmes conduites flexibles.
Sur la figure 2 on a représenté en vue de côté 2 des deuxièmes liaisons à savoir 4-7 et 4-8 du groupe G3 de deuxième liaison fond- surface de la figure 1. Plus précisément, une première liaison fond- surface 3-6 constituée d'une colonne montante rigide 3b-6 reliée à une première embase 3d-6, par exemple une ancre à succion, par l'intermédiaire d'une liaison mécanique souple capable de reprendre les efforts de traction verticale créés par le flotteur 3c-6 solidarisé à l'extrémité supérieure de ladite colonne montante au moyen d'une chaîne 5a. La colonne montante 3b-6 est reliée de manière connue, à l'aide d'un dispositif col de cygne 8, à son extrémité supérieure 3b', et à son extrémité inférieure à une première conduite sous-marine 3e-6 reposant au fond de la mer 12, par l'intermédiaire d'une conduite de jonction 5c en forme de S.
Comme représenté sur la figure 2A, qui est une vue de côté selon l'axe YY' du premier flotteur 3c-6, ce dernier comporte trois goulottes principales 6a-6b-6c destinées à supporter desdites deuxièmes conduites flexibles 4a-7,4a-8 et 4a-9, et une quatrième goulotte 6d plus petite destinée à supporter des câbles électriques ou divers autres ombilicaux devant atteindre la deuxième rangée R2. Les différentes goulottes 6a, 6b, 6c et 6d sont supportées par une structure support 6-1. Les deux deuxièmes conduites 4a-7 et 4a-8 représentées sur la figure 2 sont disposées sur les deux goulottes 6a, 6c juxtaposées sur la même face 7a du flotteur, la deuxième conduite flexible 4a-9 non représentée sur la figure 2 étant représentée sur la figure 2A passant sur la goulotte 6b sur la face diamétralement opposée 7b du flotteur 3c-6.
Sur les figure 3, 3A et 3B, on a représenté en vue de côté le groupe Gl de deuxièmes liaisons 4-1,4-2,4-3 de la figure 1 en liaison avec la première liaison fond-surface 3-3, dans lequel au niveau de la seconde rangée R2, on dispose trois deuxièmes flotteurs 4c-l,4c-2 et 4c-3 reliés entre eux comme décrit précédemment.
Les deux risers 4b-l,4b-3 sur la figure 3A forment ensemble un angle β de 1 à 10 ° de par l'espacement L4 de leurs embases 4d-l,4d-3. Ainsi, en cas de dilatation différentielle due à des températures différentes dans chacune des deux conduites verticales 4b-l et 4b-3, il en résulte une possibilité de déformation du triangle d'angle au sommet βΐ et dont la base est constituée par la droite reliant les deux embases 4d-l et 4d-3. Lorsque l'un des deux risers est froid et l'autre chaud le triangle peut se déformer et son sommet se déplacer vers la droite ou vers la gauche de la figure 3a. En outre, comme représenté sur la figure 3, le SCR 4b-2 disposé du côté des risers 4b-l,4b-3 le plus éloigné du FPSO 1 pour des raisons évidentes liées aux contraintes d'encombrement, crée une tension horizontale H importante qui tend à écarter les deux deuxièmes flotteurs 4c-l et 4c-3 du FPSO 1 et génère une inclinaison des risers 4b-l et 4b-3 d'un angle γ2 positif, alors qu'une inclinaison γ2 des liaisons des deuxièmes risers verticaux des figures 2 et 4 est négative. Les premières conduites rigides des premières liaisons fond-surface 3 peuvent prendre une inclinaison soit positive, soit négative selon les effets de la houle, du courant et du vent sur le support flottant et sur chacun des premiers flotteurs dont les dimensions sont considérables. Ainsi, on ajuste les configurations des différents éléments constitutifs des premières liaisons fond-surface 3, de manière à contenir des excursions desdits premiers flotteurs et extrémités supérieures desdites premières conduites rigides dans un cône d'angle γ2, de préférence inférieur à 5°, en pratique de 3 à 5°. Sur la figure 1, on a représenté des variantes de regroupement de pluralité de deuxièmes liaisons fond-surface suivantes :
- dans le groupement G2, les trois deuxièmes flotteurs 4c-4,4c-5 et 4c- 6 sont sensiblement régulièrement espacés les uns des autres sur la deuxième rangée R2 du fait que la deuxième conduite flexible 4a-5 est déviée dans sa deuxième portion 4a"-5 après passage de la goulotte 6 sur le premier flotteur 3c-5. En revanche, la deuxième conduite flexible 4a-6 s'étend sensiblement dans un même plan Pb pour ces deux portions 4a'6 et 4a"-6.
- Dans le groupe de liaisons G4, on a représenté une seule deuxième liaison 4-10, et la deuxième portion de seconde conduite flexible 4a"-
10 est déviée après passage de la goulotte 6 sur le premier flotteur 3c-7 de manière à maintenir un écart constant par rapport à la deuxième conduite flexible 4"a-9 la plus proche, cette dernière s'étendant radialement dans le plan Pb. Dans l'installation tel que représenté sur la figure 1, des secondes liaisons fond-surfaces additionnelles peuvent être installées, notamment des interfaces de connexion entre les secondes conduites flexibles et secondes conduites rigides rangées au niveau des rangées R2 ou R'2, et en faisant passer des secondes conduites flexibles au niveau de goulottes libres des premiers flotteurs 3c-l,3c-2,3c-4,3c-7 et 3c-8.
Dans la présente invention, on a décrit la première rangée Ri et la deuxième rangée R2 comme étant des cercles de centre C0. Mais il est clair que le but de l'invention est d'écarter physiquement les unes des autres les interfaces de connexion des liaisons fond-surface d'une même rangée Ri ou R2-R'2, toute disposition rectiligne ou curviligne peut être adoptée pour chacune desdites rangées. De même, on comprend que l'on peut avantageusement considérer des rangées additionnelles pour disposer les deuxièmes flotteurs.
Enfin, on reste dans l'esprit de l'invention en considérant des troisièmes conduites de liaisons fond-surface dont les interfaces de connexion entre les troisièmes conduites flexibles et les troisièmes conduites rigides sont disposées en rangée R3 plus éloignée que R2 et R'2, dans ce cas les deuxièmes flotteurs constituent des flotteurs intermédiaires dont les goulottes supportent les troisièmes conduites de liaisons flexibles, ces dernières comportant trois portions plongeantes en chaînette, à savoir :
- une première portion plongeante entre le support flottant et le premier flotteur,
- une deuxième portion plongeante entre le premier flotteur et le deuxième flotteur, et
- une troisième portion plongeante entre le deuxième flotteur et le troisième flotteur.
Enfin, sur la figure 4, on a représenté une variante de réalisation dans laquelle la deuxième conduite rigide ou deuxième riser vertical 4b est tensionné non pas par un deuxième flotteur, mais par un deuxième élément de flottabilité consistant en une portion terminale 10a de la portion de conduite flexible s'étendant depuis le premier flotteur 3c jusqu'à l'extrémité supérieure 4b' du riser vertical 4b. Ce mode de réalisation, dans lequel le deuxième élément de flottabilité n'est pas un flotteur, mais une portion de conduite flexible de flottabilité positive est décrit dans la demande de brevet au nom de la demanderesse FR-2930587 déposée le 24 avril 2008. Plus précisément, la portion 10 de la seconde conduite de liaison flexible 4a qui s'étend depuis le premier flotteur 3c jusqu'à l'extrémité supérieure 4b' du riser vertical 4b comprend :
- une première partie concave 10b, 4a jusqu'à un point sensiblement médian d'inflexion lOf, environ la moitié de la portion de conduite flexible 10, sous forme d'une conduite en configuration de chaînette plongeante de par sa flottabilité négative. Au-delà du point d'inflexion lOf sensiblement à mi- longueur de la portion de la conduite flexible 10, une partie terminale convexe 10a s'étendant depuis le point d'inflexion central lOf jusqu'à l'extrémité 10c de la deuxième conduite flexible, présente une flottabilité positive de par une pluralité de flotteurs lOd, de préférence régulièrement espacés le long et autour de la portion terminale 10a convexe de la conduite flexible. La conduite rigide montante en acier ou « riser vertical » 4b est équipée de moyens de flottabilité, non représentés, tels des demi- coquilles de mousse syntactique réparties de préférence de manière uniforme sur tout ou partie de la longueur de ladite conduite rigide, et comprenant à son extrémité inférieure une pièce de transition d'inertie 14 équipé d'une première bride de fixation 14a à son extrémité inférieure. La première bride de fixation 14a est fixée sur une deuxième bride de fixation 15a constituant la partie supérieure d'un dispositif de support et de raccordement 15, lui-même ancré sur un pieu 16 solidaire de l'embase 4d reposant au fond de la mer 12, ledit dispositif de support et raccordement 15 permettant le raccordement de l'extrémité inférieure du riser 4 à une conduite 4e reposant au fond de la mer, comme explicité ci- après. La portion de conduite flexible 10 présente une variation de courbure continue, d'abord concave dans la partie configuration de chaîne plongeante 10b, puis convexe dans la portion terminale de flottabilité positive 10a avec un point d'inflexion lOf entre les deux, formant ainsi un S disposé dans un plan sensiblement vertical.
En opération, tel que représenté sur la figure 4, lorsque la partie supérieure de la conduite rigide 4b est inclinée ΖΊΖ' selon une inclinaison Y par rapport à la verticale ZZ', l'extrémité 10c de la portion terminale de la flottabilité positive 10a de la conduite flexible 4a reste sensiblement dans l'alignement axial ΖΊΖ' de l'extrémité supérieure 4b' de la conduite rigide 4b, et en tout état de cause en continuité de courbure avec celle- ci. Ceci confère une meilleure résistance mécanique à la fixation étanche 13 entre les deux conduites et permet d'éviter la mise en œuvre d'un dispositif col de cygne 8 tel que mis en œuvre dans la technique antérieure.
L'intérêt de cette conduite flexible est de permettre de par sa portion initiale 10b plongeante d'amortir les excursions des premiers risers 3b et support flottant 1 de façon à stabiliser l'extrémité 10c de la conduite flexible reliée à la deuxième conduite rigide montante 4b. L'extrémité de la portion de la partie terminale flottante 10c de la conduite flexible porte un premier élément de bride de fixation 13 avec l'extrémité supérieure d'une conduite rigide s'étendant depuis le fond de la mer encastrée au niveau d'une embase 4d reposant au fond de la mer.
Le riser vertical 4b est « tensionné » d'une part par la flottabilité de la partie terminale 10a de la conduite flexible, mais d'autre part et surtout, par des flotteurs régulièrement répartis au moins sur la partie supérieure 4b', de préférence, tout le long de la conduite rigide, notamment sous forme de mousse syntactique faisant avantageusement fonction à la fois de système d'isolation et de flottabilité. Ces flotteurs et cette mousse syntactique peuvent être répartis le long et autour de la conduite rigide sur toute sa longueur ou, de préférence, seulement sur une portion de sa partie supérieure. Ainsi, si l'embase 4d se trouve à une profondeur de 2500 mètres, on peut se borner à revêtir la conduite rigide 4b de mousse syntactique sur une longueur de 1000 m à partir de son extrémité supérieure, ce qui permet de mettre en œuvre une mousse syntactique qui doit résister à une pression moindre que si elle devait résister à des pressions allant jusqu'à 2500 m, et donc d'un coût radicalement réduit par rapport à une mousse syntactique devant résister à ladite profondeur de 2500 m.
La conduite rigide 4b selon l'invention est donc « tensionnée » par un dit deuxième élément de flottabilité consistant dans la partie terminale convexe à flottabilité positive de ladite conduite flexible, mais sans mise en œuvre d'un flotteur en surface ou en subsurface comme dans la technique antérieure, ce qui limite les effets du courant et de la houle, et de ce fait réduit radicalement l'excursion de la partie haute du riser vertical et donc les efforts en pied de riser au niveau de l'encastrement. Le système bride de fixation 13 entre l'extrémité supérieure du riser vertical 4b et de la conduite flexible 4a, et la connexion des brides de fixation 14a, 15a entre l'extrémité inférieure à la pièce de transition d'inertie 14 et du dispositif de support à raccordement 15, réalisent des connexions étanches entre les conduites concernées. L'embase 4d reposant au fond de la mer supporte un premier élément de conduite terminal 5b coudé ou incurvé de ladite conduite sous-marine 4c reposant au fond de la mer. Ce premier élément de conduite terminal coudé ou incurvé 5b comporte à son extrémité une première partie mâle ou femelle d'un connecteur automatique 15b, qui est dégagé latéralement par rapport à un orifice 16a et pieu 16 traversant de ladite embase, mais positionné de manière fixe et déterminée par rapport à l'axe ZZ' dudit pieu.
Le dispositif de support et de raccordement 15, supporte un deuxième élément de conduite rigide coudé 5b comportant à son extrémité supérieure ladite deuxième bride de fixation 15a et à son extrémité inférieure, une deuxième partie femelle ou mâle complémentaire d'un connecteur automatique 15b. Le dispositif de support et de raccordement 15 est constitué d'éléments de structure supportant ledit deuxième élément de conduite rigide coudée 5b, lesdits éléments de structure rigide assurant également la liaison entre ladite deuxième bride de fixation 15a et une platine inférieure 15d supportant en sous-face un pieu tubulaire 16 dénommé insert tubulaire d'ancrage.
Le système de fixation de l'extrémité supérieure de la conduite rigide 4b avec la conduite flexible 4a, 10 et le tensionnement desdites conduites confère une plus grande stabilité à l'extrémité supérieure de la conduite rigide 4b avec une variation angulaire γ ne dépassant pas en opération les 5°C.
Ainsi, il a été possible selon la présente invention de réaliser un encastrement rigide de l'extrémité inférieure de la conduite rigide en acier 4b sur l'embase 4d à l'aide du dispositif de support de raccordement 15. Pour ce faire, l'élément de conduite terminal inférieur de la conduite rigide 4b comprend une pièce de transition conique 14 dont l'inertie en section transversale augmente progressivement depuis une valeur sensiblement identique à l'inertie de l'élément de conduite du riser 4b auquel il est relié, dans la partie haute effilée de la pièce de transition 14, jusqu'à une valeur de 3 à 10 fois supérieure au niveau de sa partie basse reliée à ladite première bride de fixation 14a. Le coefficient de variation d'inertie dépend essentiellement du moment de flexion que doit supporter le riser vertical au niveau de ladite pièce de transition, ledit moment étant fonction de l'excursion maximale de la partie supérieure de la conduite rigide en acier 4b, donc de l'angle γ. Pour réaliser cette pièce de transition 14 on utilise des aciers à haute limite élastique et dans les cas extrêmes de contrainte, on peut être amené à fabriquer des pièces de transition 14 en titane.

Claims

REVENDICATIONS
1. Installation de liaisons fond-surface comprenant une pluralité de liaisons fond-surface (3-i avec i = 1 à k, 4-j avec j = 1 à m) disposées en éventail depuis un même support flottant (1) jusqu'à une pluralité de conduites sous-marines (3e-i avec i = 1 à k, 4e-j avec j = 1 à m) reposant au fond de la mer (12), lesdites liaisons fond-surface comprenant au moins :
1) un premier nombre (k) d'au moins 2, de préférence de 5 à 50, de préférence encore au moins 10, premières liaisons fond-surface (3,3-i), chaque dite première liaison fond-surface formant une première tour hybride comprenant chacune :
la) une première conduite rigide consistant en un premier riser vertical, (3b,3b-i avec i = 1 à k) dont l'extrémité inférieure est fixée à une première embase (3d-i avec i = 1 à k) ancrée au fond de la mer et reliée à une première conduite sous-marine
(3e-i avec i = 1 à k) reposant au fond de la mer et dont l'extrémité supérieure (3b') est tensionnée de façon sensiblement verticale par un premier flotteur (3c-i avec i = 1 à k) immergé en subsurface, de préférence à au moins 100m de profondeur, auquel elle est reliée (5), et
lb) une première conduite de liaison flexible (3a,3a-i avec i = 1 à k) plongeante, assurant la liaison entre ledit support flottant et l'extrémité supérieure dudit premier riser, lesdites premières conduites flexibles étant accrochées au niveau (2,2-i avec i = 1 à k) d'un bordé (la) dudit support flottant, deux points d'accrochés dites premières conduites flexibles successives étant espacées (I) l'une de l'autre, les différentes dites premières conduites flexibles étant de préférence régulièrement espacées d'une même distance (I), et deux plans verticaux virtuels (Pi,Pi + l avec i = 1 à k-1) passant respectivement par deux dites premières conduites de liaison flexibles [3a-i,3a-(i + l) avec i = 1 à k-1] successives au repos, étant disposés angulairement l'un par rapport à l'autre d'un premier angle ai avec i = 1 à k, les différents plans verticaux (Pi avec i = 1 à k) des différentes dites premières conduites de liaison flexibles étant en intersection sensiblement au niveau d'un même point (C0) dans un plan de section horizontale, de préférence les différents angles ai étant tous de même valeur, et
2) un deuxième nombre (m) d'au moins une deuxième liaison fond- surface (4,4-j avec j = 1 à m), chaque dite deuxième liaison fond-surface formant une deuxième tour hybride comprenant :
2c. une deuxième conduite rigide (4b,4b-j avec j = 1 à m) consistant en une colonne montante comprenant un deuxième riser (4b-l,4b- 2) vertical ou une deuxième conduite rigide caténaire de type SCR (4b-3), dont l'extrémité inférieure est reliée à une deuxième conduite sous-marine (4e-j avec j = 1 à m) reposant au fond de la mer et dont l'extrémité supérieure (4b') est tensionnée par un deuxième élément de flottabilité (4c,4c-j avec j = 1 à m) immergé en subsurface, de préférence à au moins 50m de profondeur, auquel elle est reliée, et
2d. une deuxième conduite de liaison flexible (4a,4a-j avec j = 1 à m) assurant la liaison entre ledit support flottant (1) et l'extrémité supérieure (4b') de ladite deuxième conduite rigide, chaque dite deuxième conduite flexible passant par une goulotte (6,6a-6b) fixée à un dit premier flotteur délimitant ainsi deux portions (4a'- j,4"-j avec j = 1 à m) de deuxième conduite flexible plongeante, respectivement de part et d'autre dudit premier flotteur, le point d'accroché de chaque dite deuxième conduite flexible sur le dit bordé étant situé (2,2-i avec i = 1 à k) à proximité, de préférence juxtaposé contre, le point d'accroché de ladite première conduite flexible en liaison avec ledit premier flotteur supportant ladite deuxième conduite flexible.
2. Installation de liaison fond-surface selon la revendication 1, caractérisée en ce qu'elle comprend :
- au moins 2, de préférence 5 à 50, de préférence encore au moins 10 dites deuxièmes liaisons fond-surface (4,4-j avec j = 1 à m), et
- la distance la plus courte entre un point d'accroché d'une dite deuxième conduite flexible sur le support flottant et l'extrémité supérieure de ladite deuxième conduite rigide à laquelle elle est reliée, est supérieure à la distance la plus longue entre un point d'accroché d'une dite première conduite flexible sur le support flottant et l'extrémité supérieure de ladite première conduite rigide à laquelle elle est reliée.
3. Installation de liaisons fond-surface selon la revendication 1 ou 2, caractérisée en ce que ledit premier flotteur (3c-2,3c-4 et 3c-5), de préférence chaque dit premier flotteur supporte au moins deux dites deuxièmes conduites flexibles passant de préférence par respectivement au moins deux dites goulottes fixées au même dit premier flotteur.
4. Installation de liaisons fond-surface selon l'une des revendications 1 à 3, caractérisée en ce que ladite deuxième conduite rigide consiste en un deuxième riser vertical (4b-l,4b-3) dont l'extrémité inférieure est fixée à une deuxième embase (4d-l,4d-3) ancrée au fond de la mer (12) et reliée à une dite deuxième conduite sous-marine reposant au fond de la mer et dont l'extrémité supérieure (4b') est tensionnée de façon sensiblement verticale par un deuxième flotteur (4c- l,4c-3) immergé en subsurface, de préférence à au moins 50m de profondeur, auquel elle est reliée.
5. Installation de liaisons fond-surface selon l'une des revendications 1 à 4, caractérisée en ce que :
- lesdits premiers flotteurs ne sont pas situés à égale distance d'un même bordé plat (lb) dudit support flottant auquel les extrémités desdites premières conduites flexibles sont reliées, et
- de préférence, lesdits premiers flotteurs sont tous situés à égale distance (l_i) du point d'intersection (C0) desdits plans verticaux (Pi) desdites premières conduites flexibles accrochées sur un même bordé dudit support flottant, formant ainsi une première rangée circulaire (Ri) de dits premiers flotteurs.
6. Installation de liaisons fond-surface selon la revendication 4 ou 5, caractérisé en ce qu'une pluralité de dits deuxièmes flotteurs, de préférence au moins la majorité desdits deuxièmes flotteurs (4c-l à 4c- 6,4c-8 et 4c-10 à 4c-ll), sont situés sensiblement à une même distance (L2) du point d'intersection (C0) desdits plans verticaux (Pi) desdites premières conduites flexibles accrochées sur un même bordé dudit support flottant avec lesquelles lesdits deuxièmes flotteurs sont en liaison, formant ainsi une deuxième rangée circulaire (R2) de dits deuxièmes flotteurs.
7. Installation de liaisons fond-surface selon l'une des revendications 4 à 6, caractérisée en ce que les différents dits deuxièmes flotteurs en liaison avec un même dit premier flotteur ne sont pas situés tous à une même distance dudit premier flotteur et les différentes dites deuxièmes embases en liaison avec un même dit premier flotteur, ne sont pas toutes situés à une même distance du point d'accroché sur le support flottant de ladite deuxième liaison fond-surface correspondante.
8. Installation de liaisons fond-surface selon la revendication 7, caractérisée en ce que lesdits deuxièmes flotteurs (4c-7 et 4c-9) forment au moins une deuxième rangée circulaire (R2) de deuxièmes flotteurs et une troisième rangée circulaire (R'2) de deuxièmes flotteurs plus éloignée (L'2) que ladite deuxième rangée circulaire de deuxièmes flotteurs.
9. Installation de liaisons fond-surface selon l'une des revendications 2 ou 8, caractérisée en ce qu'au moins deux dites deuxièmes conduites flexibles passant par un même dit premier flotteur sont fixées à des goulottes (6b, 6c) disposées à des hauteurs différentes sur ledit premier flotteur.
10. Installation de liaisons fond-surface selon l'une des revendications 2 à 9, caractérisée en ce qu'au moins deux dites deuxièmes conduites flexibles passant par un même dit premier flotteur sont fixées à des goulottes (6a, 6b) disposées sur des faces opposées dudit premier flotteur.
11. Installation de liaison fond-surface selon l'une des revendications 1 à 10, caractérisé en ce qu'elle comprend en outre au moins une nième liaison fond-surface, n étant un entier au moins égal à 3 comprenant :
a) une nième conduite rigide consistant en une colonne montante comprenant un nième riser vertical ou une nième conduite rigide caténaire de type SCR, dont l'extrémité inférieure est reliée à une nième conduite sous-marine reposant au fond de la mer et dont l'extrémité supérieure est tensionnée par un nième élément de flottabilité immergé en subsurface, de préférence un nième flotteur terminal, immergé au moins à 100m de profondeur auquel elle est reliée, et
b) une nième conduite de liaison flexible assurant la liaison entre le support flottant et l'extrémité supérieure de ladite nième conduite rigide, chaque dite nième conduite flexible passant par (n-1) goulottes fixées respectivement à (n-1) flotteurs intermédiaire immergés en subsurface délimitant ainsi n portions plongeantes de dites nième conduite flexible, chacun desdits (n-1) flotteurs intermédiaires étant de préférence un flotteur de tensionnement d'au moins une, de préférence de la totalité, des (n-l)ièmes conduites rigides, de respectivement (n-l)ièmes liaisons fond-surface.
12. Installation de liaison fond-surface selon l'une des revendications 1 à 11, caractérisée en ce qu'une dite deuxième ou nième conduite rigide, n étant un entier au moins égal à 3, est une conduite de type caténaire (4b-2) constituée par l'extrémité d'une deuxième ou respectivement nième conduite sous-marine (4e-2) reposant au fond de la mer remontant jusqu'en subsurface selon une courbe en chaînette, essentiellement selon une courbe continûment variable jusqu'à un dit deuxième ou respectivement nième flotteur terminal (4c-2).
13. Installation de liaison fond-surface selon la revendication 12, caractérisée en ce que ledit deuxième ou nième flotteur terminal (4c-3) au sommet d'une dite deuxième ou nième conduite rigide de type caténaire (4b-3) est solidaire et fixée rigidement à au moins un autre dit deuxième ou nième flotteur (4c-l,4c-2) en liaison avec un dit deuxième ou respectivement nième riser vertical (4b-l,4b-2), les différents deuxièmes, respectivement nièmes flotteurs terminaux (4c-l,4c-2,4c-3) fixés rigidement ensemble étant en liaison avec un même dit premier flotteur (3c) ou les mêmes (n-1) dits flotteurs intermédiaires.
14. Installation de liaison fond-surface selon l'une des revendications 1 à 13, caractérisée en ce que :
- une extrémité d'une dite deuxième ou nième conduite flexible (10,4a) est directement raccordée, de préférence par un système de brides (13), à l'extrémité supérieure d'un deuxième ou respectivement nième riser vertical (4b), et
- l'extrémité inférieure du deuxième ou nième riser vertical comprend un élément de conduite terminal formant une pièce de transition d'inertie (14) dont la variation de l'inertie est telle que l'inertie dudit élément de conduite terminal, à son extrémité supérieure, soit sensiblement identique à celle de l'élément de conduite de la partie courante du deuxième riser vertical auquel elle est reliée, ladite inertie de l'élément de conduite terminal augmentant progressivement jusqu'à l'extrémité inférieure de ladite pièce de transition d'inertie, comprenant une première bride de fixation (14a) permettant la fixation et l'encastrement de l'extrémité inférieure dudit deuxième ou respectivement nième riser vertical à un dispositif de support et de raccordement (15) solidaire de ladite deuxième ou respectivement nième embase (4c) ancrée au fond de la mer, et - une partie terminale (10a) de ladite deuxième ou respectivement nième conduite flexible, du coté de sa jonction à l'extrémité supérieure dudit deuxième ou respectivement nième riser, présente une flottabilité positive, et au moins la partie supérieure (4b') du deuxième ou nième riser vertical présente également une flottabilité positive, de sorte que les flottabilités positives de ladite partie terminale de ladite deuxième ou nième conduite flexible et de ladite partie supérieure dudit deuxième ou nième riser vertical permettent le tensionnement dudit deuxième ou nième riser en position sensiblement verticale et l'alignement ou la continuité de courbure entre l'extrémité de ladite partie terminale de ladite deuxième ou nième conduite flexible et la partie supérieure dudit deuxième ou nième riser vertical au niveau de leur raccordement, ladite flottabilité positive étant apportée par une pluralité de flotteurs périphériques coaxiaux (lOd), régulièrement espacés et/ou un revêtement continu en matériau de flottabilité positive, et
- ladite partie terminale (10a) de ladite deuxième ou nième conduite flexible présentant une flottabilité positive, s'étend sur une partie de la longueur totale de ladite deuxième ou nième conduite flexible, telle que la portion de dite deuxième conduite s'étendant entre ledit premier ou respectivement (n-l)ième flotteur et le sommet dudit deuxième ou respectivement nième riser vertical présente une configuration en S, avec une partie (10b) du côté dudit premier ou (n- l)ième flotteur présentant une courbure concave en forme de chaînette à configuration de chaînette plongeante et la partie terminale (10a) restante de ladite deuxième conduite flexible présentant une courbure convexe en forme de chaînette inversée de par sa flottabilité positive, l'extrémité (10c) de ladite partie terminale de ladite deuxième ou respectivement nième conduite flexible, au niveau de l'extrémité supérieure dudit deuxième ou respectivement nième riser, étant située de préférence au dessus et sensiblement dans l'alignement de l'axe incliné ZiZ'i dudit deuxième riser à son extrémité supérieure (4b').
15. Installation de liaison fond-surface selon la revendication 14, caractérisée en ce que :
- ledit deuxième ou respectivement nième riser vertical est relié à son extrémité inférieure à au moins une deuxième ou respectivement nième conduite sous-marine (4e) reposant au fond de la mer, et
- ladite deuxième ou nième conduite sous-marine reposant au fond de la mer comprend un premier élément de conduite rigide coudé terminal (5b) solidaire de ladite deuxième ou nième embase (4c) reposant au fond de la mer et ledit premier élément de conduite rigide coudé terminal (5b) est maintenu fixement par rapport à ladite deuxième ou nième embase, avec, à son extrémité, une première partie d'élément de raccordement, de préférence un élément mâle ou femelle d'un connecteur automatique (15b), et
- ladite première bride de fixation (14a) à l'extrémité inférieure de ladite pièce de transition d'inertie (14) est fixée à une deuxième bride de fixation (15a) à l'extrémité d'un deuxième élément de conduite rigide coudé (5c), solidaire dudit dispositif de support et de raccordement (15) fixé sur ladite deuxième ou nième embase et supportant, de façon fixe et rigide, ledit deuxième élément de conduite rigide coudé (5c), dont l'autre extrémité comprend une deuxième partie d'élément de raccordement complémentaire de ladite première partie d'élément de raccordement et raccordée à celle-ci lorsque ledit dispositif de support et de raccordement (15) est fixé à ladite embase (4c).
PCT/FR2010/052197 2009-11-17 2010-10-15 Installation de liaisons fond-surface disposees en eventail WO2011061422A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112012011697A BR112012011697B1 (pt) 2009-11-17 2010-10-15 instalação de ligações fundo-superfície dispostas em leque
EP10785475.4A EP2501889B1 (fr) 2009-11-17 2010-10-15 Installation de liaisons fond-surface disposees en eventail
US13/510,380 US8647019B2 (en) 2009-11-17 2010-10-15 Facility having fanned seabed-to-surface connections

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0958096A FR2952671B1 (fr) 2009-11-17 2009-11-17 Installation de liaisons fond-surface disposees en eventail
FR0958096 2009-11-17

Publications (1)

Publication Number Publication Date
WO2011061422A1 true WO2011061422A1 (fr) 2011-05-26

Family

ID=42245937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052197 WO2011061422A1 (fr) 2009-11-17 2010-10-15 Installation de liaisons fond-surface disposees en eventail

Country Status (5)

Country Link
US (1) US8647019B2 (fr)
EP (1) EP2501889B1 (fr)
BR (1) BR112012011697B1 (fr)
FR (1) FR2952671B1 (fr)
WO (1) WO2011061422A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2983233A1 (fr) * 2011-11-30 2013-05-31 Saipem Sa Installation de liaisons fond-surface flexibles multiples sur au moins deux niveaux
WO2014170615A1 (fr) 2013-04-19 2014-10-23 Saipem S.A. Support flottant ancré sur touret comprenant une conduite de guidage et de déport de conduite flexible au sein dudit touret
WO2014184480A1 (fr) 2013-05-13 2014-11-20 Saipem S.A. Dispositif d'ancrage d'un support de goulottes d'une installation fond-surface
RU2574892C1 (ru) * 2011-11-30 2016-02-10 Саипем С.А. Установка с множеством гибких соединений "дно-поверхность", расположенных на, по меньшей мере, двух уровнях

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2971322B1 (fr) 2011-02-03 2014-05-02 Saipem Sa Limiteur de courbure de ligne flexible sous-marine et installation de liaison fond-surface en comprenant
US10378331B2 (en) * 2012-05-30 2019-08-13 Onesubsea Ip Uk Limited Monitoring integrity of a riser pipe network
GB2504695B (en) * 2012-08-06 2018-05-30 Statoil Petroleum As Subsea processing
JP7098336B2 (ja) * 2018-01-17 2022-07-11 千代田化工建設株式会社 係留システム及び係留システムの製造方法
GB2586725B (en) * 2018-03-26 2022-06-08 Odebrecht Oleo E Gas S A Composite material riser and flowline connection system applicable to hybrid riser, and its construction method
JP2023033658A (ja) * 2020-02-19 2023-03-13 住友電気工業株式会社 浮体装置およびケーブル布設構造

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639187A (en) * 1994-10-12 1997-06-17 Mobil Oil Corporation Marine steel catenary riser system
WO2000008262A1 (fr) * 1998-08-06 2000-02-17 Fmc Corporation Dispositif renforce de colonne montante a catenaire en acier
WO2000049267A1 (fr) 1999-02-19 2000-08-24 Bouygues Offshore Procede et dispositif de liaison fond-surface par conduite sous-marine installee a grande profondeur
FR2809136A1 (fr) 2000-05-19 2001-11-23 Saibos Construcoes Maritimas L Installation de liaison fond-surface pour conduite sous- marine, dispositif de liaison entre un flotteur et un riser, et procede d'intervention dans ledit riser
US6415828B1 (en) * 2000-07-27 2002-07-09 Fmc Technologies, Inc. Dual buoy single point mooring and fluid transfer system
FR2821143A1 (fr) * 2001-02-19 2002-08-23 Bouygues Offshore Installation de liaison fond-surface d'une conduite sous-marine installee a grande profondeur du type tour-hybride
FR2826051A1 (fr) * 2001-06-15 2002-12-20 Bouygues Offshore Installation de liaison fond-surface d'une conduite sous-marine reliee a un riser par au moins un element de conduite flexible maintenu par une embase
FR2839110A1 (fr) * 2002-04-29 2003-10-31 Technip Coflexip Systeme de colonne montante reliant une installation sous-marine fixe a une unite de surface flottante
WO2003102350A2 (fr) 2002-05-30 2003-12-11 Gray Eot, Inc. Appareil de connexion et de deconnexion de tige de forage
US6688348B2 (en) * 2001-11-06 2004-02-10 Fmc Technologies, Inc. Submerged flowline termination buoy with direct connection to shuttle tanker
WO2007023233A1 (fr) 2005-08-26 2007-03-01 Saipem S.A. Installation comprenant au moins deux liaisons fond-surface d’au moins deux conduites sous-marines reposant au fond de la mer.
US20080311804A1 (en) * 2007-06-12 2008-12-18 Christian Bauduin Disconnectable riser-mooring system
FR2930587A1 (fr) 2008-04-24 2009-10-30 Saipem S A Sa Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive et une piece de transition d'inertie

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182584A (en) * 1978-07-10 1980-01-08 Mobil Oil Corporation Marine production riser system and method of installing same
GB2191230A (en) * 1986-06-05 1987-12-09 Bechtel Ltd Flexible riser system
US4762180A (en) * 1987-02-05 1988-08-09 Conoco Inc. Modular near-surface completion system
JPH02214404A (ja) * 1989-02-14 1990-08-27 Furukawa Electric Co Ltd:The 浮上プラント用長尺体立上げ布設方法
US5275510A (en) * 1992-01-16 1994-01-04 Jacob De Baan Offshore tanker loading system
US5480264A (en) * 1994-09-07 1996-01-02 Imodco, Inc. Offshore pipeline system
US5957074A (en) * 1997-04-15 1999-09-28 Bluewater Terminals B.V. Mooring and riser system for use with turrent moored hydrocarbon production vessels
FR2768457B1 (fr) * 1997-09-12 2000-05-05 Stolt Comex Seaway Dispositif de transport sous-marin de produits petroliers a colonne montante
DE69836261D1 (de) * 1998-03-27 2006-12-07 Cooper Cameron Corp Verfahren und Vorrichtung zum Bohren von mehreren Unterwasserbohrlöchern
US6200180B1 (en) * 1998-09-01 2001-03-13 Nortrans Offshore (S) Pte Ltd Mooring system for tanker vessels
NO312358B1 (no) * 2000-07-20 2002-04-29 Navion Asa Offshore laste- eller produksjonssystem for et dynamisk posisjonert skip
OA12418A (en) * 2001-01-08 2006-04-18 Stolt Offshore Sa Marine riser tower.
US20060000615A1 (en) * 2001-03-27 2006-01-05 Choi Michael S Infrastructure-independent deepwater oil field development concept
GB2380747B (en) * 2001-10-10 2005-12-21 Rockwater Ltd A riser and method of installing same
GB2387635A (en) * 2002-04-19 2003-10-22 Rockwater Ltd A riser and method of installing same
BR0107018B1 (pt) * 2001-12-28 2011-07-12 método para a construção de um arranjo de poços de grande afastamento para produção, transporte e explotação de jazidas minerais, arranjo de poços assim construìdo e método para a construção de uma rede de dutos para transporte e armazenagem de fluidos.
WO2005009842A1 (fr) * 2002-01-30 2005-02-03 Single Buoy Moorings, Inc. Support de colonne montante en eau peu profonde
FR2840013B1 (fr) * 2002-05-22 2004-11-12 Technip Coflexip Systeme de colonne montante reliant deux installations sous-marines fixes a une unite de surface flottante
GB0212689D0 (en) * 2002-05-31 2002-07-10 Stolt Offshore Sa Flowline insulation system
US7434624B2 (en) * 2002-10-03 2008-10-14 Exxonmobil Upstream Research Company Hybrid tension-leg riser
CA2563738C (fr) * 2004-05-03 2013-02-19 Exxonmobil Upstream Research Company Systeme et batiment permettant de supporter des champs marins
GB2429992A (en) * 2005-09-09 2007-03-14 2H Offshore Engineering Ltd Production system
US20070081862A1 (en) * 2005-10-07 2007-04-12 Heerema Marine Contractors Nederland B.V. Pipeline assembly comprising an anchoring device and method for installing a pipeline assembly comprising an anchoring device
FR2911907B1 (fr) * 2007-01-26 2009-03-06 Technip France Sa Installation de conduite montante flexible de transport d'hydrocarbures.
NZ588076A (en) * 2008-04-09 2012-04-27 Amog Pty Ltd Riser end support with means for coupling and decoupling a riser termination for connection to a floating vessel
FR2930618B1 (fr) * 2008-04-24 2013-01-18 Saipem Sa Element de conduite de transition d'inertie pour encastrement d'une conduite rigide sous-marine
FR2942497B1 (fr) * 2009-02-26 2013-04-26 Saipem Sa Installation de liaison fond-surface de type tour hybride multi-riser comprenant des modules de flottabilite coulissants
AU2010310741B2 (en) * 2009-10-21 2014-09-18 Fluor Technologies Corporation Hybrid buoyed and stayed towers and risers for deepwater
WO2012012648A1 (fr) * 2010-07-21 2012-01-26 Marine Well Containment Company Système et procédé de confinement de puits marin

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639187A (en) * 1994-10-12 1997-06-17 Mobil Oil Corporation Marine steel catenary riser system
WO2000008262A1 (fr) * 1998-08-06 2000-02-17 Fmc Corporation Dispositif renforce de colonne montante a catenaire en acier
WO2000049267A1 (fr) 1999-02-19 2000-08-24 Bouygues Offshore Procede et dispositif de liaison fond-surface par conduite sous-marine installee a grande profondeur
FR2790054A1 (fr) * 1999-02-19 2000-08-25 Bouygues Offshore Procede et dispositif de liaison fond-surface par conduite sous marine installee a grande profondeur
FR2809136A1 (fr) 2000-05-19 2001-11-23 Saibos Construcoes Maritimas L Installation de liaison fond-surface pour conduite sous- marine, dispositif de liaison entre un flotteur et un riser, et procede d'intervention dans ledit riser
US6415828B1 (en) * 2000-07-27 2002-07-09 Fmc Technologies, Inc. Dual buoy single point mooring and fluid transfer system
FR2821143A1 (fr) * 2001-02-19 2002-08-23 Bouygues Offshore Installation de liaison fond-surface d'une conduite sous-marine installee a grande profondeur du type tour-hybride
WO2002066786A1 (fr) 2001-02-19 2002-08-29 Saipem Sa Installation de liaison fond-surface d'une conduite sous-marine installee a grande profondeur
FR2826051A1 (fr) * 2001-06-15 2002-12-20 Bouygues Offshore Installation de liaison fond-surface d'une conduite sous-marine reliee a un riser par au moins un element de conduite flexible maintenu par une embase
WO2002103153A1 (fr) 2001-06-15 2002-12-27 Saipem Sa Installation de liaison d'une conduite sous-marine reliee a un riser
US6688348B2 (en) * 2001-11-06 2004-02-10 Fmc Technologies, Inc. Submerged flowline termination buoy with direct connection to shuttle tanker
FR2839110A1 (fr) * 2002-04-29 2003-10-31 Technip Coflexip Systeme de colonne montante reliant une installation sous-marine fixe a une unite de surface flottante
WO2003102350A2 (fr) 2002-05-30 2003-12-11 Gray Eot, Inc. Appareil de connexion et de deconnexion de tige de forage
WO2007023233A1 (fr) 2005-08-26 2007-03-01 Saipem S.A. Installation comprenant au moins deux liaisons fond-surface d’au moins deux conduites sous-marines reposant au fond de la mer.
FR2890098A1 (fr) * 2005-08-26 2007-03-02 Saipem S A Sa Installation comprenant au moins deux liaisons fond-surface d'au moins deux conduites sous-marines reposant au fond de la mer
US20080311804A1 (en) * 2007-06-12 2008-12-18 Christian Bauduin Disconnectable riser-mooring system
FR2930587A1 (fr) 2008-04-24 2009-10-30 Saipem S A Sa Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive et une piece de transition d'inertie

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2983233A1 (fr) * 2011-11-30 2013-05-31 Saipem Sa Installation de liaisons fond-surface flexibles multiples sur au moins deux niveaux
WO2013079857A1 (fr) 2011-11-30 2013-06-06 Saipem S.A. Installation de liaisons fond-surface flexibles multiples sur au moins deux niveaux
CN103958819A (zh) * 2011-11-30 2014-07-30 塞佩姆股份公司 包括至少两个水平高度的多重柔性海底到海面连接装置
AU2012343668B2 (en) * 2011-11-30 2015-08-20 Saipem S.A. Multiple flexible seafloor-surface linking apparatus comprising at least two levels
AU2012343668C1 (en) * 2011-11-30 2015-12-03 Saipem S.A. Multiple flexible seafloor-surface linking apparatus comprising at least two levels
RU2574892C1 (ru) * 2011-11-30 2016-02-10 Саипем С.А. Установка с множеством гибких соединений "дно-поверхность", расположенных на, по меньшей мере, двух уровнях
US9518682B2 (en) 2011-11-30 2016-12-13 Saipem S.A. Multiple flexible seafloor-surface linking apparatus comprising at least two levels
WO2014170615A1 (fr) 2013-04-19 2014-10-23 Saipem S.A. Support flottant ancré sur touret comprenant une conduite de guidage et de déport de conduite flexible au sein dudit touret
WO2014184480A1 (fr) 2013-05-13 2014-11-20 Saipem S.A. Dispositif d'ancrage d'un support de goulottes d'une installation fond-surface
US9702109B2 (en) 2013-05-13 2017-07-11 Saipem S.A. Device for anchoring a raceway mounting of a seabed-to-surface facility

Also Published As

Publication number Publication date
US8647019B2 (en) 2014-02-11
US20120230770A1 (en) 2012-09-13
BR112012011697A2 (pt) 2018-03-27
FR2952671B1 (fr) 2011-12-09
FR2952671A1 (fr) 2011-05-20
EP2501889B1 (fr) 2013-08-07
EP2501889A1 (fr) 2012-09-26
BR112012011697B1 (pt) 2019-12-03

Similar Documents

Publication Publication Date Title
EP2501889B1 (fr) Installation de liaisons fond-surface disposees en eventail
EP1917416B1 (fr) Installation comprenant au moins deux liaisons fond-surface d au moins deux conduites sous-marines reposant au fond de la mer.
EP2286056B1 (fr) Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive
EP2844820B1 (fr) Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles a flottabilite positive
EP1073823B1 (fr) Procede et dispositif de liaison fond-surface par conduite sous-marine installee a grande profondeur
EP2671010B1 (fr) Limiteur de courbure de ligne flexible sous-marine et installation de liaison fond-surface en comprenant
OA10874A (fr) Dispositif de transport sous-marin de produits pétroliers à colonne montante
EP1362161A1 (fr) Installation de liaison fond-surface d'une conduite sous-marine installee a grande profondeur
EP1501999A1 (fr) Installation de liaison fond-surface d'une conduite sous-marine reliee a un riser par un element de conduite soude maintenu par une embase
EP2401468B1 (fr) Installation de liaison fond-surface de type tour hybride multi-riser comprenant des modules de flottabilite coulissants
EP2785952B1 (fr) Installation de liaisons fond-surface flexibles multiples sur au moins deux niveaux
EP2268887B1 (fr) Element de conduite de transition d'inertie notamment pour encastrement d'une conduite rigide sous-marine
EP2997220B1 (fr) Dispositif d'ancrage d'un support de goulottes d'une installation fond-surface
EP2571753B1 (fr) Installation de liaison fond-surface comprenant une structure de guidage de conduite flexible
FR2809136A1 (fr) Installation de liaison fond-surface pour conduite sous- marine, dispositif de liaison entre un flotteur et un riser, et procede d'intervention dans ledit riser
EP3265642B1 (fr) Installation comprenant au moins deux liaisons fond-surface comprenant des risers verticaux relies par des barres
OA18412A (fr) Installation comprenant au moins deux liaisons fond-surface comprenant des risers verticaux reliés par des barres
OA17784A (fr) Dispositif d'ancrage d'un support de goulottes d'une installation fond-surface
OA17101A (en) Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles à flottabilité positive.
OA16986A (rf) Installation de liaisons fond-surface flexibles multiples sur au moins deux niveaux.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010785475

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13510380

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011697

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012011697

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120516