WO2011060587A1 - 一种气缸结构 - Google Patents

一种气缸结构 Download PDF

Info

Publication number
WO2011060587A1
WO2011060587A1 PCT/CN2009/075067 CN2009075067W WO2011060587A1 WO 2011060587 A1 WO2011060587 A1 WO 2011060587A1 CN 2009075067 W CN2009075067 W CN 2009075067W WO 2011060587 A1 WO2011060587 A1 WO 2011060587A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cylinder
chamber
air
rotor chamber
Prior art date
Application number
PCT/CN2009/075067
Other languages
English (en)
French (fr)
Inventor
王嘉铭
陈永权
Original Assignee
Wang James
Chen Yung-Chuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang James, Chen Yung-Chuan filed Critical Wang James
Priority to US12/993,504 priority Critical patent/US8671672B2/en
Priority to PCT/CN2009/075067 priority patent/WO2011060587A1/zh
Publication of WO2011060587A1 publication Critical patent/WO2011060587A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/12Characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/004Fluid pressure supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • F01C9/002Oscillating-piston machines or engines the piston oscillating around a fixed axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/885Control specific to the type of fluid, e.g. specific to magnetorheological fluid
    • F15B2211/8855Compressible fluids, e.g. specific to pneumatics

Definitions

  • the present invention relates to the technical field of a cylinder, and more particularly to an improved cylinder structure in which a gas chamber is integrally formed in a cylinder, and the gas chamber is used to securely restore the rotor when the air source is not supplied with air.
  • the conventional cylinder there are a cylindrical cylinder and a fan-shaped cylinder, which both use pressure or torsion to force the rotor to rotate, thereby enabling the cylinder to control the rotor to reciprocate, thereby driving the valve body to open or close.
  • the single-acting cylinder is used for the normally closed valve body to ensure the safety of use.
  • the spring must be preloaded with a certain pressure to press the rotor at the spring rebound limit, and the air pressure must be applied to the compressor.
  • the spring must also apply a large pressure, so the air supply pressure requires high air pressure, and the sudden release of the spring will cause a considerable impact force to push the rotor to hit the limit screw and the cylinder, so the structural strength of the cylinder needs to be relatively strong, and the spring needs to be considered. Wire diameter, helix angle, material, heat treatment method, reliability and durability are improved, so design difficulties are not easy to install. Summary of the invention
  • the technical problem to be solved by the present invention is: If a conventional single-acting cylinder uses a spring as the restoring power, the spring must be preloaded with a predetermined pressure to press the rotor at the spring rebound limit. To apply force to compress the spring, it is also necessary to apply a large pressure, so the supply air pressure is high, and the sudden release of the spring will cause a considerable impact force to push the rotor against the limit screw and the cylinder, so the strength of the cylinder structure It needs to be more sturdy, and the design of the spring is difficult and difficult to install.
  • a cylinder structure of the present invention comprising: a first half cylinder;
  • the first half cylinder and the second half cylinder are separately formed by the same mold, and the first half cylinder and the second half cylinder are fixedly coupled to form a complete cylinder, the first cylinder
  • the inner half of the cylinder is provided with a gas chamber and a rotor chamber, and a partition is arranged between the air chamber and the rotor chamber, and the partition is formed at an angle of one hundred and ten degrees to one hundred and thirty degrees on the side of the rotor chamber.
  • the rotor chamber reduces the volume by the convex arc portion, and concentrates the effective working area of one rotor on one blade of the rotor.
  • the rotor is disposed in the rotor chamber, and the first end and the second half cylinder are provided with a first end surface.
  • the second duct groove is connected to the first and second air inlet holes on the circumferential side of the first and second half cylinders, and the left and right side walls of the rotor chamber, the rotor circumferential surface and the rotor shaft and the rotor near the partition plate
  • An o-ring assembly having one or more recesses for isolating leakage; and a safety reset control structure including an air source connected to a check valve and a pneumatic valve a first control side, the check valve is connected to the air chamber of the cylinder, the high pressure accumulating air chamber is connected to the intake end of the pneumatic valve, and a second control side of the pneumatic valve is provided with a spring, the pneumatic valve a first output end is connected to the second air inlet hole of the cylinder by a first pipeline, and the right side wall of the rotor chamber is connected via a second
  • the air source has a gas supply to push the pneumatic valve and drive the rotor to rotate.
  • the air source has no air supply. Then the spring rebounds, the pneumatic valve acts, and the intake position is changed by the switching action, so that the high pressure gas in the air chamber drives the rotor to be safely reset.
  • the outer circumferences of the first and second half cylinders are respectively locked by a screw, and the screw penetrates into the rotor chamber, and the front end of the screw blocks the rotor as an adjustment control of the rotor swing angle limitation.
  • the 0-shaped ring of the rotor circumferential surface is disposed on the outer edge of the 0-shaped ring, and a resilient retaining edge protrudes toward the free end of the two sides, and abuts against the inner surface of the cylinder housing in a line contact manner.
  • the volume ratio of the air chamber to the rotor chamber is three to one.
  • a cylinder structure comprising - a first half cylinder
  • the first half cylinder and the second half cylinder are separately formed by the same mold, and the first half cylinder and the second half cylinder are fixedly coupled to form a complete cylinder, the first cylinder
  • the second half cylinder is provided with a gas chamber and a rotor chamber, and a partition is arranged between the air chamber and the rotor chamber, and the partition plate forms an angle of one hundred and ten degrees to one hundred and thirty degrees on the rotor chamber side, and the rotor
  • the chamber reduces the volume by the convex arc portion, and concentrates the effective working area of a rotor on one blade of the rotor.
  • the rotor is disposed in the rotor chamber, and the first and second half cylinders are provided with a first and second joint end faces.
  • the pipe groove is connected to the first and second air inlet holes on the circumferential side of the first and second half cylinders, and the left and right side walls of the rotor chamber, and the rotor circumferential surface and both ends of a rotor shaft and the rotor shaft side near the partition plate , an o-ring assembly having one or more grooves for isolating the leak; and,
  • a double-action control structure includes an air source connected to an intake end of a solenoid valve, wherein the control side of the solenoid valve is controlled by a solenoid valve member, and a first output end of the solenoid valve is a first tube
  • the second air inlet hole connected to the cylinder is connected to the right side wall of the rotor chamber via the second duct groove, and a second output end of the solenoid valve is connected to the first air inlet hole of the cylinder by a second pipeline a first duct groove is connected to the left side wall driven by the rotor chamber.
  • the outer circumferences of the first and second half cylinders are respectively locked by a screw, and the screw penetrates into the rotor chamber, and the front end of the screw blocks the rotor as an adjustment control of the rotor swing angle limitation.
  • the o-ring of the rotor circumferential surface is disposed on the outer edge of the 0-shaped ring, and a resilient retaining edge protrudes toward the free end of the two sides, and abuts against the inner surface of the cylinder housing in a line contact manner.
  • the volume ratio of the air chamber to the rotor chamber is three to one.
  • the technical effect of the present invention against the prior art is that the two half cylinders of the cylinder of the present invention are made of the same mold, so that the cost is saved, and the air chamber and the rotor chamber are arranged in the cylinder, and the air chamber is controlled by the safety reset control structure.
  • the high-pressure gas supply acts as the rotor returning power, and the rotor is provided with a large area of effective operating area, and the effective operating area of one rotor is concentrated on one blade of the rotor, and the rotor is provided with a 0-shaped shape with an elastic retaining edge.
  • the ring has a resilient retaining edge in line contact with the inner surface of the cylinder to provide better leakage prevention.
  • FIG. 1 is a perspective exploded view of an embodiment of the present invention.
  • Figure 2 is a perspective view of an embodiment of the present invention.
  • Fig. 3 is a cross-sectional view showing an embodiment of the present invention.
  • Figure 4 Schematic diagram of the safe returning air supply operation of the present invention.
  • Figure 4-1 Schematic diagram of the safe reset operation of the safety reset type of the present invention.
  • Figure 5 A partial cross-sectional view of the rotor of the present invention.
  • Figure 6 Schematic diagram of the action of the solenoid valve of the double-acting cylinder of the present invention.
  • Figure 6-1 Schematic diagram of the solenoid valve of the double-acting cylinder of the present invention when it is not operating. detailed description
  • the present invention provides a cylinder structure, including - a first half cylinder 10;
  • the first half cylinder 10 and the second half cylinder 20 are formed by the same mold, and the first half cylinder 1 Q and the second half cylinder 2 Q are fixed and fixed, and then composed a complete cylinder, the first and second half cylinders 10, 20 are internally provided with a gas chamber 30 and a rotor chamber 40, and the volume ratio of the gas chamber 30 to the rotor chamber 4 Q is about three to one.
  • a partition 50 is provided between the gas chamber 30 and the rotor chamber 40, and the partition plate
  • the angle formed by the 50 at the rotor chamber 4 Q side is between one hundred and ten degrees and one hundred and thirty degrees, and the rotor chamber 40 is reduced in volume by the convex arc portions 1 1 and 2 1 to make the gas chamber 3 Q and
  • the volume ratio of the rotor chamber 40 can still be maintained by about three to one, and the effective operating area of a rotor 6 Q is increased, and the effective operating area of a rotor 60 is concentrated on one blade of the rotor 6 Q.
  • 6 Q is disposed in the rotor chamber 40, in the first and second half cylinders
  • a first and second pipe grooves 1 3, 2 3 are provided to open the first and second half cylinders 10, 2 0 side of the first and second
  • An o-shaped ring 70 is disposed on one side of the rotor shaft 61 1 and is provided with one or more recesses 6 2 for isolating leakage;
  • a fail-safe control structure 80 includes an air source 8 1 connected to a check valve 8 2 and a first control side 8 3 of a pneumatic valve 83.
  • the check valve 8 2 to the air chamber of the cylinder
  • the inlet end 3 1 1 of the inlet ⁇ L 3 1 enters the gas chamber 30 from the output end 3 1 2, and enters the inlet end 3 2 1 of the outlet port 3 2 of the gas chamber 30, from the output end 3 2 2
  • the output is connected to the intake end 8 3 2 of the pneumatic valve 8 3
  • a second control side 8 3 3 of the pneumatic valve 8 3 is provided with a spring 8 3 4
  • a first output end 8 3 of the pneumatic valve 83 5 is connected to the second intake hole 24 of the cylinder by a first pipe 8 4
  • a second output end 8 3 6 of the pneumatic valve 83 is connected to the first intake hole of the cylinder by a second pipe 8 5 14.
  • the air source 81 has a supply of air (see Fig. 4).
  • the high pressure gas is accumulating to the chamber 30 through the check valve 82, and at the same time the high pressure gas reaches the first control side 8 of the pneumatic valve 83. 1.
  • the pneumatic valve 8 3 is moved to the second control side 8 3 3 to further open the inlet end 8 3 2, the first output end 835, and the high pressure gas that accumulates the gas chamber 30 is discharged through the outlet hole.
  • the air source 8 1 has no air supply (refer to FIG. 4-1), then the first control side 831 of the pneumatic valve 8 3 has no pressure, the spring 8 3 4 is rebounded, and the pneumatic valve 8 3 is driven to the first control.
  • the side 8 3 1 moves, the intake position is changed by the switching action, the intake end 8 3 2 is aligned with the second output end 8 3 6, the accumulating air chamber 30 is supplied through the outlet hole 3, and the intake end 8 3 2, the second output end 8 3 6, the second pipeline 8 5, the first air inlet hole 14 , the first duct groove 13 and enter the rotor chamber 40, the pressure accumulating high pressure gas is pushed The rotor 6 is safely reset.
  • the outer circumferences of the first and second half cylinders 10, 20 are respectively locked and adjusted by a screw 15 and 25, and the screws 15 and 25 can penetrate into the rotor chamber 40, the screw 15
  • the front end of 2 5 blocks the rotor 60 as an adjustment control for the swing angle limitation of the rotor 60.
  • the O-ring 7 ⁇ assembled on the circumferential surface of the rotor 60, the outer edge of the O-ring 70 protrudes toward the free ends of the two sides, and a resilient retaining edge 7 1 , 7 2 protrudes in line contact The way is against the inner surface of the cylinder housing.
  • the gas pressure of the gas chamber 3 G is attenuated, so the gas chamber 3 Q and the rotor chamber must be maintained.
  • the volume ratio of 40 is about three to one, so that there is enough gas storage pressure to push the rotor 60.
  • the force of the rotor shaft 61 away from the rotor 60 side and the force close to the side of the rotating hole 6 Q are exactly offset each other.
  • the present invention provides another embodiment, as shown in FIG. 6 and FIG. 6-1 , including: the cylinder can be configured with a double-action control structure 90 , including an air source 9 1 connected to the The electromagnetic valve
  • the intake end of the solenoid valve 9 2 1, the control side of the solenoid valve 9 2 is controlled by a solenoid valve member, and a first output end 92 2 of the solenoid valve 92 is connected to the first line 9 3
  • a second intake port 24 of the cylinder, a second output end 92 2 of the solenoid valve 92 is connected to the first intake port 14 of the cylinder by a second line 94.
  • the air source 9 1 has a supply air (see FIG. 6), and the electromagnetic valve member is actuated to push the electromagnetic valve 92 to the right side to further open the intake end 9 2 1 , first The output terminal 92 2, and the high pressure gas of the air source 9 1 is passed through the intake end 9 2 1 , the first output end 9 2 2, the first line 9 3 , the second intake hole 24 , the second duct concave
  • the groove 2 3 enters the rotor chamber 40, thereby pushing the rotor 60 to rotate, and the gas on the other side of the rotor 60 is composed of the first pipe groove 13 , the second pipe 94 , and the second output terminal 9 2 3 . Discharge to the atmosphere.
  • the air source 9 1 continues to supply air (see FIG. 6-1), and the solenoid valve of the solenoid valve 92 is not actuated, and the spring is rebounded, and the solenoid valve 9 2 is driven to the left to pass through.
  • the switching action changes the intake position such that the intake end 92 1 is aligned with the second output end 92 2 , and the high pressure gas of the air source 9 1 passes through the intake end 9 2 1 , the second output end 9 2 3 , and the second tube
  • the road 94, the first intake hole 14 and the first duct groove 13 enter the rotor chamber 4, and the high-pressure gas pushes the rotor 6 to rotate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

一种气缸结构 技术领域
本发明涉及一种气缸的技术领域, 尤其提供一种改良的气缸结构, 其在气缸 内一体成型有一气室, 并以该气室常保该转子在空气源没供气时的安全复归。 背景技术
按, 习用的气缸有柱状气缸、扇形气缸,其均利用压力或扭力迫使转子转动, 进而使该气缸得以控制该转子进行往复运动, 进而带动该阀体开启或关闭。 而单 动气缸则用于常态关闭的阀体, 以确保使用的安全性。
惟, 其习用的单动气缸如果使用弹簧作为回复动力, 则其弹簧必须先预设一 定压力装入, 才能在弹簧回弹极限时仍有压力压住转子, 而该气压要施力到可以 压缩弹簧, 也必须施加大压力, 所以供气气压需高气压, 而该弹簧突然释压会造 成相当大的冲击力推转子撞击限位螺丝及气缸,因此气缸结构强度需要较为坚固, 且弹簧需考虑线径、 螺旋角、 材质、 热处理方式、 可靠度与耐用度的提升, 所以 设计困难亦不好装设。 发明内容
本发明欲解决的技术问题在于: 习用的单动气缸如果使用弹簧作为回复动 力, 则其弹簧必须先预设一定压力装入, 才能在弹簧回弹极限时仍有压力压住转 子, 而该气压要施力到可以压縮弹簧, 也必须施加大压力, 所以供气气压压力要 高, 而该弹簧突然释压会造成相当大的冲击力推转子撞击限位螺丝及气缸, 所以 气缸结构的强度需要较为坚固, 且弹簧的设计困难亦不好装设。
本发明解决问题的技术特点: 本发明一种气缸结构, 其包含有- 一第一半气缸;
一第二半气缸, 该第一半气缸与第二半气缸以同一模具分别成型, 该第一半 气缸与该第二半气缸对合固接后, 得以组成一完整的气缸, 该第一、 二半气缸内 部设有一气室与一转子室, 而气室与转子室间设有一隔板, 该隔板在转子室侧形 成的角度为一百一十度至一百三十度之间, 而转子室以凸弧部减小容积, 并使一 转子的有效作动面积集中于转子的一叶片, 该转子设于该转子室内, 该第一、 二 半气缸的接合端面上设有一第一、二管道凹沟导通第一、二半气缸周侧的一第一、 二进气孔和转子室的左、 右侧壁, 该转子周面及一转子轴两端与靠近隔板的转子 轴侧面, 均设有一个或一个以上的凹沟以供隔绝泄漏的一 o形环组设; 以及, 一安全复归控制结构, 包含有一空气源分别接至一止逆阀及一气动阀的一第 一控制侧,该止逆阀接至气缸的气室,该高压蓄压的气室接至该气动阀的进气端, 该气动阀的一第二控制侧设有弹簧, 该气动阀的一第一输出端以一第一管路接至 气缸的第二进气孔, 经第二管道凹沟连接转子室驱动的右侧壁, 该气动阀的一第 二输出端以一第二管路接至气缸的第一进气孔, 经第一管道凹沟连接转子室安全 复归的左侧壁, 该空气源有供气则可推动气动阀及驱动该转子转动, 该空气源没 有供气则弹簧回弹, 使气动阀动作, 透过切换动作改变进气位置, 而使该气室内 高压气体驱动转子安全复归。
其中: 该第一、 二半气缸的外周分别穿锁调整一螺丝, 该螺丝穿入至该转子 室, 该螺丝前端挡止该转子, 作为转子摆转角度限制的调整控制。
其中: 该转子周面组设的该 0形环, 该 0形环的外缘上各朝两侧自由端方向 凸伸一弹性挡缘, 并以线接触的方式抵靠于气缸壳体内面。
其中: 该气室与转子室的容积比为三比一。
一种气缸结构, 包含有- 一第一半气缸;
一第二半气缸, 该第一半气缸与第二半气缸以同一模具分别成型, 该第一半 气缸与该第二半气缸对合固接后, 得以组成一完整的气缸, 该第一、 二半气缸内 部设有气室与转子室, 而气室与转子室间设有隔板, 隔板在转子室侧形成的角度 为一百一十度至一百三十度之间, 而转子室以凸弧部减小容积, 并使一转子的有 效作动面积集中于转子的一叶片, 该转子设于该转子室内, 该第一、 二半气缸的 接合端面上设有一第一、 二管道凹沟导通第一、 二半气缸周侧的一第一、 二进气 孔及转子室的左、右侧壁,该转子周面及一转子轴两端与靠近隔板的转子轴侧面, 均设有一个或一个以上的凹沟以供隔绝泄漏的一 0形环组设; 以及,
一双动式控制结构, 包含有一空气源, 其接至一电磁阀的进气端, 该电磁阀 的控制侧得为电磁阀件控制动作, 该电磁阀的一第一输出端以一第一管路接至气 缸的第二进气孔, 经第二管道凹沟连接转子室驱动的右侧壁, 该电磁阀的一第二 输出端以一第二管路接至气缸的第一进气孔, 经第一管道凹沟连接转子室驱动的 左侧壁, 该空气源供气并且电磁阀件作动时, 该电磁阀即被推动, 而该空气源供 气可驱动该转子转动, 该电磁阀件反向作动, 该电磁阀被推动, 空气源供气使高 压气体驱动转子复位。
其中: 该第一、 二半气缸的外周分别穿锁调整一螺丝, 该螺丝穿入至该转子 室, 该螺丝前端挡止该转子, 作为转子摆转角度限制的调整控制。 其中: 该转子周面组设的该 o形环, 该 0形环的外缘上各朝两侧自由端方向 凸伸一弹性挡缘, 并以线接触的方式抵靠于气缸壳体内面。
其中: 该气室与转子室的容积比为三比一。
本发明对照先前技术的技术效果在于:本发明的气缸二个半气缸以同一模 具制成, 所以节省成本, 而其气缸内设有气室及转子室, 以其安全复归控制结 构控制该气室的高压气体供应作为转子回复动力,而该转子设有较大面积的有 效作动面积, 并使一转子的有效作动面积集中于转子的一叶片, 且其转子设具 有弹性挡缘的 0形环,其弹性挡缘与气缸内面呈线接触,使其防泄漏效果更佳。 附图说明
图 1 : 本发明其一实施例的立体分解示意图。
图 2 : 本发明其一实施例的立体示意图。
图 3 : 本发明其一实施例的剖示图。
图 4: 本发明安全复归式的空气源供气动作示意图。
图 4-1 : 本发明安全复归式的安全复归动作示意图。
图 5 : 本发明转子的局部剖示图。
图 6: 本发明双动式气缸的电磁阀动作示意图。
图 6-1 : 本发明双动式气缸的电磁阀件未动作时示意图。 具体实施方式
参阅图 1至图 5所示, 本发明提供一种气缸结构, 包括- 一第一半气缸 1 0;
一第二半气缸 2 0, 该第一半气缸 1 0与第二半气缸 2 0以同一模具成型, 该第一半气缸 1 Q与该第二半气缸 2 Q对合固接后, 得以组成一完整的气缸, 该 第一、 二半气缸 1 0、 2 0内部设有气室 3 0与转子室 4 0, 该气室 3 0与转子 室 4 Q的容积比约为三比一, 而气室 3 0与转子室 4 0之间设有隔板 5 0, 隔板
5 0在转子室 4 Q侧形成的角度为一百一十度至一百三十度之间, 而转子室 4 0 以凸弧部 1 1、 2 1减小容积, 使气室 3 Q与转子室 4 0的容积比仍可维持约三 比一, 并使一转子 6 Q的有效作动面积提升, 并使一转子 6 0的有效作动面积集 中于转子 6 Q的一叶片, 该转子 6 Q设于该转子室 4 0内, 在该第一、 二半气缸
1 0 , 2 0的接合端面 1 2、 2 2上, 设有一第一、 二管道凹沟 1 3、 2 3导通 第一、 二半气缸 1 0、 2 0周侧的一第一、 二进气孔 1 4、 2 4和转子室 4 0的 左、 右侧壁 4 1、 4 2, 该转子 6 ϋ周面、 一转子轴 6 1两端与靠近隔板 5 0的 转子轴 6 1侧面,均设有一个或一个以上的凹沟 6 2以供隔绝泄漏的一 0形环 70 组设;
一安全复归(fai l-safe)控制结构 8 0, 包含有一空气源 8 1分别接至一止 逆阀 8 2及一气动阀 8 3的一第一控制侧 8 3 1, 该止逆阀 8 2接至气缸的气室
3 0入口孑 L 3 1的进入端 3 1 1, 再由输出端 3 1 2进入气室 3 0, 由气室 3 0 出口孔 3 2的进入端 3 2 1进入, 由输出端 3 2 2输出接至该气动阀 8 3的进气 端 8 3 2, 该气动阀 8 3的一第二控制侧 8 3 3则设有弹簧 8 3 4, 该气动阀 83 的一第一输出端 8 3 5以一第一管路 8 4接至气缸的第二进气孔 24,该气动阀 83 的一第二输出端 8 3 6以一第二管路 8 5接至气缸的第一进气孔 14。
该空气源 8 1有供气 (可参阅图 4所示) 则高压气体通过止逆阀 8 2蓄压至 该气室 3 0, 且同时高压气体到达气动阀 8 3之第一控制侧 8 3 1, 而得以推动 该气动阀 8 3往第二控制侧 8 3 3移动, 进而导通进气端 8 3 2、 第一输出端 835, 而使气室 3 0蓄压之高压气体经由出口孔 3 2、进气端 8 3 2、第一输出端 8 3 5、 第二进气孔 2 4、 第二管道凹沟 2 3而进入至转子室 4 ϋ, 进而推动转 子 6 Q旋转, 转子 6 0另侧的气体则由第一管道凹沟 1 3、 第二管路 8 5、 第二 输出端 8 3 6而排放至大气。
该空气源 8 1没有供气(可参阅图 4-1所示)则气动阀 8 3的第一控制侧 831 没有压力, 该弹簧 8 3 4得以回弹, 驱动气动阀 8 3往第一控制侧 8 3 1移动, 透过切换动作改变进气位置, 使进气端 8 3 2对齐第二输出端 8 3 6, 该蓄压之 气室 3 0供气经出口孔 3 2、进气端 8 3 2、第二输出端 8 3 6、第二管路 8 5、 第一进气孔 1 4、 第一管道凹沟 1 3而进入至转子室 4 0, 该蓄压之高压气体乃 推动转子 6 ϋ安全复归。
所述该第一、 二半气缸 1 0、 2 0的外周分别穿锁调整一螺丝 1 5、 2 5, 该螺丝 1 5、 2 5能穿入至该转子室 4 0, 该螺丝 1 5、 2 5的前端挡止该转子 6 0, 作为转子 6 0摆转角度限制的调整控制。
所述该转子 6 0周面组设的该 0形环 7 ϋ, 该 0形环 7 0的外缘上各朝两侧 自由端方向凸伸一弹性挡缘 7 1、 7 2,并以线接触的方式抵靠于气缸壳体内面。
所述该气室 3 G的蓄气气压力会衰减, 所以必须维持该气室 3 Q与该转子室
4 0的容积比约为三比一, 才有足够的蓄气压力推动该转子 6 0。
所述该转子轴 6 1的远离转子 6 0侧受力与靠近转孔 6 Q侧受力恰得以相 互抵销。
参阅图 1至图 6所示, 本发明提供另一实施方式, 如图 6及图 6-1, 包括: 上述气缸可组设一双动式控制结构 9 0, 包含有一空气源 9 1接至一电磁阀 9 2的进气端 9 2 1, 该电磁阀 9 2的控制侧得为电磁阀件控制动作, 该电磁阀 9 2的一第一输出端 9 2 2以一第一管路 9 3接至气缸之第二进气孔 2 4, 该电 磁阀 9 2的一第二输出端 9 2 3以一第二管路 9 4接至气缸的第一进气孔 1 4 。
该空气源 9 1有供气 (可参阅图 6所示) , 且该电磁阀件作动, 而得以推动 该电磁阀 9 2往右侧移动, 进而导通进气端 9 2 1、 第一输出端 9 2 2, 而使空 气源 9 1的高压气体经由进气端 9 2 1、 第一输出端 9 2 2、 第一管路 9 3、 第 二进气孔 2 4、第二管道凹沟 2 3而进入至转子室 4 0,进而推动转子 6 0旋转, 转子 6 0另侧的气体则由第一管道凹沟 1 3、 第二管路 9 4、 第二输出端 9 2 3 而排放至大气。
该空气源 9 1持续供气 (可参阅图 6-1所示)则电磁阀 9 2的电磁阀件未作 动, 该弹簧乃得以回弹, 驱动电磁阀 9 2往左侧移动, 透过切换动作改变进气位 置, 使进气端 9 2 1对齐第二输出端 9 2 3, 该空气源 9 1的高压气体经进气端 9 2 1、 第二输出端 9 2 3、 第二管路 9 4、 第一进气孔 1 4、 第一管道凹沟 13 而进入至转子室 4 ϋ, 该之高压气体乃推动转子 6 ϋ转动。

Claims

权 利 要 求 书 1 . 一种气缸结构, 包含有- 一第一半气缸;
一第二半气缸, 该第一半气缸与第二半气缸以同一模具分别成型, 该第一半 气缸与该第二半气缸对合固接后, 得以组成一完整的气缸, 该第一、 二半气缸内 部设有一气室与一转子室, 而气室与转子室间设有一隔板, 该隔板在转子室侧形 成的角度为一百一十度至一百三十度之间, 而转子室以凸弧部减小容积, 并使一 转子的有效作动面积集中于转子的一叶片, 该转子设于该转子室内, 该第一、 二 半气缸的接合端面上设有一第一、二管道凹沟导通第一、二半气缸周侧的一第一、 二进气孔和转子室的左、 右侧壁, 该转子周面及一转子轴两端与靠近隔板的转子 轴侧面, 均设有一个或一个以上的凹沟以供隔绝泄漏的一 0形环组设; 以及, 一安全复归控制结构, 包含有一空气源, 其分别接至一止逆阀及一气动阀的 一第一控制侧, 该止逆阀接至气缸的气室, 该高压蓄压的气室接至该气动阀的进 气端, 该气动阀的一第二控制侧设有弹簧, 该气动阀的一第一输出端以一第一管 路接至气缸的第二进气孔, 经第二管道凹沟连接转子室驱动的右侧壁, 该气动阀 的一第二输出端以一第二管路接至气缸的第一进气孔, 经第一管道凹沟连接转子 室安全复归的左侧壁, 该空气源有供气则可推动气动阀及驱动该转子转动, 该空 气源没有供气则弹簧回弹, 使气动阀动作, 透过切换动作改变进气位置, 而使该 气室内高压气体驱动转子安全复归。
2 . 如权利要求 1所述的气缸结构, 其中该第一、 二半气缸的外周分别穿锁 调整一螺丝, 该螺丝穿入至该转子室, 该螺丝前端挡止该转子, 作为转子摆转角 度限制的调整控制。
3 . 如权利要求 1所述的气缸结构, 其中该转子周面组设的该 0形环, 该 0 形环的外缘上各朝两侧自由端方向凸伸一弹性挡缘, 并以线接触的方式抵靠于气 缸壳体内面。
4 .如权利要求 1所述的气缸结构,其中该气室与转子室的容积比为三比一。
5 . 一种气缸结构, 包含有- 一第一半气缸;
一第二半气缸, 该第一半气缸与第二半气缸以同一模具分别成型, 该第一半 气缸与该第二半气缸对合固接后, 得以组成一完整的气缸, 该第一、 二半气缸内 部设有气室与转子室, 而气室与转子室间设有隔板, 隔板在转子室侧形成的角度 为一百一十度至一百三十度之间, 而转子室以凸弧部减小容积, 并使一转子的有 效作动面积集中于转子的一叶片, 该转子设于该转子室内, 该第一、 二半气缸的 接合端面上设有一第一、 二管道凹沟导通第一、 二半气缸周侧的一第一、 二进气 孔及转子室的左、右侧壁,该转子周面及一转子轴两端与靠近隔板的转子轴侧面, 均设有一个或一个以上的凹沟以供隔绝泄漏的一 0形环组设; 以及,
一双动式控制结构, 包含有一空气源, 其接至一电磁阀的进气端, 该电磁陶 的控制侧得为电磁阀件控制动作, 该电磁阀的一第一输出端以一第一管路接至气 缸的第二进气孔, 经第二管道凹沟连接转子室驱动的右侧壁, 该电磁阀的一第二 输出端以一第二管路接至气缸的第一进气孔, 经第一管道凹沟连接转子室驱动的 左侧壁, 该空气源供气并且电磁阀件作动时, 该电磁阀即被推动, 而该空气源供 气可驱动该转子转动, 该电磁阀件反向作动, 该电磁阀被推动, 空气源供气使高 压气体驱动转子复位。
6 . 如权利要求 5所述的气缸结构, 其中该第一、 二半气缸的外周分别穿锁 调整一螺丝, 该螺丝穿入至该转子室, 该螺丝前端挡止该转子, 作为转子摆转角 度限制的调整控制。
7 . 如权利要求 5所述的气缸结构, 其中该转子周面组设的该 0形环, 该 0 形环的外缘上各朝两侧自由端方向凸伸一弹性挡缘, 并以线接触的方式抵靠于气 缸壳体内面。
8 .如权利要求 1所述的气缸结构,其中该气室与转子室的容积比为三比一。
PCT/CN2009/075067 2009-11-20 2009-11-20 一种气缸结构 WO2011060587A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/993,504 US8671672B2 (en) 2009-11-20 2009-11-20 Pneumatic actuator structure
PCT/CN2009/075067 WO2011060587A1 (zh) 2009-11-20 2009-11-20 一种气缸结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/075067 WO2011060587A1 (zh) 2009-11-20 2009-11-20 一种气缸结构

Publications (1)

Publication Number Publication Date
WO2011060587A1 true WO2011060587A1 (zh) 2011-05-26

Family

ID=44059191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075067 WO2011060587A1 (zh) 2009-11-20 2009-11-20 一种气缸结构

Country Status (2)

Country Link
US (1) US8671672B2 (zh)
WO (1) WO2011060587A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957831B2 (en) * 2014-07-31 2018-05-01 The Boeing Company Systems, methods, and apparatus for rotary vane actuators
TWM510995U (zh) * 2015-07-21 2015-10-21 Lu yi xuan 氣壓缸之轉子結構
WO2021035199A1 (en) 2019-08-22 2021-02-25 Easytork Automation Corporation Pneumatic trip valve
WO2021113388A1 (en) * 2019-12-02 2021-06-10 Easytork Automation Corporation External shaft connection assembly for a vane actuator
CN111577395A (zh) * 2020-04-29 2020-08-25 韩丁 气动发动机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369618A (zh) * 2001-02-14 2002-09-18 张志远 半轮钟摆单向齿轮调整式发动机
US20070034079A1 (en) * 2005-08-15 2007-02-15 Puretorq, Inc. Packing assembly for cylinder casing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275642A (en) * 1978-09-22 1981-06-30 Xomox Corporation Air actuated fail-safe actuator encapsulated within accumulator tank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369618A (zh) * 2001-02-14 2002-09-18 张志远 半轮钟摆单向齿轮调整式发动机
US20070034079A1 (en) * 2005-08-15 2007-02-15 Puretorq, Inc. Packing assembly for cylinder casing

Also Published As

Publication number Publication date
US20110226124A1 (en) 2011-09-22
US8671672B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
WO2011060587A1 (zh) 一种气缸结构
US5893707A (en) Pneumatically shifted reciprocating pump
RU2005128941A (ru) Ротационный компрессор герметичного типа и устройство контура охлаждения
JP6385160B2 (ja) 非常用機能を有する液圧式の作動装置に用いられる4チャンバ型シリンダおよび4チャンバ型シリンダを備えた液圧式の作動装置
KR20080068441A (ko) 용량가변 회전압축기
KR101774076B1 (ko) 얼음 생성이 적은 공기 모터 배기 머플러
JP2005140381A5 (zh)
US20090041606A1 (en) Vane compressor
CA2566002A1 (en) Reciprocating air distribution system
JP4949754B2 (ja) 空気圧式マッサージ装置
WO2007130850A2 (en) Single stage to two stage compressor
CN201810759U (zh) 气缸改良结构
CN110394034B (zh) 一种压缩空气净化器及其排放控制方法
CN110345052B (zh) 一种气动往复驱动隔膜泵
CN110206775B (zh) 一种排气机构
US11022106B2 (en) High-pressure positive displacement plunger pump
CN113464692A (zh) 一种具有过压保护功能的快速排气阀
US8303265B2 (en) Hydraulic pump
JP5706465B2 (ja) 結露防止弁
CN220081822U (zh) 一种气铲滑式阀门进气装置
CN113685339B (zh) 一种不锈钢气动隔膜泵
TWM412280U (en) Differential pressure type quick relief valve with checking function
CN111255914B (zh) 压缩机及具有其的制冷系统
RU2612671C1 (ru) Пьезоэлектрический нагнетатель текучих сред
CN110513489B (zh) 汽轮机及其速关阀系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12993504

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851379

Country of ref document: EP

Kind code of ref document: A1