WO2011058510A1 - Dispositivo captador de energía eólica - Google Patents

Dispositivo captador de energía eólica Download PDF

Info

Publication number
WO2011058510A1
WO2011058510A1 PCT/IB2010/055115 IB2010055115W WO2011058510A1 WO 2011058510 A1 WO2011058510 A1 WO 2011058510A1 IB 2010055115 W IB2010055115 W IB 2010055115W WO 2011058510 A1 WO2011058510 A1 WO 2011058510A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical
collector
static
wind
flow
Prior art date
Application number
PCT/IB2010/055115
Other languages
English (en)
French (fr)
Inventor
Sergio Luis Mena Vergara
Original Assignee
Sergio Luis Mena Vergara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sergio Luis Mena Vergara filed Critical Sergio Luis Mena Vergara
Priority to US13/509,491 priority Critical patent/US20120223528A1/en
Publication of WO2011058510A1 publication Critical patent/WO2011058510A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/131Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • F05B2250/232Geometry three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/24Geometry three-dimensional ellipsoidal
    • F05B2250/241Geometry three-dimensional ellipsoidal spherical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the object of the invention (wind engine) and the field of application (production of electricity by a more efficient use of wind energy) are indicated.
  • the wind energy sensing device to generate electricity, is another form of wind engine, which through a special channeling of the wind flow, manages to significantly increase the available power density, for the vertical axis turbine and upward vertical flow, with turbine and rotor housing with large surface blades, to achieve great powers.
  • Wind Turbine model which is a horizontal axis and flow turbine, without a turbine and rotor housing with cantilever and small surface blades, mounted on an orientable device, on a tower
  • An essential component of the Wind Energy Capture Device, for generating electricity is the static vertical collecting cylinder (2), consisting of 20 static collecting channels (4), shown in Figures 1 and 2, composed, respectively, of two partitions.
  • the graph, figure 6 illustrates the wind power density gain of 8 times that of the place, which is obtained through the geometry of this device. Since the air flow enters vertically upwards in the turbine, it could be said that the rotor, without cantilevered recessed blades, "floats" in the wind current, ascending vertical, whereby the friction on the sliding support poles , will be minimal.
  • Wind energy sensor device to generate electricity 87%.
  • Wind turbine 80%
  • Figure 1 is an elevation view, in the cutting room, of the wind energy sensing device, for generating electricity, in which each and every one of the components that comprise it is represented.
  • Figure 2 is a top plan view of the wind energy sensor device for generating electricity, in which the distribution and conformation of the components that comprise it is represented.
  • Figure 3 is a plan view, according to section c-c ', in which the distribution of static collector channels (4) and the angular sector, with respect to the wind direction, in which the energy efficiency of The four channels located within this angular sector of 36 degrees to both of the wind direction, reach 87%.
  • Figure 4 shows a perspective view, in section, of the turbine, showing the turbine housing (6), with floor structures (6.1) and roof structures (6.2), supporting the raceways, for sliding of rotor support pins with their articulated modular structures, blade holder (7.1), figure 4.
  • Figure 5 represents a detail of the articulated modular blade holder structures (7.1), in one or several sections, with one articulated end and the other supported on a raceway, elevation view figure 5.1, which also shows the blade ( 7.2) and figure 5.2 showing the adjustable angular position of the blade (7.2) and plant figure 5.3, shows the angular sector that encompasses the modular articulated blade holder structure (7.1) and the mass - collar (7.3), which allows transmitting the torque effort of the blades to the shaft and form the support joints of the articulated modular structures, blade holders (7.1).
  • Figure 6 illustrates a graph of wind power density at the input of the device and available for the turbine as a function of the average wind speed.
  • figure 1 a view in elevation, in quarter of cut, of the device of capture of wind energy is shown, to generate electricity, composed by:
  • the static vertical collector cylinder (2) is composed of 20 radial collector partitions (1), arranged at an angle of 18 degrees, with each other and distributed in 360 degrees, of the cylinder, figure 2.
  • Wc Power captured by the device, expressed in watts
  • A Wind catchment area of the Device, projected on the plane perpendicular to the flow axis, in square meters.
  • N the total energy efficiency of the Device
  • Wb Power in generator terminals, expressed in watts.
  • the radius of the static vertical collecting cylinder (2) can be calculated from the power that needs to be generated, expressed in watts and the average wind speed of the place, expressed in m / s. For which, to the power that needs to be available in generator terminals, expressed in watts, the total losses of the device are added, dividing by the total efficiency factor, that is by 0.65 and this quotient, is divided by 1, 08 of the average wind speed of the place in (m / s), to the cube and then square root is extracted, from this quotient, to have the radius of the static vertical collecting cylinder (2), expressed in meters. In such a way that the radial collector walls (1), have as width, the radius determined above and their height is 1.67 of this, to ensure the overlapping of the flow deflector helmets (3) and complementary flow deflector helmets (3), figure 1.
  • the static vertical collector cylinder (2) is made up of 20 static collector channels (4), composed respectively of two static radial partitions (1), a spherical deflector hull (3) and a complementary spherical deflector hull (3, figure 1.
  • the truncated flow accelerator cone, static vertical (5) is placed on the static vertical collector cylinder (2) and assembled thereto, the angle of its generator 22.5 degrees, figure 1.
  • 20 complementary radial partitions () are placed, in the same plane of the radial collecting partitions (1) and form 20 accelerating flow channels (4), aligned with the static collecting channels (4), figure one.
  • the height of the truncated cone, accelerator of flow, static vertical (5) is equal to the difference between the radius of the static vertical collector cylinder (2) and the radius of the turbine housing (6), divided by 0.414 (tangent of 22 , 5 degrees).
  • the electric generator (8) In line with the axis of the turbine housing (6) and on it, the electric generator (8) is located and as an alternative position the generator (8, is located under the spherical deflector hulls (3), figure 1.
  • the devices preferably, can be installed in mountain drawers, natural channels, communicating vessels, of winds that flow, between continental geographical areas, adjacent to high peaks, which act as retaining walls, of atmospheric air masses, subject to differences of pressure
  • the pressure difference determines the speed and direction of the flow and also changes direction, cyclically during 24 hours a day, producing variable speed and reversible direction flows. See Satellite Meteorological Maps, at www.meteochile.cl and observations at Cajón del Maipo, Raco wind.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

El dispositivo captador de energía eólica, para generar electricidad que actúa como colector de viento y generador de electricidad, está integrado por a) un cilindro colector vertical, estático (2), que está integrado por 20 canales colectores estáticos (4), por un casco esférico deflector (3), por un casco esférico deflector complementario (3'), que colectan el viento procedente de cualquier dirección cardinal y lo deflectan de la horizontal a la vertical ascendente; b) un cono truncado acelerador de flujo vertical estático (5), ensamblado sobre el cilindro colector estático (2) y que está integrado por 20 tabiques colectores radiales complementarios (1 '), conformando 20 canales aceleradores de flujo (4'), que aumentan dos veces la velocidad del viento, disponiendo en caja de turbina (6), un flujo con densidad de potencia 8 veces la del lugar, expresada en watts/m2 y una eficiencia energética en caja de turbina de 87 %; c) una turbina de eje vertical y flujo vertical ascendente; y d) un generador (8), de características eléctricas y mecánicas, compatibles con el sistema eléctrico de interconexión local.

Description

DISPOSITIVO CAPTADOR DE ENERGÍA EÓLICA
CAMPO DE APLICACIÓN
Se indica el objeto de la invención (motor eólico) y el campo de aplicación (producción de electricidad mediante un aprovechamiento más eficiente de la energía del viento).
El Dispositivo captador de energía eólica, para generar electricidad, es otra forma de motor eólico, que mediante una canalización especial del flujo de vientos, logra incrementar significativamente, la densidad de potencia disponible, para la turbina de eje vertical y flujo vertical ascendente, con caja de turbina y rotor con álabes de gran superficie, para lograr grandes potencias.
ANTECEDENTES
Se describe lo conocido en el estado de la técnica y el problema técnico que se presenta si en la búsqueda del estado de la técnica se ha encontrado un documento cercano a la invención. Se describen las diferencias de la solicitud con la invención.
La industria de los motores eólicos, se ha desarrollado y crece masivamente en base a un modelo de Aerogenerador, que es una turbina de eje y flujo horizontal, sin caja turbina y rotor con álabes en voladizo y de pequeña superficie, montada en dispositivo orientable, sobre una torre.
Por otra parte, la creciente escasez de recursos energéticos a nivel mundial, ha sido un potente incentivo para el desarrollo de las llamadas, "energías renovables no convencionales". En este contexto, la abundancia de vientos en muy diversos lugares, ha volcado el interés de numerosos fabricantes de máquinas o molinos de viento, en el desarrollo de muy variados diseños tendientes a optimizar el uso de este recurso, reducir los costos de inversión y en producir unidades de potencias cada vez mayores. Sería largo detallar las múltiples soluciones desarrolladas. Sin embargo, para efectos de destacar las ventajas del presente invento, basta decir que todas ellas tienen en común un nivel final de conversión de la energía, que puede ser mejorado en alto grado. El Dispositivo captador de energía eólica, para generar electricidad, que se presenta aquí, viene a sentar un nuevo precedente, en relación a este importante parámetro de la conversión. En los documentos investigados, números: ES259880, ES2008/000341, US 6.952.058 B2, se encuentran interesantes soluciones que apuntan ya sea a un ahorro de espacio de la instalación, diseño de rotores fáciles de construir y económicos, rotores múltiples para aprovechar mejor la disponibilidad y dirección del viento.
DESCRIPCIÓN DE LA INVENCIÓN
El diseño de este invento satisface, en gran medida estas metas y además incorpora nuevos principios, que conforman una solución diferente y exclusiva:
• Cambio de dirección y velocidad del flujo del viento que ingresa al Dispositivo captador de energía eólica, para generar electricidad.
• Incremento de la densidad de potencia eólica, disponible en caja de turbina (6).
• Reducción del área de entrada a la turbina.
• Reducción del roce en los descansos de la turbina.
• Incremento sustancial de la eficiencia final de conversión.
• Optimización del aprovechamiento de la potencia disponible, en la turbina, con la incorporación de una caja de turbina (6) o cámara de carga y rotor (7), con módulos estructurales articulados porta álabes (7.1), figura 4
• Maximización de la generación de energía, desarrollando una turbina de eje vertical y flujo vertical ascendente, que disponga de vientos de gran densidad de potencia y cuyos álabes de gran superficie, giren en el plano horizontal, gravitando portados sobre módulos estructurales articulados porta álabes (7.1), para distribuir la carga y escalar grades potencias, figuras 4 y 5.
Un componente esencial, del Dispositivo captador de energía eólica, para generar electricidad, lo constituye el cilindro colector vertical estático (2), conformado por 20 canales colectores estáticos (4), mostrados en las figuras 1 y 2, compuestos, respectivamente por dos tabiques colectores radiales (1), un casco esférico deflector (3) y un casco esférico deflector complementario (3 ). Ellos cumplen con dos funciones: captar los flujos de viento provenientes de cualquier dirección cardinal y deflectarlos de la horizontal a la vertical ascendente. Otro componente importante, lo constituye, el cono truncado acelerador de flujo, vertical estático (5), figura 1, cuya función, es la reducción gradual de la sección del ducto, en cada canal acelerador de flujo complementario (4'), por lo que el flujo de aire aumenta su velocidad dos veces, con lo que se logra un aumento de ocho veces, la densidad de potencia del viento, en términos de watts/metro cuadrado, a la entrada de la caja de turbina (6), gráfico figura 6. En el modelo experimental, ensayado en laboratorio de Ingeniería del viento, la velocidad a la entrada del cilindro colector vertical estático (2), fue de 6,8 m/s, en tanto que en salida de cada canal colector estático complementario (4 ) o entrada a la caja de turbina (6), fue de 13.97 m/s, vale decir, más de dos veces la velocidad inicial.
El gráfico, figura 6, ilustra la ganancia en densidad de potencia del viento, de 8 veces, la del lugar, que se obtiene mediante la geometría de este dispositivo. Puesto que el flujo de aire, entra verticalmente hacia arriba en la turbina, podría decirse que el rotor, sin álabes empotrados en voladizo, "flota" en la corriente de viento, vertical ascendente, por lo cual el roce en los polines de apoyo deslizante, será mínimo.
La evaluación de la eficiencia final de conversión energética, del Dispositivo captador de energía eólica, para generar electricidad, se basa en los siguientes parámetros, medidos en laboratorio y conocidos de acuerdo a las performances de los alternadores y turbinas. Ellos serían:
• Dispositivo captador de energía eólica, para generar electricidad: 87 %. · Turbina eólica : 80%
• Alternador : 94%
En consecuencia, la eficiencia final de la conversión energética, del Dispositivo captador de energía eólica, para generar electricidad, puede ser 0,87 x 0,80 x 0,94 = 65 %.
Considerando que según el estado actual de la tecnología de los Aerogeneradores eólicos, el rango de eficiencia se sitúa entre un 26% y un 30 %, este Dispositivo captador de energía eólica, para generar electricidad, viene a representar, probablemente, un avance extraordinario.
Para comprender mejor el Dispositivo captador de energía eólica, para generar electricidad, se lo describirá en base a una modalidad preferida, la que se ilustra en los siguientes dibujos, los que tienen solamente el carácter ilustrativo, no limitándose el alcance de la invención, ni a las dimensiones, ni a la cantidad de elementos ilustrados, ni a los medios de sujeción ejemplificados.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 , es una vista en elevación, en cuarto de corte, del dispositivo captador de energía eólica, para generar electricidad, en la que se representa todos y cada uno de los componentes que lo integran.
La figura 2, es una vista en planta superior, del dispositivo captador de energía eólica, para generar electricidad, en la que se representa la distribución y conformación de los componentes que lo integran.
La figura 3, es una vista en planta, según corte c - c', en la que se representa la distribución de los canales colectores estáticos (4) y el sector angular, respecto de la dirección del viento, en que la eficiencia energética de los cuatro canales situados dentro de este sector angular de 36 grados a ambos de la dirección del viento, alcanza a 87 %.
La figura 4, representa una vista, en perspectiva, en corte, de la turbina, que muestra la caja de turbina (6), con estructuras de piso (6.1) y estructuras de techo (6.2), soportantes de las pistas de rodadura, para el deslizamiento de polines de apoyo del rotor con sus estructuras modulares articuladas, porta álabes (7.1), figura 4.
La figura 5, representa un detalle de las estructuras modulares articuladas porta álabes (7.1), en uno o varios tramos, con un extremo articulado y el otro apoyado sobre pista de rodadura, vista en elevación figura 5.1, que muestra además, el álabe (7.2) y figura 5.2 que muestra la posición angular ajustable, del álabe (7.2) y planta figura 5.3, muestra el sector angular que abarca la estructura modular articulada porta álabe ( 7.1 ) y la masa - collar (7.3), que permite trasmitir el esfuerzo de torque de los álabes al eje y conformar las articulaciones de apoyo de las estructuras modulares articuladas, porta álabes (7.1).
La figura 6 ilustra un gráfico de densidad de potencia eólica a la entrada del dispositivo y disponible para la turbina en función de la velocidad media del viento. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Descripción detallada del dispositivo captador de energía eólica, para generar electricidad.
En la figura 1 , se muestra una vista en elevación, en cuarto de corte, del dispositivo captador de energía eólica, para generar electricidad, compuesto por:
Un cilindro colector vertical estático (2)
Un cono truncado, acelerador de flujo, vertical estático (5)
Una turbina de eje vertical y flujo vertical ascendente, con caja de turbina (6) y rotor (7)
Un generador eléctrico (8) El cilindro colector vertical estático (2), esta compuesto por 20 tabiques colectores radiales (1), dispuestos formando un ángulo de 18 grados, entre si y distribuidos en los 360 grados, del cilindro, figura 2.
Para determinar la dimensión de los componentes, del Dispositivo captador de energía eólica, para generar electricidad, nos basaremos en la expresión de la Ley Newton:
E = ½ x m x V2
E = Energía cinética de una masa en movimiento
m = masa
V = velocidad
La expresión de Newton, aplicada al viento es igual a:
Wc = ½ x d x A x V3 (watts)
Wc = Potencia captada por el dispositivo, expresada en watts,
d = densidad del aire, la asignaremos igual a 1,1 kg/m3
A = Área de captación de viento, del Dispositivo, proyectada sobre el plano perpendicular al eje flujo, en metros cuadrados.
A = 2 sen 36° x R x 1,67 x R = 2 x 0,587785252 x R x 1,67 R = 1,9632 R2 V = velocidad media del viento del lugar, en m/s
Reemplazando los términos, tenemos:
Wc = ½ x 1,1 x 1,9632 R2 x V3 = 1,08 x R2 x V3
Si despejamos R, tenemos:
Wc
=
1,08 V3
Pero como, la eficiencia energética total del Dispositivo, N, es igual a:
Wb
N = = 0,65
Wc
Si despejamos Wc, tenemos:
Wc = Wb/0,65
Wb = Potencia en bornes de generador, expresada en watts.
Finalmente, el radio del cilindro colector estático (2), R es igual a:
Wb / 0,65
R =
1,08 V3
El radio del cilindro colector vertical estático (2), se puede calcular a partir de la potencia que se necesite generar, expresada en watts y la velocidad media del viento del lugar, expresada en m/s. Para lo cual, a la potencia que se necesita disponer en bornes del generador, expresada en watts, se le suma las pérdidas totales del dispositivo, dividiendo por el factor de eficiencia total, esto es por 0,65 y este cuociente, se divide por 1 ,08 de la velocidad media del viento del lugar en (m/s), al cubo y luego se extrae raíz cuadrada, de este cuociente, para tener el radio del cilindro colector vertical estático (2), expresado en metros. De tal manera que los tabiques colectores radiales (1), tienen como ancho, el radio determinado anteriormente y su altura es 1,67 de este, para asegurar el traslapo de los cascos deflectores de flujo (3) y cascos deflectores de flujo, complementarios (3 ), figura 1.
En la base del cilindro colector vertical estático (2), se sitúan 20 cascos esféricos deflectores (3), de radio igual al radio del cilindro colector vertical estático (2) y cuyo centro está respectivamente en el plano bisector del ángulo formado por dos tabiques colectores radiales (1) adyacentes, siendo las esferas generatrices tangentes al plano basal del cilindro colector vertical estático (2) y al eje de este, figura 1.
En la parte superior del cilindro colector vertical estático (2), se sitúan 20 cascos esféricos deflectores complementarios(3 , cuyas esferas generatrices tienen respectivamente, su centro, en la intersección del plano basal superior, del cilindro colector vertical estático (2), con el plano bisector del ángulo formado entre dos tabiques colectores radiales (1) adyacentes, respectivamente y a una distancia de 1,67 radios, desde el eje del cilindro colector vertical estático (2) y cuyo ángulo del centro, es de 60 grados, figura 1.
El cilindro colector vertical estático (2), está conformado por 20 canales colectores estáticos (4), integrados respectivamente por dos tabiques radiales estáticos (1), un casco esférico deflector (3) y un casco esférico deflector complementario (3 , figura 1.
El cono truncado acelerador de flujo, vertical estático (5), se sitúa sobre el cilindro colector vertical estático (2) y se ensambla a este, el ángulo de su generatriz 22,5 grados, figura 1. En el interior del cono truncado acelerador de flujo vertical estático (5), se sitúan 20 tabiques radiales complementarios ( ), en el mismo plano de los tabiques colectores radiales (1) y conforman 20 canales aceleradores flujo (4 ), alineados con los canales colectores estáticos (4), figura 1.
Sobre el cono truncado acelerador de flujo, vertical estático (5), se sitúa un cilindro, que constituye, la caja de turbina (6), figura 1. Para determinar el diámetro de la caja de turbina, necesitaremos conocer, la potencia residual disponible, en las 4 toberas de acceso a la caja de turbina, que determinaremos multiplicando, la potencia total captada, por la eficiencia del dispositivo, disponible en caja de turbina, esto es por 0,87. Determinada la potencia residual, disponible en estas 4 toberas, expresada en watts, calculamos la superficie total de las toberas de acceso, dividiendo este valor, por la densidad de potencia, disponible para la turbina, en watts/M2, correspondiente a la velocidad media del viento del lugar, gráfico figura 6. La superficie, determinada, corresponde a 4 toberas de un total de 20, de tal manera que la superficie total de la turbina, es 5 veces ese valor. Para determinar el diámetro de la caja de turbina, será necesario dividir la superficie total, por 0.785 y extraer raíz cuadrada.
La altura del cono truncado acelerador de flujo, vertical estático (5), es igual a la diferencia, entre el radio del cilindro colector vertical estático (2) y el radio de la caja turbina (6), dividida por 0,414 (tangente de 22,5 grados).
En línea con el eje de la caja de turbina (6) y sobre esta, se ubica el generador eléctrico (8) y como posición alternativa el generador (8 , se ubica bajo los cascos esféricos deflectores (3), figura 1.
A modo de ejemplo y comparación con Aerogeneradores disponibles, se presenta la siguiente tabla, con las dimensiones de Dispositivos proyectados, para varias capacidades, a partir de vientos, con velocidad media de 13 m/s.
Los dispositivos, se pueden instalar, preferentemente, en cajones cordilleranos, canales naturales, vasos comunicantes, de vientos que fluyen, entre áreas geográficas continentales, adyacentes a altas cumbres, que actúan como muros de contención, de masas de aire atmosférico, sometidas a diferencias de presión. La diferencia de presión, determina la velocidad y el sentido del flujo y cambia además de sentido, cíclicamente durante las 24 horas del día, produciendo flujos de velocidad variable y sentido reversible. Ver Mapas Meteorológicos satelitales, en www.meteochile.cl y observaciones en Cajón del Maipo, viento Raco.
Diseño de Dispositivo captador de energía eólica, para generar electricidad.
Tabla n°l para Potencias de 1 a 50 MW, a partir de velocidad media del viento de 13 m/s.
Potencia (MW) Dimensiones de Componentes (m)
Cono
Disponible Cilindro colector truncado
en Captada por Disponible (2) Caja de turbina (6) (5) Altura
Generador Dispositivo para Turbina Radio Altura Diámetro Altura Altura total
1 1,538 1,338 25,5 42,5 28,5 14,2 27 84
1,65 82 aerogenerador 119
2 3,077 2,677 36 60 40 20 38 118
5 7,692 6,692 57 95 64 32 60 187
10 15,385 13,385 80,5 135 90 45 86 266
20 30,769 26,769 114 190 127 64 121 375
30 46 40 140 233 156 78 150 461
40 62 54 161 269 180 90 171 530
50 77 67 180 300 202 101 191 592

Claims

REIVINDICACIONES
1.- El dispositivo captador de energía eólica, para generar electricidad, que actúa como colector de viento y generador de electricidad, CARACTERIZADO, porque está integrado por:
a) un cilindro colector vertical, estático (2), que está integrado por 20 canales colectores estáticos (4), conformados respectivamente, por dos tabiques colectores radiales (1), dispuestos formando un ángulo de 18 grados entre si y distribuidos en los 360 grados, por un casco esférico deflector (3), por un casco esférico deflector complementario (3 , que colectan el viento procedente de cualquier dirección cardinal y lo deflectan de la horizontal a la vertical ascendente; b) un cono truncado acelerador de flujo vertical estático (5), ensamblado sobre el cilindro colector estático (2) y que está integrado por 20 tabiques colectores radiales complementarios (1 '), dispuestos y distribuidos igual que los tabiques colectores radiales (1), conformando 20 canales aceleradores de flujo (4'), alineados con los canales colectores verticales estáticos (4) y que aumentan dos veces la velocidad del viento, disponiendo en caja de turbina (6), un flujo con densidad de potencia 8 veces la del lugar, expresada en watts/m2 y una eficiencia energética en caja de turbina de 87 %; c) una turbina de eje vertical y flujo vertical ascendente, conformada por una caja de turbina (6), con envolvente cilindrica y estructuras de piso (6.1), sobre borde superior de tabiques colectores radiales complementarios (3') y estructuras de techo (6.2), que permiten, controlar la acción del flujo de viento y soportar las pistas de rodadura, para el deslizamiento de los polines de apoyo de las 24 estructuras modulares porta álabes (7.1), que integran el rotor (7) y conformadas cada una, por uno o varios tramos, articulados en el extremo interior y apoyadas en el extremo exterior, sobre polines, para el deslizamiento sobre pistas de rodadura, a objeto de distribuir la carga de los álabes y disminuir el momento flector, para lograr estructuras livianas, capaces de soportar grandes solicitaciones, producto de la gran densidad de potencia, disponible en caja de turbina y la gran superficie de los álabes, a objeto de escalar grandes potencias, desde 1 a 50 MW, según avance el desarrollo de la Tecnología de construcción; d) un generador (8), de características eléctricas y mecánicas, compatibles con el sistema eléctrico de interconexión local.
2. - El dispositivo captador de energía eólica, para generar electricidad, de acuerdo a reivindicación 1, CARACTERIZADO porque el cilindro colector vertical estático (2), está integrado por 20 tabiques colectores radiales (1), dispuestos formando un ángulo de 18 grados entre si, para captar vientos con muy poca pérdida de carga.
3. - El dispositivo captador de energía eólica, para generar electricidad, de acuerdo a reivindicación 1 y 2, CARACTERIZADO porque el cilindro colector vertical estático (2), está integrado por 20 tabiques colectores radiales (1), distribuidos en los 360 grados, para captar vientos de cualquier dirección cardinal.
4. - El dispositivo captador de energía eólica, para generar electricidad, de acuerdo a reivindicación 1 y 2, CARACTERIZADO porque el cilindro colector vertical estático (2), está integrado por 20 tabiques colectores radiales (1), en cuya base inferior se sitúa, respectivamente, un casco esférico deflector (3), y en la base superior, un casco esférico deflector complementario (3 ), para dirigir el flujo de vientos, de la horizontal, a la vertical ascendente.
5. - El dispositivo captador de energía eólica, para generar electricidad, de acuerdo a reivindicación 1, CARACTERIZADO porque sobre el cilindro colector estático (2), se ubica un cono truncado acelerador de flujo, vertical estático (5), para aumentar dos veces la velocidad del viento por efecto Venturi y como consecuencia, aumentar la densidad de potencia 8 veces, la del lugar, en términos de watts/metro cuadrado, disponible en caja de turbina (6).
6. - El dispositivo captador de energía eólica, para generar electricidad, de acuerdo a reivindicaciones 1 a 5, CARACTERIZADO porque el cilindro colector vertical estático (2), está integrado por 20 canales colectores estáticos (4), conformados respectivamente, por 2 tabiques colectores radiales (1), un casco esférico deflector (3) y un casco esférico deflector complementario (3 , que colectan vientos de cualquier dirección cardinal y los deflectan de la horizontal a la vertical ascendente.
7. - El dispositivo captador de energía eólica, para generar electricidad, de acuerdo a reivindicación 1, CARACTERIZADO porque el cono truncado acelerador de flujo, vertical estático (5), está integrado por 20 tabiques colectores radiales complementarios (1 '), alineados con los tabiques colectores radiales (1) y conforman, con el manto de cono truncado, acelerador de flujo (5), los canales aceleradores de flujo (4'), que aumentan la velocidad del viento dos veces, lo que produce un aumento de 8 veces la densidad de potencia del flujo, disponible en caja de turbina (6), con una eficiencia energética de 87 %.
8. - El dispositivo captador de energía eólica, para generar electricidad, de acuerdo a reivindicación 1, CARACTERIZADO porque está integrado por un rotor de turbina (7), de eje vertical y flujo vertical ascendente y caja de turbina (6).
9. - El dispositivo captador de energía eólica, para generar electricidad, de acuerdo a reivindicaciones 1 y 8, CARACTERIZADO porque el rotor de la turbina (7) está compuesto por 24 módulos estructurales porta álabes (7.1), compuestos cada uno por uno o varios tramos articulados en el extremo interior y apoyados en el extremo exterior en polines, que se deslizan sobre pista de rodadura, con el objeto de distribuir la carga de los álabes (7.2) y disminuir el momento Héctor, para diseñar estructuras livianas capaces de soportar grandes solicitaciones y escalar además, grandes potencias, desde 1 a 50 MW, según avance el desarrollo de la Tecnología de construcción.
10. - El dispositivo captador de energía eólica, para generar electricidad, de acuerdo a reivindicación 1, CARACTERIZADO porque está integrado por un generador (8), de características eléctricas y mecánicas, compatibles con el sistema eléctrico interconectado local.
PCT/IB2010/055115 2009-11-12 2010-11-10 Dispositivo captador de energía eólica WO2011058510A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/509,491 US20120223528A1 (en) 2009-11-12 2010-11-10 Wind energy capturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2009002068A CL2009002068A1 (es) 2009-11-12 2009-11-12 Dispositivo captador de energia eolica para generar electricidad, que comprende un cilindro colector vertical con canales colectores estaticos radiales distribuidos en 360 grados del colector, un cono truncado acelerador de flujo, una turbina de eje vertical con estructuras modulares portaalabes para generar potencia, y un generador.
CL2068-2009 2009-11-12

Publications (1)

Publication Number Publication Date
WO2011058510A1 true WO2011058510A1 (es) 2011-05-19

Family

ID=43991262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/055115 WO2011058510A1 (es) 2009-11-12 2010-11-10 Dispositivo captador de energía eólica

Country Status (3)

Country Link
US (1) US20120223528A1 (es)
CL (1) CL2009002068A1 (es)
WO (1) WO2011058510A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2418680R1 (es) * 2011-12-02 2013-11-15 Univ La Rioja Aerogenerador con eje de rotacion vertical
CN104884793A (zh) * 2013-11-20 2015-09-02 李耀中 自产风力的装置及其发电的方法
WO2018032124A1 (zh) * 2016-08-18 2018-02-22 李耀中 一种把自然流体促成恒态动力的方法
RU179502U1 (ru) * 2017-04-21 2018-05-16 Общество с ограниченной ответственностью "НОВАЯ ЭНЕРГИЯ" Ветродвигатель
CN108979942A (zh) * 2017-08-18 2018-12-11 马啸林 一种复杂运动流体能量吸收器及其制水装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814493B1 (en) * 2010-07-02 2014-08-26 William Joseph Komp Air-channeled wind turbine for low-wind environments
US8461715B2 (en) * 2010-10-10 2013-06-11 Hong Kong Applied Science and Technology Research Institute Company Limited Apparatus for wind collection
CN108518303B (zh) * 2018-05-16 2023-07-25 广东工业大学 一种风采集装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309146A (en) * 1980-03-12 1982-01-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Amplified wind turbine apparatus
ES8301330A1 (es) * 1980-07-24 1982-12-01 Central Energetic Ciclonic Sistema para la obtencion de energia mediante flujos simili-lares a los que conforman un ciclon o un anticiclon natural
US4508973A (en) * 1984-05-25 1985-04-02 Payne James M Wind turbine electric generator
US20090256360A1 (en) * 2008-04-09 2009-10-15 Proyectos De Ingenieria Tecnologica, S. A. Wind turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309146A (en) * 1980-03-12 1982-01-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Amplified wind turbine apparatus
ES8301330A1 (es) * 1980-07-24 1982-12-01 Central Energetic Ciclonic Sistema para la obtencion de energia mediante flujos simili-lares a los que conforman un ciclon o un anticiclon natural
US4508973A (en) * 1984-05-25 1985-04-02 Payne James M Wind turbine electric generator
US20090256360A1 (en) * 2008-04-09 2009-10-15 Proyectos De Ingenieria Tecnologica, S. A. Wind turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2418680R1 (es) * 2011-12-02 2013-11-15 Univ La Rioja Aerogenerador con eje de rotacion vertical
CN104884793A (zh) * 2013-11-20 2015-09-02 李耀中 自产风力的装置及其发电的方法
CN104884793B (zh) * 2013-11-20 2017-09-12 李耀中 自产风力的装置及其发电的方法
WO2018032124A1 (zh) * 2016-08-18 2018-02-22 李耀中 一种把自然流体促成恒态动力的方法
RU179502U1 (ru) * 2017-04-21 2018-05-16 Общество с ограниченной ответственностью "НОВАЯ ЭНЕРГИЯ" Ветродвигатель
CN108979942A (zh) * 2017-08-18 2018-12-11 马啸林 一种复杂运动流体能量吸收器及其制水装置
CN108979942B (zh) * 2017-08-18 2021-03-23 马啸林 一种复杂运动流体能量吸收器及其制水装置

Also Published As

Publication number Publication date
CL2009002068A1 (es) 2010-03-05
US20120223528A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
WO2011058510A1 (es) Dispositivo captador de energía eólica
US10024302B2 (en) Vertical axis wind turbine
US8120197B2 (en) Water turbine for generating electricity
US20140159375A1 (en) Multi-turbine airflow amplifying generator
US8517662B2 (en) Atmospheric energy extraction devices and methods
US8727698B1 (en) Atmospheric energy extraction devices and methods
CA2709723A1 (en) System and method for electrical power generation from renewable energy sources
CN103890381B (zh) 组合全方向流动的涡轮机系统
AU2014396455B2 (en) A cyclonic wind energy converter
KR101237535B1 (ko) 풍향전환 풍력 발전기
US20100060010A1 (en) Ecology friendly compound energy unit
US20140097082A1 (en) Wind Turbine for Installation in Buildings
US20120261918A1 (en) Atmospheric energy extraction devices and methods
AU2007283443B2 (en) Omni-directional wind power station
US20150152848A1 (en) Omnidirectional Hybrid Turbine Generator
US20130119662A1 (en) Wind turbine control
CN114270029A (zh) 风墙
US9200615B2 (en) Vertical axis wind turbine using helical blades with serrated edges
JP2013127235A (ja) 全方位ユニット連結風力発電機
GB2489203A (en) Solar Assisted Wind Turbine Renewable Energy Converter
EP3214303B1 (en) Rotor vertical axis wind turbine
Gudela et al. Design of a Vertical Axis Micro Wind Turbine to Re-Use Foul Air through an Exhaust Fan
KR102180686B1 (ko) 풍력 발전기
PT105274B (pt) Gerador eólico vertical escalável
CN113227566B (zh) 全向发电机设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13509491

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829606

Country of ref document: EP

Kind code of ref document: A1