WO2011055408A1 - Pipe bending device with assist function and bending method - Google Patents

Pipe bending device with assist function and bending method Download PDF

Info

Publication number
WO2011055408A1
WO2011055408A1 PCT/JP2009/005864 JP2009005864W WO2011055408A1 WO 2011055408 A1 WO2011055408 A1 WO 2011055408A1 JP 2009005864 W JP2009005864 W JP 2009005864W WO 2011055408 A1 WO2011055408 A1 WO 2011055408A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
feed
pipe
servo motor
chuck
Prior art date
Application number
PCT/JP2009/005864
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤幸司
藍原武夫
佐藤博之
Original Assignee
株式会社太洋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社太洋 filed Critical 株式会社太洋
Priority to PCT/JP2009/005864 priority Critical patent/WO2011055408A1/en
Priority to CN200980162318.7A priority patent/CN102596442B/en
Priority to JP2011539181A priority patent/JP5044045B2/en
Publication of WO2011055408A1 publication Critical patent/WO2011055408A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/12Bending rods, profiles, or tubes with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/02Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment
    • B21D7/024Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment by a swinging forming member
    • B21D7/025Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment by a swinging forming member and pulling or pushing the ends of the work

Definitions

  • the present invention relates to a rotating and bending apparatus and a processing method for a metal pipe, and in particular, an assist capable of performing a rotating and bending process while pressing or pulling a rear end portion of a grasped metal pipe in an axial direction.
  • the present invention relates to a pipe bending apparatus and a processing method with added functions.
  • a pipe bending apparatus 51 (rotary pull bending apparatus) as shown in FIG. 6 is widely used.
  • the pipe bending apparatus 51 includes a rotatable bending mold 52, a clamp 53 that clamps and fixes the distal end portion 9a of the pipe 9 between the bending mold 52, and a portion of the pipe 9 that is bent.
  • a pressure die 54 that presses the bending portion 9b against the bending die 52 and a chuck 57 that holds the rear end portion 9d of the pipe 9 are provided.
  • the bending die 52 and the clamp 53 are moved in a predetermined direction (clockwise direction in FIG. 6). ),
  • the pipe 9 is bent along the outer peripheral surface of the bending die 52 while pulling the tip end portion 9a of the sandwiched pipe 9.
  • Pipe bending apparatus (means for sending in the direction of the bending die 52 while applying a load) (JP 2009-106965, JP 11-267765, etc.) There has been an existence.
  • the conventional pipe bending apparatus 51 includes the pipe bending apparatus provided with the pressing force applying means 55 (which can perform the bending process of the pressing force applying method) and the tensile resistance adding means 56 as described above.
  • a pipe bending apparatus (which can implement a bending method of adding a tensile resistance force type), and the bending is performed by rotating the bending die 2 without pushing or pulling the rear end side portion 9c of the pipe 9.
  • a pipe bending apparatus that can perform a method of performing rotary pull bending by simply causing the chuck 7 to follow the rear end side portion 9c pulled in the direction of the mold 52 (unloading following bending method). ing.
  • the pressing force applying means 55 employed in the conventional pipe bending apparatus uses a hydraulic mechanism, and controls the flow rate of oil (the speed of the pushed-out plunger) flowing into the hydraulic cylinder (specifically, In this case, by controlling the plunger speed so as to be the moving speed of the rear end side portion 9c of the pipe 9 ⁇ coefficient e (e> 1)), a bending process using a pressing force is realized.
  • the value of the coefficient e by which the moving speed of the rear end portion 9c of the pipe 9 is multiplied is made smaller than 1 (e ⁇ 1). Even if such control is performed by a mechanism, a tensile resistance force cannot be added.
  • the tensile resistance applying means 56 employed in the conventional pipe bending apparatus can add a tensile resistance but cannot control the size thereof. From such circumstances, it is considered that the pipe bending apparatus provided with both the pressing force applying means 55 and the tensile resistance applying means 56 has not yet been put into practical use.
  • the pipe bending apparatus that can perform the no-load following bending method has the following problems.
  • the rotary bending process is performed by the pipe bending apparatus 51 as shown in FIG. 6, when the bending mold 52 is rotated, the rear end side portion 9 c and the rear end portion 9 d of the pipe 9 are bent. Accordingly, the chuck 57 (and a device for supporting the rear end portion 9d) that holds the rear end portion 9d also moves in accordance with the movement of the rear end portion 9d. It is necessary to feed forward and follow the rear end 9d.
  • the rear end portion 9d (or the chuck 57 or the same) generated in one bending process is performed. It is necessary to accurately grasp the movement amount (or stop position) of the device that supports the device.
  • the amount of movement of the rear end 9d and the like that occurs in one bending process depends on the amount of elongation of the pipe that occurs in one bending process, it is impossible to obtain an accurate value only by calculation. . Therefore, in the conventional pipe bending apparatus 51, when the movement amount (or stop position) of the rear end portion 9d (or the chuck 57 or a device supporting the same) is to be grasped, the rear end portion 9d is chucked.
  • trial bending is performed on the pipe 9 under predetermined conditions (for example, trial bending angle: 90 °, number of times of bending: 1 time), and the movement amount of the rear end 9d at that time (trial The amount of bending movement) is measured, the elongation (elongation per 1 degree of bending) is calculated from the measured value of the trial bending movement, and the amount of movement at the actual bending angle is calculated from the calculated elongation rate. (Actual movement amount) and stop positions of the rear end 9d and the like are calculated.
  • the present invention has been made to solve the above-described problems, and includes an element that functions as a pressing force adding means and a tensile resistance adding means.
  • An object of the present invention is to provide a pipe bending apparatus and a processing method capable of omitting preparatory work such as bending, measurement of a test bending movement amount, and calculation of an actual movement amount.
  • a pipe bending apparatus includes a bending die that performs bending by winding a pipe to be processed around an outer peripheral surface, a chuck configured to hold a rear end portion of the pipe, and a chuck, A feed positioning device configured to be movable in the axial direction of the rear end side portion of the pipe held by the chuck, a feed servo motor, a bending servo motor for supplying a rotational driving force to the bending die, and a feed positioning device A ball screw configured to be able to move the feed positioning device and the chuck in a predetermined direction by converting the output torque of the feed servo motor into the thrust of the slider in the axial direction of the shaft; And a control device for controlling the output torque of the feed servo motor.
  • the minimum torque required to move the feed positioning device and the chuck in the direction of the bending die is It is characterized in that bending is performed by outputting from a feed servo motor to a ball screw.
  • the output torque of the feed servo motor is limited to 0 by the torque limiting function and attenuated to 0, and after a predetermined time, the accumulated pulses of the feed servo motor It is preferable to cancel the accumulated pulse by issuing a feed backward / reverse command comprising the same number of pulses from the control device.
  • the minimum torque required to move the feed positioning device and the chuck in the direction of the bending die is The bending is performed by adding torque corresponding to the pressing force to be applied to the pipe during bending and outputting torque from the feed servo motor to the ball screw.
  • the output torque of the feed servo motor is limited to 0 by the torque limiting function and attenuated to 0, and after a predetermined time, the accumulation of the feed servo motor is stopped.
  • the feed stop target position of the chuck is set behind the feed start position, and when the controller issues a forward bending command to the bending servo motor, the feed servo It is characterized in that bending is performed by issuing a feed backward command to the motor.
  • the output torque of the feed servo motor is limited to 0 by the torque limiting function and attenuated to 0, and after a predetermined time, the accumulated pulses of the feed servo motor It is preferable to cancel the accumulated pulses by issuing a feed forward command consisting of the same number of pulses from the control device.
  • the output torque of the feed servo motor is limited and attenuated to 0, it is preferable to divide the required time into at least two stages and drop the output torque step by step.
  • the pipe bending apparatus includes a ball screw that can function as both a pressing force applying unit and a tensile resistance adding unit. Any of the bending method of the resistance force addition method and the no-load following method can be executed. Further, in the case of carrying out a no-load following type bending method, it is possible to omit preparation work such as trial bending, measurement of trial bending movement, calculation of actual movement, and the like.
  • the pipe bending method according to the present invention it is possible to suitably control the pressing force applied to the pipe during bending or the magnitude of the tensile resistance, and the outer portion of the pipe bending portion. It is possible to suitably avoid the problem of breakage due to thinning that is likely to occur in the case of, and generation of wrinkles in the inner part of the bent part and flattening of the bent part. Furthermore, the impact that can occur when releasing torque can be reduced, problems such as damage to the components can be avoided, precise positioning can be performed, and bending accuracy can be improved.
  • FIG. 1 is a diagram illustrating main components of a pipe bending apparatus 1 according to the first embodiment.
  • FIG. 2 is an explanatory diagram of a processing method using the pipe bending apparatus 1 according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a bending method using a no-load following method according to the second embodiment.
  • FIG. 4 is an explanatory diagram of a no-load following type bending method using a conventional pipe bending device 51.
  • FIG. 5 is an explanatory diagram of a bending method of a tensile resistance addition method according to the fourth embodiment.
  • FIG. 6 is a diagram showing the main components of a conventional pipe bending apparatus 51.
  • FIG. 1 is a diagram showing main components of a pipe bending apparatus 1 according to the first embodiment of the present invention.
  • 2 is a bending die
  • 3 is a clamp
  • 4 is a pressure die
  • 5 is a ball screw
  • 7 is a chuck
  • 8 is a feed positioning device.
  • the bending die 2 is formed with a round groove 2a having a shape corresponding to the diameter of the pipe 9 to be processed on the outer peripheral surface, and a round portion 2a extending in a circle and a straight portion 2b extending in a straight line. And is configured to be rotatable around the central axis of the round portion 2a by a driving force of a bending servo motor (not shown).
  • the clamp 3 is disposed at a position facing the straight portion 2b of the bending die 2 and presses the tip side portion 9a of the pipe 9 held between the straight portion 2b of the bending die 2 in the direction of the bending die 2. It is configured to sandwich and rotate integrally with the bending die 2.
  • the pressure die 4 is pulled and slid in accordance with the rotation of the bending die 2 while pressing the portion (bending portion 9 b) of the pipe 9 to be bent from the side of the pipe 9 toward the bending die 2.
  • it is configured to move in the axial direction (the direction of arrow D in FIG. 1) of the rear end side portion 9 c (unprocessed portion) of the pipe 9.
  • the ball screw 5 includes a shaft 5a having a spiral groove (not shown) on the outer peripheral surface, and a slider 5b that has a key that engages in the spiral groove formed on the inner peripheral surface and is held so as not to rotate.
  • a rotational driving force from a feed servo motor rotational driving force source
  • the slider 5b moves in the axial direction of the shaft 5a according to the amount of rotation.
  • the output torque of the feed servo motor can be converted into the thrust of the slider 5b (thrust in the axial direction of the shaft 5a).
  • the shaft 5a is supported in a direction in which the axis thereof coincides with the axial direction of the rear end side portion 9c of the pipe 9.
  • the chuck 7 is configured to hold the rear end portion 9 d of the pipe 9 and is held by the feed positioning device 8.
  • the feed positioning device 8 is connected to the slider 5b of the ball screw 5 and is configured to be movable in the axial direction of the rear end side portion 9c of the pipe 9. Therefore, by operating the ball screw 5 (by rotating the shaft 5a and moving the slider 5b in the axial direction of the shaft 5a), the feed positioning device 8 and the chuck 7 are connected to the rear end side portion 9c of the pipe 9. It is designed to move in the axial direction.
  • the position control of the chuck 7 and the feed positioning device 8 by the operation of the ball screw 5 (movement start and stop positions, or movement amount control) is accurately performed by a control device (not shown). It has come to be.
  • this control device has a function (torque limiting function) for limiting the output torque of the feed servo motor that applies rotational driving force to the ball screw 5 to a desired value (or within a range). The output torque can be suitably controlled.
  • the pipe bending apparatus 1 shown in FIG. 1 has the above-described configuration.
  • the rear end side portion 9c of the pipe 9 is moved by the feed positioning device 8 (and the chuck 7).
  • a method of performing rotational pulling while pushing in the direction of the bending die 2 pressing force-added bending method
  • a rear end side portion 9c of the pipe 9 with the bending die 2 by the feed positioning device 8 (and chuck 7) Is a method of performing rotational pulling while pulling in the opposite direction (bending method of applying a tensile resistance force method), and rotating the bending die 2 without pushing or pulling the rear end side portion 9c of the pipe 9.
  • a method of performing rotary pull bending by simply causing the chuck 7 and the feed positioning device 8 to follow the rear end side portion 9c pulled in the direction of the bending die 2 (bending method of no load following method) It is possible to carry out the door.
  • a processing method for changing the amount of pressing force or tensile resistance force during one bending process (from the start to the end of a single pipe bending process). It can also be implemented.
  • different processing methods are applied to the respective processing portions (for example, a certain portion of a bending method using a pressing force application method). It is also possible to implement a processing method, and to perform a bending resistance-added bending method or a no-load follow-up bending method in other portions).
  • a no-load following type bending method will be described as a second embodiment of the present invention.
  • the clamp 3 and the chuck 7 are opened, and the bending die 2 and the pressure die 4 are respectively set to the starting positions. set.
  • the bending die 2 is set so that the straight portion 2b coincides with the axial direction of the pipe 9, and the pressure die 4 is closer to the rear end 9d side of the pipe 9. Set to position.
  • the pipe 9 is fed between the bending die 2, the clamp 3 and the pressure die 4, and sent until the rear end 9 d enters the innermost part in the chuck 7.
  • the chuck 7 is tightened to firmly hold the rear end portion 9d.
  • a feed start position S (a position where the bending portion 9b of the pipe 9 held by the chuck 7 comes into contact with an appropriate position of the bending die 2).
  • the movement of the chuck 7 to the feed start position S is executed by operations of a control device, a servo amplifier (not shown), a feed servo motor, and the ball screw 5.
  • a movement command (a number of movement command pulses proportional to the distance from the current position to the feed start position S) for moving the chuck 7 from the current position to the feed start position S is output from the control device to the servo amplifier. Then, the movement command pulse is integrated in the deviation counter of the servo amplifier.
  • the servo amplifier supplies drive power to the feed servomotor in accordance with the movement command pulse accumulated in the deviation counter.
  • the feed servo motor rotates by receiving driving power, and the ball screw 5 operates to move the chuck 7.
  • the number of feedback pulses proportional to the rotation speed of the feed servo motor is output from the encoder attached to the feed servo motor and input to the deviation counter of the servo amplifier.
  • the feedback pulse input to the deviation counter subtracts the accumulation pulse (movement command pulse) of the deviation counter.
  • information on the current position of the chuck 7 is the rotation angle of the feed servo motor from the machine origin B to the current position (output from the encoder). Number of pulses) and the amount of movement per revolution of the feed servo motor.
  • the clamp 3 is tightened, and the tip end portion 9a of the pipe 9 is clamped between the bending die 2 and fixed.
  • the torque output here is such that when the chuck 7 is in a free state where the pipe 9 is not gripped, the feed positioning device 8 and the chuck 7 are moved in the direction of the bending die 2 by operating the ball screw 5.
  • the minimum output (t1) required for this is set. Even if torque is output at this time, the bending die 2 is not rotating and the rear end 9d of the pipe 9 is not displaced, so the slider 5b, the feed positioning device 8 and the chuck 7 do not move.
  • the control device grasps the torque output of the feed servo motor from the current value output from the servo amplifier to the feed servo motor, and the output value of the torque of the feed servo motor is “t1” (or When it is confirmed in the control device that the tolerance has been reached, an angle from the control device to the servo amplifier of the bending servo motor is sent to the servo amplifier of the bending servo motor (the angle from the start position of the bending die 2 to the position when the bending is completed). Is sent to the servo amplifier of the feed servomotor, and the feed forward command pulse is proportional to the distance from the feed start position S of the chuck 7 to the feed stop target position K. ) Is issued.
  • information on the feed stop target position K of the chuck 7 (distance k from the machine origin B of the chuck 7; see FIG. 3) is obtained from the feed start position S (distance s from the machine origin B by the controller). ), A bending radius r, a set bending angle q, and a coefficient c.
  • the coefficient c used here is “> 1”.
  • the drive power is supplied from the servo amplifier of the bending servo motor, the bending servo motor rotates, and the drive power is supplied from the servo amplifier of the feed servo motor to feed.
  • Servo motor rotates. Then, the bending mold 2 rotates in a predetermined direction as shown in FIG. As the bending mold 2 rotates, the pipe 9 sandwiched between the bending mold 2 and the clamp 3 is pulled in the rotation direction of the bending mold 2, and the bending portion 9 b extends along the outer peripheral surface of the round portion 2 a of the bending mold 2. The pipe 9 is wound and bent.
  • the rear end side portion 9c and the rear end portion 9d of the pipe 9 gradually move in the direction of the bending die 2 as the bending die 2 rotates, and the chuck 7 grips the rear end portion 9d.
  • the feed positioning device 8 that holds this also gradually moves in the direction of the bending die 2 together with the rear end portion 9d.
  • the feed positioning device 8 and the chuck 7 are connected to the bending die 2 by the ball screw 5. Since the minimum output torque t1 required for moving in the direction is applied, the feed positioning device 8 and the chuck 7 follow in a state in which almost no load is applied to the pipe 9.
  • the rotation of the bending die 2 is stopped and the bending process is completed. More specifically, when the bending servo motor that operates the bending die 2 rotates, the encoder attached to the bending servo motor outputs a number of feedback pulses proportional to the number of rotations of the bending servo motor, and the bending servo motor Input to the deviation counter of the servo amplifier.
  • the feedback pulse input to the deviation counter subtracts the deviation counter accumulation pulse (bending command pulse).
  • the power supply from the servo amplifier to the bending servo motor is stopped and the bending servo motor is stopped.
  • a predetermined time is set by the timer count up, and then the accumulated pulses ( ⁇ + ⁇ ) of the servo amplifier are read and are composed of the same number of pulses.
  • a feed backward command (number of feed backward command pulses proportional to the distance (f + g) from the final stop position G of the chuck 7 to the feed stop target position K ( ⁇ + ⁇ )) is issued from the control device, and is sent to the servo amplifier of the feed servo motor. It is designed to be entered.
  • the feed forward command pulse accumulated in the deviation counter of the servo amplifier and the input feed backward command pulse are opposite in the feed direction of the chuck 7, so the feed forward command pulse accumulated in the deviation counter is Subtracted by command pulse. Since the numbers of pulses coincide with each other, all the accumulated feed forward command pulses are subtracted (cancelled), and the accumulated pulses become “0”. As a result, power supply from the servo amplifier to the feed servo motor is stopped, and the feed servo motor is stopped. When the feed servo motor is stopped, the torque limit is released, the clamp 3 and the chuck 7 are opened, the pipe 9 is removed from the pipe bending apparatus 1, or only the clamp 3 is opened, and the next bending process is performed. Therefore, the pipe 9 is moved (positioning to the next feed start position is performed).
  • the no-load following type bending method in the present embodiment is executed in the above-described procedure, and is required in the no-load following type bending method using the conventional pipe bending apparatus 51 (see FIG. 6).
  • a series of preparatory work can be omitted.
  • the amount of elongation w generated at the time of bending changes depending on the material, diameter, thickness, bending radius, mold adjustment, etc. of the pipe 9, the amount of elongation w (and hence the amount of movement y) is calculated. It is impossible to determine accurately only by Thus, as described above, when the conventional pipe bending apparatus 51 is used to perform the no-load following bending method, the movement amount y of the rear end portion 9d of the pipe 9 or the stop position J (distance j). In order to grasp the above, a series of preparatory work such as trial bending, measurement of trial bending movement amount, calculation of actual movement amount and the like is required prior to actual bending.
  • the position of the chuck 7 is not controlled, but the torque applied to the ball screw 5 to move the chuck 7 and the feed positioning device 8 is controlled.
  • the rear end 9d Therefore, it is not necessary to accurately grasp the extension amount w of the pipe 9, the movement amount y of the rear end portion 9d, and the stop position J (distance j).
  • a series of preparatory work such as measurement of the bending movement amount and calculation of the actual movement amount can be omitted.
  • any position is designated, and this is designated as a feed stop target position K (distance from the machine origin B) of the chuck 7. k).
  • the stop target position K is set to a position closer to the feed start position S than the actual stop position J (for example, the position of K ′ shown in FIG. 4), the actual stop is started from that position.
  • the target stop position K must be set closer to the bending die 2 than the actual stop position J.
  • the target stop position K (machine position) according to Equation 1 is set so that the target stop position K (distance k from the machine origin B) is set closer to the bending die 2 than the actual stop position J.
  • the distance k) from the origin B is calculated.
  • a corresponding “deviation” occurs between the actual stop position J and the target stop position K. That is, when the rotation angle of the bending die 2 reaches a predetermined angle (set bending angle q) and the rotation of the bending die 2 stops, the chuck 7 also stops, and the stop position (first stop position F, The feed forward command pulses of a number ( ⁇ ) proportional to the distance f from the stop target position K to the stop target position K are accumulated in the servo amplifier, and then the output torque of the feed servo motor is increased.
  • the chuck 7 slightly moves backward to move the movement amount (from the first stop position F).
  • a number ( ⁇ ) of forward feed command pulses proportional to the distance g to the final stop position G will accumulate in the servo amplifier.
  • the feed backward command (the number of feed backward command pulses proportional to the distance (f + g) from the final stop position G of the chuck 7 to the feed stop target position K ( ⁇ + ⁇ )) is the control device. These accumulated pulses are canceled out.
  • a bending method using a pressing force method will be described as a third embodiment of the present invention.
  • the bending method of the pressing force application method of the present embodiment is performed by the same procedure as the bending method of the no-load following method described as the second embodiment, except for two points described below.
  • the torque output from the feed servo motor to the ball screw 5 is “t1” (chuck 7 is In the free state where the pipe 9 is not gripped, the minimum output required for moving the feed positioning device 8 and the chuck 7 in the direction of the bending die 2 by operating the ball screw 5.
  • a torque obtained by adding “t2” to “t1” corresponding to the pressing force to be applied to the pipe 9 during bending is output.
  • the pipe 9 can be bent while applying a pressing force by the torque t2.
  • the torque limit function is used to limit the output torque of the feed servo motor and attenuate it to “0”, in the present embodiment, the torque output is gradually reduced. Is executed. Specifically, when the torque output from the feed servomotor is suddenly changed from “t1 + t2” to “0”, the force is released in the ball screw 5 and the feed positioning device 8 on which the torque is applied. The shock (shock) generated during the transmission is transmitted, and the ball screw 5, the feed positioning device 8, or their components are directly damaged by the impact itself, or the mounting bolt is caused by the vibration of the impact. There is a problem that slack occurs in the feed positioning device 8 and the like.
  • a required time until the output is attenuated from “t1 + t2” to “0” is set, for example, this required time is divided into ten, that is, divided into ten stages, and output in the first stage. Is gradually attenuated to 90% and 80% in the second stage, and 0% in the tenth stage, that is, the output is set to "0".
  • a bending resistance-added bending method will be described as a fourth embodiment of the present invention. Except for the points described below, the pulling force addition method bending method of the present embodiment is performed by the same procedure as the pressing force addition method bending method described as the third embodiment.
  • the feed stop target position K of the chuck 7 is set in front of the feed start position S (in the direction of the bending die 2), and the position information (machine) The distance k) from the origin B can be obtained by the above formula 1.
  • the feed stop target position K of the chuck 7 is behind the feed start position S (
  • the position information (distance k from the machine origin B) is set to the following formula using the feed start position S (distance s from the machine origin B) and a constant v: Is calculated by
  • the feed stop target position K of the chuck 7 is set at a position opposite to the advancing direction of the rear end portion 9d of the pipe 9, so that the bending is performed from the control device to the servo amplifier of the bending servo motor.
  • a feed backward command (a number of feed backward command pulses proportional to the distance v from the feed start position S of the chuck 7 to the feed stop target position K) is sent to the servo amplifier of the feed servo motor. Will be emitted.
  • the rear end side portion 9c and the rear end portion 9d of the pipe 9 gradually move in the direction of the bending die 2 as the bending die 2 rotates, and the chuck 7 grips the rear end portion 9d.
  • the feed positioning device 8 that holds this also gradually moves in the direction of the bending die 2 together with the rear end portion 9d.
  • the feed positioning device 8 and the chuck 7 are provided with a feed servo motor and a ball screw 5. A resistance force that pulls in the direction opposite to that of the bending die 2 is added.
  • the electric power is still supplied from the servo amplifier to the feed servomotor by these accumulated pulses ( ⁇ ), and torque is output from the feed servomotor. Therefore, also in this embodiment, after the bending servo motor is stopped, the output torque of the feed servo motor is limited by the torque limiting function and attenuated to “0”.
  • a predetermined time is set by the timer count up, and then the accumulated pulses ( ⁇ + ⁇ ) of the servo amplifier are read and are composed of the same number of pulses.
  • a feed forward command (a number of feed forward command pulses proportional to the distance (f + g) from the final stop position G of the chuck 7 to the feed stop target position K ( ⁇ + ⁇ )) is issued from the control device and is sent to the servo amplifier of the feed servo motor. It is designed to be entered.
  • the feed back / return command pulse stored in the deviation counter of the servo amplifier and the input feed forward command pulse are opposite to each other in the feed direction of the chuck 7, the feed back / back command pulse stored in the deviation counter is fed forward Subtracted by command pulse. Since the number of pulses coincides with each other, all the accumulated feed / reverse command pulses are subtracted (cancelled), and the accumulated pulses become “0”. As a result, power supply from the servo amplifier to the feed servo motor is stopped, and the feed servo motor is stopped.
  • the torque limit function is used to limit the output torque of the feed servo motor and attenuate it to “0”, the torque output The method of dropping the process step by step is executed. As a result, the shock when the force is released can be reduced, and problems such as damage to the component parts and occurrence of problems due to loosening of the mounting bolts can be suitably avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

Disclosed are a pipe bending device and bending method, which are capable of executing the bending method of any of a pressing force applying system, a tensile resistance force applying system, and a no-load tracking system. Specifically disclosed is a pipe bending device (1) which is configured by a bending die (2) for winding a pipe (9) around the outer peripheral surface thereof to perform bending, a chuck (7) configured in such a manner as to grip a rear end section (9d) of the pipe, a feed positioning device (8) configured in such a manner as to allow movement in the axial direction of the rear end side section of the pipe (9) that holds the chuck (7) and is gripped by the chuck (7), a feed servo motor, a bending servo motor for supplying rotational driving force to the bending die (2), a ball screw (5) configured in such a manner as to be able to move the feed positioning device (8) and the chuck (7) in a predetermined direction by converting the output torque of the feed servo motor into the thrust of a slider (5b), and a control device for controlling the output torque of the feed servo motor.

Description

アシスト機能付きパイプ曲げ加工装置及び加工方法Pipe bending apparatus with assist function and processing method
 本発明は、金属パイプの回転引き曲げ加工装置及び加工方法に関し、特に、把持した金属パイプの後端側部分を軸線方向へ押圧しながら、或いは、引っ張りながら回転引き曲げ加工を行うことができるアシスト機能を付加したパイプ曲げ加工装置及び加工方法に関する。 TECHNICAL FIELD The present invention relates to a rotating and bending apparatus and a processing method for a metal pipe, and in particular, an assist capable of performing a rotating and bending process while pressing or pulling a rear end portion of a grasped metal pipe in an axial direction. The present invention relates to a pipe bending apparatus and a processing method with added functions.
 金属パイプの曲げ加工装置の一つとして、図6に示すようなパイプ曲げ加工装置51(回転引き曲げ加工装置)が広く利用されている。このパイプ曲げ加工装置51は、回転可能な曲げ型52と、パイプ9の先端側部分9aを曲げ型52との間に挟持して固定するクランプ53と、パイプ9において曲げ加工が施される部分(曲げ加工部9b)を曲げ型52に押し付けるプレッシャー型54と、パイプ9の後端部9dを把持するチャック57とを備え、曲げ型52とクランプ53とを所定方向(図6における時計回り方向)へ回転させることによって、挟持されたパイプ9の先端側部分9aを引っ張りながら曲げ型52の外周面に沿って巻き付けて、パイプ9に曲げ加工を施すように構成されている。 As a metal pipe bending apparatus, a pipe bending apparatus 51 (rotary pull bending apparatus) as shown in FIG. 6 is widely used. The pipe bending apparatus 51 includes a rotatable bending mold 52, a clamp 53 that clamps and fixes the distal end portion 9a of the pipe 9 between the bending mold 52, and a portion of the pipe 9 that is bent. A pressure die 54 that presses the bending portion 9b against the bending die 52 and a chuck 57 that holds the rear end portion 9d of the pipe 9 are provided. The bending die 52 and the clamp 53 are moved in a predetermined direction (clockwise direction in FIG. 6). ), The pipe 9 is bent along the outer peripheral surface of the bending die 52 while pulling the tip end portion 9a of the sandwiched pipe 9.
 尚、図6に示すような従来のパイプ曲げ加工装置51においては、パイプ9の曲げ加工部9bの外側部分において減肉による破断が生じたり、曲げ加工部9bの内側部分において皺が生じてしまうことがあり、また、曲げ加工部9bが偏平化してしまうという問題がある。 In addition, in the conventional pipe bending apparatus 51 as shown in FIG. 6, the fracture | rupture by thinning will arise in the outer part of the bending part 9b of the pipe 9, or a wrinkle will arise in the inner part of the bending part 9b. In addition, there is a problem that the bent portion 9b is flattened.
 そこで、このような問題を回避するための対策として、曲げ型52を回転させる際に、パイプ9の後端側部分9cを、前方(曲げ型52の方向)へ押し込む押圧力付加手段55(曲げ型52の方向へ作用する負荷を与える手段、管ブースター)を備えたパイプ曲げ加工装置(特開2008-302377、特開2006-326637、特開2006-315077、特開2003-290839、特開2003-290838等)や、反対に、パイプ9の後端側部分9cを、後方(曲げ型52とは反対の方向)へ引っ張る引っ張り抵抗力付加手段56(曲げ型52とは反対の方向へ作用する負荷を与えつつ、曲げ型52の方向へ送ってやる手段)を備えたパイプ曲げ加工装置(特開2009-106965、特開平11-267765等)が存在している。 Therefore, as a countermeasure for avoiding such a problem, when the bending die 52 is rotated, a pressing force applying means 55 (bending portion) that pushes the rear end side portion 9c of the pipe 9 forward (in the direction of the bending die 52). Pipe bending apparatus (Japanese Patent Application Laid-Open No. 2008-302377, Japanese Patent Application Laid-Open No. 2006-315077, Japanese Patent Application Laid-Open No. 2003-290839, Japanese Patent Application Laid-Open No. 2003-290839, Japanese Patent Application Laid-Open No. 2003-290839) -9080838 etc.) or, conversely, the tensile resistance applying means 56 (the direction opposite to the bending die 52) for pulling the rear end side portion 9c of the pipe 9 backward (the direction opposite to the bending die 52) acts. Pipe bending apparatus (means for sending in the direction of the bending die 52 while applying a load) (JP 2009-106965, JP 11-267765, etc.) There has been an existence.
特開2009-106965JP 2009-106965 A 特開2009-045631JP 2009-045631 A 特開2009-012068JP2009-012068 特開2009-012067JP2009-012067 特開2009-012022JP 2009-012022 A 特開2008-302380JP2008-302380 特開2008-302377JP2008-302377 特開2008-229643JP2008-229643 特開2008-126268JP 2008-126268 A 特開2007-319916JP2007-319916 特開2007-090422JP2007-090422 特開2006-326637JP 2006-326637 A 特開2006-315077JP 2006-315077 A 特開2006-289488JP 2006-289488 A 特開2006-116586JP 2006-116586 A 特開2006-088178JP 2006-088178 A 特開2006-043765JP 2006-043765 A 特開2005-161342JP-A-2005-161342 特開2005-161332JP-A-2005-161332 特開2005-161331JP-A-2005-161331 特開2005-161325JP-A-2005-161325 特開2005-161324JP-A-2005-161324 特開2003-290839JP 2003-290839 A 特開2003-290838JP 2003-290838 A 特開2001-047141JP 2001-047141 A 特開平11-267765JP-A-11-267765 特開平09-239450JP 09-239450 A 実開平07-009518Actual opening 07-009518 実開平07-009517Actual opening 07-009517
 従来のパイプ曲げ加工装置51には、上述したような、押圧力付加手段55を備えた(押圧力付加方式の曲げ加工方法を実施できる)パイプ曲げ加工装置や、引っ張り抵抗力付加手段56を備えた(引っ張り抵抗力付加方式の曲げ加工方法を実施できる)パイプ曲げ加工装置が存在しているほか、パイプ9の後端側部分9cを押しも引きもせず、曲げ型2を回転させることによって曲げ型52の方向へ引っ張られる後端側部分9cに、チャック7を単純に追従させて、回転引き曲げ加工を行う方法(無負荷追従方式の曲げ加工方法)を実施できるパイプ曲げ加工装置が知られている。 The conventional pipe bending apparatus 51 includes the pipe bending apparatus provided with the pressing force applying means 55 (which can perform the bending process of the pressing force applying method) and the tensile resistance adding means 56 as described above. There is a pipe bending apparatus (which can implement a bending method of adding a tensile resistance force type), and the bending is performed by rotating the bending die 2 without pushing or pulling the rear end side portion 9c of the pipe 9. There is known a pipe bending apparatus that can perform a method of performing rotary pull bending by simply causing the chuck 7 to follow the rear end side portion 9c pulled in the direction of the mold 52 (unloading following bending method). ing.
 現在、市場に供給されているパイプ曲げ加工装置は、上記のうちいずれか一つの方式のみに特化された「専用機」であり、一台で、押圧力付加方式、引っ張り抵抗力付加方式、及び、無負荷追従方式のいずれの曲げ加工方法をも実施できるようなパイプ曲げ加工装置は存在していない。これは、次のような理由によるものと考えられる。 Currently, the pipe bending equipment supplied to the market is a “dedicated machine” specialized for only one of the above methods. There is no pipe bending apparatus that can implement any bending method of the no-load following method. This is considered due to the following reasons.
 従来のパイプ曲げ加工装置において採用されている押圧力付加手段55は、油圧機構を利用しており、油圧シリンダ内へ流入させる油の流量(押し出されるプランジャの速度)を制御することによって(具体的には、プランジャの速度が、パイプ9の後端側部分9cの移動速度×係数e(e>1)となるように制御することによって)、押圧力付加方式の曲げ加工を実現している。一方、引っ張り抵抗力付加方式の曲げ加工を行う場合には、パイプ9の後端側部分9cの移動速度に乗じる係数eの値を1よりも小さくする(e<1)ことになるが、油圧機構によってそのような制御を行っても、引っ張り抵抗力を付加することはできない。また、従来のパイプ曲げ加工装置において採用されている引っ張り抵抗力付加手段56は、引っ張り抵抗力を付加することはできても、その大きさを制御することはできない。このような事情から、押圧力付加手段55と、引っ張り抵抗力付加手段56のいずれをも備えたパイプ曲げ加工装置は、未だ実用化されるには至っていない、と考えられる。 The pressing force applying means 55 employed in the conventional pipe bending apparatus uses a hydraulic mechanism, and controls the flow rate of oil (the speed of the pushed-out plunger) flowing into the hydraulic cylinder (specifically, In this case, by controlling the plunger speed so as to be the moving speed of the rear end side portion 9c of the pipe 9 × coefficient e (e> 1)), a bending process using a pressing force is realized. On the other hand, when the bending process of the tensile resistance addition method is performed, the value of the coefficient e by which the moving speed of the rear end portion 9c of the pipe 9 is multiplied is made smaller than 1 (e <1). Even if such control is performed by a mechanism, a tensile resistance force cannot be added. Further, the tensile resistance applying means 56 employed in the conventional pipe bending apparatus can add a tensile resistance but cannot control the size thereof. From such circumstances, it is considered that the pipe bending apparatus provided with both the pressing force applying means 55 and the tensile resistance applying means 56 has not yet been put into practical use.
 また、無負荷追従方式の曲げ加工方法を実施できるパイプ曲げ加工装置には、次のような問題がある。図6に示したようなパイプ曲げ加工装置51によって回転引き曲げ加工を行う場合において、曲げ型52を回転させていくと、パイプ9の後端側部分9c及び後端部9dは、曲げ型52の回転の進行に従って曲げ型52の方向へ次第に移動していくことになるため、後端部9dを把持するチャック57(及び、これを支持する装置)についても、後端部9dの移動に合わせて前方へ送り、後端部9dに追従させる必要がある。 Also, the pipe bending apparatus that can perform the no-load following bending method has the following problems. In the case where the rotary bending process is performed by the pipe bending apparatus 51 as shown in FIG. 6, when the bending mold 52 is rotated, the rear end side portion 9 c and the rear end portion 9 d of the pipe 9 are bent. Accordingly, the chuck 57 (and a device for supporting the rear end portion 9d) that holds the rear end portion 9d also moves in accordance with the movement of the rear end portion 9d. It is necessary to feed forward and follow the rear end 9d.
 このとき、パイプ9に負荷をかけることなく、後端部9dの移動に合わせて、チャック57を送ってやるためには、一回の曲げ加工において生じる後端部9d(又は、チャック57或いはこれを支持する装置)の移動量(或いは停止位置)を、正確に把握しておく必要がある。 At this time, in order to send the chuck 57 in accordance with the movement of the rear end portion 9d without applying a load to the pipe 9, the rear end portion 9d (or the chuck 57 or the same) generated in one bending process is performed. It is necessary to accurately grasp the movement amount (or stop position) of the device that supports the device.
 但し、一回の曲げ加工において生じる後端部9d等の移動量は、一回の曲げ加工において生じるパイプの伸び量に左右されるため、計算のみによって正確な値を求めることは不可能である。そこで、従来のパイプ曲げ加工装置51において、後端部9d(又は、チャック57或いはこれを支持する装置)の移動量(或いは停止位置)を把握しようとする場合には、後端部9dをチャック57によって把持しない状態で、パイプ9に対して所定の条件にて試し曲げを行い(例えば、試し曲げ角度:90°、曲げ回数:1回)、その際における後端部9dの移動量(試し曲げ移動量)を測定し、その試し曲げ移動量の測定値から伸び率(曲げ1°あたりの伸び量)を算出し、更にその算出された伸び率の値から実際の曲げ角度での移動量(実移動量)、及び、後端部9d等の停止位置を算出するようにしている。 However, since the amount of movement of the rear end 9d and the like that occurs in one bending process depends on the amount of elongation of the pipe that occurs in one bending process, it is impossible to obtain an accurate value only by calculation. . Therefore, in the conventional pipe bending apparatus 51, when the movement amount (or stop position) of the rear end portion 9d (or the chuck 57 or a device supporting the same) is to be grasped, the rear end portion 9d is chucked. In a state where the pipe 9 is not gripped by 57, trial bending is performed on the pipe 9 under predetermined conditions (for example, trial bending angle: 90 °, number of times of bending: 1 time), and the movement amount of the rear end 9d at that time (trial The amount of bending movement) is measured, the elongation (elongation per 1 degree of bending) is calculated from the measured value of the trial bending movement, and the amount of movement at the actual bending angle is calculated from the calculated elongation rate. (Actual movement amount) and stop positions of the rear end 9d and the like are calculated.
 しかしながら、実際の曲げ加工の前に、上記のような一連の準備作業(試し曲げ、試し曲げ移動量の測定、実移動量の計算)を行わなければならないとすると、非常に煩雑で手間がかかるという問題がある。 However, if it is necessary to perform a series of preparatory operations (trial bending, measurement of trial bending movement amount, calculation of actual movement amount) as described above before actual bending, it is very complicated and time-consuming. There is a problem.
 本発明は、上記のような問題を解決すべくなされたものであって、押圧力付加手段としても、また、引っ張り抵抗力付加手段としても機能する要素を備え、一台の曲げ加工装置において、押圧力付加方式、引っ張り抵抗力付加方式、及び、無負荷追従方式のいずれの方式の曲げ加工方法をも実行することができ、また、無負荷追従方式の曲げ加工方法を実施する場合において、試し曲げ、試し曲げ移動量の測定、実移動量の計算等の準備作業を省略することができるパイプ曲げ加工装置及び加工方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and includes an element that functions as a pressing force adding means and a tensile resistance adding means. In a single bending apparatus, It is possible to execute any bending method of pressing force application method, pulling resistance force addition method, and no-load following method. An object of the present invention is to provide a pipe bending apparatus and a processing method capable of omitting preparatory work such as bending, measurement of a test bending movement amount, and calculation of an actual movement amount.
 本発明に係るパイプ曲げ加工装置は、加工対象となるパイプを外周面に巻き付けて曲げ加工を行う曲げ型と、パイプの後端部を把持するように構成されたチャックと、チャックを保持し、チャックによって把持されるパイプの後端側部分の軸線方向へ移動可能なように構成された送り位置決め装置と、送りサーボモータと、曲げ型に回転駆動力を供給する曲げサーボモータと、送り位置決め装置と接続され、送りサーボモータの出力トルクを、シャフトの軸線方向へのスライダの推力に変換することにより、送り位置決め装置及びチャックを所定方向へ移動させることができるように構成されたボールねじと、送りサーボモータの出力トルクを制御する制御装置と、を有することを特徴としている。 A pipe bending apparatus according to the present invention includes a bending die that performs bending by winding a pipe to be processed around an outer peripheral surface, a chuck configured to hold a rear end portion of the pipe, and a chuck, A feed positioning device configured to be movable in the axial direction of the rear end side portion of the pipe held by the chuck, a feed servo motor, a bending servo motor for supplying a rotational driving force to the bending die, and a feed positioning device A ball screw configured to be able to move the feed positioning device and the chuck in a predetermined direction by converting the output torque of the feed servo motor into the thrust of the slider in the axial direction of the shaft; And a control device for controlling the output torque of the feed servo motor.
 本発明に係る無負荷追従方式のパイプ曲げ加工方法は、チャックがフリーの状態にある場合において、送り位置決め装置及びチャックを、曲げ型の方向へ移動させるために必要となる最小限のトルクを、送りサーボモータからボールねじへ出力して曲げ加工を行うことを特徴としている。尚、この方法においては、曲げ型の回転が停止した後、トルク制限機能により、送りサーボモータの出力トルクを制限して0まで減衰させ、その後所定時間を置いてから、送りサーボモータの溜まりパルスを読み込み、それと同数のパルスからなる送り後退指令を制御装置から発して、溜まりパルスを解消させることが好ましい。 In the pipe bending method of the no-load following method according to the present invention, when the chuck is in a free state, the minimum torque required to move the feed positioning device and the chuck in the direction of the bending die is It is characterized in that bending is performed by outputting from a feed servo motor to a ball screw. In this method, after the rotation of the bending mold is stopped, the output torque of the feed servo motor is limited to 0 by the torque limiting function and attenuated to 0, and after a predetermined time, the accumulated pulses of the feed servo motor It is preferable to cancel the accumulated pulse by issuing a feed backward / reverse command comprising the same number of pulses from the control device.
 本発明に係る押圧力付加方式のパイプ曲げ加工方法は、チャックがフリーの状態にある場合において、送り位置決め装置及びチャックを、曲げ型の方向へ移動させるために必要となる最小限のトルクに、曲げ加工時においてパイプに付加しようとする押圧力に相当するトルクを加算して、送りサーボモータからボールねじへトルクを出力することにより曲げ加工を行うことを特徴としている。尚、この方法においても、曲げ型の回転が停止した後、トルク制限機能により、送りサーボモータの出力トルクを制限して0まで減衰させ、その後所定時間を置いてから、前記送りサーボモータの溜まりパルスを読み込み、それと同数のパルスからなる送り後退指令を制御装置から発して、溜まりパルスを解消させることが好ましい。また、送りサーボモータの出力トルクを制限して0まで減衰する際には、その所要時間を少なくとも2段階以上に分割し、出力トルクを段階的に落としていくことが好ましい。 In the pipe bending method of the pressing force application method according to the present invention, when the chuck is in a free state, the minimum torque required to move the feed positioning device and the chuck in the direction of the bending die is The bending is performed by adding torque corresponding to the pressing force to be applied to the pipe during bending and outputting torque from the feed servo motor to the ball screw. In this method as well, after the rotation of the bending mold is stopped, the output torque of the feed servo motor is limited to 0 by the torque limiting function and attenuated to 0, and after a predetermined time, the accumulation of the feed servo motor is stopped. It is preferable to read the pulses and issue a feed backward / reverse command comprising the same number of pulses from the control device to eliminate the accumulated pulses. Further, when the output torque of the feed servo motor is limited and attenuated to 0, it is preferable to divide the required time into at least two stages and drop the output torque in stages.
 本発明に係る引っ張り抵抗力付加方式のパイプ曲げ加工方法は、チャックの送り停止目標位置を、送り開始位置の後方に設定し、制御装置が曲げサーボモータへ曲げ正転指令を発する際、送りサーボモータに対して送り後退指令を発して曲げ加工を行うことを特徴としている。尚、この方法においては、曲げ型の回転が停止した後、トルク制限機能により、送りサーボモータの出力トルクを制限して0まで減衰させ、その後所定時間を置いてから、送りサーボモータの溜まりパルスを読み込み、それと同数のパルスからなる送り前進指令を制御装置から発して、溜まりパルスを解消させることが好ましい。また、送りサーボモータの出力トルクを制限して0まで減衰する際、その所要時間を少なくとも2段階以上に分割し、出力トルクを段階的に落としていくことが好ましい。 According to the pipe bending method of the tensile resistance addition method according to the present invention, the feed stop target position of the chuck is set behind the feed start position, and when the controller issues a forward bending command to the bending servo motor, the feed servo It is characterized in that bending is performed by issuing a feed backward command to the motor. In this method, after the rotation of the bending mold is stopped, the output torque of the feed servo motor is limited to 0 by the torque limiting function and attenuated to 0, and after a predetermined time, the accumulated pulses of the feed servo motor It is preferable to cancel the accumulated pulses by issuing a feed forward command consisting of the same number of pulses from the control device. Further, when the output torque of the feed servo motor is limited and attenuated to 0, it is preferable to divide the required time into at least two stages and drop the output torque step by step.
 本発明に係るパイプ曲げ加工装置は、押圧力付加手段としても、また、引っ張り抵抗力付加手段としても機能させることができるボールねじを備え、一台の曲げ加工装置によって、押圧力付加方式、引っ張り抵抗力付加方式、及び、無負荷追従方式のいずれの方式の曲げ加工方法をも実行することができる。また、無負荷追従方式の曲げ加工方法を実施する場合において、試し曲げ、試し曲げ移動量の測定、実移動量の計算等の準備作業を省略することができる。 The pipe bending apparatus according to the present invention includes a ball screw that can function as both a pressing force applying unit and a tensile resistance adding unit. Any of the bending method of the resistance force addition method and the no-load following method can be executed. Further, in the case of carrying out a no-load following type bending method, it is possible to omit preparation work such as trial bending, measurement of trial bending movement, calculation of actual movement, and the like.
 また、本発明に係るパイプ曲げ加工方法によれば、曲げ加工時においてパイプに付加する押圧力、或いは、引っ張り抵抗力の大きさを好適に制御することができ、パイプの曲げ加工部の外側部分において生じやすい減肉による破断の問題や、曲げ加工部の内側部分における皺の発生や曲げ加工部の偏平化という問題を好適に回避することができる。更に、トルクの解放時において生じうる衝撃を軽減し、構成部品に対するダメージ等の問題を回避することができるほか、精密な位置決めが可能となり、曲げ加工精度を向上させることができる。 In addition, according to the pipe bending method according to the present invention, it is possible to suitably control the pressing force applied to the pipe during bending or the magnitude of the tensile resistance, and the outer portion of the pipe bending portion. It is possible to suitably avoid the problem of breakage due to thinning that is likely to occur in the case of, and generation of wrinkles in the inner part of the bent part and flattening of the bent part. Furthermore, the impact that can occur when releasing torque can be reduced, problems such as damage to the components can be avoided, precise positioning can be performed, and bending accuracy can be improved.
図1は、第1の実施形態に係るパイプ曲げ加工装置1の主要構成部分を示す図である。FIG. 1 is a diagram illustrating main components of a pipe bending apparatus 1 according to the first embodiment. 図2は、第1の実施形態に係るパイプ曲げ加工装置1を用いた加工方法の説明図である。FIG. 2 is an explanatory diagram of a processing method using the pipe bending apparatus 1 according to the first embodiment. 図3は、第2の実施形態に係る無負荷追従方式の曲げ加工方法の説明図である。FIG. 3 is an explanatory diagram of a bending method using a no-load following method according to the second embodiment. 図4は、従来のパイプ曲げ加工装置51を用いた無負荷追従方式の曲げ加工方法の説明図である。FIG. 4 is an explanatory diagram of a no-load following type bending method using a conventional pipe bending device 51. 図5は、第4の実施形態に係る引っ張り抵抗力付加方式の曲げ加工方法の説明図である。FIG. 5 is an explanatory diagram of a bending method of a tensile resistance addition method according to the fourth embodiment. 図6は、従来のパイプ曲げ加工装置51の主要構成部分を示す図である。FIG. 6 is a diagram showing the main components of a conventional pipe bending apparatus 51.
 以下、添付図面に沿って本発明「パイプ曲げ加工装置」及び「パイプ曲げ加工方法」の実施形態について説明する。図1は、本発明の第1の実施形態に係るパイプ曲げ加工装置1の主要構成部分を示す図である。この図において2は曲げ型、3はクランプ、4はプレッシャー型、5はボールねじ、7はチャック、8は送り位置決め装置である。 Hereinafter, embodiments of the “pipe bending apparatus” and the “pipe bending method” of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing main components of a pipe bending apparatus 1 according to the first embodiment of the present invention. In this figure, 2 is a bending die, 3 is a clamp, 4 is a pressure die, 5 is a ball screw, 7 is a chuck, and 8 is a feed positioning device.
 曲げ型2は、外周面に、加工対象となるパイプ9の径に応じた形状の凹溝が形成され、円形に延在するラウンド部分2aと、直線状に延在する直状部分2bとを有し、図示しない曲げサーボモータの駆動力により、ラウンド部分2aの中心軸線周りに回転可能なように構成されている。 The bending die 2 is formed with a round groove 2a having a shape corresponding to the diameter of the pipe 9 to be processed on the outer peripheral surface, and a round portion 2a extending in a circle and a straight portion 2b extending in a straight line. And is configured to be rotatable around the central axis of the round portion 2a by a driving force of a bending servo motor (not shown).
 クランプ3は、曲げ型2の直状部分2bと対向する位置に配置され、曲げ型2の直状部分2bとの間に保持したパイプ9の先端側部分9aを曲げ型2の方向へ押し付けて挟持し、曲げ型2と一体的に回転するように構成されている。 The clamp 3 is disposed at a position facing the straight portion 2b of the bending die 2 and presses the tip side portion 9a of the pipe 9 held between the straight portion 2b of the bending die 2 in the direction of the bending die 2. It is configured to sandwich and rotate integrally with the bending die 2.
 プレッシャー型4は、パイプ9において曲げ加工が施される部分(曲げ加工部9b)をパイプ9の側方から曲げ型2の方向へ押し付けながら、曲げ型2の回転に伴い、引っ張られてスライドするパイプ9の動きに合わせて、パイプ9の後端側部分9c(未加工部分)の軸線方向(図1における矢印Dの方向)へ移動するように構成されている。 The pressure die 4 is pulled and slid in accordance with the rotation of the bending die 2 while pressing the portion (bending portion 9 b) of the pipe 9 to be bent from the side of the pipe 9 toward the bending die 2. In accordance with the movement of the pipe 9, it is configured to move in the axial direction (the direction of arrow D in FIG. 1) of the rear end side portion 9 c (unprocessed portion) of the pipe 9.
 ボールねじ5は、外周面に螺旋溝(図示せず)を有するシャフト5aと、当該螺旋溝内に係合するキーが内周面に形成され、回転しないように保持されたスライダ5bとによって構成され、図示しない送りサーボモータ(回転駆動力源)から回転駆動力を与えてシャフト5aを回転させることにより、その回転量に応じて、スライダ5bがシャフト5aの軸線方向へ移動するように、つまり、送りサーボモータの出力トルクを、スライダ5bの推力(シャフト5aの軸線方向への推力)に変換できるように構成されている。尚、シャフト5aは、その軸線が、パイプ9の後端側部分9cの軸線方向と一致する向きで支持されている。 The ball screw 5 includes a shaft 5a having a spiral groove (not shown) on the outer peripheral surface, and a slider 5b that has a key that engages in the spiral groove formed on the inner peripheral surface and is held so as not to rotate. By rotating the shaft 5a by applying a rotational driving force from a feed servo motor (rotational driving force source) (not shown), the slider 5b moves in the axial direction of the shaft 5a according to the amount of rotation. The output torque of the feed servo motor can be converted into the thrust of the slider 5b (thrust in the axial direction of the shaft 5a). In addition, the shaft 5a is supported in a direction in which the axis thereof coincides with the axial direction of the rear end side portion 9c of the pipe 9.
 チャック7は、パイプ9の後端部9dを把持するように構成され、送り位置決め装置8によって保持されている。 The chuck 7 is configured to hold the rear end portion 9 d of the pipe 9 and is held by the feed positioning device 8.
 送り位置決め装置8は、ボールねじ5のスライダ5bと接続されており、かつ、パイプ9の後端側部分9cの軸線方向へ移動可能なように構成されている。従って、ボールねじ5を動作させることにより(シャフト5aを回転させて、スライダ5bをシャフト5aの軸線方向へ移動させることにより)、送り位置決め装置8及びチャック7が、パイプ9の後端側部分9cの軸線方向へ移動するようになっている。尚、ボールねじ5の動作によるチャック7、及び、送り位置決め装置8の位置制御(送り開始位置、停止位置への移動及び停止、或いは、移動量の制御)は、図示しない制御装置により正確に行われるようになっている。また、この制御装置は、ボールねじ5に回転駆動力を与える送りサーボモータの出力トルクを所望の値(或いは範囲内)に制限する機能(トルク制限機能)を有しており、送りサーボモータの出力トルクを好適に制御できるようになっている。 The feed positioning device 8 is connected to the slider 5b of the ball screw 5 and is configured to be movable in the axial direction of the rear end side portion 9c of the pipe 9. Therefore, by operating the ball screw 5 (by rotating the shaft 5a and moving the slider 5b in the axial direction of the shaft 5a), the feed positioning device 8 and the chuck 7 are connected to the rear end side portion 9c of the pipe 9. It is designed to move in the axial direction. Incidentally, the position control of the chuck 7 and the feed positioning device 8 by the operation of the ball screw 5 (movement start and stop positions, or movement amount control) is accurately performed by a control device (not shown). It has come to be. In addition, this control device has a function (torque limiting function) for limiting the output torque of the feed servo motor that applies rotational driving force to the ball screw 5 to a desired value (or within a range). The output torque can be suitably controlled.
 図1のパイプ曲げ加工装置1は、上記のような構成に係るものであるところ、曲げ型2を回転させる際に、送り位置決め装置8(及びチャック7)によってパイプ9の後端側部分9cを曲げ型2の方向へ押し込みながら回転引き曲げ加工を行う方法(押圧力付加方式の曲げ加工方法)と、送り位置決め装置8(及びチャック7)によってパイプ9の後端側部分9cを曲げ型2とは反対の方向へ引っ張りながら回転引き曲げ加工を行う方法(引っ張り抵抗力付加方式の曲げ加工方法)と、パイプ9の後端側部分9cを押しも引きもせず、曲げ型2を回転させることによって曲げ型2の方向へ引っ張られる後端側部分9cに、チャック7及び送り位置決め装置8を単純に追従させて回転引き曲げ加工を行う方法(無負荷追従方式の曲げ加工方法)とを実施することができる。 The pipe bending apparatus 1 shown in FIG. 1 has the above-described configuration. When the bending die 2 is rotated, the rear end side portion 9c of the pipe 9 is moved by the feed positioning device 8 (and the chuck 7). A method of performing rotational pulling while pushing in the direction of the bending die 2 (pressing force-added bending method) and a rear end side portion 9c of the pipe 9 with the bending die 2 by the feed positioning device 8 (and chuck 7). Is a method of performing rotational pulling while pulling in the opposite direction (bending method of applying a tensile resistance force method), and rotating the bending die 2 without pushing or pulling the rear end side portion 9c of the pipe 9. A method of performing rotary pull bending by simply causing the chuck 7 and the feed positioning device 8 to follow the rear end side portion 9c pulled in the direction of the bending die 2 (bending method of no load following method) It is possible to carry out the door.
 また、一回の曲げ加工が実施される間に(一本のパイプの曲げ加工の開始から終了までの間に)、付加する押圧力、又は、引っ張り抵抗力の大きさを変化させる加工方法を実施することもできる。また、一本のパイプの複数の部分に対し、複数回の曲げ加工が実施される場合において、各加工部分に異なる方式の加工方法を適用する(例えば、ある部分には押圧力付加方式の曲げ加工方法を実施し、他の部分には、引っ張り抵抗力付加方式の曲げ加工方法、或いは、無負荷追従方式の曲げ加工方法を実施する等)こともできる。 Also, there is a processing method for changing the amount of pressing force or tensile resistance force during one bending process (from the start to the end of a single pipe bending process). It can also be implemented. In addition, when a plurality of bending processes are performed on a plurality of portions of a single pipe, different processing methods are applied to the respective processing portions (for example, a certain portion of a bending method using a pressing force application method). It is also possible to implement a processing method, and to perform a bending resistance-added bending method or a no-load follow-up bending method in other portions).
 ここで、図1のパイプ曲げ加工装置1を用いた上記加工方法のうち、無負荷追従方式の曲げ加工方法を、本発明の第2の実施形態として説明する。図1のパイプ曲げ加工装置1を用いて無負荷追従方式の曲げ加工方法を実施する場合、まず、クランプ3とチャック7を開放状態とし、曲げ型2、及び、プレッシャー型4をそれぞれ開始位置にセットする。具体的には、曲げ型2を、図1に示すように、直状部分2bがパイプ9の軸線方向と一致する向きにセットし、プレッシャー型4は、パイプ9の後端部9d側寄りの位置にセットする。 Here, among the above-described processing methods using the pipe bending apparatus 1 of FIG. 1, a no-load following type bending method will be described as a second embodiment of the present invention. When performing the no-load following type bending method using the pipe bending apparatus 1 of FIG. 1, first, the clamp 3 and the chuck 7 are opened, and the bending die 2 and the pressure die 4 are respectively set to the starting positions. set. Specifically, as shown in FIG. 1, the bending die 2 is set so that the straight portion 2b coincides with the axial direction of the pipe 9, and the pressure die 4 is closer to the rear end 9d side of the pipe 9. Set to position.
 次に、曲げ型2と、クランプ3及びプレッシャー型4との間にパイプ9をフィードし、後端部9dがチャック7内の最奥部に進入するまで送る。後端部9dがチャック7の最奥部に突き当たったら、チャック7を締め付けて、後端部9dをしっかりと把持させる。 Next, the pipe 9 is fed between the bending die 2, the clamp 3 and the pressure die 4, and sent until the rear end 9 d enters the innermost part in the chuck 7. When the rear end portion 9d hits the innermost portion of the chuck 7, the chuck 7 is tightened to firmly hold the rear end portion 9d.
 続いて、チャック7を送り開始位置S(チャック7によって把持された状態のパイプ9の曲げ加工部9bが、曲げ型2の適切な位置に当接する位置)まで移動させる。送り開始位置Sへのチャック7の移動は、制御装置、サーボアンプ(図示せず)、送りサーボモータ、及び、ボールねじ5の動作によって実行される。 Subsequently, the chuck 7 is moved to a feed start position S (a position where the bending portion 9b of the pipe 9 held by the chuck 7 comes into contact with an appropriate position of the bending die 2). The movement of the chuck 7 to the feed start position S is executed by operations of a control device, a servo amplifier (not shown), a feed servo motor, and the ball screw 5.
 具体的には、チャック7を現在位置から送り開始位置Sまで移動させるための移動指令(現在位置から送り開始位置Sまでの距離に比例した数の移動指令パルス)が制御装置からサーボアンプに出力され、サーボアンプの偏差カウンタにおいて移動指令パルスが積算される。サーボアンプは、偏差カウンタに溜まった移動指令パルスに応じて送りサーボモータへ駆動電力を供給する。送りサーボモータは、駆動電力を受けて回転し、ボールねじ5が動作してチャック7が移動する。 Specifically, a movement command (a number of movement command pulses proportional to the distance from the current position to the feed start position S) for moving the chuck 7 from the current position to the feed start position S is output from the control device to the servo amplifier. Then, the movement command pulse is integrated in the deviation counter of the servo amplifier. The servo amplifier supplies drive power to the feed servomotor in accordance with the movement command pulse accumulated in the deviation counter. The feed servo motor rotates by receiving driving power, and the ball screw 5 operates to move the chuck 7.
 このとき、送りサーボモータに付属しているエンコーダから、送りサーボモータの回転数に比例した数のフィードバックパルスが出力され、サーボアンプの偏差カウンタに入力される。偏差カウンタに入力されたフィードバックパルスは、偏差カウンタの溜まりパルス(移動指令パルス)を減算する。偏差カウンタの溜まりパルスが「0」になると、サーボアンプから送りサーボモータへの電力供給が停止し、送りサーボモータ及びボールねじ5が停止する。その結果、チャック7は、送り開始位置Sにおいて停止する。 At this time, the number of feedback pulses proportional to the rotation speed of the feed servo motor is output from the encoder attached to the feed servo motor and input to the deviation counter of the servo amplifier. The feedback pulse input to the deviation counter subtracts the accumulation pulse (movement command pulse) of the deviation counter. When the accumulated pulse of the deviation counter becomes “0”, the power supply from the servo amplifier to the feed servo motor is stopped, and the feed servo motor and the ball screw 5 are stopped. As a result, the chuck 7 stops at the feed start position S.
 尚、本実施形態においては、チャック7の現在位置の情報(チャック7の機械原点Bから現在位置までの距離)は、機械原点Bから現在位置までの送りサーボモータの回転角度(エンコーダから出力されるパルス数)と、送りサーボモータの一回転あたりの移動量とから把握される。 In this embodiment, information on the current position of the chuck 7 (distance from the machine origin B to the current position of the chuck 7) is the rotation angle of the feed servo motor from the machine origin B to the current position (output from the encoder). Number of pulses) and the amount of movement per revolution of the feed servo motor.
 送り開始位置Sへのチャック7の移動が完了したら、クランプ3を締め付けて、パイプ9の先端側部分9aを曲げ型2との間に挟持して固定する。パイプ9が固定されたら、曲げ型2を回転させる前に、送りサーボモータから、トルク制限機能により所定の大きさに調整されたトルクを出力する。ここで出力するトルクは、チャック7がパイプ9を把持していないフリーの状態にある場合において、ボールねじ5を動作させることにより、送り位置決め装置8及びチャック7を、曲げ型2の方向へ移動させるために必要となる最小限の出力(t1)とする。尚、この時点でトルクを出力しても、曲げ型2は回転しておらず、パイプ9の後端部9dは変位しないため、スライダ5b、送り位置決め装置8、及び、チャック7は移動しない。 When the movement of the chuck 7 to the feed start position S is completed, the clamp 3 is tightened, and the tip end portion 9a of the pipe 9 is clamped between the bending die 2 and fixed. When the pipe 9 is fixed, before the bending die 2 is rotated, the torque adjusted to a predetermined magnitude by the torque limiting function is output from the feed servo motor. The torque output here is such that when the chuck 7 is in a free state where the pipe 9 is not gripped, the feed positioning device 8 and the chuck 7 are moved in the direction of the bending die 2 by operating the ball screw 5. The minimum output (t1) required for this is set. Even if torque is output at this time, the bending die 2 is not rotating and the rear end 9d of the pipe 9 is not displaced, so the slider 5b, the feed positioning device 8 and the chuck 7 do not move.
 制御装置は、サーボアンプから送りサーボモータへ出力される電流の値から、送りサーボモータのトルクの出力を把握するようになっており、送りサーボモータのトルクの出力値が「t1」(或いは、その許容誤差の範囲内)に達したことが制御装置において確認されると、制御装置から曲げサーボモータのサーボアンプへ曲げ正転指令(曲げ型2の開始位置から曲げ完了時の位置までの角度に比例した数の曲げ指令パルス)が発せられるとともに、送りサーボモータのサーボアンプへ送り前進指令(チャック7の送り開始位置Sから送り停止目標位置Kまでの距離に比例した数の送り前進指令パルス)が発せられる。 The control device grasps the torque output of the feed servo motor from the current value output from the servo amplifier to the feed servo motor, and the output value of the torque of the feed servo motor is “t1” (or When it is confirmed in the control device that the tolerance has been reached, an angle from the control device to the servo amplifier of the bending servo motor is sent to the servo amplifier of the bending servo motor (the angle from the start position of the bending die 2 to the position when the bending is completed). Is sent to the servo amplifier of the feed servomotor, and the feed forward command pulse is proportional to the distance from the feed start position S of the chuck 7 to the feed stop target position K. ) Is issued.
 本実施形態においては、チャック7の送り停止目標位置Kの情報(チャック7の機械原点Bからの距離k、図3参照)は、制御装置において、送り開始位置S(機械原点Bからの距離s)、曲げ半径r、設定曲げ角度q、及び、係数cを用いて、下記の式により計算される。尚、ここで使用する係数cは「>1」とする。 In the present embodiment, information on the feed stop target position K of the chuck 7 (distance k from the machine origin B of the chuck 7; see FIG. 3) is obtained from the feed start position S (distance s from the machine origin B by the controller). ), A bending radius r, a set bending angle q, and a coefficient c. The coefficient c used here is “> 1”.
(数式1)
k=s-(2πr(q/360))c
(Formula 1)
k = s− (2πr (q / 360)) c
 制御装置から曲げ正転指令及び送り前進指令が発せられると、曲げサーボモータのサーボアンプから駆動電力が供給されて曲げサーボモータが回転し、送りサーボモータのサーボアンプから駆動電力が供給されて送りサーボモータが回転する。そうすると、図2に示すように曲げ型2は既定の方向へ回転する。曲げ型2の回転が進行すると、曲げ型2とクランプ3に挟持されたパイプ9が曲げ型2の回転方向へ引っ張られ、曲げ加工部9bが曲げ型2のラウンド部分2aの外周面に沿って巻き付けられていき、パイプ9に曲げ加工が施される。 When the bending forward rotation command and feed forward command are issued from the control device, the drive power is supplied from the servo amplifier of the bending servo motor, the bending servo motor rotates, and the drive power is supplied from the servo amplifier of the feed servo motor to feed. Servo motor rotates. Then, the bending mold 2 rotates in a predetermined direction as shown in FIG. As the bending mold 2 rotates, the pipe 9 sandwiched between the bending mold 2 and the clamp 3 is pulled in the rotation direction of the bending mold 2, and the bending portion 9 b extends along the outer peripheral surface of the round portion 2 a of the bending mold 2. The pipe 9 is wound and bent.
 このとき、パイプ9の後端側部分9c及び後端部9dは、曲げ型2の回転の進行に従って曲げ型2の方向へ次第に移動していくことになり、後端部9dを把持するチャック7、及び、これを保持する送り位置決め装置8も、後端部9dと共に曲げ型2の方向へ次第に移動することになるが、送り位置決め装置8及びチャック7には、ボールねじ5により、曲げ型2の方向へ移動させるために必要となる最小限の出力トルクt1が作用しているため、送り位置決め装置8及びチャック7は、パイプ9に殆ど負荷を与えない状態で追従していくことになる。 At this time, the rear end side portion 9c and the rear end portion 9d of the pipe 9 gradually move in the direction of the bending die 2 as the bending die 2 rotates, and the chuck 7 grips the rear end portion 9d. The feed positioning device 8 that holds this also gradually moves in the direction of the bending die 2 together with the rear end portion 9d. However, the feed positioning device 8 and the chuck 7 are connected to the bending die 2 by the ball screw 5. Since the minimum output torque t1 required for moving in the direction is applied, the feed positioning device 8 and the chuck 7 follow in a state in which almost no load is applied to the pipe 9.
 曲げ型2の回転角度が設定角度(設定曲げ角度q)まで達したら、曲げ型2の回転が停止し、曲げ加工が終了する。より具体的には、曲げ型2を動作させる曲げサーボモータが回転すると、曲げサーボモータに付属しているエンコーダから、曲げサーボモータの回転数に比例した数のフィードバックパルスが出力され、曲げサーボモータのサーボアンプの偏差カウンタに入力される。偏差カウンタに入力されたフィードバックパルスは、偏差カウンタの溜まりパルス(曲げ指令パルス)を減算する。偏差カウンタの溜まりパルスが「0」になると、サーボアンプから曲げサーボモータへの電力供給が停止し、曲げサーボモータが停止する。 When the rotation angle of the bending die 2 reaches the set angle (set bending angle q), the rotation of the bending die 2 is stopped and the bending process is completed. More specifically, when the bending servo motor that operates the bending die 2 rotates, the encoder attached to the bending servo motor outputs a number of feedback pulses proportional to the number of rotations of the bending servo motor, and the bending servo motor Input to the deviation counter of the servo amplifier. The feedback pulse input to the deviation counter subtracts the deviation counter accumulation pulse (bending command pulse). When the accumulated pulse of the deviation counter becomes “0”, the power supply from the servo amplifier to the bending servo motor is stopped and the bending servo motor is stopped.
 曲げサーボモータが停止して、曲げ型2の回転が停止すると、パイプ9の後端側部分9c、後端部9d、チャック7、送り位置決め装置8、ボールねじ5も停止することになる。但し、この時点では、チャック7は送り停止目標位置K(図3参照)までは移動しておらず、送りサーボモータのサーボアンプの偏差カウンタには、チャック7の現在位置(第1停止位置F、図3(2)参照)から送り停止目標位置Kまでの距離fに比例した数(α)の送り前進指令パルスが溜まっている。従って、それらの溜まりパルス(α)により、送りサーボモータには、サーボアンプから依然として電力が供給されており、送りサーボモータからトルクt1が出力されている。そこで本実施形態においては、曲げサーボモータが停止した後、トルク制限機能により、送りサーボモータの出力トルクを制限して、「0」まで減衰するように構成されている。 When the bending servo motor stops and the bending die 2 stops rotating, the rear end side portion 9c, the rear end portion 9d of the pipe 9, the chuck 7, the feed positioning device 8, and the ball screw 5 are also stopped. However, at this time, the chuck 7 has not moved to the feed stop target position K (see FIG. 3), and the current position of the chuck 7 (first stop position F) is displayed in the deviation counter of the servo amplifier of the feed servo motor. 3 (2)) to the feed stop target position K, the number (α) of feed advance command pulses proportional to the distance f is accumulated. Therefore, due to these accumulated pulses (α), electric power is still supplied from the servo amplifier to the feed servomotor, and torque t1 is output from the feed servomotor. Therefore, in the present embodiment, after the bending servo motor is stopped, the output torque of the feed servo motor is limited and attenuated to “0” by the torque limiting function.
 送りサーボモータの出力トルクが「0」になると、チャック7、及び、送り位置決め装置8に作用するボールねじ5の推力が無くなり、パイプ9、チャック7、送り位置決め装置8等において生じている撓みが開放されるため、チャック7は、僅かに後方(曲げ型2とは反対の方向)へ移動することになる(最終停止位置G、図3(3)参照)。このため、送りサーボモータのサーボアンプには、その移動量(第1停止位置Fから最終停止位置Gまでの距離g)に比例した数(β)の送り前進指令パルスが、溜まりパルス(α)に上積みされることになる。 When the output torque of the feed servo motor becomes “0”, the thrust of the ball screw 5 acting on the chuck 7 and the feed positioning device 8 is lost, and the bending occurring in the pipe 9, the chuck 7, the feed positioning device 8 and the like is lost. Since the chuck 7 is opened, the chuck 7 slightly moves backward (in the direction opposite to the bending die 2) (final stop position G, see FIG. 3 (3)). For this reason, feed forward command pulses of a number (β) proportional to the amount of movement (distance g from the first stop position F to the final stop position G) are accumulated in the servo amplifier of the feed servo motor. Will be stacked on top.
 そこで本実施形態においては、送りサーボモータの出力トルクを「0」にした後、タイマーカウントアップにより所定時間を置いてから、サーボアンプの溜まりパルス(α+β)が読み込まれ、それと同数のパルスからなる送り後退指令(チャック7の最終停止位置Gから送り停止目標位置Kまでの距離(f+g)に比例した数(α+β)の送り後退指令パルス)が制御装置から発せられ、送りサーボモータのサーボアンプに入力されるようになっている。 Therefore, in the present embodiment, after the output torque of the feed servo motor is set to “0”, a predetermined time is set by the timer count up, and then the accumulated pulses (α + β) of the servo amplifier are read and are composed of the same number of pulses. A feed backward command (number of feed backward command pulses proportional to the distance (f + g) from the final stop position G of the chuck 7 to the feed stop target position K (α + β)) is issued from the control device, and is sent to the servo amplifier of the feed servo motor. It is designed to be entered.
 サーボアンプの偏差カウンタに溜まっている送り前進指令パルスと、入力される送り後退指令パルスとは、チャック7の送り方向が反対であるため、偏差カウンタに溜まっている送り前進指令パルスは、送り後退指令パルスによって減算される。そして、それらのパルス数は一致しているため、溜まっている送り前進指令パルスはすべて減算(相殺)され、溜まりパルスは「0」となる。その結果、サーボアンプから送りサーボモータへの電力供給が停止し、送りサーボモータは停止状態となる。そして、送りサーボモータが停止したら、トルク制限を解除し、クランプ3及びチャック7を開放して、パイプ9をパイプ曲げ加工装置1から取り外し、或いは、クランプ3のみを開放して、次の曲げ加工のためにパイプ9を移動させる(次の送り開始位置への位置決めを行う)。 The feed forward command pulse accumulated in the deviation counter of the servo amplifier and the input feed backward command pulse are opposite in the feed direction of the chuck 7, so the feed forward command pulse accumulated in the deviation counter is Subtracted by command pulse. Since the numbers of pulses coincide with each other, all the accumulated feed forward command pulses are subtracted (cancelled), and the accumulated pulses become “0”. As a result, power supply from the servo amplifier to the feed servo motor is stopped, and the feed servo motor is stopped. When the feed servo motor is stopped, the torque limit is released, the clamp 3 and the chuck 7 are opened, the pipe 9 is removed from the pipe bending apparatus 1, or only the clamp 3 is opened, and the next bending process is performed. Therefore, the pipe 9 is moved (positioning to the next feed start position is performed).
 本実施形態における無負荷追従方式の曲げ加工方法は、以上のような手順で実行され、従来のパイプ曲げ加工装置51(図6参照)を用いた無負荷追従方式の曲げ加工方法において必要となる一連の準備作業(実際の曲げ加工に先立って行われる試し曲げ、試し曲げ移動量の測定、実移動量の計算等)を省略することができる。 The no-load following type bending method in the present embodiment is executed in the above-described procedure, and is required in the no-load following type bending method using the conventional pipe bending apparatus 51 (see FIG. 6). A series of preparatory work (trial bending performed prior to actual bending, measurement of trial bending movement amount, calculation of actual movement amount, etc.) can be omitted.
 この点について具体的に説明すると、従来のパイプ曲げ加工装置51を用いた無負荷追従方式の曲げ加工方法においては、曲げ型52の回転の進行に従って曲げ型52の方向へ次第に移動していくパイプ9の後端部9dに対してチャック57を無負荷で追従させるための方法として、チャック57の位置制御を行っている。従って、曲げ型52に引っ張られて移動するパイプ9の後端部9dの移動量y(曲げ型52の停止時における後端部9dの停止位置J、図4参照)を、事前に、正確に把握しておく必要がある。 This point will be described in detail. In the conventional no-load following type bending method using the pipe bending device 51, the pipe gradually moves in the direction of the bending die 52 as the bending die 52 rotates. As a method for causing the chuck 57 to follow the rear end portion 9d of the motor 9 without load, position control of the chuck 57 is performed. Accordingly, the amount of movement y of the rear end portion 9d of the pipe 9 that is moved by being pulled by the bending die 52 (stop position J of the rear end portion 9d when the bending die 52 is stopped, see FIG. 4) is accurately determined in advance. It is necessary to know.
 曲げ型52に引っ張られて移動するパイプ9の後端部9dの移動量yは、単純に考えると、「2πr(q/360)」(r:曲げ半径、q:設定曲げ角度)ということになる。但し、曲げ加工を行う際には、パイプ9が曲げ型52に引っ張られることにより、「伸び」が生じるため、後端部9dの移動量yは、「2πr(q/360)」から伸び量wを差し引いた値となる。(尚、実際の制御に用いられる値は、曲げ型52の停止時における後端部9dの停止位置J(機械原点Bからの距離j)であり、この値は、「j=s-y」(s:チャック7の機械原点Bから送り開始位置Sまでの距離)から求められる。) The amount of movement y of the rear end portion 9d of the pipe 9 that is moved by being pulled by the bending die 52 is simply “2πr (q / 360)” (r: bending radius, q: set bending angle). Become. However, since the pipe 9 is pulled by the bending die 52 when bending is performed, “elongation” occurs, and therefore, the movement amount y of the rear end portion 9d is extended from “2πr (q / 360)”. The value is obtained by subtracting w. (The value used for actual control is the stop position J (distance j from the machine origin B) of the rear end portion 9d when the bending die 52 is stopped. This value is “j = sy”. (S is determined from the distance from the machine origin B of the chuck 7 to the feed start position S).
 しかしながら、曲げ加工時において生じる伸び量wの値は、パイプ9の材質、径、肉厚寸法、曲げ半径、金型の調整等によって変化するため、伸び量w(ひいては移動量y)を、計算のみによって正確に求めることは不可能である。そこで、上述の通り、従来のパイプ曲げ加工装置51を用いて無負荷追従方式の曲げ加工方法を行う場合には、パイプ9の後端部9dの移動量y乃至は停止位置J(距離j)を把握するために、実際の曲げ加工に先立ち、試し曲げ、試し曲げ移動量の測定、実移動量の計算等の一連の準備作業が必要となる。 However, since the value of the amount of elongation w generated at the time of bending changes depending on the material, diameter, thickness, bending radius, mold adjustment, etc. of the pipe 9, the amount of elongation w (and hence the amount of movement y) is calculated. It is impossible to determine accurately only by Thus, as described above, when the conventional pipe bending apparatus 51 is used to perform the no-load following bending method, the movement amount y of the rear end portion 9d of the pipe 9 or the stop position J (distance j). In order to grasp the above, a series of preparatory work such as trial bending, measurement of trial bending movement amount, calculation of actual movement amount and the like is required prior to actual bending.
 本実施形態においては、チャック7の位置を制御するのではなく、チャック7及び送り位置決め装置8を移動させるためにボールねじ5に与えるトルクを制御すること、より具体的には、出力トルクを「t1」(パイプ9を把持していないフリーの状態のチャック7及び送り位置決め装置8を、曲げ型2の方向へ移動させるために必要となる最小限の出力)とすることによって、後端部9dに対するチャック7の追従を実現させているため、パイプ9の伸び量w、後端部9dの移動量y、及び、停止位置J(距離j)を正確に把握する必要が無く、試し曲げ、試し曲げ移動量の測定、実移動量の計算等の一連の準備作業を省略することができる。 In the present embodiment, the position of the chuck 7 is not controlled, but the torque applied to the ball screw 5 to move the chuck 7 and the feed positioning device 8 is controlled. By setting “t1” (minimum output required to move the chuck 7 and the feed positioning device 8 in the free state not holding the pipe 9 in the direction of the bending die 2), the rear end 9d Therefore, it is not necessary to accurately grasp the extension amount w of the pipe 9, the movement amount y of the rear end portion 9d, and the stop position J (distance j). A series of preparatory work such as measurement of the bending movement amount and calculation of the actual movement amount can be omitted.
 但し、チャック7に駆動力を供給する送りサーボモータに対し、送り前進指令を発する際には、いずれかの位置を指定し、これをチャック7の送り停止目標位置K(機械原点Bからの距離k)として与えてやる必要がある。このとき、仮に停止目標位置Kが、実際の停止位置Jよりも送り開始位置S寄りの位置(例えば、図4に示すK’の位置)に設定されてしまった場合、その位置から実際の停止位置Jまでの区間Uにおいて、パイプ9の後端部9dに対しチャック7及び送り位置決め装置8を無負荷で追従させることができなくなってしまう。従って、停止目標位置Kは、実際の停止位置Jよりも曲げ型2寄りの位置に設定しなければならない。 However, when a feed forward command is issued to the feed servo motor that supplies driving force to the chuck 7, any position is designated, and this is designated as a feed stop target position K (distance from the machine origin B) of the chuck 7. k). At this time, if the stop target position K is set to a position closer to the feed start position S than the actual stop position J (for example, the position of K ′ shown in FIG. 4), the actual stop is started from that position. In the section U to the position J, the chuck 7 and the feed positioning device 8 cannot follow the rear end portion 9d of the pipe 9 without load. Therefore, the target stop position K must be set closer to the bending die 2 than the actual stop position J.
 本実施形態においては、停止目標位置K(機械原点Bからの距離k)が、実際の停止位置Jよりも曲げ型2寄りの位置に設定されるよう、上記数式1により停止目標位置K(機械原点Bからの距離k)が計算されるようになっている。 In the present embodiment, the target stop position K (machine position) according to Equation 1 is set so that the target stop position K (distance k from the machine origin B) is set closer to the bending die 2 than the actual stop position J. The distance k) from the origin B is calculated.
 但しこの場合、実際の停止位置Jと停止目標位置Kとの間に相応の「ずれ」が生じることになる。つまり、曲げ型2の回転角度が既定の角度(設定曲げ角度q)まで達し、曲げ型2の回転が停止した時点でチャック7も停止することになり、その停止位置(第1停止位置F、図3(2)参照)から停止目標位置Kまでの距離fに比例した数(α)の送り前進指令パルスがサーボアンプに溜まってしまうことになり、更に、その後、送りサーボモータの出力トルクが「0」となって、パイプ9、チャック7、送り位置決め装置8等において生じている撓みが開放された際に、チャック7が僅かに後退することによって、その移動量(第1停止位置Fから最終停止位置Gまでの距離g、図3(3)参照)に比例した数(β)の送り前進指令パルスが、サーボアンプに溜まってしまうことになる。 However, in this case, a corresponding “deviation” occurs between the actual stop position J and the target stop position K. That is, when the rotation angle of the bending die 2 reaches a predetermined angle (set bending angle q) and the rotation of the bending die 2 stops, the chuck 7 also stops, and the stop position (first stop position F, The feed forward command pulses of a number (α) proportional to the distance f from the stop target position K to the stop target position K are accumulated in the servo amplifier, and then the output torque of the feed servo motor is increased. When “0” is set and the bending occurring in the pipe 9, the chuck 7, the feed positioning device 8, etc. is released, the chuck 7 slightly moves backward to move the movement amount (from the first stop position F). A number (β) of forward feed command pulses proportional to the distance g to the final stop position G (see FIG. 3 (3)) will accumulate in the servo amplifier.
 そこで本実施形態においては、上述の通り、送り後退指令(チャック7の最終停止位置Gから送り停止目標位置Kまでの距離(f+g)に比例した数(α+β)の送り後退指令パルス)が制御装置から発せられ、それらの溜まりパルスが解消されるようになっている。 Therefore, in the present embodiment, as described above, the feed backward command (the number of feed backward command pulses proportional to the distance (f + g) from the final stop position G of the chuck 7 to the feed stop target position K (α + β)) is the control device. These accumulated pulses are canceled out.
 尚、本実施形態においては、チャック7の機械原点Bが、送り停止目標位置Kの前方(曲げ型2の方向)に設定されているため、チャック7の送り停止目標位置Kの情報(距離k)は、上記数式1によって求められるが、チャック7の機械原点Bが、送り開始位置Sの後方(曲げ型2とは反対の方向)に設定されている場合には、チャック7の送り停止目標位置Kの情報(距離k)は、下記の式によって求められる。 In this embodiment, since the machine origin B of the chuck 7 is set in front of the feed stop target position K (in the direction of the bending die 2), information on the feed stop target position K of the chuck 7 (distance k). ) Is obtained by the above equation 1, but when the machine origin B of the chuck 7 is set behind the feed start position S (the direction opposite to the bending die 2), the feed stop target of the chuck 7 is set. Information on the position K (distance k) is obtained by the following equation.
(数式2)
k=s+(2πr(q/360))c
(Formula 2)
k = s + (2πr (q / 360)) c
 次に、図1のパイプ曲げ加工装置1を用いた上記加工方法のうち、押圧力付加方式の曲げ加工方法を、本発明の第3の実施形態として説明する。本実施形態の押圧力付加方式の曲げ加工方法は、以下に説明する二つの点を除いて、第2の実施形態として説明した無負荷追従方式の曲げ加工方法と同一の手順によって実施される。 Next, of the above-described processing methods using the pipe bending apparatus 1 of FIG. 1, a bending method using a pressing force method will be described as a third embodiment of the present invention. The bending method of the pressing force application method of the present embodiment is performed by the same procedure as the bending method of the no-load following method described as the second embodiment, except for two points described below.
 第2の実施形態(無負荷追従方式の曲げ加工方法)においては、送り開始位置Sへのチャック7の移動完了後、送りサーボモータからボールねじ5へ出力するトルクを「t1」(チャック7がパイプ9を把持していないフリーの状態にある場合において、ボールねじ5を動作させることにより、送り位置決め装置8及びチャック7を、曲げ型2の方向へ移動させるために必要となる最小限の出力トルク)としていたが、本実施形態においては、曲げ加工時においてパイプ9に付加しようとする押圧力に相当する「t2」を「t1」にプラスしたトルクを出力する。これにより、パイプ9に対し、トルクt2による押圧力を付加しながら曲げ加工を行うことができる。 In the second embodiment (the no-load following bending method), after the movement of the chuck 7 to the feed start position S is completed, the torque output from the feed servo motor to the ball screw 5 is “t1” (chuck 7 is In the free state where the pipe 9 is not gripped, the minimum output required for moving the feed positioning device 8 and the chuck 7 in the direction of the bending die 2 by operating the ball screw 5. However, in this embodiment, a torque obtained by adding “t2” to “t1” corresponding to the pressing force to be applied to the pipe 9 during bending is output. As a result, the pipe 9 can be bent while applying a pressing force by the torque t2.
 また、曲げサーボモータが停止した後、トルク制限機能により、送りサーボモータの出力トルクを制限して「0」まで減衰する際、本実施形態においては、トルク出力を段階的に落としていくという方法が実行される。この点について具体的に説明すると、送りサーボモータから出力されるトルクを「t1+t2」から唐突に「0」に変更すると、トルクが作用しているボールねじ5及び送り位置決め装置8において、力が解放される際に生じる衝撃(ショック)が伝わることになり、衝撃そのものによってボールねじ5、送り位置決め装置8、又は、それらの構成部品が直接損傷を受けてしまったり、或いは、衝撃の振動により取付ボルトに弛みが生じて、送り位置決め装置8等において不具合を生じさせてしまうという問題がある。 Further, after the bending servo motor is stopped, when the torque limit function is used to limit the output torque of the feed servo motor and attenuate it to “0”, in the present embodiment, the torque output is gradually reduced. Is executed. Specifically, when the torque output from the feed servomotor is suddenly changed from “t1 + t2” to “0”, the force is released in the ball screw 5 and the feed positioning device 8 on which the torque is applied. The shock (shock) generated during the transmission is transmitted, and the ball screw 5, the feed positioning device 8, or their components are directly damaged by the impact itself, or the mounting bolt is caused by the vibration of the impact. There is a problem that slack occurs in the feed positioning device 8 and the like.
 そこで、本実施形態においては、出力を「t1+t2」から「0」まで減衰するまでの所要時間を設定し、例えば、この所要時間を10分割し、つまり、10段階に分け、第1段階で出力を90%、第2段階で80%というように次第に減衰させていき、第10段階で0%、即ち、出力を「0」とする。このような方法でトルクの出力を段階的に落としていくことにより、力が解放される際のショックを軽減し、上記のような問題を好適に回避することができる。 Therefore, in the present embodiment, a required time until the output is attenuated from “t1 + t2” to “0” is set, for example, this required time is divided into ten, that is, divided into ten stages, and output in the first stage. Is gradually attenuated to 90% and 80% in the second stage, and 0% in the tenth stage, that is, the output is set to "0". By reducing the torque output stepwise in this way, the shock when the force is released can be reduced and the above-mentioned problems can be preferably avoided.
 最後に、図1のパイプ曲げ加工装置1を用いた上記加工方法のうち、引っ張り抵抗力付加方式の曲げ加工方法を、本発明の第4の実施形態として説明する。本実施形態の引っ張り抵抗力付加方式の曲げ加工方法は、以下に説明する点を除いて、第3の実施形態として説明した押圧力付加方式の曲げ加工方法と同一の手順によって実施される。 Finally, among the above-described processing methods using the pipe bending device 1 of FIG. 1, a bending resistance-added bending method will be described as a fourth embodiment of the present invention. Except for the points described below, the pulling force addition method bending method of the present embodiment is performed by the same procedure as the pressing force addition method bending method described as the third embodiment.
 第3の実施形態(押圧力付加方式の曲げ加工方法)においては、チャック7の送り停止目標位置Kは、送り開始位置Sの前方(曲げ型2の方向)に設定され、その位置情報(機械原点Bからの距離k)は、上記数式1によって求められるが、本実施形態においては、図5(1)に示すように、チャック7の送り停止目標位置Kは、送り開始位置Sの後方(曲げ型2とは反対の方向)に設定され、その位置情報(機械原点Bからの距離k)は、送り開始位置S(機械原点Bからの距離s)、定数vを用いて、下記の式により計算される。 In the third embodiment (pressing force addition type bending method), the feed stop target position K of the chuck 7 is set in front of the feed start position S (in the direction of the bending die 2), and the position information (machine) The distance k) from the origin B can be obtained by the above formula 1. In this embodiment, as shown in FIG. 5A, the feed stop target position K of the chuck 7 is behind the feed start position S ( The position information (distance k from the machine origin B) is set to the following formula using the feed start position S (distance s from the machine origin B) and a constant v: Is calculated by
(数式3)
k=s+v
(Formula 3)
k = s + v
 本実施形態においては、チャック7の送り停止目標位置Kは、パイプ9の後端部9dの進行方向とは反対方向の位置に設定されているため、制御装置から曲げサーボモータのサーボアンプへ曲げ正転指令が発せられる際、送りサーボモータのサーボアンプに対しては、送り後退指令(チャック7の送り開始位置Sから送り停止目標位置Kまでの距離vに比例した数の送り後退指令パルス)が発せられることになる。 In the present embodiment, the feed stop target position K of the chuck 7 is set at a position opposite to the advancing direction of the rear end portion 9d of the pipe 9, so that the bending is performed from the control device to the servo amplifier of the bending servo motor. When a forward rotation command is issued, a feed backward command (a number of feed backward command pulses proportional to the distance v from the feed start position S of the chuck 7 to the feed stop target position K) is sent to the servo amplifier of the feed servo motor. Will be emitted.
 制御装置から曲げ正転指令及び送り後退指令が発せられると、曲げサーボモータのサーボアンプから駆動電力が供給されて曲げサーボモータが回転し、送りサーボモータのサーボアンプから駆動電力が供給されて送りサーボモータからトルクが出力される。そうすると、図2に示すように曲げ型2は既定の方向へ回転する。曲げ型2の回転が進行すると、曲げ型2とクランプ3に挟持されたパイプ9が曲げ型2の回転方向へ引っ張られ、曲げ加工部9bが曲げ型2のラウンド部分2aの外周面に沿って巻き付けられていき、パイプ9に曲げ加工が施される。 When a forward bending command and feed backward command are issued from the control device, drive power is supplied from the servo amplifier of the bending servo motor to rotate the bending servo motor, and drive power is supplied from the servo amplifier of the feed servo motor to feed. Torque is output from the servo motor. Then, the bending mold 2 rotates in a predetermined direction as shown in FIG. As the bending mold 2 rotates, the pipe 9 sandwiched between the bending mold 2 and the clamp 3 is pulled in the rotation direction of the bending mold 2, and the bending portion 9 b extends along the outer peripheral surface of the round portion 2 a of the bending mold 2. The pipe 9 is wound and bent.
 このとき、パイプ9の後端側部分9c及び後端部9dは、曲げ型2の回転の進行に従って曲げ型2の方向へ次第に移動していくことになり、後端部9dを把持するチャック7、及び、これを保持する送り位置決め装置8も、後端部9dと共に曲げ型2の方向へ次第に移動することになるが、送り位置決め装置8及びチャック7には、送りサーボモータ及びボールねじ5により、曲げ型2とは反対の方向へ引っ張る抵抗力が付加されることになる。 At this time, the rear end side portion 9c and the rear end portion 9d of the pipe 9 gradually move in the direction of the bending die 2 as the bending die 2 rotates, and the chuck 7 grips the rear end portion 9d. The feed positioning device 8 that holds this also gradually moves in the direction of the bending die 2 together with the rear end portion 9d. However, the feed positioning device 8 and the chuck 7 are provided with a feed servo motor and a ball screw 5. A resistance force that pulls in the direction opposite to that of the bending die 2 is added.
 曲げ型2の回転角度が既定の角度(設定曲げ角度q)まで達したら、曲げ型2の回転が停止し、曲げ加工が終了する。曲げ型2の回転(曲げサーボモータ)が停止すると、パイプ9の後端側部分9c、後端部9d、チャック7、送り位置決め装置8、ボールねじ5も停止することになる。このとき、図5(2)に示すように、チャック7は、送り開始位置Sよりも更に、送り停止目標位置Kから離れた位置となる。そして、送りサーボモータのサーボアンプの偏差カウンタには、チャック7の現在位置(第1停止位置F)から送り停止目標位置Kまでの距離fに比例した数(α)の送り前進指令パルスが溜まることになる。従って、それらの溜まりパルス(α)により、送りサーボモータには、サーボアンプから依然として電力が供給されており、送りサーボモータからトルクが出力されている。そこで本実施形態においても、曲げサーボモータが停止した後、トルク制限機能により、送りサーボモータの出力トルクが制限されて、「0」まで減衰される。 When the rotation angle of the bending die 2 reaches a predetermined angle (set bending angle q), the rotation of the bending die 2 is stopped and the bending process is finished. When the rotation of the bending mold 2 (bending servo motor) stops, the rear end side portion 9c, the rear end portion 9d of the pipe 9, the chuck 7, the feed positioning device 8, and the ball screw 5 also stop. At this time, as shown in FIG. 5B, the chuck 7 is further away from the feed stop target position K than the feed start position S. The number of feed advance command pulses proportional to the distance f from the current position (first stop position F) of the chuck 7 to the feed stop target position K is accumulated in the deviation counter of the servo amplifier of the feed servo motor. It will be. Accordingly, the electric power is still supplied from the servo amplifier to the feed servomotor by these accumulated pulses (α), and torque is output from the feed servomotor. Therefore, also in this embodiment, after the bending servo motor is stopped, the output torque of the feed servo motor is limited by the torque limiting function and attenuated to “0”.
 送りサーボモータの出力トルクが「0」になると、チャック7、及び、送り位置決め装置8に作用するボールねじ5の推力が無くなり、パイプ9、チャック7、送り位置決め装置8等において生じている撓みが開放されるため、チャック7は、僅かに前方(曲げ型2の方向)へ移動することになる(最終停止位置G、図5(3)参照)。このため、送りサーボモータのサーボアンプには、その移動量(第1停止位置Fから最終停止位置Gまでの距離g)に比例した数(β)の送り前進指令パルスが、溜まりパルス(α)に上積みされることになる。 When the output torque of the feed servo motor becomes “0”, the thrust of the ball screw 5 acting on the chuck 7 and the feed positioning device 8 is lost, and the bending occurring in the pipe 9, the chuck 7, the feed positioning device 8 and the like is lost. Since it is opened, the chuck 7 moves slightly forward (in the direction of the bending die 2) (final stop position G, see FIG. 5 (3)). For this reason, feed forward command pulses of a number (β) proportional to the amount of movement (distance g from the first stop position F to the final stop position G) are accumulated in the servo amplifier of the feed servo motor. Will be stacked on top.
 そこで本実施形態においては、送りサーボモータの出力トルクを「0」にした後、タイマーカウントアップにより所定時間を置いてから、サーボアンプの溜まりパルス(α+β)が読み込まれ、それと同数のパルスからなる送り前進指令(チャック7の最終停止位置Gから送り停止目標位置Kまでの距離(f+g)に比例した数(α+β)の送り前進指令パルス)が制御装置から発せられ、送りサーボモータのサーボアンプに入力されるようになっている。 Therefore, in the present embodiment, after the output torque of the feed servo motor is set to “0”, a predetermined time is set by the timer count up, and then the accumulated pulses (α + β) of the servo amplifier are read and are composed of the same number of pulses. A feed forward command (a number of feed forward command pulses proportional to the distance (f + g) from the final stop position G of the chuck 7 to the feed stop target position K (α + β)) is issued from the control device and is sent to the servo amplifier of the feed servo motor. It is designed to be entered.
 サーボアンプの偏差カウンタに溜まっている送り後退指令パルスと、入力される送り前進指令パルスとは、チャック7の送り方向が反対であるため、偏差カウンタに溜まっている送り後退指令パルスは、送り前進指令パルスによって減算される。そして、それらのパルス数は一致しているため、溜まっている送り後退指令パルスはすべて減算(相殺)され、溜まりパルスは「0」となる。その結果、サーボアンプから送りサーボモータへの電力供給が停止し、送りサーボモータは停止状態となる。そして、送りサーボモータが停止したら、トルク制限を解除し、クランプ3及びチャック7を開放して、パイプ9をパイプ曲げ加工装置1から取り外し、或いは、クランプ3のみを開放して、次の曲げ加工のためにパイプ9を移動させる(次の送り開始位置への位置決めを行う)。 Since the feed back / return command pulse stored in the deviation counter of the servo amplifier and the input feed forward command pulse are opposite to each other in the feed direction of the chuck 7, the feed back / back command pulse stored in the deviation counter is fed forward Subtracted by command pulse. Since the number of pulses coincides with each other, all the accumulated feed / reverse command pulses are subtracted (cancelled), and the accumulated pulses become “0”. As a result, power supply from the servo amplifier to the feed servo motor is stopped, and the feed servo motor is stopped. When the feed servo motor is stopped, the torque limit is released, the clamp 3 and the chuck 7 are opened, the pipe 9 is removed from the pipe bending apparatus 1, or only the clamp 3 is opened, and the next bending process is performed. Therefore, the pipe 9 is moved (positioning to the next feed start position is performed).
 また、本実施形態においても、第3の実施形態と同様に、曲げサーボモータが停止した後、トルク制限機能により、送りサーボモータの出力トルクを制限して「0」まで減衰させる際、トルク出力を段階的に落としていくという方法が実行される。これにより、力が解放される際のショックを軽減し、構成部品の損傷、取付ボルトの弛みに起因する不具合の発生等の問題を好適に回避することができる。 Also in this embodiment, as in the third embodiment, after the bending servo motor is stopped, when the torque limit function is used to limit the output torque of the feed servo motor and attenuate it to “0”, the torque output The method of dropping the process step by step is executed. As a result, the shock when the force is released can be reduced, and problems such as damage to the component parts and occurrence of problems due to loosening of the mounting bolts can be suitably avoided.
 尚、本実施形態においては、チャック7の機械原点Bが、送り停止目標位置Kの前方(曲げ型2の方向)に設定されているため、チャック7の送り停止目標位置Kの情報(距離k)は、上記数式3によって求められるが、チャック7の機械原点Bが、送り開始位置Sの後方(曲げ型2とは反対の方向)に設定されている場合には、チャック7の送り停止目標位置Kの情報(距離k)は、下記の式によって求められる。 In this embodiment, since the machine origin B of the chuck 7 is set in front of the feed stop target position K (in the direction of the bending die 2), information on the feed stop target position K of the chuck 7 (distance k). ) Is obtained by the above equation 3, but when the machine origin B of the chuck 7 is set behind the feed start position S (in the direction opposite to the bending die 2), the feed stop target of the chuck 7 is set. Information on the position K (distance k) is obtained by the following equation.
(数式4)
k=s-v
(Formula 4)
k = s−v
1:パイプ曲げ加工装置、
2:曲げ型、
2a:ラウンド部分、
2b:直状部分、
3:クランプ、
4:プレッシャー型、
5:ボールねじ、
5a:シャフト、
5b:スライダ、
7:チャック、
8:送り位置決め装置、
9:パイプ、
9a:先端側部分、
9b:曲げ加工部、
9c:後端側部分、
9d:後端部、
51:パイプ曲げ加工装置、
52:曲げ型、
53:クランプ、
54:プレッシャー型、
55:押圧力付加手段、
56:引っ張り抵抗力付加手段、
57:チャック、
B:機械原点、
F:第1停止位置、
G:最終停止位置、
J:停止位置、
K:停止目標位置、
S:送り開始位置、
q:設定曲げ角度、
r:曲げ半径、
w:伸び量、
y:移動量、
1: Pipe bending machine,
2: Bending mold,
2a: Round part,
2b: straight part,
3: Clamp,
4: Pressure type,
5: Ball screw,
5a: shaft,
5b: slider,
7: Chuck,
8: Feed positioning device,
9: Pipe,
9a: tip side portion,
9b: bending portion,
9c: rear end side portion,
9d: rear end,
51: Pipe bending apparatus,
52: bending mold,
53: Clamp,
54: Pressure type,
55: Pressurizing force applying means,
56: Tensile resistance adding means,
57: Chuck,
B: Machine origin,
F: first stop position,
G: Final stop position,
J: Stop position,
K: stop target position,
S: Feed start position,
q: Set bending angle,
r: bending radius,
w: elongation,
y: amount of movement,

Claims (9)

  1.  加工対象となるパイプを外周面に巻き付けて曲げ加工を行う曲げ型と、
     前記パイプの後端部を把持するように構成されたチャックと、
     前記チャックを保持し、前記チャックによって把持されるパイプの後端側部分の軸線方向へ移動可能なように構成された送り位置決め装置と、
     送りサーボモータと、
     前記曲げ型に回転駆動力を供給する曲げサーボモータと、
     前記送り位置決め装置と接続され、前記送りサーボモータの出力トルクを、シャフトの軸線方向へのスライダの推力に変換することにより、前記送り位置決め装置及び前記チャックを所定方向へ移動させることができるように構成されたボールねじと、
     前記送りサーボモータの出力トルクを制御する制御装置と、を有することを特徴とするパイプ曲げ加工装置。
    A bending die that performs bending by winding a pipe to be processed around the outer peripheral surface;
    A chuck configured to grip a rear end of the pipe;
    A feed positioning device configured to hold the chuck and be movable in an axial direction of a rear end portion of a pipe held by the chuck;
    A feed servo motor,
    A bending servo motor for supplying a rotational driving force to the bending mold;
    The feed positioning device and the chuck can be moved in a predetermined direction by being connected to the feed positioning device and converting the output torque of the feed servo motor into the thrust of the slider in the axial direction of the shaft. A configured ball screw; and
    And a control device for controlling the output torque of the feed servo motor.
  2.  請求項1に記載のパイプ曲げ加工装置を用いて行うパイプ曲げ加工方法であって、
     前記チャックがフリーの状態にある場合において、前記送り位置決め装置及びチャックを、前記曲げ型の方向へ移動させるために必要となる最小限のトルクを、前記送りサーボモータから前記ボールねじへ出力して曲げ加工を行うことを特徴とする無負荷追従方式のパイプ曲げ加工方法。
    A pipe bending method performed using the pipe bending apparatus according to claim 1,
    When the chuck is in a free state, the minimum torque required to move the feed positioning device and chuck in the direction of the bending die is output from the feed servo motor to the ball screw. A no-load follow-up pipe bending method characterized by bending.
  3.  前記曲げ型の回転が停止した後、トルク制限機能により、前記送りサーボモータの出力トルクを制限して0まで減衰し、その後所定時間を置いてから、前記送りサーボモータの溜まりパルスを読み込み、それと同数のパルスからなる送り後退指令を制御装置から発して、溜まりパルスを解消させることを特徴とする、請求項2に記載の無負荷追従方式のパイプ曲げ加工方法。 After the rotation of the bending mold is stopped, the torque limit function limits the output torque of the feed servo motor to attenuate it to 0, and after a predetermined time, reads the accumulated pulse of the feed servo motor. 3. The no-load following type pipe bending method according to claim 2, wherein a feed backward / reverse command comprising the same number of pulses is issued from the control device to cancel the accumulated pulses.
  4.  請求項1に記載のパイプ曲げ加工装置を用いて行うパイプ曲げ加工方法であって、
     前記チャックがフリーの状態にある場合において、前記送り位置決め装置及びチャックを、前記曲げ型の方向へ移動させるために必要となる最小限のトルクに、曲げ加工時においてパイプに付加しようとする押圧力に相当するトルクを加算して、前記送りサーボモータから前記ボールねじへトルクを出力することにより曲げ加工を行うことを特徴とする押圧力付加方式のパイプ曲げ加工方法。
    A pipe bending method performed using the pipe bending apparatus according to claim 1,
    When the chuck is in a free state, the pressing force to be applied to the pipe during bending to the minimum torque required to move the feed positioning device and the chuck in the direction of the bending mold A pipe bending method using a pressing force method, wherein bending is performed by adding torque corresponding to the above and outputting torque from the feed servo motor to the ball screw.
  5.  前記曲げ型の回転が停止した後、トルク制限機能により、前記送りサーボモータの出力トルクを制限して0まで減衰し、その後所定時間を置いてから、前記送りサーボモータの溜まりパルスを読み込み、それと同数のパルスからなる送り後退指令を制御装置から発して、溜まりパルスを解消させることを特徴とする、請求項4に記載の押圧力付加方式のパイプ曲げ加工方法。 After the rotation of the bending mold is stopped, the torque limit function limits the output torque of the feed servo motor to attenuate it to 0, and after a predetermined time, reads the accumulated pulse of the feed servo motor. The pipe bending method according to claim 4, wherein a feed backward / reverse command comprising the same number of pulses is issued from the control device to cancel the accumulated pulses.
  6.  前記送りサーボモータの出力トルクを制限して0まで減衰する際、その所要時間を少なくとも2段階以上に分割し、出力トルクを段階的に落としていくことを特徴とする、請求項5に記載の押圧力付加方式のパイプ曲げ加工方法。 6. The method according to claim 5, wherein when the output torque of the feed servo motor is limited and attenuated to 0, the required time is divided into at least two stages and the output torque is gradually reduced. Pipe bending method with pressure applied.
  7.  請求項1に記載のパイプ曲げ加工装置を用いて行うパイプ曲げ加工方法であって、
     前記チャックの送り停止目標位置を、送り開始位置の後方に設定し、
     前記制御装置が前記曲げサーボモータへ曲げ正転指令を発する際、前記送りサーボモータに対して送り後退指令を発して曲げ加工を行うことを特徴とする引っ張り抵抗力付加方式のパイプ曲げ加工方法。
    A pipe bending method performed using the pipe bending apparatus according to claim 1,
    Set the feed stop target position of the chuck behind the feed start position,
    When the controller issues a forward bending command to the bending servomotor, a bending process is performed by issuing a feed backward command to the feed servomotor to perform bending.
  8.  前記曲げ型の回転が停止した後、トルク制限機能により、前記送りサーボモータの出力トルクを制限して0まで減衰し、その後所定時間を置いてから、前記送りサーボモータの溜まりパルスを読み込み、それと同数のパルスからなる送り前進指令を制御装置から発して、溜まりパルスを解消させることを特徴とする、請求項7に記載の引っ張り抵抗力付加方式のパイプ曲げ加工方法。 After the rotation of the bending mold is stopped, the torque limit function limits the output torque of the feed servo motor to attenuate it to 0, and after a predetermined time, reads the accumulated pulse of the feed servo motor. The pipe bending method according to claim 7, wherein a feed forward command including the same number of pulses is issued from the control device to cancel the accumulated pulses.
  9.  前記送りサーボモータの出力トルクを制限して0まで減衰する際、その所要時間を少なくとも2段階以上に分割し、出力トルクを段階的に落としていくことを特徴とする、請求項8に記載の引っ張り抵抗力付加方式のパイプ曲げ加工方法。 9. The method according to claim 8, wherein when the output torque of the feed servo motor is limited and attenuated to 0, the required time is divided into at least two stages and the output torque is reduced stepwise. A pipe bending method using a tensile resistance addition method.
PCT/JP2009/005864 2009-11-05 2009-11-05 Pipe bending device with assist function and bending method WO2011055408A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/005864 WO2011055408A1 (en) 2009-11-05 2009-11-05 Pipe bending device with assist function and bending method
CN200980162318.7A CN102596442B (en) 2009-11-05 2009-11-05 Pipe bending device with assist function and bending method
JP2011539181A JP5044045B2 (en) 2009-11-05 2009-11-05 Pipe bending apparatus with assist function and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005864 WO2011055408A1 (en) 2009-11-05 2009-11-05 Pipe bending device with assist function and bending method

Publications (1)

Publication Number Publication Date
WO2011055408A1 true WO2011055408A1 (en) 2011-05-12

Family

ID=43969655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005864 WO2011055408A1 (en) 2009-11-05 2009-11-05 Pipe bending device with assist function and bending method

Country Status (3)

Country Link
JP (1) JP5044045B2 (en)
CN (1) CN102596442B (en)
WO (1) WO2011055408A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014094340A1 (en) * 2012-12-18 2014-06-26 宁波钜智自动化装备有限公司 Pipe bender and method of real-time detection on pipe bender
JP2018077028A (en) * 2016-11-11 2018-05-17 カルソニックカンセイ株式会社 Fin-integrated tube
US11007560B2 (en) * 2017-10-25 2021-05-18 Toyota Jidosha Kabushiki Kaisha Winding wire manufacturing device and control method for the same
CN112916680A (en) * 2021-04-21 2021-06-08 上海特马液压设备有限公司 Metal pipeline end bending die and operation method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624121B (en) * 2013-12-11 2016-01-20 中机生产力促进中心 A kind of Reducing thickness that is used for controls angle pipe equipment and method
CN107570562B (en) * 2017-09-26 2024-04-23 张家港市立业机械有限公司 Full-automatic pipe bending machine based on servo drive
CN110202032A (en) * 2019-06-17 2019-09-06 衢州后瑞机械设备有限公司 The manufacturing method of titanium alloy seamless pipe
CN110666011B (en) * 2019-10-25 2021-05-14 珠海格力智能装备有限公司 Bending device and U-shaped pipe processing equipment
CN111922231B (en) * 2020-06-19 2022-09-02 安徽美博智能科技有限公司 Pipe bending device for air conditioner production
KR102515646B1 (en) * 2022-09-27 2023-03-29 엠에스티 유한회사 Bending adapter for manual tube bending device and manual tube bending device including the bending adapter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992120A (en) * 1982-11-15 1984-05-28 Hitachi Ltd Bending device
JPH079517U (en) * 1993-06-30 1995-02-10 株式会社太洋 Pipe bending equipment
JPH11720A (en) * 1997-06-11 1999-01-06 Babcock Hitachi Kk Device for bending tube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553989A (en) * 1968-04-23 1971-01-12 Pines Engineering Co Inc Tube bender with incremental tube measurement
JPS591024A (en) * 1982-06-26 1984-01-06 Chiyoda Kogyo Kk Bender for simultaneously bending two bars
US4959984A (en) * 1989-08-17 1990-10-02 Ap Parts Manufacturing Company Precision bending apparatus
US5379624A (en) * 1993-11-22 1995-01-10 Burr Oak Tool & Gauge Company Slaved tube length control for hairpin bender

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992120A (en) * 1982-11-15 1984-05-28 Hitachi Ltd Bending device
JPH079517U (en) * 1993-06-30 1995-02-10 株式会社太洋 Pipe bending equipment
JPH11720A (en) * 1997-06-11 1999-01-06 Babcock Hitachi Kk Device for bending tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014094340A1 (en) * 2012-12-18 2014-06-26 宁波钜智自动化装备有限公司 Pipe bender and method of real-time detection on pipe bender
JP2018077028A (en) * 2016-11-11 2018-05-17 カルソニックカンセイ株式会社 Fin-integrated tube
US10955198B2 (en) 2016-11-11 2021-03-23 Marelli Cabin Comfort Japan Corporation Fin-assembled tube
US11007560B2 (en) * 2017-10-25 2021-05-18 Toyota Jidosha Kabushiki Kaisha Winding wire manufacturing device and control method for the same
CN112916680A (en) * 2021-04-21 2021-06-08 上海特马液压设备有限公司 Metal pipeline end bending die and operation method

Also Published As

Publication number Publication date
JPWO2011055408A1 (en) 2013-03-21
CN102596442B (en) 2014-12-31
CN102596442A (en) 2012-07-18
JP5044045B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5044045B2 (en) Pipe bending apparatus with assist function and processing method
US10688588B2 (en) Continuous feed spindle attachment
JP3685526B2 (en) Pipe bending machine
JP4851341B2 (en) Bending machine
US20090072503A1 (en) System for centrifugal-force compensating in an electric machining-chuck actuator
JP2012035290A (en) Straightening device of wire material
JP2005280047A (en) Device for adjusting mold clamping force of toggle type injection molding machine
WO2010113661A1 (en) Compression coil spring, and coil spring manufacturing device and manufacturing method
EP1195209A1 (en) Wire bending machine and bending method
KR101316920B1 (en) Bending device
JP5382543B2 (en) Electric cylinder control method and electric cylinder control system
JPH0460726B2 (en)
JP2000126821A (en) Method for bending and device therefor
WO2001051239A1 (en) Thrust converter, and method and device for controlling the thrust converter
JPH11342440A (en) Tool controller
US6820450B2 (en) Bending device
JP5862288B2 (en) Manufacturing method and manufacturing apparatus of flat wire coil
CN206827724U (en) The wrap-up and cutting machine of cutting machine
JP3715077B2 (en) Pipe bending machine
KR20190015340A (en) Clamping force estimation by pulse tightening
JPS6120641A (en) Coiling device
JP2009160627A (en) Plastic working method and its apparatus
WO2017077692A1 (en) Arc welding method
JP2006159282A (en) Bending device
JP4692672B2 (en) Electric cylinder control method and electric cylinder control system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162318.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851066

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011539181

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851066

Country of ref document: EP

Kind code of ref document: A1