WO2011054996A2 - Vacunas para el tratamiento de neoplasias a partir de capsides virales de birnavirus conteniendo antigenos del virus del papiloma humano - Google Patents

Vacunas para el tratamiento de neoplasias a partir de capsides virales de birnavirus conteniendo antigenos del virus del papiloma humano Download PDF

Info

Publication number
WO2011054996A2
WO2011054996A2 PCT/ES2010/070717 ES2010070717W WO2011054996A2 WO 2011054996 A2 WO2011054996 A2 WO 2011054996A2 ES 2010070717 W ES2010070717 W ES 2010070717W WO 2011054996 A2 WO2011054996 A2 WO 2011054996A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
subunit
chimeric
viral particle
particle according
Prior art date
Application number
PCT/ES2010/070717
Other languages
English (en)
French (fr)
Other versions
WO2011054996A3 (es
Inventor
Thomas Zurcher
Cayetano Von Kobbe
Juan José BERNAL
Ignacio Jimenez Torres
Gloria Calderita Lucas
Margarita Rodriguez Garcia
Ana Garzon Gutierrez
Virginia Gondar Sousa E Silva
Arcadio Garcia De Castro
Irene Pino De La Huerga
Original Assignee
Chimera Pharma, S. L. U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimera Pharma, S. L. U. filed Critical Chimera Pharma, S. L. U.
Priority to EP10809153.9A priority Critical patent/EP2497494B1/en
Priority to US13/504,875 priority patent/US8951534B2/en
Priority to JP2012537426A priority patent/JP5795319B2/ja
Priority to CA2779645A priority patent/CA2779645A1/en
Priority to ES10809153.9T priority patent/ES2667052T3/es
Priority to AU2010316998A priority patent/AU2010316998B2/en
Publication of WO2011054996A2 publication Critical patent/WO2011054996A2/es
Publication of WO2011054996A3 publication Critical patent/WO2011054996A3/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20023Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10023Virus like particles [VLP]

Definitions

  • the invention relates to therapeutic vaccines for the treatment of neoplasms caused by human papillomavirus (HPV).
  • the vaccines of the present invention are formed by birnavirus chimeric pseudoviral capsids containing papillomavirus antigens. STATE OF THE PREVIOUS TECHNIQUE
  • HPV Human papillomavirus
  • HPV infection can go unnoticed for years after which it can manifest as a local neoplasm in varying degrees of progression. This is why in women regular cytologies are performed to identify premalignant cells and, where appropriate, the type of virus causing.
  • HPV-16 and HPV-18 The most frequent strains of HPV associated with local intrauterine malignancies are HPV-16 and HPV-18, involved in 70% of all cervical cancer cases.
  • the oncogenic effect of these HPVs is mediated by the integration of part of their genome, in particular the early expression genes E6 and E7, into the genome of infected basal epithelial cells.
  • VLP chimeric pseudoviral particles
  • IBDV Infectious Bursitis Virus
  • IBDV belongs to the family Birnaviridae and is the causative agent of Gumboro disease in birds.
  • VP2 found in different strains of IBDV has a protein sequence homology of more than 80%.
  • VLP of symmetry T 13 icosahedral, identical to the native capsids of IBDV [Mart ⁇ nez-Torrecuadrada JL. et al. (2001) J. Virology 75 (22): 10815-10828].
  • the ability of the chimeric VLPs obtained to induce an adequate immune response in a Animal model is unpredictable.
  • the object of the invention is to provide an effective vaccine in the treatment of neoplasms caused by the human papillomavirus.
  • the therapeutic vaccines of the present invention consist of chimeric pseudoviral particles formed from fusions and insertions of human HPV E7 protein sequences and VP2 sequences of infectious bursitis virus.
  • the search and selection process carried out results in pseudo-viral particles from fusions and insertions of ⁇ 7 ⁇ ⁇ -44 of HPV with VP2 452 of IBDV with greater antitumor efficacy and object of the present invention.
  • the present invention relates to chimeric pseudo-viral (VLP) particles from birnavirus VP2 incorporating sequences of HPV oncogenes.
  • VLP pseudo-viral
  • the fusion or insertion of non-birnavirus sequences in VP2 often results in modifications in the three-dimensional structure of the protein that negatively affect its ability to self assemble and form pseudo-viral capsids efficiently. This negative effect depends not only on the insertion point but also on the amino acid sequence and length of the insert. It is therefore not obvious a priori which insertion points and sequences of inserted amino acids result in an efficient formation of chimeric VLPs.
  • the formation of VLP incorporating oncogenic HPV sequences is not a sufficient condition to generate an efficient therapeutic vaccine against tumors but this depends on the final disposition of the E7 antigens in the formed chimeric VLP.
  • the chimeric VLPs of the present invention are obtained from a selection process in which optimal E7 sequences are identified for the formation of VLPs and the fusion or insertion sites in VP2 that give rise to chimeric VLPs with greater efficacy in the treatment of tumors expressing the oncogenic proteins E6 and E7 of HPV-16.
  • fusions of truncated E7 sequences of HPV-16 to the carboxyl terminus of VP2 sequences truncated in the terminal carboxyl are evaluated.
  • fusions of E7 sequences in which amino acids 1 to 35 ( ⁇ 7 ⁇ ⁇ -35) [SEQ ID NO: 3] to the carboxyl end of VP2 truncated at the carboxyl end from the amino acid are evaluated 452 (VP2 452 ) [SEQ ID NO: 4].
  • fusions to the carboxyl terminal end of VP2 452 are evaluated from the following truncated E7 sequences: ⁇ 7 ⁇ ⁇ -4 ⁇ , ⁇ 7 ⁇ ⁇ - 4 ⁇ , ⁇ 7 ⁇ ⁇ -44 .
  • the present invention incorporates pseudo-viral particles chimeric from HPV-16 E7 sequences in which amino acids 1 to 44 ( ⁇ 7 ⁇ ⁇ -44) have been removed, fused to the terminal carboxyl of VP2 truncated at the carboxyl end from amino acid 452 (VP2 452 ) . It is contemplated that these fusions may contain variations or insertions in their amino acid sequence of 7, and up to 10 amino acids, in particular at the melting points between VP2 452 and ⁇ 7 ⁇ ⁇ -44 and as a result of the use of cloning sequences.
  • a process for selecting candidates who produce VLP efficiently and demonstrates containing the sequences of ⁇ 7 ⁇ 1-44 is carried out .
  • those chimeric VLPs that generate a significant cellular immune response against the E7 protein are selected.
  • the ability of the selected chimeric VLPs to provide an antitumor effect in an animal model of neoplasia associated with E7 expression is evaluated.
  • three chimeric VLPs are selected that represent a preferred embodiment of the present invention, that is VP2 45 2 (L 4 36 ⁇ E7 A -44 ⁇ K 43 7) in which the sequence of ⁇ 7 ⁇ ⁇ - 44 is inserted between Leucine (L) at position 436 and Lysine (K) at position 437 of VP2 452 [SEQ ID NO: 8]; VP2 452 (A 441 ⁇ E7 A1-44 ⁇ F 442 ) in which the sequence of ⁇ 7 ⁇ ⁇ -44 is inserted between Alanine (A) at position 441 and Phenylalanine (F) at position 442 of VP2 452 [SEQ ID NO: 9]; and VP2 45 2 (A45o ⁇ E7 ⁇ ⁇ -44
  • chimeric pseudo-viral particles are described in the present invention from HPV-16 E7 sequences in which amino acids 1 to 44 ( ⁇ 7 ⁇ ⁇ -44), inserted in the VP2 truncated in the carboxyl end from amino acid 452 (VP2 452 ) at positions
  • these fusions contain variations or insertions in their sequence of up to 15 amino acids at each end of the insert, in particular at the melting points between VP2 452 and ⁇ 7 ⁇ ⁇ -44 , as a result of the use of cloning sequences and as a result of the addition of spacers that increase the flexibility of insertion (in English "Hnkers").
  • a first aspect of the invention relates to a chimeric pseudo-viral (VLP) particle (hereinafter, chimeric VLP of the invention) formed by a fusion protein (hereinafter, fusion protein of the invention) which comprises: a subunit (a) consisting of the Birnavirus pVP2 protein or a fragment thereof, and
  • subunit (b) consisting of the E6 or E7 early expression protein of human papillomavirus (HPV) or a fragment thereof.
  • pseudo-viral capsid refers to a three-dimensional nanometric structure formed by the assembly of structural viral proteins.
  • the structural viral proteins that form the pseudo-viral particle of the invention are fusion proteins comprising the pVP2 protein of a Birnavirus or a fragment thereof and an HPV E6 or E7 early expression protein or a fragment of it.
  • Birnavirus refers to any virus of the family Birnaviridae, belonging to Group III according to the Baltimore Classification.
  • the Birnaviridae family consists of the genera Avibirnavirus, Aquabirnavirus, Blosnavirus and Entomobirnavirus.
  • the Birnavirus is from the Avibirnavirus family, and more preferably, the infectious Bursitis Virus (IBDV).
  • infectious bursitis virus or "IBDV” (IBDV) refers to viruses of the family Birnaviridae and genus Avibirnavirus causing Gumboro disease in chickens and belonging to Group III of the Baltimore classification.
  • the IBDV is the IBDV strain Soroa.
  • the Birnavirus genome consists of two linear double-stranded RNA molecules called A and B, which encode 5 proteins.
  • the VP2 gene, embedded in segment A, encodes the VP2 protein precursor protein (pVP2). The removal of the carboxyl terminus of pVP2 by proteolysis results in the mature VP2 protein, which is the main protein that constitutes the viral capsid.
  • pVP2 protein refers to the VP2 precursor protein encoded by the VP2 gene of a Birnavirus. Preferably, this term refers to the 512 amino acid VP2 precursor protein (VP2 5 and 2 ) of IBDV.
  • the amino acid sequence of the VP2 5 12 protein of the IBDV strain Soroa (SEQ ID NO: 1) is deposited with the accession number AAD30136 in NCBI (from the National Center for Biotechnology Information).
  • the VP2 512 protein in other strains of IBDV has at least 80% identity with SEQ ID NO: 1. Therefore, in a preferred embodiment, the term pVP2 refers to a protein with at least 80%, 85%, 90%, 95%, 98% or 99% identity, with SEQ ID NO: one . In a more preferred embodiment the term pVP2 refers to SEQ ID NO: 1.
  • identity refers to the proportion of identical amino acids between two amino acid sequences that are compared.
  • the percentage of identity existing between two amino acid sequences can be easily identified by an expert in the subject, for example, with the help of an appropriate computer program to compare sequences.
  • fragment refers to a portion of the pVP2 protein, of at least 400 amino acids, capable of forming VLP. This term includes, therefore, the mature VP1 protein of 441 amino acids of the IBDV (VP2 44 i).
  • the subunit (a) of the fusion protein that forms the chimeric VLP of the invention consists of a protein with at least 80% identity with SEQ ID NO: 1 or A fragment of it.
  • the subunit (a) of the fusion protein that forms the chimeric VLP of the invention consists of a protein with SEQ ID NO: 1 or a fragment thereof.
  • the subunit (a) of the fusion protein that forms the chimeric VLP of the invention consists of SEQ ID NO: 4.
  • human papillomavirus refers to viruses of the Papillomaviridae family belonging to Group I of the Baltimore Classification, and therefore have a bicaternary DNA genome. More than 100 different types of human papillomavirus are known.
  • HPV strains most frequently associated with intrauterine malignancies are HPV-16 and HPV-18.
  • the oncogenic effect of these HPVs is mediated by the integration of part of their genome, in particular the early expression genes E6 and E7, into the genome of infected basal epithelial cells.
  • E6 early expression protein refers to the protein encoded by the HPV E6 early expression gene, and more preferably, HPV-16 or HPV- 18.
  • E7 early expression protein refers to the protein encoded by the HPV E7 early expression gene, and more preferably, HPV-16 or HPV- 18.
  • the prototypic amino acid sequence of HPV type 16 early expression protein E7 [SEQ ID NO: 2] is deposited with accession number NP_041326 in the NCBI. Therefore, in a preferred embodiment, the term “E7” early expression protein refers to a protein with at least 30%, 40%, 50%, 70%, 90%, 95%, 98% , or 99% identity, with SEQ ID NO: 2.
  • HPV E7 early expression protein refers to SEQ ID NO: 2.
  • the subunit (b) of the fusion protein that forms the chimeric VLP of the invention consists of a protein with at least 30% identity with SEQ ID NO: 2 or A fragment of it.
  • the subunit (b) of the fusion protein that forms the chimeric VLP of the invention consists of a protein with SEQ ID NO: 2 or a fragment thereof.
  • the subunit (b) of the fusion protein that forms the chimeric VLP of the invention consists of SEQ ID NO: 6.
  • the subunit (b) is attached to the carboxyl-terminal end of the subunit (a) to give rise to the fusion protein that forms the chimeric VLP of the invention.
  • This binding can be direct or by a spacer polypeptide.
  • spacer polypeptide refers to a short amino acid sequence, preferably, up to 20 amino acids in length, more preferably, up to 15 amino acids in length, and even more preferably, up to 10 amino acids in length, located between the amino acid sequence of the subunit (b) and the amino acid sequence of the subunit (a).
  • the amino acid of the carboxyl-terminal end of the subunit (a) forms a peptide bond with the amino acid of the amino-terminal end of the subunit (b), as represented in the following scheme:
  • Nt- (a) -Ct ⁇ Nt- (b) -Ct where (a) represents the subunit (a), (b) represents the subunit (b), Nt represents the amino-terminal end of the corresponding subunit, Ct represents the carboxyl-terminal end of the corresponding subunit, and ⁇ represents a peptide bond between the different units of the fusion protein of the invention.
  • the amino acid of the carboxyl-terminal end of the subunit (a) forms a peptide bond with the amino acid of the amino-terminal end of the spacer polypeptide (p) and the amino acid of the carboxyl-terminal end of the spacer polypeptide forms a bond with the amino acid of the amino-terminal end of the subunit (b), as depicted in the following scheme:
  • (a) represents the subunit (a)
  • (b) represents the subunit (b)
  • (p) represents the spacer polypeptide
  • Nt represents the amino-terminal end of the subunit or the corresponding spacer polypeptide
  • Ct represents the carboxyl-terminal end of the subunit or the corresponding spacer polypeptide
  • represents a peptide bond between the different protein units of fusion of the invention.
  • subunit (b) is inserted into subunit (a) to give rise to the fusion protein that forms the chimeric VLP of the invention.
  • inserted means that the amino acid sequence of the subunit (a) is divided into two parts (a1) and (a2), among which is the amino acid sequence of the subunit (b).
  • the amino acid of the carboxy-terminal end of the part (a1) of the subunit (a) forms a bond peptide with the amino acid of the amino-terminal end of the subunit (b) and the amino acid of the carboxyl-terminal end of the subunit (b) forms a peptide bond with the amino acid of the amino-terminal end of part (a2) of the subunit (a), as represented in the following scheme:
  • (a1) represents a part of the subunit (a)
  • (a2) represents the other part of the subunit (a)
  • (b) represents the subunit (b)
  • Nt represents the amino-terminal end of the corresponding subunit
  • Ct represents the carboxyl-terminal end of the corresponding subunit
  • represents a peptide bond between the different units of the protein of fusion of the invention.
  • the amino acid of the carboxyl-terminal end of the part ( a1) of the subunit (a) forms a peptide bond with the amino acid of the amino-terminal end of a first spacer polypeptide (p1)
  • the amino acid of the carboxyl-terminal end of this first spacer polypeptide (p1) forms a bond with the amino acid of the amino-terminal end of the subunit (b)
  • the amino acid of the carboxyl-terminal end of the subunit (b) forms a peptide bond with the amino acid of the amino-terminal end of a second spacer polypeptide (p2) and the amino acid of the end
  • the carboxyl-terminal of this second spacer polypeptide (p2) forms a bond with the amino acid of the amino-terminal end of part (a2) of the subunit (a), as depict
  • (a1) represents a part of the subunit (a)
  • (a2) represents the other part of the subunit (a)
  • (b) represents the subunit (b)
  • (p1) represents a first spacer polypeptide
  • (p2 ) represents a second spacer polypeptide
  • Nt represents the amino-terminal end of the subunit or the corresponding spacer polypeptide
  • Ct represents the carboxyl-terminal end of the subunit or the corresponding spacer polypeptide
  • represents a peptide bond between the different units of the fusion protein of the invention.
  • the subunit (b) at one end is joined with one of the parts of the subunit (a) directly by peptide bonding and at the other end is linked to the other part of the subunit (a) by a spacer polypeptide, as represented in the following schemes:
  • (a1) represents a part of the subunit (a)
  • (a2) represents the other part of the subunit (a)
  • (b) represents the subunit (b)
  • (p) represents a spacer polypeptide
  • Nt represents the amino-terminal end of the subunit or the corresponding spacer polypeptide
  • Ct represents the carboxyl-terminal end of the subunit or the corresponding spacer polypeptide
  • represents a peptide bond between the different fusion protein units of the invention.
  • a preferred embodiment of this first aspect of the invention refers to a chimeric VLP formed by a fusion protein comprising, SEQ ID NO: 4 and SEQ ID NO: 6.
  • a more preferred embodiment refers to a VLP chimeric formed by a fusion protein comprising, SEQ ID NO: 4 and SEQ ID NO: 6, and also comprising one or more spacer polypeptides of up to 15 amino acids.
  • a more preferred embodiment of this first aspect of the invention relates to a chimeric VLP formed by a fusion protein comprising SEQ ID NO: 4 and SEQ ID NO: 6, where SEQ ID NO: 6 is linked to the carboxyl end of SEQ ID NO: 4 via a peptide bond between Arginine from position 452 (R452) of SEQ ID NO: 4 and Alanine from position 1 (A1) of SEQ ID NO: 6.
  • Another more preferred embodiment of this first aspect of the invention relates to a chimeric VLP formed by a fusion protein comprising SEQ ID NO: 4 and SEQ ID NO: 6, where SEQ ID NO: 6 is linked to the carboxyl end of SEQ ID NO: 4, and further comprising a spacer polypeptide of up to 10 amino acids between SEQ ID NO: 4 and SEQ ID NO: 6.
  • This spacer polypeptide binds through its amino-terminal end with Arginine at position 452 (R452) of SEQ ID NO: 4 and by its carboxyl-terminal end with Alanine at position 1 (A1) of SEQ ID NO: 6.
  • An even more preferred embodiment refers to a chimeric VLP formed by the fusion protein whose amino acid sequence is SEQ ID NO: 7.
  • Another preferred embodiment of this first aspect of the invention refers to a chimeric VLP formed by a fusion protein comprising SEQ ID NO: 4 and SEQ ID NO: 6, where SEQ ID NO: 6 is inserted a in SEQ ID NO: 4.
  • SEQ ID NO: 4 is divided into two parts.
  • a more preferred embodiment refers to a chimeric VLP formed by a fusion protein comprising SEQ ID NO: 4 and SEQ ID NO: 6, where SEQ ID NO: 6 is inserted in SEQ ID NO: 4 , and which further comprises one or two spacer polypeptides of up to 15 amino acids each located between the amino acid sequence of SEQ ID NO: 6 and the amino acid sequences of the two parts into which SEQ ID NO: 4 is divided as consequence of insertion.
  • a preferred embodiment of this first aspect of the invention relates to a chimeric VLP formed by a fusion protein comprising SEQ. ID NO: 4 and SEQ ID NO: 6, where SEQ ID NO: 6 is inserted between Leucine from position 436 (L 4 36) and Lysine from position 437 (K437) of SEQ ID NO: 4
  • a more preferred embodiment refers to a chimeric VLP formed by a fusion protein comprising SEQ ID NO: 4 and SEQ ID NO: 6, where SEQ ID NO: 6 is inserted between amino acids L 436 and K437 of SEQ ID NO: 4, and also comprising one or two spacer polypeptides of up to 15 amino acids each located between the amino acid sequence of SEQ ID NO: 6 and the amino acid sequences of the two parts into which it is divided SEQ ID NO: 4 as a result of insertion.
  • An even preferred embodiment of this first aspect of the invention relates to a chimeric VLP formed by a fusion protein whose amino acid sequence is SEQ ID NO: 8.
  • a preferred embodiment refers to a chimeric VLP formed by a fusion protein comprising SEQ ID NO: 4 and SEQ ID NO: 6, where SEQ ID NO: 6 is inserted between the Alanine of position 441 (A 44 i) and Phenylalanine at position 442 (F 442 ) of SEQ ID NO: 4.
  • a more preferred embodiment refers to a chimeric VLP formed by a fusion protein comprising SEQ ID NO: 4 and SEQ ID NO: 6, where SEQ ID NO: 6 is inserted between amino acids A 44 i and F 442 of SEQ ID NO: 4, and also comprises one or two spacer polypeptides of up to 15 amino acids each located between the sequence of amino acids of SEQ ID NO: 6 and the amino acid sequences of the two parts into which SEQ ID NO: 4 is divided as a result of insertion.
  • An even preferred embodiment of this first aspect of the invention relates to a chimeric VLP formed by a fusion protein whose amino acid sequence is SEQ ID NO: 9.
  • a preferred embodiment refers to a chimeric VLP formed by a fusion protein comprising SEQ ID NO: 4 and SEQ ID NO: 6, where SEQ ID NO: 6 is inserted between the Alanine of position 450 (A 450 ) and Isoleucine at position 451 (I451) of SEQ ID NO: 4.
  • a more preferred embodiment refers to a chimeric VLP formed by a fusion protein comprising SEQ ID NO: 4 and SEQ ID NO : 6, where SEQ ID NO: 6 It is inserted between amino acids A450 and I451 of SEQ ID NO: 4, and also comprises one or two spacer polypeptides of up to 15 amino acids each located between the amino acid sequence of SEQ ID NO: 6 and the amino acid sequences of the two parts into which SEQ ID NO: 4 is divided as a result of the insertion.
  • An even preferred embodiment of this first aspect of the invention relates to a chimeric VLP formed by a fusion protein whose amino acid sequence is SEQ ID NO: 10.
  • a second aspect of the invention relates to a process for obtaining the chimeric VLPs of the invention, comprising culturing a host cell comprising a nucleic acid encoding the fusion protein of the invention, under conditions that allow the expression of said fusion proteins, and the assembly of said fusion proteins for form chimeric VLPs.
  • a preferred embodiment of this second aspect of the invention relates to a process for obtaining the chimeric VLP particles of the invention, which comprises culturing a host cell comprising a nucleic acid encoding the fusion protein of the invention, under conditions that allow the expression of said fusion proteins, and the assembly of said fusion proteins to form chimeric VLPs, and which further comprises isolating or purifying said chimeric VLPs.
  • the fusion protein of the invention can be obtained by genetic or recombinant engineering techniques well known in the state of the art.
  • nucleic acid of the invention can be obtained by any biological or synthetic method, including, for example, but not limited to, the restriction of appropriate sequences or amplification of the DNA sequence of the protein of interest by polymerase chain reaction (PCR).
  • the nucleic acid may be comprised in a gene construct (hereinafter, gene construct of the invention).
  • This gene construct of the invention may comprise the nucleic acid of the invention, operably linked to, a sequence regulating the expression of the nucleic acid of the invention, thereby constituting an expression cassette.
  • “Operationally linked” refers to a juxtaposition in which the components thus described have a relationship that allows them to function in the intended way.
  • a control sequence “operably linked” to the nucleic acid is linked to it in such a way that expression of the nucleic acid coding sequence is achieved.
  • Control sequence refers to nucleic acid sequences that affect the expression of the sequences to which they are linked. Such control sequences include, for example, but not limited to, promoters, initiation signals, termination signals, enhancers or silencers. The term “control sequences” is intended to include those components whose presence is necessary for expression, and may also include additional components whose presence is advantageous.
  • the gene construct of the invention comprises the nucleic acid of the invention operably linked to at least one control sequence of the list comprising: a. a promoter,
  • promoter refers to a region of DNA located at position 5 'with respect to the starting point of transcription and which is necessary or facilitates such transcription in an animal cell. This term includes, for example, but not limited to, constitutive promoters, specific cell or tissue promoters or inducible or repressible promoters.
  • control sequences depend on the origin of the cell in which the nucleic acid of the invention is to be expressed.
  • expression control sequences linked to the nucleic acid of the invention are functional in prokaryotic cells and organisms, for example, but not limited to, bacteria; while in another particular embodiment, said expression control sequences are functional in eukaryotic cells and organisms, for example, yeast cells or animal cells.
  • the nucleic acid of the invention or the gene construct of the invention can be introduced into a cell, called a host cell, for example, but not limited, as a naked nucleic acid or by a vector.
  • cloning vector refers to a DNA molecule in which another DNA fragment can be integrated, without losing the capacity for self-replication.
  • expression vectors are, but are not limited to, plasmids, cosmids, DNA phages or artificial yeast chromosomes.
  • expression vector refers to a cloning vector suitable for expressing a nucleic acid that has been cloned therein after being introduced into a cell, called a host cell. Said nucleic acid is generally operatively linked to control sequences.
  • a third aspect of the invention relates to the use of the chimeric VLP of the invention for the preparation of a medicament, preferably a vaccine.
  • a fourth aspect of the invention relates to the use of the chimeric VLP of the invention for the preparation of a medicament for the prevention and / or treatment of an infection caused by HPV, preferably HPV-16.
  • a fifth aspect of the invention relates to the use of the chimeric VLP of the invention for the preparation of a medicament for the prevention and / or treatment of a neoplasm caused by the human papillomavirus.
  • a sixth aspect of the invention relates to a pharmaceutical composition (hereinafter, pharmaceutical composition of the invention) comprising the chimeric VLP of the invention.
  • the pharmaceutical composition of the invention can be formulated for administration in a variety of ways known in the state of the art. Such formulations may be administered to an animal and, more preferably, to a mammal, including a human, by a variety of routes, including, but not limited to parenteral, intraperitoneal, intravenous, intradermal, epidural, intraspinal, intrastromal, intraaricular, intrasynovial.
  • a therapeutically effective amount depends on a variety of factors, such as, for example, age, weight, sex or tolerance of the animal.
  • the term "therapeutically effective amount” refers to the amount of the pharmaceutically effective composition that produces the desired effect and, in general, will be determined among other causes, by the characteristics of said pharmaceutical composition and of the therapeutic effect to be achieved.
  • the pharmaceutically acceptable "adjuvants" or “vehicles” that can be used in said compositions are the vehicles known in the state of the art.
  • Figure 1 Shows the microfotog raffias by scanning electron microscope of pseudo-viral particles resulting from the expression of fusion proteins a) ⁇ 2 4 52- ⁇ 7 ⁇ 1 -4 4; b) VP2 452 (L 4 36 ⁇ E7A 1 -44 ⁇ K 4 3 7 ); c) VP2 452 (A 441 ⁇ E7A 1 - 44 ⁇ F 442 ); d) VP2 45 2 (A45o ⁇ E7 AI-44 ⁇ U5I) - The dashed line in each photo (left, bottom) corresponds to the amplified part. The scale bars are indicated in each photograph
  • FIG. 1 C57BL / 6-TgN mice (HLA-A2.1) after 25 days of being xenotransplanted subcutaneously with TC1 / A2 cells: (A) mice vaccinated with control VLP (VP2 452 ) showing tumors of approximately 1 cm 3 ; (B) mouse necropsy vaccinated with control VLP (VP2 45 2); (C) representative photo of mice vaccinated with VLP containing sequences of E7 and which are tumor free.
  • EXAMPLE 1 SEARCH AND SELECTION, BY A SUCCESSIVE SCREENING PROCESS. OF CHEMICAL VLPs FROM CARBOXYL FUSIONS OF VP2 TERMINALS WITH SEQUENCES OF HPV E7.
  • DNA constructs originate in the expression plasmid pESC-URA (Stratagene TM) expressing VP2 truncated at its carboxyl terminus in amino acids at position 452, 450, 449, 446, 443, 441 (VP2 452 , VP2 450 , VP2 449 , VP2 446 , VP2 443 , VP2 44 i), and incorporating Notl and Hindlll restriction sites at the carboxyl terminus pESC-URA / VP2 452 Notl-Hindlll; pESC- URA / VP2 450 Not ⁇ -Hind ⁇ ; pESC-URA / VP2 449 Notl-Hindlll; pESC-URA / VP2 446 Notl-Hindlll; pESC-URA / VP2 443 Notl-Hindlll; and pESC-URA / VP2 44 i Notl-Hindll
  • VP2 452 terminal carboxyl fusions are also generated from the double digestion Not ⁇ - Hind ⁇ of pESC-URA / VP2 452 Notl-Hindlll and cloning of different sequences expressing HPV E7 protein -16 in which amino acids 1 -40 ( ⁇ 7 ⁇ ⁇ -4 ⁇ ) have been removed to express the fusion protein ⁇ 2 452 - ⁇ 7 ⁇ -4 ⁇ [SEQ ID NO: 16], amino acids 1 -41 (VPH16 ⁇ 7 ⁇ ⁇ -4 ⁇ ) to express the fusion protein ⁇ 2 452 - ⁇ 7 ⁇ 1-41 [SEQ ID NO: 17], and amino acids 1-44 (VPH16 ⁇ 7 ⁇ ⁇ -44 ) to express the fusion protein VP2 452 - ⁇ 7 ⁇ -44 [SEQ ID NO: 7].
  • the ability to produce VLP in S. cerevisiae Y449 transformed with the different resulting expression vectors, pESC-URA / VP2 452 -E7AI -40 , pESC-URA / VP2 452 -E7 A1 - 41 o pESC-URA / VP2 452 -E7AI -44 is compared with that of pESC-URA / VP2 452 Notl-Hindlll.
  • the ability of the different constructs to produce VLP is determined by the use of a conformational antibody that recognizes the three-dimensional structure of the VLP and subsequently analyzed by an ELISA type immunoassay.
  • the production and purification of the chimeric VLP and control VLP for morphological studies and for in vivo tests is carried out following a standard procedure of yeast culture for 48 hours, concentration by centrifugation, mechanical lysate, ammonium sulfate precipitation, purification by gel filtration chromatography. In all cases the presence of VLP is confirmed by electron microscopy and the chimeric VLPs produced by polyacrylamide gel protein electrophoresis are quantified under denaturing conditions.
  • the production yield of the chimeric VLPs evaluated is shown in Table 1.
  • the ELISPOT assay is aimed at measuring the induction of a cytotoxic T lymphocyte response (CTL) in a mouse model.
  • CTL cytotoxic T lymphocyte response
  • C57BL / 6-TgN (HLA-A2.1) 1 Enge / J transgenic mice humanized with the HLA-A2 histocompatibility complex are used.
  • the mice are immunized in groups of eight by subcutaneous administration of the chimeric VLPs on days 0 and 14.
  • splenocytes are cultured in the presence of IL-2 and subsequently stimulated with specific peptides (T epitopes) of HPV-16 E7 protein for 24 hours. After incubation, the expression of IFN- and CTL clones is evaluated as a measure of their activation.
  • T epitopes specific peptides of HPV-16 E7 protein of each of the chimeric VLPs evaluated. The ability to induce a specific CTL response against T epitopes of the HPV-16 E7 protein of each of the chimeric VLPs evaluated is shown in Table 1 where the number of "+" represents the intensity of the induced response.
  • the antitumor activity of the chimeric VLPs is evaluated with the highest yield values in VLP production and the best results in the ELISPOT assay.
  • a cell and animal tumor induction model is used in which 5x10 5 TC1 / A2 cells [according to Peng S. et al.
  • the chimeric VLP containing the construction VP2 4 52-E7AI-44 is selected, in which the truncated E7 sequence ⁇ 7 ⁇ ⁇ -44 is fused to the terminal carboxyl end of VP2 in the Arginine (R) of position 452.
  • % VLP Yield in the production of VLP compared to VP2 452 ; ND: Not determined.
  • EXAMPLE 2 CLONING, SEARCH AND SELECTION, THROUGH A SUCCESSIVE SCREENING PROCESS, OF CHEMICAL VLPs WITH THERAPEUTIC EFFECTIVENESS AGAINST NEOPLASIAS CAUSED BY THE HUMAN PAPILOMA VIRUS.
  • a random insertion process is carried out in the VP2 gene of sequences encoding non-transforming regions of E7 in which amino acids 1 to 44 have been deleted ( ⁇ 7 ⁇ ⁇ -44 ).
  • a truncated VP2 library at the carboxyl end is made from amino acid 452 (VP2 452 ) containing random insertions of the Mu transposon throughout its sequence.
  • the Mu transposon insert is replaced by an insert [SEQ ID NO: 18] that contains the kanamycin resistance gene and unique Not ⁇ and Spel restriction sites at its ends.
  • the cloned insert facilitates the incorporation of the inserts ⁇ 7 ⁇ ⁇ -44 [SEQ ID NO: 19] or E7 A i -44 (linker) [SEQ ID NO: 20] of HPV-16 synthesized to contain Bsp120 ⁇ ends (compatible with Not ⁇ ) and Spel for cloning in each of the three possible reading frames.
  • the fusion of the ⁇ 7 ⁇ -44 OR E7 A and -44 (linker) inserts generates additional amino acids at the melting point between VP2 452 and ⁇ 7 ⁇ ⁇ -44 .
  • the E7 A and -44 (linker) insert also contains the GGGGS sequences [SEQ ID NO: 21] at the two ends of ⁇ 7 ⁇ ⁇ -44 that have been introduced to increase the flexibility of the insertion ("Hnkers”) .
  • electro-competent cells are transformed from E.coli to obtain a VP2 452 library containing random insertions of ⁇ 7 ⁇ ⁇ -44 .
  • the library is expanded and 10 ug of the DNA obtained therefrom are used to transform S.cerevisiae Y449 which is then seeded on Petri dishes containing the YNB / CSM-URA medium with 2% glucose. The approximately 10,000 clones obtained are transferred to selection Petri dishes containing galactose.
  • Colonies obtained from the selection are transferred to PVDF membranes for identification by immunoblot in colony of those expressing VP2 and E7.
  • a process for selecting recombinant yeast clones whose yield in the production of VLP is effective and containing ⁇ 7 ⁇ ⁇ -44- is carried out. For this, cultures are prepared under fifty clones with the expression conditions. higher signals in the immunoblot in colony against VP2 and E7 and after 48 hours of incubation protein extracts are made in which the amount of VLP is quantified by an ELISA type assay that incorporates an antibody that specifically recognizes the three-dimensional structure of the VLP formed by VP2. In this first screening, those constructions with the highest yields in VLP production are selected.
  • the production and purification of the chimeric VLP and control VLP for morphological studies and for in vivo tests is carried out following a standard procedure of yeast culture for 48 hours, concentration by centrifugation, mechanical lysate, ammonium sulfate precipitation, purification by gel filtration chromatography. In all cases the presence of VLP is confirmed by electron microscopy and the chimeric VLPs produced by polyacrylamide gel protein electrophoresis are quantified under denaturing conditions.
  • the chimeric VLPs that generate a significant immune response against E7 are selected.
  • the ability to induce an immune response of the chimeric VLPs originated by those constructions whose yield in the highest production is evaluated.
  • the ELISPOT assay is aimed at measuring the induction of a cytotoxic T lymphocyte response (CTL) in a mouse model.
  • CTL cytotoxic T lymphocyte response
  • C57BL / 6-TgN (HLA-A2.1) 1 Enge / J "humanized" transgenic mice with the HLA-A2 histocompatibility complex are used. Mice are immunized in groups of eight by subcutaneous administration of the chimeric VLPs on days 0 and 14.
  • splenocytes are cultured in the presence of IL-2 and subsequently stimulated with specific peptides (T epitopes) of HPV-16 E7 protein for 24 hours. After incubation, IFN- ⁇ expression of CTL clones is evaluated as a measure of their activation.
  • the ability to induce a specific CTL response against epitopes of the HPV-16 E7 protein of each of the chimeric VLPs evaluated is shown in Table 1 where the number of "+" represents the intensity of the induced response.
  • the antitumor activity of the chimeric VLPs is evaluated with the highest yield values in VLP production and the best results in the ELISPOT test.
  • a cell and animal tumor induction model is used in which 5x10 5 TC1 / A2 cells [according to Peng S. et al. Gene Therapy, 13: 257-265 (2006)] by overexpressing the E6 and E7 tumor antigens of HPV-16, are implanted subcutaneously in the C57BL / 6- TgN (HLA-A2.1) 1 Enge / J humanized mice with the HLA-A2 histocompatibility complex.
  • the animals are grouped into groups of eight and each animal is administered 50 ug of the chimeric or control VLPs, by subcutaneous administration at 5 and 12 days after tumor induction. Periodically the tumor development is determined and the weight of the animals is monitored. Animals with tumors with a volume greater than 1 cm 3 are sacrificed.
  • Table 2 The therapeutic effect of the chimeric VLPs in the TC1 / A2 tumor model is shown in Table 2, which shows the percentage of animals that survive 60 days after tumor induction.
  • three chimeric VLPs object of the present invention are selected, that is: a) VP2 4 52 (L436 ⁇ E7AI-44 ⁇ K437) [SEQ ID NO: 8]: chimeric VLP in which the sequence of ⁇ 7 ⁇ ⁇ -44 is inserted between Leucine at position 436 and Lysine at position 437 of VP2 of 452 amino acids in length; b) VP2452 (A 4 4I ⁇ E7AI-44 ⁇ F442) [SEQ ID NO: 9]: Chimeric VLP in which the sequence of ⁇ 7 ⁇ ⁇ -44 is inserted between the Alanine at position 441 and Phenylalanine at position 442 of the VP2 of 452 amino acids in length; Y
  • VP2 4 52 (A 4 5th ⁇ E7 ⁇ 1-4 ⁇ 451) [SEQ ID NO: 10]: Chimeric VLP in which the sequence of ⁇ 7 ⁇ ⁇ -44 is inserted between the Alanine at position 450 and the Isoleucine in the 451 position of the VP2 of 452 amino acids in length.
  • % VLP Yield in the production of VLP compared to VP2 452 ; ND: Not determined.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Endocrinology (AREA)
  • Communicable Diseases (AREA)
  • Reproductive Health (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La invención se refiere a vacunas terapéuticas para el tratamiento de neoplasias originadas por el virus del papiloma humano (VPH). En particular, las vacunas de la presente invención están formadas por cápsides pseudo- virales quiméricas de birnavirus conteniendo antígenos de papilomavirus.

Description

VACUNAS PARA EL TRATAMIENTO DE NEOPLASIAS A PARTIR DE CAPSIDES VIRALES DE BIRNAVIRUS CONTENIENDO ANTIGENOS DEL VIRUS DEL PAPILOMA HUMANO. La invención se refiere a vacunas terapéuticas para el tratamiento de neoplasias originadas por el virus del papiloma humano (VPH). En particular, las vacunas de la presente invención están formadas por cápsides pseudo- virales quiméricas de birnavirus conteniendo antígenos de papilomavirus. ESTADO DE LA TÉCNICA ANTERIOR
Los virus del papiloma humano (VPH, o HPV del inglés Human Papilloma Virus) son los principales responsables del desarrollo de neoplasias intrauterinas y con frecuencia están asociados también a otras neoplasias como por ejemplo cáncer anal, cáncer vulvar, cáncer de pene o carcinoma orofaríngeo de células escamosas. La infección por VPH puede pasar inadvertida durante años tras los cuales puede manifestarse como una neoplasia local en distintos grados de progresión. Es por esto que en las mujeres se llevan a cabo citologías regulares destinadas a identificar células premalignas y en su caso el tipo de virus causante. Las cepas de VPH más frecuentes asociadas a neoplasias intrauterinas locales son VPH-16 y VPH-18, implicadas en el 70% de todos los casos de cáncer cervical. El efecto oncogénico de estos VPH está mediado por la integración de parte de su genoma, en particular los genes de expresión temprana E6 y E7, en el genoma de las células epiteliales básales infectadas.
En la actualidad existen en el mercado vacunas profilácticas para la prevención de la infección por el virus del papiloma como por ejemplo Gardasil® y Cervarix®. Estas vacunas resultan eficaces en la prevención de la infección por los virus del papiloma humano de las cepas VPH-16, VPH-18, VPH-1 1 y VPH- 6, pero no han demostrado eficacia en un contexto terapéutico una vez el VPH ha transformado la célula infectada en una célula precancerígena.
Se estima que sólo en E.E.U.U. 10 millones de mujeres entran en contacto con VPH cada año y se prevé que un 23 % de estas mujeres desarrollen neoplasias intrauterinas locales (CIN, del inglés Cervical Intrauterine Neoplasias) en alguno de sus grados, alguna vez en su vida [Hoory T el al. (2008) J. Formos Med. Assoc 107(3): 198-217] . Más aún, cada año mueren 275,000 mujeres en el mundo por cáncer de cuello de útero resultante de una evolución desfavorable de las CIN. Aunque en la actualidad los programas de prevención y seguimiento del cáncer de cérvix mediante revisiones ginecológicas periódicas y la extirpación quirúrgica de las CIN resultan eficaces, sería deseable disponer de un abordaje terapéutico no invasivo que evite los posibles problemas y costes asociados a la cirugía.
Existen precedentes en el desarrollo de vacunas terapéuticas para el tratamiento de CIN que incorporan antigenos E6 y/o E7 del virus del papiloma [Lin Y. et al. (2007) Frontier in Bioscience, 12: 246-264; Leggatt GR et al. (2007) Current Opin. Immunology, 19: 232-238; Hung CF et al. (2007) Exp. Mol. Med, 39(6):679-689; Hoory T et al. (2008) J. Formos Med. Assoc, 107(3):198- 217]. Estos incluyen vacunas de ADN [Yan Q. et al (2007) Gynecologic Onco., 104: 199-206; Yan J. et al. (2009) Vaccine, 27:431 -440], vacunas a partir de péptidos desnudos [Daffarin PM. et al (2007) J. Translational Med., 5:26; Toubaji A. et al. (2007) Vaccine, 25: 5882-5891 ; Smith KA. et al. (2009) Clin. Cáncer Res. 15(19):6167-6176], y vacunas en las que los antígenos de VPH están ligados o fusionados a otras entidades biológicas, como por ejemplo adenilato cyclasa de Bordetella pertussis [Preville X. et al. (2005) Cáncer Res., 65(2):641 -649], antígeno 4 de linfocitos T citotóxicos (CTLA4) [Zheng Y.et al. (2009) J. Microbiol., 46(6):728-736] o 1 ,3-1 ,4 beta-glucanasa de Clostridium thermocellum [Venuti A. et al. (2009) Vaccine, 27 (25-26):3395-3397]. En el caso de vacunas que utilizan la presentación de antígenos sobre macroestructuras biológicas, un ejemplo lo constituyen las partículas pseudo- virales (VLP, del inglés Virus-Like Particles) quiméricas formadas a partir de proteínas virales estructurales que incorporan antígenos relevantes a una enfermedad. En este sentido existen precedentes que incorporan los antígenos E7 en VLP de Hepatitis B [Tindle RW. et al. Virology (1994) 1 ;200(2):547-57]. Entre las VLP propuestas para la presentación de antígenos se encuentran aquellas derivadas del Virus de la Bursitis Infecciosa (IBDV, del inglés Infectious Bursal Disease Virus). IBDV pertenece al la familia Birnaviridae y es el agente causante de la enfermedad de Gumboro en aves. Las partículas virales de IBDV son icosaedricas con simetría T=13 y están formadas por 260 trímeros de la proteína VP2 (37 kDa) reforzada en su parte interna por la proteína estructural VP3 (29 kDa). En el ensamblado normal del virión los componentes proteicos de la cápside viral resultan de la proteolísis del polipéptido precursor pVP2-VP4-VP3 (109 kDa) para liberar el precursor de VP2 de 512 aminoácidos (pVP25i2), VP4 y VP3. La posterior escisión de aminoácidos en el carboxilo terminal de pVP25i2 da lugar a la forma madura de VP2 de 441 aminoácidos (VP244i ) presente en el virión [Da Costa B. et al. J. Virology (2002) 76(5):2393-2402]. La VP2 encontrada en distintas cepas de IBDV presenta una homología de secuencia de proteína de más del 80%. Las VP2 de otros Birnaviridae comparten con IBDV homologías en su secuencia de proteína de un 40% en el caso de Birnavirus acuáticos y un 30% de Birnavirus de Drosophila [Coulibaly F. et al. (2005) Cell 25,120(6):761 -772].
La expresión del polipéptido precursor pVP2-VP4-VP3 de IBDV en células eucariotas resulta en la formación de VLP de simetría T=13 icosaédricas, idénticas a las cápsides nativas de IBDV [Martínez-Torrecuadrada JL. et al. (2001 ) J. Virology 75(22): 10815-10828]. Asimismo, la expresión de VP2 en células eucariotas en ausencia de otras proteínas de IBDV resulta en la formación de partículas icosaedricas VLP de simetría T=1 más pequeñas que las que constituyen el IBDV [Martinez-Torrecuadrada JL. et al. (2003) Vaccine 21 (17-18):1952-1960]. Esto ha sido aprovechado en el diseño y expresión de VLP quiméricas que incorporan del antígeno BT de la fiebre aftosa en VLP T=1 a partir de fusiones en el carboxilo terminal de VP2 [WO2007009673].
La capacidad de fusiones o inserciones de VP2 de formar VLP T=1 de forma eficiente en un sistema de expresión en eucariotas depende en gran medida de la longitud de la VP2 [WO2005105834; Saugar I. et al. (2005) Structure 13(7): 1007-1 1 17], del lugar de inserción de estos insertos en la secuencia de VP2, y de la secuencia de los insertos que se introduzcan en VP2 [Rémond M. et al (2009) Vaccine. 27(1 ):93-8]. Sin embargo, la capacidad de las VLP quiméricas obtenidas para inducir una respuesta inmune adecuada en un modelo animal resulta impredecible.
DESCRIPCIÓN DE LA INVENCIÓN En el diseño de vacunas terapéuticas contra VPH sería deseable contar con un sistema de presentación de antígenos de VPH que genere una respuesta inmune celular específica y eficaz. En la presente invención se combinan secuencias de VP2 de IBDV y de E7 de VPH con el fin de obtener una vacuna terapéutica eficaz para el tratamiento de tumores inducidos por el VPH. No resulta obvio que secuencias de E7 o de VP2 pueden resultar idóneas en la generación de la vacuna, ni tampoco el lugar óptimo de fusión o inserción de E7 con VP2. Por esto, en la presente invención se lleva cabo un proceso de búsqueda de VLP T=1 quiméricas a partir de fusiones e inserciones de E7 en VP2 de IBDV que resultan en la selección de las VLP quiméricas más eficaces en el tratamiento de lesiones causadas por VPH.
El objeto de la invención es proporcionar una vacuna eficaz en el tratamiento de neoplasias originadas por el virus del papiloma humano. Las vacunas terapéuticas de la presente invención están constituidas por partículas pseudo- virales quiméricas formadas a partir de fusiones e inserciones de secuencias de la proteína E7 del VPH humano y secuencias de VP2 del virus de la bursitis infecciosa. El proceso de búsqueda y selección llevado a cabo resulta en partículas pseudo-virales a partir de fusiones e inserciones de Ε7Δι-44 de VPH con VP2452 de IBDV con una mayor eficacia antitumoral y objeto de la presente invención.
La presente invención se refiere a partículas pseudo-virales (VLP) quiméricas a partir de VP2 de birnavirus que incorporan secuencias de oncogenes de VPH. La fusión o inserción de secuencias ajenas a birnavirus en VP2 resulta a menudo en modificaciones en la estructura tridimensional de la proteína que afectan negativamente a su capacidad de autoensamblarse y formar cápsides pseudo-virales de forma eficiente. Este efecto negativo no sólo depende del punto de inserción sino también de la secuencia de aminoácidos y longitud del inserto. No resulta por tanto obvio a priori qué puntos de inserción y secuencias de aminoácidos insertadas resultan en una eficiente formación de VLP quiméricas. Asimismo, la formación de VLP que incorporan secuencias oncogénicas de VPH no es condición suficiente para generar una vacuna terapéutica eficiente frente a tumores sino que esto depende de la disposición final de los antígenos de E7 en la VLP quimérica formada.
Las VLP quiméricas de la presente invención se obtienen de un proceso de selección en el que se identifican secuencias de E7 óptimas para la formación de VLP y los lugares de fusión o inserción en VP2 que dan que dan lugar a VLP quiméricas con una mayor eficacia en el tratamiento de tumores expresando las proteínas oncogénicas E6 y E7 del VPH-16.
En primer lugar, tal y como se describe sin limitación en el Ejemplo 1 , se evalúan fusiones de secuencias truncadas de E7 de VPH-16 al extremo carboxilo terminal de secuencias de VP2 truncadas en el carboxilo terminal. Entre otras, se evalúan fusiones de secuencias de E7 en las que se han eliminado los aminoácidos 1 a 35 (Ε7Δι-35) [SEQ ID NO: 3] al extremo carboxilo de la VP2 truncada en el extremo carboxilo a partir del aminoácido 452 (VP2452) [SEQ ID NO: 4]. Con el objetivo de mejorar la expresión también se evalúan diversas fusiones de Ε7Δι-35 al carboxilo terminal de VP244i , VP2443 , VP2446 VP2449 y VP2450 resultantes de la eliminación de aminoácidos del carboxilo terminal de VP2452 . En ningún caso se supera la eficiencia en la producción de VLP quiméricas de las fusiones VP2452-E7AI-35 [SEQ ID NO: 5]. Para seleccionar las secuencias de E7 que fusionadas al extremo carboxilo terminal de VP2 dan lugar a una mayor expresión, se evalúan fusiones al extremo carboxilo terminal de VP2452 de las siguientes secuencias de E7 truncadas: Ε7Δι-4ο, Ε7ΔΙ-4Ι , Ε7Δι-44 . La fusión de E7 truncada Ε7Δι-44 [SEQ ID NO: 6] con la Arginina (R) del extremo carboxilo terminal de VP2452 [SEQ ID NO: 4] resulta en una construcción νΡ2452-Ε7Δι-44 [SEQ ID NO: 7] con una eficiencia en la producción de VLP quiméricas superior a otras evaluadas. Asimismo las VLP con la secuencia de aminoácidos VP2452-E7AI-44 demuestran ser eficaces en la eliminación de tumores que expresan las proteínas E6 y E7 del VPH-16 en modelos animales y constituyen una realización preferente de la presente invención. Por tanto, la presente invención incorpora partículas pseudo-virales quiméricas a partir de secuencias de E7 de VPH-16 en las que se han eliminado los aminoácidos 1 a 44 (Ε7Δι-44), fusionadas al carboxilo terminal de VP2 truncada en el extremo carboxilo a partir del aminoácido 452 (VP2452). Se contempla que estas fusiones puedan contener variaciones o inserciones en su secuencia de aminoácidos de 7, y hasta 10 aminoácidos, en particular en los puntos de fusión entre VP2452 y Ε7Δι-44 y como resultado del uso de secuencias de clonaje.
En un segundo lugar, tal y como se describe sin limitación en el Ejemplo 2, se evalúan inserciones al azar de secuencias de E7 de VPH-16 en las que se han eliminado los aminoácidos 1 a 44 (Ε7Δι-44) [SEQ ID NO: 6] en distintos puntos en la secuencia de VP2 truncada en el extremo carboxilo a partir del aminoácido 452 (VP2452) [SEQ ID NO: 4]. El procedimiento de identificación y selección de los candidatos con un mayor potencial de eficacia en el tratamiento de tumores subcutáneos expresando las proteínas oncogénicas E6 y E7 del VPH-16 se lleva a cabo según los pasos siguientes. En un primer paso, se realizan inserciones al azar de Ε7Δι-44 en VP2 y se eliminan todas aquellas construcciones que no resultan en la eficiente expresión de VLP. En un segundo paso se lleva a cabo un proceso de selección de los candidatos que producen VLP de forma eficiente y demuestran contener las secuencias de Ε7Δ1-44. En un tercer paso se seleccionan aquellas VLP quiméricas que generan una respuesta inmune celular significativa contra la proteína E7. En un cuarto paso se evalúa la capacidad de las VLP quiméricas seleccionadas de proporcionar un efecto antitumoral en un modelo animal de neoplasia asociada a la expresión de E7. Como resultado final del proceso se seleccionan tres VLP quiméricas que representan una realización preferida de la presente invención, esto es VP2452(L436†E7Ai-44†K437) en la que la secuencia de Ε7Δι-44 está insertada entre la Leucina (L) en la posición 436 y la Lisina (K) en la posición 437 de la VP2452 [SEQ ID NO: 8]; VP2452(A441†E7A1-44†F442) en la que la secuencia de Ε7Δι-44 está insertada entre la Alanina (A) en la posición 441 y la Fenilalanina (F) en la posición 442 de VP2452 [SEQ ID NO: 9]; y VP2452(A45o†E7 Δι-4445ΐ ) en las que la secuencia de Ε7Δι-44 está insertada entre la Alanina (A) en la posición 450 y la Isoleucina (I) en la posición 451 de la VP2452 [SEQ ID NO: 10]. Por tanto, en la presente invención se describen partículas pseudo-virales quiméricas a partir de secuencias de E7 de VPH-16 en las que se han eliminado los aminoácidos 1 a 44 (Ε7Δι-44), insertadas en la VP2 truncada en el extremo carboxilo a partir del aminoácido 452 (VP2452) en las posiciones
, A44i†F442 y A45o†l45i - Se contempla que estas fusiones contengan variaciones o inserciones en su secuencia de hasta 15 aminoácidos en cada uno de los extremos del inserto, en particular en los puntos de fusión entre VP2452 y Ε7Δι-44 , como resultado del uso de secuencias de clonaje y como resultado de la adición espaciadores que aumentan la flexibilidad de la inserción (en inglés "Hnkers").
Un primer aspecto de la invención se refiere a una partícula pseudo-viral (VLP) quimérica (de aquí en adelante, VLP quimérica de la invención) formada por una proteína de fusión (de aquí en adelante, proteína de fusión de la invención) que comprende: una subunidad (a) que consiste en la proteína pVP2 de Birnavirus o un fragmento de la misma, y
una subunidad (b) que consiste en la proteína de expresión temprana E6 o E7 de virus del papiloma humano (VPH) o un fragmento de la misma.
El término "cápside pseudo-viral", "partícula pseudo-viral" o "VLP" (del inglés Virus-Like Partióle) se refiere a una estructura nanométrica tridimensional formada por el ensamblado de proteínas virales estructurales. En la presente invención, las proteínas virales estructurales que forman la partícula pseudo- viral de la invención son proteínas de fusión que comprenden la proteína pVP2 de un Birnavirus o un fragmento de la misma y una proteína de expresión temprana E6 o E7 de VPH o un fragmento de la misma.
El término Birnavirus se refiere a cualquier virus de la familia Birnaviridae, perteneciente al Grupo I I I según la Clasificación de Baltimore. La familia Birnaviridae está constituida por los géneros Avibirnavirus, Aquabirnavirus, Blosnavirus y Entomobirnavirus. Preferiblemente, el Birnavirus es de la familia Avibirnavirus, y más preferiblemente, el Virus de la Bursitis infecciosa (IBDV).
El término "virus de la bursitis infecciosa" o "IBDV" (IBDV, del inglés Infectious Bursal Disease Virus) se refiere a virus de la familia Birnaviridae y genero Avibirnavirus causantes de la enfermedad de Gumboro en pollos y que pertenecen al Grupo III de la Clasificación de Baltimore. Preferiblemente, el IBDV es el IBDV cepa Soroa. El genoma de los Birnavirus consta de dos moléculas lineales de ARN de doble cadena denominadas A y B, que codifican 5 proteínas. El gen VP2, enclavado en el segmento A, codifica la proteína precursora de la proteína VP2 (pVP2). La eliminación del extremo carboxilo terminal de pVP2 por proteólisis da lugar a la proteína VP2 madura, que es la proteína principal que constituye la cápside viral.
El término "proteína pVP2" o "pVP2", tal y como se utiliza en la presente descripción, se refiere a la proteína precursora de VP2 codificada por el gen VP2 de un Birnavirus. Preferiblemente, este término se refiere a la proteína precursora de VP2 de 512 aminoácidos (VP25i2) del IBDV.
La secuencia de aminoácidos de la proteína VP2512 del IBDV cepa Soroa (SEQ ID NO: 1 ) se encuentra depositada con el número de acceso AAD30136 en NCBI (del inlgés National Center for Biotechnology Information). La proteína VP2512 en otras cepas de IBDV presenta al menos un 80% de identidad con SEQ ID NO: 1 . Por tanto, en una realización preferida, el término pVP2 se refiere a una proteína con al menos un 80%, un 85%, un 90%, un 95%, un 98% o un 99% de identidad, con SEQ ID NO: 1 . En una realización más preferida el término pVP2 se refiere a la SEQ ID NO: 1 .
El término "identidad", tal y como se utiliza en esta descripción, hace referencia a la proporción de aminoácidos idénticos entre dos secuencias de aminoácidos que se comparan. El tanto por ciento de identidad existente entre dos secuencias de aminoácidos puede ser identificado fácilmente por un experto en la materia, por ejemplo, con la ayuda de un programa informático apropiado para comparar secuencias.
El término "fragmento", tal y como se utiliza en la presente descripción se refiere a una porción de la proteína pVP2, de al menos 400 aminoácidos, capaz de formar VLP. Este término incluye, por tanto, la proteína VP2 madura de 441 aminoácidos del IBDV (VP244i ).
En una realización preferida de este primer aspecto de la invención, la subunidad (a) de la proteína de fusión que forma la VLP quimérica de la invención consiste en una proteína con al menos un 80% de identidad con la SEQ ID NO: 1 o un fragmento de la misma. En una realización más preferida, la subunidad (a) de la proteína de fusión que forma la VLP quimérica de la invención consiste en una proteína con la SEQ ID NO: 1 o un fragmento de la misma. En una realización aún más preferida, la subunidad (a) de la proteína de fusión que forma la VLP quimérica de la invención consiste en la SEQ ID NO: 4.
El término "virus del papiloma humano" o "VPH" se refiere a virus de la familia Papillomaviridae perteneciente al Grupo I de la Clasificación de Baltimore, y que tienen por tanto, un genoma de ADN bicaternario. Se conocen más de 100 tipos diferentes de virus de papiloma humano. Las cepas VPH más frecuentemente asociadas a neoplasias intrauterinas son VPH-16 y VPH-18. El efecto oncogénico de estos VPH está mediado por la integración de parte de su genoma, en particular los genes de expresión temprana E6 y E7, en el genoma de las células epiteliales básales infectadas.
El término "proteína de expresión temprana E6", "oncogen de expresión temprana E6" o "E6" se refiere a la proteína codificada por el gen de expresión temprana E6 de un VPH, y más preferiblemente, del VPH-16 o del VPH-18.
El término "proteína de expresión temprana E7", "oncogen de expresión temprana E7" o "E7" se refiere a la proteína codificada por el gen de expresión temprana E7 de un VPH, y más preferiblemente, del VPH-16 o del VPH-18. La secuencia de aminoácidos prototípica de la proteína de expresión temprana E7 del VPH tipo 16 [SEQ ID NO: 2] se encuentra depositada con el número de acceso NP_041326 en el NCBI . Por tanto, en una realización preferida, el término proteína de expresión temprana E7 se refiere a una proteína con al menos un 30%, un 40%, un 50%, un 70%, un 90%, un 95%, un 98%, o un 99% de identidad, con SEQ ID NO: 2. En una realización más preferida, el término proteína de expresión temprana E7 de VPH se refiere a la SEQ ID NO: 2.
En otra realización preferida de este primer aspecto de la invención, la subunidad (b) de la proteína de fusión que forma la VLP quimérica de la invención consiste en una proteína con al menos un 30% de identidad con la SEQ ID NO: 2 o un fragmento de la misma. En una realización más preferida, la subunidad (b) de la proteína de fusión que forma la VLP quimérica de la invención consiste en una proteína con la SEQ ID NO: 2 o un fragmento de la misma. En una realización aún preferida, la subunidad (b) de la proteína de fusión que forma la VLP quimérica de la invención consiste en la SEQ ID NO: 6.
En otra realización preferida de este primer aspecto de la invención, la subunidad (b) está unida al extremo carboxilo-terminal de la subunidad (a) para dar lugar la proteína de fusión que forma la VLP quimérica de la invención. Esta unión puede ser directa o mediante un polipéptido espaciador.
El término "polipéptido espaciador" o "linker", tal y como se utiliza en la presente descripción, se refiere a una secuencia de aminoácidos corta, preferiblemente, de hasta 20 aminoácidos de longitud, más preferiblemente, de hasta 15 aminoácidos de longitud, y áun más preferiblemente, de hasta 10 aminoácidos de longitud, situada entre la secuencia de aminoácidos de la subunidad (b) y la secuencia de aminoácidos de la subunidad (a).
Cuando la unión es directa entre las subunidades (a) y (b) de la proteína de fusión que forma la VLP de la invención, el aminoácido del extremo carboxilo- terminal de la subunidad (a) forma un enlace peptídico con el aminoácido del extremo amino-terminal de la subunidad (b), tal y como se representa en el siguiente esquema:
Nt-(a)-Ct ~ Nt-(b)-Ct donde (a) representa a la subunidad (a), (b) representa a la subunidad (b), Nt representa el extremo amino-terminal de la subunidad correspondiente, Ct representa el extremo carboxilo-terminal de la subunidad correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la proteína de fusión de la invención.
Cuando la unión entre las subunidades (a) y (b) de la proteína de fusión que forma la VLP de la invención se realiza mediante un polipéptido espaciador, el aminoácido del extremo carboxilo-terminal de la subunidad (a) forma un enlace peptídico con el aminoácido del extremo amino-terminal del polipéptido espaciador (p) y el aminoácido del extremo carboxilo-terminal del polipéptido espaciador forma un enlace con el aminoácido del extremo amino-terminal de la subunidad (b), tal y como se representa en el siguiente esquema:
Nt-(a)-Ct ~ Nt-(p)-Ct ~ Nt-(b)-Ct donde (a) representa a la subunidad (a), (b) representa a la subunidad (b), (p) representa el polipéptido espaciador, Nt representa el extremo amino-terminal de la subunidad o del polipéptido espaciador correspondiente, Ct representa el extremo carboxilo-terminal de la subunidad o del polipéptido espaciador correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la proteína de fusión de la invención.
En otra realización preferida, la subunidad (b) está insertada en la subunidad (a) para dar lugar a la proteína de fusión que forma la VLP quimérica de la invención. La expresión "insertada" significa que la secuencia de aminoácidos de la subunidad (a) está dividida en dos partes (a1 ) y (a2), entre las cuales se encuentra la secuencia de aminoácidos de la subunidad (b). Cuando la unión entre las subunidades (a) y (b) de la proteína de fusión que forma la VLP de la invención es directa, el aminoácido del extremo carboxilo- terminal de la parte (a1 ) de la subunidad (a) forma un enlace peptídico con el aminoácido del extremo amino-terminal de la subunidad (b) y el aminoácido del extremo carboxilo-terminal de la subunidad (b) forma un enlace peptídico con el aminoácido del extremo amino-terminal de la parte (a2) de la subunidad (a), tal y como se representa en el siguiente esquema:
Nt-(a1 ) -Ct ~ Nt-(b)-Ct ~ Nt-(a2) -Ct donde (a1 ) representa una parte de la subunidad (a), (a2) representa la otra parte de la subunidad (a), (b) representa a la subunidad (b), Nt representa el extremo amino-terminal de la subunidad correspondiente, Ct representa el extremo carboxilo-terminal de la subunidad correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la proteína de fusión de la invención.
Cuando la unión entre las subunidades (a) y (b) de la proteína de fusión que forma la VLP de la invención se realiza mediante dos polipéptidos espaciadores, que pueden ser iguales o distintos, el aminoácido del extremo carboxilo-terminal de la parte (a1 ) de la subunidad (a) forma un enlace peptídico con el aminoácido del extremo amino-terminal de un primer polipéptido espaciador (p1 ), el aminoácido del extremo carboxilo-terminal de este primer polipéptido espaciador (p1 ) forma un enlace con el aminoácido del extremo amino-terminal de la subunidad (b), el aminoácido del extremo carboxilo-terminal de la subunidad (b) forma un enlace peptídico con el aminoácido del extremo amino-terminal de un segundo polipéptido espaciador (p2) y el aminoácido del extremo carboxilo-terminal de este segundo polipéptido espaciador (p2) forma un enlace con el aminoácido del extremo amino-terminal de la parte (a2) de la subunidad (a), tal y como se representa en el siguiente esquema:
Nt-(a1 ) -Ct ~ Nt-(p1 )-Ct ~ Nt-(b)-Ct ~ Nt-(p2)-Ct ~ Nt-(a2) -Ct donde (a1 ) representa una parte de la subunidad (a), (a2) representa la otra parte de la subunidad (a), (b) representa a la subunidad (b), (p1 ) representa un primer polipéptido espaciador, (p2) representa un segundo polipéptido espaciador, Nt representa el extremo amino-terminal de la subunidad o del polipéptido espaciador correspondiente, Ct representa el extremo carboxilo- terminal de la subunidad o del polipéptido espaciador correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la proteína de fusión de la invención. Cuando la unión entre las subunidades (a) y (b) de la proteína de fusión que forma la VLP de la invención se realiza mediante únicamente un polipéptido espaciador, la subunidad (b) por un extremo se encuentra unida con una de las partes de la subunidad (a) directamente mediante enlace peptídico y por el otro extremo se encuentra unida con la otra parte de la subunidad (a) mediante un polipéptido espaciador, tal y como se representa en los siguientes esquemas:
Nt-(a1 ) -Ct ~ Nt-(b)-Ct ~ Nt-(p)-Ct ~ Nt-(a2) -Ct Nt-(a1 ) -Ct ~ Nt-(p)-Ct ~ Nt-(b)-Ct ~ Nt-(a2) -Ct donde (a1 ) representa una parte de la subunidad (a), (a2) representa la otra parte de la subunidad (a), (b) representa a la subunidad (b), (p) representa un polipéptido espaciador, Nt representa el extremo amino-terminal de la subunidad o del polipéptido espaciador correspondiente, Ct representa el extremo carboxilo-terminal de la subunidad o del polipéptido espaciador correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la proteína de fusión de la invención .
Una realización preferida de este primer aspecto de la invención, se refiere a una VLP quimérica formada por una proteína de fusión que comprende, la SEQ ID NO: 4 y la SEQ ID NO: 6. Una realización más preferida, se refiere a una VLP quimérica formada por una proteína de fusión que comprende, la SEQ ID NO: 4 y la SEQ ID NO: 6, y que además comprende uno o más polipéptidos espaciadores de hasta 15 aminoácidos. Una realización más preferida de este primer aspecto de la invención, se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 4 y la SEQ ID NO: 6, donde la SEQ ID NO: 6 está unida al extremo carboxilo terminal de la SEQ ID NO: 4 mediante un enlace peptídico entre Arginina de la posición 452 (R452) de la SEQ ID NO: 4 y la Alanina de la posición 1 (A1 ) de la SEQ ID NO: 6.
Otra realización más preferida de este primer aspecto de la invención, se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 4 y la SEQ ID NO: 6, donde la SEQ ID NO: 6 está unida al extremo carboxilo de la SEQ ID NO: 4, y que además comprende un polipéptido espaciador de hasta 10 aminoácidos entre la SEQ ID NO: 4 y la SEQ ID NO: 6. Este polipéptido espaciador se une a través de su extremo amino-terminal con la Arginina de la posición 452 (R452) de la SEQ ID NO: 4 y por su extremo carboxilo-terminal con la Alanina de la posición 1 (A1 ) de la SEQ ID NO: 6. Una realización aún más preferida, se refiere a una VLP quimérica formada por la proteína de fusión cuya secuencia de aminoácidos es SEQ ID NO: 7. Otra realización preferida de este primer aspecto de la invención, se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 4 y la SEQ ID NO: 6, donde la SEQ ID NO: 6 se encuentra insertada en la SEQ ID NO: 4. Como consecuencia de la inserción de la SEQ ID NO: 6, la SEQ ID NO: 4 queda divida en dos partes. Una realización más preferida, se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 4 y la SEQ ID NO: 6, donde la SEQ ID NO: 6 se encuentra insertada en la SEQ ID NO: 4, y que además comprende uno o dos polipéptidos espaciadores de hasta 15 aminoácidos cada uno situados entre la secuencia de aminoácidos de la SEQ ID NO: 6 y las secuencias de aminoácidos de las dos partes en las que queda dividida la SEQ ID NO: 4 como consecuencia de la inserción.
Una realización preferida de este primer aspecto de la invención, se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 4 y la SEQ ID NO: 6, donde la SEQ ID NO: 6 está insertada entre la Leucina de la posición 436 (L436) y la Lisina de la posición 437 (K437) de la SEQ ID NO: 4. Una realización más preferida, se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 4 y la SEQ ID NO: 6, donde la SEQ ID NO: 6 está insertada entre los aminoácidos L436 y K437 de la SEQ ID NO: 4, y que además comprende uno o dos polipéptidos espaciadores de hasta 15 aminoácidos cada uno situados entre la secuencia de aminoácidos de la SEQ ID NO: 6 y las secuencias de aminoácidos de las dos partes en las que queda dividida la SEQ ID NO: 4 como consecuencia de la inserción. Una realización aún preferida de este primer aspecto de la invención, se refiere a una VLP quimérica formada por una proteína de fusión cuya secuencia de aminoácidos es SEQ ID NO: 8.
Una realización preferida, se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 4 y la SEQ ID NO: 6, donde la SEQ ID NO: 6 está insertada entre la Alanina de la posición 441 (A44i ) y la Fenilalanina de la posición 442 (F442) de la SEQ ID NO: 4. Una realización más preferida, se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 4 y la SEQ ID NO: 6, donde la SEQ ID NO: 6 está insertada entre los aminoácidos A44i y F442 de la SEQ ID NO: 4, y que además comprende uno o dos polipéptidos espaciadores de hasta 15 aminoácidos cada uno situados entre la secuencia de aminoácidos de la SEQ ID NO: 6 y las secuencias de aminoácidos de las dos partes en las que queda dividida la SEQ ID NO: 4 como consecuencia de la inserción. Una realización aún preferida de este primer aspecto de la invención, se refiere a una VLP quimérica formada por una proteína de fusión cuya secuencia de aminoácidos es SEQ ID NO: 9.
Una realización preferida, se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 4 y la SEQ ID NO: 6, donde la SEQ ID NO: 6 está insertada entre la Alanina de la posición 450 (A450) y la Isoleucina de la posición 451 (I451 ) de la SEQ ID NO: 4. Una realización más preferida, se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 4 y la SEQ ID NO: 6, donde la SEQ ID NO: 6 está insertada entre los aminoácidos A450 y I451 de la SEQ ID NO: 4, y que además comprende uno o dos polipéptidos espaciadores de hasta 15 aminoácidos cada uno situados entre la secuencia de aminoácidos de la SEQ ID NO: 6 y las secuencias de aminoácidos de las dos partes en las que queda dividida la SEQ ID NO: 4 como consecuencia de la inserción. Una realización aún preferida de este primer aspecto de la invención, se refiere a una VLP quimérica formada por una proteína de fusión cuya secuencia de aminoácidos es SEQ ID NO: 10. Un segundo aspecto de la invención se refiere a un procedimiento para la obtención de las VLP quiméricas de la invención, que comprende cultivar una célula hospedadora que comprende un ácido nucleico que codifica para la proteína de fusión de la invención, en condiciones que permiten la expresión de dichas proteínas de fusión, y el ensamblaje de dichas proteínas de fusión para formar VLP quiméricas.
Una realización preferida de este segundo aspecto de la invención, se refiere a un procedimiento para la obtención de las partículas VLP quiméricas de la invención, que comprende cultivar una célula hospedadora que comprende un ácido nucleico que codifica para la proteína de fusión de la invención, en condiciones que permiten la expresión de dichas proteínas de fusión, y el ensamblaje de dichas proteínas de fusión para formar VLP quiméricas, y que además comprende aislar o purificar dichas VLP quiméricas. La proteína de fusión de la invención puede obtenerse mediante técnicas de ingeniería genética o recombinante bien conocidas en el estado de la técnica. La secuencia de un ácido nucleico que codifica para la proteína de fusión de la invención (de aquí en adelante, ácido nucleico de la invención) puede obtenerse mediante cualquier método biológico o sintético, incluyendo, por ejemplo, pero sin limitarse a, la restricción de secuencias apropiadas o la amplificación de la secuencia de ADN de la proteína de interés mediante la reacción en cadena de la polimerasa (PCR). El ácido nucleico puede estar comprendido en una construcción génica (de aquí en adelante, construcción génica de la invención). Esta construcción génica de la invención puede comprender el ácido nucleico de la invención, operativamente unido a, una secuencia reguladora de la expresión del ácido nucleico de la invención, constituyendo de este modo un cassette de expresión.
"Unidos operativamente" se refiere a una yuxtaposición en la que los componentes así descritos tienen una relación que les permite funcionar en la manera intencionada. Una secuencia de control "unida de forma operativa" al ácido nucleico, está ligada al mismo de tal manera que se consigue la expresión de la secuencia codificadora del ácido nucleico.
"Secuencia de control" se refiere a secuencias de ácidos nucleicos que afectan la expresión de las secuencias a las que están ligadas. Dichas secuencias de control incluyen, por ejemplo, pero sin limitarse, promotores, señales de iniciación, señales de terminación, intensificadores o silenciadores. Se pretende que el término "secuencias de control" incluya, aquellos componentes cuya presencia es necesaria para la expresión, y también puede incluir componentes adicionales cuya presencia sea ventajosa.
En una realización preferida, la construcción génica de la invención comprende el ácido nucleico de la invención unido operativamente a, al menos, una secuencia de control de la lista que comprende: a. un promotor,
b. una señal de inicio de la transcripción,
c. una señal de terminación de la transcripción,
d. una señal de poliadenilación, o
e. un activador transcripcional.
Como se usa aquí, el término "promotor" hace referencia a una región de ADN situada en posición 5' con respecto al punto de inicio de la transcripción y que resulta necesaria o facilita dicha transcripción en una célula animal. Este término incluye, por ejemplo, pero sin limitarse, promotores constitutivos, promotores específicos de tipo celular o de tejido o promotores inducibles o reprimibles.
Las secuencias de control dependen del origen de la célula en la que se quiere expresar el ácido nucleico de la invención. En una realización particular, las secuencias de control de expresión unidas al ácido nucleico de la invención son funcionales en células y organismos procariotas, por ejemplo, pero sin limitarse, bacterias; mientras que en otra realización particular, dichas secuencias de control de expresión son funcionales en células y organismos eucariotas, por ejemplo, células de levadura o células animales.
El ácido nucleico de la invención o la construcción génica de la invención pueden ser introducidos al interior de una célula, denominada célula hospedadora, por ejemplo, pero sin limitarse, como ácido nucleico desnudo o mediante un vector.
El término "vector de clonación", tal y como se utiliza en la presente descripción, se refiere a una molécula de ADN en la que se puede integrar otro fragmento de ADN, sin que pierda la capacidad de autorreplicación. Ejemplos de vectores de expresión son, pero sin limitarse, plásmidos, cósmidos, fagos de ADN o cromosomas artificiales de levadura.
El término "vector de expresión", tal y como se utiliza en la presente descripción, se refiere a un vector de clonaje adecuado para expresar un ácido nucleico que ha sido clonado en el mismo tras ser introducido en una célula, denominada célula huésped. Dicho ácido nucleico se encuentra, por lo general, unido operativamente a secuencias de control.
El término "célula hospedadora", tal y como se utiliza en la presente descripción se refiere a cualquier organismo procariota o eucariota que es recipiente de un vector de expresión, de clonación o de cualquier otra molécula de ADN. Un tercer aspecto de la invención se refiere al uso de la VLP quimérica de la invención para la elaboración de un medicamento, preferiblemente, una vacuna. Un cuarto aspecto de la invención se refiere al uso de la VLP quimérica de la invención para la elaboración de un medicamento para la prevención y/o el tratamiento de una infección causada por el VPH, preferiblemente, del VPH-16.
Un quinto aspecto de la invención se refiere al uso de la VLP quimérica de la invención para la elaboración de un medicamento para la prevención y/o el tratamiento de una neoplasia causada por el virus del papiloma humano.
Un sexto aspecto de la invención se refiere a una composición farmacéutica (de aquí, en adelante, composición farmacéutica de la invención) que comprende la VLP quimérica de la invención.
Una realización preferida de este sexto aspecto de la invención se refiere a una composición farmacéutica que comprende la VLP quimérica de la invención y que además comprende un vehículo farmacéuticamente aceptable. Otra realización preferida de este sexto aspecto de la invención se refiere a una composición farmacéutica que comprende la VLP quimérica de la invención y que además comprende otro principio activo. Una realización más preferida de este sexto aspecto de la invención se refiere a una composición farmacéutica que comprende la VLP quimérica de la invención, un vehículo farmacéuticamente aceptable y además otro principio activo.
Como se emplea aquí, los términos "principio activo", "sustancia activa", sustancia farmacéuticamente activa", "ingrediente activo" o "ingrediente farmacéuticamente activo" se refiere a cualquier componente que potencialmente proporcione una actividad farmacológica u otro efecto diferente en el diagnóstico, cura, mitigación, tratamiento o prevención de una enfermedad, o que afecte a la estructura o función del cuerpo del ser humano u otros animales. La composición farmacéutica de la invención puede formularse para su administración en una variedad de formas conocidas en el estado de la técnica. Tales formulaciones pueden administrarse a un animal y, más preferiblemente, a un mamífero, incluyendo a un humano, por una variedad de vías, incluyendo, pero sin limitarse a parenteral, intraperitoneal, intravenosa, intradérmica, epidural, intraespinal, intraestromal, intraaricular, intrasinovial, intratecal, intralesional, intraarterial, intracapsular, intracardiaca, intramuscular, intranasal, intracraneal, subcutánea, intraorbital, intracapsular o tópica. La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores, como, por ejemplo, edad, peso, sexo o tolerancia del animal. En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de la composición farmacéuticamente efectiva que produzca el efecto deseado y, en general, vendrá determinada entre otras causas, por las características propias de dicha composición farmacéutica y del efecto terapéutico a conseguir. Los "adyuvantes" o "vehículos" farmacéuticamente aceptables que pueden ser utilizados en dichas composiciones son los vehículos conocidos en el estado de la técnica.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
DESCRIPCION DE LAS FIGURAS
Figura 1. Muestra las microfotog rafias por microscopio electrónico de barrido de partículas pseudo-virales resultantes de la expresión de las proteínas de fusión a) νΡ2452-Ε7Δ1 -44 ; b) VP2452(L436†E7A1 -44†K437) ; c) VP2452(A441†E7A1 - 44†F442) ; d) VP2452(A45o†E7 AI-44†U5I )- La línea discontinua en cada foto (izquierda, abajo) corresponde a la parte amplificada. Las barras de escala están indicadas en cada fotografía
Figura 2. Ratones C57BL/6-TgN(HLA-A2.1 ) tras 25 días de ser xenotransplantados subcutáneamente con células TC1/A2: (A) ratones vacunados con VLP control (VP2452) mostrando tumores de aproximadamente 1 cm3; (B) necropsia de ratón vacunado con VLP de control (VP2452); (C) foto representativa de ratones vacunados con VLP conteniendo secuencias de E7 yque resultan libres de tumores.
EJEMPLOS
Los siguientes ejemplos específicos que se proporcionan en este documento de patente sirven para ilustrar la naturaleza de la presente invención. Estos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma. EJEMPLO 1 : BÚSQUEDA Y SELECCIÓN, MEDIANTE UN PROCESO DE CRIBAJE SUCESIVO. DE VLP QUIMÉRICAS A PARTIR DE FUSIONES CARBOXILO TERMINALES DE VP2 CON SECUENCIAS DE E7 DE VPH.
Con el fin de identificar partículas pseudo-virales quiméricas eficaces en el tratamiento de neoplasias originadas por VPH se generan distintas construcciones incorporando la proteína VP2 truncada en distintos puntos de su extremo carboxilo terminal y distintas secuencias de E7 de VPH. Con este fin se originan construcciones de ADN en el plásmido de expresión pESC-URA (Stratagene™) que expresan VP2 truncadas en su extremo carboxilo terminal en los aminoácidos en posición 452, 450, 449, 446, 443, 441 (VP2452 , VP2450 , VP2449 , VP2446 , VP2443 , VP244i ), e incorporando lugares de restricción Notl y Hindlll en el extremo carboxilo terminal pESC-URA/ VP2452 Notl-Hindlll; pESC- URA/ VP2450 Not\-Hind\\\; pESC-URA/ VP2449 Notl-Hindlll; pESC-URA/ VP2446 Notl-Hindlll; pESC-URA/ VP2443 Notl-Hindlll; y pESC-URA/ VP244i Notl-Hindlll. Tras la doble digestión Notl - Hindlll se clona en el carboxilo terminal de las distintas VP2 una secuencia expresando la proteína de E7 de VPH-16 en la que se han delecionado las secuencias de aminoácidos 1 a 35 (Ε7Δι-35) asociadas a su oncogenicidad. Tal y como se presenta en la Tabla 1 , la capacidad de producir VLP en Saccharomyces cerevisiae Y449 transformada con los distintos vectores de expresión resultantes, pESC-URA/ νΡ2452-Ε7Δι-35 para expresar la proteína de fusión νΡ2452-Ε7Δι-35 [SEQ ID NO: 5], pESC-URA/ VP245o-E7Ai-35 para expresar la proteína de fusión νΡ245ο-Ε7Δι-35 [SEQ ID NO: 11], pESC-URA/ VP2449-E7A1-35 para expresar la proteína de fusión VP2449- Ε7Δι-35 [SEQ ID NO: 12], pESC-URA/ νΡ2446-Ε7Δι-35 para expresar la proteína de fusión νΡ2446-Ε7Δι-35 [SEQ ID NO: 13], pESC-URA/ νΡ2443-Ε7Δι-35 para expresar la proteína de fusión νΡ2443-Ε7Δι-35 [SEQ ID NO: 14], pESC-URA/ νΡ2441-Ε7Δ1-35 para expresar la proteína de fusión νΡ2441-Ε7Δ1 -35 [SEQ ID NO: 15], se compara con la de pESC-URA/ VP2452 para expresar la proteína VP2452 [SEQ ID NO: 4]. Como parte del mismo experimento también se generan fusiones al carboxilo terminal de VP2452 a partir de la doble digestión Not\ - Hind\\\ de pESC-URA/ VP2452 Notl-Hindlll y clonaje de distintas secuencias expresando la proteína de E7 de VPH-16 en la que se han eliminado los aminoácidos 1 -40 (Ε7Δι-4ο) para expresar la proteína de fusión νΡ2452-Ε7Δι-4ο [SEQ ID NO: 16], los aminoácidos 1 -41 (VPH16 Ε7Δι-4ι ) para expresar la proteína de fusión νΡ2452-Ε7Δ1-41 [SEQ ID NO: 17], y los aminoácidos 1-44 (VPH16 Ε7Δι-44) para expresar la proteína de fusión VP2452- Ε7Δι-44 [SEQ ID NO: 7]. Tal y como se presenta en la Tabla 1 , la capacidad de producir VLP en S. cerevisiae Y449 transformada con los distintos vectores de expresión resultantes, pESC-URA/ VP2452-E7AI-40, pESC-URA/ VP2452-E7A1 -41 o pESC-URA/ VP2452-E7AI-44 se compara con la de pESC-URA/ VP2452 Notl- Hindlll. La capacidad de las distintas construcciones de producir VLP se determina mediante el uso de un anticuerpo conformacional que reconoce la estructura tridimensional de la VLP y posteriormente analizado mediante un inmunoensayo del tipo ELISA. Asimismo, la producción y purificación de las VLP quiméricas y VLP control para estudios morfológicos y para ensayos in vivo se lleva a cabo siguiendo un procedimiento estándar de cultivo de las levaduras durante 48 horas, concentración mediante centrifugado, lisado mecánico, precipitación en sulfato amónico, purificación mediante cromatografía de filtración por gel. En todos los casos se confirma la presencia de VLP mediante microscopía electrónica y se cuantifican las VLP quiméricas producidas mediante electroforesis de proteínas en gel de poliacrilamída en condiciones desnaturalizantes.
El rendimiento en la producción de las VLP quiméricas evaluadas se recoge en la Tabla 1 . Como siguiente paso en el proceso de selección se evalúa la capacidad de inducir una respuesta inmune de las VLP resultantes de la expresión de las construcciones con una eficiencia en la producción de VLP comparable o superior al control VP2452-E7AI-35- Brevemente, el ensayo ELISPOT está dirigido a medir la inducción de una respuesta de linfocitos T citotóxicos (CTL) en un modelo de ratón. Para ello se utilizan ratones transgénicos C57BL/6-TgN(HLA-A2.1 )1 Enge/J humanizados con el complejo de histocompatibilidad HLA-A2 . Los ratones se inmunizan en grupos de ocho mediante administración subcutánea de las VLP quiméricas los días 0 y 14. En el día 20 se sacrifican los animales, se extraen los bazos y se aislan los esplenocitos. Una vez aislados, los esplenocitos se cultivan en presencia de IL-2 y posteriormente se estimulan con péptidos específicos (epítopos T) de la proteína E7 del VPH-16 durante 24 horas. Tras la incubación, se evalúa la expresión de IFN-y de los clones de CTLs como medida de su activación. La capacidad de inducir una respuesta CTL específica contra epítopos T de la proteína E7 del VPH-16 de cada una de las VLP quiméricas evaluadas, se recoge en la Tabla 1 donde el numero de "+" representa la intensidad de la respuesta inducida.
Como último paso en el proceso de selección, se evalúa la actividad antitumoral de las VLP quiméricas con los valores más altos de rendimiento en la producción de VLP y los mejores resultados en el ensayo de ELISPOT. Para la evaluación de la actividad antitumoral se utiliza un modelo celular y animal de inducción de tumores en el que 5x105 células TC1/A2 [según Peng S. et al. Gene Therapy, 13:257-265 (2006)] sobre-expresando las antígenos tumorales E6 y E7 del VPH-16 se implantan subcutáneamente en los ratones C57BL/6- TgN(HLA-A2.1 )1 Enge/J humanizados con el complejo de histocompatibilidad HLA-A2. Los animales se agrupan en grupos de diez y a cada animal se administran 50 ug de las VLP quiméricas o controles mediante administración subcutánea a los 5 y 12 días después de la inducción del tumor. Periódicamente se determina el desarrollo del tumor y monitoriza el peso de los animales. Los animales con tumores con un volumen superior de 1 cm3 se sacrifican. El efecto terapéutico de las VLP quiméricas en el modelo tumoral TC1/A2 se recoge en la Tabla 1 donde figura el porcentaje de animales que sobreviven 60 días después de la inducción del tumor.
Como resultado final de este proceso se selecciona la VLP quimérica conteniendo la construcción VP2452-E7AI-44 , en la que la secuencia de E7 truncada Ε7Δι-44 está fusionada al extremo carboxilo terminal de VP2 en la Arginina (R) de la posición 452.
Tabla 1
Figure imgf000025_0001
%VLP: Rendimiento en la producción de VLP comparado con VP2452 ; ND: No determinado. EJEMPLO 2: CLONAJE, BÚSQUEDA Y SELECCIÓN, MEDIANTE UN PROCESO DE CRIBAJE SUCESIVO, DE VLP QUIMÉRICAS CON EFICACIA TERAPÉUTICA CONTRA NEOPLASIAS CAUSADAS POR EL VIRUS DEL PAPILOMA H UMANO.
En un primer paso, se lleva a cabo un proceso de inserción al azar en el gen de la VP2 de secuencias que codifican regiones no transformantes de E7 en las que se ha delecionado los aminoácidos 1 a 44 (Ε7Δι-44). Para esto se elabora una librería de VP2 truncada en el extremo carboxilo a partir del aminoácido 452 (VP2452) que contiene inserciones al azar del transposón Mu en toda su secuencia. En un paso siguiente se reemplaza el inserto del transposón Mu por un inserto [SEQ ID NO: 18] que contiene el gen de la resistencia a kanamicina y lugares de restricción únicos Not\ y Spel en sus extremos. El inserto clonado facilita la incorporación de los insertos Ε7Δι-44 [SEQ ID NO: 19] o E7Ai-44(linker) [SEQ ID NO: 20] de VPH-16 sintetizadas para contener extremos Bsp120\ (compatible con Not\) y Spel para su clonaje en cada uno de los tres posibles marcos de lectura. La fusión de los insertos Ε7ΛΙ-44 O E7Ai-44(linker) genera aminoácidos adicionales en el punto de fusión entre VP2452 y Ε7Δι-44. El inserto E7Ai-44(linker) contiene además las secuencias GGGGS [SEQ ID NO: 21] en los dos extremos de Ε7Δι-44 que se han introducido para aumentar la flexibilidad de la inserción (en inglés "Hnkers").
Tras la doble digestión de la librería con Not\ y Spel y el ligado en presencia de los fragmentos con extremos Bsp 120\ y Spel de Ε7Δι-44 ó E7Ai-44(linker), se transforman células electro-competentes de E.coli para obtener una librería de VP2452 conteniendo inserciones al azar de Ε7Δι-44. La librería se expande y 10 ug del ADN obtenido de la misma se usan para transformar S.cerevisiae Y449 que luego se siembra sobre placas Petri conteniendo el medio YNB/CSM-URA con 2% de glucosa. Los aproximadamente 10.000 clones obtenidos se transfieren a placas Petri de selección conteniendo galactosa. Las colonias obtenidas de la selección se transfieren a membranas de PVDF para la identificación mediante inmunoblot en colonia de aquellas que expresan VP2 y E7. En un segundo paso se lleva a cabo un proceso de selección de los clones de levadura recombínante cuyo rendimiento en la producción de VLP es eficaz y que contienen Ε7Δι-44- Para esto se preparan cultivos en condiciones de expresión de cincuenta clones con las señales mas altas en el inmunoblot en colonia contra VP2 y E7 y tras 48 horas de incubación se elaboran extractos de proteína en los que la cantidad de VLP se cuantifica mediante un ensayo tipo ELISA que incorpora un anticuerpo que reconoce de forma especifica la estructura tridimensional de la VLP formada por VP2. En este primer cribaje se seleccionan aquellas construcciones con los rendimientos más altos en la producción de VLP. La presencia de la secuencia completa de Ε7Δι-44 y su lugar de inserción se verifica mediante secuenciación de un extracto de ADN de cada una de los clones seleccionados. Tal y como se recoge en la Tabla 2, de este modo se identifican 12 clones expresando VLP de VP2452 conteniendo el inserto Ε7ΛΙ-44 y con un rendimiento en la producción comparado con la VLP control de (VP2452), de entre un 6 y un 20%.
Asimismo, la producción y purificación de las VLP quiméricas y VLP control para estudios morfológicos y para ensayos in vivo se lleva a cabo siguiendo un procedimiento estándar de cultivo de las levaduras durante 48 horas, concentración mediante centrifugado, lisado mecánico, precipitación en sulfato amónico, purificación mediante cromatografía de filtración por gel. En todos los casos se confirma la presencia de VLP mediante microscopía electrónica y se cuantifican las VLP quiméricas producidas mediante electroforesis de proteínas en gel de poliacrilamída en condiciones desnaturalizantes.
En un tercer paso se seleccionan las VLP quiméricas que generan una respuesta inmune significativa contra E7. Para esto se evalúa la capacidad de inducir una respuesta inmune de las VLP quiméricas originadas por aquellas construcciones cuyo rendimiento en la producción más alto. Brevemente, el ensayo ELISPOT está dirigido a medir la inducción de una respuesta de linfocitos T citotoxicos (CTL) en un modelo de ratón. Para ello se utilizan ratones transgénicos C57BL/6-TgN(HLA-A2.1 )1 Enge/J "humanizados" con el complejo de histocompatibilidad HLA-A2. Los ratones se inmunizan en grupos de ocho mediante administración subcutánea de las VLP quiméricas los días 0 y 14. En el día 20 se sacrifican los animales, se extraen los bazos y se aislan los esplenocitos. Una vez aislados, los esplenocitos se cultivan en presencia de IL-2 y posteriormente se estimulan con péptidos específicos (epítopos T) de la proteína E7 del VPH-16 durante 24 horas. Tras la incubación, se evalúa la expresión de IFN-γ de los clones de CTL como medida de su activación. La capacidad de inducir una respuesta CTL específica contra epítopos de la proteína E7 del VPH-16 de cada una de las VLP quiméricas evaluadas se recoge en la Tabla 1 donde el numero de "+" representa la intensidad de la respuesta inducida.
En un cuarto paso en el proceso de selección se evalúa la actividad antitumoral de las VLP quiméricas con los valores más altos de rendimiento en la producción de VLP y los mejores resultados en el ensayo de ELISPOT. Para la evaluación de la actividad antitumoral se utiliza un modelo celular y animal de inducción de tumores en el que 5x105 células TC1/A2 [según Peng S. et al. Gene Therapy, 13:257-265 (2006)] sobre-expresando las antígenos tumorales E6 y E7 del VPH-16, se implantan subcutáneamente en los ratones C57BL/6- TgN(HLA-A2.1 )1 Enge/J humanizados con el complejo de histocompatibilidad HLA-A2. Los animales se agrupan en grupos de ocho y a cada animal se le administran 50 ug de las VLP quiméricas o controles, mediante administración subcutánea a los 5 y 12 días después de la inducción del tumor. Periódicamente se determina el desarrollo del tumor y monitoriza el peso de los animales. Los animales con tumores con un volumen superior de 1 cm3 se sacrifican. El efecto terapéutico de las VLP quiméricas en el modelo tumoral TC1/A2 se recoge en la Tabla 2 donde figura el porcentaje de animales que sobreviven 60 días después del la inducción del tumor.
Como resultado final de este proceso se seleccionan tres VLP quiméricas objeto de la presente invención, esto es: a) VP2452(L436†E7AI-44†K437) [SEQ ID NO: 8]: VLP quimérica en la que la secuencia de Ε7Δι-44 está insertada entre la Leucina en la posición 436 y la Lisina en la posición 437 de la VP2 de 452 aminoácidos de longitud; b) VP2452(A44I†E7AI-44†F442) [SEQ ID NO: 9]: VLP quimérica en la que la secuencia de Ε7Δι-44 está insertada entre la Alanina en la posición 441 y la Fenilalanina en la posición 442 de la VP2 de 452 aminoácidos de longitud; y
c) VP2452(A45o†E7 Δ1-4 Ι451 ) [SEQ ID NO: 10]: VLP quimérica en la que la secuencia de Ε7Δι-44 está insertada entre la Alanina en la posición 450 y la Isoleucina en la posición 451 de la VP2 de 452 aminoácidos de longitud.
Tabla 2
Figure imgf000029_0001
%VLP: Rendimiento en la producción de VLP comparado con VP2452 ; ND: No determinado.

Claims

REIVINDICACIONES
1. Partícula pseudo-viral (VLP) quimérica formada por una proteína de fusión que comprende:
- una subunidad (a) que consiste en la proteína pVP2 de Birnavirus o un fragmento de la misma, y
una subunidad (b) que consiste en la proteína de expresión temprana E6 o E7 del virus del papiloma humano (VPH) o un fragmento de la misma.
2. Partícula pseudo-viral quimérica según la reivindicación 1 , donde la subunidad (a) consiste en una proteína con al menos un 80% de identidad con la SEQ ID NO: 1 o un fragmento de la misma.
3. Partícula pseudo-viral quimérica según la reivindicación 2, donde la subunidad (a) consiste en una proteína con la SEQ ID NO: 1 o un fragmento de la misma.
4. Partícula pseudo-viral quimérica según la reivindicación 3, donde la subunidad (a) es la SEQ ID NO: 4.
5. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 4, donde la subunidad (b) es una proteína con al menos un 30% de identidad con la SEQ ID NO: 2 o un fragmento de la misma.
6. Partícula pseudo-viral quimérica según la reivindicación 5, donde la subunidad (b) es la SEQ ID NO: 2 o un fragmento de la misma.
7. Partícula pseudo-viral quimérica según la reivindicación 6, donde la subunidad (b) es la SEQ ID NO: 6.
8. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 7, donde la subunidad (b) está unida al extremo carboxilo- terminal de la subunidad (a).
9. Partícula pseudo-viral quimérica según la reivindicación 8, donde la subunidad (b) está unida al extremo carboxilo-terminal de la subunidad (a) mediante un polipéptido espaciador de hasta 10 aminoácidos situado entre las secuencias de aminoácidos de las subunidades (a) y (b).
10. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 8 ó 9, donde la SEQ ID NO: 6 está unida a R452 de la SEQ ID NO: 4.
1 1 . Partícula pseudo-viral quimérica según la reivindicación 10, cuya secuencia de aminoácidos es la SEQ ID NO: 7.
12. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 7, donde la subunidad (b) está insertada en la subunidad (a).
13. Partícula pseudo-viral quimérica según la reivindicación 12, que además comprende uno o dos polipéptidos espaciadores de hasta 15 aminoácidos de secuencia cada uno situados entre la secuencia de aminoácidos de la subunidad (b) y las secuencias de aminoácidos de la subunidad (a).
14. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 12 ó 13, donde la SEQ ID NO: 6 está insertada entre los aminoácidos L436 y K437 de la SEQ ID NO: 4.
15. Partícula pseudo-viral quimérica según la reivindicación 14, cuya secuencia de aminoácidos es SEQ ID NO: 8.
16. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 12 ó 13, donde la SEQ ID NO: 6 está insertada entre los aminoácidos A441 y F 2 de la SEQ ID NO: 4.
17. Partícula pseudo-viral quimérica según la reivindicación 16, cuya secuencia de aminoácidos es SEQ ID NO: 9.
18. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 12 ó 13, en la que la SEQ ID NO: 6 está insertada entre los aminoácidos A450 y I451 de la SEQ ID NO: 4.
19. Partícula pseudo-viral quimérica según la reivindicación 18, cuya secuencia de aminoácidos es SEQ ID NO: 10.
20. Procedimiento para la obtención de partículas pseudo-virales quiméricas según cualquiera de las reivindicaciones 1 a 19, que comprende cultivar una célula hospedadora que comprende un ácido nucleico que codifica para una proteína de fusión según cualquiera de las reivindicaciones 1 a 19 en condiciones que permiten la expresión de dichas proteínas de fusión, y el ensamblaje de dichas proteínas de fusión para formar partículas pseudo-virales quiméricas.
21 . Procedimiento para la obtención de partículas pseudo-virales quiméricas según la reivindicación anterior, y que además comprende aislar o purificar dichas partículas pseudo.virales quiméricas.
22. Uso de la partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 19 para la elaboración de un medicamento.
23. Uso de la partícula pseudo-viral según cualquiera de las reivindicaciones 1 a 19 para la elaboración de un medicamento para la prevención y/o el tratamiento de para la prevención y/o el tratamiento de una neoplasia causada por el virus del papiloma humano..
24. Uso de la partícula pseudo-viral según cualquiera de las reivindicaciones 1 a 19 para la elaboración de un medicamento para la prevención y/o el tratamiento del cáncer cervical.
25. Composición farmacéutica que comprende la partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 19.
26. Composición farmacéutica según la reivindicación 25 que además comprende un vehículo farmacéuticamente aceptable.
27. Composición farmacéutica según cualquiera de las reivindicaciones 25 ó 26 que además comprende otro principio activo.
PCT/ES2010/070717 2009-11-06 2010-11-05 Vacunas para el tratamiento de neoplasias a partir de capsides virales de birnavirus conteniendo antigenos del virus del papiloma humano WO2011054996A2 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10809153.9A EP2497494B1 (en) 2009-11-06 2010-11-05 Vaccines for the treatment of neoplasias from viral capsids of birnavirus containing antigens of the human papillomavirus
US13/504,875 US8951534B2 (en) 2009-11-06 2010-11-05 Vaccines for the treatment of neoplasias from viral capsids of birnavirus containing antigens of the human papillomavirus
JP2012537426A JP5795319B2 (ja) 2009-11-06 2010-11-05 ヒトパピローマウイルス抗原を含むビルナウイルスのウイルスカプシドに基づく腫瘍形成を処置するためのワクチン
CA2779645A CA2779645A1 (en) 2009-11-06 2010-11-05 Vaccines for the treatment of neoplasias based on viral capsids of birnavirus containing human papillomavirus antigens
ES10809153.9T ES2667052T3 (es) 2009-11-06 2010-11-05 Vacunas para el tratamiento de neoplasias a partir de capsides virales de birnavirus conteniendo antigenos del virus del papiloma humano
AU2010316998A AU2010316998B2 (en) 2009-11-06 2010-11-05 Vaccines for the treatment of neoplasias from viral capsids of birnavirus containing antigens of the human papillomavirus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200930967 2009-11-06
ESP200930967 2009-11-06

Publications (2)

Publication Number Publication Date
WO2011054996A2 true WO2011054996A2 (es) 2011-05-12
WO2011054996A3 WO2011054996A3 (es) 2011-08-11

Family

ID=43970455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070717 WO2011054996A2 (es) 2009-11-06 2010-11-05 Vacunas para el tratamiento de neoplasias a partir de capsides virales de birnavirus conteniendo antigenos del virus del papiloma humano

Country Status (7)

Country Link
US (1) US8951534B2 (es)
EP (1) EP2497494B1 (es)
JP (1) JP5795319B2 (es)
AU (1) AU2010316998B2 (es)
CA (1) CA2779645A1 (es)
ES (1) ES2667052T3 (es)
WO (1) WO2011054996A2 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105834A1 (es) 2004-04-30 2005-11-10 Consejo Superior De Investigaciones Científicas Procedimiento para la producción en levaduras de cápsidas virales vacías compuestas por proteínas derivadas de pvp2 del virus causante de la enfermedad de la bursitis infecciosa (ibdv)
WO2007009673A1 (en) 2005-07-15 2007-01-25 Consejo Superior De Investigaciones Científicas Chimeric empty viral-like particles derived from the infectious bursal disease virus (ibdv), process for their production and applications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE354662T1 (de) 2001-03-23 2007-03-15 Deutsches Krebsforsch Modifizierte hpv e6- und e7-gene und -proteine als impfstoff
EP2093281A1 (en) 2008-02-19 2009-08-26 Kapsid Link, S.L. Protein nanocarriers, process for obtaining them and applications
PL2288618T3 (pl) 2008-05-09 2018-02-28 Chimera Pharma S.L.U. Chimeryczne białka fuzyjne oraz cząstki wirusopodobne z białka vp2 birnawirusa

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105834A1 (es) 2004-04-30 2005-11-10 Consejo Superior De Investigaciones Científicas Procedimiento para la producción en levaduras de cápsidas virales vacías compuestas por proteínas derivadas de pvp2 del virus causante de la enfermedad de la bursitis infecciosa (ibdv)
WO2007009673A1 (en) 2005-07-15 2007-01-25 Consejo Superior De Investigaciones Científicas Chimeric empty viral-like particles derived from the infectious bursal disease virus (ibdv), process for their production and applications

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
COULIBALY F. ET AL., CELL, vol. 120, no. 6, 2005, pages 761 - 772
DA COSTA B. ET AL., J. VIROLOGY, vol. 76, no. 5, 2002, pages 2393 - 2402
DAFFARIN PM. ET AL., J. TRANSLATIONAL MED., vol. 5, 2007, pages 26
HOORY T ET AL., J. FORMOS MED. ASSOC, vol. 107, no. 3, 2008, pages 198 - 217
HOORY T, J. FORMOS MED. ASSOC, vol. 107, no. 3, 2008, pages 198 - 217
HUNG CF ET AL., EXP. MOL. MED, vol. 39, no. 6, 2007, pages 679 - 689
LEGGATT GR ET AL., CURRENT OPIN. IMMUNOLOGY, vol. 19, 2007, pages 232 - 238
LIN Y. ET AL., FRONTIER IN BIOSCIENCE, vol. 12, 2007, pages 246 - 264
MARTINEZ-TORRECUADRADA JL. ET AL., J. VIROLOGY, vol. 75, no. 22, 2001, pages 10815 - 10828
MARTINEZ-TORRECUADRADA JL. ET AL., VACCINE, vol. 21, no. 17-18, 2003, pages 1952 - 1960
PENG S. ET AL., GENE THERAPY, vol. 13, 2006, pages 257 - 265
PREVILLE X. ET AL., CANCER RES., vol. 65, no. 2, 2005, pages 641 - 649
REMOND M. ET AL., VACCINE, vol. 27, no. 1, 2009, pages 93 - 8
SAUGAR I. ET AL., STRUCTURE, vol. 13, no. 7, 2005, pages 1007 - 1117
SMITH KA. ET AL., CLIN. CANCER RES., vol. 15, no. 19, 2009, pages 6167 - 6176
TINDLE RW. ET AL., VIROLOGY, vol. 200, no. 2, 1994, pages 547 - 57
TOUBAJI A. ET AL., VACCINE, vol. 25, 2007, pages 5882 - 5891
VENUTI A. ET AL., VACCINE, vol. 27, no. 25-26, 2009, pages 3395 - 3397
YAN J. ET AL., VACCINE, vol. 27, 2009, pages 431 - 440
YAN Q. ET AL., GYNECOLOGIC ONCO., vol. 104, 2007, pages 199 - 206
ZHENG Y. ET AL., J. MICROBIOL., vol. 46, no. 6, 2009, pages 728 - 736

Also Published As

Publication number Publication date
WO2011054996A3 (es) 2011-08-11
AU2010316998A1 (en) 2012-05-31
AU2010316998B2 (en) 2014-05-22
EP2497494B1 (en) 2018-01-24
US20120269844A1 (en) 2012-10-25
ES2667052T3 (es) 2018-05-09
CA2779645A1 (en) 2011-05-12
US8951534B2 (en) 2015-02-10
JP2014503174A (ja) 2014-02-13
JP5795319B2 (ja) 2015-10-14
EP2497494A2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
ES2381964T3 (es) Expresión optimizada de L1 de VPH 31 en levadura
ES2340287T3 (es) Expresion optimizada de hpv 58 l1 en levadura.
ES2343255T3 (es) Expresion optimizada del vph 52 l1 en levadura.
ES2327530T3 (es) Expresion optimizada de l1 de hpv 45 en levaduras.
AU2021232660A1 (en) HPV vaccines
EP2802349B1 (en) Immunogenic hpv l2-containing vlps and related compositions and methods
WO2008134935A1 (fr) Protéines 18 l1 de type papillomavirus humain tronqué
JP4563582B2 (ja) ヒトパピローマウイルスのウイルス様粒子を使用するタンパク質送達系
EP2059262B1 (en) A dna vaccine for treating or preventing cervical cancer comprising a gene encoding hpv protein
ES2667052T3 (es) Vacunas para el tratamiento de neoplasias a partir de capsides virales de birnavirus conteniendo antigenos del virus del papiloma humano
RU2546243C1 (ru) Рекомбинантная вакцина для профилактики папилломавирусной инфекции человека и способ ее получения
RU2546241C1 (ru) РЕКОМБИНАНТНЫЙ ШТАММ ДРОЖЖЕЙ Hansenula polymorpha - ПРОДУЦЕНТ ГЛАВНОГО КАПСИДНОГО БЕЛКА L1 ВИРУСА ПАПИЛЛОМЫ ЧЕЛОВЕКА ТИПА 16
RU2546240C1 (ru) РЕКОМБИНАНТНЫЙ ШТАММ ДРОЖЖЕЙ Hansenula polymorpha - ПРОДУЦЕНТ ГЛАВНОГО КАПСИДНОГО БЕЛКА L1 ВИРУСА ПАПИЛЛОМЫ ЧЕЛОВЕКА ТИПА 56
RU2681174C1 (ru) Способ получения рекомбинантной вакцины для профилактики папилломавирусной инфекции человека, рекомбинантная вакцина
WO2011054995A2 (es) VACUNAS PROFILACTICAS DE GRIPE A PARTIR DE CAPSIDAS VIRALES DE BIRNAVIRUS CONTENIENDO EL ANTIGENO M2e DEL VIRUS DE LA GRIPE
US10329328B2 (en) HPV-related fusion protein and applications thereof
TWI334438B (en) Optimized expression of hpv 31 l1 in yeast
Deng et al. The preparation of human papillomavirus type 58 vaccine and exploring its biological activity and immunogenicity in vitro
JPWO2017122583A1 (ja) HPVL2ペプチド/HBsキメラタンパク質を有効成分とするHPV感染症用ワクチン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012537426

Country of ref document: JP

Ref document number: 2779645

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010316998

Country of ref document: AU

Ref document number: 2010809153

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010316998

Country of ref document: AU

Date of ref document: 20101105

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13504875

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010442

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012010442

Country of ref document: BR

Free format text: 1) ESCLARECER, EM ATE 60 (SESSENTA) DIAS, APRESENTANDO DOCUMENTACAO COMPROBATORIA, A EXCLUSAO DOS INVENTORES ANA GARZON GUTIERREZ, VIRGINIA GONDAR SOUSA E SILVA, ARCADIO GARCIA DE CASTRO E IRENE PINO DE LA HUERGA QUE CONSTAM NA PUBLICACAO INTERNACIONAL WO/2011/054996 DE 12/05/2011 DO QUADRO DE INVENTORES CONSTANTE NO FORMULARIO DA PETICAO INICIAL NO 018120015411 DE 03/05/2012.2) COM BASE NA RESOLUCAO 228/09, SOLICITA-SE QUE SEJA APRESENTADO, EM ATE 60 (SESSENTA) DIAS, NOVO CONTEUDO DE LISTAGEM DE SEQUENCIA NOS MOLDES DA RESOLUCAO NO 187 DE 27/04/2017, POIS OS CD'S/DVD'S APRESENTADOS NA PETICAO NO 018130033954 DE 10/10/2013 NAO ESTAO EM LINGUA VERNACULA.

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112012010442

Country of ref document: BR

Free format text: PEDIDO RETIRADO POR NAO CUMPRIMENTO DA EXIGENCIA PUBLICADA NA RPI 2604 DE 01/12/2020.