WO2011054192A1 - 极高含水三相流除水装置、极高含水三相流流量测量装置及测量方法 - Google Patents

极高含水三相流除水装置、极高含水三相流流量测量装置及测量方法 Download PDF

Info

Publication number
WO2011054192A1
WO2011054192A1 PCT/CN2010/001781 CN2010001781W WO2011054192A1 WO 2011054192 A1 WO2011054192 A1 WO 2011054192A1 CN 2010001781 W CN2010001781 W CN 2010001781W WO 2011054192 A1 WO2011054192 A1 WO 2011054192A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
oil
gas
pipe section
phase flow
Prior art date
Application number
PCT/CN2010/001781
Other languages
English (en)
French (fr)
Inventor
陈继革
王镇岗
余海
叶俊杰
Original Assignee
兰州海默科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兰州海默科技股份有限公司 filed Critical 兰州海默科技股份有限公司
Priority to EP10827806.0A priority Critical patent/EP2497556B1/en
Priority to US13/508,348 priority patent/US9468868B2/en
Publication of WO2011054192A1 publication Critical patent/WO2011054192A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0214Separation of non-miscible liquids by sedimentation with removal of one of the phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • B01D17/10Thickening liquid suspensions by filtration with stationary filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/12Auxiliary equipment particularly adapted for use with liquid-separating apparatus, e.g. control circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid

Definitions

  • the invention relates to an oil-gas-water three-phase flow water removing device installed on an oil field oil pipeline, in particular to a three-phase flow measuring device and a measuring method suitable for oil and gas in an oil field oil pipeline.
  • the multiphase flow metering system that has emerged in recent years can continuously and continuously measure the oil-gas-water three-phase flow mixture without separating the oil and gas water, and has the advantages of small floor space, simple installation and maintenance, high precision, and the like. It has been widely used in single well metering and plays an important role in digital intelligent oilfield systems.
  • the measurement process of the existing multiphase flowmeter system for the oil-gas-water three-phase flow mixture is generally as follows:
  • the relative share of the oil, gas, and water components in the well production may vary greatly: it may be high gas (gas rate close to 100%) or full liquid (gas rate 0. In the liquid phase, it may be all oil (water content 0%); it may also be high water content (water content close to 100%), and any combination between the above extreme values.
  • the traditional split multiphase metering system separates the oil well product into three single-phase fluids of oil, gas and water, and then separately metered at their respective outlets.
  • its purchase and operation costs are too high, and continuous real-time measurement cannot be realized for a single well, and the separation effect is affected by many factors, especially in the case of extremely high water content, the system requires a long stabilization time before the official start of measurement, pure oil
  • the oil-water separation effect in the oil circuit is poor, and the measurement result of the pure oil is poorly representative and the error is large.
  • an object of the present invention is to provide a method for installation on a three-phase flow oil and gas pipeline with extremely high water content.
  • the water device reduces the water content of the three-phase flow of oil and gas and meets the measurement accuracy requirements of pure oil.
  • a second object of the present invention is to provide an oil and gas water flow measuring device which is installed on an oil pipeline and continuously measures a three-phase flow of extremely high water-containing oil and water using the extremely high water-containing oil-water three-phase flow water removing device of the present invention.
  • a third object of the present invention is to provide a measuring method for measuring the three-phase flow of oil and gas using a very high water-oil-water three-phase flow measuring device.
  • the present invention provides a very high water-bearing oil-water three-phase flow
  • the water removal device can automatically and effectively separate most of the free water, thereby reducing the water content in the remaining oil-water mixture, so that the moisture content can be measured at a lower moisture content level, thereby improving the pure oil flow rate measurement. Precision.
  • the water removing device of the present invention comprises a casing, a liquid collecting chamber, an inlet connecting pipe section, a gas outlet connecting pipe section, a free water outlet connecting pipe section, a mixed liquid outlet connecting pipe section, a mist eliminator, a fluid rectifier, a drainer, and a baffle
  • the oil draining draft tube and the differential pressure transmitter (or other type of level gauge) for liquid level control mounted on the side of the housing.
  • the multi-phase oil-water multi-phase flow entering the water removal device from the inlet is subjected to gas-liquid separation under the action of gravity, and the gas is discharged from the upper gas path outlet after demisting through a mist eliminator, and the liquid enters the lower part of the water removal container via the fluid rectifier
  • the free water is discharged from the waterway outlet via the oil drainer, and the oil-water mixture or the oil-air-water mixture in the upper part of the liquid portion is discharged through the oil discharge conduit.
  • the differential pressure transmitter or the level gauge can detect The height of the liquid level in the water removal device provides an adjustment signal to the control system.
  • the present invention provides a very high water-containing oil-gas-water three-phase flow rate measuring device installed on an oil pipeline, which uses the extremely high water-containing oil-water three-phase flow water removing device of the present invention.
  • the method further includes: a total flow metering pipe section connected to the inlet connecting pipe section of the water removing device, an exhaust pipe section connected to the gas outlet connecting pipe section of the water removing device, and a drain pipe connected to the mixed liquid outlet connecting pipe section of the water removing device a section, a drain section connected to the free water outlet connection section of the water removal device, a manifold section, and a computer computing system/flow computer.
  • the total flow metering section includes: a densitometer (such as a single-energy gamma densitometer/phase fraction meter), a differential pressure flow measuring device (such as a venturi), a blind three-way mixing device, and a temperature mounted on the metering pipe section. Transmitter, pressure transmitter, differential pressure transmitter. There is a control valve on the exhaust pipe section.
  • the drain section includes: Single-phase flow meters (such as electromagnetic flow meters) for water flow metering, control valves and check valves.
  • the oil drain pipe section is equipped with an oil and gas water three-phase water analyzer (such as a gamma water analyzer).
  • the computer system is used to calculate the total volumetric flow rate of the three-phase flow of extremely high water-containing oil and gas, the volumetric flow rate of pure oil, the volumetric flow rate of gas, Water volume flow rate.
  • the present invention provides a method for measuring a three-phase flow rate of a very high water-containing oil and gas, comprising the following steps:
  • a densitometer such as a single-energy gamma densitometer/phase fraction meter
  • a differential pressure flow measuring device such as a venturi
  • temperature transmitter such as a temperature transmitter
  • pressure transmitter composed of metering pipe section
  • metering pipe section to the extremely high water-bearing oil-water three-phase flow of the total flow differential pressure ⁇ ? Gas rate GVF, temperature and pressure were measured.
  • the differential pressure transmitter or level gauge installed on the water removal tank detects the height of the liquid level in the water removal tank in real time, and the control system of the device adjusts the control of the free water drainage pipe section according to the measurement result.
  • the valve and exhaust pipe section control the opening of the valve, and the liquid level in the water removal container is controlled to a suitable height, so that the free water drainage pipe section does not contain any oil, and prevents gas from entering the drainage pipe section, or excessive gas entering The drain pipe section, or the liquid enters the gas path.
  • the flow rate referred to herein is the volumetric flow rate, hereinafter referred to as the flow rate.
  • Air flow rate 2* GVF
  • the use of the extremely high water-containing oil-gas-water three-phase flow rate measuring device of the invention can automatically and effectively separate most of the free water, reduce the water content in the oil-air-water mixture, and can accurately measure under extremely high water content conditions. Pure oil flow rate.
  • Figure 1 depicts the relationship between the measurement error of water content and the measurement error of pure oil flow rate at different moisture content levels.
  • Fig. 2 is a schematic view showing an embodiment of the extremely high water-oil-water-water three-phase flow water removing device of the present invention.
  • Fig. 3 is a schematic view showing another embodiment of the extremely high water-oil-water-water three-phase flow water removing device of the present invention.
  • Fig. 4 is a schematic view showing an embodiment of the extremely high water-containing oil-air-water three-phase flow rate measuring device of the present invention.
  • Fig. 5 is a main flow chart of the method for measuring the oil-gas-water three-phase flow rate using the extremely high-water-oil-oil-water three-phase flow rate measuring device of the present invention. detailed description
  • Fig. 2 shows an embodiment of the extremely high water-oil-water-water three-phase flow water removing device of the present invention.
  • reference numeral 1 represents a free water outlet connecting pipe section
  • 2 represents a liquid collecting chamber
  • 3 represents the oil drainer
  • 4 represents the mixed liquid outlet connecting pipe section
  • 5 represents the draft pipe
  • 6 represents the baffle
  • 7 represents the fluid rectifier
  • 8 represents the demister
  • 9 represents the gas outlet connecting pipe section
  • 10 represents the inlet connecting pipe section
  • 11 On behalf of the level gauge
  • 12 represents the differential pressure transmitter.
  • the process is a very high water content oil-gas water three-phase flow through the inlet connecting pipe section 10 into the water removal device, the gas and liquid first gravity separation, the demisting device 8 is installed above the water removal device, and the gas outlet connecting pipe section is arranged at the top of the water removal device 9.
  • the separated gas is removed from the gas outlet connecting pipe section 9 after being defogged by the demister 8; in order to eliminate the unstable flow state, the effect of free water separation is further improved, and the metering accuracy is improved, and the inlet connecting pipe section 10 of the apparatus is provided below
  • the free water enters the bottom of the water removing device, and the oil-containing liquid is above the liquid.
  • the flow tube 5 is discharged from the mixed liquid outlet connecting pipe section 4.
  • the top of the drafting pipe 5 has a baffle 6 for blocking the shield from the upstream, etc.; in order to increase the residence time of the mixed liquid in the water removing device, the free water is further increased.
  • the bottom of the water removing device has an expanding liquid collecting chamber 2, and a drainer 3 is installed above the liquid collecting chamber 2, and the free water passes through the oil drainer 3 and enters the liquid collecting chamber 1 from the free water outlet connecting pipe segment 1 discharge.
  • Fig. 3 shows another embodiment of the extremely high water-oil-water three-phase flow water removal device of the present invention.
  • reference numeral 1 denotes a free water outlet connecting pipe section
  • 4 denotes a mixed liquid outlet connecting pipe section
  • 9 denotes a gas outlet connecting pipe section
  • 10 denotes an inlet connecting pipe section
  • 40 denotes a solid float
  • 41 denotes a throttle flap
  • 42 denotes a cavity
  • the body spacer 43 represents the free water outlet
  • 44 represents the intermittent drain
  • 45 represents the container separation chamber
  • 46 represents the gas return port
  • 47 represents the oil collection chamber
  • 48 represents the drain tube inlet
  • 49 represents the container buffer chamber.
  • the process is that the three-phase flow of the oil and water with extremely high water content enters the container buffer chamber 49, and the gas
  • the body is discharged from the exhaust port, and after the liquid sinks to the bottom of the buffer chamber 49, a small amount of free water enters the bottom of the separation chamber 45 through the free water outlet 43; most of the liquid accumulates to the bottom of the buffer chamber 49, as the liquid level rises
  • the solid float 40 floats up, causing the throttle flap 41 to slide upward, and the liquid will flow into the separation chamber 45 in a large amount after the intermittent drain pipe 44 is opened.
  • the liquid level of the buffer chamber 49 continues to decrease.
  • the throttle flap 41 When the liquid level drops to a certain height, the throttle flap 41 is closed, and the flow resistance of the liquid becomes large, which limits the separation chamber 45.
  • the discharge speed of the liquid avoids the large amount of gas entering the separation chamber and reduces the probability of the inlet 48 of the oil discharge pipe entering the gas.
  • the liquid in the buffer chamber can only enter the separation chamber through the free water outlet 43.
  • the liquid entering the separation chamber is separated by gravity, and a large amount of free water is discharged through the free water outlet connecting pipe section 1; a small amount of the oil-water mixture floats up to the top of the separation chamber 43, and is concentrated at the oil collecting chamber 47 from the oil discharge pipe inlet 48. Discharge; a very small amount of gas is returned to the buffer chamber 49 via the gas return port 46, reducing the drop in the liquid level of the separation chamber 45 and the probability of oil passage.
  • Fig. 4 shows an embodiment of the extremely high water-oil-water-water three-phase flow rate measuring device of the present invention.
  • 1 represents the free water outlet connecting pipe section
  • 4 represents the mixed liquid outlet connecting pipe section
  • 9 represents the gas outlet connecting pipe section
  • 10 represents the inlet connecting pipe section
  • 20 the oil pipeline measuring outlet end
  • 21 represents the collecting pipe section
  • 22 represents the non-return Valve
  • 23 represents a single-phase flow meter for water flow metering (such as electromagnetic flowmeter)
  • 24 represents a waterway control valve or flow control valve
  • 25 represents a drain section
  • 26 represents a drain section control valve
  • 27 represents a three-phase water Analyzer (such as dual-energy gamma water analyzer)
  • 29 for the pneumatic control valve or flow control valve
  • 30 for the water removal device
  • 32 represents a differential pressure transmitter
  • 33 represents a densitometer (such as a single-energy gamma densitometer/phase fraction meter)
  • 34 represents a mains sampling port
  • 35 represents a gas
  • the measurement process the extremely high water content of the oil-gas-water three-phase flow from the oil pipeline first enters the blind three-way mixing device 36, changes the three-phase flow original state, and mixes it; the density meter (such as single-energy gamma density) Meter/phase fraction meter) 33 Determine the mixed density and gas content GVF of the multiphase flow, differential pressure measuring flow device (such as venturi) 31 and differential pressure transmitter 32 by measuring the total flow differential pressure ⁇ , Measuring the total flow rate ⁇ ; pressure transmitter 38, temperature transmitter 37 respectively measure the pressure and temperature in the pipeline; extremely high water content oil and gas three-phase flow into the water removal device 30 for gas-liquid separation and free water removal, The gas is discharged from the exhaust pipe section 28 and enters the manifold section 21; the oil-containing mixture is discharged from the drain pipe section 25, and a three-phase water analyzer (such as a dual-energy gamma water analyzer) is installed on the drain pipe
  • the moisture content of the oil-containing mixture is WC.
  • the oil discharge pipe section control valve 26 can adjust the opening degree to control the gas content in the oil discharge pipe to ensure water content. Rate WC measurement accuracy, end of drain pipe section 25 Connected to the confluence pipe section 21; free water is discharged from the free water outlet connection pipe section 1 into a single-phase flowmeter (such as an electromagnetic flowmeter) for water flow metering, measuring the free water flow rate ⁇ , and then entering the manifold section 21
  • the oil pipeline according to the liquid level height detected by the differential pressure transmitter 12 or the liquid level gauge 11 in the water removing device 30, the waterway control valve 24 and the airway control valve 29 can adjust the opening degree to control the liquid level appropriately. The position prevents gas from entering the drain section, or excessive gas enters the drain section 25, or liquid enters the gas path, or oil enters the waterway.
  • Fig. 5 is a main flow chart of the method for measuring the oil-gas-water three-phase flow rate using the extremely high-water-oil-oil-water three-phase flow rate measuring device of the present invention.
  • the steps are:
  • a densitometer such as a single-energy gamma densitometer / phase fraction meter

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

极高含水三相流除水装置、
极高含水三相流流量测量装置及测量方法 技术领域
本发明涉及一种安装在油田输油管线上油气水三相流除水装 置, 特别是一种使用该装置的适用于油田输油管道内油气水三相 流流量测量装置和测量方法。 背景技术
目前世界许多陆地油田已经陆续进入特高含水期,.正确的每 一口特高含水油井中油气水三相产物的流量数据是油田采油工作 中的基础数据, 是优化生产和优化油藏管理的主要依据。
为获取上述数据, 近年来出现的多相流计量系统, 由于不需 要对油气水进行分离即可对油气水三相流混合物进行连续实时的 测量、 占地面积小、 安装维护简单、 精度高等优点已被广泛的应 用于单井计量, 在数字化智能油田系统中扮演重要的角色。 现有 的多相流量计系统对油气水三相流混合物的测量过程一般如下:
1 ) 测量总流量率 2 , 含水率 WC和含气率 GVF;
2 ) 计算气流量率 = 2*GVF
3 ) 计算液流量率 ¾ = ( 1-GVF )
4 ) 计算油流量率 β。=¾ * ( 1-WC )
5 ) 计算水流量率 2w=a *WC
但是油井产出物中油、 气、 水各个组分的相对份额会有大幅 的变化: 它可能是高含气(含气率接近 100% ),也可能是全液(含 气率 0。/。); 在液相中, 可能全是油(含水率 0% ); 也可能是高含 水(含水率接近 100% ), 以及上述极端值之间的任意组合。 对于 极高含水(含水率 95%以上) 情况, 如附图 1所示, 在不同的含 水率水平,由含水率的测量误差引起的油流量率误差具有"漏斗效 应", 含水率水平越高, 纯油流量率的误差越大; 而现有的多相流 量计系统的含水率测量精度一般在 2%左右, 因此在极高含水水 平下, 含水率的测量误差会造成純油测量极大的误差, 这就在很 大程度上限制了现有多相流量计在这种场合的应用。
传统的分离式多相计量系统是将油井产物分离成油、 气、 水 三种单相流体, 然后在各自的出口分别进行计量。 但它的购置和 运行成本太高, 对于单口井无法实现连续实时计量, 且分离效果 受诸多因素影响, 尤其在极高含水的情况下, 系统在正式开始计 量之前需要的稳定时间长, 纯油油路中的油水分离效果差, 纯油 的计量结果的代表性较差, 误差大。 其次由于油气水三相分离器 的结构和流程复杂, 一般计量分离器以及相关辅助设施重达几十 吨, 占地面积大, 系统维护管理繁杂, 需要控制的环节多, 导致 建站运行、 维护费用高, 不利于实现生产过程和管理的自动化, 这些缺点对经济效益低的油田 (如特高含水期油田) 尤为突出。 发明内容
因此,为了提高极高含水情况下含水测量和纯油测量的精度, 满足油田生产计量的需求, 本发明的笫一个目的在于提供一种安 装在极高含水率油气水三相流输油管道上的除水装置, 以降低油 气水三相流的含水率, 满足纯油的测量精度要求。
本发明的第二个目的在于提供一种安装在输油管道上采用本 发明的极高含水油气水三相流除水装置而对极高含水油气水三相 流进行连续测量的油气水流量测量装置。
本发明的第三个目的在于提供一种采用极高含水油气水三相 流流量测量装置对油气水三相流流量进行测量的测量方法。
为了实现第一个目的, 本发明提供的极高含水油气水三相流 除水装置可以自动有效地分离出大部分的游离水, 从而降低余下 油水混合液中的含水率, 这样就可以在较低的含水率水平进行含 水率的测量, 从而提高纯油流量率测量的精度。 本发明的除水装 置包括壳体、 集液腔、 入口连接管段、 气体出口连接管段、 游离 水出口连接管段、 混合液出口连接管段、 除雾器、 流体整流器、 沥油器、 带有挡板的排油导流管, 以及安装在壳体侧面的用于液 位控制的差压变送器(或其它类型的液位计)。从入口进入除水装 置的极高含水油气水多相流在重力的作用下进行气液分离, 气体 经由除雾器除雾后从上部的气路出口排出, 液体经由流体整流器 进入除水容器下部, 游离水经由沥油器从水路出口排出, 液体部 分上部的油水混合物或油气水混合物通过排油导流管排出, 在游 离水除水的过程中, 差压变送器或液位计可以检测除水装置内液 面的高度, 为控制系统提供调整信号。
为了实现第二个目的, 本发明提供了一种安装在输油管线上 的极高含水油气水三相流流量测量装置, 该装置使用了本发明的 极高含水油气水三相流除水装置, 还包括: 和所述除水装置入口 连接管段连接的总流量计量管段、 和所述除水装置气体出口连接 管段连接的排气管段、 和所述除水装置混合液出口连接管段连接 的排油管段、 和所述除水装置游离水出口连接管段连接的排水管 段、 汇流管段, 以及计算机计算系统 /流量计算机。 总流量计量管 段包括: 密度计 (如单能伽玛密度计 /相分率计)、 差压式流量测 量器件(如文丘里管)、 盲三通混合装置、 以及安装在计量管段上 的温度变送器、 压力变送器、 差压变送器。 排气管段上有一控制 阀。 排水管段包括: 用于水流量计量的单相流量计 (如电磁流量 计),控制阀和止回阀。排油管段安装有油气水三相含水分析仪(如 能伽玛含水分析仪)。计算机系统用于计算极高含水油气水三相 流的总体积流量率 2, 纯油体积流量率 , 气体体积流量率 , 水体积流量率 。
为了实现第三个目的, 本发明提供了一种测量极高含水油气 水三相流流量测量方法, 包括下列步骤:
1 ) 使输油管道内的极高含水油气水三相流进入盲三通混合 管段, 盲三通混合管段将极高含水油气水三相流进行混合。
2 ) 使流经盲三通混合段的极高含水油气水三相流进入有密 度计 (如单能伽玛密度计 /相分率计), 差压式流量测量装置 (如 文丘里管), 温度变送器, 压力变送器组成的计量管段, 计量管段 对极高含水油气水三相流的总流量差压值 Δ?、含气率 GVF、温度 和压力进行测定。
3 ) 使极高含水油气水三相流进入装置的除水容器。
4 ) 使极高含水油气水三相流在除水容器内进行气液分离, 液体整流, 游离水分离, 使气体从气路出口排出, 大部分的游离 水从水路出口排出, 并在排水管段进行游离水流量 ά的计量, 剩 余的油水混合液经由导流管从油路出口排出, 并在排油管段上安 装的含水分析仪处进行此混合液的含水率 wc测量。
5 ) 在排液过程中, 除水容器上安装的差压变送器或液位计 实时检测除水容器内液面的高度, 装置的控制系统根据这一测量 结果来调整游离水排水管段控制阀门和排气管段控制阀门的开 度, 将除水容器内的液位控制在合适的高度, 使得游离水排水管 段中不含任何的油, 并防止气体进入排水管段, 或过多的气体进 入排油管段, 或液体进入气路。
6 ) 计算
计算极高含水油气水三相流的体积流量率, 本文所指流量率 均为体积流量率, 以下简称流量率。
计算公式为: 总流量率: Q
Figure imgf000007_0001
气流量率: =2* GVF
液流量率: Q,=g* ( l-GVF )
油流量率: ρ。= ( Q Qw' ) * ( 1-WC )
水流量率: βΜ,=β + ( QrQw ) *WC
使用本发明的极高含水油气水三相流流量测量装置可以自动 有效地分离出大部分的游离水, 降低油气水混合液中的含水率, 在极高含水的条件下, 可以较精确地测量纯油流量率。 附图说明
图 1描述了不同含水率水平下含水率的测量误差和纯油流量 率测量误差的关系。
图 2是本发明极高含水油气水三相流除水装置的一个实施例 的示意图。
图 3是本发明极高含水油气水三相流除水装置的另一个实施 例的示意图。
图 4是本发明极高含水油气水三相流流量测量装置中的一个 实施例的示意图。
图 5是本发明的使用极高含水油气水三相流流量测量装置的 油气水三相流流量测量方法的主要流程图。 具体实施方式
下面结合附图详细描述本发明的实施例。
图 2示出了本发明的极高含水油气水三相流除水装置的一个 实施例。
在图 2中, 标号 1代表游离水出口连接管段, 2代表集液腔, 3代表沥油器, 4代表混合液出口连接管段, 5代表导流管, 6代 表挡板, 7代表流体整流器, 8代表除雾器, 9代表气体出口连接 管段, 10代表入口连接管段, 11代表液位计, 12代表差压变送 器。
其过程为极高含水率油气水三相流经入口连接管段 10 进入 除水装置后, 气液首先进行重力分离, 除水装置上方安装有除雾 器 8, 除水装置顶端有气体出口连接管段 9, 分离后的气体经除雾 器 8除雾后从气体出口连接管段 9排出; 为了消除不稳定流动状 态, 进一步提高游离水分离的效果, 提高计量精度, 装置的入口 连接管段 10的下方有一个水平安装的流体整流器 7。 在流体整流 器 7下方有一导流管 5和混合液出口连接管段 4相连, 气液分离 后的液体经过流体整流器 7整流后,游离水进入除水装置的底部, 含油液体在液体的上方, 经由导流管 5从混合液出口连接管段 4 排出, 导流管 5的顶部有一挡板 6, 用于阻挡来自上游的杂盾等; 为了增加混合液在除水装置内的滞留时间, 进一步提高游离水分 离效果, 除水装置的底部有一外扩的集液腔 2, 并在集液腔 2上 方安装有沥油器 3, 游离水经过沥油器 3进入集液腔 1从游离水 出口连接管段 1排出。
图 3示出了本发明的极高含水油气水三相流除水装置的另一 个实施例。
在图 3中, 标号 1代表游离水出口连接管段, 4代表混合液 出口连接管段, 9代表气体出口连接管段, 10代表入口连接管段, 40代表实心浮子, 41代表节流活瓣, 42代表腔体间隔板, 43代 表游离水出口, 44代表间歇排液管, 45代表容器分离腔, 46代 表气体返回口, 47代表集油腔, 48代表排油管入口, 49代表容 器緩冲腔。
其过程为极高含水率油气水三相流进入容器緩沖腔 49后,气 体从排气口排出, 液体下沉到容器缓冲腔 49底部后, 其中少量游 离水经游离水出口 43进入分离腔 45的底部; 大部分液体积聚到 緩冲腔 49底部, 随着液位上升实心浮子 40上浮, 带动节流活瓣 41上滑, 间歇排液管 44打开后液体才会大量流入到分离腔 45。 随着大量液体进入分离腔 45, 緩冲腔 49的液位持续下降, 当液 位下降到一定高度后, 节流活瓣 41关闭, 这时液体的流阻变大, 限制了分离腔 45 中液体的排出速度, 避免了分离腔进入大量气 体, 降低了排油管入口 48进入气体的几率。 节流活瓣 41关闭后, 緩冲腔的液体只能通过游离水出口 43进入分离腔。进入分离腔的 液体在重力作用下产生分离, 大量的游离水经过游离水出口连接 管段 1排出; 少量的油水混合物上浮到分离腔 43的顶部, 在集油 腔 47处汇聚后从排油管入口 48排出; 极少量的气体经由气体返 回口 46返回到緩冲腔 49, 降低了分离腔 45液位的下降和油路走 气的几率。
图 4示出了本发明的极高含水油气水三相流流量测量装置中 的一个实施例。
在图 4中, 1代表游离水出口连接管段, 4代表混合液出口连 接管段, 9代表气体出口连接管段, 10代表入口连接管段, 20输 油管道计量出口端, 21代表汇流管段, 22代表止回阀, 23代表 用于水流量计量的单相流量计 (如电磁流量计), 24 代表水路控 制阀或流量控制阀, 25代表排油管段, 26代表排油管段控制阀, 27代表三相含水分析仪(如双能伽玛含水分析仪), 28代表排气 管段, 29 代表气路控制阀或流量控制阀, 30 代表除水装置, 31 代表差压式测量流量器件 (如文丘里管), 32 代表差压变送器, 33代表密度计(如单能伽玛密度计 /相分率计), 34代表总管取样 口, 35 代表输油管道计量入口端, 36 代表盲三通混合装置, 37 代表温度变送器, 38代表压力变送器, 39代表排水管段。 其测量过程, 从输油管道来的极高含水率油气水三相流首先 进入盲三通混合装置 36, 使三相流原流态改变, 并将其混合; 密 度计(如单能伽玛密度计 /相分率计) 33测定多相流的混合密度和 含气率 GVF, 差压式测量流量器件 (如文丘里管) 31 及差压变 送器 32 通过测定总流量差压值 Δ , 测总流量率 β ; 压力变送器 38, 温度变送器 37分别测量管道内压力和温度; 极高含水率油气 水三相流进入除水装置 30进行气液分离和游离水除水后,气体从 排气管段 28排出, 进入汇流管段 21; 含油的混合液从排油管段 25排出, 排油管段 25上安装了三相含水分析仪(如双能伽玛含 水分析仪) 27, 测量此含油混合液的含水率 WC, 同时根据三相 含水分析仪 27所测得的的含气水平, 排油管段控制阀 26可自行 调节开度, 控制排油管道内的含气水平, 以保证含水率 WC的测 量精度, 排油管段 25末端与汇流管段 21相连; 游离水从游离水 出口连接管段 1排出, 进入用于水流量计量的单相流量计 (如电 磁流量计) 23, 测量游离水流量率 ά, 再经汇流管段排 21 进入 输油管道, 同时根据除水装置 30 中差压变送器 12或液位计 11 所检测的液位高度结果, 水路控制阀 24和气路控制阀 29可自行 调节开度, 将液位控制在合适的位置, 防止气体进入排水管段, 或过多的气体进入排油管段 25,或液体进入气路,或油进入水路。
所有测定数据经计算机处理系统进行计算, 然后输出油气水 三相流的各相流量率等测量结果。
图 5是本发明的使用极高含水油气水三相流流量测量装置的 油气水三相流流量测量方法的主要流程图。
其步骤为:
5-1调整改变原油气水三相流流型流态, 并使其混合均匀; 5-2 用差压式流量计 (如文丘里管) 测量混合均匀的油气水 三相总流量差压值 Δ ; 5-3 用密度计 (如单能伽玛密度计 /相分率计) 测量油气水三 相流的混合密度和含气率 GVF;
5-4分离油气水三相流中的气体;
5-5 分离液体中的大部分游离水, 计量排水管段上的游离水
Figure imgf000011_0001
;
5-6测量排油管段上油气水三相混合液体的含水率 WC; 5-7测量管道压力和油气水三相流的温度
5-8 对测量的数据通过计算系统进行计算, 求得总流量率; 油流量率; 气流: -率; 计算公式为:
Figure imgf000011_0002
气流量率 Qg=Q* GVF
液流 2; =β* ( 1-GVF )
Figure imgf000011_0003
( QrQw' ) * ( 1-WC )
流量率 QW=QW' + ( QrQ ) *WC

Claims

权 利 要 求
1. 一种极高含水油气水三相流除水装置, 该除水装置设置有 入口连接管段(10), 气体出口连接管段 (9) 和游离水出口连接 管段(1), 所述入口连接管段与输油管道连接, 所述气体出口连 接管段( 9 )设置在除水装置顶端, 所述游离水出口连接管段( 1 ) 设置在除水装置底部, 其特征在于: 极高含水油气水三相流经所 述入口连接管段(10) 进入除水装置, 在所述除氷装置内进行气 液重力分离, 除水装置内的上部安装有除雾器 (8), 对分离后的 气体进行除雾, 气体从气体出口连接管段(9)排出, 在除水装置 内在入口连接管段( 10 )的下方设置有水平安装的流体整流器( 7 ), 用于进一步消除混合液的不稳定流动状态, 提高游离水分离的效 果, 在流体整流器 (7) 下方设置有导流管 (5), 该导流管 (5) 与混合液出口连接管段(4)相连, 用于将含油的混合液从混合液 出口连接管段(4)排出, 分离出的游离水进入除水装置的底部, 从游离水出口连接管段(1)排出。
2. 根据权利要求 1所述的极高含水油气水三相流除水装置, 其特征在于, 所述导流管(5)的顶部设有一挡板(6), 用于阻挡 来自上游的杂质。
3. 根据权利要求 1或 2所述的极高含水油气水三相流除水装 置, 其特征在于, 所述除水装置的底部设置有外扩的集液腔(2), 用于扩大除水装置底部的容量, 提高游离水除水效果。
4. 根据权利要求 3所述的极高含水油气水三相流除水装置, 其特征在于, 在所述集液腔(2)的上方安装有沥油器(3), 用于 对游离水进一步去油, 游离水在集液腔(2)中驻留一段时间后从 游离水出口连接管段(1)排出。
5. 根据权利要求 1或 2所述的极高含水油气水三相流除水装 置, 其特征在于, 安装在所述除水装置上的差压变送器 (12) 或 液位计 (11) 实时检测所述除水装置内的液位高度。
6. 一种极高含水油气水三相流除水装置, 其特征在于, 内设 一水平隔板(42)将所述除水装置上下分隔, 隔板(42) 以上为 緩冲腔(49), 隔板(42) 以下为分离腔 (45), 緩沖腔 (49) 与 入口连接管段(10) 连接, 所述除水装置上端连接气体出口连接 管段(9), 所述除水装置底部连接游离水出口连接管段(1)。
7. 根据权利要求 6所述的极高含水油气水三相流除水装置, 其特征在于, 所述隔板(42) 中间向分离腔(45)设一间歇排液 管 (44), 间歇排液管 (44) 上端设一节流活瓣 (41), 节流活瓣 (41) 上端装一实心浮子 (40); 所述隔板(42) 下部设一游离水 出口 (43); 所述隔板(42)上还设一集油腔(47), 集油腔(47) 上端设有气体返回口( 46 ),集油腔( 47 )下端设一排油管入口( 48 )。
8. 一种包括权利要求 1-7 中任一项所述的极高含水油气水 三相流除水装置的极高含水油气水三相流测量装置, 包括: 安装 在输油管道上的盲三通混合装置( 36 ),差压式测量流量器件( 31 ), 差压变送器(32), 密度计(33), 汇流管段(21), 排油管段(25), 三相含水分析仪(27), 排气管段(28), 排水管段(39), 水路控 制阀( 24 ), 气路控制阀( 29 )用于水流量计量的单相流量计( 23 ) 以及计算装置, 所述密度计 (33) 用于测量多相流的混合密度和 含气率 GVF, 差压式测量流量器件(31)用于测量油气水三相流 总流量, 其特征在于, 所述极高含水油气水三相流除水装置(30) 的混合液出口连接管段( 4 )与三相含水分析仪( 27 )相连, 三相 含水分析仪 (27) 与汇流管段(21)相连, 用于测量含油混合液 中的含水率 WC和含气水平 GVF,, 单相流量计 (23) 用于测量 游离水流量率, 所述水路控制阀 (24) 和气路控制阀 (29)根据 差压变送器 (12) 或液位计 (11) 实时检测所迷除水装置内液位 高度的结果进行阀门开度的调节, 对所述除水装置内的液位进行 控制, 保证所述除水装置的游离水分离效果和除水效果。
9. 根据权利要求 8所述的极高含水油气水三相流测量装置, 其特征在于, 在三相含水分析仪(27) 和汇流管段(21)之间安 装有控制阀( 26 ), 根据三相含水分析仪( 27 )所测得的的含气水 平 GVF,, 控制阀 (26) 可自行调节开度, 控制排油管段内的含 气水平 GVF,, 以保证含水率 WC的测量精度。
10. 一种使用权利要求 8 所述的极高舍水油气水三相流量测 量装置测量油气水三相流量的测量方法, 包括以下步驟:
1)调整改变原油气水三相流流型流态, 并使其混合均匀;
2)通过入口管线取样口取样, 获得三相流的含水率 WC';
3 )用差压式流量计测量混合均匀的油气水三相总流量差压值
4 ) 用密度计测量油气水三相流的混合密度和含气率 GVF; 5)分离油气水三相流中的气体;
6 )分离液体中的大部分游离水 ,计量排水管段上的游离水流 量率 ά;
7) 测量排油管段上油气水三相混合液体的含水率 WC;
8) 测量输油管道压力和油气水三相流的温度;
9)对测量的数据通过计算装置进行计算, 求得总流量率、 油 流量 采用的公式为:
Figure imgf000014_0001
气流量率 =ρ* GVF
液流量率 β, = ρ* ( 1-GVF )
油流量率 Q = ( Q,-Q ) * ( 1-WC )
水流量率 QW=QW' + ( QRQW' ) *WC。
PCT/CN2010/001781 2009-11-07 2010-11-05 极高含水三相流除水装置、极高含水三相流流量测量装置及测量方法 WO2011054192A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10827806.0A EP2497556B1 (en) 2009-11-07 2010-11-05 Water removing device for extremly high water content three-phase flow
US13/508,348 US9468868B2 (en) 2009-11-07 2010-11-05 Water removing device for extremely high water content three-phase flow, and measurement device and method for extremely high water content three-phase flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009201442564U CN201637443U (zh) 2009-11-07 2009-11-07 极高含水多相流测量装置
CN200920144256.4 2009-11-07

Publications (1)

Publication Number Publication Date
WO2011054192A1 true WO2011054192A1 (zh) 2011-05-12

Family

ID=43081944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001781 WO2011054192A1 (zh) 2009-11-07 2010-11-05 极高含水三相流除水装置、极高含水三相流流量测量装置及测量方法

Country Status (4)

Country Link
US (1) US9468868B2 (zh)
EP (1) EP2497556B1 (zh)
CN (1) CN201637443U (zh)
WO (1) WO2011054192A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20120071A1 (it) * 2012-04-04 2013-10-05 Tea Sistemi S P A Apparato separatore per miscele gas-acqua-olio, e relativo processo di separazione
CN108676578A (zh) * 2018-07-11 2018-10-19 天津市正方科技发展有限公司 电磁感应油气水处理装置
CN109653737A (zh) * 2017-10-11 2019-04-19 中国石油化工股份有限公司 模拟稠油散热规律实验装置
CN113041720A (zh) * 2021-04-25 2021-06-29 扬州通扬化工设备有限公司 化工尾气气水油三相分离方法及应用该方法的三相自动分离器
TWI791274B (zh) * 2020-09-16 2023-02-01 巫協森 線上測量溶液自動校正液位、容量與濃度的方法及系統

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961662B2 (en) * 2011-11-23 2015-02-24 Hughes Specialty Services, Inc. Separator assembly
CN102435245B (zh) * 2012-01-06 2014-01-15 兰州海默科技股份有限公司 一种蒸汽流量计量装置及计量方法
CN103697950B (zh) * 2013-08-29 2017-01-11 兰州海默科技股份有限公司 一种在线测量非常规天然气中油、气、水三相流量的方法和装置
CN104632185B (zh) * 2013-11-07 2017-04-26 兰州科庆仪器仪表有限责任公司 超高含水油井多相流计量装置
CN103977601A (zh) * 2014-05-28 2014-08-13 北京乾达源科技有限公司 一种排水截油装置
CN104234691B (zh) * 2014-07-24 2016-10-05 罗德全 一种用于油田的高精度实时在线多相流量计
US20160341645A1 (en) * 2015-05-19 2016-11-24 Medeng Research Institute Ltd. Inline multiphase densitometer
JP6269576B2 (ja) * 2015-05-25 2018-01-31 横河電機株式会社 多成分ガス分析システム及び方法
US9840895B1 (en) * 2016-05-26 2017-12-12 Leroy Thomas Kuhn Method and apparatus for separating and measuring multiphase immiscible fluid mixtures
EP3258060B1 (en) * 2016-06-13 2019-12-11 Services Petroliers Schlumberger Fluid component determination using thermal properties
US10023811B2 (en) 2016-09-08 2018-07-17 Saudi Arabian Oil Company Integrated gas oil separation plant for crude oil and natural gas processing
EP3299576B1 (en) 2016-09-27 2021-03-17 Services Petroliers Schlumberger Well clean-up monitoring technique
CN107882546B (zh) * 2016-09-29 2023-07-11 中国石油化工股份有限公司 高含水低产气油井产液三相计量装置与方法
US10260010B2 (en) 2017-01-05 2019-04-16 Saudi Arabian Oil Company Simultaneous crude oil dehydration, desalting, sweetening, and stabilization
CN106988723B (zh) * 2017-04-11 2020-05-22 中国石油天然气股份有限公司 称重法三相计量装置及其测量方法
US10895141B2 (en) 2018-01-11 2021-01-19 Encline Artificial Lift Technologies LLC Controlled high pressure separator for production fluids
CN108961969B (zh) * 2018-06-11 2021-03-02 武汉海王机电工程技术有限公司 一种油井油气水三相气举采油工艺模拟装置
CN110763293B (zh) * 2018-07-25 2024-07-26 中国石油天然气股份有限公司 油气水三相流量的测量系统
CN109513235A (zh) * 2019-01-10 2019-03-26 成都润亿达环境科技有限公司 一种餐饮油污水分离设备
US11161059B2 (en) 2019-06-24 2021-11-02 Saudi Arabian Oil Company Crude oil demulsification
CN110393950B (zh) * 2019-07-18 2024-03-22 宣化钢铁集团有限责任公司 一种分离效果优异的脱苯塔顶油水分离装置及方法
CN112443310B (zh) * 2019-08-29 2023-05-26 中国石油天然气股份有限公司 一种气液分离装置及用于气液分离装置的降耗方法
CN111456703B (zh) * 2020-04-10 2022-03-18 万骏 一种石油分离器
US11352574B2 (en) 2020-09-03 2022-06-07 Saudi Arabian Oil Company Simultaneous crude oil dehydration, desalting, sweetening, and stabilization with compression
CN112523745B (zh) * 2020-12-02 2022-07-15 中国地质大学(北京) 一种低产页岩气藏求产装置和方法
US11691897B2 (en) 2021-01-04 2023-07-04 Saudi Arabian Oil Company Water treatment for injection in hydrocarbon recovery
CN113029246B (zh) * 2021-03-17 2023-07-14 中国长江电力股份有限公司 油混水监测传感器测试试验系统及试验方法
US11732201B2 (en) 2021-05-25 2023-08-22 Saudi Arabian Oil Company Process control systems and methods for simultaneous crude oil dehydration, desalting, sweetening, and stabilization with indirect recycle heating
CN113694567B (zh) * 2021-09-15 2022-10-28 中国石油大学(华东) 两级气液混合锥形螺旋场分离装置
CN115990357A (zh) * 2021-10-18 2023-04-21 中国石油化工股份有限公司 一种油罐密封查水器
US11692143B1 (en) 2021-12-20 2023-07-04 Saudi Arabian Oil Company Crude oil demulsification
CN114810030A (zh) * 2022-05-06 2022-07-29 张德发 一种内置气液混合分离切换系统的三相计量装置
US11885210B2 (en) 2022-05-19 2024-01-30 Saudi Arabian Oil Company Water separation and injection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424068A (en) * 1982-12-06 1984-01-03 Mcmillan John F Separator and method for separation of oil, gas and water
SU1313484A1 (ru) * 1986-01-03 1987-05-30 Казанский Химико-Технологический Институт Им.С.М.Кирова Аппарат дл разделени газоводонефт ной эмульсии
JPH08252576A (ja) * 1995-03-16 1996-10-01 Kiichi Watanabe ドレン分離装置
CN1182873A (zh) * 1996-11-19 1998-05-27 窦剑文 油气水三相流量测量装置及测量方法
WO1999065588A1 (en) * 1998-05-28 1999-12-23 Nor Instruments As Method and apparatus for separating water from oil
CN1155431C (zh) * 1998-04-29 2004-06-30 苏舍化学技术有限公司 第一种液体从第二种液体中分离的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228174A (en) * 1966-01-11 Multiphase fluid separation
US3394530A (en) 1966-05-09 1968-07-30 Neill Tank Company Inc O Horizontal emulsion treater
CA915589A (en) 1968-03-13 1972-11-28 M. Dahl Oscar Horizontal emulsion treater
US3727382A (en) * 1971-03-10 1973-04-17 Maloney Crawford Tank Downflow coalescing for emulsion treater
US4059517A (en) * 1976-09-13 1977-11-22 Chevron Research Company Liquid separation apparatus and method
CA2108297A1 (en) * 1993-10-13 1995-04-14 Wayne William Hesse Oil/water separation process
US5390547A (en) * 1993-11-16 1995-02-21 Liu; Ke-Tien Multiphase flow separation and measurement system
US6032539A (en) * 1996-10-11 2000-03-07 Accuflow, Inc. Multiphase flow measurement method and apparatus
WO1999005482A1 (en) * 1997-07-28 1999-02-04 Texaco Development Corporation Reduction in overall size, weight and extension of dynamic range of fluid metering systems
GB9910160D0 (en) * 1999-04-30 1999-06-30 Framo Eng As Apparatus and method for fluid measurement
US6214220B1 (en) 1999-11-30 2001-04-10 Engineering Specialties, Inc. Combined process vessel apparatus
US6673135B2 (en) 2002-02-08 2004-01-06 National Tank Company System and method of separating entrained immiscible liquid component of an inlet stream
DE60333599D1 (de) * 2003-05-16 2010-09-09 Haimo Technologies Inc Verstellbarer gas-flüssigkeitszentrifugalabscheider und abscheidungsverfahren
AU2003242107A1 (en) * 2003-05-16 2004-12-03 Haimo Technologies Inc. Three-phase flow regulating means for oil, gas and water, three-phase flow measuring apparatus for oil, gas and water and measuring method thereof
FR2892953B1 (fr) * 2005-11-09 2008-06-27 Saipem S A Sa Procede et dispositif de separation de liquide polyphasique
US7311001B2 (en) * 2006-03-02 2007-12-25 Herbert Liu Multiphase flow measurement apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424068A (en) * 1982-12-06 1984-01-03 Mcmillan John F Separator and method for separation of oil, gas and water
SU1313484A1 (ru) * 1986-01-03 1987-05-30 Казанский Химико-Технологический Институт Им.С.М.Кирова Аппарат дл разделени газоводонефт ной эмульсии
JPH08252576A (ja) * 1995-03-16 1996-10-01 Kiichi Watanabe ドレン分離装置
CN1182873A (zh) * 1996-11-19 1998-05-27 窦剑文 油气水三相流量测量装置及测量方法
CN1155431C (zh) * 1998-04-29 2004-06-30 苏舍化学技术有限公司 第一种液体从第二种液体中分离的方法
WO1999065588A1 (en) * 1998-05-28 1999-12-23 Nor Instruments As Method and apparatus for separating water from oil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20120071A1 (it) * 2012-04-04 2013-10-05 Tea Sistemi S P A Apparato separatore per miscele gas-acqua-olio, e relativo processo di separazione
WO2013150473A1 (en) 2012-04-04 2013-10-10 Tea Sistemi S.P.A. A separator apparatus for gas-water-oil mixtures, and separation process
US9346688B2 (en) 2012-04-04 2016-05-24 Tea Sistemi S.P.A. Separator apparatus for gas-water-oil mixtures, and separation process
CN109653737A (zh) * 2017-10-11 2019-04-19 中国石油化工股份有限公司 模拟稠油散热规律实验装置
CN109653737B (zh) * 2017-10-11 2024-03-22 中国石油化工股份有限公司 模拟稠油散热规律实验装置
CN108676578A (zh) * 2018-07-11 2018-10-19 天津市正方科技发展有限公司 电磁感应油气水处理装置
TWI791274B (zh) * 2020-09-16 2023-02-01 巫協森 線上測量溶液自動校正液位、容量與濃度的方法及系統
CN113041720A (zh) * 2021-04-25 2021-06-29 扬州通扬化工设备有限公司 化工尾气气水油三相分离方法及应用该方法的三相自动分离器

Also Published As

Publication number Publication date
EP2497556A1 (en) 2012-09-12
EP2497556B1 (en) 2018-12-26
EP2497556A4 (en) 2014-06-18
US20120253705A1 (en) 2012-10-04
US9468868B2 (en) 2016-10-18
CN201637443U (zh) 2010-11-17

Similar Documents

Publication Publication Date Title
WO2011054192A1 (zh) 极高含水三相流除水装置、极高含水三相流流量测量装置及测量方法
WO2004102131A1 (fr) Regulateur d'ecoulement a trois phases pour huile, gaz et eau, et procede et appareil de mesure de l'ecoulement a trois phases pour huile, gaz et eau
CN101105123B (zh) 竖式油水气多相流分离整流装置及其测量装置
US8869627B2 (en) Multi-phase flow metering system
CN107587868B (zh) 一种油井计量集成装置
CN104213901A (zh) 一种低产油井多相计量橇装装置
CN112196511A (zh) 一种气液分离罐式油气水多相流量计
CN201503284U (zh) 大口径油气水三相流量测量装置
RU76070U1 (ru) Устройство для измерения продукции нефтяных скважин
WO2011082678A1 (zh) 天然气计量分离装置
CN203214045U (zh) 一种撬装式油井产量计量装置
CN2783275Y (zh) 适用于高含水的油气水三相流量连续计量系统
RU2532490C1 (ru) Способ и установка для измерения дебитов продукции газоконденсатных и нефтяных скважин
RU2386811C1 (ru) Адаптивный способ определения остаточного (свободного) газосодержания на групповых замерных установках
CN205778806U (zh) 一种撬装式油气分离单井计量装置
CN205858315U (zh) 一种气井井口气液两相计量装置
CN104632185B (zh) 超高含水油井多相流计量装置
CN105626029B (zh) 稠油管式分离多相计量装置
RU155020U1 (ru) Установка для измерения дебита продукции нефтяных скважин
CN208223595U (zh) 气井三相计量分离控制系统
RU66779U1 (ru) Установка поскважинного учета углеводородной продукции
CN207647501U (zh) 一种可移动式计量分离装置
CN204988392U (zh) 智能压差-微波式油气水三相流量计
CN202403998U (zh) 板翅式换热器气液两相流分布特性测试装置
CN208075946U (zh) 一种油气水三相流量计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010827806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13508348

Country of ref document: US