WO2011082678A1 - 天然气计量分离装置 - Google Patents

天然气计量分离装置 Download PDF

Info

Publication number
WO2011082678A1
WO2011082678A1 PCT/CN2011/070065 CN2011070065W WO2011082678A1 WO 2011082678 A1 WO2011082678 A1 WO 2011082678A1 CN 2011070065 W CN2011070065 W CN 2011070065W WO 2011082678 A1 WO2011082678 A1 WO 2011082678A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
natural gas
liquid
tubular container
orifice
Prior art date
Application number
PCT/CN2011/070065
Other languages
English (en)
French (fr)
Inventor
卢玖庆
Original Assignee
Lu Jiuqing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lu Jiuqing filed Critical Lu Jiuqing
Priority to CA2786826A priority Critical patent/CA2786826C/en
Priority to US13/521,032 priority patent/US9453747B2/en
Publication of WO2011082678A1 publication Critical patent/WO2011082678A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/08Air or gas separators in combination with liquid meters; Liquid separators in combination with gas-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters

Definitions

  • the present invention relates to the field of oil and gas flow measurement technology, and in particular to a natural gas flow measurement separation device.
  • the object of the present invention is to provide a natural gas metering and separating device, which solves the problem of separately separating and measuring a plurality of gas wells, and includes an electric drain valve, a liquid flow meter, a pressure transmitter, a differential pressure transmitter,
  • the temperature sensor and the flow computer the multi-tube bundle cyclone separator is composed of 2 to 100 tubular containers, and each of the peripheral tubular containers is connected to the annular tube through a shunt tube on the side close to the top thereof, and each of the peripheral tubular containers is respectively connected with 1
  • the shunt tubes are tangentially connected, and a valve is arranged on each of the shunt tubes, and the annular tube is connected with the main pipe.
  • each tubular container is connected to the total gas pipe through the gas guiding pipe, and the gas guiding pipe is disposed at the top center of each tubular container. Position, one end of the inside of the tubular container lOnm! ⁇ 100mm, the other end is connected with the total air pipe. There is an emptying valve at one end of the total air pipe. The total air pipe is connected with the air outlet pipe. A dew point meter is arranged on the air outlet pipe. The bottom of each tubular container passes through the liquid guiding pipe and the total liquid respectively. The pipe is connected, the total liquid pipe is connected with the drain pipe, and a defogger is arranged on the upper part of each tubular container.
  • the defogger is composed of a pipe, a strainer and a flange. One end of the pipe is inserted into the tubular container, and one end is extended from the tubular container.
  • a filter screen is arranged in the inner tube, an air inlet is opened at the bottom of one side of the inner tube, an air outlet is opened above the other side of the inner tube, and a flange is arranged at the end of the outer tube, and the bottom of the outer tube is back.
  • the liquid pipe is connected, the liquid return pipe is connected with the lower part of the tubular container, the inner pipe of the mist eliminator is obliquely connected with the wall of the tubular container, the inclination angle a is 0° ⁇ 45°, and the outer pipe is vertically connected with the wall of the tubular container, and one outer tubular container is A flap level gauge is arranged thereon, and the multi-tube bundle cyclone separator is connected to the liquid flow meter and the electric drain valve through the drain pipe, and the multi-tube bundle cyclone separator passes through the annular tube and the manifold and the flow rate of 2 to 30 orifice plates meter Row connection, the front end and the rear end or the front end of the orifice flowmeter throttle member are inverted tapered orifice plates, and the angle ⁇ or P of the inverted tapered orifice plate is 40° to 160°, and pressure is set at the front end of the orifice flowmeter.
  • the transmitter has a differential pressure transmitter disposed on the orifice flowmeter, and a temperature sensor, an electric drain valve, a liquid flow meter, a flap level gauge, an orifice flowmeter, and a flow meter are disposed at the rear end of the orifice flowmeter.
  • the pressure transmitter, the differential pressure transmitter, the temperature sensor, and the dew point meter are connected to the flow computer through the data line.
  • the present invention uses a multi-port gas well orifice flowmeter to measure two-phase flow of natural gas, and then all the measured singles.
  • the natural gas is sent to the multi-tube bundle cyclone separator for gas-liquid separation.
  • the separated natural gas is detected by the dew point meter, thus realizing the measurement and separation of each well.
  • the measurement range is wide, the measurement accuracy is high, and the gas and liquid are obtained.
  • Accuracy can reach ⁇ 1 ⁇ 2%, oil water content is ⁇ 3%, light weight, small volume, good separation effect, can determine the number of tube bundles according to different flow ranges of natural gas to ensure the separation effect, safe and reliable It can be used in real-time measurement and separation of gas wells.
  • FIG. 1 is a schematic structural view of a natural gas metering and separating device of the present invention
  • Figure 2 is a front elevational view of the multi-tube bundle cyclone separator of Figure 1;
  • Figure 3 is a cross-sectional view of the mist eliminator of Figure 1;
  • Figure 4 is a cross-sectional view of the orifice flow meter of Figure 1;
  • Figure 5 is a cross-sectional view of the orifice flow meter of Figure 1.
  • the natural gas metering and separating device of the present invention will be further described below with reference to FIG. 1, FIG. 2, FIG. 3, FIG. 4 and FIG. 5. It includes an electric drain valve 1, a liquid flow meter 3, a pressure transmitter 2, and a difference.
  • the pressure transmitter 4, the temperature sensor 6 and the flow computer 12, the multi-tube bundle cyclone separator 8 is composed of 2 to 100 tubular containers, and each of the peripheral tubular containers passes through the shunt tube 18 and the annular tube on the side close to the top thereof.
  • each of the peripheral tubular containers is tangentially connected to one of the shunt tubes 18, and a valve 17 is disposed on each of the shunt tubes 18, and the annular tube 19 is in communication with the manifold 7 and the top of each tubular container is respectively passed through the air guiding tube.
  • 26 is in communication with the total air pipe 20, and the air guiding pipe 26 is disposed at the center of the top of each tubular container, one end of which penetrates into the inside of the tubular container 10 nm!
  • the main liquid pipe 21 is connected to the liquid discharge pipe 13 through the liquid guiding pipe 27, and the liquid discharging pipe 13 is connected to the liquid discharging pipe 13.
  • the demister 10 is disposed at the upper part of each tubular container, and the demister 10 is composed of a pipe, a filter 23 and a flange.
  • the tray 25 is composed of one end of the tube inserted into the tubular container, one end of which protrudes out of the tubular container, the inner tube is provided with a sieve 23, and the bottom of the inner tube is provided with an air inlet 22 at the bottom of the inner tube, and the other side of the inner tube is opened.
  • the air outlet 24 is provided with a flange 25 at the end of the outer tube, the bottom of the outer tube is connected with the liquid return pipe 16, the liquid return pipe 16 is connected with the lower portion of the tubular container, and the inner pipe of the demister 10 is obliquely connected with the wall of the tubular container, the inclination angle a is 0 ° ⁇ 45 °, the outer tube is perpendicularly connected to the wall of the tubular container, a flap liquid level gauge 9 is disposed on one of the peripheral tubular containers, and the multi-tube bundle cyclone separator 8 passes through the drain tube 13 and the liquid flow meter 3 Connected to the electric drain valve 1, The multi-tube bundle cyclone separator 8 is connected in parallel with the 2 ⁇ 30 orifice flowmeters 5 through the annular tube 19 and the manifold 7, and the front end and the rear end or the front end of the orifice flowmeter 5 throttle member are inverted tapered orifice plates.
  • the inverted tapered orifice angle ⁇ or ⁇ is 40° ⁇ 160°, and the structure has a self-cleaning function, ensuring that liquid phase accumulation does not occur on the upstream and downstream of the throttle member, and the liquid phase intermittently passes through the throttle member. It causes a large additional resistance and differential pressure fluctuation, which affects the measurement accuracy, and the increase of the thickness of the orifice plate can effectively avoid the deflection of the orifice plate.
  • the pressure transmitter 2 is disposed at the front end of the orifice flowmeter 5, on the orifice flowmeter 5
  • a differential pressure transmitter 4 is provided, and a temperature sensor 6 is disposed at the rear end of the orifice flow meter 5, an electric drain valve 1, a liquid flow meter 3, a flap level gauge 9, an orifice flow meter 5, and a pressure transmission 2.
  • the differential pressure transmitter 2, the temperature sensor 6, and the dew point meter 11 are connected to the flow computer 12 through the data line, and the flow rate computer 12 can calculate the natural gas standard flow and the condensate flow rate in the single well.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

天然气计量分离装置 技术领域 本发明属于油气流量测量技术领域, 特别是涉及一种天然气流量测量分离装置。
背景技术 近年来随着海陆天然气的勘探开发, 天然气处理及测量技术发展很快, 天然气、 凝析液天然 气、 湿气等计量分离技术的研究越来越受到重视, 含液天然气的准确计量为生产监控、 油藏管理提供了可 靠的原始资料, 而传统上含液天然气是靠大型罐式分离器分离后再进行计量, 因分离器成本较高, 故把多 口气井引到计量分离站内, 用一台分离罐带动多口井, 用井组切换的方法, 轮流对单井进行分离, 然后再 用单相流量计进行计量。
发明内容 本发明的目的是提供一种天然气计量分离装置, 解决了对多口气井分别进行分离计量的问 题, 它包括电动排液阀、 液体流量计、 压力变送器、 差压变送器、 温度传感器和流量计算机, 多管束旋流 分离器由 2~ 100个管状容器组成, 每个外围管状容器在接近其顶部的一侧分别通过分流管与环形管连通, 每个外围管状容器分别与 1个分流管切向连接, 在每个分流管上设置有阀门, 环形管与汇管连通, 每个管 状容器顶部分别通过导气分管与总气管连通, 导气分管设置在每个管状容器顶部中心位置, 其一端深入管 状容器内部 lOnm!〜 100mm, 另一端与总气管连通, 在总气管一端设置有排空阀, 总气管另与出气管连通, 在出气管上设置有露点仪, 每个管状容器底部分别通过导液分管与总液管连通, 总液管与排液管连通, 在 每个管状容器上部设置有除雾器, 除雾器由管子、 滤网和法兰盘组成, 管子一端插入管状容器内, 一端伸 出管状容器之外, 在内管设置有滤网, 在内管一侧底部开有进气口, 在内管另一侧上方开有出气口, 在外 管端部设置有法兰盘, 外管底部与回液管连通, 回液管与管状容器下部连通, 除雾器内管与管状容器壁倾 斜连接, 倾斜角度 a为 0°〜45°, 外管与管状容器壁垂直连接, 在其中一个外围管状容器上设置有翻板液 位计, 多管束旋流分离器通过排液管与液体流量计和电动排液阀连接, 多管束旋流分离器通过环形管和汇 管与 2〜30个孔板流量计并行连接, 孔板流量计节流件的前端和后端或前端为倒锥形孔板, 倒锥形孔板的 角度 α或 P为 40°〜160°, 在孔板流量计前端设置有压力变送器, 在孔板流量计上设置有差压变送器, 在 孔板流量计后端设置有温度传感器, 电动排液阀、 液体流量计、 翻板液位计、 孔板流量计、 压力变送器、 差压变送器、 温度传感器、 露点仪通过数据线与流量计算机连接, 本发明将多口气井用孔板流量计对天然 气进行两相流测量, 然后将所有计量后的单井天然气汇入多管束旋流分离器进行气液分离, 分离后的天然 气再经露点仪检测, 这样就实现了对每口井的实吋测量和分离, 测量范围宽, 测量精度高, 气液精度可达 ±1〜2%, 油含水达 ±3%, 具有重量轻、 体积小 、 分离效果好、 可根据天然气不同流量范围确定管束数量 以保证分离效果的特点, 安全可靠, 可广泛用于天然气井的实时测量和分离。
附图说明 图 1是本发明天然气计量分离装置结构示意图;
图 2是图 1的多管束旋流分离器主视图;
图 3是图 1的除雾器剖视图; 图 4是图 1的孔板流量计剖视图;
图 5是图 1的孔板流量计剖视图。
具体实施方式 下面结合图 1、 图 2、 图 3、 图 4和图 5对本发明天然气计量分离装置做进一步的说明, 它包括电动排液阀 1、 液体流量计 3、 压力变送器 2、 差压变送器 4、 温度传感器 6和流量计算机 12, 多管 束旋流分离器 8由 2〜100个管状容器组成, 每个外围管状容器在接近其顶部的一侧分别通过分流管 18与 环形管 19连通, 每个外围管状容器分别与 1个分流管 18切向连接, 在每个分流管 18上设置有阀门 17, 环形管 19与汇管 7连通, 每个管状容器顶部分别通过导气分管 26与总气管 20连通, 导气分管 26设置在 每个管状容器顶部中心位置, 其一端深入管状容器内部 lOmn!〜 100mm, 另一端与总气管 20连通, 在总气 管 20—端设置有排空阀 15, 总气管 20另与出气管 14连通, 在出气管 14上设置有露点仪 11, 每个管状 容器底部分别通过导液分管 27与总液管 21连通, 总液管 21与排液管 13连通, 在每个管状容器上部设置 有除雾器 10, 除雾器 10由管子、 滤网 23和法兰盘 25组成, 管子一端插入管状容器内, 一端伸出管状容 器之外, 在内管设置有滤网 23, 在内管一侧底部开有进气口 22, 在内管另一侧上方开有出气口 24, 在外 管端部设置有法兰盘 25, 外管底部与回液管 16连通, 回液管 16与管状容器下部连通, 除雾器 10内管与 管状容器壁倾斜连接, 倾斜角度 a为 0°〜45°, 外管与管状容器壁垂直连接, 在其中一个外围管状容器上 设置有翻板液位计 9, 多管束旋流分离器 8通过排液管 13与液体流量计 3和电动排液阀 1连接, 多管束旋 流分离器 8通过环形管 19和汇管 7与 2〜30个孔板流量计 5并行连接, 孔板流量计 5节流件的前端和后 端或前端为倒锥形孔板, 倒锥形孔板角度 α或 Ρ为 40°〜160°, 该结构具有自清洁功能, 确保节流件上、 下游不会出现液相累积, 而产生液相断续通过节流件的现象, 导致很大的附加阻力和差压波动, 影响测量 精度, 而且孔板厚度增加能有效避免孔板挠曲, 在孔板流量计 5前端设置有压力变送器 2, 在孔板流量计 5上设置有差压变送器 4, 在孔板流量计 5后端设置有温度传感器 6, 电动排液阀 1、 液体流量计 3、 翻板 液位计 9、 孔板流量计 5、 压力变送器 2、 差压变送器 2、 温度传感器 6、 露点仪 11通过数据线与流量计算 机 12连接, 可由流量计算机 12计算出单井中天然气标方流量及凝析液流量。

Claims

权 利 要 求 书
1、 天然气计量分离装置, 包括电动排液阀、 液体流量计、 压力变送器、 差压变送器、 温度传感器和 流量计算机, 其特征是多管束旋流分离器通过排液管与液体流量计和电动排液阀连接, 多管束旋流分离器 通过汇管与孔板流量计连接, 在孔板流量计前端设置有压力变送器, 在孔板流量计上设置有差压变送器, 在孔板流量计后端设置有温度传感器, 电动排液阀、 液体流量计、 孔板流量计、 压力变送器、 差压变送器、 温度传感器通过数据线与流量计算机连接。
2、 根据权利要求 1所述的天然气计量分离装置, 其特征是所述的多管束旋流分离器由 2〜100个管状 容器组成, 每个外围管状容器在接近其顶部的一侧分别通过分流管与环形管连通, 环形管与汇管连通, 每 个管状容器顶部分别通过导气分管与总气管连通, 总气管与出气管连通, 每个管状容器底部分别通过导液 分管与总液管连通, 总液管与排液管连通, 在每个管状容器上部设置有除雾器。
3、 根据权利要求 2所述的油水气三相流量自动测量装置, 其特征是所述的多管束旋流分离器的每个 外围管状容器分别与 1个分流管切向连接。
4、 根据权利要求 2或 3所述的油水气三相流量自动测量装置, 其特征是在所述的每个分流管上设置 有阀门。
5、 根据权利要求 2所述的油水气三相流量自动测量装置, 其特征是所述的导气分管设置在每个管状 容器顶部中心位置, 其一端深入管状容器内部 lOmn!〜 lOOnrai, 另一端与总气管连通。
6、 根据权利要求 2或 5所述的天然气计量分离装置, 其特征是在所述的总气管一端设置有排空阀。
7、 根据权利要求 2所述的油水气三相流量自动测量装置, 其特征是在所述的多管束旋流分离器中的 一个外围管状容器上设置有翻板液位计, 并通过数据线与流量计算机连接。
8、 根据权利要求 2所述的天然气计量分离装置, 其特征是在所述的出气管上设置有露点仪, 并通过 数据线与流量计算机连接。
9、 根据权利要求 2所述的天然气计量分离装置, 其特征是所述的除雾器由管子、 滤网和法兰盘组成, 管子一端插入管状容器内, 一端伸出管状容器之外, 在内管设置有滤网, 在内管一侧底部开有进气口, 在 内管另一侧上方开有出气口, 在外管端部设置有法兰盘, 外管底部与回液管连通, 回液管与管状容器下部 连通。
10、 根据权利要求 2或 9所述的天然气计量分离装置, 其特征是所述的除雾器内管与管状容器壁倾斜 连接, 外管与管状容器壁垂直连接。
11、 根据权利要求 10所述的天然气计量分离装置, 其特征是所述的除雾器内管与管状容器壁倾斜角 度 α为 0°〜45°。
12、 根据权利要求 1所述的天然气计量分离装置, 其特征是所述的孔板流量计通过汇管并行连接, 由 2〜30个孔板流量计组成。
13、 根据权利要求 1或 12所述的天然气计量分离装置, 其特征是所述的孔板流量计节流件的前端和 后端或前端为倒锥形孔板。
14、 根据权利要求 13所述的天然气计量分离装置, 其特征是所述的孔板流量计节流件的倒锥形孔板 角度 α或 β为 40°〜160°。
PCT/CN2011/070065 2010-01-07 2011-01-07 天然气计量分离装置 WO2011082678A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2786826A CA2786826C (en) 2010-01-07 2011-01-07 Metering and separating device for natural gas
US13/521,032 US9453747B2 (en) 2010-01-07 2011-01-07 Metering and separating device for natural gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010045502A CN101761327A (zh) 2010-01-07 2010-01-07 天然气计量分离装置
CN201010045502.8 2010-01-07

Publications (1)

Publication Number Publication Date
WO2011082678A1 true WO2011082678A1 (zh) 2011-07-14

Family

ID=42492695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070065 WO2011082678A1 (zh) 2010-01-07 2011-01-07 天然气计量分离装置

Country Status (3)

Country Link
CN (1) CN101761327A (zh)
CA (1) CA2786826C (zh)
WO (1) WO2011082678A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112878980A (zh) * 2021-03-24 2021-06-01 上海明罗石油天然气工程有限公司 多管束分离计量撬
CN117234169A (zh) * 2023-11-14 2023-12-15 山东辰升科技有限公司 一种基于大数据的自动化生产管理系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101761327A (zh) * 2010-01-07 2010-06-30 卢玖庆 天然气计量分离装置
CN108798628B (zh) * 2018-04-27 2021-06-15 成都理工大学 基于毛管力作用的气液分离计量装置
CN110307875A (zh) * 2019-07-26 2019-10-08 合肥哈工新能源科技有限公司 一种试气回收用数据处理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128962A (en) * 1997-07-28 2000-10-10 Texaco Inc. Three-phase fluid flow measurement system and method
WO2003033871A1 (en) * 2001-10-12 2003-04-24 Alpha Thames Ltd System and method for separating fluids
CN200979430Y (zh) * 2006-11-28 2007-11-21 卢玖庆 气、水、油两相三介质流量测量装置
CN101144732A (zh) * 2007-10-26 2008-03-19 卢玖庆 油水气三相流量自动测量方法及装置
CN201324672Y (zh) * 2008-10-31 2009-10-14 西安天相能源科技有限公司 高效旋流分离器
CN201330602Y (zh) * 2009-01-23 2009-10-21 卢玖庆 高黏度稠油流量测量装置
CN101761327A (zh) * 2010-01-07 2010-06-30 卢玖庆 天然气计量分离装置
CN201588625U (zh) * 2010-01-07 2010-09-22 卢玖庆 天然气计量分离装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128962A (en) * 1997-07-28 2000-10-10 Texaco Inc. Three-phase fluid flow measurement system and method
WO2003033871A1 (en) * 2001-10-12 2003-04-24 Alpha Thames Ltd System and method for separating fluids
CN200979430Y (zh) * 2006-11-28 2007-11-21 卢玖庆 气、水、油两相三介质流量测量装置
CN101144732A (zh) * 2007-10-26 2008-03-19 卢玖庆 油水气三相流量自动测量方法及装置
CN201324672Y (zh) * 2008-10-31 2009-10-14 西安天相能源科技有限公司 高效旋流分离器
CN201330602Y (zh) * 2009-01-23 2009-10-21 卢玖庆 高黏度稠油流量测量装置
CN101761327A (zh) * 2010-01-07 2010-06-30 卢玖庆 天然气计量分离装置
CN201588625U (zh) * 2010-01-07 2010-09-22 卢玖庆 天然气计量分离装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112878980A (zh) * 2021-03-24 2021-06-01 上海明罗石油天然气工程有限公司 多管束分离计量撬
CN117234169A (zh) * 2023-11-14 2023-12-15 山东辰升科技有限公司 一种基于大数据的自动化生产管理系统
CN117234169B (zh) * 2023-11-14 2024-03-08 山东辰升科技有限公司 一种基于大数据的自动化生产管理系统

Also Published As

Publication number Publication date
CN101761327A (zh) 2010-06-30
CA2786826C (en) 2014-10-14
CA2786826A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
US9468868B2 (en) Water removing device for extremely high water content three-phase flow, and measurement device and method for extremely high water content three-phase flow
CN107083950B (zh) 基于称重式单井计量装置的标定系统及其标定方法
US9114332B1 (en) Multiphase flow measurement apparatus utilizing phase separation
WO2011082678A1 (zh) 天然气计量分离装置
WO2009018694A1 (zh) 多相流计量方法以及采用该多相流计量方法的多相流质量流量计
CN107060729A (zh) 一种单井多相流计量装置
WO2020151080A1 (zh) 自励式湿气流量测量装置
CN201503284U (zh) 大口径油气水三相流量测量装置
CN200979430Y (zh) 气、水、油两相三介质流量测量装置
US9453747B2 (en) Metering and separating device for natural gas
CN206830162U (zh) 一种单井多相流计量装置
CN201885756U (zh) 差压式原油产量计量装置
CN204267020U (zh) 低渗透油藏单井产液撬装式计量装置
CN205858315U (zh) 一种气井井口气液两相计量装置
CN201908645U (zh) 孔板差压的天然气气液两相在线计量装置
CN206315553U (zh) 检测滤芯寿命的装置和净水器
CN202013214U (zh) 压差-微波式油气水三相流量计
CN204988392U (zh) 智能压差-微波式油气水三相流量计
CN109141563A (zh) 基于管内相分隔的z型天然气湿气实时测量装置和方法
CN201588625U (zh) 天然气计量分离装置
CN202064931U (zh) 管束式天然气流量标定装置
CN210798947U (zh) 单井原油三相流量计量装置
CN208075946U (zh) 一种油气水三相流量计
CN102587885A (zh) 一种井口原油产出计量装置及计量方法
CN203640716U (zh) 一种撬装式在线油气分离计量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13521032

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2786826

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 11731679

Country of ref document: EP

Kind code of ref document: A1