WO2011054168A1 - 一种复合材料杆塔及其制造工艺 - Google Patents

一种复合材料杆塔及其制造工艺 Download PDF

Info

Publication number
WO2011054168A1
WO2011054168A1 PCT/CN2010/000769 CN2010000769W WO2011054168A1 WO 2011054168 A1 WO2011054168 A1 WO 2011054168A1 CN 2010000769 W CN2010000769 W CN 2010000769W WO 2011054168 A1 WO2011054168 A1 WO 2011054168A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
composite
resin
outer layer
composite material
Prior art date
Application number
PCT/CN2010/000769
Other languages
English (en)
French (fr)
Inventor
谢佐鹏
Original Assignee
常熟风范电力设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常熟风范电力设备股份有限公司 filed Critical 常熟风范电力设备股份有限公司
Publication of WO2011054168A1 publication Critical patent/WO2011054168A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a composite pole tower, and more particularly to an insulated composite pole tower which can be used as an insulating support member for power lines, communication facilities, railway electrification, rail transit, and utilities and related fields.
  • 10KV distribution line insulation tower head which is characterized by: using a hydrophobic high-strength insulating rod, assembling with a connecting fitting and a pin insulator to form an insulating tower head; or directly connecting with a hydrophobic high-strength insulating rod. The fittings are assembled to form an insulated tower head. There is no corresponding introduction to the high-strength insulating rod of the hydrophobic type itself.
  • the name “new composite electric pole” is a new type of electric pole composited with glass fiber and polyurethane, including a hollow rod body, which is a glass fiber strand impregnated with polyester ester.
  • the winding body around the shaft, the glass fiber strands impregnated with polyurethane are composed of an inner layer of glass fiber layer, a middle layer of aromatic polyurethane layer and an outer layer of aliphatic polyurethane layer from the inside to the outside, and the three layers of the polyurethane are cured as a whole.
  • the object of the present invention is to disclose a composite material tower which has high strength, good insulation performance, and composite protection by high-strength body and weather resistant resin with strong ultraviolet resistance and super weather resistance, waterproof, flame retardant and low surface.
  • the coating of fluorine and fluoropolymer with characteristics makes the composite tower have a series of excellent properties such as insulation, high strength, UV resistance, weather resistance, water repellency, flame retardancy, non-stick self-cleaning, especially suitable for outdoor long-term use.
  • the technical solution of the present invention is a composite material tower comprising a body, a first outer layer and a second outer layer disposed outside the body, and a foam filler disposed in the body, the body comprising resin and insulation a composite material of fibers, wherein the first outer layer is a composite material comprising a weather resistant resin and an insulating fiber, the second outer layer is a fluorine or fluorine polymer, the body, the first outer layer, the first The outer layer and the foam filling in the body constitute a composite pole.
  • the body is a composite material of epoxy resin and glass fiber.
  • the weather resistant resin is an alicyclic epoxy resin.
  • the foam filler is an insulated closed cell foam.
  • the composite pole tower is used as a tower in electric power, communication, railway electrification, rail transit, and utility; the tower is a whole tower or a crossarm or a tower; or a tower, Different combinations between crossarms and tower heads.
  • Another object of the present invention is to provide a method of manufacturing a composite rod tower.
  • Can produce High-insulation, high-strength, UV-resistant composite towers are especially suitable for outdoor use.
  • a manufacturing process for a composite pole tower comprising:
  • the insulating fiber impregnated with the weather resistant resin is continuously wound on the outer side of the composite rod tower body to form a first outer layer of the composite material tower;
  • the pre-designed temperature and time are required to be heated and solidified
  • plastic foam filled with closed cells in a composite rod tower Also included is a plastic foam filled with closed cells in a composite rod tower
  • the insulating fibers are glass fibers.
  • the resin is an epoxy resin.
  • the weather resistant resin is an alicyclic epoxy resin.
  • the auxiliary material comprises a curing agent, a promoter, a filler and a pigment.
  • the composite material column disclosed by the invention has a UV-resistant or fluorine-containing polymer and a weather-resistant resin as a part of the raw material, so that the ultraviolet ray resistance is greatly improved, and the water is hydrophobic, and it is difficult to be used in an outdoor long-time environment. Aging, internally filled with lightweight insulation, makes the composite tower lighter and, in addition, improves the overall insulation level of the composite tower.
  • FIG. 1 is a schematic view of a composite crucible in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for manufacturing a composite material tower according to a preferred embodiment of the present invention.
  • the composite material tower disclosed in the invention can be applied to various products such as a street light pole, a red light pole, an electronic monitor pole, a tower of a power transmission and distribution power system, a pole tower, a whole tower and a cross arm, and the tower is used in this embodiment.
  • the invention is not limited thereto, but the scope of protection of the present invention is based on the scope of protection of the claims.
  • the cross section of the composite material column in this embodiment is circular, but the present invention is not limited thereto, and may be an elliptical shape, a square shape, a polygonal shape or a related shape.
  • the body 1 , the first outer layer 2, the second outer layer 3 and the filling layer 4 are included in the composite rod tower.
  • the body 1 is composed of a composite material of a resin and an insulating fiber.
  • the resin is preferably an epoxy resin, but may be other resins such as phenol resin and polyurethane resin.
  • the insulating fibers are preferably glass fibers, especially E fibers in glass fibers, but may also be basalt fibers.
  • the first outer layer 2 is composed of a composite material of a weather resistant resin and an insulating fiber, wherein the weather resistant resin is preferably an alicyclic epoxy resin, but may also be a fluorine modified epoxy resin or a phenolic modified ring. Oxygen resin can also act as an anti-ultraviolet light.
  • the insulating fiber in this embodiment is also preferably a class E glass fiber, but other materials such as basalt fiber can also be used.
  • the weather resistant resin herein is preferably an alicyclic epoxy resin.
  • the alicyclic epoxy resin does not contain a benzene ring in its molecular structure, and has good weather resistance and resistance to ultraviolet radiation.
  • the thermal stability of the alicyclic epoxy resin is good: due to the alicyclic epoxy
  • the epoxy group of the resin is directly attached to the alicyclic ring, which can form a tight rigid molecular structure.
  • the crosslink density increases, so the heat distortion temperature is relatively high, and Martin heat resistance can reach 190. Above C, the thermal decomposition temperature is greater than 360'C. The curing shrinkage rate is small and the tensile strength is high.
  • the alicyclic epoxy resin does not contain chlorine or sodium ions during the synthesis process, the alicyclic epoxy tree
  • the grease has good dielectric properties, and it is superior to bisphenol A epoxy resin in terms of specific resistance or dielectric loss tangent.
  • the alicyclic epoxy resin has a relatively small viscosity, and therefore, it is convenient to carry out the work of casting and pressing the workpiece, which is especially important when processing large parts.
  • the cycloaliphatic epoxy resin has a greater reactivity with respect to organic acids and anhydrides than with amines. Therefore, it can be sufficiently cured in an acidic curing agent. This avoids the use of highly toxic, volatile amines that are safer for operators.
  • an organic insulator made of an alicyclic epoxy resin is substituted for ceramic products, cement and steel products in an outdoor unit.
  • ceramics Compared with ceramics, it has the advantages of light weight, small volume, good impact resistance, and can be economically made into products of different sizes and shapes. These products can meet the requirements of good thermal shock resistance, high heat distortion temperature, and excellent critical electrical characteristics.
  • the second outer layer 3 of the composite rod column is made of a fluorine or fluorine polymer because the fluorine or fluorine polymer has excellent electrical insulation, high weather resistance, ultraviolet radiation resistance, high chemical stability, moisture resistance and water repellency. Low surface energy and low coefficient of friction, non-stickiness and stain resistance.
  • the filling layer 4 is filled with an insulating foam material.
  • it is preferably filled with a closed-cell insulating foam, or may be filled with oil or SF6 gas, but the latter two require relatively strict sealing.
  • the insulating foam itself is lighter in weight and the cost is also acceptable.
  • the insulating resin S1 impregnated with the resin is first placed in the resin tank, and the insulating fiber is passed through the yarn separator and passed through the resin tank.
  • the insulating fiber is impregnated with the resin in the resin tank, and then wound by the yarn collecting device on the winding device.
  • the winding device is provided with a mandrel, and the insulating resin impregnated with the resin is wound by a mandrel of the winding device, and after being wound to a certain extent, the body 1 of the composite rod tower is formed.
  • the winding here has the requirements of thickness and length, that is, the length of the composite tower and the thickness of the body. The thickness and length requirements vary depending on the application.
  • the resin is preferably epoxy
  • the resin may be other phenolic resin or the like.
  • the insulating fiber herein is preferably a glass E fiber, but may be a basalt fiber or the like.
  • the mandrel rods herein can be of different shapes, so that the shape of the resulting composite rod tower can be varied.
  • the insulating fiber S2 impregnated with the weather resistant resin is wound to form the body 1 of the composite rod tower, and then the insulating fiber and the formed body 1 are successively wound out, and wound on the body 1 outside the core of the winding device.
  • the weather resistant resin is placed in the resin tank, and therefore, the insulating fiber impregnated with the weather resistant resin is wound here.
  • the weather resistant resin herein is preferably an alicyclic epoxy resin, and the weather resistant resin is classified into two types, thermosetting and thermoplastic, and is not limited thereto, and may be a fluororesin or a novolac epoxy resin.
  • the weather resistant resin also penetrates into the insulating fibers to form the first outer layer 2.
  • the member is cured by heating, and the member obtained through the above steps is heated and solidified. After curing, the obtained member is integrated and subjected to secondary curing.
  • the secondary curing (or post-curing) time is related to the curing temperature condition.
  • the curing time is about 3 hours at a curing temperature of 45 ° C to 50 ° C; and the curing temperature is 60 ° C.
  • the curing time is about 2 hours; at the curing temperature of 10 (rC ⁇ 120 ° C, the curing time is about 2 hours; at the curing temperature of 140 ° C ⁇ 160 ° C, the curing time) It takes about 2 hours. Then it is naturally cooled to normal temperature to complete the curing process.
  • the temperature rise procedure can also be adjusted according to the weather conditions at the time, such as air humidity, temperature, product thickness, etc. Then, the mandrel is extracted to form an intermediate product.
  • the polished and fluorine- or fluorine-containing compound S4 is cured to form an intermediate product, and then polished and polished on the outer surface of the first outer layer 2 of the intermediate product, and the polished surface is coated with a fluorine or fluorine polymer. Forming a second outer layer 3.
  • the coating thickness can be determined.
  • the coating can be primed, topcoated, and the primer can also be coated with a weatherable coating with a base resin. Reduce the amount of fluorine and fluoropolymer and reduce costs.
  • the topcoat must be a polymer of fluorine and fluorine. The topcoat can be applied twice or twice, or multiple times.
  • the step of filling the insulating material S5 may be performed after the polishing and polishing of the fluorine- or fluorine-containing compound S4, or before the step, the filling of the insulating material S5 may be performed.
  • an auxiliary material which includes an appropriate amount of a curing agent, a promoter, a filler, and a pigment, and a material such as a flame retardant may be appropriately added, depending on actual needs and applications. set.
  • the composite rod tower made here is circular or nearly circular, but the same method can be used to make a composite rod with an elliptical or square or polygonal cross section, but the mandrel used for winding.
  • the shape is different.
  • the mandrel on the winding device can also be shaped, such as different thicknesses of the mandrel, to make other desired composite towers.
  • the composite material column can also be fabricated by dry winding.
  • the following is a brief introduction.
  • the insulating fiber is impregnated with the resin and then dried to form a composite material of the semi-cured insulating fiber and the resin, which is softened and then entangled after heating.
  • the foam filling is filled in the body to form a filling layer 4.
  • the composite material tower made by the embodiment of the invention can be made according to the design requirements, or can be made of composite rod towers of different diameters or sizes, and then the matched composite material towers can be assembled again, such as a set or flange fixing. Connected to make a relatively tall tower or a thick, thin tower above.
  • the composite material column disclosed by the present invention has a fluorine-resistant or fluorine-resistant polymer and a weather-resistant resin as a part of the composition of the tower, so that the ultraviolet ray resistance is greatly improved, and the water-repellent property and the self-cleaning ability are strong.
  • the interior is filled with lightweight insulating materials, which makes the composite tower light in weight and, in addition, improves the overall insulation level of the composite tower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

一种复合材料杆塔及其制造工艺 技术领域
本发明涉及一种复合材料杆塔, 尤其涉及一种绝缘复合材料杆塔, 可以作 为电力线路、 通讯设施, 铁路电气化, 轨道交通及公共事业及相关领域的绝缘 支撑构件。
背景技术
目前, 各个领域使用的传统杆塔、 如输配电线路的铁塔, 通讯杆塔, 铁路 电气化杆塔, 都是釆用钢筋混凝土或者钢铁制成, 不仅重量重, 而且这些杆塔 都是导体, 容易产生诸如雷电、 大风、 污秽、 冰雪、 盐雾等恶劣天气引起的运 行事故。 通讯杆塔由于屏蔽作用还会产生微波紊乱, 影响通讯质量。 铁路电气 化传统杆塔的杂散电流还会造成对铁轨的腐蚀, 等等。 所有的短缺都将通过复 合材料杆塔的绝缘特性得到克服。
目前也有一些技术, 公开了采用复合材料制作电力杆塔或者类似产品, 但 是有的技术公开不够充分, 如中国专利 "200710168533. 0" , 名称为 "10KV配电 线路绝缘塔头", 公开了一种 10KV配电线路绝缘塔头,其特征在于:采用憎水型 高强度绝缘棒,用连接金具与针式绝缘子进行组装,形成一个绝缘塔头整体;或 采用憎水型高强度绝缘棒直接与连接金具进行组装,形成一个绝缘塔头整体。 对 于憎水型高强度绝缘棒本身没有相应的介绍。
也有的技术, 在应用中存在抗紫外线能力差, 没有绝缘功能等缺陷。 如中 国专利 "00131910. 8" , 名称为 "一种用复合材料制作的电力杆塔" 的专利申请 所公开的一种用复合材料制作的电力杆塔,其特征是按照下述主要成份及重量 比选取:聚酯树脂或环氧树脂或酚 树脂 40-60份,玻璃纤维或碳纤维 40-60份, 瓷粉或石英粉或轻质碳酚钙 9-11份,颜料 5-7份,阻燃剂 6-10份,防老化剂 3-5 份,固化剂 3-5份。不仅没有抗紫外线功能,而且碳纤维是导体不具有绝缘功能, 故而其公开的电力杆塔不具备绝缘效果, 并且碳纤维成本非常高, 实际应用中
1
确认本 不具备普遍推广的价值。
此外, 如中国专利 "200620072440. 9" , 名称为 "新型复合电杆"所公开的, 是一种玻璃纤维与聚氨酯复合的新型电杆,包括中空杆体,杆体是浸渍聚氛酯的 玻璃纤维股绕轴的缠绕体,所述浸渍聚氨酯的玻璃纤维股由内到外依次是内层 玻璃纤维层、 中层芳香族聚氨酯层、 外层脂肪族聚氨酯层构成,聚氨酯固化后三 层结为一整体。
发明内容
本发明的目的是揭示一种复合材料杆塔, 本身强度高, 绝缘性能好, 并且 通过高强度本体和具备强抗紫外线能力的耐候性树脂的复合保护及具有超耐 候、 防水、 阻燃、 低表面能特性的氟和氟聚合物的涂敷, 使复合材料杆塔具有 绝缘、 高强度、 抗紫外线、 耐天候、 憎水、 阻燃、 不粘自洁等一系列优异特性, 尤其适合户外长久使用。
本发明的技术方案是, 一种复合材料杆塔, 包括本体, 置于本体外的第一 外层和第二外层, 以及置于本体内的泡沫填充物, 所述的本体为包括树脂与绝 缘纤维的复合材料, 所述的第一外层为包括耐候性树脂与绝缘纤维的复合材料, 所述的第二外层为氟或氟的聚合物, 所述的本体、 第一外层、 第二外层和本体 内的泡沫填充物构成复合材料杆塔。
在本发明一个较佳实施例中, 所述的本体为环氧树脂及玻璃纤维的复合材 料。
在本发明一个较佳实施例中, 所述的耐候性树脂为脂环族环氧树脂。
在本发明一个较佳实施例中, 所述的泡沫填充物为绝缘的闭孔泡沫塑料。 在本发明一个较佳实施例中, 所述的复合材料杆塔用作电力、 通讯、 铁路 电气化、 轨道交通及公用设施中的杆塔; 该杆塔是整塔或者横担或者塔头; 或 者塔杆、 横担与塔头之间的不同组合。
本发明的另一目的还在于提供一种复合材料杆塔的制造方法。 可以生产出 高绝缘性能、 高强度、 抗紫外线能力强的复合材料杆塔, 尤其适合户外使用。 一种复合材料杆塔的制造工艺, 包括:
将绝缘纤维浸渍树脂缠绕在预制的模具上, 达到设计要求的壁厚与长度, 形成复合材料杆塔的本体;
再在复合材料杆塔本体的外面继续缠绕浸渍耐候性树脂的绝缘纤维, 形成 复合材料杆塔的第一外层;
复合材料杆塔第一外层成形后, 安照预先设计的温度和时间对应要求进行 加温固化;
再在固化后的复合材料杆塔外面打磨抛光, 涂敷氟或氟的聚合物, 形成复 合材料杆塔的第二外层;
还包括在复合材料杆塔内填充闭孔的塑料泡沫;
所述的树脂或者耐候性树脂浸渍绝缘纤维的过程中, 需添加辅助材料。 在本发明一个较佳实施例中, 所述的绝缘纤维为玻璃纤维。
在本发明一个较佳实施例中, 所述的树脂为环氧树脂。
在本发明一个较佳实施例中, 所述的耐候性树脂为脂环族环氧树脂。 在本发明一个较佳实施例中, 所述的辅助材料包括固化剂、 促进剂、 填料 和颜料。
本发明揭示的复合材料杆塔, 由于采用了氟或氟的聚合物以及耐候性树脂 作为原料的一部分, 所以抗紫外线能力得到极大的提高, 并且憎水, 在户外长 时间使用的环境下, 不易老化, 内部填充轻质的绝缘材料, 使得复合材料杆塔 重量轻, 此外, 提高了复合材料杆塔整体绝缘水平。 附图说明
附图 1为本发明较佳实施例中复合材料扞塔的示意图;
附图 2为本发明较佳实施例中复合材料杆塔制造方法的流程示意图。
本体 1 , 第一外层 2, 第二外层 3, 填充层 4。 具体实施方式 下面结合附图对本发明的较佳实施例进行详细阐述, 以使本发明的优点和 特征能更易于被本领域技术人员理解, 从而对本发明的保护范围做出更为清楚 明确的界定。
本发明揭示的一种复合材料杆塔, 可以应用在路灯杆、 红绿灯杆、 电子监 控杆、 输配电电力系统的塔头、 杆塔、 整塔及横担等各个产品上, 本实施例中 以杆塔为示例来说明, 但本发明并不是以此为限, 本发明的保护范围以权利要 求的保护范围为准。
如图 1所示, 本实施例中的复合材料杆塔截面呈圓形, 但是本发明并不限 于此, 可以是椭圆形、 方形、 多边形或者相关形状。 在复合材料杆塔中包括本 体 1 , 第一外层 2, 第二外层 3和填充层 4。 其中的本体 1由树脂和绝缘纤维的 复合材料组成, 本实施例中, 树脂优选为环氧树脂, 但也可以为其他如酚 树 脂、 聚氨酯树脂等。 绝缘纤维优选为玻璃纤维, 尤其是玻璃纤维中的 E类纤维, 但也可以是玄武岩纤维。
在本实施例中, 第一外层 2由耐候性树脂和绝缘纤维的复合材料组成, 其 中耐候性树脂优选脂环族环氧树脂, 但也可以是氟改性环氧树脂或酚醛改性环 氧树脂, 同样可以起到抗紫外线的作用。 本实施例中的绝缘纤维还是优选 E类 玻璃纤维, 但同样可以采用其他如玄武岩纤维。
由于脂环族环氧树脂具有以下优异性能, 所以此处的耐候性树脂优选脂环 族环氧树脂。
脂环族环氧树脂的分子结构中不含苯环, 具有良好的耐侯性能和抗紫外辐 射。
因为脂环族环氧树脂分子结构中的环氧基不是来自环氧丙烷, 环氧基直接 连接在脂环上, 所以, 脂环族环氧树脂的热稳定性良好: 由于脂环族环氧树脂 的环氧基直接连接在脂环上, 能形成紧密的刚性分子结构, 固化后交联密度增 大, 因而热变形温度比较高, 马丁耐热可以达到 190。C以上, 热分解温度大于 360'C。 固化收缩率小, 拉伸强度高。
由于脂环族环氧树脂合成的过程中不含氯、 钠等离子, 因此脂环族环氧树 脂都具有良好的介电性能, 无论是从比电阻还是从介电损耗角正切值看, 均较 双酚 A型环氧树脂为优。
脂环族环氧树脂的粘度都比较小, 因此, 在浇注和压制制件时作业较方便, 这一点, 尤其是对大部件的制件加工时, 更显得重要。
脂环族环氧树脂对有机酸和酸酐的反应活性比对胺类的反应活性大。 因此, 在酸性固化剂中便能充分固化。 这样一来就避免了使用毒性大、 挥发性大的胺 类固化则, 对操作人员比较安全。
在本发明实施例中, 由包含脂环族环氧树脂制造的有机绝缘体来代替户外 装置中的陶瓷制品、 水泥及钢铁制品。 与陶瓷相比, 它具有重量轻、 体积小, 抗冲击性好等优点, 而且可以较经济地制成大小、 形状各异的产品。 这类产品 可以同时满足热沖击电阻良好、 热变形温度高、 临界电气特性优良的要求。
复合材料杆塔的第二外层 3采用氟或氟的聚合物, 因为氟或氟的聚合物具 有优良的电绝缘性、 超高耐候性、 抗紫外线辐照、 高化学稳定性、 抗湿防水性、 低表面能和低摩擦系数、 不粘性和抗沾污性。
填充层 4是采用绝缘泡沫材料进行填充, 本发明实施例中, 优选采用闭孔 的绝缘泡沫塑料进行填充, 也可以采用油或者 SF6气体进行填充, 但是后两者 对于密封的要求相对更为严格, 而绝缘泡沫塑料本身质量比较轻, 成本也在可 接受范围。
请参见附图 2, 此处示意了复合材料杆塔的制造工艺, 分别有以下几个步骤 组成。
缠绕浸渍树脂的绝缘纤维 S1 , 首先把树脂置于树脂槽, 将绝缘纤维经过分 纱器后通过树脂槽, 绝缘纤维经过树脂槽中树脂的浸渍后, 再通过缠绕设备上 的集纱器进行卷绕, 所述的缠绕设备设置有芯棒, 由缠绕设备的芯棒将上述浸 渍树脂的绝缘纤维进行卷绕工作, 待缠绕到一定程度后, 就形成了复合材料杆 塔的本体 1。此处的缠绕有厚度和长度的要求, 也即复合材料杆塔的长度以及本 体的厚度, 根据不同的应用场合, 厚度及长度要求各不相同。 由于树脂是以液 体形态浸入绝缘纤维中, 因此树脂会渗透入绝缘纤维内。 此处的树脂优选环氧 树脂, 但也可以是其他如酚醛树脂等, 此处的绝缘纤维优选为 E类玻璃纤维, 但也可以是玄武岩纤维等。 此处的芯棒可以采用不同形状, 从而制造出来的最 终的复合材料杆塔的形状也可以各种各样。
缠绕浸渍耐候性树脂的绝缘纤维 S2 , 形成复合材料杆塔的本体 1以后, 继 续以此绝缘纤维和形成的本体 1为^出, 在缠绕设备芯棒外的本体 1上进行卷 绕。 此处树脂槽内放置的是耐候性树脂, 因此此处卷绕的是浸渍过耐候性树脂 的绝缘纤维。 此处的耐候性树脂优选为脂环族环氧树脂, 耐候性树脂分为热固 性和热塑性两种, 此处并不限制, 也可以是氟环氧树脂或酚醛环氧树脂。 耐候 性树脂同样会渗透入绝缘纤维里面, 形成第一外层 2。
加温固化 S3, 对经过上述步骤后制成的构件进行加温固化, 经过固化后, 得到的构件是一体的, 并进行二次固化。 二次固化(或称后固化) 时间与固化 温度条件有关, 本实施例中, 在固化温度为 45 °C~50°C条件下, 固化时间在 3小 时左右; 在固化温度为 60°C~80°C条件下, 固化时间在 2小时左右; 在固化温度 为 10(rC~120°C条件下, 固化时间为 2小时左右; 在固化温度为 140°C~160°C条 件下, 固化时间为 2小时左右。 然后自然降温至常温, 完成固化程序。 但是也 可以根据当时天气状况, 如: 空气湿度、 温度、 产品厚度等条件调节温升程序。 然后, 抽出芯棒, 形成中间品。
打磨抛光并涂氟或氟的化合物 S4 , 经过固化后, 形成了中间品, 然后, 在 中间品的第一外层 2外面进行打磨抛光, 在经过抛光后的表面涂上氟或氟的聚 合物, 形成第二外层 3。 才艮据产品应用当地的天候、 气温、 污秽等級及太阳光照 的强弱确定涂层厚度, 涂层可以底涂、 面涂, 底涂也可以采用和基体树脂附着 力好的耐候性涂料, 以降低氟和氟聚合物的用量, 降低成本。 但面涂必须是氟 和氟的聚合物。 面涂可以一遍二遍, 也可以多遍。
填充绝缘材料 S5, 在本体内部再填充绝缘材料, 比如闭孔的绝缘泡沫塑料 或者油等绝缘材料, 形成填充层 4, 制成复合材料杆塔, 然后进行检测和试验, 看制成的复合材料杆塔是否合格, 尤其在绝缘性能等方面。 如果是填充了油或 者 SF6等, 则还需要将复合材料杆塔两端的端口进行密封, 以防止 SF6或者油 的泄漏。 此处的填充绝缘材料 S5的步骤, 可以设置在打磨抛光并涂氟或氟的化 合物 S4之后, 也可以设置在此步骤之前, 先进行填充绝缘材料 S5。
在绝缘纤维浸渍树脂或者耐候性树脂的过程中, 需要添加辅助材料, 辅助 材料包括适量的固化剂、 促进剂、 填料和颜料, 也可以适当添加阻燃剂等材料, 视实际的需求和应用而定。
此处制成的复合材料杆塔截面是圆形或接近于圆形的, 但是同样可以采用 上述方法, 制成截面为椭圓形或方形或多边形的复合材料杆塔, 只不过缠绕时 采用的芯棒形状不同而已。 此外, 缠绕设备上的芯棒也可以采用异形的, 比如 芯棒上下不同粗细等, 从而制造成其他所需要的复合材料杆塔。
此外, 还可以采用干法缠绕制作复合材料杆塔, 下面简单的进行介绍, 将 绝缘纤维浸渍树脂, 然后进行烘干, 形成半固化状态的绝缘纤维与树脂的复合 材料, 经过加热后软化, 再缠绕在芯棒上, 形成复合材料杆塔的本体 1; 将绝缘 纤维浸渍耐候性树脂, 然后进行烘干, 形成半固化状态的绝缘纤维与耐候性树 脂的复合材料, 经过加热软化后, 再缠绕在芯棒外的本体 1上, 形成复合材料 杆塔的第一外层 2, 然后经过加温固化, 在第一外层进行打磨抛光处理, 涂覆氟 或氟的聚合物, 形成第二外层 3, 在本体内填充泡沫填充物, 形成填充层 4。
本发明实施例制成的复合材料杆塔, 其长度可以按照设计需要进行制作, 或者可以制作不同直径或者尺寸的复合材料杆塔, 然后将相配套的复合材料杆 塔再次进行组装, 比如套装或者法兰固定连接, 从而制成比较高的杆塔或者下 面粗、 上面细的杆塔等。
本发明揭示的复合材料杆塔, 由于采用了氟或氟的聚合物以及耐候性树脂 作为杆塔组成的一部分, 所以抗紫外线能力得到极大的提高, 并且憎水, 不粘 自清洁的能力强。 在户外长时间使用的环境下, 不易老化, 内部填充轻质的绝 缘材料, 使得复合材料杆塔重量轻, 此外, 提高了复合材料杆塔整体绝缘水平。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本领域的技术人员在本发明所揭露的技术范围内, 可不经过创造 性劳动想到的变化或替换, 都应涵盖在 发明的保护范围之内。 因此, 本发明 的保护范围应该以权利要求书所限定的保护范围为准。

Claims

1、 一种复合材料杆塔, 包括本体, 置于本体外的第一外层和第二外层, 以 及置于本体内的泡沫填充物; 其特征在于, 所述的本体为包括树脂与绝缘纤维 的复合材料, 所述的第一外层为包括耐候性树脂与绝缘纤维的复合材料, 所述 的第二外层为氟或氟的聚合物, 所述的本体、 第一外层、 第二外层和本体内的 泡沫填充物构成复合材料杆塔。
2、 根据权利要求 1所述的复合材料杆塔, 其特征在于, 所述的本体为环氧 树脂及玻璃纤维的复合材料。
3、 根据权利要求 2所述的复合材料杆塔, 其特征在于, 所述的耐候性树脂 为脂环族环氧树脂。
4、 根据权利要求 3所述的复合材料杆塔, 其特征在于, 所述的泡沫填充物 是闭孔的塑料泡沫。
5、 根据权利要求 1〜4之一所述的复合材料杆塔, 其特征在于, 所述的复合 材料杆塔用作电力、 通讯、 铁路电气化、 轨道交通及公用设施中的杆塔; 该杆 塔是整塔或者横担或者塔头; 或者塔杆、 横担与塔头之间的不同组合。
6、 一种复合材料杆塔的制造工艺, 包括:
将绝缘纤维浸渍树脂缠绕在预制的模具上, 达到设计要求的壁厚与长度, 形成复合材料杆塔的本体;
再在复合材料杆塔本体的外面继续缠绕浸渍耐候性树脂的绝缘纤维, 形成 复合材料杆塔的第一外层;
复合材料杆塔第一外层成形后, 安照预先设计的温度和时间对应要求进行 加温固化;
再在固化后的复合材料杆塔外面打磨抛光, 涂敷氟或氟的聚合物, 形成复 合材料杆塔的第二外层;
还包括在复合材料杆塔内填充闭孔的塑料泡沫;
所述的树脂或者耐候性树脂浸渍绝缘纤维的过程中, 需添加辅助材料。
7、 根据权利要求 6所述的复合材料杆塔的制造方法, 其特征在于, 所述的 绝缘纤维为玻璃纤维。
8、 根据权利要求 7所述的复合材料杆塔的制造方法, 其特征在于, 所述的 树脂为双酚 A环氧树脂。
9、 根据权利要求 8所述的复合材料杆塔的制造方法, 其特征在于, 所述的 耐候性树脂为脂环族环氧树脂。
10、 根据权利要求 6所述的复合材料杆塔的制造方法, 其特征在于, 所述 的辅助材料包括固化剂、 进剂、 填料和颜料。
PCT/CN2010/000769 2009-11-06 2010-06-01 一种复合材料杆塔及其制造工艺 WO2011054168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910209876 CN101718150B (zh) 2009-11-06 2009-11-06 一种复合材料杆塔及其制造工艺
CN200910209876.6 2009-11-06

Publications (1)

Publication Number Publication Date
WO2011054168A1 true WO2011054168A1 (zh) 2011-05-12

Family

ID=42432781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000769 WO2011054168A1 (zh) 2009-11-06 2010-06-01 一种复合材料杆塔及其制造工艺

Country Status (2)

Country Link
CN (1) CN101718150B (zh)
WO (1) WO2011054168A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183094A1 (en) * 2008-06-30 2011-07-28 Bo Blomqvist Unstayed composite mast

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075044B (zh) * 2013-01-25 2014-12-10 合肥海银杆塔有限公司 一种复合材料电力线杆及其制备方法
CN105625791A (zh) * 2016-03-04 2016-06-01 赵欣 一种涂覆型复合材料杆塔及其制备方法
CN106437276B (zh) * 2016-08-31 2018-12-28 国网浙江省电力公司台州供电公司 一种带相色的复合材料配电网横担
CN108843105B (zh) * 2018-07-02 2020-04-14 合肥海银杆塔有限公司 一种复合材料杆塔用塔节连接结构
CN111894331B (zh) * 2020-08-13 2021-06-15 江苏奇一科技有限公司 一种热塑复合材料杆塔的制备方法
CN113352650B (zh) * 2021-04-26 2022-05-31 江苏融至新材料有限公司 一种晶须复合物材料智慧塔杆的生产工艺
CN114412268A (zh) * 2021-12-31 2022-04-29 浙江华保电力科技股份有限公司 一种增强型无伞硬质复合绝缘横担

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB812414A (en) * 1954-12-24 1959-04-22 Gar Wood Ind Inc Supporting members such as telephone poles
US3013584A (en) * 1955-03-28 1961-12-19 Gar Wood Ind Inc Supporting members
JPH03279995A (ja) * 1990-03-29 1991-12-11 Three Bond Co Ltd 貼紙防止用シート材
WO1997037093A1 (en) * 1994-12-08 1997-10-09 Greene Robert H Composite filled hollow structure
CN2898202Y (zh) * 2006-04-13 2007-05-09 远东复合技术有限公司 新型复合电杆
CN2929921Y (zh) * 2006-04-12 2007-08-01 谢佐鹏 一种复合绝缘横担

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2534296Y (zh) * 2002-03-15 2003-02-05 济南大学 一种纤维增强塑料电线杆
JP2006320884A (ja) * 2005-05-20 2006-11-30 Banbi Inc 耐久性と機能性に優れたエフ・アール・ピー・ポール製品及びその製造法
CN101294455B (zh) * 2007-04-24 2010-09-22 常熟风范电力设备股份有限公司 一种绝缘电线杆及其加工工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB812414A (en) * 1954-12-24 1959-04-22 Gar Wood Ind Inc Supporting members such as telephone poles
US3013584A (en) * 1955-03-28 1961-12-19 Gar Wood Ind Inc Supporting members
JPH03279995A (ja) * 1990-03-29 1991-12-11 Three Bond Co Ltd 貼紙防止用シート材
WO1997037093A1 (en) * 1994-12-08 1997-10-09 Greene Robert H Composite filled hollow structure
CN2929921Y (zh) * 2006-04-12 2007-08-01 谢佐鹏 一种复合绝缘横担
CN2898202Y (zh) * 2006-04-13 2007-05-09 远东复合技术有限公司 新型复合电杆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183094A1 (en) * 2008-06-30 2011-07-28 Bo Blomqvist Unstayed composite mast

Also Published As

Publication number Publication date
CN101718150B (zh) 2013-01-30
CN101718150A (zh) 2010-06-02

Similar Documents

Publication Publication Date Title
WO2011054168A1 (zh) 一种复合材料杆塔及其制造工艺
WO2011054167A1 (zh) 一种复合材料杆塔及其制造工艺
CN2929921Y (zh) 一种复合绝缘横担
CN101718149A (zh) 一种复合材料杆塔及其制造工艺
CN102074323A (zh) 一种新型绝缘横担及其制造工艺
CN201695734U (zh) 一种复合材料杆塔
CN102110503B (zh) 一种空芯支柱复合绝缘子内伞裙的制备工艺
CN106183893B (zh) 应用于铁道接触网的整体复合绝缘腕臂的制造装置及工艺
Chen Glass fiber‐reinforced polymer composites for power equipment
CN203055570U (zh) 全复合化变电站用复合绝缘子
CN101718152A (zh) 一种复合材料杆塔及其制造工艺
CN109036808A (zh) 一种空心电抗器复合绝缘结构
CN202000722U (zh) 一种复合材料杆塔
CN103821402A (zh) 一种电线杆架线用横担
CN104103386B (zh) 一种复合支柱绝缘子的制备方法
CN101832050A (zh) 一种复合材料杆塔及其制造工艺
CN102312598B (zh) 一种异型复合材料型材
KR20120018473A (ko) 가공선
CN101567238B (zh) 直流棒形支柱瓷绝缘子
CN102220817B (zh) 一种新型复合材料型材及输变电塔
CN107134327B (zh) 一种防污耐磨高强度绝缘子及其制备方法
CN201598869U (zh) 一种复合材料杆塔
CN105741988B (zh) 一种用于大吨位的复合绝缘子芯棒的制造设备和生产工艺
CN205645376U (zh) 一种高性能碳纤维复合加强芯铝型线架空电缆
CN201560607U (zh) 一种新型绝缘横担

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10827782

Country of ref document: EP

Kind code of ref document: A1