WO2011054126A1 - 自适应隐性反馈方法和用户设备 - Google Patents

自适应隐性反馈方法和用户设备 Download PDF

Info

Publication number
WO2011054126A1
WO2011054126A1 PCT/CN2009/001218 CN2009001218W WO2011054126A1 WO 2011054126 A1 WO2011054126 A1 WO 2011054126A1 CN 2009001218 W CN2009001218 W CN 2009001218W WO 2011054126 A1 WO2011054126 A1 WO 2011054126A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
information
mimo
pmi
base station
Prior art date
Application number
PCT/CN2009/001218
Other languages
English (en)
French (fr)
Inventor
刘皓
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to CN200980160717.XA priority Critical patent/CN102474739B/zh
Priority to PCT/CN2009/001218 priority patent/WO2011054126A1/zh
Publication of WO2011054126A1 publication Critical patent/WO2011054126A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to implicit feedback of channel condition information in 3GPP LTE Release 8.
  • an adaptive implicit feedback method and user equipment are proposed, which implements flexible and optimized
  • the implicit feedback mechanism optimizes the precoding mechanism of the transmitting end and facilitates the base station to implement dynamic SU-MIMO/MU-MIMO switching. Background technique
  • multi-antenna technology including single-user multiple input multiple output (SU-MIMO), multi-user multiple input multiple output (MU-MIMO), cooperative multiple input multiple output (Co- MIMO) technology, etc.
  • SU-MIMO single-user multiple input multiple output
  • MU-MIMO multi-user multiple input multiple output
  • Co- MIMO cooperative multiple input multiple output
  • a basic form of MIMO is to allocate one data stream for each antenna and then mix the two transmit data streams through the channel.
  • each antenna receives a combination of individual data streams.
  • the receiving end decodes and analyzes the received signal to reconstruct the original data.
  • a more advanced form of MIMO is the combination with precoding.
  • the transmitting end After knowing the current channel conditions, the transmitting end matches the transmitted data stream with the eigenmode of the channel by adding precoding, so that each number of streams to be transmitted can be allocated to more than one transmitting antenna. In this way, it is possible to effectively combine the layers before transmission to achieve the purpose of equalizing signal reception through a plurality of receiving antennas.
  • the transmitter In order to properly select the best precoding scheme, the transmitter must know the current channel conditions, which are provided by the feedback from the MIMO receiver.
  • the user equipment measures channel characteristics, determines a precoding matrix index (PMI), a channel quality indicator (CQI), and/or a rank index (RI), and The link feedback channel is sent to the serving base station (eNB), ie, Implicit Feedback. Based on the feedback information, the base station selects the best precoding scheme to improve the overall performance of the system.
  • PMI precoding matrix index
  • CQI channel quality indicator
  • RI rank index
  • eNB serving base station
  • Implicit Feedback Based on the feedback information, the base station selects the best precoding scheme to improve the overall performance of the system.
  • the base station performs precoding scheme selection for the user equipment according to the RI, PMI, and/or CQI fed back by the single user equipment.
  • the basic goal of SU-MIMO is to increase the data rate for a single user, with the advantages of simple signaling, easy deployment, and good system performance.
  • the use of SU-MIMO increases cellular capacity.
  • a MU-MIMO mode is proposed, in which data streams from different user equipments are mixed, so that the base station has more opportunity to pair user devices with non-associated paths together, thereby making capacity possible. Maximize the gain.
  • the base station performs user equipment pairing and precoding vector selection according to PMI or CQI from different user equipments with reference to the precoding codebook.
  • the current 3GPP LTE Release 8 feedback mechanism including implicit PMI/CQI feedback is a necessary condition for the downlink DL MIMO transmission method.
  • the user equipment is required to provide adaptive channel information to support the base station to perform flexible handover between single cell SU-MIMO/MU-MIMO. Since the information fed back by the user equipment is usually obtained in the envisioned SU-MIMO mode, such feedback information is insufficient and inaccurate for the base station to perform dynamic SU-MIMO/MU-MIMO handover.
  • the present invention provides an adaptive implicit feedback method and a corresponding user equipment, wherein, in the case of periodic feedback, the user equipment determines to report to the serving base station according to the value of the rank index obtained by the rank adaptation.
  • PMI/CQI feedback which is adaptively based on SU-MIMO or MU-MIMO mode depending on the value of the rank index; in the case of aperiodic feedback, the user equipment can automatically or in accordance with the serving base station It is required to obtain multiple PMI/CQI feedbacks according to different rank index values, and simultaneously report these PMI/CQI feedbacks based on SU-MIMO and MU-MIMO modes to the serving base station.
  • the present invention can be seen as a direct extension of the current 3GPP LTE Release 8 feedback mechanism to meet the needs of the LTE-A system.
  • an adaptive recessive feedback method includes the following steps:
  • the determined feedback information is fed back to the serving base station.
  • the rank index is greater than 1, the PMI/CQI information based on the SU-MIMO mode is determined, and if the rank index is equal to 1, the PMI/CQI information based on the MU-MIMO mode is determined. .
  • the determined feedback information is fed back to the serving base station through the physical uplink control channel.
  • the PMI/CQI information based on the SU_MIMO mode and the PMI/CQI information based on the MU-MIMO mode are determined in consideration of the rank index greater than 1 and equal to 1.
  • the determined feedback information is fed back to the serving base station through the physical uplink shared channel.
  • the PMI/CQI information based on the SU-MIMO mode and the PMI/CQI information based on the MU-MIMO mode are simultaneously fed back according to the requirements of the serving base station.
  • a user equipment includes:
  • a measurement module configured to measure downlink channel information
  • a rank adaptation module configured to perform rank adaptation in a single-user multiple-input multiple-output (SU-MIMO) mode based on the measured downlink channel information under periodic feedback to obtain a rank index;
  • SU-MIMO single-user multiple-input multiple-output
  • a feedback determining module configured to determine, according to a rank index obtained by the rank adaptation module, feedback information to be reported to the serving base station, or, under aperiodic feedback, based on the measured downlink channel information, considering different The value of the rank index, determining the feedback information;
  • the feedback sending module feeds back the determined feedback information to the serving base station.
  • the feedback determination module determines the feedback information under periodic feedback, if the rank index is greater than 1, the PMI/CQI information based on the SU-MIMO mode is determined, and if the rank index is equal to 1, the MU-MIMO based method is determined. PMI/CQI information.
  • the feedback sending module performs feedback under periodic feedback
  • the determined feedback information is fed back to the serving base station through the physical uplink control channel.
  • the feedback determining module determines the PMI/CQI information based on the SU-MIMO mode and the PMI/CQI information based on the MU-MIMO mode, considering that the rank index is greater than 1 and equal to 1, when the feedback information is determined under aperiodic feedback.
  • the feedback determining module performs feedback under aperiodic feedback
  • the determined feedback information is fed back to the serving base station through the physical uplink shared channel.
  • the user equipment feeds back the PMI/CQI information based on the SU-MIMO mode and the PMI/CQI information based on the MU-MIMO mode through the feedback sending module according to the requirements of the serving base station.
  • the user equipment determines that the PMI/CQI to be fed back through the PUCCH is based on the SU-MIMO mode according to the calculated value of the rank. Still based on the MU-MIMO mode. In this way, the user equipment can report only the PMI/CQI feedback in one mode by using the PUCCH with limited transmission capacity according to the rank of different values, thereby reducing the signaling overhead on the PUCCH and timely and effectively feeding back the current channel conditions. Supports SU-MIMO/MU-MIMO dynamic switching of the base station, improving the overall performance of the system.
  • the user equipment can determine multiple PMI/CQI feedbacks under different rank values and report to the base station automatically or according to the requirements of the base station, that is, the user equipment can simultaneously feed back based on the SU-MIMO mode through the PUSCH.
  • Different PMI/CQI information based on MU-MIMO mode.
  • the base station can obtain more and more comprehensive channel condition information, thereby being able to select an appropriate user equipment and precoding matrix, and can perform adaptive SU-MIMO/MU-MIMO scheduling to achieve more flexible SU-MIMO/MU.
  • FIG. 1 illustrates an example environment in which an embodiment of the present invention is applied
  • FIG. 2 is a schematic structural block diagram of a user equipment UE according to an embodiment of the present invention.
  • FIG. 3 is a flow chart showing a recessive feedback method according to an embodiment of the present invention
  • FIG. 3(a) is a flowchart showing a recessive feedback method under periodic feedback
  • FIG. 3(b) is a non-periodic Flow chart of the implicit feedback method under feedback.
  • the RI, PMI, and/or CQI feedback reports include periodic feedback and aperiodic feedback.
  • Periodic feedback is typically transmitted over the Physical Uplink Control Channel (PUCCH), which has limited bandwidth and transmission capacity and typically only transmits less information.
  • the aperiodic feedback can be transmitted along with the data stream through the Physical Uplink Shared Channel (PUSCH).
  • the bandwidth and transmission capacity of the PUSCH are high, and the amount of information that can be transmitted is large.
  • the present invention proposes an adaptive implicit feedback method for dynamic SU-MIMO/MU-MIMO handover based on the current implicit feedback method.
  • the user equipment measures downlink channel information, performs rank adaptation in SU-MIMO mode, and determines PMI/CQI to be fed back through PUCCH according to the calculated rank value. Is it based on SU-MIMO mode or based on MU-MIMO mode. In this way, the user equipment can report only the PMI/CQI feedback in one mode according to the rank of different values through the PUCCH with limited transmission capacity, so that the current channel condition can be fed back in time and effectively, and the SU-MIMO/MU of the base station is supported. - MIMO dynamic switching while avoiding additional signaling overhead on the PUCCH.
  • the user equipment can determine multiple PMI/CQI feedbacks under different rank values automatically and according to the requirements of the base station and report to the base station, that is, the user equipment can simultaneously pass the PUSCH.
  • the feedback is based on SU-MIMO mode and different PMI/CQI information based on MU-MIMO mode.
  • the base station can obtain more and more comprehensive information condition information, thereby performing adaptive SU-MIMO/MU-MIMO scheduling, and implementing more flexible SU-MIMO/MU-MIMO dynamic switching.
  • rank r ie, the number of available transport layers
  • each UE recommends an appropriate codebook (or PMI) and rank index (RI) according to the channel capacity maximization rule, and obtains an equivalent channel and minimum mean square error (MMSE) detection algorithm.
  • PMI codebook
  • RI rank index
  • MMSE minimum mean square error
  • the rank RI opi and PMI ⁇ ' of the implicit feedback of SU-MIMO mode are as follows:
  • the inter-stream interference part is D
  • the corresponding CQI can be expressed as:
  • the serving base station can select a suitable user equipment and precoding scheme to achieve transmission for a single user.
  • the UE For the MU-MIMO mode, assuming that each UE corresponds to one transport layer, the UE first quantizes the effective channel after the receive antenna is combined according to the minimum chordal distance. Receive beamforming is
  • ⁇ (:, 1) is the first column of the left singular vector of the channel matrix Hk from the serving base station to UEk.
  • the channel normalization of the effective channel is: :] ⁇ Perform channel quantization according to the minimum chord distance, and obtain the corresponding codebook index as:
  • the serving base station can perform satisfactory MU-MIMO pairing and non-codebook-based precoding, such as zero-forcing precoding (zero forcing based precoding)
  • the base station eNB 10 is a serving base station of the user equipment UEs 20, 30 and 40, and performs downlink transmission in the form of a combination of precoding and MIMO.
  • the information transmission in the SU-MIMO or MU-MIMO mode may be performed between the eNB 10 and the UEs 20, 30, 40.
  • the eNB 10 may perform SU-MIMO mode transmission with the UE 20, or may perform MU- with the UEs 30 and 40. MIMO mode transmission.
  • the transmission mode between the eNB 10 and each of the UEs 20, 30, 40 is switchable.
  • the UE 20, 30, 40 needs to provide RI, PMI and/or CQI feedback to the eNB 10 to provide correct and timely channel condition information to support the base station in performing proper precoding and switching between SU-MIMO/MU-MIMO.
  • the base station can perform handover more accurately and efficiently. Therefore, the UE preferably can feed back channel condition information in both modes to Base station.
  • the UE preferably can feed back channel condition information in both modes to Base station.
  • periodic feedback because the PUCCH transmission capacity is limited, it is impossible to feed back more information at the same time.
  • aperiodic feedback if the transmission capacity of the PUSCH is allowed, it can be considered. The base station feeds back as much information as possible.
  • the user equipment UE can adaptively adjust the feedback strategy in the case of periodic feedback and aperiodic feedback, and timely feedback necessary and sufficient channel condition information, which is beneficial between SU-MIMO/MU-MIMO. Dynamic switching.
  • FIG. 2 is a schematic structural block diagram of a user equipment UE according to an embodiment of the present invention.
  • the UE 30 is shown to include a measurement module 310, a rank adaptation module 320, a feedback determination module 330, and a feedback transmission module 340.
  • FIG. 4 only shows the main modules related to the present invention, and the UE 30 further includes a plurality of modules required for implementing various functions of the user equipment, such as a receiving module and a signal processing module.
  • the structures of the UEs 20 and 40 are the same as those of the UE 30.
  • UE 30 is in MU-MIMO mode.
  • the measurement module 310 measures DL channel information (including channel state information such as signal to interference and noise ratio) through DL RS (downlink reference signal, designed for downlink channel measurement) and provides it to rank adaptation.
  • DL RS downlink reference signal, designed for downlink channel measurement
  • the rank adaptation module 320 calculates the rank index RI in the SU-MIMO mode based on the received channel information and provides it to the feedback determination module 330.
  • Feedback determination module 330 determines the feedback content based on the value of the rank index. If RI>1, it indicates that the UE 30 should perform the operation in the MU-MIMO mode, the feedback determining module 330 determines the PMI/CQI according to the above formulas (1) and (2), and the UE 30 passes the SU-MIMO based on the feedback transmitting module 340.
  • the MU-MIMO mode based PMI/CQI is fed back to the eNB 10 by the feedback transmitting module 340.
  • the UE 30 selects the PMI/CQI feedback based on the SU-MIMO mode or the MU-MIMO mode to the eNB 10 according to the value of the rank index obtained by the rank adaptation through the PUCCH, so that the transmission capacity can be
  • the current channel condition information of the UE 30 is timely fed back on the limited PUCCH, which helps the eNB 10 to judge and perform dynamic switching between SU-MIMO/MU-MIMO after receiving the feedback channel condition information.
  • the rank adaptation module 320 and the feedback determination module 330 of the UE 30 may also The value of the rank index is obtained as above and the feedback content is thus determined.
  • the eNB 10 may also require the UE 30 to feed back different PMI/CQI based on the SU-MIMO mode and the MU-MIMO mode to determine and perform dynamic switching between SU-MIMO/MU-MIMO.
  • the feedback process is the same as UE 30.
  • the UEs 20 and 40 may also calculate the rank index RI in the SU-MIMO mode through the respective rank adaptation modules, and determine the content to be fed back under periodic feedback through the feedback determination module.
  • each UE in the present invention is no longer limited to the operation mode in which the UE is currently located. Instead, each UE can adaptively select the content to be fed back under periodic feedback and aperiodic feedback.
  • each UE can adaptively select the content to be fed back under periodic feedback and aperiodic feedback.
  • the value of the obtained rank index is equal to 1
  • the UEs 30 and 40 in the MU-MIMO mode if the value of the obtained rank index is greater than 1, the PMI/CQI based on the SU-MIMO mode can be selected for feedback.
  • U.E.20, 30 and 40 can feed back the PMI/CQI obtained under different rank index values to the eNB 10 through the PUSCH, automatically or according to the requirements of the eNB l O.
  • more and more sufficient channel condition information is provided to the eNB 10 to assist the eNB to determine and perform dynamic switching between SU-MIMO/MU-MIMO, for example, the eNB 10 receives each UE 20, 30, and 40.
  • adaptive SU-MIMO/MU-MIMO scheduling is performed, or only one UE is scheduled, that is, SU-MIMO mode, or multiple UEs are scheduled, that is, MU-MIMO mode.
  • FIG. 3 shows a flow chart of the implicit feedback method of the present invention by taking the UE 30 as an example
  • FIG. 3( a ) shows a flowchart of the implicit feedback method under periodic feedback
  • FIG. 3( b ) shows a non- Flow chart of implicit feedback method under periodic feedback.
  • the measurement module 3 10 of the UE 30 measures the DL channel information through the DL RS and provides it to the rank adaptation module 320.
  • the rank adaptation module 320 calculates the rank index RI in the SU-MIMO mode based on the received channel information and provides it to the feedback determination module 330.
  • feedback determination module 330 determines the feedback content based on the value of the rank index. If RI>1, the UE 30 should perform the operation in the MU-MIMO mode, and the feedback determining module 330 is in step 430.
  • step 500 is the same as step 400 in Fig. 3(a) without the rank adaptation in step 410.
  • some embodiments also include a machine readable or computer readable program storage device (eg, a digital data storage medium) and encoding machine executable or computer executable program instructions, wherein the instructions perform some of the above methods or All steps.
  • a program storage device can be a number of words, a magnetic storage medium (such as a disk and tape), a hardware or an optically readable digital data storage medium.
  • Embodiments also include a programming computer that performs the steps of the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

自适应隐性反馈方法和用户设备 技术领域
本发明的实施例涉及通信技术领域,特别是涉及到 3GPP LTE Release 8中信 道条件信息的隐性反馈, 根据本发明提出了一种自适应隐性反馈方法和用户设 备, 实现了灵活、 优化的隐性反馈机制, 以优化发射端的预编码机制, 并且有利 于基站实现动态的 SU-MIMO/ MU-MIMO切换。 背景技术
针对 3GPP长期演进技术 (LTE ) 通信系统, 提出了多天线技术, 包括单用 户多输入多输出(SU-MIMO)、 多用户多输入多输出 (MU-MIMO)、 合作多输入多 输出 (Co-MIMO)技术等。 MIMO的一个基本形态是为每个天线分配一个数据流, 然后通过信道将两个发射数据流进行混合, 这样, 就接收端来看, 每个天线接 收到的是各个数据流的组合。 接收端对接收到的信号进行解码和分析, 以重构 原始数据。 MIMO 的一个更先进形式是与预编码的结合。 发射端在了解了当前 信道条件之后, 通过添加预编码, 将发射数据流与信道的本征模式匹配起来, 从而能够将每个待发射的数量流分配到不止一个发射天线。 这样, 能够在传输 之前有效地结合各层, 达到通过多个接收天线均衡信号接收的目的。
要想恰当地选择最佳的预编码方案, 发射端必须了解当前的信道条件, 该信 道条件由 MIMO接收方的反馈提供。 在 3GPP LTE Release 8中, 对于预编码的 下行链路传输, 用户设备测量信道特征, 确定预编码矩阵索引 (PMI )、 信道质 量指示符 (CQI ) 和 /或秩索引 (RI ) , 并通过上行链路反馈信道发送到服务基站 ( eNB ) , 即, 隐性反馈 (Implicit Feedback )。 基站根据反馈的信息, 选择最佳 的预编码方案, 从而提高系统整体性能。
在 SU-MIMO模式下, 基站根据单个用户设备反馈的 RI、 PMI和 /或 CQI, 执行针对该用户设备的预编码方案选择。 SU-MIMO的基本目标是增加针对单个 用户的数据速率, 具有信令简单、 易于部署和系统性能较好等优点。 但是, SU-MIMO 的使用会增加蜂窝容量。 为了进一步提高蜂窝容量增益, 提出了 MU-MIMO模式, 在该模式下, 来自不同用户设备的数据流混合, 使得基站更有 机会将具有非关联路径的用户设备配对在一起, 从而使容量的可能增益最大化。 在 MU-MIMO下, 基站参照预编码码本, 根据来自不同用户设备的 PMI或 CQI, 执行用户设备配对和预编码矢量选择。
但是, 在 MU-MIMO 下, 由于各个用户设备在进行反馈时, 通常只考虑到 自身情况, 而没有考虑到其他用户设备的传输造成的干扰或影响, 反馈的信息 并不准确, 这对于基于码本的预编码来讲非常不利。
当前包括有隐性 PMI/CQI反馈的 3GPP LTE Release 8反馈机制是下行链路 DL MIMO传输方法的必要条件。特别对于 MU-MIMO模式操作, 需要用户设备 提供适应性的信道信息, 以支持基站执行单小区 SU-MIMO/ MU-MIMO之间的 灵活切换。 由于用户设备反馈的信息通常是在设想的 SU-MIMO模式下获得的, 对于基站执行动态的 SU-MIMO/ MU-MIMO切换而言, 这种反馈的信息是不足 够并且不准确的。
目前, 这种 MU-MIMO下的反馈机制已严重制约了 MU-MIMO模式下实现 更高的系统性能, 并且不利于基站执行动态的 SU-MIMO/ MU-MIMO切换。 因 此, 对于 3GPP LTE系统而言, 需要更加灵活、 优化的隐性反馈, 以优化发射端 的预编码机制, 并且有利于基站实现动态的 SU-MIMO/ MU-MIMO切换。 发明内容
基于上述问题, 本发明提出了一种自适应隐性反馈方法和相应的用户设备, 其中, 用户设备在周期性反馈情况下, 根据秩适配得到的秩索引的值, 确定要 报告给服务基站的 PMI/CQI反馈, 该 PMI/CQI反馈是依据秩索引的值而自适应 地基于 SU-MIMO或 MU-MIMO模式的; 在非周期性反馈情况下, 用户设备能 够自动地或按照服务基站的要求,根据不同的秩索引的值,得到多种的 PMI/CQI 反馈,并同时向服务基站报告这些基于 SU-MIMO和 MU-MIMO模式的 PMI/CQI 反馈。 本发明可以看作是对当前 3GPP LTE Release 8反馈机制的一种直接扩展, 以满足 LTE-A系统的需求。
根据本发明实施例, 一种自适应隐性反馈方法, 包括步骤:
测量下行信道信息;
如果在周期性反馈下, 则基于测量的下行信道信息,
执行单用户多输入多输出 (SU-MIMO ) 模式下的秩适配, 以获得秩索 引, 201 根据获得的秩索引, 确定要报告给服务基站的反馈信息,
将确定的反馈信息反馈给服务基站; 或者
如果在非周期反馈下, 则基于测量的下行信道信息,
考虑到不同的秩索引的值, 确定反馈信息,
将确定的反馈信息反馈给服务基站。
优选地 > 在周期性反馈下确定反馈信息时, 如果秩索引大于 1, 则确定基于 SU-MIMO模式的 PMI/CQI信息,如果秩索引等于 1, 则确定基于 MU-MIMO模 式的 PMI/CQI信息。
优选地, 在周期性反馈下进行反馈时, 通过物理上行控制信道将确定的反馈 信息反馈给服务基站。
优选地,在非周期性反馈下确定反馈信息时,考虑到秩索引大于 1和等于 1 , 确定基于 SU_MIMO模式的 PMI/CQI信息和基于 MU-MIMO模式的 PMI/CQI信 息。
优选地, 在非周期性反馈下进行反馈时, 通过物理上行共享信道将确定的反 馈信息反馈给服务基站。
优选地,在非周期性反馈下,根据服务基站的要求,同时反馈基于 SU-MIMO 模式的 PMI/CQI信息和基于 MU-MIMO模式的 PMI/CQI信息。
根据本发明实施例, 一种用户设备, 包括:
测量模块, 用于测量下行信道信息;
秩适配模块, 用于在周期性反馈下, 基于测量的下行信道信息, 执行单用户 多输入多输出 (SU-MIMO ) 模式下的秩适配, 以获得秩索引;
反馈确定模块, 用于在周期性反馈下, 根据秩适配模块获得的秩索引, 确定 要报告给服务基站的反馈信息, 或者在非周期反馈下, 基于测量的下行信道信 息, 考虑到不同的秩索引的值, 确定反馈信息; 以及
反馈发送模块, 将确定的反馈信息反馈给服务基站。
优选地,反馈确定模块在周期性反馈下确定反馈信息时,如果秩索引大于 1 , 则确定基于 SU-MIMO模式的 PMI/CQI信息, 如果秩索引等于 1 , 则确定基于 MU-MIMO楱式的 PMI/CQI信息。
优选地, 反馈发送模块在周期性反馈下进行反馈时, 通过物理上行控制信道 将确定的反馈信息反馈给服务基站。 优选地, 反馈确定模块在非周期性反馈下确定反馈信息时, 考虑到秩索引大 于 1和等于 1, 确定基于 SU-MIMO模式的 PMI/CQI信息和基于 MU-MIMO模 式的 PMI/CQI信息。
优选地, 反馈确定模块在非周期性反馈下进行反馈时, 通过物理上行共享信 道将确定的反馈信息反馈给服务基站。
优选地, 在非周期性反馈下, 用户设备根据服务基站的要求, 通过反馈发送 模块同时反馈基于 SU-MIMO 模式的 PMI/CQI 信息和基于 MU-MIMO 模式的 PMI/CQI信息。
如上所述,在本发明的自适应隐性反馈方法及用户设备中,对于周期性反馈, 用户设备根据计算得到的秩的值, 确定要通过 PUCCH反馈的 PMI/CQI是基于 SU-MIMO模式的还是基于 MU-MIMO模式的。 这样, 用户设备能够根据不同值 的秩, 通过传输容量有限的 PUCCH, 仅报告一种模式下的 PMI/CQI反馈, 从而 减少了 PUCCH上的信令开销, 同时能够及时、 有效地反馈当前信道条件, 支持 了基站的 SU-MIMO/ MU-MIMO动态切换, 提高了系统的整体性能。 对于非周 期性反馈, 用户设备能够自动地或按照基站的要求, 确定不同秩值情况下的多种 PMI/CQI 反馈并报告给基站, 即, 用户设备能够通过 PUSCH 同时反馈基于 SU-MIMO模式和基于 MU-MIMO模式的不同 PMI/CQI信息。 这样, 基站能够 获得更多、更全面的信道条件信息,从而能够选择合适的用户设备和预编码矩阵, 并且能够进行自适应 SU-MIMO/MU-MIMO 调度, 实现更加灵活的 SU-MIMO/ MU-MIMO动态切换。 附图说明
通过下面结合附图说明本发明的优选实施例, 将使本发明的上述及其它目 的、 特征和优点更加清楚, 其中:
图 1示出了本发明实施例应用的示例环境;
图 2示出了本发明实施例的用户设备 UE的示意性结构框图;
图 3示出了本发明实施例的隐性反馈方法的流程图, 图 3(a)示出了周期性 反馈下的隐性反馈方法的流程图,图 3(b)示出了非周期性反馈下的隐性反馈方法 的流程图。 具体实施方式
为了清楚详细的阐述本发明的实现步骤, 下面给出了一些本发明的具体实 施例, 适用于支持 3GPP LTE的无线通信系统。 需要说明的是, 本发明的实施例 不限于这些应用, 而是可适用于更多其它相关的无线通信系统。
下面参照附图对本发明的优选实施例进行详细说明, 在描述过程中省略了 对于本发明来说是不必要的细节和功能, 以防止对本发明的理解造成混淆。
在 3GPP LTE Release 8反馈机制中, RI、 PMI和 /或 CQI反馈报告包括周期 性反馈和非周期性反馈。 周期性反馈一般通过物理上行控制信道 (PUCCH) 传 输, PUCCH在带宽和传输容量方面有限, 通常只能传输较少信息。 非周期性反 馈可以通过物理上行共享信道 (PUSCH ) 与数据流一起传输, PUSCH的带宽和 传输容量较高, 能够传输的信息量较大。 考虑到周期性反馈和非周期性反馈的 特点, 本发明在当前隐性反馈方法的基础上, 针对动态的 SU-MIMO/ MU-MIMO 切换, 提出了自适应的隐性反馈方法。 在本发明方法中, 对于周期性反馈, 用 户设备测量下行信道信息, 执行 SU-MIMO模式下的秩适配 (rank adaptation), 根 据计算得到的秩的值,确定要通过 PUCCH反馈的 PMI/CQI是基于 SU-MIMO模 式的还是基于 MU-MIMO模式的。 这样, 用户设备能够根据不同值的秩, 通过 传输容量有限的 PUCCH, 仅报告一种模式下的 PMI/CQI反馈, 从而能够及时、 有效地反馈当前信道条件, 支持了基站的 SU-MIMO/ MU-MIMO动态切换, 同 时避免了 PUCCH上的额外信令开销。 对于非周期性反馈, 由于 PUSCH传输容 量较髙, 用户设备能够自动地或按照基站的要求, 确定不同秩值情况下的多种 PMI/CQI 反馈并报告给基站, 即, 用户设备能够通过 PUSCH 同时反馈基于 SU-MIMO模式和基于 MU-MIMO模式的不同 PMI/CQI信息。 这样, 基站能够 获得更多、 更全面的信息条件信息, 从而进行自适应的 SU-MIMO/ MU-MIMO 调度, 实现更加灵活的 SU-MIMO/ MU-MIMO动态切换。
为了阐明本发明的教义, 下面给出 SU-MIMO 和 MU-MIMO 模式下隐性
RI/PMI/CQI反馈计算的示例。
假设针对 UE k的信道矩阵是 2 X 4的矩阵 Hk , 对于秩 r (即, 可用的传输层 的数量),码本是根据秩 r,从预编码矩阵集合 {w ^ j = \,- ,N, r = l,2中选择的, 其中每个预编码矩阵的维数是 4 X r, N 是预编码矩阵集合中码本的数量, 对于 用户 UE k, 测量的噪声和干扰功率表示为 P勵。 基于这些假设, 下面分别描述 SU-MIMO模式隐性反馈和 MU-MIMO模式隐性反馈的具体计算。
1) SU-MIMO模式隐性反馈
在 SU-MIMO模式下, 每个 UE根据信道容量最大化规则, 推荐合适的码本 (或 PMI) 和秩索引 (RI), 同时根据等效信道和最小均方误差 (MMSE) 检测 算法, 获得相应的 CQI并报告给服务基站 eNB。
SU-MIMO模式隐性反馈的秩索 RIopi和 PMI ρ'、如下选择:
Figure imgf000008_0001
其中, 信号部分为: D diag Hi 流间干扰部分为 D
MMSE接收端加权是 w = (H.W)^)^ (H.W)^、Hk f + P膽 则相应的 CQI可以表示为:
Figure imgf000008_0002
diag Is fIselfH +Plm\ 利用所有用户反馈的上述信息,服务基站能够选择一个合适的用户设备和预 编码方案, 以实现针对单个用户的传输。
2) MU-MIMO模式隐性反馈
对于 MU-MIMO模式, 假设每个 UE对应一个传输层, UE首先根据最小弦 距离 (minimum chordal distance), 对接收天线合并之后的有效信道进行量化。 接收波束赋形 (beamforming)是
h,=U(:,l)*H,
其中 ϋ(:,1)是从服务基站到 UEk的信道矩阵 Hk的左奇异矢量的第一列。 有效信道的信道归一化是: :]^ 根据最小弦距离执行信道量化, 并得到相应的码本索引 为:
Figure imgf000009_0001
{wjr)7' /=i,...,w 该码本索引将报告给服务基站。
, h ~
Figure imgf000009_0002
h A
cos ^.
其中, 根据上述报告的信道量化结果 (公式 (3 ) ) 和 SINR下限 (公式 (4 ) ), 服 务基站能够执行较为满意的 MU-MIMO配对和基于非码本的预编码, 例如迫零 预编码 (zero forcing based precoding)
以上具体示出了 SU-MIMO 模式隐性反馈和 MU-MIMO 模式隐性反馈 RI/PMI/CQI 的计算方法。 除了上述公式和算法之外, 本领域技术人员还能够根 据实际应用, 采用多种不同的适合的方法进行计算。 本发明不限于上述具体的 公式和算法。 下面结合上述对 SU-MIMO 模式隐性反馈和 MU-MIMO 模式隐性反馈 RI/PMI/CQI 的计算, 描述本发明的自适应的隐性反馈方法。 参见图 1, 示出了 本发明实施例应用的示例环境。 基站 eNB 10是用户设备 UE 20, 30和 40的服 务基站, 采用预编码和 MIMO结合的形式进行下行链路传输。 eNB 10与 UE 20, 30, 40之间可以进行 SU-MIMO或 MU-MIMO模式的信息传输, 例如, eNB 10 可以与 UE20 之间进行 SU-MIMO 模式传输, 或者可以与 UE30 和 40 进行 MU-MIMO模式传输。 eNB 10与各个 UE 20, 30, 40之间的传输模式是可以切 换的。 UE 20, 30, 40需要向 eNB 10提供 RI、 PMI和 /或 CQI反馈, 提供正确 及时的信道条件信息,以支持基站执行合适的预编码以及 SU-MIMO/ MU-MIMO 之间的切换。
本领域技术人员能够理解, 当需要执行 SU-MIMO/ MU-MIMO之间的动态 切换时, 如果能够获知基于 SU-MIMO模式和基于 MU-MIMO模式的两种反馈 信息, 特别是对于处于 MU-MIMO模式操作的 UE来说, 则基站能够更准确、 更有效地执行切换。 因此, UE最好能够将两种模式下的信道条件信息都反馈给 基站。 但是, 如上提及的, 对于周期性反馈而言, 由于 PUCCH传输容量有限, 无法同时反馈较多信息, 而对于非周期性反馈而言, 在 PUSCH的传输容量允许 的情况下,就可以考虑向基站反馈尽可能多的信息。这样,不仅可以避免 PUCCH 上的额外的信令开销, 还可以充分利用 PUSCH 的传输容量。 参见上述公式 (1)-(4),可知在不同的 SU-MIMO和 MU-MIMO模式下,计算得到的 RI/PMI/CQI 不同, ΒΡ, 反馈的内容是不同的。 在本发明中, 用户设备 UE能够在周期性反馈 和非周期性反馈情况下, 自适应地调整反馈策略, 以及时反馈必要、 足够的信 道条件信息, 有利于 SU-MIMO/ MU-MIMO之间的动态切换。
图 2 示出了本发明实施例的用户设备 UE 的示意性结构框图。 以用户设备 UE 30为例, 示出了 UE 30包括测量模块 310、 秩适配模块 320、 反馈确定模块 330和反馈发送模块 340。 本领域技术人员能够理解, 图 4仅示出了本发明相关 的主要模块, UE 30中还包括接收模块、信号处理模块等实现用户设备各种功能 所需的多种模块。 此外, UE 20和 40的结构与 UE 30相同。
结合附图 3 , UE 30处于 MU-MIMO模式。当需要进行反馈时,测量模块 310 通过 DL RS (下行链路参考信号, 设计用于下行链路信道测量)测量 DL信道信 息 (包括信干噪比等信道状态信息), 并提供给秩适配模块 320。 如果是周期性 反馈, 秩适配模块 320根据接收的信道信息, 计算 SU-MIMO模式下的秩索引 RI, 并提供给反馈确定模块 330。
反馈确定模块 330根据秩索引的值确定反馈内容。如果 RI>1,则说明 UE 30 应该进行 MU-MIMO模式下的操作,反馈确定模块 330根据上述公式( 1 )和(2) 确定 PMI/CQI, UE 30通过反馈发送模块 340将基于 SU-MIMO模式的 PMI/CQI 反馈给 eNB 10; 如果 RI=1, 则说明 UE 30应该继续 MU-MIMO模式下的操作, 反馈确定模块 330根据上述公式 (3 ) 和 (4) 确定 PMI/CQI, UE 30通过反馈发 送模块 340将基于 MU-MIMO模式的 PMI/CQI反馈给 eNB 10。
这样, UE 30在周期性反馈中, 通过 PUCCH, 根据秩适配获得的秩索引的值, 选择基于 SU-MIMO模式或 MU-MIMO模式的 PMI/CQI反馈给 eNB 10, 这样, 能够在传输容量有限的 PUCCH上及时反馈 UE 30当前的信道条件信息,这有助 于 eNB 10在接收到反馈的信道条件信息之后判断并执行 SU-MIMO/ MU- MIMO 之间的动态切换。
如果是非周期性反馈, UE 30的秩适配模块 320和反馈确定模块 330也可以 如上获得秩索引的值和由此确定反馈内容。 此外, UE 30也可以不进行秩适配, 而自动获得 RI> 1和 RI-1时的 PMI/CQI反馈。由于 PUSCH传输容量较大,UE 30 在传输容量允许的情况下, 可以获得 RI> 1和 RI==1时的 PMI/CQI反馈, 并通过 反馈发送模块 340将这些反馈同时发送至 eNB 10。 eNB 10也可以要求 UE 30反 馈基于 SU-MIMO 模式和 MU-MIMO 模式的不同 PMI/CQI , 以判断和执行 SU-MIMO/ MU-MIMO之间的动态切换。
对于 SU- MIMO模式下的 UE 20和 MU-MIMO模式下的 40,反馈过程与 UE 30相同。 UE 20和 40也可以分别通过各自的秩适配模块, 计算 SU-MIMO模式 下的秩索引 RI, 并通过反馈确定模块, 在周期性反馈下确定要反馈的内容, 另 一方面, 在非周期性反馈下同时反馈 RI> 1和 RI=1时的 PMI/CQI。
这样, 本发明中各个 UE的隐性反馈不再局限于 UE当前所处的操作模式。 相反, 各个 UE可以在周期性反馈和非周期性反馈下, 自适应地选择确定要反馈 的内容。 如上所述, 对于处于 SU-MIMO模式下的 UE 20而言, 如果得到的秩 索引的值等于 1, 可以选择反馈基于 MU-MIMO 模式的 PMI/CQI。 对于处于 MU-MIMO模式下的 UE 30和 40而言, 如果得到的秩索引的值大于 1, 可以选 择反馈基于 SU-MIMO模式的 PMI/CQI。 特别是在非周期性反馈情况下, U.E20、 30和 40可以通过 PUSCH , 自动或按照 eNB l O的要求, 向 eNB 10反馈在不同 的秩索引的值的情况下得到的 PMI/CQI , 从而向 eNB 10提供更多、 更充足的信 道条件信息,以辅助 eNB l O判断和执行 SU-MIMO/ MU-MIMO之间的动态切换, 例如, eNB 10 在接收到各个 UE 20、 30 和 40 的反馈之后, 进行自适应 SU-MIMO/MU-MIMO调度, 或者仅有一个 UE被调度, 即 SU-MIMO模式, 或 者有多个 UE被调度, 即 MU-MIMO模式。
图 3以 UE 30为例示出了本发明的隐性反馈方法的流程图,图 3(a)示出了周 期性反馈下的隐性反馈方法的流程图,图 3(b)示出了非周期性反馈下的隐性反馈 方法的流程图。
如图 3(a)所示, 在步骤 400, UE 30的测量模块 3 10通过 DL RS测量 DL信 道信息, 并提供给秩适配模块 320。 在步骤 410, 秩适配模块 320根据接收的信 道信息, 计算 SU-MIMO模式下的秩索引 RI, 并提供给反馈确定模块 330。
在步骤 420, 反馈确定模块 330根据秩索引的值确定反馈内容。 如果 RI> 1, 则说明 UE 30应该进行 MU-MIMO模式下的操作,反馈确定模块 330在步骤 430 根据上述公式 (1 ) 和 (2) 确定 PMI/CQI, 在步骤 440UE 30通过反馈发送模块 340将基于 SU-MIMO模式的 PMI/CQI反馈给 eNB 10;如果 RI=1,则说明 UE 30 应该继续 MU-MIMO模式下的操作, 反馈确定模块 330在步骤 450根据上述公 式 (3 ) 和 (4) 确定 PMI/CQI, UE 30在步骤 440通过反馈发送模块 340将基于 MU-MIMO模式的 PMI/CQI反馈给 eNB 10。
图 3(b)所示的非周期性反馈中, 步骤 500和图 3(a)中的步骤 400相同, 而 没有步骤 410中的秩适配。在步骤 510,通过反馈确定模块 330获得 RI>1和 RI=1 时的 PMI/CQI反馈, 并在步骤 520, 通过反馈发送模块 340将这些反馈同时发 送至 eNB 10。
在以上的描述中, 针对各个步骤, 列举了多个实施例, 虽然发明人尽可能 地标示出彼此关联的实例, 但这并不意味着这些实例必然按照相应的标号存在 对应关系。 只要所选择的实例所给定的条件间不存在矛盾, 可以在不同的步骤 中, 选择标号并不对应的实例来构成相应的技术方案, 这样的技术方案也应视 为被包含在本发明的范围内。
' 本领域技术人员应该很容易认识到, 可以通过编程计算机实现上述方法的 不同步骤。 在此, 一些实施方式同样包括机器可读或计算机可读的程序存储设 备 (如, 数字数据存储介质) 以及编码机器可执行或计算机可执行的程序指令, 其中, 该指令执行上述方法的一些或全部步骤。 例如, 程序存储设备可以是数 ■ 字存储器、 磁存储介质 (如磁盘和磁带)、 硬件或光可读数字数据存储介质。 实 施方式同样包括执行上述方法的所述步骤的编程计算机。
应当注意的是, 在以上的描述中, 仅以示例的方式, 示出了本发明的技术 方案, 但并不意味着本发明局限于上述步骤和单元结构。 在可能的情形下, 可 以根据需要对步骤和单元结构进行调整和取舍。 因此, 某些步骤和单元并非实 施本发明的总体发明思想所必需的元素。 因此, 本发明所必需的技术特征仅受 限于能够实现本发明的总体发明思想的最低要求, 而不受以上具体实例的限制。
至此已经结合优选实施例对本发明进行了描述。应该理解, 本领域技术人员 在不脱离本发明的精神和范围的情况下,可以进行各种其它的改变、替换和添加。 因此, 本发明的范围不局限于上述特定实施例, 而应由所附权利要求所限定。

Claims

权 利 要 求 书
1 . 一种自适应隐性反馈方法, 包括步骤- 测量下行信道信息;
如果在周期性反馈下, 则基于测量的下行信道信息,
执行单用户多输入多输出 (SU-MIMO ) 模式下的秩适配, 以获得秩索 引'
根据获得的秩索引, 确定要报告给服务基站的反馈信息,
将确定的反馈信息反馈给服务基站; 或者
如果在非周期反馈下, 则基于测量的下行信道信息,
考虑到不同的秩索引的值, 确定反馈信息,
将确定的反馈信息反馈给服务基站。
2. 根据权利要求 1所述的方法, 其中, 在周期性反馈下确定反馈信息时, 如果秩索引大于 1 , 则确定基于 SU-MIMO模式的 PMI/CQI信息, 如果秩索引等 于 1, 则确定基于多用户多输入多输出 (MU-MIMO ) 模式的 PMI/CQI信息。
3. 根据权利要求 1或 2所述的方法, 其中, 在周期性反馈下进行反馈时, 通过物理上行控制信道将确定的反馈信息反馈给服务基站。
4. 根据权利要求 1所述的方法, 其中, 在非周期性反馈下确定反馈信息时, 考虑到秩索引大于 1和等于 1,确定基于 SU-MIMO模式的 PMI/CQI信息和基于 MU-MIMO模式的 PMI/CQI信息。
5. 根据权利要求 1或 4所述的方法, 其中, 在非周期性反馈下进行反馈时, 通过物理上行共享信道将确定的反馈信息反馈给服务基站。
6. 根据权利要求 1或 4所述的方法, 其中, 在非周期性反馈下, 根据服务 基站的要求, 同时反馈基于 SU-MIMO模式的 PMI/CQI信息和基于 MU-MIMO 模式的 PMI/CQI信息。
7. 一种用户设备, 包括:
测量模块, 用于测量下行信道信息;
秩适配模块, 用于在周期性反馎下, 基于测量的下行信道信息, 执行单用户 多输入多输出 (SU-MIMO ) 模式下的秩适配, 以获得秩索引;
反馈确定模块, 用于在周期性反馈下, 根据秩适配模块获得的秩索引, 确定 要报告给服务基站的反馈信息, 或者在非周期反馈下, 基于测量的下行信道信 息, 考虑到不同的秩索引的值, 确定反馈信息; 以及 '
反馈发送模块, 将确定的反馈信息反馈给服务基站。
8. 根据权利要求 7所述的用户设备, 其中, 反馈确定模块在周期性反馈下 确定反馈信息时, 如果秩索引大于 1, 则确定基于 SU-MIMO 模式的 PMI/CQI 信息, 如果秩索引等于 1, 则确定基于多用户多输入多输出 (MU-MIMO ) 模式 的 PMI/CQI信息。
9. 根据权利要求 7或 8所述的用户设备, 其中, 反馈发送模块在周期性反 馈下进行反馈时, 通过物理上行控制信道将确定的反馈信息反馈给服务基站。
10. 根据权利要求 7所述的用户设备, 其中, 反馈确定模块在非周期性反馈 下确定反馈信息时, 考虑到秩索引大于 1和等于 1, 确定基于 SU-MIMO模式的 PMI/CQI信息和基于 MU-MIMO模式的 PMI/CQI信息。
11 . 根据权利要求 7或 10所述的用户设备, 其中, 反馈确定模块在非周期 性反馈下进行反馈时, 通过物理上行共享信道将确定的反馈信息反馈给服务基 站。
12. 根据权利要求 7或 10所述的用户设备, 其中, 在非周期性反馈下, 用 户设备根据服务基站的要求,通过反馈发送模块同时反馈基于 SU-MIMO模式的 PMI/CQI信息和基于 MU- MIMO模式的 PMI/CQI信息。
PCT/CN2009/001218 2009-11-03 2009-11-03 自适应隐性反馈方法和用户设备 WO2011054126A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980160717.XA CN102474739B (zh) 2009-11-03 2009-11-03 自适应隐性反馈方法和用户设备
PCT/CN2009/001218 WO2011054126A1 (zh) 2009-11-03 2009-11-03 自适应隐性反馈方法和用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/001218 WO2011054126A1 (zh) 2009-11-03 2009-11-03 自适应隐性反馈方法和用户设备

Publications (1)

Publication Number Publication Date
WO2011054126A1 true WO2011054126A1 (zh) 2011-05-12

Family

ID=43969539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001218 WO2011054126A1 (zh) 2009-11-03 2009-11-03 自适应隐性反馈方法和用户设备

Country Status (2)

Country Link
CN (1) CN102474739B (zh)
WO (1) WO2011054126A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917559B (zh) * 2014-03-14 2018-01-23 华为技术有限公司 预编码矩阵索引测量装置和方法
CN107888248B (zh) * 2016-09-30 2020-10-16 华为技术有限公司 传输数据的方法、装置和用户设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399631A (zh) * 2007-09-30 2009-04-01 中兴通讯股份有限公司 Su-mimo方式和mu-mimo方式下预编码选择的表示方法
US20090262695A1 (en) * 2008-04-22 2009-10-22 Texas Instruments Incorporated Rank and pmi in download control signaling for uplink single-user mimo (ul su-mimo)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355795B (zh) * 2007-07-24 2013-06-19 夏普株式会社 移动通信系统、基站、用户设备和通信方法
CN101547066B (zh) * 2008-03-25 2013-03-27 中兴通讯股份有限公司 基于mu-mimo方式的下行预编码信息指示方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399631A (zh) * 2007-09-30 2009-04-01 中兴通讯股份有限公司 Su-mimo方式和mu-mimo方式下预编码选择的表示方法
US20090262695A1 (en) * 2008-04-22 2009-10-22 Texas Instruments Incorporated Rank and pmi in download control signaling for uplink single-user mimo (ul su-mimo)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Physical layer procedures", 3GPP TS 36.213 V8.8.0 EVOLVED UNIVERSAL TERRESTRIAL RADIO ACCESS (E-UTRA), 30 September 2009 (2009-09-30) *

Also Published As

Publication number Publication date
CN102474739A (zh) 2012-05-23
CN102474739B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
US20210351822A1 (en) Methods and Arrangements for Signaling Control Information in a Communication System
US9991939B2 (en) Multi-user MIMO-SDMA for finite rate feedback systems
US9124328B2 (en) System and method for channel information feedback in a wireless communications system
JP5676646B2 (ja) チャネル状態情報のフィードバック伝送方法及びユーザ端末
KR101506922B1 (ko) 정보 피드백 및 프리코딩을 위한 방법 및 장치
US9935693B2 (en) Method for communicating in a MIMO network
WO2011160451A1 (zh) 信道状态信息的反馈方法及终端
WO2011098015A1 (zh) 基于码书的信道信息反馈方法、设备和系统
WO2012041107A1 (zh) 信道状态信息反馈方法及终端
TWI538428B (zh) 在網路中通信的方法、副站台及主站台
KR101978771B1 (ko) 무선 통신 시스템에서 스트림 별 채널 이득 피드백을 통한 다중 스트림 mu-cqi 추정 방법 및 장치
WO2011137726A1 (zh) 一种信道状态信息上报方法及其装置
WO2012068880A1 (zh) 一种信道状态信息反馈方法及装置
KR102050745B1 (ko) 무선통신 시스템에서 기지국과 단말 사이의 정보 송수신 방법 및 장치
KR20130073021A (ko) 무선 통신 시스템에서 채널 정보 피드백 및 수신을 위한 방법, 수신장치 및 송신장치
WO2011082641A1 (zh) 一种传输信道质量信息的系统、终端及方法
WO2011054126A1 (zh) 自适应隐性反馈方法和用户设备
WO2022235178A1 (en) Determination of reciprocity-based precoder for a user equipment
KR20150044379A (ko) 다중안테나 다중사용자 무선 통신시스템을 위한 확률적 송수신 방법 및 장치
KR20120060729A (ko) 다중 사용자를 지원하는 다중 입력 다중 출력 통신 시스템에서 채널 품질 정보를 피드백하는 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160717.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851011

Country of ref document: EP

Kind code of ref document: A1