WO2011052879A2 - 축소 모델을 이용한 송전 선로 특성 평가 시스템 및 방법 - Google Patents

축소 모델을 이용한 송전 선로 특성 평가 시스템 및 방법 Download PDF

Info

Publication number
WO2011052879A2
WO2011052879A2 PCT/KR2010/005128 KR2010005128W WO2011052879A2 WO 2011052879 A2 WO2011052879 A2 WO 2011052879A2 KR 2010005128 W KR2010005128 W KR 2010005128W WO 2011052879 A2 WO2011052879 A2 WO 2011052879A2
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
reduced
reduction factor
ion current
current density
Prior art date
Application number
PCT/KR2010/005128
Other languages
English (en)
French (fr)
Other versions
WO2011052879A3 (ko
Inventor
이동일
신구용
임재섭
이원교
양광호
주문노
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2011052879A2 publication Critical patent/WO2011052879A2/ko
Publication of WO2011052879A3 publication Critical patent/WO2011052879A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests

Definitions

  • the present invention relates to a transmission line characteristic evaluation system and method using a reduced model.
  • a measurement apparatus such as a corona cage is used, or an actual environmental test line is used to evaluate the electrical environmental disturbance of a overhead transmission line.
  • the corona discharge is measured using a low voltage, and this corresponds to the corona discharge phenomenon generated in the actual line, so there are many errors in practical applications. That is, the generation characteristics of ions vary depending on the polarity of the DC overhead transmission line, but when using a corona cage or the like there is a very large measurement error for these environmental effects.
  • the electric environment disturbance of the AC or DC overhead transmission line is evaluated using the actual scale experimental test line.
  • the use of a real scale experimental test line has the advantage of accurately measuring the electrical environmental effects such as corona discharge.
  • expensive facilities are required, and it takes a lot of time and expense when experimenting while replacing various conductor methods (for example, 2, 4, 6 conductor type power transmission). There is this.
  • An object of the present invention is to provide a transmission line environmental evaluation system and method capable of evaluating the electrical environmental disturbances of a direct current overhead transmission line.
  • An object of the present invention is to provide a transmission line environmental evaluation system and method capable of evaluating the electrical environmental disturbance of a hybrid overhead transmission line operated in the same tower and direct current voltage.
  • a transmission line characteristic evaluation method using a reduction model of a transmission line comprising: (a) applying a voltage to a reduction transmission line; (b) measuring electric field strength and ion current density generated on the ground by the voltage applied to the reduced transmission line; (c) determining an optimum value for each shape of the reduced transmission line; And (d) it can provide a transmission line characteristic evaluation method using a reduced model comprising the step of converting the environmental disturbance value of the actual transmission line through the electric field strength and ion current density.
  • a transmission line characteristics evaluation system using a reduction model of a transmission line comprising: at least one reduced transmission line of geometrically reduced transmission line; A support for supporting the reduced power transmission line; Variable means connected to said support and moving said reduced transmission line up and down; A power supply unit applying a voltage to the reduced transmission line; A sensor unit for measuring electric field strength and ion current density generated on the ground by the voltage applied to the reduced transmission line; And a calculation unit calculating a radius of the actual transmission line and a height of the ground by using a reduction factor using the measured electric field strength and ion current density, and the radius, height, and applied voltage of the transmission line.
  • FIG. 1 is a view schematically showing a transmission line reduction model according to an embodiment of the present invention.
  • FIG. 2 is a flowchart sequentially illustrating a method for evaluating ion current generation characteristics among electrical environment characteristics using the transmission line reduction model of the present invention.
  • FIG. 3 is a block diagram showing an ion current generation measurement system using a transmission line reduction model.
  • Figure 4 is a graph of the result of measuring the ion current density between the reduced transmission line.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a view schematically showing a transmission line reduction model according to an embodiment of the present invention.
  • reduced transmission lines 31 and 32 and a support 10 are included.
  • variable transmission line (31, 32) may further include a variable means for varying the distance between the ground.
  • variable means 20 are attached to both struts 10.
  • the variable means 20 fixes the reduced power transmission lines 31 and 32.
  • the variable means 20 is capable of adjusting the height in a state in which the reduced power transmission lines 31 and 32 are fixed, or in a state in which the reduced power transmission lines 31 and 32 are unfixed.
  • the length of the support is 1.2m
  • the variable means 20 can be adjusted to 1.2m at least 10cm or more from the ground, but is not limited to this, the variable means 20 is the length of the support 10 It can be varied within.
  • the reduced transmission lines 31 and 32 calculate the actual transmission lines through reduction factors.
  • the reduction coefficients of the reduction transmission lines 31 and 32 are the one-dimensional geometric reduction coefficient K L , the reduction coefficient K v for the applied voltage, the reduction coefficient of the surface electric field strength K e , and the reduction of the charge density.
  • the coefficient K ⁇ , the reduction coefficient K j of the ion current density, and the reduction coefficient K c of the corona current can be calculated.
  • Equation 1 the one-dimensional geometrical reduction factor K L is expressed as in Equation 1.
  • r represents the conductor radius
  • h represents the height from the ground
  • S represents the spacing between the conductors.
  • Equation 2 The reduction factor K v with respect to the applied voltage is expressed by Equation 2.
  • the reduction factor (K v ) of the applied voltage is a value obtained by dividing the voltage (V reduction ) applied to the reduced transmission line by the actual voltage (V actual ) of the transmission line.
  • Equation (3) the reduction coefficient (K e) of the field strength of the surface of the transmission line can be expressed as Equation (3).
  • Equation 3 E is the electric field strength of the ground surface, h is the height with the ground surface, V is the voltage. In Equation 3, it is assumed that there is no relationship between the electric field strength of the ground surface and the corona discharge in the reduction factor of the ultra-high voltage AC transmission line, but in the case of the ultra-high voltage DC power transmission, the effect on the ion effect should be considered.
  • Equation 4 is related to the charge density on the earth's surface.
  • Equation 4 ⁇ represents permittivity, E represents surface electric field strength, A represents cross-sectional area, and Vsms voltage. Therefore, the reduction factor K ⁇ of the charge density may be expressed as in Equation 5.
  • Equation 6 the reduction coefficient K j of the surface ion current density J can be expressed as Equation 6.
  • the corona current (I c ) can be expressed as the product of the ion current density at ground level by the closed area (A). Therefore, the reduction coefficient K c of the corona current may be expressed by Equation 7 below.
  • FIG. 2 is a flowchart sequentially illustrating a method of evaluating ion current generation characteristics among electrical environment characteristics using a transmission line reduction model of the present invention
  • FIG. 3 is a block diagram illustrating a system for measuring ion current generation using a transmission line reduction model. It is also.
  • the method for evaluating ion current generation characteristics according to the present invention includes applying power to a reduced transmission line (S100), and electric field strength and ions generated from the ground by the power applied to the reduced transmission line. Measuring the current density (S200), determining the optimum value for each of the reduced transmission line shape (S300) and converting the environmental disturbance value of the actual transmission line (S400).
  • the power supply unit 50 applies AC power or DC power to the reduced transmission line.
  • the voltage of the AC power or DC power is applied to a voltage capable of measuring the ion current density or a voltage mainly used for transmission in an actual transmission line.
  • 50kV and 60kV were applied.
  • measuring the electric field strength and the ion current density generated in the ground by the power applied to the reduced transmission line (S200) measures the ion current density of the ground through the sensor unit 60. At this time, the electric field strength of the ground surface is measured using the sensor unit 60.
  • determining the optimum value for each of the reduced transmission line shape (S300) is the distance between the ground and the reduced transmission line (31, 32) using the variable means 20 for varying the reduced transmission line (31, 32). Adjust the to measure the electric field strength and ion current density of the ground. At this time, the electric field strength and ion current density between the two reduced power transmission lines 31 and 32 are measured while varying the distances of the two reduced power transmission lines 31 and 32.
  • the electric field strength and the ion current density on the ground can be measured while varying the distance between the reduced transmission lines 31 and 32 and the ground according to the conductor method of the reduced transmission line.
  • step (S400) of converting the environmental disturbance value of the actual transmission line is calculated using Equations 1 to 7 described above.
  • 4 is a result of measuring ion current density between reduced transmission lines, and is an example of applying a DC voltage of 50 kV and 60 kV.
  • 5 is a result of measuring the ion current density according to the distance between the reduced transmission line and the ground, and is an example of applying a DC voltage of 50 kV and 60 kV.
  • the ion current density in the ground after applying 50 kV and 60 kV DC voltages is very low when the distance between the reduced transmission line and the ground is 0.7 m or more.
  • the measured values can be used to calculate the minimum distance between the actual transmission line and the ground using the reduction factor.
  • FIG. 6 is a perspective view schematically illustrating a reduced model of a transmission line according to a second embodiment of the present invention.
  • FIG. 7 is a side view illustrating a side of the reduced model of a transmission line shown in FIG. 6, and
  • FIG. FIG. 4 illustrates another side view of the scaled transmission line model.
  • 6 to 8 show the shape of the hybrid line reduction model to which alternating current and direct current are simultaneously applied by replacing one line portion of the 345kV two-wire transmission line with a ⁇ 250kV DC line.
  • the transmission line 131 to 134, the support 10, the variable means 20, the support means 100, the line fixing means 40, and the support plate 110 may be included.
  • the reduced power transmission lines 131 to 134 may include a power transmission line for AC transmission and a power transmission line for DC transmission.
  • the AC transmission line transmits three-phase power
  • the DC transmission line transmits DC power.
  • the four lines on the left side in FIG. 6 are AC transmission lines, and the four lines on the right side are DC transmission lines.
  • the support 10 fixes and supports the reduced power transmission lines 131 to 134 on both sides.
  • the strut 10 uses a cloth crate material so that deformation does not occur in the state where the metal fittings and the reduced power transmission lines 131 to 134 are installed.
  • the variable means 20 may vary the distance between the reduced power transmission lines 131 to 134 and the ground. As shown in FIG. 9, the variable means 20 may be formed with a penetrating portion 25 into which the support 10 is inserted. The variable means 20 may move along the support 10 so that the height can be experimented by converting the coordinates by ground clearance and pole interval.
  • the variable means 20 may be formed of MC nylon insulators.
  • the support means 100 fixes the strut 10.
  • Support plate 110 is attached to the support means 100, is installed on the ground.
  • the support means 100 and the support plate 110 may be formed of an insulation, for example, epoxy.
  • the line fixing means 40 fixes the reduced power transmission lines 131 to 134 and is coupled to the variable means 20.
  • the line fixing means 40 has a plurality of holes formed on one side for connection to the variable means 20 on one side, and threads formed therein to fix the reduced power transmission lines 131 to 134 on the other side. Circular grooves may be formed.
  • the line fixing means 40 may be formed in a spherical shape so that one side does not generate a corona discharge.
  • the spacer 200 may further include. As shown in FIG. 11, the spacer 200 may be used to keep the spacing between the small conductors constant at about 15 mm.
  • the spacer 200 is formed with a plurality of holes 210 into which the small conductor is inserted.
  • bolts and nuts other than bolts and nuts connecting the reduced transmission lines 131 to 134 and the line fixing means 40 are insulated such as epoxy. Are manufactured.
  • the line fixing means 40 may be formed of a conductive metal to connect the applying lines of the applied power supply and the small conductors of the reduced power transmission lines 131 to 134.
  • Table 1 and Table 2 below describe the line shape of the scale model by scale factor and the small conductor method of scale model by scale factor.
  • Table 1 shows the results of calculating the actual line by the reduction factor by applying the line height, spacing, and insulator length of the AC reduced transmission line, and Table 2 by reduction factor according to the small conductor method of AC and DC lines. The calculated result is shown.
  • the height of the top arm of the reduced model is At about 2.2m, it is difficult to simulate various conductor types and track shapes during the simulation. Therefore, a reduction factor of 0.04 was chosen because it is appropriate for simulation and evaluation to reduce the actual model to a ratio of 1/25 with the height of the uppermost arm within 1.8m.
  • the small conductor used in the scaled-down model was selected as an uncoated bare wire of 2.01 mm, and the size of the small-scaled conductor was reduced by adjusting the small-scale conductor spacing to reduce the equivalent radius according to the scale factor. Therefore, when the scale factor 0.04 was selected, the small conductor spacing of the scale model was calculated as 13.5mm.
  • the transmission line reduction model according to the second embodiment of the present invention may simultaneously test AC and DC.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

본 발명은 송전 선로의 축소 모델을 이용한 송전 선로 특성 평가 방법에 있어서, 축소 송전 선로에 전압을 인가하는 단계, 축소 송전 선로에 인가된 전압에 의해 지면에서 발생하는 전계강도 및 이온 전류 밀도를 측정하는 단계, 축소 송전 선로 형상별 최적값을 결정하는 단계 및 전계강도 및 이온 전류 밀도를 통해 실제 송전 선로의 환경 장애값으로 환산하는 단계를 포함하는 축소 모델을 이용한 송전 선로 특성 평가 시스템 및 방법을 제공한다.

Description

축소 모델을 이용한 송전 선로 특성 평가 시스템 및 방법
본 발명은 축소 모델을 이용한 송전 선로 특성 평가 시스템 및 방법에 관한 것이다.
종래에는 송전선로의 전기 환경 장애를 평가하기 위하여, 코로나 케이지(Corona Cage) 등의 측정 장치를 이용하거나, 실규모의 실증시험선로를 이용하여 가공 송전선로의 전기 환경 장애를 평가한다.
그러나, HVDC 코로나 게이지의 경우 낮은 전압을 사용하여 코로나 방전을 측정하여, 이를 실제 선로에서 발생되는 코로나 방전현상에 대응하게 되므로 실제 적용상에는 오차가 많다. 즉, 직류 가공 송전 선로의 주변에 극성에 따라 이온의 발생특성이 달라지지만 코로나 케이지 등을 사용하게 되면 이러한 환경적인 영향에 대한 측정 오차가 매우 큰 문제점이 있다.
상기의 문제점을 해결하기 위하여 실규모의 실증실험선로를 사용하여 교류 또는 직류 가공 송전선로의 전기 환경 장애를 평가한다. 실규모의 실증실험선로를 사용하게 되면 코로나 방전 등의 전기적 환경영향을 정확하게 측정할 수 있는 장점이 있다. 그러나 실규모의 실증실험선로를 사용할 경우 고가의 설비가 필요하며, 여러 가지 도체 방식(예를 들면, 2, 4, 6도체 방식 송전)을 교체하면서 실험하는 경우에 많은 시간 및 경비가 소요되는 단점이 있다.
본 발명의 목적은 직류 가공 송전선로의 전기환경 장애를 평가할 수 있는 송전선로 환경 평가 시스템 및 방법을 제공하는 데 있다.
본 발명의 목적은 직류와 교류 전압이 동일한 철탑에서 운전되는 하이브리드 가공 송전선로의 전기환경 장애를 평가할 수 있는 송전선로 환경 평가 시스템 및 방법을 제공하는 데 있다.
본 발명의 일 측면에 따르면, 송전 선로의 축소 모델을 이용한 송전 선로 특성 평가 방법에 있어서, (a) 축소 송전 선로에 전압을 인가하는 단계; (b) 상기 축소 송전 선로에 인가된 전압에 의해 지면에서 발생하는 전계강도 및 이온 전류 밀도를 측정하는 단계; (c) 상기 축소 송전 선로 형상별 최적값을 결정하는 단계; 및 (d) 상기 전계강도 및 이온 전류 밀도를 통해 실제 송전 선로의 환경 장애값으로 환산하는 단계를 포함하는 축소 모델을 이용한 송전 선로 특성 평가 방법을 제공할 수 있다.
본 발명의 다른 측면에 따르면, 송전 선로의 축소 모델을 이용한 송전 선로 특성 평가 시스템에 있어서, 실제 송전 선로가 기하학적으로 축소된 적어도 하나의 축소 송전 선로; 상기 축소 송전 선로를 지지하는 지주; 상기 지주에 연결되고 상기 축소 송전 선로를 상하로 이동 시키는 가변 수단; 상기 축소 송전 선로에 전압을 인가하는 전원부; 상기 축소 송전 선로에 인가된 전압에 의해 지면에서 발생되는 전계강도 및 이온 전류 밀도를 측정하는 센서부; 및 상기 측정된 전계강도 및 이온 전류 밀도와 송전 선로의 반경, 높이, 인가 전압을 이용하여 축소 계수를 이용하여 실제 송전 선로의 반경, 지면과의 높이를 계산하는 계산부를 포함하는 송전 선로 특성 평가 시스템을 제공할 수 있다.
본 발명의 일 실시 예에 의하면, 축소 모델을 통해 단기간, 저비용으로 가공 송전 선로의 전기 환경 장애 평가를 할 수 있는 장점이 있다.
또한, 본 발명의 일 실시 예에 의하면, 교류, 직류, 교류와 직류 하이브리드 가공 송전 선로의 전기 환경 장애 평가를 할 수 있는 장점이 있다.
그리고 본 발명의 일 실시 예에 의하면, 송전 선로의 여러가지 도체 방식에대한 전기 환경 장애 평가를 저비용으로 할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시 예에 따른 송전선로 축소 모델을 개략적으로 도시한 도면.
도 2는 본 발명의 송전 선로 축소 모델을 이용한 전기 환경 특성 중 이온 전류 발생 특성을 평가하는 방법을 순차적으로 도시한 흐름도.
도 3은 송전 선로 축소 모델을 이용한 이온전류 발생 측정 시스템을 도시한 블록도.
도 4는 축소 송전 선로 사이의 이온전류밀도를 측정한 결과 그래프.
도 5는 축소 송전 선로와 지면과의 거리에 따른 이온 전류 밀도를 측정한 결과 그래프.
<도면부호의 간단한 설명>
10: 지주
20: 가변 수단
31, 32: 축소 송전 선로
40: 선로 고정 수단
50: 전원부
60: 센서부
100: 계산부
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면 번호에 상관없이 동일한 수단에 대해서는 동일한 참조 번호를 사용하기로 한다.
도 1은 본 발명의 일 실시 예에 따른 송전선로 축소 모델을 개략적으로 도시한 도면이다.
도 1을 참조하면, 축소 송전 선로(31, 32) 및 지주(10)를 포함한다.
구체적으로, 지주(10)는 축소 송전 선로(31, 32)를 양측에서 고정 지지한다. 이때, 축소 송전 선로(31, 32)와 지면과의 거리를 가변할 수 있는 가변 수단(20)을 더 포함할 수 있다.
가변 수단(20)은 양측 지주(10)에 부착된다. 가변 수단(20)은 축소 송전 선로(31, 32)를 고정한다. 이때, 가변 수단(20)은 축소 송전 선로(31, 32)를 고정한 상태, 또는 축소 송전 선로(31, 32)가 미고정된 상태에서 높이의 조절이 가능하다.
본 발명의 실시 예에서는 지주의 길이가 1.2m이고, 가변 수단(20)은 지면에서 적어도 10cm 이상에서 1.2m까지 조절이 가능하나, 이에 한정되지 않으며, 가변 수단(20)이 지주(10) 길이 이내에서 가변될 수 있다.
축소 송전 선로(31, 32)는 실제 송전 선로를 축소 계수를 통해 계산한다. 이때 축소 송전 선로(31, 32)의 축소 계수는 1차원의 기하학적 축소 계수(KL)와 인가 전압에 대한 축소 계수(Kv), 지표면 전계 강도의 축소 계수(Ke), 전하 밀도의 축소계수(Kρ), 이온 전류 밀도의 축소 계수(Kj) 및 코로나 전류의 축소계수(Kc)를 계산할 수 있다.
먼저, 1차원의 기하학적 축소 계수(KL)는 수학식 1과 같이 표현된다.
[수학식 1]
Figure PCTKR2010005128-appb-I000001
여기서, r은 도체 반경을 나타내며, h는 지면과의 높이, S는 도체간의 간격을 나타낸다.
인가전압에 대한 축소 계수(Kv)는 수학식 2와 같이 표현된다.
[수학식 2]
Figure PCTKR2010005128-appb-I000002
여기서, V는 전압을 나타낸다. 인가 전압에 대한 축소 계수(Kv)는 축소된 송전 선로에 인가되는 전압 (V축소)을 실제 송전 선로의 전압(V실제)으로 나눈 값이다.
초고압 교류 송전 선로에서는 코로나 방전에 의한 이온의 영향이 지표면에 영향을 미치지 못하므로, 코로나 발생 여부와 관계없이 인가전압과 지표면 전계강도의 관계는 코로나 방전이 없는 상태로 가정한다. 따라서, 송전 선로의 지표면에 대한 전계강도의 축소 계수(Ke)는 수학식 3과 같이 표현될 수 있다.
[수학식 3]
Figure PCTKR2010005128-appb-I000003
수학식 3에서 E는 지표면의 전계강도, h는 지표면과의 높이, V는 전압을 나타낸다. 이때, 상기의 수학식 3에서는 초고압 교류 송전 선로의 축소 계수에서 지표면의 전계강도와 코로나 방전과의 관계가 없는 것을 가정하였으나, 초고압 직류 송전의 경우에는 이온 영향에 대한 효과가 고려되어야 한다.
즉, 직류 송전 선로의 경우 축소 계수(Ke)는 코로나 방전이 발생하지 않는 코로나 방전 임계 전압 미만에서는 교류 송전 선로와 같은 조건이 되지만 코로나 방전이 발생되는 코로나 방전 임계전압 이상에서는 이온 영향에 대한 효과를 고려해야 한다. 또한, 지면에서의 전하밀도도 고려되어야 한다.
수학식 4는 지표면에서 전하 밀도에 관계된 식이다.
[수학식 4]
Figure PCTKR2010005128-appb-I000004
수학식 4에서 ε은 유전율, E는 지표면 전계 강도, A는 단면적, Vsms 전압을 나타낸다. 따라서, 전하 밀도의 축소 계수(Kρ)는 수학식 5와 같이 표현될 수 있다.
[수학식 5]
Figure PCTKR2010005128-appb-I000005
수학식 5로부터 지표면 이온전류밀도 J의 축소 계수(Kj)를 수학식 6과 같이 나타낼 수 있다.
[수학식 6]
Figure PCTKR2010005128-appb-I000006
수학식 6에서 (Kj)는 이온 이동도의 축소 계수로 실제 송전 선로와 축소 모델의 이동도가 동일하지는 않으나, 기상 조건 등의 한정조건을 동일하게 할 경우에는 이온의 이동도는 동일하게 되어 Kk=1로서 수학식 6을 만족시킬 수 있다.
코로나 전류(Ic)는 지면에서의 이온 전류 밀도를 폐면적(A)와 곱으로 표현할 수 있다. 따라서 코로나 전류의 축소계수(Kc)는 다음의 수학식 7로 표현될 수 있다.
[수학식 7]
Figure PCTKR2010005128-appb-I000007
도 2는 본 발명의 송전 선로 축소 모델을 이용한 전기 환경 특성 중 이온 전류 발생 특성을 평가하는 방법을 순차적으로 도시한 흐름도이고, 도 3은 송전 선로 축소 모델을 이용한 이온전류 발생 측정 시스템을 도시한 블록도이다.
도 2 및 도 3을 참조하면, 본 발명에 따른 이온 전류 발생 특성 평가 방법은 축소 송전 선로에 전원을 인가하는 단계(S100), 축소 송전 선로에 인가된 전원에 의해 지면에서 발생하는 전계강도 및 이온 전류 밀도를 측정하는 단계(S200), 축소 송전 선로 형상별 최적값을 결정하는 단계(S300) 및 실제 송전 선로의 환경 장애값으로 환산하는 단계(S400)를 포함한다.
구체적으로, 축소 송전 선로에 전원을 인가하는 단계(S100)는 전원부(50)에서 교류 전원 또는 직류 전원을 축소 송전 선로에 인가한다. 이때, 교류 전원 또는 직류 전원의 전압은 이온 전류 밀도를 측정할 수 있는 전압 또는 실제 송전 선로에서 주로 송전에 사용되는 전압을 인가한다. 본 발명의 실시 예에서는 50kV와 60kV를 인가하였다.
다음으로, 축소 송전 선로에 인가된 전원에 의해 지면에서 발생하는 전계강도 및 이온 전류 밀도를 측정하는 단계(S200)는 센서부(60)를 통해 지면의 이온 전류 밀도를 측정한다. 이때, 지표면의 전계강도를 센서부(60)를 이용하여 측정한다.
다음으로, 축소 송전 선로 형상별 최적값을 결정하는 단계(S300)는 축소 송전 선로(31, 32)를 가변하는 가변 수단(20)을 이용하여 지면과 축소 송전 선로(31, 32) 사이의 거리를 조절하면 지면의 전계강도 및 이온 전류 밀도를 측정한다. 이때, 2개의 축소 송전 선로(31, 32)의 거리를 가변하면서 2개의 축소 송전 선로(31, 32) 사이의 전계강도 및 이온 전류 밀도를 측정한다.
이때, 축소 송전 선로의 도체 방식에 따른 축소 송전 선로(31, 32)와 지면과의 거리를 가변하면서 지면에서의 전계강도 및 이온 전류 밀도를 측정할 수 있다.
다음으로, 실제 송전 선로의 환경 장애값으로 환산하는 단계(S400)는 상술한 수학식 1 내지 7을 이용하여 산출한다.
예를 들면, 쌍극 1회선 ± 500KV 실제 송전 선로를 기하학적으로 1/30으로 축소한 모델에 ±35KV를 인가하여 모의 실험을 한 결과, 지표면의 전계 강도가 10kV/m이고 지표면 이온 전류 밀도가 100μA/m2로 측정된 경우, 실제 쌍극 1회선 ±500kV 선로에서의 지표면 전계강도와 이온 전류 밀도를 축소 계수를 통해 구할 수 있다. 전압 축소 계수, K=35kV/500kV로 0.07가 되므로 전계 강도 축소 계수(Ke)는 Ke=0.07/0.03=2.1가 된다.
따라서, 실제 송전 선로에서의 전계 강도(E)는 수학식 3에 의해 4.76KV/m가 된다. 그리고 이온 전류 밀도 축소 계수(Kj)는 수학식 6에 따라, Kj=0.072/0.033인 132.3이 되므로 실제 송전 선로의 지표면 이온 전류 밀도는 수학식 6에 의해 0.75uA/m2이 된다.
도 4는 축소 송전 선로 사이의 이온전류밀도를 측정한 결과로서, 50kV와 60kV의 직류 전압을 인가한 경우의 예이다. 도 5는 축소 송전 선로와 지면과의 거리에 따른 이온 전류 밀도를 측정한 결과로서, 50kV와 60kV의 직류 전압을 인가한 경우의 예이다.
예를 들면, 50kV와 60kV의 직류 전압을 인가한 후 지면에서의 이온 전류 밀도는 축소 송전 선로와 지면과의 거리가 0.7m 이상에서 매우 낮은 것을 알 수 있다. 이렇게 측정된 값들은 축소 계수를 이용하여 실제 송전 선로와 지면과의 최소 이격 거리를 계산할 수 있다.
도 6은 본 발명의 제2 실시 예에 따른 송전선로 축소 모델을 개략적으로 도시한 사시도이고, 도 7은 도 6에 도시된 송전선로 축소 모델의 측면을 도시한 측면도이며, 도 8은 도 6에 도시된 송전선로 축소 모델의 다른 측면면을 도시한 도면이다.
도 6 내지 도 8은 345kV 2회선 송전선로의 1회선 부분을 ±250kV DC 선로로 교체하여 교류와 직류를 동시에 적용한 하이브리드 선로 축소 모형의 형상을 나타낸 것이다.
도 6을 참조하면, 축소 송전 선로(131 내지 134), 지주(10), 가변 수단(20), 지지 수단(100), 선로 고정 수단(40) 및 받침판(110)을 포함할 수 있다.
축소 송전 선로(131 내지 134)는 AC 전송을 위한 송전선로와 DC 전송을 위한 송전선로를 구비할 수 있다. 예를 들면, AC 송전선로는 3상 전력을 전송하고, DC 송전선로는 DC 전력을 전송한다.
축소 송전 선로(131 내지 134)는 도 6에서 좌측의 4개의 선로가 AC 송전선로이고, 우측의 4개 선로가 DC 송전선로이다.
지주(10)는 도 1에서 설명한 바와 같이, 축소 송전 선로(131 내지 134)를 양측에서 고정 지지한다. 지주(10)는 금구류 및 축소 송전 선로(131 내지 134)가 설치된 상태에서 변형이 발생되지 않도록 포백 크라이트 재료를 사용한다.
가변 수단(20)은 축소 송전 선로(131 내지 134)와 지면과의 거리를 가변시킬 수 있다. 가변 수단(20)은 도 9에 도시된 바와 같이, 지주(10)가 삽입되는 관통부(25)가 형성될 수 있다. 가변 수단(20)은 지상고 및 극간격별로 좌표를 변환하면 실험할 수 있도록 높이가 지주(10)를 따라 이동할 수 있다. 가변 수단(20)은 MC 나일론(Nylon) 절연체로 형성될 수 있다.
지지 수단(100)은 지주(10)를 고정한다. 받침판(110)은 지지 수단(100)과 부착되며, 지면에 설치된다. 지지 수단(100)과 받침판(110)은 절연제로 형성되며, 예를 들면 에폭시로 형성될 수 있다.
선로 고정 수단(40)은 축소 송전 선로(131 내지 134)를 고정하며, 가변 수단(20)에 결합된다. 선로 고정 수단(40)은 도 10에 도시된 바와 같이 일측에 가변 수단(20)에 연결을 위한 다수의 홀이 형성되고, 타측에 축소 송전 선로(131 내지 134)를 고정하도록 내부에 나사산이 형성된 원형의 홈이 형성될 수 있다. 선로 고정 수단(40)은 일측이 코로나 방전이 발생되지 않도록 구형으로 형성될 수 있다.
본 발명에서는 스페이서(200)를 더 포함할 수 있다. 도 11에 도시된 바와 같이, 스페이서(200)는 소도체간의 간격을 약 15mm로 일정하게 유지하기 위하여 이용될 수 있다. 스페이서(200)는 소도체가 삽입되는 복수의 홀(210)이 형성된다.
한편, 본 발명의 실시 예에서는 갭방전을 포함한 노이즈를 방지하기 위하여 축소 송전 선로(131 내지 134)와 선로 고정 수단(40)을 연결하는 볼트, 너트를 제외한 나머지 볼트 및 너트들은 에폭시와 같은 절연체로 제조된다.
선로 고정 수단(40)은 인가전원의 인가선과 축소 송전 선로(131 내지 134)의 소도체들을 연결하기 위해 도전성 금속으로 형성될 있다.
이하의 표 1 및 표 2을 통해 축소계수별 축소모델의 선로 형상과 축소계수별 축소모델의 소도체 방식을 설명한다.
표 1
축소계수 345kV 실선로 축소모델 비고
0.05 선로 간격 12.6 ∼ 18m 0.63 ∼ 0.9m 1/20
선로 높이 27.2 ∼ 43.5m 1.36 ∼ 2.18m
0.04 선로 간격 12.6 ∼ 18m 0.5 ∼ 0.72m 1/25
선로 높이 27.2 ∼ 43.5m 1.09 ∼ 1.74m
0.03 선로 간격 12.6 ∼ 18m 0.42 ∼ 0.6m 1/30
선로 높이 27.2 ∼ 43.5m 0.91 ∼ 1.45m
표 2
도체 종류 CARDINAL 480mm2
소도체 수 4
선로 실선로 축소모델
소도체 직경, mm 30.42 2.01 2.01 2.01
소도체 간격, mm 400 18.2 13.5 10.6
등가직경, mm 385.24 19.24 15.41 12.84
축소 계수 1 1/20 1/25 1/30
도체 종류 CARDINAL 480mm2
소도체 수 2
선로 실선로 축소모델
소도체 직경, mm 30.42 2.01 2.01 2.01
소도체 간격, mm 400 18.2 13.5 10.6
등가직경, mm 249.79 12.48 9.97 8.32
축소 계수 1 1/20 1/25 1/30
도체 종류 CARDINAL 480mm2
소도체 수 1
선로 실선로 축소모델
소도체 직경, mm 30.42 2.01 - -
등가직경, mm 30.42 2.01 - -
축소 계수 1 1/15.2 - -
도체 종류 RAIL 480 mm2
소도체 수 4
선로 실선로 축소모델
소도체 직경, mm 29.61 2.01 2.01 2.01
소도체 간격, mm 400 18 13.4 10.5
등가직경, mm 382.65 19.1 15.29 12.74
축소 계수 1 1/20 1/25 1/30
도체 종류 RAIL 480 mm2
소도체 수 2
선로 실선로 축소모델
소도체 직경, mm 29.61 2.01 2.01 2.01
소도체 간격, mm 400 18 13.4 10.5
등가직경, mm 248.12 12.37 9.92 8.26
축소 계수 1 1/20 1/25 1/30
도체 종류 RAIL 480 mm2
소도체 수 1
선로 실선로 축소모델
소도체 직경, mm 29.61 2.01 - -
등가직경, mm 29.61 2.01 - -
축소 계수 1 1/14.7 - -
표 1은 AC 축소 송전 선로의 선로높이와 간격, 애자련 길이 등을 적용하여 실제선로를 축소계수 별로 계산한 결과를 나타낸 표이고, 표 2는 교류 및 직류 선로의 소도체 방식에 따른 축소계수 별로 계산한 결과를 나타낸다.
표 1 및 표 2에서와 같이 축소계수가 클수록 실제 모델 크기에 좀 더 유사하게 되기 때문에 평가의 신뢰성 면에서는 유리하지만, 실제 모델을 1/20 비율로 축소한 경우, 축소모델의 최상단 암의 높이가 약 2.2m가 되어서 모의시험 시 다양한 도체방식 및 선로형상에 대한 모의시험이 어렵다. 따라서 최상단 암의 높이가 약 1.8m이내인 1/25 비율로 실제모델을 축소하는 것이 모의시험과 평가에 적합하므로 축소계수를 0.04로 선정하였다. 축소모델에 이용되는 소도체는 2.01㎜의 피복되지 않은 나전선을 선정하였으며, 또한 축소계수에 맞게 등가반경을 축소하기 위해서 소도체 간격을 조정하여 소도체 형상을 축소하였다. 따라서 축소계수 0.04를 선정한 경우 축소모델의 소도체 간격은 13.5㎜로 계산되었다.
상기에서와 같이 본 발명의 제2 실시 예에 따른 송전선로 축소 모델은 AC와 DC를 동시에 시험할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (8)

  1. 송전 선로의 축소 모델을 이용한 송전 선로 특성 평가 방법에 있어서,
    (a) 축소 송전 선로에 전압을 인가하는 단계;
    (b) 상기 축소 송전 선로에 인가된 전원에 의해 지면에서 발생하는 전계강도 및 이온 전류 밀도를 측정하는 단계;
    (c) 상기 축소 송전 선로 형상별 최적값을 결정하는 단계; 및
    (d) 상기 전계강도 및 이온 전류 밀도를 통해 실제 송전 선로의 환경 장애값으로 환산하는 단계를 포함하는 축소 모델을 이용한 송전 선로 특성 평가 방법.
  2. 제 1 항에 있어서,
    상기 단계 (c)는
    상기 축소 송전 선로와 상기 지면과의 거리를 가변하면서 상기 이온 전류 밀도를 측정하는 단계를 더 포함하는 축소 모델을 이용한 송전 선로 특성 평가 방법.
  3. 제 1 항에 있어서,
    상기 단계 (c)는
    상기 축소 송전 선로와 이와 인접한 다른 축소 송전 선로와의 거리를 가변하면서 상기 이온 전류 밀도를 측정하는 단계를 더 포함하는 축소 모델을 이용한 송전 선로 특성 평가 방법.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 단계(d)는
    상기 축소 송전 선로의 기하학적 축소 계수를 통해 상기 실제 송전 선로의 반경, 지면과의 높이 및 송전 선로간의 간격을 환산하는 것을 특징으로 하는 축소 모델을 이용한 송전 선로 특성 평가 방법.
  5. 제 4 항에 있어서,
    상기 단계(d)는
    상기 축소 송전 선로에 입력된 전압, 상기 축소 송전 선로의 반경, 상기 측정된 전계강도 및 이온 전류 밀도 값과,
    기하학적 축소계수(KL), 인가전압 축소계수(Kv), 전계강도 축소계수(Ke), 전하밀도 축소계수(Kρ) 및 이온 전류 밀도 축소계수(Kj) 관계식을 이용하여 상기 실제 송전 선로의 환경 장애값을 산출하는 것을 특징으로 하는 축소 모델을 이용한 송전 선로 특성 평가 방법.
    (여기서, 기하학적 축소계수(KL)는
    Figure PCTKR2010005128-appb-I000008
    식으로 계산되고, 인가전압 축소계수(Kv)는
    Figure PCTKR2010005128-appb-I000009
    식으로 계산되고, 전계강도 축소계수(Ke)는
    Figure PCTKR2010005128-appb-I000010
    식으로 계산되고, 전하밀도 축소계수(Kρ)는
    Figure PCTKR2010005128-appb-I000011
    식으로 계산되고, 이온 전류 밀도 축소계수(Kj)는
    Figure PCTKR2010005128-appb-I000012
    식으로 계산되며, r은 도체 반경, h는 지면과의 거리, S는 송전 선로간 거리, V는 인가 전압, ρ는 전하밀도, A는 단면적, ε은 유전율, J는 이온 전류 밀도, Kk는 이온의 이동도 축소계수임)
  6. 송전 선로의 축소 모델을 이용한 송전 선로 특성 평가 시스템에 있어서,
    실제 송전 선로가 기하학적으로 축소된 적어도 하나의 축소 송전 선로;
    상기 축소 송전 선로를 지지하는 지주;
    상기 지주에 연결되고 상기 축소 송전 선로를 상하로 이동 시키는 가변 수단;
    상기 축소 송전 선로에 전압을 인가하는 전원부;
    상기 축소 송전 선로에 인가된 전압에 의해 지면에서 발생되는 전계강도 및 이온 전류 밀도를 측정하는 센서부; 및
    상기 측정된 전계강도 및 이온 전류 밀도와 송전 선로의 반경, 높이, 인가 전압을 이용하여 축소 계수를 이용하여 실제 송전 선로의 반경, 지면과의 높이를 계산하는 계산부를 포함하는 송전 선로 특성 평가 시스템.
  7. 제 6 항에 있어서,
    상기 전원부는
    교류 전압, 직류 전압 및 직교류 하이브리드 전압 중 어느 하나를 인가하는것을 특징으로 하는 송전 선로 특성 평가 시스템.
  8. 제 6 항에 있어서,
    상기 축소 계수는
    기하학적 축소계수(KL), 인가전압 축소계수(Kv), 전계강도 축소계수(Ke), 전하밀도 축소계수(Kρ) 및 이온 전류 밀도 축소계수(Kj)를 포함하는 것을 특징으로 하는 송전 선로 특성 평가 시스템.
    (여기서, 기하학적 축소계수(KL)는
    Figure PCTKR2010005128-appb-I000013
    식으로 계산되고, 인가전압 축소계수(Kv)는
    Figure PCTKR2010005128-appb-I000014
    식으로 계산되고, 전계강도 축소계수(Ke)는
    Figure PCTKR2010005128-appb-I000015
    식으로 계산되고, 전하밀도 축소계수(Kρ)는
    Figure PCTKR2010005128-appb-I000016
    식으로 계산되고, 이온 전류 밀도 축소계수(Kj)는
    Figure PCTKR2010005128-appb-I000017
    식으로 계산되며, r은 도체 반경, h는 지면과의 거리, S는 송전 선로간 거리, V는 인가 전압, ρ는 전하밀도, A는 단면적, ε은 유전율, J는 이온 전류 밀도, Kk는 이온의 이동도 축소계수임)
PCT/KR2010/005128 2009-10-30 2010-08-05 축소 모델을 이용한 송전 선로 특성 평가 시스템 및 방법 WO2011052879A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090104652A KR101031595B1 (ko) 2009-10-30 2009-10-30 축소 모델을 이용한 송전 선로 특성 평가 시스템 및 방법
KR10-2009-0104652 2009-10-30

Publications (2)

Publication Number Publication Date
WO2011052879A2 true WO2011052879A2 (ko) 2011-05-05
WO2011052879A3 WO2011052879A3 (ko) 2011-06-16

Family

ID=43922736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005128 WO2011052879A2 (ko) 2009-10-30 2010-08-05 축소 모델을 이용한 송전 선로 특성 평가 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR101031595B1 (ko)
WO (1) WO2011052879A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085646A (zh) * 2017-04-28 2017-08-22 国家电网公司 一种输电线路下地面场强测量方法
CN109142895A (zh) * 2018-07-05 2019-01-04 清华大学 直流导线空间电位和合成电场分布的简便测量装置
CN111811570A (zh) * 2020-06-04 2020-10-23 中国电力科学研究院有限公司 一种用于直流输电线路合成场强多通道全天候测量的方法及系统
CN113325239A (zh) * 2021-05-07 2021-08-31 中国电力科学研究院有限公司 一种基于合成电场计算导线起晕场强的方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510010B (zh) * 2011-10-13 2014-08-13 河北省电力建设调整试验所 用于新建变电站投运之前的继电保护向量检查试验方法
CN102590651B (zh) * 2011-12-31 2014-10-08 国电南瑞科技股份有限公司 基于雷电实测数据的输电线路故障概率评估方法
KR101969285B1 (ko) * 2012-08-31 2019-04-17 한국전력공사 전력설비의 전기환경장해 평가 분석 장치 및 그 방법
CN107167746A (zh) * 2017-05-05 2017-09-15 邓亚军 一种分级四段式直流电源性能评价模型及其实现方法
CN109142894B (zh) * 2018-07-05 2020-11-24 清华大学 基于耦合等势原理的直流导线电晕空间电荷分布的测试方法
CN110879918A (zh) * 2019-11-13 2020-03-13 国网天津市电力公司电力科学研究院 一种基于模拟电荷法的交流输电线路电磁环境的仿真计算方法
CN114184850B (zh) * 2021-12-07 2023-06-02 国网重庆市电力公司电力科学研究院 一种基于电场互易的输电线路下方空间电位测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242452A (ja) * 2003-02-07 2004-08-26 Mitsubishi Electric Corp 電力系統の縮約モデル作成装置
JP2006101619A (ja) * 2004-09-29 2006-04-13 Hitachi Ltd 電力系統の安定度診断装置、電力系統安定化装置および電力系統縮約支援装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056735A (ja) 1996-08-06 1998-02-24 Chugoku Electric Power Co Inc:The 電力系統のモデル作成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242452A (ja) * 2003-02-07 2004-08-26 Mitsubishi Electric Corp 電力系統の縮約モデル作成装置
JP2006101619A (ja) * 2004-09-29 2006-04-13 Hitachi Ltd 電力系統の安定度診断装置、電力系統安定化装置および電力系統縮約支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
'Passive Loop Using Scale Down Model of Transmission Line.' JOURNAL OF THE KOREA ELECTROMAGNETIC ENGINEERING SOCIETY vol. 17, no. 12, December 2006, ISSN 1226-3133 pages 1231 - 1239 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085646A (zh) * 2017-04-28 2017-08-22 国家电网公司 一种输电线路下地面场强测量方法
CN109142895A (zh) * 2018-07-05 2019-01-04 清华大学 直流导线空间电位和合成电场分布的简便测量装置
CN111811570A (zh) * 2020-06-04 2020-10-23 中国电力科学研究院有限公司 一种用于直流输电线路合成场强多通道全天候测量的方法及系统
CN113325239A (zh) * 2021-05-07 2021-08-31 中国电力科学研究院有限公司 一种基于合成电场计算导线起晕场强的方法及系统
CN113325239B (zh) * 2021-05-07 2023-12-05 中国电力科学研究院有限公司 一种基于合成电场计算导线起晕场强的方法及系统

Also Published As

Publication number Publication date
WO2011052879A3 (ko) 2011-06-16
KR101031595B1 (ko) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2011052879A2 (ko) 축소 모델을 이용한 송전 선로 특성 평가 시스템 및 방법
WO2016108592A1 (ko) 가스 절연 개폐기의 전극 장치
Wang et al. Electric field evaluation and optimization of shielding electrodes for high voltage apparatus in±1100 kV indoor DC yard
WO2022097800A1 (ko) Hvdc 전력케이블의 가속열화 장치
Wang et al. A survey on insulator inspection robots for power transmission lines
CN106451220A (zh) 带电更换同杆多回路杆塔上设备的旁路设备及方法
Nayak et al. Optimization of high voltage electrodes for 765 kV bus post insulators
Cronin et al. Optimization of insulators for gas insulated systems
Xie et al. Experimental investigation of discharge path selectivity of a long air gap containing a floating conductor
Ilhan et al. Effects of corona ring design upon impulse voltage withstand level of 380 kV V-strings
Wu et al. Live-line detection of deteriorated insulators on overhead transmission lines based on electric field distribution
Boudissa et al. Effect of inclination angle of hydrophobic silicone insulation covered by water drops on its DC performance
WO2018190482A1 (ko) 버스바의 냉각장치가 구비된 배전반
Aravind et al. Flashover performance of composite and porcelain insulators
Wei et al. Inverse application of charge simulation method in detecting faulty ceramic insulators and processing influence from tower
CN110146796A (zh) 一种零值绝缘子串发热特性的模拟试验装置及其试验方法
CN212569015U (zh) 便携组合式绝缘手套、靴测试台
Shen et al. A novel method for live detection of faulty direct current insulators
WO2020196994A1 (ko) 변압기 절연특성 시험장치
WO2015111975A1 (ko) 전기장 흡입 효과를 가지는 다면체형 차폐 부재 및 이를 포함하는 전자파 차폐장치
WO2024076128A1 (ko) 온도보상이 적용된 저전력 전압변압기 및 그 온도보상 방법
Angelov Physical model of AC traction networks for simulating emergency modes
WO2020080719A1 (ko) 검사용 커넥터 및 검사용 커넥터의 제조방법
Juhre et al. Feasibility study on the applicability of clean air in gas-insulated DC systems
Gorur et al. Computation of defect-induced electric fields on outdoor high voltage ceramic and non-ceramic insulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826964

Country of ref document: EP

Kind code of ref document: A2