WO2011052746A1 - Element mounting substrate, semiconductor module, and portable apparatus - Google Patents

Element mounting substrate, semiconductor module, and portable apparatus Download PDF

Info

Publication number
WO2011052746A1
WO2011052746A1 PCT/JP2010/069353 JP2010069353W WO2011052746A1 WO 2011052746 A1 WO2011052746 A1 WO 2011052746A1 JP 2010069353 W JP2010069353 W JP 2010069353W WO 2011052746 A1 WO2011052746 A1 WO 2011052746A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
main surface
electrode pad
insulating layer
layered
Prior art date
Application number
PCT/JP2010/069353
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 長松
清司 柴田
崇紀 林
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009250414A external-priority patent/JP2011096896A/en
Priority claimed from JP2009250413A external-priority patent/JP2011096895A/en
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011052746A1 publication Critical patent/WO2011052746A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1023All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0367Metallic bump or raised conductor not used as solder bump
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0562Details of resist
    • H05K2203/0577Double layer of resist having the same pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/243Reinforcing the conductive pattern characterised by selective plating, e.g. for finish plating of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an element mounting substrate, a semiconductor module, and a portable device.
  • the structure in which a plurality of semiconductor elements are stacked includes a structure in which an element mounting board on which semiconductor elements are mounted and another semiconductor element are connected via solder balls, or two element mounting boards on which semiconductor elements are mounted.
  • a structure in which the two are connected via solder balls is known.
  • solder balls are connected to electrode pads provided on the main surface of the element mounting substrate, and electrodes of the semiconductor element are connected to the solder balls.
  • a solder ball is connected to an electrode pad provided on the main surface of the lower element mounting substrate, and an electrode pad provided on the main surface of the upper element mounting substrate is connected to the solder ball.
  • the lower substrate and the upper semiconductor element, or the lower substrate and the upper substrate are electrically connected via the solder balls.
  • An insulating layer having an opening that exposes the electrode pad is provided on the main surface of each element mounting substrate.
  • Patent Document 1 One aspect of the connection structure between the electrode pad and the solder ball is disclosed in Patent Document 1.
  • Patent Document 1 as the underfill resin does not flow out to the land pads for BGA (Ball Grid Aray) connected on the outside of the chip mounting area of the semiconductor package, so as to surround the chip mounting area in a position adjacent to the land pad A structure provided with a protective resist layer is disclosed.
  • Patent Document 2 discloses a structure in which a plurality of adjacent pads are exposed from an opening of a solder resist that covers a wiring layer.
  • the protective resist layer provided adjacent to the land pad may interfere with the connection between the solder ball and the land pad. . Therefore, in order to improve the connection reliability of the element mounting substrate, there is room for improvement in the conventional connection structure between the electrode pad and the solder ball.
  • the solder balls are only filled in the openings of the insulating layer and placed on the electrode pads exposed by the openings. Therefore, in order to improve the connection reliability of the element mounting substrate, there is room for improvement in the conventional connection structure between the electrode pad and the solder ball.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a technique for improving the connection reliability of an element mounting board.
  • An aspect of the present invention is an element mounting substrate.
  • the element mounting substrate includes a base material, an insulating layer provided on one main surface of the base material and having an opening that exposes an electrode formation region on the base material, and an electrode provided in the opening.
  • the insulating layer has a multilayer structure in which a plurality of layered insulators are laminated, and the plurality of layered insulators are formed on the main surface of the peripheral edge of the lower layered insulator on the upper layered insulating layer.
  • the lower end of the body opening is positioned, and the electrode pad is configured such that its top surface is higher than the lower main surface of the layered insulator in the uppermost layer. To do.
  • connection reliability of the element mounting board can be improved.
  • the electrode pad may be configured such that its top surface is at a position lower than the upper main surface of the layered insulator in the uppermost layer.
  • the plurality of layered insulators may be configured to protrude into the opening as the side surface in each opening becomes closer to the upper main surface.
  • an electrode pad may be provided on the peripheral edge of the substrate.
  • an aspect of the present invention is an element mounting substrate.
  • the element mounting substrate includes a base material, an insulating layer provided on one main surface of the base material and having an opening that exposes an electrode formation region on the base material, and an electrode provided in the opening.
  • the electrode pad is configured such that the top surface of the electrode pad is lower than the upper main surface of the insulating layer, and the insulating layer is at least above the top surface of the electrode pad among the side surfaces in the opening. The side surface of this is configured to protrude into the opening as it approaches the upper main surface.
  • connection reliability of the element mounting board can be improved.
  • the insulating layer may have a multilayer structure in which a plurality of layered insulators are stacked, the side surface of the opening of the layered insulation in at least the uppermost layer, as pushed out into nearer the opening on the upper major surface It may be configured.
  • the electrode pad may be configured such that its top surface is positioned higher than the lower main surface of the layered insulator in the uppermost layer.
  • a plurality of the layered insulation, the sides of the respective opening protruding into nearer the opening to the respective upper main surface, on the main surface of the opening portion of the lower layer insulator, the upper layer You may comprise so that the lower end part of the opening part of an insulator may be located.
  • the semiconductor device further includes a connection member that is filled in the opening and electrically connected to the electrode pad and protrudes upward from the upper main surface of the insulating layer, and the connection member is an insulation protruding into the opening.
  • the side surface of the layer may be provided so as to be recessed into the connecting member.
  • an electrode pad may be provided on the peripheral edge of the substrate.
  • the semiconductor module includes the element mounting substrate according to any one of the aspects described above and a semiconductor element mounted on one main surface side of the base material.
  • Still another aspect of the present invention is a portable device.
  • the portable device is characterized by mounting the semiconductor module of the above-described aspect.
  • connection reliability of the element mounting board can be improved.
  • FIG. 5 is a schematic cross-sectional view showing a configuration of a semiconductor device including an element mounting substrate and a semiconductor module according to Embodiments 1 and 3.
  • FIG. It is the elements on larger scale which show the electrode pad provided in the element mounting substrate, and its surrounding structure.
  • It is a plane schematic diagram of a semiconductor module.
  • 4A to 4D are process cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • 5A to 5C are process cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • 6A and 6B are process cross-sectional views illustrating a method for manufacturing a semiconductor device. It is an optical microscope photograph image which shows the result of having exposed and developed the laminated body of the layered insulator.
  • FIG. 6 is a schematic cross-sectional view illustrating a configuration of a semiconductor device including an element mounting substrate and a semiconductor module according to a second embodiment. It is the elements on larger scale which show the electrode pad provided in the element mounting substrate, and its surrounding structure.
  • 10A to 10D are process cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • 11A to 11C are process cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIG. 6 is a schematic cross-sectional view illustrating a configuration of a semiconductor module according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a mobile phone according to a fifth embodiment. It is a fragmentary sectional view of the mobile phone shown in FIG.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of a semiconductor device including an element mounting substrate and a semiconductor module according to the first embodiment.
  • FIG. 2 is a partially enlarged view showing the electrode pad provided on the element mounting substrate and the surrounding structure.
  • the semiconductor device 1 has a PoP (Package on Package) structure in which a semiconductor module 300 is stacked on a semiconductor module 100 including an element mounting substrate 110.
  • the element mounting substrate 110 includes a base material 10, a wiring layer 20, and an insulating layer 30.
  • the base material 10 functions as a core base material.
  • the base material 10 can be formed of, for example, a thermosetting resin such as a melamine derivative such as BT resin, a liquid crystal polymer, an epoxy resin, a PPE resin, a polyimide resin, a fluororesin, a phenol resin, or a polyamide bismaleimide. Further, from the viewpoint of improving the heat dissipation of the element mounting substrate 110, the base material 10 desirably has high thermal conductivity.
  • the base material 10 contains silver, bismuth, copper, aluminum, magnesium, tin, zinc, and alloys thereof, silica, alumina, silicon nitride, aluminum nitride, or the like as a highly thermally conductive filler.
  • the thickness of the base material 10 is, for example, about 100 ⁇ m.
  • the wiring layer 20 has a predetermined pattern and is provided on one main surface of the substrate 10 (in this embodiment, the mounting surface side of the semiconductor module 300).
  • the wiring layer 20 is made of, for example, copper (Cu) and has a thickness of, for example, about 10 ⁇ m to about 25 ⁇ m.
  • a lower surface side wiring layer (not shown) having a predetermined pattern is provided on the other main surface of the substrate 10. Further, on the other main surface of the base material 10, for example, a lower surface side electrode pad 52 for joining solder used when mounting the semiconductor device 1 on a mother board is provided.
  • the lower surface side wiring layer is connected to a lower surface side electrode pad 52 provided in an electrode formation region on the other main surface of the substrate 10.
  • the lower surface side wiring layer and the lower surface side electrode pad 52 are made of copper, for example, and the thickness thereof is, for example, about 10 ⁇ m to about 25 ⁇ m.
  • a via conductor (not shown) penetrating the base material 10 is provided at a predetermined position of the base material 10.
  • the via conductor is formed by, for example, copper plating.
  • the wiring layer 20 and the lower surface side wiring layer are electrically connected by the via conductor.
  • the insulating layer 30 is provided on one main surface of the substrate 10 so as to cover the wiring layer 20.
  • the insulating layer 30 prevents the wiring layer 20 from being oxidized.
  • the insulating layer 30 has an opening 32 that exposes the electrode formation region on the substrate 10.
  • the insulating layer 30 has a multilayer structure in which a plurality of layered insulators are stacked. Specifically, the insulating layer 30 has a structure in which three layered insulators 33, 34, and 35 are stacked. In addition, the part in which the semiconductor element 200 is mounted in the insulating layer 30 is configured only by the layered insulator 33.
  • the layered insulator 33, the layered insulator 34, and the layered insulator 35 are formed of, for example, a photo solder resist, and the thickness thereof is, for example, about 20 ⁇ m to about 50 ⁇ m.
  • the layered insulator 33 has an opening 32a
  • the layered insulator 34 has an opening 32b
  • the layered insulator 35 has an opening 32c.
  • the opening 32a, the opening 32b, and the opening 32c are provided in the electrode formation region on the substrate 10, respectively, and the electrode formation on the substrate 10 is formed by the opening 32a, the opening 32b, and the opening 32c.
  • An opening 32 is formed so that the region is exposed.
  • the diameter of the opening 32 is about 100 ⁇ m to about 300 ⁇ m.
  • the side surface 33a in the opening 32a of the layered insulation 33, and the side 34a of the opening 32b of the layered insulation 34, the side surface 30a of the insulating layer 30 by the side surface 35a in the opening 32c of the layered insulation 35 Is formed.
  • an electrode pad 22 for joining solder for mounting the package is provided.
  • the electrode pad 22 includes a first conductor portion 22a, a second conductor portion 22b, and a gold plating layer 23.
  • the first conductor portion 22a is the same layer as the wiring layer 20, and is connected to the wiring layer 20 extending to the electrode formation region.
  • the second conductor portion 22b is provided on the first conductor portion 22a.
  • the gold plating layer 23 is provided on the second conductor portion 22b. In the opening portion 32, the second conductor portion 22b is exposed, and the gold plating layer 23 prevents the second conductor portion 22b from being oxidized.
  • the first conductor portion 22a and the second conductor portion 22b of the electrode pad 22 are made of, for example, copper.
  • the height of the top surface 22c from the surface of the base material 10 is, for example, about 50 ⁇ m to about 100 ⁇ m.
  • the gold plating layer 23 is made of, for example, a Ni / Au layer.
  • the thickness of the Ni layer is, for example, about 3 ⁇ m to about 15 ⁇ m, and the thickness of the Au layer is, for example, about 0.5 ⁇ m to about 1 ⁇ m.
  • a lower surface side insulating layer 60 is provided on the other main surface of the base material 10 so as to cover the lower surface side wiring layer.
  • the lower surface side insulating layer 60 prevents the lower surface side wiring layer from being oxidized.
  • the lower surface side insulating layer 60 has an opening 62 that exposes an electrode formation region on the other main surface of the substrate 10. Therefore, in the opening 62, the lower surface side electrode pad 52 provided on the electrode formation region is exposed.
  • the lower surface side insulating layer 60 is formed of, for example, a photo solder resist, and has a thickness of, for example, about 20 ⁇ m to about 50 ⁇ m.
  • the diameter of the opening 62 is about 100 ⁇ m to about 300 ⁇ m.
  • a gold plating layer 21 such as a Ni / Au layer is formed on the surface of the wiring layer 20 at a portion to be wire bonded to the semiconductor element 200 described later.
  • a gold plating layer 53 is formed on the surface of the lower surface side electrode pad 52. Oxidation of the wiring layer 20 and the gold plating layer 53 is suppressed by the gold plating layer 21 and the gold plating layer 53.
  • the thickness of the Ni layer is, for example, about 3 ⁇ m to about 15 ⁇ m
  • the thickness of the Au layer is, for example, about 0.5 ⁇ m to about 1 ⁇ m.
  • the solder ball 70 is connected to the electrode pad 22 in the opening 32 of the insulating layer 30.
  • the solder ball 70 functions as a connection member that electrically connects the electrode pad 322 of the semiconductor module 300 and the electrode pad 22 of the element mounting substrate 110.
  • the semiconductor module 300 and the semiconductor module 100 are electrically connected by the solder balls 70.
  • solder ball 80 is connected to the lower surface side electrode pad 52 in the opening 62 of the lower surface side insulating layer 60.
  • the solder ball 80 functions as a connection member that electrically connects the lower surface side electrode pad 52 of the element mounting substrate 110 and, for example, a connection terminal of the motherboard.
  • the semiconductor device 1 is electrically connected to a mother board (not shown).
  • the semiconductor module 100 is formed by mounting the semiconductor element 200 on the element mounting substrate 110 having such a configuration.
  • the semiconductor element 200 is mounted on the insulating layer 30 (layered insulator 33) provided on one main surface of the substrate 10.
  • An element electrode (not shown) provided in the semiconductor element 200 and a wiring layer 20 in a predetermined region are connected by wire bonding with a gold wire 202.
  • Specific examples of the semiconductor element 200 include semiconductor chips such as an integrated circuit (IC) and a large scale integrated circuit (LSI).
  • the semiconductor element 200 and the wiring layer 20 connected to the semiconductor element 200 are sealed with a sealing resin layer 120.
  • the sealing resin layer 120 is formed by a transfer molding method using, for example, an epoxy resin.
  • the semiconductor module 300 is mounted on the semiconductor module 100 having such a configuration, and the semiconductor device 1 having the PoP structure is formed.
  • the electrode pad 322 of the semiconductor module 300 and the electrode pad 22 of the semiconductor module 100 are joined to the solder ball 70 so that they are electrically connected.
  • the semiconductor module 300 has a structure in which the semiconductor element 210 is mounted on the element mounting substrate 310.
  • the element mounting substrate 310 includes electrode pads 322, and the electrode pads 322 are electrically connected to the electrode pads 22 of the element mounting substrate 110 via the solder balls 70.
  • the upper surface and the semiconductor element 210 of the device mounting board 310 are sealed by a sealing resin layer 320.
  • the sealing resin layer 320 is formed by a transfer molding method using, for example, an epoxy resin.
  • connection structure between the electrode pad and the solder ball will be described in detail with reference to FIG.
  • the electrode pad 22 is configured such that the top surface 22c (the upper end surface of the gold plating layer 23) is positioned higher than the lower main surface of the layered insulator 35 in the uppermost layer. Yes. That is, the height of the top surface 22 c from the main surface of the base material 10 is higher than the height of the lower main surface of the layered insulator 35 from the main surface of the base material 10.
  • the solder ball 70 filled in the opening 32 and the electrode pad 22 can be more reliably brought into contact with each other. it can.
  • the electrode pad 22 is configured such that the top surface 22c is positioned lower than the upper main surface of the layered insulator 35 that is the uppermost layer. That is, the height of the top surface 22c from the main surface of the base material 10 is lower than the height of the upper main surface of the insulating layer 30 from the main surface of the base material 10. As a result, a part of the solder ball 70 enters the opening 32, so that the contact area between the solder ball 70 and the insulating layer 30 increases. Accordingly, it is possible to reduce the possibility that the solder ball 70 is peeled from the electrode pad 22.
  • the layered insulator 34 and the layered insulator 35 are configured such that the lower end of the opening 32c of the upper layered insulator 35 is positioned on the main surface of the periphery of the opening 32b of the lower layered insulator 34.
  • the opening diameter of the lower end part of the opening part 32c is larger than the opening diameter of the upper end part of the opening part 32b. Therefore, the side surface 30 a of the insulating layer 30 has a substantially staircase shape that appears in a cross section passing through the central axis of the opening 32.
  • the side surface 34a in the opening 32b of the layered insulator 34 and the side surface 35a in the opening 32c of the layered insulator 35 are configured to protrude into the opening as they are closer to the upper main surface.
  • the side surface 34a of the layered insulator 34 and the side surface 35a of the layered insulator 35 have an inversely tapered shape that becomes wider from the lower main surface toward the upper main surface.
  • the opening part 32b and the opening part 32c have a taper shape in which the opening diameter becomes small as it approaches the upper end part. Therefore, in the layered insulator 34, when the lower end portion of the opening 32b is used as a reference, the protruding portion 34b is formed in the opening 32b. In the layered insulator 35, when the lower end portion of the opening 32c is used as a reference, a protruding portion 35b is formed in the opening 32c.
  • the top surface 22c of the electrode pad 22 is located between the lower main surface and the upper main surface of the layered insulator 35 in the uppermost layer. That is, the top surface 22 c is at a position higher than the lower main surface of the layered insulator 35 and is lower than the upper main surface of the layered insulator 35. Therefore, the side surface 35a of the layered insulator 35 protruding into the opening 32c, that is, the protruding portion 35b is soldered with the solder ball 70 filled in the opening 32 and electrically connected to the electrode pad 22. Intrude into the ball 70.
  • the protruding portion 35b bite into the solder balls 70, protruding portions 35b is exerted an anchor effect, it is possible to prevent the solder ball 70 is peeled off from the electrode pad 22. Therefore, the element mounting substrate 110 and the semiconductor module 300 can be electrically connected more reliably.
  • At least the side surface 35 a in the opening 32 c of the layered insulator 35 in the uppermost layer among the side surfaces 30 a of the opening 32 is the upper main surface of the layered insulator 35. It suffices if it is configured so as to protrude into the opening 32c as it approaches. In addition, when the side surface 30a of at least the top surface 22c of the electrode pad 22 among the side surfaces 30a of the opening 32 is configured to protrude into the opening 32 as it approaches the upper main surface of the insulating layer 30. Even so, it is possible to prevent the solder balls 70 from being peeled off.
  • the layered insulator 34 and the layered insulator 35 are configured such that the lower end portion of the opening 32c of the layered insulator 35 is positioned on the main surface of the periphery of the opening 32b of the layered insulator 34.
  • the protruding portion 34b in layers insulator 34 is provided. Therefore, the protruding portion 34b has a structure that bites into the electrode pad 22. Thereby, it can prevent that the electrode pad 22 peels from the base material 10.
  • the side surface 33a of the layered insulator 33 extends vertically, but the side surface 33a may also be configured to protrude to the opening 32a as it approaches the upper main surface of the layered insulator 33. . In this case, peeling between the electrode pad 22 and the base material 10 can be prevented more reliably.
  • FIG. 3 is a schematic plan view of the semiconductor module.
  • illustration of the sealing resin layer 120, the gold wire 202, and the wiring layer 20 connected to the gold wire 202 shown in FIG. 1 is omitted.
  • the electrode pads 22 shown in FIG. therefore, as shown in FIG. 3, the insulating layer 30 having a multilayer structure in which the layered insulator 33, the layered insulator 34, and the layered insulator 35 are laminated is provided on the peripheral portion of the substrate 10, and similarly, the solder ball 70. Is also disposed at the peripheral edge of the substrate 10. In the central region of the substrate 10 surrounded by the electrode pads 22, an insulating layer 30 composed only of the layered insulator 33 is provided. Therefore, the element mounting substrate 110 has a so-called cavity structure in which the surface height of the peripheral portion is high and the surface height of the central portion is low.
  • the semiconductor element 200 is mounted in a central region surrounded by the electrode pads 22.
  • FIGS. 4 (A) to 4 (D), 5 (A) to 5 (C), 6 (A), and 6 (B) are process cross-sectional views illustrating a method for manufacturing a semiconductor device. .
  • the wiring layer 20, the first conductor portion 22a connected thereto, and the layered insulator 33 are provided on one main surface, and the lower surface side is provided on the other main surface.
  • a base material 10 on which a wiring layer (not shown), a lower surface side electrode pad 52 and a lower surface side insulating layer 60 are formed is prepared.
  • the layered insulator 33 is provided with an opening 32a in a predetermined region, and the lower surface side insulating layer 60 is provided with an opening 62 in a predetermined region.
  • Each wiring layer, the first conductor portion 22a, and the lower surface side electrode pad 52 can be formed using a known photolithography method, etching method, or the like.
  • the opening 32a of the layered insulator 33 and the opening 62 of the lower-side insulating layer 60 can also be formed using a known photolithography method, etching method, or the like.
  • the layered insulator 34 is laminated on the layered insulator 33 so as to cover the wiring layer 20, the first conductor portion 22 a, and the layered insulator 33. Further, a layered insulator 35 is stacked on the layered insulator 34.
  • a mask 150 having a pattern corresponding to the region where the first conductor portion 22a is present and the region where the semiconductor element 200 is to be mounted is formed on the main surface of the layered insulator 35 by photolithography. Are selectively formed. Then, the layered insulator 34 and the layered insulator 35 are exposed using the mask 150 as a mask (the arrow in FIG. 4C indicates exposure light). The exposure light applied to the main surface of the layered insulator 35 travels through the layered insulator 35 and reaches the layered insulator 34. Thereby, the layered insulator 34 is also exposed.
  • the layered insulator 34 and the layered insulator 35 are made of a negative type photo solder resist.
  • the part exposed by the exposure becomes insoluble in the solvent. Therefore, by exposing and developing the layered insulator 34 and the layered insulator 35, the exposed portion of the layered insulator 34 and the layered insulator 35 remain undissolved as shown in FIG. 4D. . As a result, the layered insulator 34 embedded in the opening 32 a of the layered insulator 33 is removed, the opening 32 b is formed in the layered insulator 34, and the opening 32 c is formed in the layered insulator 35. Thereby, the opening part 32 is formed and the 1st conductor part 22a is exposed.
  • the layered insulator 34 and the layered insulator 35 in the region where the semiconductor element 200 is to be mounted are removed, and the portion of the wiring layer 20 connected to the semiconductor element 200 and the semiconductor element 200 of the layered insulator 33 are mounted. Exposed part.
  • the layered insulator 34 and the layered insulator 35 are exposed by laminating the mask 150, the exposure light attenuates as it is closer to the side of the opening in the opening of the mask 150. Cheap.
  • the side surface 34a of the layered insulator 34 and the side surface 35a of the layered insulator 35 have a shape that protrudes into the opening as they are closer to the upper main surface.
  • the layered insulator 34 and the layered insulator 35 are stacked and the main surface of the layered insulator 35 is exposed, as shown in FIG. 4D, the layered insulator 34 and the layered insulator 35
  • the lower end of the opening 32c of the upper layered insulator 35 is located on the main surface of the periphery of the opening 32b of the layered insulator 34. That is, the shape in which the side surface 30 a of the insulating layer 30 appears in a cross section passing through the central axis of the opening 32 is a substantially stepped shape.
  • FIG. 7 shows the results of exposure and development by forming a mask having an opening diameter of 300 ⁇ m on the layered body of the layered insulator 34 and the layered insulator 35 and changing the light irradiation amount in the range of 500 to 1000 mj. It is an optical microscope photograph image shown. As shown by the arrows in FIG. 7, it is understood that a constriction is formed in the vicinity of the interface between the layered insulator 34 and the layered insulator 35, whereby the side surface of the stacked body has a substantially step shape. Moreover, as shown in FIG. 7, the substantially staircase shape of the side surface of the laminate is obtained for any light irradiation amount, and it can be seen that the formation of the shape is reproducible.
  • a resist 152 is selectively formed so as to be covered.
  • a resist 154 is formed on the other main surface side of the substrate 10 so as to cover the exposed lower surface side electrode pad 52.
  • the first conductor portion 22a is filled with copper by electroplating.
  • the plating process first, copper is gradually filled into the opening 32a provided in the layered insulator 33 from the surface of the first conductor portion 22a, and the opening 32a is filled with copper. Moreover, copper is filled by growing upward into the opening 32b of the layered insulation 34. Even after the inside of the opening 32b of the layered insulator 34 is filled with copper, the copper is gradually plated up and filled to a predetermined height in the opening 32c of the layered insulator 35. Thereby, the 2nd conductor part 22b is formed on the 1st conductor part 22a.
  • the gold plating layer 21 is formed on the wiring layer 20 by, for example, electrolytic plating, and the second conductor portion 22b is formed. Then, a gold plating layer 23 is formed, and a gold plating layer 53 is formed on the lower electrode pad 52.
  • the element mounting substrate 110 according to the present embodiment is formed.
  • the semiconductor element 200 is mounted on the insulating layer 30 (layered insulator 33) in the central region of the substrate 10. Then, an element electrode (not shown) provided on the peripheral edge of the upper surface of the semiconductor element 200 and a predetermined region of the wiring layer 20 are connected by a gold wire 202 using a wire bonding method. Subsequently, using a transfer molding method, the semiconductor element 200 is sealed by the sealing resin layer 120. Further, a mask having an opening formed at a position where the solder ball 70 is provided is provided on the insulating layer 30 in which the opening 32 is formed, and a spherical solder ball is disposed (mounted) on the opening of the mask. Solder balls 70 are mounted on the electrode pads 22.
  • the solder ball 80 is mounted on the lower surface side electrode pad 52 in the opening 62 of the lower surface side insulating layer 60.
  • the solder balls 70 may be mounted on the electrode pads 22 in the openings 32 of the insulating layer 30 by, for example, screen printing.
  • the solder ball 70 is formed by printing a solder paste made of a resin and a solder material in a paste form at a desired location using a screen mask.
  • the solder ball 80 may be mounted.
  • the semiconductor module 100 according to this embodiment is formed through the above steps.
  • the above-described semiconductor module 300 is prepared. Then, in a state where the semiconductor module 300 is mounted on the semiconductor module 100, the solder ball 70 is melted by a reflow process to join the electrode pad 22 and the electrode pad 322. Thus, the semiconductor module 100 and the semiconductor module 300 through the solder balls 70 are electrically connected. Through the above steps, the semiconductor device 1 is formed.
  • the element mounting substrate 110 is provided on one main surface of the base material 10 and has an insulating portion 32 having an opening 32 that exposes an electrode formation region on the base material 10.
  • the layer 30 and the electrode pad 22 provided in the opening 32 are provided.
  • the insulating layer 30 has a multilayer structure in which layered insulators 33, 34, and 35 are stacked.
  • the layered insulator 34 and the layered insulator 35 are formed on the main surface of the periphery of the opening 32b of the layered insulator 34.
  • the lower end of the opening 32c of the layered insulator 35 is positioned.
  • the electrode pad 22 is configured such that the top surface 22c is higher than the lower main surface of the layered insulator 35 that is the uppermost layer.
  • the semiconductor element 200 of the semiconductor module 100 is disposed between the element mounting substrate 110 and the semiconductor module 300. Therefore, in the semiconductor device 1, it is necessary to raise the connection portion between the element mounting substrate 110 and the semiconductor module 300 to secure an installation space for the semiconductor element 200. In this case, it is conceivable to increase the thickness of the solder ball 70 by increasing the thickness of the insulating layer 30 as in the conventional structure, thereby securing the installation space for the semiconductor element 200. However, in this case, since the opening 32 becomes deep, there is a possibility that the solder ball 70 filled in the opening 32 is not reliably connected to the wiring layer 20.
  • the element mounting substrate 110 of the present embodiment has a multilayer structure of the insulating layer 30 to secure the installation space for the semiconductor element 200, and the electrode pad 22 is provided in the opening 32, and the top surface 22c is formed. It is higher than the lower main surface of the uppermost layered insulator 35. Therefore, the solder ball 70 filled in the opening 32 and the electrode pad 22 can be brought into contact with each other more reliably. Therefore, the connection reliability of the element mounting substrate 110 can be improved. Further, since the connection reliability of the element mounting substrate 110 is improved, the mounting reliability of the semiconductor module 100 and the semiconductor device 1 is also improved.
  • the layered insulator 34 and the layered insulator 35 are configured such that the lower end of the opening 32c of the upper layered insulator 35 is positioned on the main surface of the periphery of the opening 32b of the lower layered insulator 34. Has been. Thereby, since the contact area of the electrode pad 22 and the side surface 30a of the insulating layer 30 increases, peeling of the electrode pad 22 and the insulating layer 30 can be suppressed.
  • the electrode pad 22 is configured such that its top surface 22c is lower than the upper main surface of the layered insulator 35 which is the uppermost layer. As a result, a part of the solder ball 70 enters the opening 32, so that the contact area between the solder ball 70 and the insulating layer 30 increases. Accordingly, it is possible to reduce the possibility that the solder ball 70 is peeled from the electrode pad 22.
  • the side surface 35a in the opening 32c of the layered insulator 35 is configured to protrude into the opening as it comes closer to the upper main surface. Therefore, when the solder ball 70 is mounted on the electrode pad 22, the protruding portion 35 b enters the solder ball 70. As a result, the solder balls 70 are less likely to fall out of the openings 32, and the peeling between the solder balls 70 and the electrode pads 22 is suppressed.
  • the side surface 34a in the opening 32b of the layered insulator 34 is also configured to protrude into the opening as it is closer to the upper main surface. Therefore, the protruding portion 34 b is recessed into the side surface of the electrode pad 22. Thereby, it can prevent that the electrode pad 22 peels from the base material 10. FIG.
  • the electrode pad 22 is provided on the peripheral edge of the substrate 10. Therefore, the element mounting substrate 110 can have a so-called cavity shape in which the surface height of the peripheral portion is high and the surface height of the central portion is low.
  • FIG. 8 is a schematic cross-sectional view illustrating a configuration of a semiconductor device including an element mounting substrate and a semiconductor module according to the second embodiment.
  • the semiconductor device 1 has a PoP (Package on Package) structure in which a semiconductor module 300 is stacked on a semiconductor module 100 including an element mounting substrate 110.
  • PoP Package on Package
  • the element mounting substrate 110 includes a base material 10, a wiring layer 20, and an insulating layer 30.
  • the base material 10 functions as a core base material.
  • the base material 10 can be formed of, for example, a thermosetting resin such as a melamine derivative such as BT resin, a liquid crystal polymer, an epoxy resin, a PPE resin, a polyimide resin, a fluororesin, a phenol resin, or a polyamide bismaleimide. Further, from the viewpoint of improving the heat dissipation of the element mounting substrate 110, the base material 10 desirably has high thermal conductivity.
  • the base material 10 contains silver, bismuth, copper, aluminum, magnesium, tin, zinc, and alloys thereof, silica, alumina, silicon nitride, aluminum nitride, or the like as a highly thermally conductive filler.
  • the thickness of the base material 10 is, for example, about 100 ⁇ m.
  • the wiring layer 20 has a predetermined pattern and is provided on one main surface of the substrate 10 (in this embodiment, the mounting surface side of the semiconductor module 300).
  • an electrode pad 22 for joining package mounting solder is provided on one main surface of the substrate 10.
  • Wiring layer 20 is connected to the electrode pads 22 provided in the electrode formation region on the substrate 10.
  • the electrode pad 22 includes a first conductor portion 22 a and a gold plating layer 23.
  • the first conductor section 22a, the wiring layer 20 is the same layer, the wiring layer 20 is connected.
  • the gold plating layer 23 is provided on the first conductor portion 22a. The gold plating layer 23 prevents the first conductor portion 22a from being oxidized.
  • the first conductor portion 22a of the wiring layer 20 and the electrode pad 22 is made of, for example, copper (Cu), and the thickness thereof is, for example, about 10 ⁇ m to about 25 ⁇ m.
  • the gold plating layer 23 is made of, for example, a Ni / Au layer.
  • the thickness of the Ni layer is, for example, about 3 ⁇ m to about 15 ⁇ m, and the thickness of the Au layer is, for example, about 0.5 ⁇ m to about 1 ⁇ m.
  • a lower surface side wiring layer (not shown) having a predetermined pattern is provided on the other main surface of the substrate 10. Further, on the other main surface of the base material 10, for example, a lower surface side electrode pad 52 for joining solder used when mounting the semiconductor device 1 on a mother board is provided.
  • the lower surface side wiring layer is connected to a lower surface side electrode pad 52 provided in an electrode formation region on the other main surface of the substrate 10.
  • the lower surface side wiring layer and the lower surface side electrode pad 52 are made of copper, for example, and the thickness thereof is, for example, about 10 ⁇ m to about 25 ⁇ m.
  • a via conductor (not shown) penetrating the base material 10 is provided at a predetermined position of the base material 10.
  • the via conductor is formed by, for example, copper plating.
  • the wiring layer 20 and the lower surface side wiring layer are electrically connected by the via conductor.
  • the insulating layer 30 is provided on one main surface of the substrate 10 so as to cover the wiring layer 20.
  • the insulating layer 30 prevents the wiring layer 20 from being oxidized.
  • the insulating layer 30 has an opening 32 that exposes the electrode formation region on the substrate 10. Therefore, the electrode pad 22 provided in the electrode formation region is exposed in the opening 32.
  • the insulating layer 30 is formed of, for example, a photo solder resist, and the thickness thereof is, for example, about 20 ⁇ m to about 50 ⁇ m.
  • the diameter of the opening 32 is about 100 ⁇ m to about 300 ⁇ m.
  • a lower surface side insulating layer 60 is provided on the other main surface of the base material 10 so as to cover the lower surface side wiring layer.
  • the lower surface side insulating layer 60 prevents the lower surface side wiring layer from being oxidized.
  • the lower surface side insulating layer 60 has an opening 62 that exposes an electrode formation region on the other main surface of the substrate 10. Therefore, the lower surface side electrode pad 52 provided in the electrode formation region is exposed in the opening 62.
  • the lower surface side insulating layer 60 is formed of, for example, a photo solder resist, and has a thickness of, for example, about 20 ⁇ m to about 50 ⁇ m.
  • the diameter of the opening 62 is about 100 ⁇ m to about 300 ⁇ m.
  • a gold plating layer 21 such as a Ni / Au layer is formed on the surface of the wiring layer 20 at a portion to be wire bonded to the semiconductor element 200 described later. Similarly, the surface of the lower surface side electrode pad 52, the gold plating layer 53 is formed. Oxidation of the wiring layer 20 and the gold plating layer 53 is suppressed by the gold plating layer 21 and the gold plating layer 53.
  • the thickness of the Ni layer is, for example, about 3 ⁇ m to about 15 ⁇ m
  • the thickness of the Au layer is, for example, about 0.5 ⁇ m to about 1 ⁇ m.
  • the solder ball 70 is connected to the electrode pad 22 in the opening 32 of the insulating layer 30.
  • the solder ball 70 functions as a connection member that electrically connects the electrode pad 322 of the semiconductor module 300 and the electrode pad 22 of the element mounting substrate 110.
  • the semiconductor module 300 and the semiconductor module 100 are electrically connected by the solder balls 70.
  • solder ball 80 is connected to the lower surface side electrode pad 52 in the opening 62 of the lower surface side insulating layer 60.
  • the solder ball 80 functions as a connection member that electrically connects the lower surface side electrode pad 52 of the element mounting substrate 110 and, for example, a connection terminal of the motherboard.
  • the semiconductor device 1 is electrically connected to a mother board (not shown).
  • the semiconductor module 100 is formed by mounting the semiconductor element 200 on the element mounting substrate 110 having such a configuration.
  • the semiconductor element 200 is mounted on the insulating layer 30 provided on one main surface of the substrate 10.
  • An element electrode (not shown) provided in the semiconductor element 200 and a wiring layer 20 in a predetermined region are connected by wire bonding with a gold wire 202.
  • Specific examples of the semiconductor element 200 include semiconductor chips such as an integrated circuit (IC) and a large scale integrated circuit (LSI).
  • the semiconductor element 200 and the wiring layer 20 connected to the semiconductor element 200 are sealed with a sealing resin layer 120.
  • the sealing resin layer 120 is formed by a transfer molding method using, for example, an epoxy resin.
  • the semiconductor module 300 is mounted on the semiconductor module 100 having such a configuration, and the semiconductor device 1 having the PoP structure is formed.
  • the electrode pad 322 of the semiconductor module 300 and the electrode pad 22 of the semiconductor module 100 are joined to the solder ball 70 so that they are electrically connected.
  • the semiconductor module 300 has a structure in which the semiconductor element 210 is mounted on the element mounting substrate 310.
  • the element mounting substrate 310 includes electrode pads 322, and the electrode pads 322 are electrically connected to the electrode pads 22 of the element mounting substrate 110 via the solder balls 70.
  • the upper surface of the element mounting substrate 310 and the semiconductor element 210 are sealed with a sealing resin layer 320.
  • the sealing resin layer 320 is formed by a transfer molding method using, for example, an epoxy resin.
  • Figure 9 is a partially enlarged view showing the structure surrounding the electrode pads provided on the device mounting substrate.
  • the electrode pad 22 is configured such that the top surface 22 c (the upper end surface of the gold plating layer 23) is lower than the upper main surface of the insulating layer 30. That is, the height of the top surface 22c from the main surface of the base material 10 is lower than the height of the upper main surface of the insulating layer 30 from the main surface of the base material 10.
  • the insulating layer 30 protrudes into the opening 32 so that at least the side surface 30 a above the top surface 22 c of the electrode pad 22 among the side surfaces 30 a in the opening 32 is closer to the upper main surface of the insulating layer 30. It is configured. In the present embodiment, the entire side surface 30a protrudes into the opening 32 as it approaches the upper main surface.
  • the side surface 30 a of the insulating layer 30 protrudes into the opening portion 32, so that the protruding portion 30 b is formed in the opening portion 32.
  • the side surface 30a of the insulating layer 30 has an inversely tapered shape that becomes wider from the lower main surface toward the upper main surface.
  • the opening 32 has a tapered shape in which the opening diameter is smaller as it is closer to the upper main surface of the insulating layer 30.
  • the solder ball 70 is filled in the opening 32 and is electrically connected to the electrode pad 22. Solder balls 70 protrude upward from the upper main surface of insulating layer 30.
  • the solder ball 70 is provided such that the side surface 30 a of the insulating layer 30 protruding into the opening 32, i.e., the protruding portion 30 b, is recessed into the solder ball 70. In this manner, the protruding portion 30b bites into the solder ball 70, whereby the protruding portion 30b exhibits an anchor effect, and the solder ball 70 can be prevented from being peeled off from the electrode pad 22. Therefore, the element mounting substrate 110 and the semiconductor module 300 can be electrically connected more reliably.
  • FIGS. 10A to 10D and FIGS. 11A to 11C are process cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • a wiring layer 20 having a predetermined pattern and a first conductor portion 22a of an electrode pad 22 connected thereto are formed on one main surface, and a predetermined pattern is formed on the other main surface.
  • a base material 10 on which a lower wiring layer (not shown) and a lower electrode pad 52 connected thereto are formed is prepared.
  • Each wiring layer and each electrode pad can be formed by using a well-known photolithography method, etching method, or the like, and thus description thereof is omitted.
  • an insulating layer 30 is laminated on one main surface of the substrate 10 so as to cover the wiring layer 20 and the first conductor portion 22a. Further, the lower surface side insulating layer 60 is laminated on the other main surface of the base material 10 so as to cover the lower surface side wiring layer and the lower surface side electrode pad 52.
  • a mask 150 having a pattern corresponding to a predetermined region of the wiring layer 20 and a region where the first conductor portion 22a exists is selected on the main surface of the insulating layer 30 by photolithography. Form. Then, the insulating layer 30 is exposed using the mask 150 as a mask (the arrow in FIG. 10C indicates exposure light).
  • the insulating layer 30 is made of a negative type photo solder resist. Therefore, the part exposed by the exposure becomes insoluble in the solvent. Therefore, by developing after exposing the insulating layer 30, as shown in FIG. 10D, the exposed portion of the insulating layer 30 remains undissolved. As a result, an opening 32 is formed in the insulating layer 30 and the electrode pad 22 is exposed.
  • the wiring layer 20 is also exposed.
  • the exposure light traveling in the insulating layer 30 is attenuated in the region of the insulating layer 30 near the mask 150. It's easy to do. Further, the exposure light is more easily attenuated in the region closer to the mask 150. Therefore, in this region, the insulating layer travel distance of the exposure light closer to the mask 150 becomes shorter. Therefore, in the region near the mask 150, the closer to the mask 150, the more the lower main surface side portion of the insulating layer 30 that dissolves during development. As a result, as shown in FIG.
  • the side surface 30 a of the insulating layer 30 in the opening 32 has a shape that protrudes into the opening 32 as it approaches the upper main surface of the insulating layer 30.
  • an opening 62 is formed in the lower surface side insulating layer 60.
  • a gold plating layer 21 is formed on the wiring layer 20, a gold plating layer 23 is formed on the first conductor portion 22a, and the lower surface side electrode pad 52 is formed.
  • a gold plating layer 53 is formed.
  • Each gold plating layer can be formed by, for example, an electrolytic plating method or an electroless plating method.
  • the semiconductor element 200 is mounted on the insulating layer 30.
  • an element electrode (not shown) provided on the peripheral edge of the upper surface of the semiconductor element 200 and a predetermined region of the wiring layer 20 are connected by a gold wire 202 using a wire bonding method.
  • the semiconductor element 200 is sealed with the sealing resin layer 120 using a transfer molding method.
  • a mask having an opening formed at a position where the solder ball 70 is provided is provided on the insulating layer 30 in which the opening 32 is formed, and a spherical solder ball is disposed (mounted) on the opening of the mask. Solder balls 70 are mounted on the electrode pads 22. Thereafter, the mask is removed.
  • the solder ball 80 is mounted on the lower surface side electrode pad 52 in the opening 62 of the lower surface side insulating layer 60.
  • the solder balls 70 may be mounted on the electrode pads 22 in the openings 32 of the insulating layer 30 by, for example, screen printing.
  • the solder ball 70 is formed by printing a solder paste made of a resin and a solder material in a paste form at a desired location using a screen mask.
  • the solder ball 80 may be mounted.
  • the semiconductor module 100 according to this embodiment is formed through the above steps.
  • the above-described semiconductor module 300 is prepared. Then, in a state where the semiconductor module 300 is mounted on the semiconductor module 100, the solder ball 70 is melted by a reflow process to join the electrode pad 22 and the electrode pad 322. Thereby, the semiconductor module 100 and the semiconductor module 300 are electrically connected via the solder balls 70. Through the above steps, the semiconductor device 1 is formed.
  • the element mounting substrate 110 is provided on one main surface of the base material 10 and has an opening 32 that exposes an electrode formation region on the base material 10.
  • Layer 30 is provided.
  • the element mounting substrate 110 includes an electrode pad 22 provided in the opening 32.
  • the top surface of the electrode pad 22 is lower than the upper main surface of the insulating layer 30, and the insulating layer 30 is located in the opening 32 as the side surface 30a in the opening 32 is closer to the upper main surface. It is configured to protrude. Therefore, when the solder ball 70 is mounted on the electrode pad 22, the side surface 30 a of the insulating layer 30 that protrudes into the opening 32, that is, the protruding portion 30 b enters the solder ball 70.
  • connection reliability of the element mounting substrate 110 can be improved. Further, since the connection reliability of the element mounting substrate 110 is improved, the mounting reliability of the semiconductor module 100 and the semiconductor device 1 is also improved.
  • the protruding portion 30b of the insulating layer 30 only needs to be provided at least above the top surface of the electrode pad 22. If the protruding portion 30b is provided in this region, the side surface 30a of the insulating layer 30 can be bitten into the solder ball 70, and the anchor effect can be exhibited.
  • the insulating layer 30 has a multilayer structure in which a plurality of layered insulators are stacked.
  • this embodiment will be described.
  • the other configuration and manufacturing process of the semiconductor device 1 are basically the same as those of the second embodiment.
  • the same components as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of a semiconductor device including an element mounting substrate and a semiconductor module according to a third embodiment.
  • FIG. 2 is a partially enlarged view showing the electrode pad provided on the element mounting substrate and the surrounding structure.
  • the insulating layer 30 has a multilayer structure in which a plurality of layered insulators are stacked. Specifically, the insulating layer 30 has a structure in which three layered insulators 33, 34, and 35 are stacked. In addition, the part in which the semiconductor element 200 is mounted in the insulating layer 30 is configured only by the layered insulator 33.
  • the layered insulator 33, the layered insulator 34, and the layered insulator 35 are formed of, for example, a photo solder resist, and the thickness thereof is, for example, about 20 ⁇ m to about 50 ⁇ m.
  • the layered insulator 33 has an opening 32a
  • the layered insulator 34 has an opening 32b
  • the layered insulator 35 has an opening 32c.
  • the opening 32a, the opening 32b, and the opening 32c are provided in the electrode formation region on the substrate 10, respectively, and the electrode formation on the substrate 10 is formed by the opening 32a, the opening 32b, and the opening 32c.
  • An opening 32 is formed so that the region is exposed.
  • the side surface 30a of the insulating layer 30 is constituted by the side surface 33a in the opening 32a of the layered insulator 33, the side surface 34a in the opening 32b of the layered insulator 34, and the side surface 35a in the opening 32c of the layered insulator 35. Is formed.
  • the side surface 35 a in the opening 32 c of the layered insulator 35 in the uppermost layer is closer to the upper main surface of the layered insulator 35, that is, the upper main surface of the insulating layer 30. It is comprised so that it may protrude in 32c.
  • the side surface 34a in the opening portion 32b of the layered insulator 34 and the side surface 35a in the opening portion 32c of the layered insulator 35 are configured to protrude into the opening portion as they become closer to the respective upper main surfaces. ing.
  • the protruding portion 34b is formed in the opening 32b.
  • the protruding portion 35b is formed in the opening 32c.
  • the layered insulator 34 and the layered insulator 35 are configured such that the lower end portion of the opening 32c of the upper layered insulator 35 is positioned on the main surface of the periphery of the opening 32b of the lower layered insulator 34.
  • the opening diameter of the lower end part of the opening part 32c is larger than the opening diameter of the upper end part of the opening part 32b. Therefore, the side surface 30 a of the insulating layer 30 has a substantially staircase shape that appears in a cross section passing through the central axis of the opening 32.
  • the electrode pad 22 is provided in an electrode formation region on the base material 10.
  • the electrode pad 22 includes a first conductor portion 22a, a second conductor portion 22b, and a gold plating layer 23.
  • the first conductor portion 22a is the same layer as the wiring layer 20, and is connected to the wiring layer 20 extending to the electrode formation region.
  • the second conductor portion 22b is provided on the first conductor portion 22a.
  • the gold plating layer 23 is provided on the second conductor portion 22b.
  • the electrode pad 22 is configured such that the top surface 22 c (the upper end surface of the gold plating layer 23) is positioned lower than the upper main surface of the insulating layer 30.
  • the height of the top surface 22c from the main surface of the base material 10 is lower than the height of the upper main surface of the layered insulator 35 from the main surface of the base material 10. Furthermore, in the present embodiment, the top surface 22c of the electrode pad 22 is positioned higher than the lower main surface of the layered insulator 35 in the uppermost layer. That is, the top surface 22c is located between the lower main surface and the upper main surface of the layered insulator 35 in the uppermost layer.
  • the solder ball 70 filled in the opening 32 and the electrode pad 22 are more reliably brought into contact with each other. be able to.
  • the first conductor portion 22a and the second conductor portion 22b of the electrode pad 22 are made of, for example, copper.
  • the height from the substrate 10 surface of the top surface 22c is, for example, about 50 [mu] m ⁇ about 100 [mu] m.
  • the protruding portion 34 b is provided in the layered insulator 34, it is possible to prevent the electrode pad 22 from being peeled from the base material 10 by the side surface 34 a of the layered insulator 34. Furthermore, since the side surface 30 a of the insulating layer 30 is stepped, the protruding portion 34 b has a structure that bites into the electrode pad 22. Therefore, it can prevent more reliably that the electrode pad 22 peels from the base material 10. FIG.
  • the side surface 33a of the layered insulator 33 extends vertically, but the side surface 33a may also be configured to protrude to the opening 32a as it approaches the upper main surface of the layered insulator 33. . In this case, it is possible to prevent the peeling between the electrode pads 22 and the substrate 10 more reliably.
  • FIG. 3 is a schematic plan view of the semiconductor module.
  • illustration of the sealing resin layer 120, the gold wire 202, and the wiring layer 20 connected to the gold wire 202 shown in FIG. 1 is omitted.
  • the electrode pads 22 shown in FIG. therefore, as shown in FIG. 3, the insulating layer 30 having a multilayer structure in which the layered insulator 33, the layered insulator 34, and the layered insulator 35 are laminated is provided on the peripheral portion of the substrate 10, and similarly, the solder ball 70. Is also disposed at the peripheral edge of the substrate 10. In the central region of the substrate 10 surrounded by the electrode pads 22, an insulating layer 30 composed only of the layered insulator 33 is provided. Therefore, the element mounting substrate 110 has a so-called cavity structure in which the surface height of the peripheral portion is high and the surface height of the central portion is low.
  • the semiconductor element 200 is mounted in a central region surrounded by the electrode pads 22.
  • the manufacturing method of the element mounting substrate and the semiconductor module is the same as that of the first embodiment.
  • the insulating layer 30 has a multilayer structure in which the layered insulators 33, 34, and 35 are stacked. And it is comprised so that the side surface 35a in the opening part 32c of the layered insulator 35 in the uppermost layer may protrude into the opening part 32c as it approaches the upper main surface. Therefore, when the solder ball 70 is mounted on the electrode pad 22, the side surface 35 a that protrudes into the opening 32 c, that is, the protruding portion 35 b enters the solder ball 70. As a result, the solder balls 70 are less likely to fall out of the openings 32, and the peeling between the solder balls 70 and the electrode pads 22 is suppressed. Therefore, the connection reliability of the element mounting substrate 110 can be improved. Further, since the connection reliability of the element mounting substrate 110 is improved, the mounting reliability of the semiconductor module 100 and the semiconductor device 1 is also improved.
  • the protruding portion 34b in a layered insulator 34 is provided. Therefore, the side surface 34 a of the layered insulator 34 can prevent the electrode pad 22 from peeling from the base material 10.
  • the layered insulator 34 and the layered insulator 35 are configured such that the lower end portion of the opening 32 c of the layered insulator 35 is positioned on the main surface of the periphery of the opening 32 b of the layered insulator 34. Therefore, the protruding portion 34 b has a structure that is recessed into the side surface of the electrode pad 22. Thereby, the connection between the electrode pad 22 and the wiring layer 20 can be ensured.
  • the electrode pad 22 is located between the lower main surface and the upper main surface of the layered insulator 35 having the top surface 22c as the uppermost layer. Therefore, the solder ball 70 can be reliably brought into contact with the electrode pad 22 while exerting the anchor effect of the protruding portion 35b of the layered insulator 35.
  • the electrode pad 22 is provided on the peripheral edge of the substrate 10. Therefore, the element mounting substrate 110 can have a so-called cavity shape in which the surface height of the peripheral portion is high and the surface height of the central portion is low.
  • the insulating layer 30 has a multilayer structure, the height of the electrode pad 22 can be increased, and thereby the size of the semiconductor element 200 that can be mounted in the central portion can be increased.
  • the semiconductor module according to the fourth embodiment is a camera module used for an imaging apparatus such as a digital still camera, a digital video camera, and a camera mounted on a mobile phone.
  • an imaging apparatus such as a digital still camera, a digital video camera, and a camera mounted on a mobile phone.
  • this embodiment will be described.
  • the configuration and manufacturing process of the element mounting substrate 110 are basically the same as those in the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of the semiconductor module according to the fourth embodiment.
  • the semiconductor module 100 according to the present embodiment is a camera module used for an imaging apparatus such as a digital still camera, a digital video camera, or a mobile phone camera.
  • the semiconductor element 200 is a light receiving element such as a CMOS image sensor.
  • a device electrode (not shown) provided on the semiconductor device 200 and a predetermined region of the wiring layer 20 are joined by a solder ball 90, and the semiconductor device 200 is flip-chip connected to one main surface side of the device mounting substrate 110. ing.
  • photodiodes are formed in a matrix, and each photodiode photoelectrically converts light into a charge amount according to the amount of received light and outputs it as a pixel signal.
  • the semiconductor element 220 mounted on the other main surface side of the element mounting substrate 110 is a driver IC, and has a function of controlling the exposure timing of each image sensor of the semiconductor element 200, the output timing of pixel signals, and the like.
  • a chip component 292 such as a capacitor and a resistor is mounted on the other main surface of the element mounting substrate 110.
  • An element electrode (not shown) provided in the semiconductor element 220 and a lower surface side wiring layer 50 in a predetermined region are wire-bonded and connected by, for example, a gold wire 222.
  • the semiconductor element 200 is mounted on the element mounting substrate 110 such that the light receiving region faces one main surface side of the element mounting substrate 110.
  • the element mounting substrate 110 is provided with an opening 294 corresponding to the light receiving region of the semiconductor element 200.
  • Each imaging element of the semiconductor element 200 receives light incident from the opening 294 and outputs a pixel signal.
  • An optical filter 290 is mounted on the element mounting substrate 110 so as to close the opening 294. The optical filter 290 blocks light of a specific wavelength such as infrared rays.
  • the semiconductor module 100 configured in this manner is electrically connected to the connection terminal 422 of the mounting substrate 400 via the solder ball 70.
  • Structure of the connecting portion between the mounting substrate 400 and the device mounting board 110 is the same as Embodiment 1 or 3. Thereby, according to the semiconductor module 100 which concerns on Embodiment 4, in a camera module, the effect similar to Embodiment 1 or 3 can be acquired.
  • a portable device including the semiconductor device 1 according to any of the first to third embodiments will be described.
  • electronic devices such as a personal digital assistant (PDA), a digital video camera (DVC), and a digital still camera (DSC), may be sufficient, for example.
  • PDA personal digital assistant
  • DVC digital video camera
  • DSC digital still camera
  • FIG. 13 is a diagram illustrating a configuration of a mobile phone according to the fifth embodiment.
  • a cellular phone 1111 has a structure in which a first housing 1112 and a second housing 1114 are connected by a movable portion 1120. The first housing 1112 and the second housing 1114 can be rotated around the movable portion 1120.
  • the first housing 1112 is provided with a display portion 1118 and a speaker portion 1124 for displaying information such as characters and images.
  • the second housing 1114 is provided with an operation portion 1122 such as operation buttons and a microphone portion 1126.
  • the semiconductor device 1 according to the first embodiment is mounted inside such a mobile phone 1111.
  • FIG. 14 is a partial cross-sectional view (cross-sectional view of the first casing 1112) of the mobile phone shown in FIG.
  • the semiconductor device 1 according to the first embodiment described above is mounted on the printed circuit board 1128 via the solder balls 80, and is electrically connected to the display unit 1118 and the like via the printed circuit board 1128.
  • a heat radiating substrate 1116 such as a metal substrate is provided on the back surface side of the semiconductor device 1 (the surface opposite to the solder ball 80). For example, heat generated from the semiconductor device 1 is generated inside the first housing 1112. The heat can be efficiently radiated to the outside of the first housing 1112 without stagnation.
  • the connection reliability of the element mounting substrate 110 can be increased, and thus the mounting reliability of the semiconductor device 1 can be increased. Therefore, it is possible to improve the operation reliability of the portable device according to the present embodiment on which such a semiconductor device 1 is mounted. Further, the semiconductor module 100 according to the fourth embodiment can be mounted as a camera module on the portable device according to the present embodiment, and in this case, the operation reliability of the portable device can be improved.
  • the semiconductor element 200 is mounted on one main surface of the element mounting substrate 110 so that the light receiving region faces upward.
  • an element mounting board having an opening provided in accordance with the light receiving region of the semiconductor element 200 is mounted, and both are connected via solder balls 70.
  • Driver ICs and chip components are mounted on the stacked element mounting substrates.
  • an optical filter is mounted on the element mounting substrate so as to close the opening.
  • the camera module configured as described above is electrically connected to the connection terminal of the mounting board via the solder ball 80. Even if it is such a structure, the effect similar to Embodiment 4 can be acquired.
  • the electrode pad 22 may have a configuration in which the gold plating layer 23 is not provided on the second conductor portion 22b. In the second embodiment, the electrode pad 22 may be configured such that the gold plating layer 23 is not provided on the first conductor portion 22a.
  • the present invention can be used for an element mounting substrate, a semiconductor module, and a portable device.

Abstract

Disclosed is an element mounting substrate (110) which is provided with: a base material (10); an insulating layer (30), which is provided on one main surface of the base material (10), and has an opening (32) having an electrode forming region on the base material (10) exposed therefrom; and an electrode pad (22) provided in the opening (32). The insulating layer (30) has a multilayer structure wherein a plurality of layer-like insulating bodies (33, 34, 35) are laminated, the layer-like insulating bodies (33, 34, 35) are configured such that the lower end portion of the opening in the upper layer-like insulating body is positioned on the main surface of the periphery of the opening in the lower layer-like insulating body, and the electrode pad (22) is configured such that the top surface thereof is positioned higher than the lower main surface of the layer-like insulating body (35) of the topmost layer.

Description

素子搭載用基板、半導体モジュール、および携帯機器Device mounting substrate, semiconductor module, and portable device
 本発明は、素子搭載用基板、半導体モジュール、および携帯機器に関する。 The present invention relates to an element mounting substrate, a semiconductor module, and a portable device.
 近年、電子機器の小型化、高機能化に伴い、電子機器に使用される半導体装置のさらなる小型化、高密度化が求められている。このような要求に応えるべく、複数の半導体素子を積層する技術が広く知られている。 In recent years, with the miniaturization and high functionality of electronic devices, there is a demand for further miniaturization and higher density of semiconductor devices used in electronic devices. In order to meet such demands, a technique for stacking a plurality of semiconductor elements is widely known.
 複数の半導体素子が積層された構造としては、半導体素子を搭載した素子搭載用基板と他の半導体素子とを、はんだボールを介して接続した構造や、半導体素子を搭載した2つの素子搭載用基板同士を、はんだボールを介して接続した構造が知られている。具体的には、素子搭載用基板の主表面上に設けられた電極パッドにはんだボールが接続され、このはんだボールに半導体素子の電極が接続される。あるいは、下側の素子搭載用基板の主表面上に設けられた電極パッドにはんだボールが接続され、このはんだボールに、上側の素子搭載用基板の主表面上に設けられた電極パッドが接続されている。すなわち、下側の基板と上側の半導体素子、あるいは下側の基板と上側の基板とは、はんだボールを介して電気的に接続されている。また、各素子搭載用基板の主表面上には、電極パッドが露出するような開口部を有する絶縁層が設けられている。 The structure in which a plurality of semiconductor elements are stacked includes a structure in which an element mounting board on which semiconductor elements are mounted and another semiconductor element are connected via solder balls, or two element mounting boards on which semiconductor elements are mounted. A structure in which the two are connected via solder balls is known. Specifically, solder balls are connected to electrode pads provided on the main surface of the element mounting substrate, and electrodes of the semiconductor element are connected to the solder balls. Alternatively, a solder ball is connected to an electrode pad provided on the main surface of the lower element mounting substrate, and an electrode pad provided on the main surface of the upper element mounting substrate is connected to the solder ball. ing. That is, the lower substrate and the upper semiconductor element, or the lower substrate and the upper substrate are electrically connected via the solder balls. An insulating layer having an opening that exposes the electrode pad is provided on the main surface of each element mounting substrate.
 電極パッドとはんだボールとの接続構造の一態様は、特許文献1に開示されている。特許文献1は、半導体パッケージのチップ搭載領域の外側にあるBGA(Ball Grid Aray)接続用のランドパッドにアンダーフィル樹脂が流れ出さないように、ランドパッドに隣接する位置にチップ搭載領域を囲むようにして保護レジスト層を設けた構造を開示している。また、電極パッドとはんだボールとの接続構造の別の一態様は、特許文献2に開示されている。特許文献2は、近接して存在する複数のパッドが、配線層を被覆するソルダーレジストの開口部から露出した構造を開示している。 One aspect of the connection structure between the electrode pad and the solder ball is disclosed in Patent Document 1. Patent Document 1, as the underfill resin does not flow out to the land pads for BGA (Ball Grid Aray) connected on the outside of the chip mounting area of the semiconductor package, so as to surround the chip mounting area in a position adjacent to the land pad A structure provided with a protective resist layer is disclosed. Another aspect of the connection structure between the electrode pad and the solder ball is disclosed in Patent Document 2. Patent Document 2 discloses a structure in which a plurality of adjacent pads are exposed from an opening of a solder resist that covers a wiring layer.
特開2009-10073号公報JP 2009-10073 A 特開平8-340169号公報JP-A-8-340169
 従来の構造では、はんだボールをランドパッドに搭載する際に、ランドパッドに隣接して設けられた保護レジスト層が干渉して、はんだボールとランドパッドとの接続が不十分になるおそれがあった。そのため、素子搭載用基板の接続信頼性を向上させる上で、従来の電極パッドとはんだボールとの接続構造には改良の余地があった。 In the conventional structure, when the solder ball is mounted on the land pad, the protective resist layer provided adjacent to the land pad may interfere with the connection between the solder ball and the land pad. . Therefore, in order to improve the connection reliability of the element mounting substrate, there is room for improvement in the conventional connection structure between the electrode pad and the solder ball.
 また、従来の構造において、はんだボールは絶縁層の開口部内に充填されて、開口部によって露出した電極パッド上に載置されるだけであった。そのため、素子搭載用基板の接続信頼性を向上させる上で、従来の電極パッドとはんだボールとの接続構造には改良の余地があった。 Also, in the conventional structure, the solder balls are only filled in the openings of the insulating layer and placed on the electrode pads exposed by the openings. Therefore, in order to improve the connection reliability of the element mounting substrate, there is room for improvement in the conventional connection structure between the electrode pad and the solder ball.
 本発明は上記事情に鑑みなされたものであって、その目的とするところは、素子搭載用基板の接続信頼性を向上させる技術を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a technique for improving the connection reliability of an element mounting board.
 本発明のある態様は、素子搭載用基板である。当該素子搭載用基板は、基材と、基材の一方の主表面上に設けられ、基材上の電極形成領域が露出するような開口部を有する絶縁層と、開口部内に設けられた電極パッドと、を備え、絶縁層は、複数の層状絶縁体が積層された多層構造を有し、複数の層状絶縁体は、下側層状絶縁体の開口部周縁の主表面上に、上側層状絶縁体の開口部の下端部が位置するように構成され、電極パッドは、その頂部面が最上層にある層状絶縁体の下側主表面よりも高い位置となるように構成されたことを特徴とする。 An aspect of the present invention is an element mounting substrate. The element mounting substrate includes a base material, an insulating layer provided on one main surface of the base material and having an opening that exposes an electrode formation region on the base material, and an electrode provided in the opening. And the insulating layer has a multilayer structure in which a plurality of layered insulators are laminated, and the plurality of layered insulators are formed on the main surface of the peripheral edge of the lower layered insulator on the upper layered insulating layer. The lower end of the body opening is positioned, and the electrode pad is configured such that its top surface is higher than the lower main surface of the layered insulator in the uppermost layer. To do.
 この態様によれば、素子搭載用基板の接続信頼性を向上させることができる。 According to this aspect, the connection reliability of the element mounting board can be improved.
 上記態様において、電極パッドは、その頂部面が最上層にある層状絶縁体の上側主表面よりも低い位置となるように構成されてもよい。 In the above aspect, the electrode pad may be configured such that its top surface is at a position lower than the upper main surface of the layered insulator in the uppermost layer.
 また、上記態様において、複数の層状絶縁体は、それぞれの開口部内の側面がそれぞれの上側主表面に近くなるほど開口部内にせり出すように構成されてもよい。 Further, in the above aspect, the plurality of layered insulators may be configured to protrude into the opening as the side surface in each opening becomes closer to the upper main surface.
 また、上記態様において、基材の周縁部に電極パッドが設けられてもよい。 In the above aspect, an electrode pad may be provided on the peripheral edge of the substrate.
 また、本発明のある態様は、素子搭載用基板である。当該素子搭載用基板は、基材と、基材の一方の主表面上に設けられ、基材上の電極形成領域が露出するような開口部を有する絶縁層と、開口部内に設けられた電極パッドと、を備え、電極パッドは、その頂部面が絶縁層の上側主表面よりも低い位置となるように構成され、絶縁層は、開口部内の側面のうち少なくとも電極パッドの頂部面よりも上側の側面が、上側主表面に近くなるほど開口部内にせり出すように構成されたことを特徴とする。 Also, an aspect of the present invention is an element mounting substrate. The element mounting substrate includes a base material, an insulating layer provided on one main surface of the base material and having an opening that exposes an electrode formation region on the base material, and an electrode provided in the opening. And the electrode pad is configured such that the top surface of the electrode pad is lower than the upper main surface of the insulating layer, and the insulating layer is at least above the top surface of the electrode pad among the side surfaces in the opening. The side surface of this is configured to protrude into the opening as it approaches the upper main surface.
 この態様によれば、素子搭載用基板の接続信頼性を向上させることができる。 According to this aspect, the connection reliability of the element mounting board can be improved.
 上記態様において、絶縁層は、複数の層状絶縁体が積層された多層構造を有し、少なくとも最上層にある層状絶縁体の開口部内の側面が、上側主表面に近くなるほど開口部内にせり出すように構成されてもよい。 In the above embodiment, the insulating layer may have a multilayer structure in which a plurality of layered insulators are stacked, the side surface of the opening of the layered insulation in at least the uppermost layer, as pushed out into nearer the opening on the upper major surface It may be configured.
 また、上記態様において、電極パッドは、その頂部面が最上層にある層状絶縁体の下側主表面よりも高い位置となるように構成されてもよい。 Further, in the above aspect, the electrode pad may be configured such that its top surface is positioned higher than the lower main surface of the layered insulator in the uppermost layer.
 また、上記態様において、複数の層状絶縁体は、それぞれの開口部内の側面がそれぞれの上側主表面に近くなるほど開口部内にせり出し、下側層状絶縁体の開口部周縁の主表面上に、上側層状絶縁体の開口部の下端部が位置するように構成されてもよい。 In the above embodiment, a plurality of the layered insulation, the sides of the respective opening protruding into nearer the opening to the respective upper main surface, on the main surface of the opening portion of the lower layer insulator, the upper layer You may comprise so that the lower end part of the opening part of an insulator may be located.
 また、上記態様において、開口部の中に充填されて電極パッドと電気的に接続され、絶縁層の上側主表面より上方に突出した接続部材をさらに備え、接続部材は、開口部内にせり出した絶縁層の側面が接続部材内に陥入するように設けられてもよい。 Further, in the above aspect, the semiconductor device further includes a connection member that is filled in the opening and electrically connected to the electrode pad and protrudes upward from the upper main surface of the insulating layer, and the connection member is an insulation protruding into the opening. The side surface of the layer may be provided so as to be recessed into the connecting member.
 また、上記態様において、基材の周縁部に電極パッドが設けられてもよい。 In the above aspect, an electrode pad may be provided on the peripheral edge of the substrate.
 本発明の他の態様は半導体モジュールである。当該半導体モジュールは、上述したいずれかの態様の素子搭載用基板と、基材の一方の主表面側に搭載された半導体素子と、を備えたことを特徴とする。 Another aspect of the present invention is a semiconductor module. The semiconductor module includes the element mounting substrate according to any one of the aspects described above and a semiconductor element mounted on one main surface side of the base material.
 本発明のさらに他の態様は携帯機器である。当該携帯機器は、上述した態様の半導体モジュールを搭載したことを特徴とする。 Still another aspect of the present invention is a portable device. The portable device is characterized by mounting the semiconductor module of the above-described aspect.
 本発明によれば、素子搭載用基板の接続信頼性を向上させることができる。 According to the present invention, the connection reliability of the element mounting board can be improved.
実施形態1および3に係る素子搭載用基板および半導体モジュールを含む半導体装置の構成を示す概略断面図である。5 is a schematic cross-sectional view showing a configuration of a semiconductor device including an element mounting substrate and a semiconductor module according to Embodiments 1 and 3. FIG. 素子搭載用基板に設けられた電極パッドとその周囲の構造を示す部分拡大図である。It is the elements on larger scale which show the electrode pad provided in the element mounting substrate, and its surrounding structure. 半導体モジュールの平面模式図である。It is a plane schematic diagram of a semiconductor module. 図4(A)~図4(D)は、半導体装置の製造方法を示す工程断面図である。4A to 4D are process cross-sectional views illustrating a method for manufacturing a semiconductor device. 図5(A)~図5(C)は、半導体装置の製造方法を示す工程断面図である。5A to 5C are process cross-sectional views illustrating a method for manufacturing a semiconductor device. 図6(A)、図6(B)は、半導体装置の製造方法を示す工程断面図である。6A and 6B are process cross-sectional views illustrating a method for manufacturing a semiconductor device. 層状絶縁体の積層体を露光・現像した結果を示す光学顕微鏡写真像である。It is an optical microscope photograph image which shows the result of having exposed and developed the laminated body of the layered insulator. 実施形態2に係る素子搭載用基板および半導体モジュールを含む半導体装置の構成を示す概略断面図である。FIG. 6 is a schematic cross-sectional view illustrating a configuration of a semiconductor device including an element mounting substrate and a semiconductor module according to a second embodiment. 素子搭載用基板に設けられた電極パッドとその周囲の構造を示す部分拡大図である。It is the elements on larger scale which show the electrode pad provided in the element mounting substrate, and its surrounding structure. 図10(A)~図10(D)は、半導体装置の製造方法を示す工程断面図である。10A to 10D are process cross-sectional views illustrating a method for manufacturing a semiconductor device. 図11(A)~図11(C)は、半導体装置の製造方法を示す工程断面図である。11A to 11C are process cross-sectional views illustrating a method for manufacturing a semiconductor device. 実施形態4に係る半導体モジュールの構成を示す概略断面図である。FIG. 6 is a schematic cross-sectional view illustrating a configuration of a semiconductor module according to a fourth embodiment. 実施形態5に係る携帯電話の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a mobile phone according to a fifth embodiment. 図13に示した携帯電話の部分断面図である。It is a fragmentary sectional view of the mobile phone shown in FIG.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 (実施形態1)
 図1は、実施形態1に係る素子搭載用基板および半導体モジュールを含む半導体装置の構成を示す概略断面図である。図2は、素子搭載用基板に設けられた電極パッドとその周囲の構造を示す部分拡大図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view illustrating a configuration of a semiconductor device including an element mounting substrate and a semiconductor module according to the first embodiment. FIG. 2 is a partially enlarged view showing the electrode pad provided on the element mounting substrate and the surrounding structure.
 図1に示すように、半導体装置1は、素子搭載用基板110を含む半導体モジュール100の上に、半導体モジュール300が積層されたPoP(Package on Package)構造を有する。素子搭載用基板110は、基材10と、配線層20と、絶縁層30とを含む。 As shown in FIG. 1, the semiconductor device 1 has a PoP (Package on Package) structure in which a semiconductor module 300 is stacked on a semiconductor module 100 including an element mounting substrate 110. The element mounting substrate 110 includes a base material 10, a wiring layer 20, and an insulating layer 30.
 基材10は、コア基材として機能する。基材10は、例えば、BTレジン等のメラミン誘導体、液晶ポリマー、エポキシ樹脂、PPE樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂、ポリアミドビスマレイミド等の熱硬化性樹脂で形成することができる。また、素子搭載用基板110の放熱性向上の観点から、基材10は高熱伝導性を有することが望ましい。このため、基材10は、銀、ビスマス、銅、アルミニウム、マグネシウム、錫、亜鉛、およびこれらの合金や、シリカ、アルミナ、窒化ケイ素、窒化アルミニウムなどを高熱伝導性フィラーとして含有することが好ましい。基材10の厚さは、例えば約100μmである。 The base material 10 functions as a core base material. The base material 10 can be formed of, for example, a thermosetting resin such as a melamine derivative such as BT resin, a liquid crystal polymer, an epoxy resin, a PPE resin, a polyimide resin, a fluororesin, a phenol resin, or a polyamide bismaleimide. Further, from the viewpoint of improving the heat dissipation of the element mounting substrate 110, the base material 10 desirably has high thermal conductivity. For this reason, it is preferable that the base material 10 contains silver, bismuth, copper, aluminum, magnesium, tin, zinc, and alloys thereof, silica, alumina, silicon nitride, aluminum nitride, or the like as a highly thermally conductive filler. The thickness of the base material 10 is, for example, about 100 μm.
 配線層20は、所定パターンを有し、基材10の一方の主表面(本実施形態では、半導体モジュール300の搭載面側)に設けられている。配線層20は、例えば銅(Cu)からなり、その厚さは、例えば約10μm~約25μmである。 The wiring layer 20 has a predetermined pattern and is provided on one main surface of the substrate 10 (in this embodiment, the mounting surface side of the semiconductor module 300). The wiring layer 20 is made of, for example, copper (Cu) and has a thickness of, for example, about 10 μm to about 25 μm.
 基材10の他方の主表面には、所定パターンの下面側配線層(図示せず)が設けられている。また、基材10の他方の主表面には、例えばマザーボードへ半導体装置1を搭載する際に用いられるはんだを接合するための下面側電極パッド52が設けられている。下面側配線層は、基材10の他方の主表面上の電極形成領域に設けられた下面側電極パッド52に接続されている。下面側配線層および下面側電極パッド52は、例えば銅からなり、それぞれの厚さは、例えば約10μm~約25μmである。 A lower surface side wiring layer (not shown) having a predetermined pattern is provided on the other main surface of the substrate 10. Further, on the other main surface of the base material 10, for example, a lower surface side electrode pad 52 for joining solder used when mounting the semiconductor device 1 on a mother board is provided. The lower surface side wiring layer is connected to a lower surface side electrode pad 52 provided in an electrode formation region on the other main surface of the substrate 10. The lower surface side wiring layer and the lower surface side electrode pad 52 are made of copper, for example, and the thickness thereof is, for example, about 10 μm to about 25 μm.
 基材10の所定位置には、基材10を貫通するビア導体(図示せず)が設けられている。ビア導体は、例えば銅めっきにより形成される。ビア導体により、配線層20と下面側配線層とが電気的に接続されている。 A via conductor (not shown) penetrating the base material 10 is provided at a predetermined position of the base material 10. The via conductor is formed by, for example, copper plating. The wiring layer 20 and the lower surface side wiring layer are electrically connected by the via conductor.
 絶縁層30は、配線層20を覆うようにして基材10の一方の主表面に設けられている。絶縁層30により、配線層20の酸化などが防止される。絶縁層30は、基材10上の電極形成領域が露出するような開口部32を有する。 The insulating layer 30 is provided on one main surface of the substrate 10 so as to cover the wiring layer 20. The insulating layer 30 prevents the wiring layer 20 from being oxidized. The insulating layer 30 has an opening 32 that exposes the electrode formation region on the substrate 10.
 ここで、絶縁層30は、複数の層状絶縁体が積層された多層構造を有する。具体的には、絶縁層30は、3つの層状絶縁体33、34、35が積層された構造を有する。なお、絶縁層30のうち、半導体素子200が搭載される部分は、層状絶縁体33のみで構成されている。層状絶縁体33、層状絶縁体34、および層状絶縁体35は、例えばフォトソルダーレジストにより形成され、その厚さは、例えば約20μm~約50μmである。 Here, the insulating layer 30 has a multilayer structure in which a plurality of layered insulators are stacked. Specifically, the insulating layer 30 has a structure in which three layered insulators 33, 34, and 35 are stacked. In addition, the part in which the semiconductor element 200 is mounted in the insulating layer 30 is configured only by the layered insulator 33. The layered insulator 33, the layered insulator 34, and the layered insulator 35 are formed of, for example, a photo solder resist, and the thickness thereof is, for example, about 20 μm to about 50 μm.
 また、図2に示すように、層状絶縁体33は開口部32aを有し、層状絶縁体34は開口部32bを有し、層状絶縁体35は開口部32cを有する。開口部32a、開口部32b、および開口部32cは、それぞれ基材10上の電極形成領域に設けられており、開口部32a、開口部32b、および開口部32cによって、基材10上の電極形成領域が露出するような開口部32が形成されている。開口部32の径は、約100μm~約300μmである。また、層状絶縁体33の開口部32a内の側面33aと、層状絶縁体34の開口部32b内の側面34aと、層状絶縁体35の開口部32c内の側面35aとによって絶縁層30の側面30aが形成されている。 Further, as shown in FIG. 2, the layered insulator 33 has an opening 32a, the layered insulator 34 has an opening 32b, and the layered insulator 35 has an opening 32c. The opening 32a, the opening 32b, and the opening 32c are provided in the electrode formation region on the substrate 10, respectively, and the electrode formation on the substrate 10 is formed by the opening 32a, the opening 32b, and the opening 32c. An opening 32 is formed so that the region is exposed. The diameter of the opening 32 is about 100 μm to about 300 μm. Further, the side surface 33a in the opening 32a of the layered insulation 33, and the side 34a of the opening 32b of the layered insulation 34, the side surface 30a of the insulating layer 30 by the side surface 35a in the opening 32c of the layered insulation 35 Is formed.
 開口部32内には、パッケージ搭載用のはんだを接合するための電極パッド22が設けられている。電極パッド22は、第1導体部22aと、第2導体部22bと、金めっき層23とを含む。第1導体部22aは、配線層20と同層であり、電極形成領域まで延びた配線層20に接続されている。第2導体部22bは、第1導体部22a上に設けられている。金めっき層23は、第2導体部22b上に設けられている。開口部32において、第2導体部22bが露出しており、金めっき層23によって第2導体部22bの酸化などが防止される。電極パッド22の第1導体部22aおよび第2導体部22bは、例えば銅からなる。頂部面22cの基材10表面からの高さは、例えば約50μm~約100μmである。金めっき層23は、例えばNi/Au層からなり、Ni層の厚さは例えば約3μm~約15μmであり、Au層の厚さは例えば約0.5μm~約1μmである。 In the opening 32, an electrode pad 22 for joining solder for mounting the package is provided. The electrode pad 22 includes a first conductor portion 22a, a second conductor portion 22b, and a gold plating layer 23. The first conductor portion 22a is the same layer as the wiring layer 20, and is connected to the wiring layer 20 extending to the electrode formation region. The second conductor portion 22b is provided on the first conductor portion 22a. The gold plating layer 23 is provided on the second conductor portion 22b. In the opening portion 32, the second conductor portion 22b is exposed, and the gold plating layer 23 prevents the second conductor portion 22b from being oxidized. The first conductor portion 22a and the second conductor portion 22b of the electrode pad 22 are made of, for example, copper. The height of the top surface 22c from the surface of the base material 10 is, for example, about 50 μm to about 100 μm. The gold plating layer 23 is made of, for example, a Ni / Au layer. The thickness of the Ni layer is, for example, about 3 μm to about 15 μm, and the thickness of the Au layer is, for example, about 0.5 μm to about 1 μm.
 基材10の他方の主表面には、下面側配線層を覆うようにして下面側絶縁層60が設けられている。下面側絶縁層60により、下面側配線層の酸化などが防止される。下面側絶縁層60には、基材10の他方の主表面上の電極形成領域が露出するような開口部62を有する。したがって、開口部62において、電極形成領域に設けられた下面側電極パッド52が露出している。下面側絶縁層60は、例えばフォトソルダーレジストにより形成され、その厚さは、例えば約20μm~約50μmである。また、開口部62の径は、約100μm~約300μmである。 A lower surface side insulating layer 60 is provided on the other main surface of the base material 10 so as to cover the lower surface side wiring layer. The lower surface side insulating layer 60 prevents the lower surface side wiring layer from being oxidized. The lower surface side insulating layer 60 has an opening 62 that exposes an electrode formation region on the other main surface of the substrate 10. Therefore, in the opening 62, the lower surface side electrode pad 52 provided on the electrode formation region is exposed. The lower surface side insulating layer 60 is formed of, for example, a photo solder resist, and has a thickness of, for example, about 20 μm to about 50 μm. The diameter of the opening 62 is about 100 μm to about 300 μm.
 後述する半導体素子200とワイヤボンディング接続される部分の配線層20の表面には、Ni/Au層などの金めっき層21が形成されている。同様に、下面側電極パッド52の表面には、金めっき層53が形成されている。金めっき層21、金めっき層53により、配線層20、金めっき層53の酸化が抑制される。金めっき層21、53としてNi/Au層を形成する場合には、Ni層の厚さは例えば約3μm~約15μmであり、Au層の厚さは例えば約0.5μm~約1μmである。 A gold plating layer 21 such as a Ni / Au layer is formed on the surface of the wiring layer 20 at a portion to be wire bonded to the semiconductor element 200 described later. Similarly, a gold plating layer 53 is formed on the surface of the lower surface side electrode pad 52. Oxidation of the wiring layer 20 and the gold plating layer 53 is suppressed by the gold plating layer 21 and the gold plating layer 53. When Ni / Au layers are formed as the gold plating layers 21 and 53, the thickness of the Ni layer is, for example, about 3 μm to about 15 μm, and the thickness of the Au layer is, for example, about 0.5 μm to about 1 μm.
 絶縁層30の開口部32内において、はんだボール70が電極パッド22に接続されている。はんだボール70は、半導体モジュール300の電極パッド322と、素子搭載用基板110の電極パッド22とを電気的に接続する接続部材として機能する。はんだボール70によって、半導体モジュール300と半導体モジュール100とが電気的に接続される。 The solder ball 70 is connected to the electrode pad 22 in the opening 32 of the insulating layer 30. The solder ball 70 functions as a connection member that electrically connects the electrode pad 322 of the semiconductor module 300 and the electrode pad 22 of the element mounting substrate 110. The semiconductor module 300 and the semiconductor module 100 are electrically connected by the solder balls 70.
 また、下面側絶縁層60の開口部62内において、はんだボール80が下面側電極パッド52に接続されている。はんだボール80は、素子搭載用基板110の下面側電極パッド52と、例えばマザーボードの接続端子とを電気的に接続する接続部材として機能する。はんだボール80によって、半導体装置1が図示しないマザーボードに電気的に接続される。 In addition, the solder ball 80 is connected to the lower surface side electrode pad 52 in the opening 62 of the lower surface side insulating layer 60. The solder ball 80 functions as a connection member that electrically connects the lower surface side electrode pad 52 of the element mounting substrate 110 and, for example, a connection terminal of the motherboard. By the solder balls 80, the semiconductor device 1 is electrically connected to a mother board (not shown).
 このような構成を備えた素子搭載用基板110に半導体素子200が搭載されて、半導体モジュール100が形成される。本実施形態に係る半導体モジュール100では、基材10の一方の主表面に設けられた絶縁層30(層状絶縁体33)の上に半導体素子200が搭載されている。そして、半導体素子200に設けられた素子電極(図示せず)と所定領域の配線層20とが金線202によりワイヤボンディング接続されている。半導体素子200の具体例としては、集積回路(IC)、大規模集積回路(LSI)などの半導体チップが挙げられる。 The semiconductor module 100 is formed by mounting the semiconductor element 200 on the element mounting substrate 110 having such a configuration. In the semiconductor module 100 according to the present embodiment, the semiconductor element 200 is mounted on the insulating layer 30 (layered insulator 33) provided on one main surface of the substrate 10. An element electrode (not shown) provided in the semiconductor element 200 and a wiring layer 20 in a predetermined region are connected by wire bonding with a gold wire 202. Specific examples of the semiconductor element 200 include semiconductor chips such as an integrated circuit (IC) and a large scale integrated circuit (LSI).
 半導体素子200と、これに接続された配線層20とは、封止樹脂層120により封止されている。封止樹脂層120は、例えばエポキシ樹脂を用いて、トランスファーモールド法により形成される。 The semiconductor element 200 and the wiring layer 20 connected to the semiconductor element 200 are sealed with a sealing resin layer 120. The sealing resin layer 120 is formed by a transfer molding method using, for example, an epoxy resin.
 そして、このような構成を備えた半導体モジュール100に半導体モジュール300が搭載されて、PoP構造を有する半導体装置1が形成される。本実施形態の半導体装置1では、半導体モジュール300の電極パッド322と、半導体モジュール100の電極パッド22とが、はんだボール70に接合されることで、両者が電気的に接続されている。 Then, the semiconductor module 300 is mounted on the semiconductor module 100 having such a configuration, and the semiconductor device 1 having the PoP structure is formed. In the semiconductor device 1 of the present embodiment, the electrode pad 322 of the semiconductor module 300 and the electrode pad 22 of the semiconductor module 100 are joined to the solder ball 70 so that they are electrically connected.
 半導体モジュール300は、素子搭載用基板310に半導体素子210が搭載された構造を有する。素子搭載用基板310は、電極パッド322を備え、電極パッド322がはんだボール70を介して素子搭載用基板110の電極パッド22と電気的に接続されている。素子搭載用基板310の上面と半導体素子210とは、封止樹脂層320によって封止されている。封止樹脂層320は、例えばエポキシ樹脂を用いて、トランスファーモールド法により形成される。 The semiconductor module 300 has a structure in which the semiconductor element 210 is mounted on the element mounting substrate 310. The element mounting substrate 310 includes electrode pads 322, and the electrode pads 322 are electrically connected to the electrode pads 22 of the element mounting substrate 110 via the solder balls 70. The upper surface and the semiconductor element 210 of the device mounting board 310 are sealed by a sealing resin layer 320. The sealing resin layer 320 is formed by a transfer molding method using, for example, an epoxy resin.
 ここで、図2を参照して、電極パッドとはんだボールとの接続構造について詳細に説明する。 Here, the connection structure between the electrode pad and the solder ball will be described in detail with reference to FIG.
 図2に示すように、電極パッド22は、その頂部面22c(金めっき層23の上端面)が最上層にある層状絶縁体35の下側主表面よりも高い位置となるように構成されている。すなわち、基材10主表面からの頂部面22cの高さが、基材10主表面からの層状絶縁体35の下側主表面の高さよりも高い。電極パッド22の頂部面22cを層状絶縁体35の下側主表面よりも高い位置とすることで、開口部32内に充填されたはんだボール70と電極パッド22とをより確実に接触させることができる。 As shown in FIG. 2, the electrode pad 22 is configured such that the top surface 22c (the upper end surface of the gold plating layer 23) is positioned higher than the lower main surface of the layered insulator 35 in the uppermost layer. Yes. That is, the height of the top surface 22 c from the main surface of the base material 10 is higher than the height of the lower main surface of the layered insulator 35 from the main surface of the base material 10. By setting the top surface 22c of the electrode pad 22 to be higher than the lower main surface of the layered insulator 35, the solder ball 70 filled in the opening 32 and the electrode pad 22 can be more reliably brought into contact with each other. it can.
 また、本実施形態では、電極パッド22は、その頂部面22cが最上層にある層状絶縁体35の上側主表面よりも低い位置となるように構成されている。すなわち、基材10主表面からの頂部面22cの高さが、基材10主表面からの絶縁層30の上側主表面の高さよりも低い。これにより、はんだボール70の一部が開口部32内に進入するため、はんだボール70と絶縁層30との接触面積が増大する。したがって、はんだボール70が電極パッド22から剥離する可能性を低減することができる。 Further, in the present embodiment, the electrode pad 22 is configured such that the top surface 22c is positioned lower than the upper main surface of the layered insulator 35 that is the uppermost layer. That is, the height of the top surface 22c from the main surface of the base material 10 is lower than the height of the upper main surface of the insulating layer 30 from the main surface of the base material 10. As a result, a part of the solder ball 70 enters the opening 32, so that the contact area between the solder ball 70 and the insulating layer 30 increases. Accordingly, it is possible to reduce the possibility that the solder ball 70 is peeled from the electrode pad 22.
 また、層状絶縁体34および層状絶縁体35は、下側の層状絶縁体34の開口部32b周縁の主表面上に、上側の層状絶縁体35の開口部32cの下端部が位置するように構成されている。すなわち、開口部32cの下端部の開口径は、開口部32bの上端部の開口径よりも大きい。したがって、絶縁層30の側面30aは、開口部32の中心軸を通る断面に現れる形状が略階段形状となっている。これにより、電極パッド22と絶縁層30の側面30aとの接触面積が増大するため、電極パッド22と絶縁層30の剥離を抑制することができる。 The layered insulator 34 and the layered insulator 35 are configured such that the lower end of the opening 32c of the upper layered insulator 35 is positioned on the main surface of the periphery of the opening 32b of the lower layered insulator 34. Has been. That is, the opening diameter of the lower end part of the opening part 32c is larger than the opening diameter of the upper end part of the opening part 32b. Therefore, the side surface 30 a of the insulating layer 30 has a substantially staircase shape that appears in a cross section passing through the central axis of the opening 32. Thereby, since the contact area of the electrode pad 22 and the side surface 30a of the insulating layer 30 increases, peeling of the electrode pad 22 and the insulating layer 30 can be suppressed.
 さらに、層状絶縁体34の開口部32b内の側面34aと、層状絶縁体35の開口部32c内の側面35aとは、それぞれの上側主表面に近くなるほど開口部内にせり出すように構成されている。言い換えれば、層状絶縁体34の側面34a、および層状絶縁体35の側面35aは、下側主表面から上側主表面に向けて幅広となる逆テーパー形状を有する。また、開口部32b、および開口部32cは、上端部に近くなるほどその開口径が小さくなるテーパー形状を有する。したがって、層状絶縁体34では、開口部32bの下端部を基準にした場合、開口部32b内にせり出し部34bが形成されている。また、層状絶縁体35では、開口部32cの下端部を基準にした場合、開口部32c内にせり出し部35bが形成されている。 Furthermore, the side surface 34a in the opening 32b of the layered insulator 34 and the side surface 35a in the opening 32c of the layered insulator 35 are configured to protrude into the opening as they are closer to the upper main surface. In other words, the side surface 34a of the layered insulator 34 and the side surface 35a of the layered insulator 35 have an inversely tapered shape that becomes wider from the lower main surface toward the upper main surface. Moreover, the opening part 32b and the opening part 32c have a taper shape in which the opening diameter becomes small as it approaches the upper end part. Therefore, in the layered insulator 34, when the lower end portion of the opening 32b is used as a reference, the protruding portion 34b is formed in the opening 32b. In the layered insulator 35, when the lower end portion of the opening 32c is used as a reference, a protruding portion 35b is formed in the opening 32c.
 上述のように、電極パッド22の頂部面22cは、最上層にある層状絶縁体35の下側主表面と上側主表面との間に位置している。すなわち、頂部面22cは、層状絶縁体35の下側主表面よりも高い位置にあり、層状絶縁体35の上側主表面よりも低い位置にある。そのため、はんだボール70が開口部32の中に充填されて電極パッド22と電気的に接続された状態で、開口部32c内にせり出した層状絶縁体35の側面35a、すなわち、せり出し部35bがはんだボール70内に陥入する。このように、せり出し部35bがはんだボール70内に食い込むことで、せり出し部35bがアンカー効果を発揮して、はんだボール70が電極パッド22から剥離することを防ぐことができる。そのため、より確実に素子搭載用基板110と半導体モジュール300とを電気的に接続させることができる。 As described above, the top surface 22c of the electrode pad 22 is located between the lower main surface and the upper main surface of the layered insulator 35 in the uppermost layer. That is, the top surface 22 c is at a position higher than the lower main surface of the layered insulator 35 and is lower than the upper main surface of the layered insulator 35. Therefore, the side surface 35a of the layered insulator 35 protruding into the opening 32c, that is, the protruding portion 35b is soldered with the solder ball 70 filled in the opening 32 and electrically connected to the electrode pad 22. Intrude into the ball 70. In this manner, the protruding portion 35b bite into the solder balls 70, protruding portions 35b is exerted an anchor effect, it is possible to prevent the solder ball 70 is peeled off from the electrode pad 22. Therefore, the element mounting substrate 110 and the semiconductor module 300 can be electrically connected more reliably.
 なお、はんだボール70の剥離防止を図るためには、開口部32の側面30aのうち、少なくとも最上層にある層状絶縁体35の開口部32c内の側面35aが、層状絶縁体35の上側主表面に近くなるほど開口部32c内にせり出すように構成されていればよい。また、開口部32の側面30aのうち、少なくとも電極パッド22の頂部面22cよりも上側の側面30aが、絶縁層30の上側主表面に近くなるほど開口部32内にせり出すように構成されている場合であっても、はんだボール70の剥離防止を図ることができる。 In order to prevent peeling of the solder ball 70, at least the side surface 35 a in the opening 32 c of the layered insulator 35 in the uppermost layer among the side surfaces 30 a of the opening 32 is the upper main surface of the layered insulator 35. It suffices if it is configured so as to protrude into the opening 32c as it approaches. In addition, when the side surface 30a of at least the top surface 22c of the electrode pad 22 among the side surfaces 30a of the opening 32 is configured to protrude into the opening 32 as it approaches the upper main surface of the insulating layer 30. Even so, it is possible to prevent the solder balls 70 from being peeled off.
 上述のように、層状絶縁体34および層状絶縁体35は、層状絶縁体34の開口部32b周縁の主表面上に、層状絶縁体35の開口部32cの下端部が位置するように構成されている。そして、本実施形態では、層状絶縁体34にせり出し部34bが設けられている。そのため、せり出し部34bが電極パッド22に食い込んだ構造となる。これにより、電極パッド22が基材10から剥離することを防止することができる。 As described above, the layered insulator 34 and the layered insulator 35 are configured such that the lower end portion of the opening 32c of the layered insulator 35 is positioned on the main surface of the periphery of the opening 32b of the layered insulator 34. Yes. In the present embodiment, the protruding portion 34b in layers insulator 34 is provided. Therefore, the protruding portion 34b has a structure that bites into the electrode pad 22. Thereby, it can prevent that the electrode pad 22 peels from the base material 10. FIG.
 なお、本実施形態では、層状絶縁体33の側面33aは垂直に延びているが、側面33aも、層状絶縁体33の上側主表面に近くなるほど開口部32aにせり出すように構成されていてもよい。この場合には、電極パッド22と基材10との間の剥離をより確実に防ぐことができる。 In the present embodiment, the side surface 33a of the layered insulator 33 extends vertically, but the side surface 33a may also be configured to protrude to the opening 32a as it approaches the upper main surface of the layered insulator 33. . In this case, peeling between the electrode pad 22 and the base material 10 can be prevented more reliably.
 図3は、半導体モジュールの平面模式図である。図3では、図1で示した封止樹脂層120と、金線202と、この金線202に接続される配線層20の図示を省略している。本実施形態に係る素子搭載用基板110では、図1で示した電極パッド22が基材10の周縁部に設けられている。したがって、図3に示すように、層状絶縁体33、層状絶縁体34、および層状絶縁体35が積層された多層構造の絶縁層30は基材10の周縁部に設けられ、同様にはんだボール70も基材10の周縁部に配置されている。電極パッド22に囲まれた基材10の中央領域には、層状絶縁体33のみからなる絶縁層30が設けられている。したがって、素子搭載用基板110は、周辺部の表面高さが高く中央部の表面高さが低い、いわゆるキャビティ構造を有する。半導体素子200は、電極パッド22に囲まれた中央領域に搭載されている。 FIG. 3 is a schematic plan view of the semiconductor module. In FIG. 3, illustration of the sealing resin layer 120, the gold wire 202, and the wiring layer 20 connected to the gold wire 202 shown in FIG. 1 is omitted. In the element mounting substrate 110 according to the present embodiment, the electrode pads 22 shown in FIG. Therefore, as shown in FIG. 3, the insulating layer 30 having a multilayer structure in which the layered insulator 33, the layered insulator 34, and the layered insulator 35 are laminated is provided on the peripheral portion of the substrate 10, and similarly, the solder ball 70. Is also disposed at the peripheral edge of the substrate 10. In the central region of the substrate 10 surrounded by the electrode pads 22, an insulating layer 30 composed only of the layered insulator 33 is provided. Therefore, the element mounting substrate 110 has a so-called cavity structure in which the surface height of the peripheral portion is high and the surface height of the central portion is low. The semiconductor element 200 is mounted in a central region surrounded by the electrode pads 22.
(素子搭載用基板および半導体モジュールの製造方法)
 実施形態1に係る素子搭載用基板110および半導体モジュール100を含む半導体装置1の製造方法について、図4~図6を参照して説明する。図4(A)~図4(D)、図5(A)~図5(C)、および図6(A)、図6(B)は、半導体装置の製造方法を示す工程断面図である。
(Element mounting substrate and semiconductor module manufacturing method)
A method for manufacturing the semiconductor device 1 including the element mounting substrate 110 and the semiconductor module 100 according to the first embodiment will be described with reference to FIGS. 4 (A) to 4 (D), 5 (A) to 5 (C), 6 (A), and 6 (B) are process cross-sectional views illustrating a method for manufacturing a semiconductor device. .
 まず、図4(A)に示すように、一方の主表面に配線層20と、これに接続された第1導体部22aと、層状絶縁体33とが設けられ、他方の主表面に下面側配線層(図示せず)と下面側電極パッド52と下面側絶縁層60とが形成された基材10を用意する。層状絶縁体33には、所定領域に開口部32aが設けられ、下面側絶縁層60には、所定領域に開口部62が設けられている。各配線層、第1導体部22a、および下面側電極パッド52は、周知のフォトリソグラフィ法およびエッチング法などを用いて形成することができる。また、層状絶縁体33の開口部32aおよび下面側絶縁層60の開口部62も、周知のフォトリソグラフィ法およびエッチング法などを用いて形成することができる。 First, as shown in FIG. 4A, the wiring layer 20, the first conductor portion 22a connected thereto, and the layered insulator 33 are provided on one main surface, and the lower surface side is provided on the other main surface. A base material 10 on which a wiring layer (not shown), a lower surface side electrode pad 52 and a lower surface side insulating layer 60 are formed is prepared. The layered insulator 33 is provided with an opening 32a in a predetermined region, and the lower surface side insulating layer 60 is provided with an opening 62 in a predetermined region. Each wiring layer, the first conductor portion 22a, and the lower surface side electrode pad 52 can be formed using a known photolithography method, etching method, or the like. Further, the opening 32a of the layered insulator 33 and the opening 62 of the lower-side insulating layer 60 can also be formed using a known photolithography method, etching method, or the like.
 次に、図4(B)に示すように、層状絶縁体33の上に、配線層20、第1導体部22a、および層状絶縁体33を被覆するようにして層状絶縁体34を積層する。そして、さらに層状絶縁体34の上に層状絶縁体35を積層する。 Next, as shown in FIG. 4B, the layered insulator 34 is laminated on the layered insulator 33 so as to cover the wiring layer 20, the first conductor portion 22 a, and the layered insulator 33. Further, a layered insulator 35 is stacked on the layered insulator 34.
 次に、図4(C)に示すように、フォトリソグラフィ法により、層状絶縁体35の主表面に、第1導体部22aの存在領域および半導体素子200の搭載予定領域に対応したパターンのマスク150を選択的に形成する。そして、マスク150をマスクとして層状絶縁体34、および層状絶縁体35を露光する(図4(C)における矢印は露光光を示している)。層状絶縁体35の主表面に照射された露光光は、層状絶縁体35内を進行して層状絶縁体34に到達する。これにより層状絶縁体34も露光される。層状絶縁体34、および層状絶縁体35は、ネガ型のフォトソルダーレジストからなる。そのため、当該露光によって感光した部分が溶媒に対して不溶性となる。したがって、層状絶縁体34、および層状絶縁体35を露光した後、現像することにより、図4(D)に示すように、露光された部分の層状絶縁体34、および層状絶縁体35が溶け残る。その結果、層状絶縁体33の開口部32a内に埋め込まれた層状絶縁体34が除去され、層状絶縁体34に開口部32bが形成され、層状絶縁体35に開口部32cが形成される。これにより、開口部32が形成されて、第1導体部22aが露出する。また、半導体素子200の搭載予定領域にある層状絶縁体34および層状絶縁体35が除去されて、配線層20の半導体素子200と接続される部分と、層状絶縁体33の半導体素子200が搭載される部分とが露出する。 Next, as shown in FIG. 4C, a mask 150 having a pattern corresponding to the region where the first conductor portion 22a is present and the region where the semiconductor element 200 is to be mounted is formed on the main surface of the layered insulator 35 by photolithography. Are selectively formed. Then, the layered insulator 34 and the layered insulator 35 are exposed using the mask 150 as a mask (the arrow in FIG. 4C indicates exposure light). The exposure light applied to the main surface of the layered insulator 35 travels through the layered insulator 35 and reaches the layered insulator 34. Thereby, the layered insulator 34 is also exposed. The layered insulator 34 and the layered insulator 35 are made of a negative type photo solder resist. Therefore, the part exposed by the exposure becomes insoluble in the solvent. Therefore, by exposing and developing the layered insulator 34 and the layered insulator 35, the exposed portion of the layered insulator 34 and the layered insulator 35 remain undissolved as shown in FIG. 4D. . As a result, the layered insulator 34 embedded in the opening 32 a of the layered insulator 33 is removed, the opening 32 b is formed in the layered insulator 34, and the opening 32 c is formed in the layered insulator 35. Thereby, the opening part 32 is formed and the 1st conductor part 22a is exposed. Further, the layered insulator 34 and the layered insulator 35 in the region where the semiconductor element 200 is to be mounted are removed, and the portion of the wiring layer 20 connected to the semiconductor element 200 and the semiconductor element 200 of the layered insulator 33 are mounted. Exposed part.
 露光光は、層状絶縁体内を進行するにつれて、絶縁体に吸収されて、または絶縁体によって散乱されて減衰する。そのため、層状絶縁体は、露光表面から遠い部分(深い部分)ほど硬化しにくくなる。この現象は、マスク開口の周辺部分で顕著になる。図4(C)に示すように、マスク150を積層して層状絶縁体34、および層状絶縁体35を露光した場合は、マスク150の開口部内で、開口部側面に近いほど露光光が減衰しやすい。その結果、図4(D)に示すように、層状絶縁体34の側面34aおよび層状絶縁体35の側面35aは、それぞれの上側主表面に近くなるほど開口部内にせり出した形状となる。 As the exposure light travels in the layered insulator, it is absorbed by the insulator or scattered by the insulator and attenuated. Therefore, the layered insulator becomes harder to cure as the portion (deep portion) farther from the exposure surface. This phenomenon becomes remarkable in the peripheral portion of the mask opening. As shown in FIG. 4C, when the layered insulator 34 and the layered insulator 35 are exposed by laminating the mask 150, the exposure light attenuates as it is closer to the side of the opening in the opening of the mask 150. Cheap. As a result, as shown in FIG. 4D, the side surface 34a of the layered insulator 34 and the side surface 35a of the layered insulator 35 have a shape that protrudes into the opening as they are closer to the upper main surface.
 また、層状絶縁体34および層状絶縁体35を積層して層状絶縁体35の主表面を露光した場合、図4(D)に示すように、層状絶縁体34および層状絶縁体35は、下側の層状絶縁体34の開口部32b周縁の主表面上に、上側の層状絶縁体35の開口部32cの下端部が位置する形状となる。すなわち、絶縁層30の側面30aが、開口部32の中心軸を通る断面に現れる形状が略階段形状となる。図7は、層状絶縁体34と層状絶縁体35との積層体の上に300μmの開口径を有するマスクを形成し、光照射量を500~1000mjの範囲で変化させて露光・現像した結果を示す光学顕微鏡写真像である。図7において矢印で示すように、層状絶縁体34と層状絶縁体35の界面近傍に括れが形成されており、これにより積層体の側面が略階段形状となっていることが分かる。また、図7に示すように、積層体側面の略階段形状はいずれの光照射量の場合にも得られており、当該形状の形成について再現性があることが分かる。 In addition, when the layered insulator 34 and the layered insulator 35 are stacked and the main surface of the layered insulator 35 is exposed, as shown in FIG. 4D, the layered insulator 34 and the layered insulator 35 The lower end of the opening 32c of the upper layered insulator 35 is located on the main surface of the periphery of the opening 32b of the layered insulator 34. That is, the shape in which the side surface 30 a of the insulating layer 30 appears in a cross section passing through the central axis of the opening 32 is a substantially stepped shape. FIG. 7 shows the results of exposure and development by forming a mask having an opening diameter of 300 μm on the layered body of the layered insulator 34 and the layered insulator 35 and changing the light irradiation amount in the range of 500 to 1000 mj. It is an optical microscope photograph image shown. As shown by the arrows in FIG. 7, it is understood that a constriction is formed in the vicinity of the interface between the layered insulator 34 and the layered insulator 35, whereby the side surface of the stacked body has a substantially step shape. Moreover, as shown in FIG. 7, the substantially staircase shape of the side surface of the laminate is obtained for any light irradiation amount, and it can be seen that the formation of the shape is reproducible.
 次に、図5(A)に示すように、フォトリソグラフィ法により、基材10の一方の主表面側に、第1導体部22aが露出し、配線層20の半導体素子200と接続される領域が被覆されるようにレジスト152を選択的に形成する。また、基材10の他方の主表面側に、露出する下面側電極パッド52が被覆されるようにレジスト154を形成する。 Next, as shown in FIG. 5A, a region where the first conductor portion 22a is exposed on one main surface side of the substrate 10 and is connected to the semiconductor element 200 of the wiring layer 20 by photolithography. A resist 152 is selectively formed so as to be covered. Further, a resist 154 is formed on the other main surface side of the substrate 10 so as to cover the exposed lower surface side electrode pad 52.
 次に、図5(B)に示すように、絶縁層30に設けられた開口部32において、電界めっきにより第1導体部22aの上に銅を充填する。めっき過程において、まず、第1導体部22aの表面から、層状絶縁体33に設けられた開口部32a内に徐々に銅が充填され、開口部32aが銅で埋め尽くされる。さらに、銅は、上方に成長して層状絶縁体34の開口部32b内に充填される。層状絶縁体34の開口部32b内が銅で埋め尽くされた後も、銅は徐々にめっきアップされ、層状絶縁体35の開口部32c内において所定高さまで充填される。これにより、第1導体部22aの上に第2導体部22bが形成される。 Next, as shown in FIG. 5B, in the opening 32 provided in the insulating layer 30, the first conductor portion 22a is filled with copper by electroplating. In the plating process, first, copper is gradually filled into the opening 32a provided in the layered insulator 33 from the surface of the first conductor portion 22a, and the opening 32a is filled with copper. Moreover, copper is filled by growing upward into the opening 32b of the layered insulation 34. Even after the inside of the opening 32b of the layered insulator 34 is filled with copper, the copper is gradually plated up and filled to a predetermined height in the opening 32c of the layered insulator 35. Thereby, the 2nd conductor part 22b is formed on the 1st conductor part 22a.
 次に、図5(C)に示すように、レジスト152およびレジスト154を除去した後、例えば電解めっき法により、配線層20の上に金めっき層21を形成し、第2導体部22bの上に金めっき層23を形成し、下面側電極パッド52の上に金めっき層53を形成する。以上の工程により、本実施形態に係る素子搭載用基板110が形成される。 Next, as shown in FIG. 5C, after removing the resist 152 and the resist 154, the gold plating layer 21 is formed on the wiring layer 20 by, for example, electrolytic plating, and the second conductor portion 22b is formed. Then, a gold plating layer 23 is formed, and a gold plating layer 53 is formed on the lower electrode pad 52. Through the above steps, the element mounting substrate 110 according to the present embodiment is formed.
 次に、図6(A)に示すように、基材10の中央領域において絶縁層30(層状絶縁体33)上に半導体素子200を搭載する。そして、ワイヤボンディング法を用いて、半導体素子200の上面周縁に設けられた素子電極(図示せず)と配線層20の所定領域とを金線202により接続する。続いて、トランスファーモールド法を用いて、半導体素子200を封止樹脂層120により封止する。また、はんだボール70を設ける位置に開口部が形成されたマスクを、開口部32が形成された絶縁層30上に設け、マスクの開口部に球状のはんだボールを配置して(載せて)、電極パッド22にはんだボール70を搭載する。その後、マスクを除去する。また、同様にして、下面側絶縁層60の開口部62において下面側電極パッド52にはんだボール80を搭載する。また、例えばスクリーン印刷法により、絶縁層30の開口部32において電極パッド22にはんだボール70を搭載してもよい。具体的には、樹脂とはんだ材をペースト状にしたはんだペーストをスクリーンマスクにより所望の箇所に印刷してはんだボール70を形成する。また、同様にしてはんだボール80を搭載してもよい。以上の工程により、本実施形態に係る半導体モジュール100が形成される。 Next, as shown in FIG. 6A, the semiconductor element 200 is mounted on the insulating layer 30 (layered insulator 33) in the central region of the substrate 10. Then, an element electrode (not shown) provided on the peripheral edge of the upper surface of the semiconductor element 200 and a predetermined region of the wiring layer 20 are connected by a gold wire 202 using a wire bonding method. Subsequently, using a transfer molding method, the semiconductor element 200 is sealed by the sealing resin layer 120. Further, a mask having an opening formed at a position where the solder ball 70 is provided is provided on the insulating layer 30 in which the opening 32 is formed, and a spherical solder ball is disposed (mounted) on the opening of the mask. Solder balls 70 are mounted on the electrode pads 22. Thereafter, the mask is removed. Similarly, the solder ball 80 is mounted on the lower surface side electrode pad 52 in the opening 62 of the lower surface side insulating layer 60. Alternatively, the solder balls 70 may be mounted on the electrode pads 22 in the openings 32 of the insulating layer 30 by, for example, screen printing. Specifically, the solder ball 70 is formed by printing a solder paste made of a resin and a solder material in a paste form at a desired location using a screen mask. Similarly, the solder ball 80 may be mounted. The semiconductor module 100 according to this embodiment is formed through the above steps.
 次に、図6(B)に示すように、上述した半導体モジュール300を準備する。そして、半導体モジュール100の上に半導体モジュール300を搭載した状態で、リフロー工程によりはんだボール70を溶融して、電極パッド22と電極パッド322とを接合する。これにより、はんだボール70を介して半導体モジュール100と半導体モジュール300とが電気的に接続される。以上の工程により、半導体装置1が形成される。 Next, as shown in FIG. 6B, the above-described semiconductor module 300 is prepared. Then, in a state where the semiconductor module 300 is mounted on the semiconductor module 100, the solder ball 70 is melted by a reflow process to join the electrode pad 22 and the electrode pad 322. Thus, the semiconductor module 100 and the semiconductor module 300 through the solder balls 70 are electrically connected. Through the above steps, the semiconductor device 1 is formed.
 以上説明したように、実施形態1に係る素子搭載用基板110は、基材10の一方の主表面上に設けられ、基材10上の電極形成領域が露出するような開口部32を有する絶縁層30と、開口部32内に設けられた電極パッド22とを備える。そして、絶縁層30は、層状絶縁体33、34、35が積層された多層構造を有し、層状絶縁体34および層状絶縁体35は、層状絶縁体34の開口部32b周縁の主表面上に、層状絶縁体35の開口部32cの下端部が位置するように構成されている。また、電極パッド22は、頂部面22cが最上層にある層状絶縁体35の下側主表面よりも高くなるように構成されている。 As described above, the element mounting substrate 110 according to the first embodiment is provided on one main surface of the base material 10 and has an insulating portion 32 having an opening 32 that exposes an electrode formation region on the base material 10. The layer 30 and the electrode pad 22 provided in the opening 32 are provided. The insulating layer 30 has a multilayer structure in which layered insulators 33, 34, and 35 are stacked. The layered insulator 34 and the layered insulator 35 are formed on the main surface of the periphery of the opening 32b of the layered insulator 34. The lower end of the opening 32c of the layered insulator 35 is positioned. The electrode pad 22 is configured such that the top surface 22c is higher than the lower main surface of the layered insulator 35 that is the uppermost layer.
 半導体装置1では、半導体モジュール100の半導体素子200は、素子搭載用基板110と半導体モジュール300とに間に配置されている。そのため、半導体装置1では、素子搭載用基板110と半導体モジュール300との接続部をかさ上げして、半導体素子200の設置スペースを確保する必要がある。この場合、従来の構造のように、絶縁層30の厚さを増やすことで、はんだボール70の高さを稼ぎ、これにより半導体素子200の設置スペースを確保することが考えられる。しかしながら、この場合には開口部32が深くなるため、開口部32内に充填されたはんだボール70が配線層20に確実に接続されないおそれが生じる。これに対し、本実施形態の素子搭載用基板110は、絶縁層30を多層構造にして半導体素子200の設置スペースを確保するとともに、開口部32内に電極パッド22を設け、その頂部面22cを最上層の層状絶縁体35の下側主表面よりも高くしている。そのため、開口部32内に充填されたはんだボール70と電極パッド22とをより確実に接触させることができる。よって、素子搭載用基板110の接続信頼性を向上させることができる。また、素子搭載用基板110の接続信頼性が向上することで、半導体モジュール100および半導体装置1の実装信頼性も向上する。 In the semiconductor device 1, the semiconductor element 200 of the semiconductor module 100 is disposed between the element mounting substrate 110 and the semiconductor module 300. Therefore, in the semiconductor device 1, it is necessary to raise the connection portion between the element mounting substrate 110 and the semiconductor module 300 to secure an installation space for the semiconductor element 200. In this case, it is conceivable to increase the thickness of the solder ball 70 by increasing the thickness of the insulating layer 30 as in the conventional structure, thereby securing the installation space for the semiconductor element 200. However, in this case, since the opening 32 becomes deep, there is a possibility that the solder ball 70 filled in the opening 32 is not reliably connected to the wiring layer 20. On the other hand, the element mounting substrate 110 of the present embodiment has a multilayer structure of the insulating layer 30 to secure the installation space for the semiconductor element 200, and the electrode pad 22 is provided in the opening 32, and the top surface 22c is formed. It is higher than the lower main surface of the uppermost layered insulator 35. Therefore, the solder ball 70 filled in the opening 32 and the electrode pad 22 can be brought into contact with each other more reliably. Therefore, the connection reliability of the element mounting substrate 110 can be improved. Further, since the connection reliability of the element mounting substrate 110 is improved, the mounting reliability of the semiconductor module 100 and the semiconductor device 1 is also improved.
 また、層状絶縁体34および層状絶縁体35は、下側の層状絶縁体34の開口部32b周縁の主表面上に、上側の層状絶縁体35の開口部32cの下端部が位置するように構成されている。これにより、電極パッド22と絶縁層30の側面30aとの接触面積が増大するため、電極パッド22と絶縁層30の剥離を抑制することができる。 The layered insulator 34 and the layered insulator 35 are configured such that the lower end of the opening 32c of the upper layered insulator 35 is positioned on the main surface of the periphery of the opening 32b of the lower layered insulator 34. Has been. Thereby, since the contact area of the electrode pad 22 and the side surface 30a of the insulating layer 30 increases, peeling of the electrode pad 22 and the insulating layer 30 can be suppressed.
 また、電極パッド22は、その頂部面22cが最上層にある層状絶縁体35の上側主表面よりも低くなるように構成されている。これにより、はんだボール70の一部が開口部32内に進入するため、はんだボール70と絶縁層30との接触面積が増大する。したがって、はんだボール70が電極パッド22から剥離する可能性を低減することができる。 The electrode pad 22 is configured such that its top surface 22c is lower than the upper main surface of the layered insulator 35 which is the uppermost layer. As a result, a part of the solder ball 70 enters the opening 32, so that the contact area between the solder ball 70 and the insulating layer 30 increases. Accordingly, it is possible to reduce the possibility that the solder ball 70 is peeled from the electrode pad 22.
 また、層状絶縁体35の開口部32c内の側面35aは、上側主表面に近くなるほど開口部内にせり出すように構成されている。そのため、電極パッド22にはんだボール70が搭載されると、せり出し部35bがはんだボール70内に陥入する。これにより、はんだボール70は開口部32から抜け落ちにくくなり、はんだボール70と電極パッド22との剥離が抑制される。また、層状絶縁体34の開口部32b内の側面34aも、上側主表面に近くなるほど開口部内にせり出すように構成されている。そのため、せり出し部34bが電極パッド22の側面に陥入する。これにより、電極パッド22が基材10から剥離することを防ぐことができる。 Further, the side surface 35a in the opening 32c of the layered insulator 35 is configured to protrude into the opening as it comes closer to the upper main surface. Therefore, when the solder ball 70 is mounted on the electrode pad 22, the protruding portion 35 b enters the solder ball 70. As a result, the solder balls 70 are less likely to fall out of the openings 32, and the peeling between the solder balls 70 and the electrode pads 22 is suppressed. Further, the side surface 34a in the opening 32b of the layered insulator 34 is also configured to protrude into the opening as it is closer to the upper main surface. Therefore, the protruding portion 34 b is recessed into the side surface of the electrode pad 22. Thereby, it can prevent that the electrode pad 22 peels from the base material 10. FIG.
 また、電極パッド22は基材10の周縁部に設けられている。そのため、素子搭載用基板110を、周縁部の表面高さが高く中央部の表面高さの低い、いわゆるキャビティ形状とすることができる。 The electrode pad 22 is provided on the peripheral edge of the substrate 10. Therefore, the element mounting substrate 110 can have a so-called cavity shape in which the surface height of the peripheral portion is high and the surface height of the central portion is low.
 (実施形態2)
 図8は、実施形態2に係る素子搭載用基板および半導体モジュールを含む半導体装置の構成を示す概略断面図である。図8に示すように、半導体装置1は、素子搭載用基板110を含む半導体モジュール100の上に、半導体モジュール300が積層されたPoP(Package on Package)構造を有する。
(Embodiment 2)
FIG. 8 is a schematic cross-sectional view illustrating a configuration of a semiconductor device including an element mounting substrate and a semiconductor module according to the second embodiment. As shown in FIG. 8, the semiconductor device 1 has a PoP (Package on Package) structure in which a semiconductor module 300 is stacked on a semiconductor module 100 including an element mounting substrate 110.
 素子搭載用基板110は、基材10と、配線層20と、絶縁層30とを含む。 The element mounting substrate 110 includes a base material 10, a wiring layer 20, and an insulating layer 30.
 基材10は、コア基材として機能する。基材10は、例えば、BTレジン等のメラミン誘導体、液晶ポリマー、エポキシ樹脂、PPE樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂、ポリアミドビスマレイミド等の熱硬化性樹脂で形成することができる。また、素子搭載用基板110の放熱性向上の観点から、基材10は高熱伝導性を有することが望ましい。このため、基材10は、銀、ビスマス、銅、アルミニウム、マグネシウム、錫、亜鉛、およびこれらの合金や、シリカ、アルミナ、窒化ケイ素、窒化アルミニウムなどを高熱伝導性フィラーとして含有することが好ましい。基材10の厚さは、例えば約100μmである。 The base material 10 functions as a core base material. The base material 10 can be formed of, for example, a thermosetting resin such as a melamine derivative such as BT resin, a liquid crystal polymer, an epoxy resin, a PPE resin, a polyimide resin, a fluororesin, a phenol resin, or a polyamide bismaleimide. Further, from the viewpoint of improving the heat dissipation of the element mounting substrate 110, the base material 10 desirably has high thermal conductivity. For this reason, it is preferable that the base material 10 contains silver, bismuth, copper, aluminum, magnesium, tin, zinc, and alloys thereof, silica, alumina, silicon nitride, aluminum nitride, or the like as a highly thermally conductive filler. The thickness of the base material 10 is, for example, about 100 μm.
 配線層20は、所定パターンを有し、基材10の一方の主表面(本実施形態では、半導体モジュール300の搭載面側)に設けられている。また、基材10の一方の主表面には、パッケージ搭載用のはんだを接合するための電極パッド22が設けられている。配線層20は、基材10上の電極形成領域に設けられた電極パッド22に接続されている。電極パッド22は、第1導体部22aと金めっき層23とを含む。第1導体部22aは、配線層20と同層であり、配線層20が接続されている。金めっき層23は、第1導体部22aの上に設けられている。金めっき層23により、第1導体部22aの酸化などが防止される。配線層20および電極パッド22の第1導体部22aは、例えば銅(Cu)からなり、それぞれの厚さは、例えば約10μm~約25μmである。また、金めっき層23は、例えばNi/Au層からなり、Ni層の厚さは例えば約3μm~約15μmであり、Au層の厚さは例えば約0.5μm~約1μmである。 The wiring layer 20 has a predetermined pattern and is provided on one main surface of the substrate 10 (in this embodiment, the mounting surface side of the semiconductor module 300). In addition, an electrode pad 22 for joining package mounting solder is provided on one main surface of the substrate 10. Wiring layer 20 is connected to the electrode pads 22 provided in the electrode formation region on the substrate 10. The electrode pad 22 includes a first conductor portion 22 a and a gold plating layer 23. The first conductor section 22a, the wiring layer 20 is the same layer, the wiring layer 20 is connected. The gold plating layer 23 is provided on the first conductor portion 22a. The gold plating layer 23 prevents the first conductor portion 22a from being oxidized. The first conductor portion 22a of the wiring layer 20 and the electrode pad 22 is made of, for example, copper (Cu), and the thickness thereof is, for example, about 10 μm to about 25 μm. The gold plating layer 23 is made of, for example, a Ni / Au layer. The thickness of the Ni layer is, for example, about 3 μm to about 15 μm, and the thickness of the Au layer is, for example, about 0.5 μm to about 1 μm.
 基材10の他方の主表面には、所定パターンの下面側配線層(図示せず)が設けられている。また、基材10の他方の主表面には、例えばマザーボードへ半導体装置1を搭載する際に用いられるはんだを接合するための下面側電極パッド52が設けられている。下面側配線層は、基材10の他方の主表面上の電極形成領域に設けられた下面側電極パッド52に接続されている。下面側配線層および下面側電極パッド52は、例えば銅からなり、それぞれの厚さは、例えば約10μm~約25μmである。 A lower surface side wiring layer (not shown) having a predetermined pattern is provided on the other main surface of the substrate 10. Further, on the other main surface of the base material 10, for example, a lower surface side electrode pad 52 for joining solder used when mounting the semiconductor device 1 on a mother board is provided. The lower surface side wiring layer is connected to a lower surface side electrode pad 52 provided in an electrode formation region on the other main surface of the substrate 10. The lower surface side wiring layer and the lower surface side electrode pad 52 are made of copper, for example, and the thickness thereof is, for example, about 10 μm to about 25 μm.
 基材10の所定位置には、基材10を貫通するビア導体(図示せず)が設けられている。ビア導体は、例えば銅めっきにより形成される。ビア導体により、配線層20と下面側配線層とが電気的に接続されている。 A via conductor (not shown) penetrating the base material 10 is provided at a predetermined position of the base material 10. The via conductor is formed by, for example, copper plating. The wiring layer 20 and the lower surface side wiring layer are electrically connected by the via conductor.
 絶縁層30は、配線層20を覆うようにして基材10の一方の主表面に設けられている。絶縁層30により、配線層20の酸化などが防止される。絶縁層30は、基材10上の電極形成領域が露出するような開口部32を有する。したがって、開口部32において、電極形成領域に設けられた電極パッド22が露出している。絶縁層30は、例えばフォトソルダーレジストにより形成され、その厚さは、例えば約20μm~約50μmである。また、開口部32の径は、約100μm~約300μmである。 The insulating layer 30 is provided on one main surface of the substrate 10 so as to cover the wiring layer 20. The insulating layer 30 prevents the wiring layer 20 from being oxidized. The insulating layer 30 has an opening 32 that exposes the electrode formation region on the substrate 10. Therefore, the electrode pad 22 provided in the electrode formation region is exposed in the opening 32. The insulating layer 30 is formed of, for example, a photo solder resist, and the thickness thereof is, for example, about 20 μm to about 50 μm. The diameter of the opening 32 is about 100 μm to about 300 μm.
 基材10の他方の主表面には、下面側配線層を覆うようにして下面側絶縁層60が設けられている。下面側絶縁層60により、下面側配線層の酸化などが防止される。下面側絶縁層60には、基材10の他方の主表面上の電極形成領域が露出するような開口部62を有する。したがって、開口部62において、電極形成領域に設けられた下面側電極パッド52が露出している。下面側絶縁層60は、例えばフォトソルダーレジストにより形成され、その厚さは、例えば約20μm~約50μmである。また、開口部62の径は、約100μm~約300μmである。 A lower surface side insulating layer 60 is provided on the other main surface of the base material 10 so as to cover the lower surface side wiring layer. The lower surface side insulating layer 60 prevents the lower surface side wiring layer from being oxidized. The lower surface side insulating layer 60 has an opening 62 that exposes an electrode formation region on the other main surface of the substrate 10. Therefore, the lower surface side electrode pad 52 provided in the electrode formation region is exposed in the opening 62. The lower surface side insulating layer 60 is formed of, for example, a photo solder resist, and has a thickness of, for example, about 20 μm to about 50 μm. The diameter of the opening 62 is about 100 μm to about 300 μm.
 後述する半導体素子200とワイヤボンディング接続される部分の配線層20の表面には、Ni/Au層などの金めっき層21が形成されている。同様に、下面側電極パッド52の表面には、金めっき層53が形成されている。金めっき層21、および金めっき層53により、配線層20、および金めっき層53の酸化が抑制される。金めっき層21、53としてNi/Au層を形成する場合には、Ni層の厚さは例えば約3μm~約15μmであり、Au層の厚さは例えば約0.5μm~約1μmである。 A gold plating layer 21 such as a Ni / Au layer is formed on the surface of the wiring layer 20 at a portion to be wire bonded to the semiconductor element 200 described later. Similarly, the surface of the lower surface side electrode pad 52, the gold plating layer 53 is formed. Oxidation of the wiring layer 20 and the gold plating layer 53 is suppressed by the gold plating layer 21 and the gold plating layer 53. When Ni / Au layers are formed as the gold plating layers 21 and 53, the thickness of the Ni layer is, for example, about 3 μm to about 15 μm, and the thickness of the Au layer is, for example, about 0.5 μm to about 1 μm.
 絶縁層30の開口部32内において、はんだボール70が電極パッド22に接続されている。はんだボール70は、半導体モジュール300の電極パッド322と、素子搭載用基板110の電極パッド22とを電気的に接続する接続部材として機能する。はんだボール70によって、半導体モジュール300と半導体モジュール100とが電気的に接続される。 The solder ball 70 is connected to the electrode pad 22 in the opening 32 of the insulating layer 30. The solder ball 70 functions as a connection member that electrically connects the electrode pad 322 of the semiconductor module 300 and the electrode pad 22 of the element mounting substrate 110. The semiconductor module 300 and the semiconductor module 100 are electrically connected by the solder balls 70.
 また、下面側絶縁層60の開口部62内において、はんだボール80が下面側電極パッド52に接続されている。はんだボール80は、素子搭載用基板110の下面側電極パッド52と、例えばマザーボードの接続端子とを電気的に接続する接続部材として機能する。はんだボール80によって、半導体装置1が図示しないマザーボードに電気的に接続される。 In addition, the solder ball 80 is connected to the lower surface side electrode pad 52 in the opening 62 of the lower surface side insulating layer 60. The solder ball 80 functions as a connection member that electrically connects the lower surface side electrode pad 52 of the element mounting substrate 110 and, for example, a connection terminal of the motherboard. By the solder balls 80, the semiconductor device 1 is electrically connected to a mother board (not shown).
 このような構成を備えた素子搭載用基板110に半導体素子200が搭載されて、半導体モジュール100が形成される。本実施形態に係る半導体モジュール100では、基材10の一方の主表面に設けられた絶縁層30の上に半導体素子200が搭載されている。そして、半導体素子200に設けられた素子電極(図示せず)と所定領域の配線層20とが金線202によりワイヤボンディング接続されている。半導体素子200の具体例としては、集積回路(IC)、大規模集積回路(LSI)などの半導体チップが挙げられる。 The semiconductor module 100 is formed by mounting the semiconductor element 200 on the element mounting substrate 110 having such a configuration. In the semiconductor module 100 according to the present embodiment, the semiconductor element 200 is mounted on the insulating layer 30 provided on one main surface of the substrate 10. An element electrode (not shown) provided in the semiconductor element 200 and a wiring layer 20 in a predetermined region are connected by wire bonding with a gold wire 202. Specific examples of the semiconductor element 200 include semiconductor chips such as an integrated circuit (IC) and a large scale integrated circuit (LSI).
 半導体素子200と、これに接続された配線層20とは、封止樹脂層120により封止されている。封止樹脂層120は、例えばエポキシ樹脂を用いて、トランスファーモールド法により形成される。 The semiconductor element 200 and the wiring layer 20 connected to the semiconductor element 200 are sealed with a sealing resin layer 120. The sealing resin layer 120 is formed by a transfer molding method using, for example, an epoxy resin.
 そして、このような構成を備えた半導体モジュール100に半導体モジュール300が搭載されて、PoP構造を有する半導体装置1が形成される。本実施形態の半導体装置1では、半導体モジュール300の電極パッド322と、半導体モジュール100の電極パッド22とが、はんだボール70に接合されることで、両者が電気的に接続されている。 Then, the semiconductor module 300 is mounted on the semiconductor module 100 having such a configuration, and the semiconductor device 1 having the PoP structure is formed. In the semiconductor device 1 of the present embodiment, the electrode pad 322 of the semiconductor module 300 and the electrode pad 22 of the semiconductor module 100 are joined to the solder ball 70 so that they are electrically connected.
 半導体モジュール300は、素子搭載用基板310に半導体素子210が搭載された構造を有する。素子搭載用基板310は、電極パッド322を備え、電極パッド322がはんだボール70を介して素子搭載用基板110の電極パッド22と電気的に接続されている。素子搭載用基板310の上面と半導体素子210とは、封止樹脂層320によって封止されている。封止樹脂層320は、例えばエポキシ樹脂を用いて、トランスファーモールド法により形成される。 The semiconductor module 300 has a structure in which the semiconductor element 210 is mounted on the element mounting substrate 310. The element mounting substrate 310 includes electrode pads 322, and the electrode pads 322 are electrically connected to the electrode pads 22 of the element mounting substrate 110 via the solder balls 70. The upper surface of the element mounting substrate 310 and the semiconductor element 210 are sealed with a sealing resin layer 320. The sealing resin layer 320 is formed by a transfer molding method using, for example, an epoxy resin.
 ここで、図9を参照して、電極パッドとはんだボールとの接続構造について詳細に説明する。図9は、素子搭載用基板に設けられた電極パッドとその周囲の構造を示す部分拡大図である。 Referring now to FIG. 9, the connection structure between the electrode pads and the solder balls will be described in detail. Figure 9 is a partially enlarged view showing the structure surrounding the electrode pads provided on the device mounting substrate.
 図9に示すように、電極パッド22は、その頂部面22c(金めっき層23の上端面)が絶縁層30の上側主表面よりも低い位置となるように構成されている。すなわち、基材10主表面からの頂部面22cの高さが、基材10主表面からの絶縁層30の上側主表面の高さよりも低い。また、絶縁層30は、開口部32内の側面30aのうち少なくとも電極パッド22の頂部面22cよりも上側の側面30aが、絶縁層30の上側主表面に近くなるほど開口部32内にせり出すように構成されている。本実施形態では、側面30aの全体が上側主表面に近くなるほど開口部32内にせり出している。したがって、開口部32の下端部を基準にした場合、絶縁層30の側面30aが開口部32内にせり出すことで、開口部32内にせり出し部30bが形成されている。言い換えれば、絶縁層30の側面30aは、下側主表面から上側主表面に向けて幅広となる逆テーパー形状を有する。また、開口部32は、絶縁層30の上側主表面に近くなるほど、その開口径が小さくなるテーパー形状を有する。 As shown in FIG. 9, the electrode pad 22 is configured such that the top surface 22 c (the upper end surface of the gold plating layer 23) is lower than the upper main surface of the insulating layer 30. That is, the height of the top surface 22c from the main surface of the base material 10 is lower than the height of the upper main surface of the insulating layer 30 from the main surface of the base material 10. The insulating layer 30 protrudes into the opening 32 so that at least the side surface 30 a above the top surface 22 c of the electrode pad 22 among the side surfaces 30 a in the opening 32 is closer to the upper main surface of the insulating layer 30. It is configured. In the present embodiment, the entire side surface 30a protrudes into the opening 32 as it approaches the upper main surface. Therefore, when the lower end portion of the opening portion 32 is used as a reference, the side surface 30 a of the insulating layer 30 protrudes into the opening portion 32, so that the protruding portion 30 b is formed in the opening portion 32. In other words, the side surface 30a of the insulating layer 30 has an inversely tapered shape that becomes wider from the lower main surface toward the upper main surface. In addition, the opening 32 has a tapered shape in which the opening diameter is smaller as it is closer to the upper main surface of the insulating layer 30.
 はんだボール70は、開口部32の中に充填されて電極パッド22と電気的に接続されている。また、はんだボール70は、絶縁層30の上側主表面よりも上方に突出している。そして、はんだボール70は、開口部32内にせり出した絶縁層30の側面30a、すなわち、せり出し部30bがはんだボール70内に陥入するように設けられている。このように、せり出し部30bがはんだボール70内に食い込むことで、せり出し部30bがアンカー効果を発揮して、はんだボール70が電極パッド22から剥離することを防ぐことができる。そのため、より確実に素子搭載用基板110と半導体モジュール300とを電気的に接続させることができる。 The solder ball 70 is filled in the opening 32 and is electrically connected to the electrode pad 22. Solder balls 70 protrude upward from the upper main surface of insulating layer 30. The solder ball 70 is provided such that the side surface 30 a of the insulating layer 30 protruding into the opening 32, i.e., the protruding portion 30 b, is recessed into the solder ball 70. In this manner, the protruding portion 30b bites into the solder ball 70, whereby the protruding portion 30b exhibits an anchor effect, and the solder ball 70 can be prevented from being peeled off from the electrode pad 22. Therefore, the element mounting substrate 110 and the semiconductor module 300 can be electrically connected more reliably.
(素子搭載用基板および半導体モジュールの製造方法)
 実施形態2に係る素子搭載用基板110および半導体モジュール100を含む半導体装置1の製造方法について、図10および図11を参照して説明する。図10(A)~図10(D)、および図11(A)~図11(C)は、半導体装置の製造方法を示す工程断面図である。
(Element mounting substrate and semiconductor module manufacturing method)
A method for manufacturing the semiconductor device 1 including the element mounting substrate 110 and the semiconductor module 100 according to the second embodiment will be described with reference to FIGS. 10A to 10D and FIGS. 11A to 11C are process cross-sectional views illustrating a method for manufacturing a semiconductor device.
 まず、図10(A)に示すように、一方の主表面に所定パターンの配線層20とこれに接続された電極パッド22の第1導体部22aとが形成され、他方の主表面に所定パターンの下面側配線層(図示せず)とこれに接続された下面側電極パッド52とが形成された基材10を用意する。各配線層、および各電極パッドは、周知のフォトリソグラフィ法およびエッチング法などを用いて形成することができるため、その説明は省略する。 First, as shown in FIG. 10A, a wiring layer 20 having a predetermined pattern and a first conductor portion 22a of an electrode pad 22 connected thereto are formed on one main surface, and a predetermined pattern is formed on the other main surface. A base material 10 on which a lower wiring layer (not shown) and a lower electrode pad 52 connected thereto are formed is prepared. Each wiring layer and each electrode pad can be formed by using a well-known photolithography method, etching method, or the like, and thus description thereof is omitted.
 次に、図10(B)に示すように、基材10の一方の主表面に、配線層20および第1導体部22aを被覆するようにして絶縁層30を積層する。また、基材10の他方の主表面に、下面側配線層および下面側電極パッド52を被覆するようにして下面側絶縁層60を積層する。 Next, as shown in FIG. 10B, an insulating layer 30 is laminated on one main surface of the substrate 10 so as to cover the wiring layer 20 and the first conductor portion 22a. Further, the lower surface side insulating layer 60 is laminated on the other main surface of the base material 10 so as to cover the lower surface side wiring layer and the lower surface side electrode pad 52.
 次に、図10(C)に示すように、フォトリソグラフィ法により、絶縁層30の主表面に、配線層20の所定領域および第1導体部22aの存在領域に対応したパターンのマスク150を選択的に形成する。そして、マスク150をマスクとして絶縁層30を露光する(図10(C)における矢印は露光光を示している)。絶縁層30は、ネガ型のフォトソルダーレジストからなる。そのため、当該露光によって感光した部分が溶媒に対して不溶性となる。したがって、絶縁層30を露光した後、現像することにより、図10(D)に示すように、露光された部分の絶縁層30が溶け残る。その結果、絶縁層30に開口部32が形成されて、電極パッド22が露出する。また、配線層20も露出する。 Next, as shown in FIG. 10C, a mask 150 having a pattern corresponding to a predetermined region of the wiring layer 20 and a region where the first conductor portion 22a exists is selected on the main surface of the insulating layer 30 by photolithography. Form. Then, the insulating layer 30 is exposed using the mask 150 as a mask (the arrow in FIG. 10C indicates exposure light). The insulating layer 30 is made of a negative type photo solder resist. Therefore, the part exposed by the exposure becomes insoluble in the solvent. Therefore, by developing after exposing the insulating layer 30, as shown in FIG. 10D, the exposed portion of the insulating layer 30 remains undissolved. As a result, an opening 32 is formed in the insulating layer 30 and the electrode pad 22 is exposed. The wiring layer 20 is also exposed.
 ここで、図10(C)に示すように、マスク150を積層して絶縁層30を露光した場合、絶縁層30のうちマスク150近傍の領域では、絶縁層30内を進行する露光光が減衰しやすい。また、露光光は、マスク150に近い領域ほど減衰しやくなる。よって、この領域では、マスク150に近づくほど露光光の絶縁層内進行距離が短くなる。そのため、マスク150の近傍の領域ではマスク150に近づくほど、現像時に溶解する、絶縁層30の下側主表面側部分が多くなる。その結果、図10(D)に示すように、開口部32内における絶縁層30の側面30aは、絶縁層30の上側主表面に近くなるほど開口部32内にせり出した形状となる。同様にして、下面側絶縁層60にも開口部62が形成される。 Here, as illustrated in FIG. 10C, when the mask 150 is stacked and the insulating layer 30 is exposed, the exposure light traveling in the insulating layer 30 is attenuated in the region of the insulating layer 30 near the mask 150. It's easy to do. Further, the exposure light is more easily attenuated in the region closer to the mask 150. Therefore, in this region, the insulating layer travel distance of the exposure light closer to the mask 150 becomes shorter. Therefore, in the region near the mask 150, the closer to the mask 150, the more the lower main surface side portion of the insulating layer 30 that dissolves during development. As a result, as shown in FIG. 10D, the side surface 30 a of the insulating layer 30 in the opening 32 has a shape that protrudes into the opening 32 as it approaches the upper main surface of the insulating layer 30. Similarly, an opening 62 is formed in the lower surface side insulating layer 60.
 次に、図11(A)に示すように、配線層20の上に金めっき層21を形成し、第1導体部22aの上に金めっき層23を形成し、下面側電極パッド52の上に金めっき層53を形成する。各金めっき層は、例えば電解めっき法または無電解めっき法により形成することができる。以上の工程により、本実施形態に係る素子搭載用基板110が形成される。 Next, as shown in FIG. 11A, a gold plating layer 21 is formed on the wiring layer 20, a gold plating layer 23 is formed on the first conductor portion 22a, and the lower surface side electrode pad 52 is formed. A gold plating layer 53 is formed. Each gold plating layer can be formed by, for example, an electrolytic plating method or an electroless plating method. Through the above steps, the element mounting substrate 110 according to the present embodiment is formed.
 次に、図11(B)に示すように、絶縁層30上に半導体素子200を搭載する。そして、ワイヤボンディング法を用いて、半導体素子200の上面周縁に設けられた素子電極(図示せず)と配線層20の所定領域とを金線202により接続する。続いて、トランスファーモールド法を用いて、半導体素子200を封止樹脂層120により封止する。また、はんだボール70を設ける位置に開口部が形成されたマスクを、開口部32が形成された絶縁層30上に設け、マスクの開口部に球状のはんだボールを配置して(載せて)、電極パッド22にはんだボール70を搭載する。その後、マスクを除去する。また、同様にして、下面側絶縁層60の開口部62において下面側電極パッド52にはんだボール80を搭載する。また、例えばスクリーン印刷法により、絶縁層30の開口部32において電極パッド22にはんだボール70を搭載してもよい。具体的には、樹脂とはんだ材をペースト状にしたはんだペーストをスクリーンマスクにより所望の箇所に印刷してはんだボール70を形成する。また、同様にしてはんだボール80を搭載してもよい。以上の工程により、本実施形態に係る半導体モジュール100が形成される。 Next, as shown in FIG. 11B, the semiconductor element 200 is mounted on the insulating layer 30. Then, an element electrode (not shown) provided on the peripheral edge of the upper surface of the semiconductor element 200 and a predetermined region of the wiring layer 20 are connected by a gold wire 202 using a wire bonding method. Subsequently, the semiconductor element 200 is sealed with the sealing resin layer 120 using a transfer molding method. Further, a mask having an opening formed at a position where the solder ball 70 is provided is provided on the insulating layer 30 in which the opening 32 is formed, and a spherical solder ball is disposed (mounted) on the opening of the mask. Solder balls 70 are mounted on the electrode pads 22. Thereafter, the mask is removed. Similarly, the solder ball 80 is mounted on the lower surface side electrode pad 52 in the opening 62 of the lower surface side insulating layer 60. Alternatively, the solder balls 70 may be mounted on the electrode pads 22 in the openings 32 of the insulating layer 30 by, for example, screen printing. Specifically, the solder ball 70 is formed by printing a solder paste made of a resin and a solder material in a paste form at a desired location using a screen mask. Similarly, the solder ball 80 may be mounted. The semiconductor module 100 according to this embodiment is formed through the above steps.
 次に、図11(C)に示すように、上述した半導体モジュール300を準備する。そして、半導体モジュール100の上に半導体モジュール300を搭載した状態で、リフロー工程によりはんだボール70を溶融して、電極パッド22と電極パッド322とを接合する。これにより、はんだボール70を介して半導体モジュール100と半導体モジュール300とが電気的に接続される。以上の工程により、半導体装置1が形成される。 Next, as shown in FIG. 11C, the above-described semiconductor module 300 is prepared. Then, in a state where the semiconductor module 300 is mounted on the semiconductor module 100, the solder ball 70 is melted by a reflow process to join the electrode pad 22 and the electrode pad 322. Thereby, the semiconductor module 100 and the semiconductor module 300 are electrically connected via the solder balls 70. Through the above steps, the semiconductor device 1 is formed.
 以上説明したように、実施形態2に係る素子搭載用基板110は、基材10の一方の主表面上に設けられ、基材10上の電極形成領域が露出するような開口部32を有する絶縁層30を備える。また、素子搭載用基板110は、開口部32内に設けられた電極パッド22を備える。そして、電極パッド22は、その頂部面が絶縁層30の上側主表面よりも低い位置にあり、絶縁層30は、開口部32内の側面30aが、上側主表面に近くなるほど開口部32内にせり出すように構成されている。そのため、電極パッド22にはんだボール70が搭載されると、開口部32内にせり出した絶縁層30の側面30a、すなわちせり出し部30bがはんだボール70内に陥入する。これにより、はんだボール70は開口部32から抜け落ちにくくなり、はんだボール70と電極パッド22との剥離が抑制される。そのため、素子搭載用基板110の接続信頼性を向上させることができる。また、素子搭載用基板110の接続信頼性が向上することで、半導体モジュール100および半導体装置1の実装信頼性も向上する。 As described above, the element mounting substrate 110 according to the second embodiment is provided on one main surface of the base material 10 and has an opening 32 that exposes an electrode formation region on the base material 10. Layer 30 is provided. Further, the element mounting substrate 110 includes an electrode pad 22 provided in the opening 32. The top surface of the electrode pad 22 is lower than the upper main surface of the insulating layer 30, and the insulating layer 30 is located in the opening 32 as the side surface 30a in the opening 32 is closer to the upper main surface. It is configured to protrude. Therefore, when the solder ball 70 is mounted on the electrode pad 22, the side surface 30 a of the insulating layer 30 that protrudes into the opening 32, that is, the protruding portion 30 b enters the solder ball 70. As a result, the solder balls 70 are less likely to fall out of the openings 32, and the peeling between the solder balls 70 and the electrode pads 22 is suppressed. Therefore, the connection reliability of the element mounting substrate 110 can be improved. Further, since the connection reliability of the element mounting substrate 110 is improved, the mounting reliability of the semiconductor module 100 and the semiconductor device 1 is also improved.
 なお、絶縁層30のせり出し部30bは、少なくとも電極パッド22の頂部面よりも上側に設けられていればよい。この領域にせり出し部30bが設けられていれば、はんだボール70内に絶縁層30の側面30aを食い込ませて、アンカー効果を発揮することができる。 The protruding portion 30b of the insulating layer 30 only needs to be provided at least above the top surface of the electrode pad 22. If the protruding portion 30b is provided in this region, the side surface 30a of the insulating layer 30 can be bitten into the solder ball 70, and the anchor effect can be exhibited.
 (実施形態3)
 実施形態3に係る素子搭載用基板110では、絶縁層30は、複数の層状絶縁体が積層された多層構造を有する。以下、本実施形態について説明する。なお、半導体装置1のその他の構成および製造工程は実施形態2と基本的に同一である。実施形態2と同一の構成については同一の符号を付し、その説明は適宜省略する。
(Embodiment 3)
In the element mounting substrate 110 according to the third embodiment, the insulating layer 30 has a multilayer structure in which a plurality of layered insulators are stacked. Hereinafter, this embodiment will be described. The other configuration and manufacturing process of the semiconductor device 1 are basically the same as those of the second embodiment. The same components as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
 図1は、実施形態3に係る素子搭載用基板および半導体モジュールを含む半導体装置の構成を示す概略断面図である。図2は、素子搭載用基板に設けられた電極パッドとその周囲の構造を示す部分拡大図である。 FIG. 1 is a schematic cross-sectional view illustrating a configuration of a semiconductor device including an element mounting substrate and a semiconductor module according to a third embodiment. FIG. 2 is a partially enlarged view showing the electrode pad provided on the element mounting substrate and the surrounding structure.
 図1に示すように、本実施形態に係る素子搭載用基板110では、絶縁層30は、複数の層状絶縁体が積層された多層構造を有する。具体的には、絶縁層30は、3つの層状絶縁体33、34、35が積層された構造を有する。なお、絶縁層30のうち、半導体素子200が搭載される部分は、層状絶縁体33のみで構成されている。層状絶縁体33、層状絶縁体34、および層状絶縁体35は、例えばフォトソルダーレジストにより形成され、その厚さは、例えば約20μm~約50μmである。 As shown in FIG. 1, in the element mounting substrate 110 according to this embodiment, the insulating layer 30 has a multilayer structure in which a plurality of layered insulators are stacked. Specifically, the insulating layer 30 has a structure in which three layered insulators 33, 34, and 35 are stacked. In addition, the part in which the semiconductor element 200 is mounted in the insulating layer 30 is configured only by the layered insulator 33. The layered insulator 33, the layered insulator 34, and the layered insulator 35 are formed of, for example, a photo solder resist, and the thickness thereof is, for example, about 20 μm to about 50 μm.
 また、図2に示すように、層状絶縁体33は開口部32aを有し、層状絶縁体34は開口部32bを有し、層状絶縁体35は開口部32cを有する。開口部32a、開口部32b、および開口部32cは、それぞれ基材10上の電極形成領域に設けられており、開口部32a、開口部32b、および開口部32cによって、基材10上の電極形成領域が露出するような開口部32が形成されている。また、層状絶縁体33の開口部32a内の側面33aと、層状絶縁体34の開口部32b内の側面34aと、層状絶縁体35の開口部32c内の側面35aとによって絶縁層30の側面30aが形成されている。 Further, as shown in FIG. 2, the layered insulator 33 has an opening 32a, the layered insulator 34 has an opening 32b, and the layered insulator 35 has an opening 32c. The opening 32a, the opening 32b, and the opening 32c are provided in the electrode formation region on the substrate 10, respectively, and the electrode formation on the substrate 10 is formed by the opening 32a, the opening 32b, and the opening 32c. An opening 32 is formed so that the region is exposed. The side surface 30a of the insulating layer 30 is constituted by the side surface 33a in the opening 32a of the layered insulator 33, the side surface 34a in the opening 32b of the layered insulator 34, and the side surface 35a in the opening 32c of the layered insulator 35. Is formed.
 開口部32の側面30aのうち、少なくとも最上層にある層状絶縁体35の開口部32c内の側面35aは、層状絶縁体35の上側主表面、すなわち絶縁層30の上側主表面に近くなるほど開口部32c内にせり出すように構成されている。本実施形態では、層状絶縁体34の開口部32b内の側面34aと、層状絶縁体35の開口部32c内の側面35aとが、それぞれの上側主表面に近くなるほど開口部内にせり出すように構成されている。したがって、層状絶縁体34では、開口部32bの下端部を基準にした場合、開口部32b内にせり出し部34bが形成されている。また、層状絶縁体35では、開口部32cの下端部を基準にした場合、開口部32c内にせり出し部35bが形成されている。 Of the side surfaces 30 a of the opening 32, at least the side surface 35 a in the opening 32 c of the layered insulator 35 in the uppermost layer is closer to the upper main surface of the layered insulator 35, that is, the upper main surface of the insulating layer 30. It is comprised so that it may protrude in 32c. In the present embodiment, the side surface 34a in the opening portion 32b of the layered insulator 34 and the side surface 35a in the opening portion 32c of the layered insulator 35 are configured to protrude into the opening portion as they become closer to the respective upper main surfaces. ing. Therefore, in the layered insulator 34, when the lower end portion of the opening 32b is used as a reference, the protruding portion 34b is formed in the opening 32b. In the layered insulator 35, when the lower end portion of the opening 32c is used as a reference, a protruding portion 35b is formed in the opening 32c.
 また、層状絶縁体34および層状絶縁体35は、下側の層状絶縁体34の開口部32b周縁の主表面上に、上側の層状絶縁体35の開口部32cの下端部が位置するように構成されている。すなわち、開口部32cの下端部の開口径は、開口部32bの上端部の開口径よりも大きい。したがって、絶縁層30の側面30aは、開口部32の中心軸を通る断面に現れる形状が略階段形状となっている。 The layered insulator 34 and the layered insulator 35 are configured such that the lower end portion of the opening 32c of the upper layered insulator 35 is positioned on the main surface of the periphery of the opening 32b of the lower layered insulator 34. Has been. That is, the opening diameter of the lower end part of the opening part 32c is larger than the opening diameter of the upper end part of the opening part 32b. Therefore, the side surface 30 a of the insulating layer 30 has a substantially staircase shape that appears in a cross section passing through the central axis of the opening 32.
 電極パッド22は、基材10上の電極形成領域に設けられている。電極パッド22は、第1導体部22aと、第2導体部22bと、金めっき層23とを含む。第1導体部22aは、配線層20と同層であり、電極形成領域まで延びた配線層20に接続されている。第2導体部22bは、第1導体部22a上に設けられている。また、金めっき層23は、第2導体部22b上に設けられている。電極パッド22は、その頂部面22c(金めっき層23の上端面)が、絶縁層30の上側主表面よりも低い位置となるように構成されている。すなわち、基材10主表面からの頂部面22cの高さが、基材10主表面からの層状絶縁体35の上側主表面の高さよりも低い。さらに本実施形態では、電極パッド22の頂部面22cは、最上層にある層状絶縁体35の下側主表面よりも高い位置にある。すなわち、頂部面22cは、最上層にある層状絶縁体35の下側主表面と上側主表面との間に位置する。電極パッド22の頂部面22cを絶縁層30の上側主表面よりも低い位置とすることで、少なくとも層状絶縁体35のせり出し部35bによって、はんだボール70の剥離防止を図ることができる。また、電極パッド22の頂部面22cを層状絶縁体35の下側主表面よりも高い位置とすることで、開口部32内に充填されたはんだボール70と電極パッド22とをより確実に接触させることができる。電極パッド22の第1導体部22aおよび第2導体部22bは、例えば銅からなる。頂部面22cの基材10表面からの高さは、例えば約50μm~約100μmである。 The electrode pad 22 is provided in an electrode formation region on the base material 10. The electrode pad 22 includes a first conductor portion 22a, a second conductor portion 22b, and a gold plating layer 23. The first conductor portion 22a is the same layer as the wiring layer 20, and is connected to the wiring layer 20 extending to the electrode formation region. The second conductor portion 22b is provided on the first conductor portion 22a. The gold plating layer 23 is provided on the second conductor portion 22b. The electrode pad 22 is configured such that the top surface 22 c (the upper end surface of the gold plating layer 23) is positioned lower than the upper main surface of the insulating layer 30. That is, the height of the top surface 22c from the main surface of the base material 10 is lower than the height of the upper main surface of the layered insulator 35 from the main surface of the base material 10. Furthermore, in the present embodiment, the top surface 22c of the electrode pad 22 is positioned higher than the lower main surface of the layered insulator 35 in the uppermost layer. That is, the top surface 22c is located between the lower main surface and the upper main surface of the layered insulator 35 in the uppermost layer. By making the top surface 22 c of the electrode pad 22 lower than the upper main surface of the insulating layer 30, at least the protruding portion 35 b of the layered insulator 35 can prevent the solder ball 70 from peeling off. Further, by making the top surface 22c of the electrode pad 22 higher than the lower main surface of the layered insulator 35, the solder ball 70 filled in the opening 32 and the electrode pad 22 are more reliably brought into contact with each other. be able to. The first conductor portion 22a and the second conductor portion 22b of the electrode pad 22 are made of, for example, copper. The height from the substrate 10 surface of the top surface 22c is, for example, about 50 [mu] m ~ about 100 [mu] m.
 また、層状絶縁体34にせり出し部34bが設けられたことで、層状絶縁体34の側面34aによって、電極パッド22が基材10から剥離することを防ぐことができる。さらに、絶縁層30の側面30aが階段状となっているため、せり出し部34bが電極パッド22に食い込んだ構造となる。そのため、電極パッド22が基材10から剥離することをより確実に防止できる。 Further, since the protruding portion 34 b is provided in the layered insulator 34, it is possible to prevent the electrode pad 22 from being peeled from the base material 10 by the side surface 34 a of the layered insulator 34. Furthermore, since the side surface 30 a of the insulating layer 30 is stepped, the protruding portion 34 b has a structure that bites into the electrode pad 22. Therefore, it can prevent more reliably that the electrode pad 22 peels from the base material 10. FIG.
 なお、本実施形態では、層状絶縁体33の側面33aは垂直に延びているが、側面33aも、層状絶縁体33の上側主表面に近くなるほど開口部32aにせり出すように構成されていてもよい。この場合には、電極パッド22と基材10との間の剥離をより確実に防ぐことができる。 In the present embodiment, the side surface 33a of the layered insulator 33 extends vertically, but the side surface 33a may also be configured to protrude to the opening 32a as it approaches the upper main surface of the layered insulator 33. . In this case, it is possible to prevent the peeling between the electrode pads 22 and the substrate 10 more reliably.
 図3は、半導体モジュールの平面模式図である。図3では、図1で示した封止樹脂層120と、金線202と、この金線202に接続される配線層20の図示を省略している。本実施形態に係る素子搭載用基板110では、図1で示した電極パッド22が基材10の周縁部に設けられている。したがって、図3に示すように、層状絶縁体33、層状絶縁体34、および層状絶縁体35が積層された多層構造の絶縁層30は基材10の周縁部に設けられ、同様にはんだボール70も基材10の周縁部に配置されている。電極パッド22に囲まれた基材10の中央領域には、層状絶縁体33のみからなる絶縁層30が設けられている。したがって、素子搭載用基板110は、周辺部の表面高さが高く中央部の表面高さが低い、いわゆるキャビティ構造を有する。半導体素子200は、電極パッド22に囲まれた中央領域に搭載されている。 FIG. 3 is a schematic plan view of the semiconductor module. In FIG. 3, illustration of the sealing resin layer 120, the gold wire 202, and the wiring layer 20 connected to the gold wire 202 shown in FIG. 1 is omitted. In the element mounting substrate 110 according to the present embodiment, the electrode pads 22 shown in FIG. Therefore, as shown in FIG. 3, the insulating layer 30 having a multilayer structure in which the layered insulator 33, the layered insulator 34, and the layered insulator 35 are laminated is provided on the peripheral portion of the substrate 10, and similarly, the solder ball 70. Is also disposed at the peripheral edge of the substrate 10. In the central region of the substrate 10 surrounded by the electrode pads 22, an insulating layer 30 composed only of the layered insulator 33 is provided. Therefore, the element mounting substrate 110 has a so-called cavity structure in which the surface height of the peripheral portion is high and the surface height of the central portion is low. The semiconductor element 200 is mounted in a central region surrounded by the electrode pads 22.
 素子搭載用基板および半導体モジュールの製造方法は、実施形態1と同様である。 The manufacturing method of the element mounting substrate and the semiconductor module is the same as that of the first embodiment.
 以上説明したように、実施形態3に係る素子搭載用基板110において、絶縁層30は、層状絶縁体33、34、35が積層された多層構造を有する。そして、少なくとも最上層にある層状絶縁体35の開口部32c内の側面35aが、上側主表面に近くなるほど開口部32c内にせり出すように構成されている。そのため、電極パッド22にはんだボール70が搭載されると、開口部32c内にせり出した側面35a、すなわちせり出し部35bがはんだボール70内に陥入する。これにより、はんだボール70は開口部32から抜け落ちにくくなり、はんだボール70と電極パッド22との剥離が抑制される。そのため、素子搭載用基板110の接続信頼性を向上させることができる。また、素子搭載用基板110の接続信頼性が向上することで、半導体モジュール100および半導体装置1の実装信頼性も向上する。 As described above, in the element mounting substrate 110 according to the third embodiment, the insulating layer 30 has a multilayer structure in which the layered insulators 33, 34, and 35 are stacked. And it is comprised so that the side surface 35a in the opening part 32c of the layered insulator 35 in the uppermost layer may protrude into the opening part 32c as it approaches the upper main surface. Therefore, when the solder ball 70 is mounted on the electrode pad 22, the side surface 35 a that protrudes into the opening 32 c, that is, the protruding portion 35 b enters the solder ball 70. As a result, the solder balls 70 are less likely to fall out of the openings 32, and the peeling between the solder balls 70 and the electrode pads 22 is suppressed. Therefore, the connection reliability of the element mounting substrate 110 can be improved. Further, since the connection reliability of the element mounting substrate 110 is improved, the mounting reliability of the semiconductor module 100 and the semiconductor device 1 is also improved.
 また、本実施形態では、層状絶縁体34にもせり出し部34bが設けられている。そのため、層状絶縁体34の側面34aによって、電極パッド22が基材10から剥離することを防ぐことができる。また、層状絶縁体34および層状絶縁体35は、層状絶縁体34の開口部32b周縁の主表面上に、層状絶縁体35の開口部32cの下端部が位置するように構成されている。そのため、せり出し部34bが電極パッド22の側面に陥入した構造となる。これにより、電極パッド22と配線層20との間の接続を確保することができる。 Further, in the present embodiment, the protruding portion 34b in a layered insulator 34 is provided. Therefore, the side surface 34 a of the layered insulator 34 can prevent the electrode pad 22 from peeling from the base material 10. The layered insulator 34 and the layered insulator 35 are configured such that the lower end portion of the opening 32 c of the layered insulator 35 is positioned on the main surface of the periphery of the opening 32 b of the layered insulator 34. Therefore, the protruding portion 34 b has a structure that is recessed into the side surface of the electrode pad 22. Thereby, the connection between the electrode pad 22 and the wiring layer 20 can be ensured.
 また、電極パッド22は、その頂部面22cが最上層にある層状絶縁体35の下側主表面と上側主表面との間に位置する。そのため、層状絶縁体35のせり出し部35bのアンカー効果を発揮させつつ、はんだボール70を確実に電極パッド22に接触させることができる。 The electrode pad 22 is located between the lower main surface and the upper main surface of the layered insulator 35 having the top surface 22c as the uppermost layer. Therefore, the solder ball 70 can be reliably brought into contact with the electrode pad 22 while exerting the anchor effect of the protruding portion 35b of the layered insulator 35.
 また、電極パッド22は基材10の周縁部に設けられている。そのため、素子搭載用基板110を、周縁部の表面高さが高く中央部の表面高さの低い、いわゆるキャビティ形状とすることができる。また、絶縁層30が多層構造であるため電極パッド22の高さを高くすることができ、これにより中央部に搭載可能な半導体素子200のサイズを大きくすることができる。 The electrode pad 22 is provided on the peripheral edge of the substrate 10. Therefore, the element mounting substrate 110 can have a so-called cavity shape in which the surface height of the peripheral portion is high and the surface height of the central portion is low. In addition, since the insulating layer 30 has a multilayer structure, the height of the electrode pad 22 can be increased, and thereby the size of the semiconductor element 200 that can be mounted in the central portion can be increased.
 (実施形態4)
 実施形態4に係る半導体モジュールは、デジタルスチルカメラ、デジタルビデオカメラ、携帯電話搭載のカメラなどの撮像装置に用いられるカメラモジュールである。以下、本実施形態について説明する。なお、素子搭載用基板110の構成および製造工程は実施形態1と基本的に同一である。実施形態1と同一の構成については同一の符号を付し、その説明は適宜省略する。
(Embodiment 4)
The semiconductor module according to the fourth embodiment is a camera module used for an imaging apparatus such as a digital still camera, a digital video camera, and a camera mounted on a mobile phone. Hereinafter, this embodiment will be described. The configuration and manufacturing process of the element mounting substrate 110 are basically the same as those in the first embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
 図12は、実施形態4に係る半導体モジュールの構成を示す概略断面図である。上述のように、本実施形態に係る半導体モジュール100は、デジタルスチルカメラ、デジタルビデオカメラ、携帯電話搭載のカメラなどの撮像装置に用いられるカメラモジュールである。本実施形態の半導体モジュール100において、半導体素子200はCMOS型イメージセンサ等の受光素子である。半導体素子200に設けられた素子電極(図示せず)と所定領域の配線層20とがはんだボール90によって接合され、半導体素子200が素子搭載用基板110の一方の主表面側にフリップチップ接続されている。半導体素子200には、フォトダイオードがマトリクス状に形成されており、各フォトダイオードは、受光量に応じて光を電荷量に光電変換し、画素信号として出力する。 FIG. 12 is a schematic cross-sectional view showing the configuration of the semiconductor module according to the fourth embodiment. As described above, the semiconductor module 100 according to the present embodiment is a camera module used for an imaging apparatus such as a digital still camera, a digital video camera, or a mobile phone camera. In the semiconductor module 100 of the present embodiment, the semiconductor element 200 is a light receiving element such as a CMOS image sensor. A device electrode (not shown) provided on the semiconductor device 200 and a predetermined region of the wiring layer 20 are joined by a solder ball 90, and the semiconductor device 200 is flip-chip connected to one main surface side of the device mounting substrate 110. ing. In the semiconductor element 200, photodiodes are formed in a matrix, and each photodiode photoelectrically converts light into a charge amount according to the amount of received light and outputs it as a pixel signal.
 素子搭載用基板110の他方の主表面側に搭載された半導体素子220はドライバICであり、半導体素子200の各撮像素子の露光タイミング、画素信号の出力タイミング等を制御する機能を有する。また、素子搭載用基板110の他方の主表面には、コンデンサ、抵抗などのチップ部品292が搭載されている。半導体素子220に設けられた素子電極(図示せず)と所定領域の下面側配線層50とが例えば金線222によりワイヤボンディング接続されている。 The semiconductor element 220 mounted on the other main surface side of the element mounting substrate 110 is a driver IC, and has a function of controlling the exposure timing of each image sensor of the semiconductor element 200, the output timing of pixel signals, and the like. A chip component 292 such as a capacitor and a resistor is mounted on the other main surface of the element mounting substrate 110. An element electrode (not shown) provided in the semiconductor element 220 and a lower surface side wiring layer 50 in a predetermined region are wire-bonded and connected by, for example, a gold wire 222.
 半導体素子200は、受光領域が素子搭載用基板110の一方の主表面側を向くようにして素子搭載用基板110に搭載されている。また、素子搭載用基板110には、半導体素子200の受光領域に合わせて開口部294が設けられている。半導体素子200の各撮像素子は、開口部294から入射した光を受光し、画素信号を出力する。素子搭載用基板110には、開口部294を塞ぐように光学フィルタ290が搭載されている。光学フィルタ290により、赤外線などの特定の波長の光が遮断される。 The semiconductor element 200 is mounted on the element mounting substrate 110 such that the light receiving region faces one main surface side of the element mounting substrate 110. The element mounting substrate 110 is provided with an opening 294 corresponding to the light receiving region of the semiconductor element 200. Each imaging element of the semiconductor element 200 receives light incident from the opening 294 and outputs a pixel signal. An optical filter 290 is mounted on the element mounting substrate 110 so as to close the opening 294. The optical filter 290 blocks light of a specific wavelength such as infrared rays.
 このように構成された半導体モジュール100は、はんだボール70を介して実装基板400の接続端子422に電気的に接続される。素子搭載用基板110と実装基板400との接続部分の構造は、実施形態1または3と同様である。これにより、実施形態4に係る半導体モジュール100によれば、カメラモジュールにおいて、実施形態1または3と同様な効果を得ることができる。 The semiconductor module 100 configured in this manner is electrically connected to the connection terminal 422 of the mounting substrate 400 via the solder ball 70. Structure of the connecting portion between the mounting substrate 400 and the device mounting board 110 is the same as Embodiment 1 or 3. Thereby, according to the semiconductor module 100 which concerns on Embodiment 4, in a camera module, the effect similar to Embodiment 1 or 3 can be acquired.
 (実施形態5)
 次に、上述の実施形態1乃至3のいずれかに係る半導体装置1を備えた携帯機器について説明する。なお、携帯機器として携帯電話に搭載する例を示すが、たとえば、個人用携帯情報端末(PDA)、デジタルビデオカメラ(DVC)、及びデジタルスチルカメラ(DSC)といった電子機器であってもよい。
(Embodiment 5)
Next, a portable device including the semiconductor device 1 according to any of the first to third embodiments will be described. In addition, although the example mounted in a mobile telephone is shown as a portable apparatus, electronic devices, such as a personal digital assistant (PDA), a digital video camera (DVC), and a digital still camera (DSC), may be sufficient, for example.
 図13は実施形態5に係る携帯電話の構成を示す図である。携帯電話1111は、第1の筐体1112と第2の筐体1114が可動部1120によって連結される構造になっている。第1の筐体1112と第2の筐体1114は可動部1120を軸として回動可能である。第1の筐体1112には文字や画像等の情報を表示する表示部1118やスピーカ部1124が設けられている。第2の筐体1114には操作用ボタンなどの操作部1122やマイク部1126が設けられている。実施形態1に係る半導体装置1はこうした携帯電話1111の内部に搭載されている。 FIG. 13 is a diagram illustrating a configuration of a mobile phone according to the fifth embodiment. A cellular phone 1111 has a structure in which a first housing 1112 and a second housing 1114 are connected by a movable portion 1120. The first housing 1112 and the second housing 1114 can be rotated around the movable portion 1120. The first housing 1112 is provided with a display portion 1118 and a speaker portion 1124 for displaying information such as characters and images. The second housing 1114 is provided with an operation portion 1122 such as operation buttons and a microphone portion 1126. The semiconductor device 1 according to the first embodiment is mounted inside such a mobile phone 1111.
 図14は図13に示した携帯電話の部分断面図(第1の筐体1112の断面図)である。上述の実施形態1に係る半導体装置1は、はんだボール80を介してプリント基板1128に搭載され、こうしたプリント基板1128を介して表示部1118などと電気的に接続されている。また、半導体装置1の裏面側(はんだボール80とは反対側の面)には金属基板などの放熱基板1116が設けられ、たとえば、半導体装置1から発生する熱を第1の筐体1112内部に篭もらせることなく、効率的に第1の筐体1112の外部に放熱することができるようになっている。 FIG. 14 is a partial cross-sectional view (cross-sectional view of the first casing 1112) of the mobile phone shown in FIG. The semiconductor device 1 according to the first embodiment described above is mounted on the printed circuit board 1128 via the solder balls 80, and is electrically connected to the display unit 1118 and the like via the printed circuit board 1128. In addition, a heat radiating substrate 1116 such as a metal substrate is provided on the back surface side of the semiconductor device 1 (the surface opposite to the solder ball 80). For example, heat generated from the semiconductor device 1 is generated inside the first housing 1112. The heat can be efficiently radiated to the outside of the first housing 1112 without stagnation.
 実施形態1乃至3のいずれかに係る半導体装置1によれば、素子搭載用基板110の接続信頼性を高めることができ、したがって半導体装置1の実装信頼性を高めることができる。そのため、こうした半導体装置1を搭載した本実施形態に係る携帯機器について、動作信頼性の向上を図ることができる。また、実施形態4に係る半導体モジュール100をカメラモジュールとして本実施形態に係る携帯機器に搭載することが可能であり、この場合にも、携帯機器の動作信頼性を向上させることができる。 According to the semiconductor device 1 according to any one of the first to third embodiments, the connection reliability of the element mounting substrate 110 can be increased, and thus the mounting reliability of the semiconductor device 1 can be increased. Therefore, it is possible to improve the operation reliability of the portable device according to the present embodiment on which such a semiconductor device 1 is mounted. Further, the semiconductor module 100 according to the fourth embodiment can be mounted as a camera module on the portable device according to the present embodiment, and in this case, the operation reliability of the portable device can be improved.
 本発明は、上述の実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art, and the embodiments to which such modifications are added are also possible. It can be included in the scope of the present invention.
 例えば、実施形態1乃至3のいずれかに係る半導体モジュール100をカメラモジュールに適用した場合の構成としては、実施形態4に示すものだけでなく、次のようなものであってもよい。すなわち、このカメラモジュールは、素子搭載用基板110の一方の主表面上に、受光領域が上を向くようにして半導体素子200が搭載されている。また、素子搭載用基板110の上に、半導体素子200の受光領域に合わせて開口部が設けられた素子搭載用基板が搭載され、両者がはんだボール70を介して接続されている。積層された素子搭載用基板には、ドライバICやチップ部品が搭載されている。また、この素子搭載用基板には、開口部を塞ぐように光学フィルタが搭載されている。このように構成されたカメラモジュールは、はんだボール80を介して実装基板の接続端子に電気的に接続される。このような構成であっても、実施形態4と同様な効果を得ることができる。 For example, as a configuration when the semiconductor module 100 according to any one of the first to third embodiments is applied to a camera module, not only the configuration shown in the fourth embodiment but also the following may be used. That is, in this camera module, the semiconductor element 200 is mounted on one main surface of the element mounting substrate 110 so that the light receiving region faces upward. On the element mounting substrate 110, an element mounting board having an opening provided in accordance with the light receiving region of the semiconductor element 200 is mounted, and both are connected via solder balls 70. Driver ICs and chip components are mounted on the stacked element mounting substrates. In addition, an optical filter is mounted on the element mounting substrate so as to close the opening. The camera module configured as described above is electrically connected to the connection terminal of the mounting board via the solder ball 80. Even if it is such a structure, the effect similar to Embodiment 4 can be acquired.
 また、実施形態1、3、4において、電極パッド22は、第2導体部22b上に金めっき層23が設けられていない構成であってもよい。また、実施形態2において、電極パッド22は、第1導体部22a上に金めっき層23が設けられていない構成であってもよい。 In the first, third, and fourth embodiments, the electrode pad 22 may have a configuration in which the gold plating layer 23 is not provided on the second conductor portion 22b. In the second embodiment, the electrode pad 22 may be configured such that the gold plating layer 23 is not provided on the first conductor portion 22a.
 10 基材、 22 電極パッド、 30 絶縁層、 30a,33a,34a,35a 側面、 32,32a,32b,32c 開口部、 33,34,35 層状絶縁体、 100 半導体モジュール、 110 素子搭載用基板。 10 base materials, 22 electrode pads, 30 insulating layers, 30a, 33a, 34a, 35a side surfaces, 32, 32a, 32b, 32c openings, 33, 34, 35 layered insulators, 100 semiconductor modules, 110 element mounting substrates.
 本発明は、素子搭載用基板、半導体モジュール、および携帯機器に利用できる。 The present invention can be used for an element mounting substrate, a semiconductor module, and a portable device.

Claims (11)

  1.  基材と、
     前記基材の一方の主表面上に設けられ、前記基材上の電極形成領域が露出するような開口部を有する絶縁層と、
     前記開口部内に設けられた電極パッドと、
    を備え、
     前記絶縁層は、複数の層状絶縁体が積層された多層構造を有し、
     前記複数の層状絶縁体は、下側層状絶縁体の開口部周縁の主表面上に、上側層状絶縁体の開口部の下端部が位置するように構成され、
     前記電極パッドは、その頂部面が最上層にある層状絶縁体の下側主表面よりも高い位置となるように構成されたことを特徴とする素子搭載用基板。
    A substrate;
    An insulating layer provided on one main surface of the substrate and having an opening that exposes an electrode formation region on the substrate;
    An electrode pad provided in the opening,
    With
    The insulating layer may have a multilayer structure in which a plurality of layered insulators are stacked,
    The plurality of layered insulators are configured such that the lower end of the opening of the upper layered insulator is positioned on the main surface of the periphery of the opening of the lower layered insulator,
    The element mounting substrate, wherein the electrode pad is configured such that a top surface thereof is positioned higher than a lower main surface of the layered insulator in the uppermost layer.
  2.  前記電極パッドは、その頂部面が最上層にある層状絶縁体の上側主表面よりも低い位置となるように構成された請求項1に記載の素子搭載用基板。 The element mounting substrate according to claim 1, wherein the electrode pad is configured such that a top surface thereof is positioned lower than an upper main surface of a layered insulator in an uppermost layer.
  3.  前記複数の層状絶縁体は、それぞれの開口部内の側面がそれぞれの上側主表面に近くなるほど開口部内にせり出すように構成された請求項1または2に記載の素子搭載用基板。 The element mounting substrate according to claim 1 or 2, wherein the plurality of layered insulators are configured to protrude into the opening as the side surface in each opening approaches the upper main surface.
  4.  基材と、
     前記基材の一方の主表面上に設けられ、前記基材上の電極形成領域が露出するような開口部を有する絶縁層と、
     前記開口部内に設けられた電極パッドと、
    を備え、
     前記電極パッドは、その頂部面が前記絶縁層の上側主表面よりも低い位置となるように構成され、
     前記絶縁層は、開口部内の側面のうち少なくとも前記電極パッドの頂部面よりも上側の側面が、前記上側主表面に近くなるほど開口部内にせり出すように構成されたことを特徴とする素子搭載用基板。
    A substrate;
    An insulating layer provided on one main surface of the substrate and having an opening that exposes an electrode formation region on the substrate;
    An electrode pad provided in the opening,
    With
    The electrode pad is configured such that its top surface is at a position lower than the upper main surface of the insulating layer,
    The element mounting substrate, wherein the insulating layer is configured such that at least a side surface above the top surface of the electrode pad among the side surfaces in the opening protrudes into the opening as it approaches the upper main surface. .
  5.  前記絶縁層は、複数の層状絶縁体が積層された多層構造を有し、少なくとも最上層にある層状絶縁体の開口部内の側面が、前記上側主表面に近くなるほど開口部内にせり出すように構成された請求項4に記載の素子搭載用基板。 The insulating layer has a multilayer structure in which a plurality of layered insulators are stacked, and is configured such that at least the side surface in the opening of the layered insulator in the uppermost layer protrudes into the opening as it approaches the upper main surface. The element mounting substrate according to claim 4.
  6.  前記電極パッドは、その頂部面が最上層にある層状絶縁体の下側主表面よりも高い位置となるように構成された請求項5に記載の素子搭載用基板。 The element mounting substrate according to claim 5, wherein the electrode pad is configured such that a top surface thereof is positioned higher than a lower main surface of the layered insulator in the uppermost layer.
  7.  前記複数の層状絶縁体は、それぞれの開口部内の側面がそれぞれの上側主表面に近くなるほど開口部内にせり出し、下側層状絶縁体の開口部周縁の主表面上に、上側層状絶縁体の開口部の下端部が位置するように構成された請求項5または6に記載の素子搭載用基板。 The plurality of layered insulators protrude into the openings as the side surfaces in the respective openings are closer to the respective upper main surfaces, and the openings of the upper layered insulators are formed on the main surfaces of the peripheral edges of the lower layered insulators. The element mounting substrate according to claim 5, wherein the lower end of the element is positioned.
  8.  前記開口部の中に充填されて前記電極パッドと電気的に接続され、絶縁層の上側主表面より上方に突出した接続部材をさらに備え、
     前記接続部材は、開口部内にせり出した前記絶縁層の側面が接続部材内に陥入するように設けられた請求項4乃至7のいずれか1項に記載の素子搭載用基板。
    A connection member filled in the opening and electrically connected to the electrode pad and protruding upward from the upper main surface of the insulating layer;
    The element mounting substrate according to claim 4, wherein the connection member is provided such that a side surface of the insulating layer protruding into the opening is recessed into the connection member.
  9.  前記基材の周縁部に前記電極パッドが設けられた請求項1乃至8のいずれか1項に記載の素子搭載用基板。 The element mounting substrate according to any one of claims 1 to 8, wherein the electrode pad is provided on a peripheral portion of the base material.
  10.  請求項1乃至9のいずれか1項に記載の素子搭載用基板と、
     前記基材の一方の主表面側に搭載された半導体素子と、
    を備えたことを特徴とする半導体モジュール。
    A device mounting board according to any one of claims 1 to 9,
    A semiconductor chip mounted on one main surface of the substrate,
    A semiconductor module comprising:
  11.  請求項10に記載の半導体モジュールを搭載したことを特徴とする携帯機器。 A portable device comprising the semiconductor module according to claim 10 mounted thereon.
PCT/JP2010/069353 2009-10-30 2010-10-29 Element mounting substrate, semiconductor module, and portable apparatus WO2011052746A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009250414A JP2011096896A (en) 2009-10-30 2009-10-30 Substrate for mounting element, semiconductor module, and portable equipment
JP2009250413A JP2011096895A (en) 2009-10-30 2009-10-30 Element mounting substrate, semiconductor module, and portable apparatus
JP2009-250414 2009-10-30
JP2009-250413 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052746A1 true WO2011052746A1 (en) 2011-05-05

Family

ID=43922168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069353 WO2011052746A1 (en) 2009-10-30 2010-10-29 Element mounting substrate, semiconductor module, and portable apparatus

Country Status (1)

Country Link
WO (1) WO2011052746A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487211A (en) * 1990-07-31 1992-03-19 Furukawa Electric Co Ltd:The Aerial cable of low wind noise and low corona noise
JP2013232445A (en) * 2012-04-27 2013-11-14 Toshiba Corp Semiconductor device
EP3065173A1 (en) * 2015-03-04 2016-09-07 MediaTek, Inc Semiconductor package assembly
CN113113374A (en) * 2021-04-08 2021-07-13 重庆群崴电子材料有限公司 Ball for encapsulation and encapsulation structure thereof
WO2023130573A1 (en) * 2022-01-07 2023-07-13 长鑫存储技术有限公司 Semiconductor structure and method for forming same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256789A (en) * 1985-05-10 1986-11-14 株式会社日立製作所 Manufacture of printed circuit board
JP2005217054A (en) * 2004-01-28 2005-08-11 Kyocera Corp Wiring board with resist and electric apparatus, and method for manufacturing same
JP2009135241A (en) * 2007-11-30 2009-06-18 Panasonic Corp Circuit board and manufacturing method thereof, and semiconductor device using the board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256789A (en) * 1985-05-10 1986-11-14 株式会社日立製作所 Manufacture of printed circuit board
JP2005217054A (en) * 2004-01-28 2005-08-11 Kyocera Corp Wiring board with resist and electric apparatus, and method for manufacturing same
JP2009135241A (en) * 2007-11-30 2009-06-18 Panasonic Corp Circuit board and manufacturing method thereof, and semiconductor device using the board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487211A (en) * 1990-07-31 1992-03-19 Furukawa Electric Co Ltd:The Aerial cable of low wind noise and low corona noise
JP2013232445A (en) * 2012-04-27 2013-11-14 Toshiba Corp Semiconductor device
EP3065173A1 (en) * 2015-03-04 2016-09-07 MediaTek, Inc Semiconductor package assembly
US9704792B2 (en) 2015-03-04 2017-07-11 Mediatek Inc. Semiconductor package assembly
US10147674B2 (en) 2015-03-04 2018-12-04 Mediatek Inc. Semiconductor package assembly
CN113113374A (en) * 2021-04-08 2021-07-13 重庆群崴电子材料有限公司 Ball for encapsulation and encapsulation structure thereof
WO2023130573A1 (en) * 2022-01-07 2023-07-13 长鑫存储技术有限公司 Semiconductor structure and method for forming same

Similar Documents

Publication Publication Date Title
KR100800478B1 (en) Stack type semiconductor package and method of fabricating the same
US7591067B2 (en) Thermally enhanced coreless thin substrate with embedded chip and method for manufacturing the same
WO2010001597A1 (en) Substrate on which element is to be mounted, semiconductor module, semiconductor device, method for producing substrate on which element is to be mounted, method for manufacturing semiconductor device, and portable device
JP4171499B2 (en) Electronic device substrate and manufacturing method thereof, and electronic device and manufacturing method thereof
US20090310323A1 (en) Printed circuit board including electronic component embedded therein and method of manufacturing the same
US20100193937A1 (en) Semiconductor module
US20090309202A1 (en) Package substrate having embedded semiconductor chip and fabrication method thereof
US7436680B2 (en) Multi-chip build-up package of optoelectronic chip
JP3356921B2 (en) Semiconductor device and method of manufacturing the same
US20160293537A1 (en) Embedded component substrate and semiconductor module
JP2010141204A (en) Wiring board and method of manufacturing the same
US8373281B2 (en) Semiconductor module and portable apparatus provided with semiconductor module
JP2010283044A (en) Wiring board and method of manufacturing wiring board
JP2011054805A (en) Semiconductor device and method of manufacturing the semiconductor device
US20090102050A1 (en) Solder ball disposing surface structure of package substrate
WO2011052746A1 (en) Element mounting substrate, semiconductor module, and portable apparatus
JP5619372B2 (en) Image sensor module
US8440915B2 (en) Device mounting board and semiconductor module
JP5298936B2 (en) Image sensor module
JP2012142376A (en) Element mounting substrate, portable device, and method for manufacturing element mounting substrate
JP5295211B2 (en) Manufacturing method of semiconductor module
JP2010040721A (en) Semiconductor module, semiconductor device, portable apparatus, and manufacturing method of semiconductor module, and manufacturing method of semiconductor device
JP5299106B2 (en) Image sensor module
JP5484705B2 (en) Semiconductor module and portable device equipped with semiconductor module
JP2011096896A (en) Substrate for mounting element, semiconductor module, and portable equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826876

Country of ref document: EP

Kind code of ref document: A1