WO2011052662A1 - 無線通信装置及び無線通信方法 - Google Patents

無線通信装置及び無線通信方法 Download PDF

Info

Publication number
WO2011052662A1
WO2011052662A1 PCT/JP2010/069126 JP2010069126W WO2011052662A1 WO 2011052662 A1 WO2011052662 A1 WO 2011052662A1 JP 2010069126 W JP2010069126 W JP 2010069126W WO 2011052662 A1 WO2011052662 A1 WO 2011052662A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
wireless communication
rate
response
ack
Prior art date
Application number
PCT/JP2010/069126
Other languages
English (en)
French (fr)
Inventor
健太 沖野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/504,894 priority Critical patent/US8804774B2/en
Publication of WO2011052662A1 publication Critical patent/WO2011052662A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel

Definitions

  • the present invention relates to a wireless communication apparatus and a wireless communication method that perform channel estimation using a reference signal received from a wireless communication partner.
  • 3GPP 3rd Generation Partnership Project
  • E-UTRA Evolved-Universal Terrestrial Radio Access
  • a radio base station receives channel quality information (CQI: Channel Quality Information) and an acknowledgment (ACK: ACKnowledgement) / denial from a radio terminal via an uplink control channel (PUCCH: Physical Uplink Control Channel).
  • CQI Channel Quality Information
  • ACK acknowledgment
  • PUCCH Physical Uplink Control Channel
  • Control information such as a response (NACK: Negative ACKnowledgment) is received (see Non-Patent Document 1).
  • the CQI is control information indicating reception quality (for example, SINR) measured by the wireless terminal.
  • ACK is control information indicating successful decoding of data received by the wireless terminal
  • NACK is control information indicating failure of decoding of data received by the wireless terminal.
  • “ACK or NACK” is appropriately described as “A / N”.
  • a / N is used for data retransmission control (specifically, retransmission control in layer 2).
  • a reference signal is a signal sequence for a wireless base station to estimate channel characteristics with a wireless terminal.
  • the radio base station detects the A / N multiplexed on the reference signal, removes the A / N from the reference signal according to the detection result, and performs channel estimation using the reference signal from which the A / N is removed .
  • the estimated channel characteristic is used for demodulation of CQI in the subframe.
  • the ACK false detection rate is relatively high. Therefore, in a case where the occurrence rate of ACK is higher than the occurrence rate of NACK, if the false detection rate of ACK is high, false detection combining ACK and NACK increases. Under such a situation in which there are many erroneous detections, the probability that the process of removing A / N from the reference signal is erroneous increases, and the accuracy of channel estimation decreases. When the accuracy of channel estimation decreases, there is a problem that the demodulation performance of CQI also decreases.
  • an object of the present invention is to provide a wireless communication apparatus and a wireless communication method that can maintain the CQI demodulation performance while suppressing the occurrence of delay due to retransmission in an upper layer.
  • the present invention has the following features.
  • a reference (ACK) indicating successful decoding of data received by a wireless communication partner (for example, the wireless terminal 200) or a negative response (NACK) indicating failure of decoding is multiplexed.
  • a wireless communication apparatus for example, the wireless base station 100 that receives a signal from the wireless communication partner, and is set to have a false detection rate of the negative response lower than a false detection rate of the positive response.
  • the first detection unit (A / N detection unit 121) for detecting the acknowledgment or the negative response multiplexed on the reference signal using the detection criterion (detection criterion 1), and an error in the acknowledgment
  • the second detection criterion (detection criterion 2) set so that the relative relationship between the detection rate and the false detection rate of the negative response is different from that of the first detection criterion is multiplexed on the reference signal.
  • the acknowledgment or the negative A second detection unit (A / N detection unit 123) that detects an answer, and a retransmission control unit (transmission / transmission control unit) that performs retransmission control of data to the wireless communication partner according to the detection result by the first detection unit.
  • the gist of the present invention is to include a channel estimation unit (channel estimation unit 124) for estimating a channel response.
  • the first detection unit that detects an acknowledgment / negative response (A / N) for retransmission control
  • the second detection unit that detects A / N for channel estimation
  • the first detection unit detects A / N using the first detection criterion set so that the NACK false detection rate is lower than the ACK false detection rate, it can detect NACK more accurately. . Thereby, it is possible to suppress the occurrence of retransmission in a layer higher than layer 2.
  • the second detection unit calculates A / N using a second detection criterion that is set such that the relative relationship between the false detection rate of the positive response and the false detection rate of the negative response is different from the first detection criterion. Therefore, an increase in the false detection rate of ACK as in the first detection criterion can be avoided. Therefore, the accuracy of channel estimation is not degraded, and the CQI demodulation performance can be maintained.
  • the wireless communication apparatus can maintain the CQI demodulation performance while suppressing the occurrence of delay due to retransmission in an upper layer.
  • a second feature of the present invention relates to the first feature of the present invention, wherein the second detection criterion is set so that the positive detection error detection rate is equal to the negative response detection error rate. This is the gist.
  • a third feature of the present invention relates to the first feature of the present invention.
  • the relative relationship between the false detection rate of the positive response and the false detection rate of the negative response is the positive
  • the gist is that it is determined according to the occurrence rate of each response and the negative response.
  • a fourth feature of the present invention relates to the third feature of the present invention, and when the rate of occurrence of the positive response is higher than the rate of occurrence of the negative response, the second detection criterion is an error in the negative response.
  • the gist is that the false detection rate of the positive response is set to be lower than the detection rate.
  • a probability that the wireless communication partner fails to decode data is a specified value (for example, 10%).
  • a transmission control unit (transmission / retransmission control unit 122) that controls transmission of data to the wireless communication partner so that the occurrence rate of each of the acknowledgment and the negative response depends on the specified value The gist is to be determined.
  • a step of receiving a reference signal multiplexed with an acknowledgment indicating successful decoding of data received by a wireless communication partner or a negative response indicating failure of decoding from the wireless communication partner (step S101); The positive detection or the negative response multiplexed on the reference signal using the first detection criterion set so that the negative detection false detection rate is lower than the positive detection false detection rate.
  • the gist of the present invention is a wireless communication method including a step of estimating channel characteristics with a wireless communication partner (step S105).
  • the present invention it is possible to provide a wireless communication apparatus and a wireless communication method capable of maintaining the CQI demodulation performance while suppressing the occurrence of delay due to retransmission in an upper layer.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system according to an embodiment of the present invention. It is a figure which shows the E-UTRA uplink sub-frame structure. It is a figure for demonstrating the channel structure of a PUCCH format. It is a block diagram which shows the structure of the wireless base station which concerns on embodiment of this invention. It is a flowchart which shows operation
  • radio base station that is an embodiment of the radio communication apparatus of the present invention will be described with reference to the drawings. Specifically, (1) Overview of wireless communication system, (2) Configuration of wireless base station, (3) Detection criterion 1 and detection criterion 2, (4) Operation of wireless base station, (5) Action / effect, (6) Other embodiments will be described.
  • the wireless communication system is E-UTRA standardized by 3GPP.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 1.
  • the radio communication system 1 includes a radio base station 100 and a radio terminal 200.
  • the radio terminal 200 is located in a cell formed by the radio base station 100 and performs radio communication with the radio base station 100.
  • only one wireless terminal 200 is shown, but a plurality of wireless terminals 200 may be provided.
  • a downlink control channel (PDCCH: Physical Downlink Control Channel) in which control information is transmitted and a downlink shared channel (PDSCH: Physical Downlink) in which user data is transmitted.
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink
  • a PUCCH in which control information is transmitted and an uplink shared channel (PUSCH: “Physical” Uplink “Shared” Channel) in which user data is transmitted are set.
  • PUSCH Physical Uplink “Shared” Channel
  • the PUSCH transmission method includes SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) that can generate a transmission signal with a small peak-to-average power ratio from the viewpoint of expanding coverage and reducing power consumption of the radio terminal 200. It has been adopted.
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • the adaptive modulation and coding according to the channel quality between the radio base station 100 and the radio terminal 200 is applied to the PUSCH. Note that adaptive modulation and coding according to the channel quality between the radio base station 100 and the radio terminal 200 is also applied to the PDSCH.
  • the control information transmitted on the PUCCH includes the above-described CQI and A / N.
  • FIG. 2 is a diagram showing a subframe configuration of E-UTRA uplink.
  • the subframe is composed of two slots (time slots), and each slot is composed of a number of resource blocks (frequency bands) corresponding to the uplink bandwidth of the cell.
  • a resource block (hereinafter referred to as RB) is composed of 12 subcarriers and 7 SC-FDMA symbols (when Normal CP (Cyclic Prefix) is set).
  • RB resource block
  • One PUCCH resource uses 1 RB of 2 slots in a subframe. At this time, frequency hopping using both ends of the upstream band is applied between the slots in the subframe.
  • the PUCCH supports a plurality of formats, and different types of control information are transmitted in each format.
  • a format capable of transmitting CQI and A / N within the same subframe is referred to as format 2a / 2b (a and b correspond to 1 and 2 code words, respectively).
  • the format 2a will be mainly described assuming 1 code word in which spatial multiplexing is not performed in the PDSCH.
  • FIG. 3 is a diagram for explaining the channel configuration of the PUCCH format 2a.
  • the number of CQI bits depends on the channel status report mode.
  • the CQI is encoded into 20 bits by a block code consisting of 13 basic sequences (base sequences).
  • the encoded bit string is scrambled and then modulated by QPSK (quadrature phase shift keying), and spread to the RB bandwidth for each symbol by a sequence having a cyclic shift length of 12.
  • QPSK quadrature phase shift keying
  • Multi-access from a maximum of 12 wireless terminals per PUCCH resource is possible, but when multi-access interference needs to be reduced, resources are allocated in consideration of the cyclic shift interval.
  • the cyclic shift sequence is similarly applied to reference signals 1 and 2 for PUCCH demodulation (specifically, for CQI demodulation), and are arranged at the second and sixth symbols of each RB.
  • a / N is 1-bit information, BPSK (Binary Phase Shift Keying) modulated, and multiplexed on the second reference signal 2 as shown by the broken line in FIG.
  • FIG. 4 is a block diagram showing a configuration of the radio base station 100.
  • the radio base station 100 includes an antenna ANT, a transmission / reception unit 110, a control unit 120, a storage unit 130, and a wired communication unit 140.
  • the transmission / reception unit 110 is configured using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, or the like, and transmits / receives a radio signal via the antenna ANT.
  • RF radio frequency
  • BB baseband
  • a plurality of antennas ANT for executing SIMO (Single Input Multiple Multiple Output) or MIMO (Multiple Input Input Multiple Output) communication with the wireless terminal 200 are connected to the transmission / reception unit 110.
  • the transmission / reception unit 110 includes a reception unit 111 that performs amplification and down-conversion of a signal received by the antenna ANT, and a transmission unit 112 that performs amplification and up-conversion of a signal to be transmitted.
  • the reception unit 111 performs reception processing necessary for performing PUCCH demodulation processing on the signal received by the antenna ANT.
  • the receiving unit 111 receives the reference signal multiplexed with A / N and the CQI via the PUCCH.
  • the control unit 120 is configured using, for example, a CPU, and controls various functions included in the radio base station 100.
  • the storage unit 130 is configured using a memory, for example, and stores various types of information used for control in the radio base station 100 and the like.
  • the wired communication unit 140 performs wired communication with other network devices via the backhaul network.
  • the control unit 120 includes an A / N detection unit 121, a transmission / retransmission control unit 122, an A / N detection unit 123, a channel estimation unit 124, and a CQI demodulation unit 125.
  • the A / N detection unit 121 corresponds to a first detection unit.
  • the A / N detection unit 123 corresponds to a second detection unit.
  • the transmission / retransmission control unit 122 corresponds to a retransmission control unit and a transmission control unit.
  • the A / N detection unit 121 is multiplexed with the reference signal received by the receiving unit 111 via the PUCCH using the detection criterion 1 set so that the NACK false detection rate is lower than the ACK false detection rate.
  • a / N is detected. Details of the detection criterion 1 will be described later.
  • the transmission / retransmission control unit 122 performs retransmission control of data to the wireless terminal 200 according to the detection result by the A / N detection unit 121. For example, the transmission / retransmission control unit 122 retransmits data corresponding to NACK when the A / N detection unit 121 detects NACK, and when the A / N detection unit 121 detects ACK, Do not resend.
  • the transmission / retransmission control unit 122 transmits data to the wireless terminal 200 so that the probability that the wireless terminal 200 fails to decode data (for example, the packet error rate) becomes a specified value (for example, 10%). You may control. Specifically, the transmission / retransmission control unit 122 performs adaptive modulation and coding that dynamically switches the modulation scheme and coding rate of data to be transmitted to the radio terminal 200 based on CQI and the like, thereby performing a packet error rate. Is maintained at the specified value.
  • the A / N detection unit 123 uses the detection criterion 2 set so that the relative relationship between the ACK false detection rate and the NACK false detection rate is different from the detection criterion 1, and the reception unit 111 passes the PUCCH. A / N multiplexed on the received reference signal is detected.
  • the detection criterion 2 may be set so that the false detection rate of ACK and the false detection rate of NACK are equal, or may be set according to a specified value of the packet error rate. In the case where the occurrence rate of ACK and the occurrence rate of NACK are indefinite, it is preferable to set detection criterion 2 so that the false detection rate of ACK and the false detection rate of NACK are equal. In the case where adaptive modulation and coding is performed so that the packet error rate becomes a specified value, the detection rate 2 is set according to the specified value of the packet error rate because the occurrence rate of ACK and the occurrence rate of NACK are fixed. It is preferred that Details of the case where the detection criterion 2 is set according to the specified value of the packet error rate will be described later.
  • the channel estimation unit 124 uses the reference signal from which A / N has been removed according to the detection result by the A / N detection unit 123 to use the channel characteristics (specifically, the uplink channel) Response).
  • the removal of A / N means a process of restoring the phase of the reference signal since the phase of the reference signal is modulated according to A / N.
  • the subject that removes A / N may be the A / N detector 123 or the channel estimator 124.
  • the CQI demodulator 125 demodulates the CQI received by the receiver 111 via the PUCCH using the channel response estimated by the channel estimator 124.
  • the CQI obtained by the demodulation process is used for adaptive modulation and coding in the transmission / retransmission control unit 122 or used for a process of assigning radio resources to the radio terminal 200 (scheduling).
  • the detection criterion 1 in the retransmission control A / N detection unit 121 is set so that the false detection rate of NACK is lower than the false detection rate of ACK in order to suppress the occurrence of delay due to retransmission in higher layers. Is done.
  • the detection criterion 1 is set such that the ACK error detection rate is 1% and the NACK error detection is 0.01% with respect to the required reception SINR.
  • the first reference signal 1 (see FIG. 3) after despreading by the code sequence is expressed by Expression (1).
  • h m is a channel response between the wireless terminal 200 and the radio base station 100
  • n 1 is the noise
  • n 2 is the noise
  • s is a BPSK modulated signal on the basis of the information of the A / N is transmitted.
  • the A / N detection unit 121 calculates the power obtained by adding the two received reference signals as they are, y 1 , and the power obtained by adding the opposite phases as y 2 as shown in Expression (3).
  • the correction coefficient ⁇ 1 is multiplied by y 1 as shown in Equation (5) so that the ACK false detection rate is 1% and the NACK false detection is 0.01%.
  • the detection criterion 2 in the A / N detection unit 123 for channel estimation is such that the false detection rate including ACK and NACK is reduced in order to increase the probability that the channel estimation in the channel estimation unit 124 is correctly performed. It is better to set.
  • the relative relationship between the ACK false detection rate and the NACK false detection rate is determined according to the respective occurrence rates of ACK and NACK.
  • detection criterion 2 is set so that the false detection rate of ACK is lower than the false detection rate of NACK.
  • the ratio of ACK and NACK sent from the radio terminal 200 is 9: 1. Therefore, for example, in the required reception SINR where the ACK error detection rate described above is 1% and the NACK error detection is 0.01%, the ratio of the ACK error detection rate to the NACK error detection rate is 1/9.
  • the correction coefficient ⁇ 2 is set instead of the correction coefficient ⁇ 1 in the equation (5).
  • FIG. 5 is a flowchart showing an operation example of the radio base station 100.
  • step S101 the reception unit 111 receives the reference signal multiplexed with A / N and the CQI according to the PUCCH format 2a, and performs reception processing necessary for demodulation thereof.
  • step S ⁇ b> 102 the A / N detection unit 121 detects A / N multiplexed on the reference signal using the detection criterion 1. For example, the A / N detection unit 121 calculates y 1 and y 2 according to Expression (3), multiplies y 1 by a correction coefficient ⁇ 1 , and compares y 1 ′ and y 2 ′ to thereby calculate A / N N is detected.
  • step S103 the transmission / retransmission control unit 122 performs retransmission control of data to the wireless terminal 200 according to the detection result by the A / N detection unit 121.
  • the A / N detection unit 123 detects the A / N multiplexed on the reference signal by using the detection criterion 2. For example, the A / N detection unit 123 calculates y 1 and y 2 according to Equation (3), multiplies y 1 by a correction coefficient ⁇ 2 , and compares y 1 ′ and y 2 ′ to thereby calculate A / N N is detected. Note that the calculation of y 1 and y 2 may be shared by the A / N detection unit 121 and the A / N detection unit 123 in order to reduce the processing amount.
  • step S105 the channel estimation unit 124 estimates an uplink channel response with the radio terminal 200 using the reference signal from which A / N has been removed according to the detection result by the A / N detection unit 123. .
  • step S106 the CQI demodulator 125 performs a CQI demodulation process using the channel response estimated by the channel estimator 124.
  • the radio base station 100 includes the A / N detection unit 121 that detects A / N for retransmission control and the A / N detection that detects A / N for channel estimation. Part 123.
  • the A / N detection unit 121 detects the A / N using the detection criterion 1 set so that the false detection rate of NACK is lower than the false detection rate of ACK, it can detect NACK more accurately. Thereby, the retransmission control by the transmission / retransmission control unit 122 functions well, and it is possible to suppress the occurrence of retransmission in a layer higher than the layer 2.
  • the A / N detection unit 123 detects A / N using the detection criterion 2 set so that the relative relationship between the false detection rate of ACK and the false detection rate of NACK is different from the detection criterion 1, detection is performed. An increase in the false detection rate of ACK as in criterion 1 can be avoided. Therefore, the accuracy of channel estimation by the channel estimation unit 124 does not deteriorate, and the CQI demodulation performance by the CQI demodulation unit 125 can be maintained.
  • the occurrence rates of ACK and NACK are fixed. Therefore, by setting the relative relationship between the ACK false detection rate and the NACK false detection rate based on the ACK occurrence rate and the NACK occurrence rate, the false detection rate combining ACK and NACK can be reduced.
  • detection criterion 2 is set so that the false detection rate of ACK is lower than the false detection rate of NACK. That is, by accurately detecting an ACK generated with a higher probability than NACK, the probability of channel estimation error can be reduced, and the CQI demodulation performance can be improved.
  • the format 2a has been mainly described.
  • the present invention can be applied to the format 2b.
  • the present invention is applied to the PUCCH that is the uplink control channel.
  • the present invention is applied to the PDCCH that is the downlink control channel.
  • the present invention may be applied to data channels.
  • the wireless communication system 1 based on E-UTRA (3GPP Release 8) has been described.
  • the present invention may be applied to LTE Advanced or the like developed from 3GPP Release 8.
  • the wireless communication apparatus and the wireless communication method according to the present invention can maintain the CQI demodulation performance while suppressing the occurrence of delay due to retransmission in an upper layer, and thus are useful in wireless communication such as mobile communication. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 無線基地局100は、ACK又はNACK(A/N)が多重された参照信号を無線端末から受信する受信部111と、ACKの誤検出率よりもNACKの誤検出率が低くなるように設定された検出基準1を用いて、参照信号に多重されているA/Nを検出するA/N検出部121と、ACKの誤検出率とNACKの誤検出率との相対関係が検出基準1とは異なるように設定された検出基準2を用いて、参照信号に多重されているA/Nを検出するA/N検出部123と、A/N検出部121による検出結果に応じてデータの再送制御を行う送信/再送制御部122と、A/N検出部123による検出結果に応じてA/Nが除去された参照信号を用いて、チャネル推定を行うチャネル推定部124とを備える。

Description

無線通信装置及び無線通信方法
 本発明は、無線通信相手から受信した参照信号を用いてチャネル推定を行う無線通信装置及び無線通信方法に関する。
 近年、移動体通信システムの高速・大容量化の要求に応えるため、移動体通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、E-UTRA(Evolved-Universal Terrestrial Radio Access)の標準化が行われている。
 E-UTRAにおいて、無線基地局は、無線端末から、上り制御チャネル(PUCCH: Physical Uplink Control Channel)を介して、チャネル品質情報(CQI: Channel Quality Information)や、肯定応答(ACK: ACKnowledgement)/否定応答(NACK: Negative ACKnowledgment)等の制御情報を受信する(非特許文献1参照)。
 ここで、CQIとは、無線端末が測定した受信品質(例えばSINR)を示す制御情報である。ACKとは、無線端末が受信したデータの復号成功を示す制御情報、NACKとは、無線端末が受信したデータの復号失敗を示す制御情報である。以下においては、「ACK又はNACK」を適宜「A/N」と表記する。A/Nは、データの再送制御(具体的には、レイヤ2での再送制御)に用いられる。
 無線端末は、PUCCHにおいて、CQIの送信とA/Nの送信とが同一サブフレーム内で競合した場合に、当該サブフレーム内の参照信号にA/Nを多重して送信する。参照信号とは、無線基地局が無線端末との間のチャネル特性を推定するための信号系列である。無線基地局は、参照信号に多重されているA/Nを検出し、検出結果に応じて参照信号からA/Nを除去し、A/Nが除去された参照信号を用いてチャネル推定を行う。推定されたチャネル特性は、当該サブフレーム内のCQIの復調に用いられる。
3GPP, TS36.211, v8.6.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation(Release 8)
 ところで、参照信号に多重されているA/Nを検出する際に、NACKをACKと誤って検出した場合には、本来行うべきはずのレイヤ2での再送が行われない。その結果、レイヤ2よりも上位のレイヤでの再送が発生し、大きな遅延が生じてしまう。このような大きな遅延の発生を抑制するためには、ACKの誤検出率よりも、NACKの誤検出率が低くなる検出基準を用いて、より正確にNACKを検出する必要がある。
 しかしながら、ACKの誤検出率よりもNACKの誤検出率が低くなる検出基準を用いると、ACKの誤検出率が相対的に高くなる。よって、ACKの発生率がNACKの発生率よりも高いようなケースにおいては、ACKの誤検出率が高いとACK及びNACKを併せた誤検出が多くなる。そのような誤検出が多い状況下では、参照信号からA/Nを除去する処理が誤る確率が増加して、チャネル推定の精度が低下する。チャネル推定の精度が低下すると、CQIの復調性能も低下するという問題がある。
 そこで、本発明は、上位レイヤでの再送による遅延の発生を抑制しつつ、CQIの復調性能を維持できる無線通信装置及び無線通信方法を提供することを目的とする。
 上述した課題を解決するために、本発明は以下のような特徴を有している。まず、本発明の第1の特徴は、無線通信相手(例えば、無線端末200)が受信したデータの復号成功を示す肯定応答(ACK)又は復号失敗を示す否定応答(NACK)が多重された参照信号を前記無線通信相手から受信する無線通信装置(例えば、無線基地局100)であって、前記肯定応答の誤検出率よりも前記否定応答の誤検出率が低くなるように設定された第1の検出基準(検出基準1)を用いて、前記参照信号に多重されている前記肯定応答又は前記否定応答を検出する第1の検出部(A/N検出部121)と、前記肯定応答の誤検出率と前記否定応答の誤検出率との相対関係が前記第1の検出基準とは異なるように設定された第2の検出基準(検出基準2)を用いて、前記参照信号に多重されている前記肯定応答又は前記否定応答を検出する第2の検出部(A/N検出部123)と、前記第1の検出部による検出結果に応じて、前記無線通信相手へのデータの再送制御を行う再送制御部(送信/再送制御部122)と、前記第2の検出部による検出結果に応じて前記肯定応答又は前記否定応答が除去された前記参照信号を用いて、前記無線通信相手との間のチャネル特性(例えば、チャネル応答)を推定するチャネル推定部(チャネル推定部124)とを備えることを要旨とする。
 このような無線通信装置によれば、再送制御用に肯定応答/否定応答(A/N)を検出する第1の検出部と、チャネル推定用にA/Nを検出する第2の検出部とを有する。
 第1の検出部は、ACKの誤検出率よりもNACKの誤検出率が低くなるように設定された第1の検出基準を用いてA/Nを検出するため、より正確にNACKを検出できる。これにより、レイヤ2よりも上位のレイヤでの再送の発生を抑制できる。
 第2の検出部は、肯定応答の誤検出率と否定応答の誤検出率との相対関係が第1の検出基準とは異なるように設定された第2の検出基準を用いてA/Nを検出するため、第1の検出基準のようなACKの誤検出率の増加を回避できる。よって、チャネル推定の精度が低下せず、CQIの復調性能を維持できる。
 従って、第1の特徴係る無線通信装置は、上位レイヤでの再送による遅延の発生を抑制しつつ、CQIの復調性能を維持できる。
 本発明の第2の特徴は、本発明の第1の特徴に係り、前記第2の検出基準は、前記肯定応答の誤検出率と前記否定応答の誤検出率とが等しくなるように設定されることを要旨とする。
 本発明の第3の特徴は、本発明の第1の特徴に係り、前記第2の検出基準において、前記肯定応答の誤検出率と前記否定応答の誤検出率との相対関係は、前記肯定応答及び前記否定応答それぞれの発生率に応じて定められることを要旨とする。
 本発明の第4の特徴は、本発明の第3の特徴に係り、前記肯定応答の発生率が前記否定応答の発生率よりも高い場合、前記第2の検出基準は、前記否定応答の誤検出率よりも前記肯定応答の誤検出率が低くなるように設定されることを要旨とする。
 本発明の第5の特徴は、本発明の第3又は第4の特徴に係り、前記無線通信相手がデータの復号に失敗する確率(例えば、パケット誤り率)が規定値(例えば、10%)になるように前記無線通信相手へのデータの送信を制御する送信制御部(送信/再送制御部122)をさらに備え、前記肯定応答及び前記否定応答それぞれの発生率は、前記規定値に応じて定められることを要旨とする。
 本発明の第6の特徴は、無線通信相手が受信したデータの復号成功を示す肯定応答又は復号失敗を示す否定応答が多重された参照信号を前記無線通信相手から受信するステップ(ステップS101)と、前記肯定応答の誤検出率よりも前記否定応答の誤検出率が低くなるように設定された第1の検出基準を用いて、前記参照信号に多重されている前記肯定応答又は前記否定応答を検出するステップ(ステップS102)と、前記肯定応答の誤検出率と前記否定応答の誤検出率との相対関係が前記第1の検出基準とは異なるように設定された第2の検出基準を用いて、前記参照信号に多重されている前記肯定応答又は前記否定応答を検出するステップ(ステップS104)と、前記第1の検出基準を用いた検出の結果に応じて、前記無線通信相手へのデータの再送制御を行うステップ(ステップS103)と、前記第2の検出基準を用いた検出の結果に応じて前記肯定応答又は前記否定応答が除去された前記参照信号を用いて、前記無線通信相手との間のチャネル特性を推定するステップ(ステップS105)とを備える無線通信方法であることを要旨とする。
 本発明によれば、上位レイヤでの再送による遅延の発生を抑制しつつ、CQIの復調性能を維持できる無線通信装置及び無線通信方法を提供できる。
本発明の実施形態に係る無線通信システムの全体概略構成図である。 E-UTRA上りのサブフレーム構成を示す図である。 PUCCHフォーマットのチャネル構成を説明するための図である。 本発明の実施形態に係る無線基地局の構成を示すブロック図である。 本発明の実施形態に係る無線基地局の動作を示すフローチャートである。
 次に、図面を参照して、本発明の無線通信装置の実施形態である無線基地局について説明する。具体的には、(1)無線通信システムの概要、(2)無線基地局の構成、(3)検出基準1及び検出基準2、(4)無線基地局の動作、(5)作用・効果、(6)その他の実施形態について説明する。
 以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (1)無線通信システムの概要
 まず、本発明の実施形態に係る無線基地局が使用される無線通信システムについて説明する。本実施形態では、当該無線通信システムは、3GPPで標準化されているE-UTRAである。
 (1.1)全体概略構成
 図1は、無線通信システム1の全体概略構成図である。図1に示すように、無線通信システム1は、無線基地局100及び無線端末200を有する。無線端末200は、無線基地局100が形成するセル内に位置しており、無線基地局100と無線通信を行う。なお、図1においては、無線端末200が1つのみ図示されているが複数であってもよい。
 無線基地局100と無線端末200との間の下りリンクには、制御情報が伝送される下り制御チャネル(PDCCH: Physical Downlink Control Channel)と、ユーザデータが伝送される下り共有チャネル(PDSCH: Physical Downlink Shared Channel)とが設定されている。
 無線基地局100と無線端末200との間の上りリンクには、制御情報が伝送されるPUCCHと、ユーザデータが伝送される上り共有チャネル(PUSCH: Physical Uplink Shared Channel)とが設定されている。以下の実施形態の説明では、主にPUCCHについて説明する。
 PUSCHの送信方式には、カバレッジの拡大と、無線端末200の低消費電力化の観点から、ピーク対平均電力比の小さい送信信号を生成できるSC-FDMA(Single-Carrier- Frequency Division Multiple Access)が採用されている。PUSCHには、無線基地局100と無線端末200との間のチャネル品質に応じた適応変調符号化が適用される。なお、PDSCHにおいても、無線基地局100と無線端末200との間のチャネル品質に応じた適応変調符号化が適用される。
 PUCCHの送信方式には、直交系列を用いたCDMA(Code Division Multiple Access)が採用されている。PUCCHで伝送される制御情報としては、上述したCQI及びA/N等がある。
 図2は、E-UTRA上りのサブフレーム構成を示す図である。サブフレームは2つのスロット(時間スロット)から構成されており、各スロットはセルの上り帯域幅に応じた数のリソースブロック(周波数帯域)から構成される。リソースブロック(以下、RB)は、12サブキャリアと7SC-FDMAシンボルから構成されている(Normal CP(Cyclic Prefix)設定の場合)。1つのPUCCHリソースは、サブフレーム内の2つのスロットの1RBずつを使用する。このとき、サブフレーム内のスロット間では、上り帯域の両端を使用する周波数ホッピングが適用される。
 (1.2)PUCCH
 PUCCHは、複数のフォーマットをサポートしており、各フォーマットでは異なる種類の制御情報が伝送される。これらのフォーマットのうちCQI及びA/Nを同一サブフレーム内で送信可能なフォーマットは、フォーマット2a/2b(a,bはそれぞれ1,2 code wordに対応)と称される。本実施形態では、PDSCHにおいて空間多重が行われない1 code wordを想定し、主にフォーマット2aについて説明する。
 図3は、PUCCHフォーマット2aのチャネル構成を説明するための図である。
 CQIのビット数は、チャネル状態のレポートモードに依存することになる。CQIは、13の基本系列(ベースシーケンス)からなるブロック符号により20ビットに符号化される。符号化されたビット列は、スクランブルされた後にQPSK(quadrature phase shift keying)変調され、サイクリックシフト長が12の系列により、シンボルごとにRBの帯域幅に拡散される。
 1PUCCHリソースあたり最大で12の無線端末からのマルチアクセスが可能であるが、マルチアクセス干渉の低減が必要な場合は、サイクリックシフト間隔を考慮してリソースを割り当てることになる。PUCCHの復調用(具体的には、CQIの復調用)の参照信号1,2も同様にサイクリックシフト系列が適用され、各RBの2,6シンボル目に配置される。
 A/Nは、1ビットの情報であり、BPSK(Binary Phase Shift Keying)変調され、図3の破線部で示すように、2つ目の参照信号2に多重される。
 (2)無線基地局の構成
 次に、無線基地局100の構成について説明する。図4は、無線基地局100の構成を示すブロック図である。図4に示すように、無線基地局100は、アンテナANT、送受信部110、制御部120、記憶部130、及び有線通信部140を有する。
 送受信部110は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、アンテナANTを介して無線信号を送受信する。送受信部110には、無線端末200とのSIMO(Single Input Multiple Output)若しくはMIMO(Multiple Input Multiple Output)通信を実行するための複数のアンテナANTが接続されている。
 送受信部110は、アンテナANTが受信した信号の増幅及びダウンコンバート等を行う受信部111と、送信する信号の増幅及びアップコンバート等を行う送信部112とを有する。受信部111は、アンテナANTで受信された信号に対して、PUCCHの復調処理を行うために必要な受信処理を行う。受信部111は、PUCCHを介して、A/Nが多重された参照信号と、CQIとを受信する。
 制御部120は、例えばCPUを用いて構成され、無線基地局100が具備する各種機能を制御する。記憶部130は、例えばメモリを用いて構成され、無線基地局100における制御などに用いられる各種情報を記憶する。有線通信部140は、バックホールネットワークを介して他のネットワーク機器との有線通信を実行する。
 制御部120は、A/N検出部121、送信/再送制御部122、A/N検出部123、チャネル推定部124、及びCQI復調部125を有する。本実施形態においてA/N検出部121は第1の検出部に相当する。A/N検出部123は第2の検出部に相当する。送信/再送制御部122は、再送制御部及び送信制御部に相当する。
 A/N検出部121は、ACKの誤検出率よりもNACKの誤検出率が低くなるように設定された検出基準1を用いて、受信部111がPUCCHを介して受信した参照信号に多重されているA/Nを検出する。検出基準1の詳細については後述する。
 送信/再送制御部122は、A/N検出部121による検出結果に応じて、無線端末200へのデータの再送制御を行う。例えば、送信/再送制御部122は、A/N検出部121によってNACKが検出された場合にはNACKに対応するデータの再送を行い、A/N検出部121によってACKが検出された場合には再送を行わない。
 また、送信/再送制御部122は、無線端末200がデータの復号に失敗する確率(例えば、パケット誤り率)が規定値(例えば、10%)になるように無線端末200へのデータの送信を制御してもよい。具体的には、送信/再送制御部122は、CQI等に基づいて、無線端末200へ送信するデータの変調方式及び符号化率を動的に切り替える適応変調符号化を行うことにより、パケット誤り率を規定値に維持する。
 A/N検出部123は、ACKの誤検出率とNACKの誤検出率との相対関係が検出基準1とは異なるように設定された検出基準2を用いて、受信部111がPUCCHを介して受信した参照信号に多重されているA/Nを検出する。
 検出基準2は、ACKの誤検出率とNACKの誤検出率とが等しくなるように設定されてもよく、パケット誤り率の規定値に応じて設定されていてもよい。ACKの発生率及びNACKの発生率が不定のケースでは、ACKの誤検出率とNACKの誤検出率とが等しくなるように検出基準2が設定されることが好ましい。パケット誤り率が規定値になるように適応変調符号化が行われるケースでは、ACKの発生率及びNACKの発生率が固定的であるため、パケット誤り率の規定値に応じて検出基準2が設定されることが好ましい。パケット誤り率の規定値に応じて検出基準2が設定される場合の詳細については後述する。
 チャネル推定部124は、A/N検出部123による検出結果に応じてA/Nが除去された参照信号を用いて、無線端末200との間のチャネル特性(具体的には、上りリンクのチャネル応答)を推定する。ここでA/Nの除去とは、参照信号の位相がA/Nに応じて変調されていることから、参照信号の位相を元に戻す処理を意味する。A/Nを除去する主体は、A/N検出部123でもよく、チャネル推定部124でもよい。
 CQI復調部125は、チャネル推定部124で推定されたチャネル応答を用いて、受信部111がPUCCHを介して受信したCQIの復調処理を行う。復調処理により得られたCQIは、送信/再送制御部122での適応変調符号化に使用されたり、無線端末200への無線リソースの割り当て処理(スケジューリング)に使用されたりする。
 (3)検出基準1及び検出基準2
 次に、検出基準1及び検出基準2の具体例について説明する。ここでは、下りリンクのパケット誤り率が規定値になるように適応変調符号化が行われるケースを例示する。
 (3.1)検出基準1
 再送制御用のA/N検出部121での検出基準1は、上位レイヤでの再送による遅延の発生を抑制するために、ACKの誤検出率よりもNACKの誤検出率が低くなるように設定される。一例として、検出基準1は、所要の受信SINRに対して、ACKの誤検出率が1%、NACKの誤検出が0.01%になるように設定される。
 例えば、リソースブロック内のチャネル応答が一定とみなせるようなチャネル環境において、符号系列による逆拡散後の1つ目の参照信号1(図3参照)は、式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、hは無線端末200と無線基地局100との間のチャネル応答、nはノイズである。
 一方、2つ目の参照信号2(図3参照)にはA/Nの情報が多重されているため、式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、nはノイズ、sは送信されるA/Nの情報に基づいてBPSK変調された信号である。
 2つの参照信号1,2のチャネル推定値を加算平均することで、ノイズが抑圧され、チャネル推定精度を改善できると期待できるが、同相で加算するためには、sを先に検出する必要がある。
 A/N検出部121における検出方法の例について説明する。まず、A/N検出部121は、2つの受信参照信号をそのまま加算した電力をy、逆相で加算した電力をyとして式(3)のように計算する。
Figure JPOXMLDOC01-appb-M000003
 yのほうが大きければACK(S=-1)、yのほうが大きければNACK(S=1)が送られたと判定できる。
 ここで、ACKが送られた場合(S=-1)を考えると、y及びyの期待値は、式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 一方、NACKが送られた場合(S=1)を考えても、y及びyの期待値が入れ替わるのみであり、ACKの誤検出率とNACKの誤検出率とは等しくなる。
 そこで、所要の受信SINRにおいて、ACKの誤検出率が1%、NACKの誤検出が0.01%になるように、式(5)のように補正係数αをyに乗算する。
Figure JPOXMLDOC01-appb-M000005
 1より大きい適切なαを設定することにより、NACKの誤検出率が下がり、所望の特性が得られる。
 A/N検出部121は、y’のほうが大きければACK(S=-1)、y’のほうが大きければNACK(S=1)が送られたと判定する。
 (3.2)検出基準2
 チャネル推定用のA/N検出部123での検出基準2は、チャネル推定部124でのチャネル推定が正しく行われる確率を大きくするために、ACK及びNACKを併せた誤検出率が小さくなるように設定した方が良い。
 すなわち、検出基準2において、ACKの誤検出率とNACKの誤検出率との相対関係は、ACK及びNACKそれぞれの発生率に応じて定められる。ACKの発生率がNACKの発生率よりも高い場合、検出基準2は、NACKの誤検出率よりもACKの誤検出率が低くなるように設定される。
 例えば、下りリンクのパケット誤り率が10%となるよう適応変調符号化を行っていると想定すると、無線端末200から送られてくるACKとNACKとの比率は、9:1となる。したがって、例えば前に述べたACKの誤検出率が1%、NACKの誤検出が0.01%を満たす所要受信SINRにおいて、ACKの誤検出率とNACKの誤検出率との比が1/9になるように、式(5)の補正係数αに代えて補正係数αを設定する。
 そして、A/N検出部123は、y’のほうが大きければACK(S=-1)、y’のほうが大きければNACK(S=1)が送られたと判定する。
 (4)無線基地局の動作
 図5は、無線基地局100の動作例を示すフローチャートである。
 ステップS101において、受信部111は、PUCCHのフォーマット2aにより、A/Nが多重された参照信号と、CQIとを受信し、これらの復調に必要な受信処理を行う。
 ステップS102において、A/N検出部121は、検出基準1を用いて、参照信号に多重されているA/Nを検出する。例えば、A/N検出部121は、式(3)に従ってy及びyを計算し、補正係数αをyに乗算し、y’とy’とを比較することでA/Nを検出する。
 ステップS103において、送信/再送制御部122は、A/N検出部121による検出結果に応じて、無線端末200へのデータの再送制御を行う。
 一方、ステップS104において、A/N検出部123は、検出基準2を用いて、参照信号に多重されているA/Nを検出する。例えば、A/N検出部123は、式(3)に従ってy及びyを計算し、補正係数αをyに乗算し、y’とy’とを比較することでA/Nを検出する。なお、処理量削減のために、y及びyの計算はA/N検出部121及びA/N検出部123で共通としてもよい。
 ステップS105において、チャネル推定部124は、A/N検出部123による検出結果に応じてA/Nが除去された参照信号を用いて、無線端末200との間の上りリンクのチャネル応答を推定する。
 ステップS106において、CQI復調部125は、チャネル推定部124で推定されたチャネル応答を用いて、CQIの復調処理を行う。
 (5)作用・効果
 以上説明したように、無線基地局100は、再送制御用にA/Nを検出するA/N検出部121と、チャネル推定用にA/Nを検出するA/N検出部123とを有する。
 A/N検出部121は、ACKの誤検出率よりもNACKの誤検出率が低くなるように設定された検出基準1を用いてA/Nを検出するため、より正確にNACKを検出できる。これにより、送信/再送制御部122による再送制御が良好に機能し、レイヤ2よりも上位のレイヤでの再送の発生を抑制できる。
 A/N検出部123は、ACKの誤検出率とNACKの誤検出率との相対関係が検出基準1とは異なるように設定された検出基準2を用いてA/Nを検出するため、検出基準1のようなACKの誤検出率の増加を回避できる。よって、チャネル推定部124によるチャネル推定の精度が低下せず、CQI復調部125によるCQIの復調性能を維持できる。
 また、パケット誤り率が規定値(例えば10%)になるようデータ送信制御(具体的には、適応変調符号化)が行われるケースでは、ACK及びNACKそれぞれの発生率は固定的である。よって、ACK発生率及びNACK発生率に基づいてACKの誤検出率とNACKの誤検出率との相対関係を設定することで、ACK及びNACKを併せた誤検出率を小さくすることができる。
 本実施形態では、ACKの発生率がNACKの発生率よりも高い場合、検出基準2は、NACKの誤検出率よりもACKの誤検出率が低くなるように設定される。つまり、NACKよりも高い確率で発生するACKを正確に検出することで、チャネル推定が誤る確率を低減でき、CQIの復調性能を改善できる。
 (6)その他の実施形態
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 例えば、上述した実施形態では、主にフォーマット2aについて説明したが、フォーマット2bに本発明を適用可能である。
 また、上述した実施形態では、本発明を上り制御チャネルであるPUCCHに適用するケースを例示したが、参照信号にA/Nが多重されるケースがあれば、下り制御チャネルであるPDCCHに本発明を適用してもよく、データチャネルに本発明を適用してもよい。
 さらに、上述した実施形態では、E-UTRA(3GPP Release8)に基づく無線通信システム1について説明したが、3GPP Release8を発展させたLTE Advanced等に対して本発明を適用してもよい。
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
 なお、日本国特許出願第2009-249319号(2009年10月29日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る無線通信装置及び無線通信方法は、上位レイヤでの再送による遅延の発生を抑制しつつ、CQIの復調性能を維持できるため、移動体通信などの無線通信において有用である。

Claims (6)

  1.  無線通信相手が受信したデータの復号成功を示す肯定応答又は復号失敗を示す否定応答が多重された参照信号を前記無線通信相手から受信する無線通信装置であって、
     前記肯定応答の誤検出率よりも前記否定応答の誤検出率が低くなるように設定された第1の検出基準を用いて、前記参照信号に多重されている前記肯定応答又は前記否定応答を検出する第1の検出部と、
     前記肯定応答の誤検出率と前記否定応答の誤検出率との相対関係が前記第1の検出基準とは異なるように設定された第2の検出基準を用いて、前記参照信号に多重されている前記肯定応答又は前記否定応答を検出する第2の検出部と、
     前記第1の検出部による検出結果に応じて、前記無線通信相手へのデータの再送制御を行う再送制御部と、
     前記第2の検出部による検出結果に応じて前記肯定応答又は前記否定応答が除去された前記参照信号を用いて、前記無線通信相手との間のチャネル特性を推定するチャネル推定部と
    を備える無線通信装置。
  2.  前記第2の検出基準は、前記肯定応答の誤検出率と前記否定応答の誤検出率とが等しくなるように設定される請求項1に記載の無線通信装置。
  3.  前記第2の検出基準において、前記肯定応答の誤検出率と前記否定応答の誤検出率との相対関係は、前記肯定応答及び前記否定応答それぞれの発生率に応じて定められる請求項1に記載の無線通信装置。
  4.  前記肯定応答の発生率が前記否定応答の発生率よりも高い場合、前記第2の検出基準は、前記否定応答の誤検出率よりも前記肯定応答の誤検出率が低くなるように設定される請求項3に記載の無線通信装置。
  5.  前記無線通信相手がデータの復号に失敗する確率が規定値になるように前記無線通信相手へのデータの送信を制御する送信制御部をさらに備え、
     前記肯定応答及び前記否定応答それぞれの発生率は、前記規定値に応じて定められる請求項3又は4に記載の無線通信装置。
  6.  無線通信相手が受信したデータの復号成功を示す肯定応答又は復号失敗を示す否定応答が多重された参照信号を前記無線通信相手から受信するステップと、
     前記肯定応答の誤検出率よりも前記否定応答の誤検出率が低くなるように設定された第1の検出基準を用いて、前記参照信号に多重されている前記肯定応答又は前記否定応答を検出するステップと、
     前記肯定応答の誤検出率と前記否定応答の誤検出率との相対関係が前記第1の検出基準とは異なるように設定された第2の検出基準を用いて、前記参照信号に多重されている前記肯定応答又は前記否定応答を検出するステップと、
     前記第1の検出基準を用いた検出の結果に応じて、前記無線通信相手へのデータの再送制御を行うステップと、
     前記第2の検出基準を用いた検出の結果に応じて前記肯定応答又は前記否定応答が除去された前記参照信号を用いて、前記無線通信相手との間のチャネル特性を推定するステップと
    を備える無線通信方法。
PCT/JP2010/069126 2009-10-29 2010-10-28 無線通信装置及び無線通信方法 WO2011052662A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/504,894 US8804774B2 (en) 2009-10-29 2010-10-28 Radio communication apparatus and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009249319A JP5366761B2 (ja) 2009-10-29 2009-10-29 無線通信装置及び無線通信方法
JP2009-249319 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052662A1 true WO2011052662A1 (ja) 2011-05-05

Family

ID=43922087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069126 WO2011052662A1 (ja) 2009-10-29 2010-10-28 無線通信装置及び無線通信方法

Country Status (3)

Country Link
US (1) US8804774B2 (ja)
JP (1) JP5366761B2 (ja)
WO (1) WO2011052662A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975896B1 (en) * 2013-03-15 2019-10-09 Nec Corporation Reception apparatus in wireless communication system and channel estimation control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188660A (ja) * 2008-02-05 2009-08-20 Mitsubishi Electric Corp 移動局、基地局及び通信制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938103B1 (ko) * 2003-10-14 2010-01-21 삼성전자주식회사 패킷 데이터 서비스를 제공하는 이동통신 시스템에서 패킷데이터 제어 채널의 제어 메시지 수신 장치 및 방법
CN1835617B (zh) * 2005-03-16 2010-12-22 株式会社Ntt都科摩 移动台、移动通信系统和移动通信方法
KR100953567B1 (ko) * 2006-12-05 2010-04-21 한국전자통신연구원 이동통신 시스템에서의 수신확인신호 송수신 장치 및 방법
US8675573B2 (en) * 2008-05-05 2014-03-18 Qualcomm Incorporated Uplink resource management in a wireless communication system
US8107547B2 (en) * 2008-11-17 2012-01-31 Texas Instruments Incorporated Receivers for embedded ACK/NAK in CQI reference signals in wireless networks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188660A (ja) * 2008-02-05 2009-08-20 Mitsubishi Electric Corp 移動局、基地局及び通信制御方法

Also Published As

Publication number Publication date
US8804774B2 (en) 2014-08-12
JP2011097364A (ja) 2011-05-12
US20120218944A1 (en) 2012-08-30
JP5366761B2 (ja) 2013-12-11

Similar Documents

Publication Publication Date Title
US11082964B2 (en) Data and control multiplexing for uplink data transmission method and device
US9386585B2 (en) Systems and methods for a data scrambling procedure
US7957317B2 (en) Method and apparatus for providing control signaling
CN111200875B (zh) 用户设备及d2d通信的方法
US8325593B2 (en) Mobile communication system, base station, user device, and method
KR102473793B1 (ko) 통신 단말 및 송신 방법
JP2019519954A (ja) 5gシステムにおける異なるタイプのトラフィックのphyレイヤ多重化
US11368243B2 (en) Codeword adaptation for non-orthogonal coded access
EP3609102A1 (en) Information transmission control method, terminal device and network device
US8750214B2 (en) Method and base station for detecting a HARQ-ACK codeword
JP5053067B2 (ja) 移動通信システム、基地局装置、ユーザ装置及び方法
WO2022061622A1 (zh) 通信方法、通信设备、电子设备及计算机可读存储介质
JP5610162B2 (ja) Harqインジケーターの決定方法
JP5366761B2 (ja) 無線通信装置及び無線通信方法
JP6845951B2 (ja) 基地局、受信方法及び集積回路
WO2021186812A1 (ja) 受信装置、送信装置、通信方法、及びプログラム
WO2021109398A1 (en) A method for harq transmission
JP2011014979A (ja) 無線通信システム、無線通信装置及び制御装置
CN113454937A (zh) 在无线通信系统中确定物理上行链路控制信道(pucch)不连续传输(dtx)的方法和装置
CN110636620A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826794

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13504894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826794

Country of ref document: EP

Kind code of ref document: A1