WO2011052651A1 - Pulse wave analyzer and recording medium - Google Patents

Pulse wave analyzer and recording medium Download PDF

Info

Publication number
WO2011052651A1
WO2011052651A1 PCT/JP2010/069093 JP2010069093W WO2011052651A1 WO 2011052651 A1 WO2011052651 A1 WO 2011052651A1 JP 2010069093 W JP2010069093 W JP 2010069093W WO 2011052651 A1 WO2011052651 A1 WO 2011052651A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
analysis
index
beat
beats
Prior art date
Application number
PCT/JP2010/069093
Other languages
French (fr)
Japanese (ja)
Inventor
森 尚樹
小椋 敏彦
和延 糸永
昇三 高松
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to RU2012103188/14A priority Critical patent/RU2570282C2/en
Priority to CN201080034208.5A priority patent/CN102469942B/en
Priority to DE112010004170T priority patent/DE112010004170T5/en
Publication of WO2011052651A1 publication Critical patent/WO2011052651A1/en
Priority to US13/310,421 priority patent/US9044145B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02028Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7242Details of waveform analysis using integration
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0535Impedance plethysmography

Definitions

  • the present invention relates to a pulse wave analysis device, and more particularly, a pulse wave analysis device capable of calculating a predetermined pulse wave analysis index by analyzing a pulse wave waveform for a plurality of beats, and a recording recording a pulse wave analysis program It relates to the medium.
  • Pulse wave analysis is used to measure pulse wave analysis indices such as pulse wave velocity.
  • the pulse wave velocity is used in clinical practice as an index for noninvasively evaluating arterial stiffness.
  • Patent Document 1 describes that it is determined from an autocorrelation function waveform whether or not a pulse wave includes noise.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-128946 describes that in order to measure accurate pulse wave propagation velocity information, a notch is detected and the pulse wave propagation velocity is calculated from the time difference.
  • Patent Document 3 in order to measure the pulse wave velocity with high accuracy, the pulse wave velocity can be calculated using the maximum slope line and the base line of the heartbeat synchronization wave. Are listed.
  • Patent Document 4 in order to improve the reliability and efficiency of an arteriosclerosis examination, a feature point of a pulse wave to be acquired is detected, and the pulse wave is clearly indicated. It describes that the waveform is displayed on the screen in real time.
  • the pulse wave velocity which is a kind of pulse wave analysis index, is obtained by the following method, for example.
  • baPWV brachial-ankle pulse wave velocity
  • a PVR Pulse Volume
  • Waveforms are recorded for several to a dozen beats.
  • the pulse wave propagation velocity is calculated by detecting the rising position of the pulse wave for each beat for each of the PVR waveforms of the upper arm and the ankle.
  • pulse waves for all the beats are used to calculate a pulse wave analysis index. Therefore, if an arrhythmia or body movement occurs during PVR waveform collection, the pulse wave is disturbed and the measurement accuracy of the index deteriorates. End up. As a result, an erroneous measurement value (inaccurate pulse wave analysis index) may be used for diagnosis.
  • the present invention has been made to solve the above-described problems, and its purpose is to record a pulse wave analysis device and a pulse wave analysis program capable of calculating a pulse wave analysis index with high accuracy. Is to provide a recording medium.
  • a pulse wave analysis device includes a storage unit for storing pulse wave waveforms for a plurality of beats, and a process for calculating a pulse wave analysis index by analyzing the pulse wave waveforms for a plurality of beats. And an output unit for outputting the calculated pulse wave analysis index as an analysis result.
  • the analysis processing unit accumulates pulse wave shapes for each beat constituting a pulse wave waveform for a plurality of beats, and calculates a beat with a low degree of approximation between the accumulated pulse wave shape and the pulse wave shape for each beat. To calculate a pulse wave analysis index.
  • the analysis processing unit further calculates the stability of the pulsation by accumulating the degree of approximation of the pulse wave shape used for calculating the pulse wave analysis index, and the output unit calculates the stability. Further output as an index indicating the credibility of the wave analysis index.
  • the storage unit stores a pulse wave waveform for a plurality of beats for each limb
  • the analysis processing unit accumulates a pulse wave shape for each beat for each limb, and also has a degree of approximation and a pulse wave.
  • the analysis index and the stability are calculated, and the output unit outputs the pulse wave analysis index having the higher stability as the analysis result.
  • the storage unit stores a pulse wave waveform for a plurality of beats for the left and right limbs
  • the analysis processing unit calculates an approximation for each limb, and the higher limb of the limb has a higher degree of approximation.
  • a pulse wave analysis index is calculated using the pulse wave shape.
  • the analysis processing unit calculates the degree of approximation by limiting the range of the pulse wave shape for each beat to the range that affects the calculation of the pulse wave analysis index.
  • the pulse wave analysis index indicates the degree of arteriosclerosis and / or the degree of stenosis of the blood vessel.
  • the pulse wave analysis index includes a pulse wave velocity as an index indicating the degree of arteriosclerosis.
  • a pulse wave detection unit for detecting a pulse wave of the limb is further provided, and the analysis processing unit measures a pulse wave waveform for a plurality of beats based on a detection signal from the pulse wave detection unit.
  • a recording medium records a pulse wave analysis program for causing a computer to function as a device for analyzing a pulse wave.
  • the pulse wave analysis program accumulates a pulse wave shape for each beat constituting a pulse wave waveform for a plurality of beats stored in the storage unit in the computer, and the accumulated pulse wave shape and each beat
  • a step of calculating a pulse wave analysis index by excluding a beat having a low degree of approximation with the pulse wave shape from a calculation target and a step of outputting the calculated pulse wave analysis index as an analysis result are executed.
  • the present invention it is possible to calculate a pulse wave analysis index using only stable beats that are less affected by body motion. As a result, a highly accurate pulse wave analysis index can be output as an analysis result.
  • FIG. 14B is a diagram showing the pulse wave shape for each beat in FIG. 14A with the rising position as a starting point. It is a figure which shows the pulse wave waveform for several beats of measurement ID5. It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 15A from the standup position as a starting point. It is a figure which shows the pulse wave waveform for several beats of measurement ID6.
  • FIG. 16B is a diagram illustrating the pulse wave shape for each beat in FIG. 16A with the rising position as a starting point. It is a figure which shows the pulse wave waveform for several beats of measurement ID7.
  • FIG. 26B is a diagram showing the pulse wave shape for each beat in FIG. 26A with the rising position as a starting point. It is a figure which shows the pulse wave waveform for several beats of measurement ID17. It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 27A from the standup position as a starting point.
  • FIG. 28 is a diagram showing the relationship between the ranking of the degree of approximation calculated by the apparatus and the ranking of the degree of approximation by the reader when the pulse wave waveform of FIGS. 11A to 27B is targeted. It is a figure which shows the correlation with the order of approximation by an apparatus shown in FIG. 28, and the order of approximation by a reader. It is a figure for demonstrating the calculation method of the pulse wave analysis parameter
  • FIG. 1 is a schematic configuration diagram of pulse wave analysis apparatus 100 according to the embodiment of the present invention.
  • pulse wave analysis apparatus 100 includes an information processing unit 1, four detection units 20ar, 20al, 20br, and 20bl, and four cuffs 24ar, 24al, 24br, and 24bl.
  • the cuffs 24ar, 24al, 24br, and 24bl are respectively attached to the limbs of the person 200 to be measured. Specifically, it is worn on the upper right arm (upper right limb), left upper arm (left upper limb), right ankle (right lower limb), and left ankle (left upper limb), respectively.
  • the “limb” represents a part included in the limb, and may be a wrist, a fingertip, or the like.
  • the cuffs 24ar, 24al, 24br, and 24bl are collectively referred to as “cuff 24” unless they need to be distinguished from each other.
  • Each of the detection units 20ar, 20al, 20br, and 20bl includes hardware necessary for detecting the pulse wave of the limb of the person 200 to be measured. Since the configurations of the detection units 20ar, 20al, 20br, and 20bl may all be the same, these are collectively referred to as the “detection unit 20” unless they need to be distinguished from each other.
  • the information processing unit 1 includes a control unit 2, an output unit 4, an operation unit 6, and a storage device 8.
  • the control unit 2 is a device that controls the entire pulse wave analysis apparatus 100, and typically includes a CPU (Central Processing Unit) 10, a ROM (Read Only Memory) 12, and a RAM (Random Access Memory) 14. Consists of including computers.
  • the CPU 10 corresponds to an arithmetic processing unit, reads a program stored in advance in the ROM 12, and executes the program while using the RAM 14 as a work memory.
  • the control unit 2 is connected with an output unit 4, an operation unit 6, and a storage device 8.
  • the output unit 4 outputs the measured pulse wave, the pulse wave analysis result, and the like.
  • the output unit 4 may be a display device constituted by an LED (Light Emitting Diode) or LCD (Liquid Crystal Display), or a printer (driver).
  • the operation unit 6 receives an instruction from the user.
  • the storage device 8 holds various data and programs.
  • the CPU 10 of the control unit 2 reads and writes data and programs recorded in the storage device 8.
  • the storage device 8 may be constituted by, for example, a hard disk, a nonvolatile memory (for example, a flash memory), or a removable external recording medium.
  • the detection unit 20br detects the pulse wave in the upper right arm by adjusting and detecting the internal pressure (hereinafter referred to as “cuff pressure”) of the cuff 24br attached to the upper right arm of the person 200 to be measured.
  • the cuff 24br contains a fluid bag (for example, an air bag) (not shown).
  • the detection unit 20br includes a pressure sensor 28br, a pressure regulating valve 26br, a pressure pump 25br, an A / D (analog to digital) converter 29br, and a pipe 27br.
  • the cuff 24br, the pressure sensor 28br, and the pressure regulating valve 26br are connected by a pipe 22br.
  • the pressure sensor 28br is a detection part for detecting pressure fluctuation transmitted through the pipe 22br, and includes a plurality of sensor elements arranged at predetermined intervals on a semiconductor chip made of single crystal silicon or the like as an example.
  • the pressure fluctuation signal detected by the pressure sensor 28br is converted into a digital signal by the A / D conversion unit 29br and input to the control unit 2 as a pulse wave signal pbr (t).
  • the pressure regulating valve 26br is inserted between the pressure pump 25br and the cuff 24br, and maintains the pressure used to pressurize the cuff 24br in a predetermined range during measurement.
  • the pressure pump 25br operates in response to a detection command from the control unit 2, and supplies air to a fluid bag (not shown) in the cuff 24br in order to pressurize the cuff 24br.
  • the cuff 24br is pressed against the measurement site by this pressurization, and the pressure change corresponding to the pulse wave of the upper right arm is transmitted to the detection unit 20br via the pipe 22br.
  • the detection unit 20br detects the pulse wave of the upper right arm by detecting the transmitted pressure change.
  • the detection unit 20bl includes a pressure sensor 28bl, a pressure regulating valve 26bl, a pressure pump 25bl, an A / D converter 29bl, and a pipe 27bl.
  • the cuff 24bl, the pressure sensor 28bl, and the pressure regulating valve 26bl are connected by a pipe 22bl.
  • the detection unit 20ar includes a pressure sensor 28ar, a pressure regulating valve 26ar, a pressure pump 25ar, an A / D conversion unit 29ar, and a pipe 27ar.
  • the cuff 24ar, the pressure sensor 28ar, and the pressure regulating valve 26ar are connected by a pipe 22ar.
  • the detection unit 20al includes a pressure sensor 28al, a pressure regulating valve 26al, a pressure pump 25al, an A / D converter 29al, and a pipe 27al.
  • the cuff 24al, the pressure sensor 28al, and the pressure regulating valve 26al are connected by a pipe 22al.
  • each part in the detection units 20bl, 20ar, 20al is the same as that of the detection unit 20br, detailed description will not be repeated. Further, each part in the detection unit 20 will be described by omitting symbols such as “ar” and “br” unless it is particularly necessary to distinguish them.
  • the arterial volume sensor may include, for example, a light emitting element that emits light to the artery, and a light receiving element that receives transmitted light or reflected light of the artery irradiated by the light emitting element.
  • the arterial volume sensor includes a plurality of electrodes, allows a small constant current to flow through the measurement site of the person 200 to be measured, and detects a voltage change caused by a change in impedance (biological impedance) generated according to the propagation of the pulse wave. Good.
  • FIG. 2 is a functional block diagram showing a functional configuration of pulse wave analysis apparatus 100 according to the embodiment of the present invention.
  • pulse wave analysis apparatus 100 functions as adjustment unit 30, pulse wave measurement unit 102, analysis processing unit 104, blood pressure measurement unit 106, blood pressure index calculation unit 108, and output. Part 4 is included. Note that the blood pressure measurement unit 106 and the blood pressure index calculation unit 108 may not be included in the functional configuration of the pulse wave analysis device 100.
  • the adjusting unit 30 is a functional unit that adjusts the pressure in the cuff 24.
  • the function of the adjusting unit 30 is achieved by, for example, the pressure pump 25 and the pressure regulating valve 26 shown in FIG.
  • the pulse wave measurement unit 102 is connected to the adjustment unit 30 and the A / D conversion unit 29, and performs processing for measuring a pulse wave (PVR) in each limb.
  • the pulse wave measurement unit 102 adjusts the internal pressure of the cuff 24 by giving a command signal to the adjustment unit 30, and detects cuff pressure signals Par (t), Pal (t), Pbr detected in response to the command signal. (T), Pbl (t) is received. Then, by recording the received cuff pressure signals Par (t), Pal (t), Pbr (t), and Pbl (t) in time series, a pulse wave waveform for a plurality of beats is acquired for each limb. .
  • the pulse wave is measured, for example, for a predetermined time (for example, about 10 seconds).
  • FIG. 3 is a diagram illustrating an example of a pulse wave measurement result for each limb.
  • the pulse waveform of each limb is shown along the same time axis.
  • the rising position of the pulse wave for each beat may be indicated by a broken line or the like.
  • the analysis processing unit 104 analyzes a pulse wave for each limb measured by the pulse wave measurement unit 102, thereby obtaining a predetermined pulse wave analysis index (as a pulse wave feature amount of the measurement subject 200 (FIG. 1)).
  • a predetermined pulse wave analysis index (as a pulse wave feature amount of the measurement subject 200 (FIG. 1)).
  • analysis index represents an index correlated with arteriosclerosis and / or stenosis of blood vessels. That is, the “analysis index” indicates the degree of arteriosclerosis and / or the degree of stenosis of the blood vessel.
  • Examples of analysis indexes indicating the degree of arteriosclerosis include pulse wave velocity, pulse wave propagation time (PTT: Pulse Transit Time), AI (Augmentation Index), and TR (Traveling time to Reflected wave).
  • the pulse wave velocity is not limited to the one calculated from the brachial pulse wave and the ankle pulse wave (baPWV), but is calculated from the pulse wave of the other two measurement regions, or one measurement region ( It may be calculated only from the pulse wave at the limb).
  • Examples of the analysis index indicating the degree of stenosis of the blood vessel include an ankle pulse wave rising feature value and a pulse wave sharpness.
  • the ankle pulse wave rising feature value is calculated, for example, as UT (UT: upstroke time).
  • the UT is calculated as a period during which the ankle pulse wave rises from the rising point to the peak.
  • the sharpness of the pulse wave is calculated as% MAP (normalized pulse wave area).
  • baPWV is calculated as an analysis index, but other feature quantities as described above may be calculated.
  • the analysis processing unit 104 performs a process of recognizing the pulse wave shape for each beat (the shape of the pulse wave waveform) from the pulse wave waveforms for a plurality of beats. Specifically, a pulse wave separation process is performed, and the pulse wave waveform is cut out for each beat. Thereby, the pulse wave shape for every beat is recognized.
  • the pulse wave separation process can be realized by a known method such as filter processing or differentiation processing using a specific frequency.
  • the analysis processing unit 104 accumulates the recognized pulse wave shapes for each beat, and calculates the degree of approximation with the accumulated pulse wave shape (hereinafter also referred to as “accumulated shape”) for each beat.
  • accumulated shape the degree of approximation with the accumulated pulse wave shape (hereinafter also referred to as “accumulated shape”) for each beat.
  • “accumulating the pulse wave shape for each beat” means that the pulse wave shape for each beat is averaged, but processing equivalent to averaging may be performed. .
  • “approximation” is a value indicating the degree of approximation of two waveforms, and more specifically, a numerical value representing how much the two waveforms match. .
  • the degree of approximation is obtained by the following equation (1), for example.
  • FIG. 4 is a diagram for explaining a method of calculating the degree of approximation between the integrated shape and each beat in the embodiment of the present invention.
  • the degree of approximation is calculated as the reciprocal of the area caused by the deviation between the integrated shape Wa and the actually measured i-th pulse wave shape Wi. That is, the degree of approximation can be obtained as the reciprocal of the added value of the difference between the amplitude values Pa and Pi for each sampling time when the rising edge of the pulse is the starting point.
  • the degree of approximation may be obtained as the reciprocal of the integral value of the difference between the amplitude values Pa and Pi for each sampling time.
  • the degree of approximation may be obtained by adding a weight to the difference between the amplitude values Pa and Pi and, for example, the reciprocal of the sum of squares of the difference between the amplitude values Pa and Pi as in the following equation (2).
  • the formula for calculating the degree of approximation is determined based on the results of experiments performed in advance. A setting method (principle) of the calculation formula for the approximation will be described later.
  • the degree of approximation between the integrated pulse wave and the whole pulse wave for one beat is determined from the rise of the pulse as a starting point.
  • the interval used for calculating the degree of approximation strongly affects the analysis index. You may limit to the range to do. For example, it may be limited to the range from the rising point to the peak of the pulse wave waveform, or may be limited to the front half portion of the pulse wave waveform. In other words, the rear portion that does not affect the calculation of the analysis index in the pulse wave shape for one beat may not be used for the calculation of the degree of approximation.
  • the position of the start point (the position where the two waveforms match) is not limited to the rise of the pulse.
  • a fixed reference position may be set as the starting point, such as starting from the peak of the pulse wave waveform.
  • a position where the degree of approximation with the integrated waveform is maximized may be determined for each beat.
  • the degree of approximation is calculated.
  • the “degree of deviation” from the integrated shape may be calculated.
  • the degree of deviation can be calculated as the reciprocal of the degree of approximation of equations (1) and (2).
  • excludes the specified beat from the calculation target of the analysis index by removing the pulse wave shape having a low degree of approximation with the integrated shape, an unstable pulse wave that is highly likely to be suddenly disturbed by an arrhythmia or body motion is appropriately excluded.
  • the analysis processing unit 104 calculates baPWV by analyzing only the pulse waveform of a pulse that is not excluded, that is, a stable pulse waveform.
  • two types of baPWV for example, right upper arm-left ankle pulse wave velocity (hereinafter also referred to as “baPWV_RL”) and upper right arm-right ankle pulse wave velocity, with both left and right ankles as measurement sites. (Hereinafter also referred to as “baPWV_RR”).
  • the reason why the two types of baPWV are calculated in this manner is that these differences can also be used for diagnosis of arterial stenosis in the left lower leg and the right lower leg.
  • the measurement site of the upper arm is set to the right because it is determined as a default, and the left may be used as a reference.
  • the upper left arm may be used as the measurement site instead of the upper right arm.
  • the left upper arm may be used as the measurement site instead of the upper right arm.
  • baPWV_RL and baPWV_RR only the pulse waveform of a beat not excluded is used for analysis.
  • the analysis processing unit 104 calculates the time difference between the rising positions of the brachial pulse wave and the ankle pulse wave (time Tr and Tl in FIG. 5) for each targeted beat, and calculates the average value of the calculated time as the length of the blood vessel.
  • the times Tr and Tl indicate the time difference from the rising point P0r of the pulse wave of the upper right arm.
  • the left upper arm the pulse wave velocity of the left ankle (hereinafter also referred to as “baPWV_LL”) and the left upper arm—
  • the pulse wave velocity of the right ankle (hereinafter also referred to as “baPWV_LR”) is calculated.
  • Times Tr and Tl in FIG. 5 represent pulse wave propagation time (PTT).
  • the length of the blood vessel necessary for calculating each baPWV is calculated by applying the height of the measurement subject to a predetermined conversion formula.
  • the height of the measurement subject is input by the operation unit 6, for example.
  • the analysis processing unit 104 further calculates the stability of the pulsation of the whole pulse wave used for calculating the analysis index by accumulating the approximate degree of the pulse wave shape used for calculating the analysis index. Also good.
  • the pulsation stability of the entire pulse wave that is the calculation target is calculated. Since the pulsation stability is derived not from the pulse waveform of all measured beats but from the pulse waveform used for calculating baPWV, it is directly related to the credibility of baPWV. Therefore, it can be said that the stability of each beat calculated by the analysis processing unit 104 indicates the credibility (reliable degree) of the corresponding baPWV.
  • the value obtained by accumulating the degrees of deviation about the pulse wave shape used for calculating the analysis index is the pulsation of the whole pulse wave used for calculating the analysis index. Calculated as the degree of disturbance.
  • Each baPWV and each stability calculated by the analysis processing unit 104 are output to the output unit 4.
  • the output unit 4 outputs baPWV_RL and baPWV_RR, and outputs (displays or prints) an index indicating the credibility of the value in association with each baPWV.
  • the value calculated as the pulsation stability itself may be output, or the calculated value is replaced with a level value, a mark, or a symbol and output. Also good.
  • the blood pressure measurement unit 106 is connected to the adjustment unit 30 and the A / D conversion unit 29, and performs processing for measuring blood pressure in each limb.
  • the blood pressure measurement unit 106 adjusts the internal pressure of the cuff 24 by giving a command signal to the adjustment unit 30 and also detects cuff pressure signals Par (t), Pal (t), Pbr () detected in response to the command signal. t), Pbl (t) is received.
  • the blood pressure measurement unit 106 measures the maximum blood pressure and the minimum blood pressure for each limb of the person 200 to be measured, for example, according to a known oscillometric method.
  • the cuff pressure is increased at a high speed to a predetermined pressure value, and a predetermined algorithm is applied to a time-series cuff pressure signal detected when the pressure is gradually reduced. Hypertension and diastolic blood pressure are calculated.
  • the blood pressure measurement unit 106 may further measure the pulse rate, average blood pressure, and pulse pressure.
  • the blood pressure index calculation unit 108 calculates a predetermined blood pressure index based on the blood pressure value measured by the blood pressure measurement unit 106.
  • the “blood pressure index” in the present embodiment represents an index having a correlation with the degree of clogging of blood vessels (degree of arterial stenosis), and specifically includes, for example, ABI (Ankle Brachial Index).
  • ABI is calculated using both the left and right ankles and one upper arm as measurement sites. For example, the ratio between the highest blood pressure in the upper right arm and the highest blood pressure in the right ankle and the ratio between the highest blood pressure in the upper right arm and the highest blood pressure in the left ankle are calculated as “ABI_RR” and “ABI_RL”, respectively.
  • the measurement site of the upper arm is set to the right when the systolic blood pressure of the upper right arm is higher than that of the left upper arm, and when the systolic blood pressure of the left upper arm is higher than that of the upper right arm.
  • the left upper arm may be used as a measurement site.
  • the average of the highest blood pressures of the upper right arm and the left upper arm may be used as the upper arm blood pressure when calculating the ABI.
  • ABI is calculated as a blood pressure index, but other blood pressure feature values may be used.
  • the measurement result in the blood pressure measurement unit 106 and the ABI_RR and ABI_RL calculated by the blood pressure index calculation unit 108 are output to the output unit 4.
  • the output unit 4 also outputs blood pressure values, ABI_RR and ABI_RL for each limb, together with baPWV_RL, baPWV_RR and an index indicating their credibility. Thereby, a medical worker such as a doctor can more accurately diagnose whether there is a suspicion of arteriosclerosis.
  • the operations of the pulse wave measurement unit 102, the analysis processing unit 104, the blood pressure measurement unit 106, and the blood pressure index calculation unit 108 described above may be realized by executing software stored in the ROM 12, At least one may be realized by hardware. Further, a part of the processing executed by the analysis processing unit 104 may be realized by hardware.
  • FIG. 6 is a flowchart showing the pulse wave analysis processing in the embodiment of the present invention.
  • the process shown in the flowchart of FIG. 6 is stored in advance in the ROM 12 as a program, and the function of the pulse wave analysis process is realized by the CPU 10 reading and executing this program.
  • the pulse wave waveform for each limb measured by the pulse wave measuring unit 102 is stored in the RAM 14 or the storage device 8 when the pulse wave analysis process is started. That is, the pulse wave analysis process in the present embodiment is not limited to the one performed immediately after the pulse wave measurement, and may be performed on a pulse wave waveform measured in the past stored in the storage device 8. Good.
  • the analysis processing unit 104 performs a process of dividing a stored pulse wave waveform for a plurality of beats for each limb that is a measurement site (step S ⁇ b> 102). Thereby, the pulse wave waveform for a plurality of beats is cut out in units of one beat, and the pulse wave shape for each beat is recognized.
  • the analysis processing unit 104 averages the pulse wave shapes of all recognized beats for each limb (step S104), and approximates the averaged pulse wave shape (integrated shape) to each pulse wave shape.
  • the degree is calculated (step S106). For example, the above equation (1) is used to calculate the degree of approximation.
  • the degree of approximation of each pulse wave calculated for each limb is temporarily recorded in the RAM 14.
  • the analysis processing unit 104 performs a beat exclusion process with a low degree of approximation (step S108). Specifically, first, for each limb, a pulse wave shape whose degree of approximation does not satisfy a certain standard (that is, the degree of approximation is equal to or less than a predetermined threshold value) is specified, and the specified pulse wave shape is designated as baPWV. Exclude from calculation.
  • the threshold used for specifying the pulse wave waveform is not limited to a predetermined value. For example, a threshold value may be determined from the average degree of approximation of all beats, and a pulse wave shape that does not satisfy the criterion (determined threshold value) may be specified as an exclusion target. As a result of the exclusion process, information on whether or not it is used for calculating baPWV is temporarily recorded in the RAM 14.
  • FIG. 7 is a diagram illustrating an example of the exclusion process result in step S108 of FIG.
  • Information on whether or not has been recorded is recorded.
  • “1” is recorded in the column corresponding to the beat number determined as the pulse wave waveform to be excluded, and “0” is set otherwise.
  • the holding method of the exclusion process result in each limb is not limited to the example as shown in FIG.
  • baPWV pulse wave propagation velocity
  • baPWV_RL the pulse wave of the upper right arm and the pulse wave of the left ankle are used.
  • the pulse wave of the third beat of the upper right arm and the pulse wave of the sixth beat of the left ankle are recorded as exclusion targets. Therefore, baPWV_RL is calculated by excluding the third and sixth beats. More specifically, for each beat other than the third beat and the sixth beat, the pulse wave propagation time of the pulse wave of the upper right arm and the left ankle is calculated, and the calculated average value of the pulse wave propagation time and the length of the blood vessel are calculated. Based on the estimated value, baPWV_RL is calculated.
  • baPWV_RR the pulse wave of the upper right arm and the pulse wave of the right ankle are used. Referring to FIG. 7, the pulse wave of the third beat of the upper right arm and the pulse waves of the fifth and sixth beats of the right ankle are recorded as exclusion targets. Therefore, baPWV_RR is calculated by excluding the third, fifth and sixth beats. More specifically, for each beat other than the third beat, the fifth beat, and the sixth beat, the pulse wave propagation time of the pulse wave of the upper right arm and the right ankle is calculated, and the average value of the calculated pulse wave propagation times And baPWV_RR is calculated from the estimated value of the length of the blood vessel.
  • the greatly disturbed pulse wave waveform is not used for calculating each baPWV, so that the analysis index can be calculated with high accuracy. Further, by accumulating measured waveforms, a pulse wave shape that is a reference for calculating the degree of approximation is obtained. Therefore, it is possible to specify a pulse wave shape that should be appropriately excluded according to the pathological condition or medical condition of the measurement subject at the time of measurement, or measurement conditions (such as immediately after medication).
  • the analysis processing unit 104 calculates the authenticity of the baPWV (step S112).
  • the pulsation stability of the entire pulse wave used for calculating baPWV_RL and baPWV_RR is calculated.
  • the stability of the pulsation of the whole pulse wave used for calculating baPWV_RL that is, the credibility of baPWV_RL is calculated by accumulating (for example, averaging) the approximation of the beat used for calculating baPWV_RL. Is done.
  • the pulse waves of the 3rd and 6th beats were excluded using FIG. 7 as an example. Therefore, the credibility of baPWV_RL is for the beats of the right upper arm and left ankle other than the 3rd and 6th beats. It is expressed as a value obtained by averaging the degree of approximation.
  • the average value of the approximations of the beats other than the third and sixth beats and the pulse wave shape of the left ankle other than the third and sixth beats is obtained.
  • a value obtained by further averaging these average values is calculated as the stability of the entire pulse wave used for the calculation.
  • the approximation degrees of the beats other than the third and sixth beats in the pulse wave shape of the upper right arm and the beats other than the third and sixth beats in the pulse wave shape of the left ankle are averaged.
  • the calculated value may be calculated as the stability of the entire pulse wave used for the calculation.
  • baPWV_RR The authenticity of baPWV_RR is calculated in the same way.
  • the pulse waves of the third beat, the fifth beat, and the sixth beat are excluded in FIG. 7 as an example. Therefore, the credibility of baPWV_RR is different from the third beat, the fifth beat, and the sixth beat. It is calculated by accumulating (for example, averaging) the degree of approximation of the beat with the accumulated shape.
  • each baPWV is obtained by accumulating the degree of approximation of all the beats used for calculating the index after individually evaluating the degree of approximation with the accumulated shape. Therefore, the influence of one beat on the whole is equivalent to the conventional method for calculating baPWV (calculating the pulse wave propagation time for each beat and dividing the estimated blood vessel length by the average thereof) Can be.
  • each analysis result is output to the output unit 4 (step S114).
  • the output unit 4 functioning as a printer (driver) prints the obtained analysis result on a paper medium. For example, analysis result information as shown in FIG. 8 is printed on the paper medium.
  • FIG. 8 is a diagram showing an output example of analysis result information in the embodiment of the present invention.
  • baPWV_RR value 91, baPWV_RR credibility index 92, baPWV_RL value 93, and baPWV_RL credibility index 94 are printed as a result of pulse wave analysis. Yes.
  • the index indicating the credibility is indicated by, for example, symbols in five stages of “++++”, “++”, “+”, “ ⁇ ”, and “ ⁇ ” in descending order of credibility (high stability). It is assumed that these symbols to be displayed are stored in advance in the ROM 12 in association with the numerical value range of stability.
  • the pulse wave analysis apparatus 100 of the present embodiment also measures the blood pressure of each limb and calculates ABI_RR and ABI_RL. Therefore, in FIG. 8, the blood pressure 81 of the upper right arm, the blood pressure 82 of the right ankle, the blood pressure 83 of the left upper arm, the blood pressure 84 of the left ankle, the ABI_RR value 85, and the ABI_RL value 86 are further output.
  • baPWV and blood pressure value shown in FIG. 8 are “cm / s” and “mmHg”, respectively.
  • the above-mentioned UT and% MAP may be output as the analysis result information. Further, a graph as shown in FIG. 9 may be output.
  • FIG. 9 is a diagram showing another output example of the analysis result information in the embodiment of the present invention.
  • FIG. 9 is a graph with baPWV on the vertical axis and ABI on the horizontal axis.
  • the arteriosclerosis level determined by baPWV and ABI is shown in advance so as to be distinguishable (for example, color-coded).
  • the arteriosclerosis levels of the right lower leg and the left lower leg are indicated by predetermined marks, characters, symbols, and the like.
  • the level of arteriosclerosis of the right lower leg is represented by a black triangle plotted at the intersection of baPWV_RR calculated by the analysis processing unit 104 and ABI_RR calculated by the blood pressure index calculation unit 108. It is indicated by the position of the mark.
  • the arteriosclerosis level of the left lower leg is indicated by the position of a white triangle mark plotted at the intersection of baPWV_RL calculated by the analysis processing unit 104 and ABI_RL calculated by the blood pressure index calculation unit 108. Yes.
  • both the measured baPWV_RR and baPWV_RL are output as the analysis result information.
  • only the baPWV having the higher credibility (stability) calculated in step S112 in FIG. 6 may be output as the pulse wave analysis result.
  • a graph as shown in FIG. 10 may be printed instead of the graph as shown in FIG.
  • only the baPWV with higher stability is plotted in the graph in which the vertical axis represents baPWV and the horizontal axis represents ABI. In this way, by outputting only baPWV with higher credibility (stability), it is possible to perform more appropriate judgment than when the higher value baPWV or the average value of the left and right baPWV is plotted. Diagnosis can be possible.
  • FIG. 11A to FIG. 27B are diagrams showing examples in which the pulse wave shapes for each beat are overlapped starting from the rising position for each of the measurement IDs 1 to 17.
  • FIGS. 11A to 27A show pulse wave waveforms measured for a plurality of beats along the time axis
  • FIGS. 11B to 27B show the waveforms shown in FIGS. 11A to 27A.
  • a state in which the pulse wave shapes for the beats are overlapped starting from the rising position is shown.
  • the value on the vertical axis in FIGS. 11A to 27A represents the output value obtained by digitally converting the pressure
  • the value on the vertical axis in FIGS. 11B to 27B represents the amplitude.
  • the horizontal axis delimiters in FIGS. 11B to 27B represent sampling points.
  • FIG. 28 is a diagram showing the relationship between the ranking of the degree of approximation calculated by the apparatus and the ranking of the degree of approximation by the reader when the pulse wave waveforms of FIGS. 11A to 27B are targeted.
  • Index in FIG. 28 is an average value of the approximation degree (with an integrated shape not shown) calculated for each measurement ID by the above calculation formula (1) by a predetermined conversion formula. It is shown by. "Equipment rank” indicates the rank in ascending order of the index indicated by 100 minutes. The “reader ranking” is determined for each beat (not shown in the figure) manually determined for each measurement ID by a person having sufficient knowledge about pulse waves, such as a medical worker or a developer of the pulse wave analysis device 100. Shows the average degree of approximation (with shape).
  • FIG. 29 is a diagram showing the correlation between the approximate ranking by the apparatus and the approximate ranking by the reader shown in FIG. As shown in FIG. 29, in the two-dimensional coordinate plane, the determination coefficient R2 of the correlation between the two when the “human judgment order (reader order)” is taken on the Y axis and the “device judgment order” is taken on the X axis. Is represented by 0.6844.
  • the measurement site of the upper arm is set to the measurement site of the arm (for example, the right) determined as the default.
  • the upper arm used for calculating baPWV is right or left based on the blood pressure difference between the upper right arm and the left upper arm.
  • the measurement part of the upper arm used for calculating baPWV may be determined.
  • step S110 calculation of pulse wave velocity
  • step S110 calculation of pulse wave velocity
  • the analysis processing unit 104 determines in advance the average value “AVr” of the degree of approximation for the beat “BTr” that is not excluded from the calculation target in the pulse wave of the upper right arm. It is determined whether or not the threshold value is exceeded. When it is determined that the average value AVr is less than the threshold value, the pulse wave of the left upper arm is used for calculating baPWV. Alternatively, if the average value “AVl” of the degree of approximation of the beat “BTl” that is not excluded from the calculation target of the pulse wave of the left upper arm is also less than a predetermined threshold value, the user is notified to perform measurement again. It is good as well.
  • the average value AVr and the average value AVl may be compared, and the pulse wave of the part with the higher value may be used for calculating baPWV.
  • the above beat BTr represents a beat other than the third beat that has a low degree of approximation with the integrated pulse wave of the upper right arm.
  • the beat BTr may represent a beat other than the third, fifth, and sixth beats in consideration of the exclusion result of the ankle pulse wave.
  • the above-mentioned beat BT1 represents a beat other than the fourth beat that has a low degree of approximation with the integrated pulse wave of the left upper arm.
  • the beat BT1 may represent a beat other than the 4th to 6th beats in consideration of the exclusion result of the ankle pulse wave.
  • baPWV the brachial pulse wave
  • the left or right pulse wave is used for calculating the baPWV
  • only one baPWV is calculated based on the brachial pulse wave and the ankle pulse wave where the pulse wave is stable. It is good as well.
  • baPWV_RL and baPWV_RR are measured, but PWV that can be calculated from a pulse wave at one measurement site may be used.
  • the PWV is obtained by dividing the pulse wave propagation distance (Lpt) by the pulse wave propagation time (PTT).
  • the propagation distance is the so-called trunk length, which is twice the distance between the heart and the bifurcation of the iliac artery, which is the reflection site.
  • the trunk length is proportional to the height.
  • PTT is calculated by applying Tpp and TR shown in FIG. 30 to a predetermined conversion formula.
  • Tpp represents the time interval between the appearance time of the peak (maximum point) of the ejection wave, which is a traveling wave, and the appearance time of the peak (maximum point) of the reflected wave.
  • TR represents the time interval between the appearance time of the ejection wave and the appearance time of the reflected wave where the traveling wave is reflected back from the bifurcation of the iliac artery. These can also be used as an index for determining the degree of arteriosclerosis.
  • Tpp is represented by the time interval between the point A which is the ejection wave peak point and the point B which is the reflected wave peak point.
  • TR is represented by a time interval from the rising point of the ejection wave to the rising point of the reflected wave.
  • AI may be calculated as an analysis index.
  • the analysis processing unit (104) extracts the amplitude P2 at the point B with respect to the amplitude P1 at the point A, and the AI value is obtained by dividing the amplitude P1 by the amplitude P2. .
  • the degree of approximation may be calculated by limiting the range that affects the index calculation to a range that includes from the rising point of the pulse to the reflected wave peak.
  • the pulse wave analysis device 100 in the above embodiment has been described as including the detection unit 20, the cuff 24, and the information processing unit 1, the pulse wave analysis device is a general-purpose computer that does not include the detection unit 20 and the cuff 24. It may be realized. That is, in the present embodiment, the pulse wave analysis device realizes the pulse wave analysis processing as shown in FIG. 6 if the function of the analysis processing unit 104 that is typically realized by the CPU 10 is included. Can do.
  • the general-purpose computer may have the same hardware as the information processing unit 1.
  • the pulse wave analysis method performed by the pulse wave analysis apparatus according to the present embodiment and each modification may be provided as a program.
  • a program is recorded on a non-transitory recording medium in which the program can be read by a computer.
  • Such “computer-readable recording medium” includes, for example, an optical medium such as a CD-ROM (Compact Disc-ROM), a magnetic recording medium such as a memory card, and the like. Further, such a program can be recorded on a computer-readable recording medium and provided as a program product. A program can also be provided by downloading via a network.
  • the program according to the present embodiment is a program module that is provided as a part of a computer operating system (OS) and calls necessary modules in a predetermined arrangement at a predetermined timing to execute processing. There may be. In that case, the program itself does not include the module, and the process is executed in cooperation with the OS. A program that does not include such a module can also be included in the program according to the present embodiment.
  • OS computer operating system
  • the program according to the present embodiment may be provided by being incorporated in a part of another program. Even in this case, the program itself does not include the module included in the other program, and the process is executed in cooperation with the other program. Such a program incorporated in another program can also be included in the program according to the present embodiment.
  • the provided program product is installed in a program storage unit such as a hard disk and executed.
  • the program product includes the program itself and a storage medium in which the program is stored.
  • the pulse wave analysis apparatus can calculate the pulse wave analysis index using only stable beats with little influence of body motion or the like.
  • 1 information processing unit, 2 control unit, 4 output unit, 6 operation unit, 8 storage device 20ar, 20al, 20br, 20bl detection unit, 22al, 22ar, 22bl, 22br piping, 24ar, 24al, 24br, 24bl cuff, 25al , 25ar, 25bl, 25br pressure pump, 26al, 26ar, 26bl, 26br pressure regulating valve, 27al, 27ar, 27bl, 27br piping, 28al, 28ar, 28bl, 28br pressure sensor, 29al, 29ar, 29bl, 29br
  • a / D converter 30 adjustment unit, 100 pulse wave analysis device, 102 pulse wave measurement unit, 104 analysis processing unit, 106 blood pressure measurement unit, 108 blood pressure index calculation unit, 200 person to be measured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Hematology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Data Mining & Analysis (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Databases & Information Systems (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Provided is a pulse wave analyzer (100) which calculates pulse wave analysis indices by storing pulse wave waveforms of multiple beat components and analyzing the pulse wave waveforms of the multiple beat components. The pulse wave analysis indices are calculated by collecting the pulse wave shape of each single beat forming the pulse wave waveforms of the multiple beat components and excluding beats which have a low degree of approximation between the collected pulse wave shapes and the pulse wave shape of each single beat from the subjects of calculation of the pulse wave analysis indices.

Description

脈波解析装置および記録媒体Pulse wave analyzer and recording medium
 本発明は、脈波解析装置に関し、特に、複数拍分の脈波波形を解析することにより所定の脈波解析指標を算出することのできる脈波解析装置および脈波解析用プログラムを記録した記録媒体に関する。 The present invention relates to a pulse wave analysis device, and more particularly, a pulse wave analysis device capable of calculating a predetermined pulse wave analysis index by analyzing a pulse wave waveform for a plurality of beats, and a recording recording a pulse wave analysis program It relates to the medium.
 脈波解析は、脈波伝播速度などの脈波解析指標の計測に用いられている。脈波伝播速度は、動脈の硬さを非侵襲的に評価する指標として、診療現場で活用されている。 Pulse wave analysis is used to measure pulse wave analysis indices such as pulse wave velocity. The pulse wave velocity is used in clinical practice as an index for noninvasively evaluating arterial stiffness.
 脈波解析指標を精度良く計測するための技術として次のようなものがある。
 特開2006-247221号公報(特許文献1)には、脈波にノイズが含まれている脈波であるかどうかを自己相関関数波形により判断することが記載されている。
There are the following techniques for measuring a pulse wave analysis index with high accuracy.
Japanese Patent Laying-Open No. 2006-247221 (Patent Document 1) describes that it is determined from an autocorrelation function waveform whether or not a pulse wave includes noise.
 特開2001-128946号公報(特許文献2)には、正確な脈波伝播速度情報を測定するために、ノッチを検出してその時間差から脈波伝播速度を算出することが記載されている。 Japanese Patent Application Laid-Open No. 2001-128946 (Patent Document 2) describes that in order to measure accurate pulse wave propagation velocity information, a notch is detected and the pulse wave propagation velocity is calculated from the time difference.
 特開平10-328150号公報(特許文献3)には、脈波伝播速度を高い精度で測定するために、心拍同期波の最大傾斜線と基線とを用いて脈波伝播速度を算出することが記載されている。 In Japanese Patent Laid-Open No. 10-328150 (Patent Document 3), in order to measure the pulse wave velocity with high accuracy, the pulse wave velocity can be calculated using the maximum slope line and the base line of the heartbeat synchronization wave. Are listed.
 特開2008-168073号公報(特許文献4)には、動脈硬化検査の信頼性や効率性を向上するために、取得する脈波の特徴点を検出し、その特徴点を明示しつつ脈波波形をリアルタイムで画面に表示することが記載されている。 In Japanese Patent Laid-Open No. 2008-168073 (Patent Document 4), in order to improve the reliability and efficiency of an arteriosclerosis examination, a feature point of a pulse wave to be acquired is detected, and the pulse wave is clearly indicated. It describes that the waveform is displayed on the screen in real time.
特開2006-247221号公報JP 2006-247221 A 特開2001-128946号公報JP 2001-128946 A 特開平10-328150号公報Japanese Patent Laid-Open No. 10-328150 特開2008-168073号公報JP 2008-168073 A
 脈波解析指標の一種である脈波伝播速度はたとえば次のような方法で求められる。脈波伝播速度の一形態である上腕-足首脈波伝播速度(baPWV:brachial-ankle Pulse Wave Velocity)の場合、上腕と足首とに巻いたカフを一定圧に保持して採取するPVR(Pulse Volume Recording)波形を数拍から十数拍分記録する。そして、上腕および足首それぞれのPVR波形について、1拍毎の脈波の立ち上がり位置を検出することにより、脈波伝播速度が算出される。 The pulse wave velocity, which is a kind of pulse wave analysis index, is obtained by the following method, for example. In the case of the brachial-ankle pulse wave velocity (baPWV), which is a form of pulse wave velocity, a PVR (Pulse Volume) is collected by holding the cuff wrapped around the upper arm and ankle at a constant pressure. Recording) Waveforms are recorded for several to a dozen beats. Then, the pulse wave propagation velocity is calculated by detecting the rising position of the pulse wave for each beat for each of the PVR waveforms of the upper arm and the ankle.
 このような方法では、全拍分の脈波が脈波解析指標の算出に用いられるため、PVR波形採取中に不整脈や体動などが起こると、脈波が乱れて指標の計測精度が悪くなってしまう。また、その結果、誤った測定値(精度の悪い脈波解析指標)を診断に用いてしまうという恐れもある。 In such a method, pulse waves for all the beats are used to calculate a pulse wave analysis index. Therefore, if an arrhythmia or body movement occurs during PVR waveform collection, the pulse wave is disturbed and the measurement accuracy of the index deteriorates. End up. As a result, an erroneous measurement value (inaccurate pulse wave analysis index) may be used for diagnosis.
 また、上記各特許文献における提案は、高精度に脈波解析指標を算出するためには十分とはいえない。 In addition, the proposals in the above patent documents are not sufficient for calculating the pulse wave analysis index with high accuracy.
 本発明は、上記のような問題を解決するためになされたものであって、その目的は、高精度に脈波解析指標を算出することのできる脈波解析装置および脈波解析用プログラムを記録した記録媒体を提供することである。 The present invention has been made to solve the above-described problems, and its purpose is to record a pulse wave analysis device and a pulse wave analysis program capable of calculating a pulse wave analysis index with high accuracy. Is to provide a recording medium.
 この発明のある局面に従う脈波解析装置は、複数拍分の脈波波形を記憶するための記憶部と、複数拍分の脈波波形を解析することで脈波解析指標を算出するための処理を行なう解析処理部と、算出された脈波解析指標を、解析結果として出力するための出力部とを備える。解析処理部は、複数拍分の脈波波形を構成する1拍毎の脈波形状を集積し、集積された脈波形状と1拍毎の脈波形状との近似度が低い拍を算出対象から除外して脈波解析指標を算出する。 A pulse wave analysis device according to an aspect of the present invention includes a storage unit for storing pulse wave waveforms for a plurality of beats, and a process for calculating a pulse wave analysis index by analyzing the pulse wave waveforms for a plurality of beats. And an output unit for outputting the calculated pulse wave analysis index as an analysis result. The analysis processing unit accumulates pulse wave shapes for each beat constituting a pulse wave waveform for a plurality of beats, and calculates a beat with a low degree of approximation between the accumulated pulse wave shape and the pulse wave shape for each beat. To calculate a pulse wave analysis index.
 好ましくは、解析処理部は、さらに、脈波解析指標の算出に用いられた脈波形状についての近似度を集積することで、拍動の安定度を算出し、出力部は、安定度を脈波解析指標の信憑性を示す指標としてさらに出力する。 Preferably, the analysis processing unit further calculates the stability of the pulsation by accumulating the degree of approximation of the pulse wave shape used for calculating the pulse wave analysis index, and the output unit calculates the stability. Further output as an index indicating the credibility of the wave analysis index.
 好ましくは、記憶部は、複数拍分の脈波波形を肢部毎に記憶し、解析処理部は、肢部毎に、1拍毎の脈波形状を集積し、かつ、近似度、脈波解析指標および安定度を算出し、出力部は、安定度が高い方の脈波解析指標を、解析結果として出力する。 Preferably, the storage unit stores a pulse wave waveform for a plurality of beats for each limb, and the analysis processing unit accumulates a pulse wave shape for each beat for each limb, and also has a degree of approximation and a pulse wave. The analysis index and the stability are calculated, and the output unit outputs the pulse wave analysis index having the higher stability as the analysis result.
 好ましくは、記憶部は、左右の肢部について、複数拍分の脈波波形を記憶し、解析処理部は、肢部毎に近似度を算出し、かつ、近似度が高い方の肢部の脈波形状を用いて、脈波解析指標を算出する。 Preferably, the storage unit stores a pulse wave waveform for a plurality of beats for the left and right limbs, and the analysis processing unit calculates an approximation for each limb, and the higher limb of the limb has a higher degree of approximation. A pulse wave analysis index is calculated using the pulse wave shape.
 好ましくは、解析処理部は、1拍毎の脈波形状のうち、脈波解析指標の算出に影響する範囲に限定して、近似度を算出する。 Preferably, the analysis processing unit calculates the degree of approximation by limiting the range of the pulse wave shape for each beat to the range that affects the calculation of the pulse wave analysis index.
 好ましくは、脈波解析指標は、動脈硬化の度合い、および/または、血管の狭窄の程度を示す。 Preferably, the pulse wave analysis index indicates the degree of arteriosclerosis and / or the degree of stenosis of the blood vessel.
 さらに好ましくは、脈波解析指標は、動脈硬化の度合いを示す指標としての脈波伝播速度を含む。 More preferably, the pulse wave analysis index includes a pulse wave velocity as an index indicating the degree of arteriosclerosis.
 好ましくは、肢部の脈波を検出するための脈波検出部をさらに備え、解析処理部は、脈波検出部からの検出信号に基づいて、複数拍分の脈波波形を測定する。 Preferably, a pulse wave detection unit for detecting a pulse wave of the limb is further provided, and the analysis processing unit measures a pulse wave waveform for a plurality of beats based on a detection signal from the pulse wave detection unit.
 この発明の他の局面に従う記録媒体は、コンピュータを、脈波を解析するための装置として機能させるための脈波解析用プログラムを記録している。脈波解析用プログラムは、コンピュータに、記憶部に記憶された複数拍分の脈波波形を構成する1拍毎の脈波形状を集積するステップと、集積された脈波形状と1拍毎の脈波形状との近似度が低い拍を算出対象から除外して脈波解析指標を算出するステップと、算出された脈波解析指標を、解析結果として出力するステップとを実行させる。 A recording medium according to another aspect of the present invention records a pulse wave analysis program for causing a computer to function as a device for analyzing a pulse wave. The pulse wave analysis program accumulates a pulse wave shape for each beat constituting a pulse wave waveform for a plurality of beats stored in the storage unit in the computer, and the accumulated pulse wave shape and each beat A step of calculating a pulse wave analysis index by excluding a beat having a low degree of approximation with the pulse wave shape from a calculation target and a step of outputting the calculated pulse wave analysis index as an analysis result are executed.
 本発明によると、体動などの影響の少ない安定した拍のみを用いて脈波解析指標を算出することができる。その結果、精度の高い脈波解析指標を解析結果として出力することができる。 According to the present invention, it is possible to calculate a pulse wave analysis index using only stable beats that are less affected by body motion. As a result, a highly accurate pulse wave analysis index can be output as an analysis result.
本発明の実施の形態に従う脈波解析装置の概略構成図である。It is a schematic block diagram of the pulse wave analyzer according to the embodiment of the present invention. 本発明の実施の形態に従う脈波解析装置の機能構成を示す機能ブロック図である。It is a functional block diagram which shows the function structure of the pulse-wave analysis apparatus according to embodiment of this invention. 肢部ごとの脈波測定結果の一例を示す図である。It is a figure which shows an example of the pulse wave measurement result for every limb part. 本発明の実施の形態において、集積された脈波形状と各拍との近似度の算出方法を説明するための図である。In embodiment of this invention, it is a figure for demonstrating the calculation method of the approximation degree of the integrated pulse wave shape and each beat. 脈波伝播距離の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of a pulse wave propagation distance. 本発明の実施の形態における脈波解析処理を示すフローチャートである。It is a flowchart which shows the pulse wave analysis process in embodiment of this invention. 図6のステップS108における除外処理結果の一例を示す図である。It is a figure which shows an example of the exclusion process result in step S108 of FIG. 本発明の実施の形態における解析結果情報の出力例を示す図である。It is a figure which shows the example of an output of the analysis result information in embodiment of this invention. 本発明の実施の形態における解析結果情報の他の出力例を示す図である。It is a figure which shows the other output example of the analysis result information in embodiment of this invention. 本発明の実施の形態における解析結果情報のさらに他の出力例を示す図である。It is a figure which shows the further another output example of the analysis result information in embodiment of this invention. 測定ID1の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID1. 図11Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 11A from the standup position as a starting point. 測定ID2の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID2. 図12Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse-wave shape for every beat of FIG. 12A from the standup position as a starting point. 測定ID3の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID3. 図13Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 13A from the standup position as a starting point. 測定ID4の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID4. 図14Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。FIG. 14B is a diagram showing the pulse wave shape for each beat in FIG. 14A with the rising position as a starting point. 測定ID5の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID5. 図15Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 15A from the standup position as a starting point. 測定ID6の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID6. 図16Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。FIG. 16B is a diagram illustrating the pulse wave shape for each beat in FIG. 16A with the rising position as a starting point. 測定ID7の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID7. 図17Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which shows the pulse wave shape for every beat of FIG. 測定ID8の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID8. 図18Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse-wave shape for every beat of FIG. 18A from the standup position as a starting point. 測定ID9の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID9. 図19Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 19A from the standup position as the starting point. 測定ID10の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID10. 図20Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 20A from the standup position as a starting point. 測定ID11の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID11. 図21Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse-wave shape for every beat of FIG. 21A from the standup position as a starting point. 測定ID12の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID12. 図22Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 22A from the standup position as a starting point. 測定ID13の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID13. 図23Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 23A from the standup position as a starting point. 測定ID14の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID14. 図24Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 24A from the standup position as a starting point. 測定ID15の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID15. 図25Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 25A from the standup position as the starting point. 測定ID16の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID16. 図26Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。FIG. 26B is a diagram showing the pulse wave shape for each beat in FIG. 26A with the rising position as a starting point. 測定ID17の複数拍分の脈波波形を示す図である。It is a figure which shows the pulse wave waveform for several beats of measurement ID17. 図27Aの1拍ごとの脈波形状を、立ち上がり位置を起点として重ねて示す図である。It is a figure which overlaps and shows the pulse wave shape for every beat of FIG. 27A from the standup position as a starting point. 図11A~図27Bの脈波波形を対象とした場合における、装置が算出する近似度の順位と、判読者による近似の程度の順位との関係を示す図である。FIG. 28 is a diagram showing the relationship between the ranking of the degree of approximation calculated by the apparatus and the ranking of the degree of approximation by the reader when the pulse wave waveform of FIGS. 11A to 27B is targeted. 図28に示された、装置による近似の順位と判読者による近似の順位との相関関係を示す図である。It is a figure which shows the correlation with the order of approximation by an apparatus shown in FIG. 28, and the order of approximation by a reader. 本発明の実施の形態の変形例2における脈波解析指標の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of the pulse wave analysis parameter | index in the modification 2 of embodiment of this invention.
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 <概略構成について>
 図1は、本発明の実施の形態に従う脈波解析装置100の概略構成図である。
<About schematic configuration>
FIG. 1 is a schematic configuration diagram of pulse wave analysis apparatus 100 according to the embodiment of the present invention.
 図1を参照して、脈波解析装置100は、情報処理ユニット1と、4つの検出ユニット20ar,20al,20br,20blと、4つのカフ24ar,24al,24br,24blとを含む。 Referring to FIG. 1, pulse wave analysis apparatus 100 includes an information processing unit 1, four detection units 20ar, 20al, 20br, and 20bl, and four cuffs 24ar, 24al, 24br, and 24bl.
 カフ24ar,24al,24br,24blは、それぞれ被測定者200の肢部に装着される。具体的には、それぞれ、右上腕(右上肢)、左上腕(左上肢)、右足首(右下肢)および左足首(左上肢)に装着される。なお、「肢部」とは、四肢に含まれる部位を表わし、手首や指尖部などであってもよい。カフ24ar,24al,24br,24blは、特に区別する必要がない限り、これらを総称して、「カフ24」と呼ぶ。 The cuffs 24ar, 24al, 24br, and 24bl are respectively attached to the limbs of the person 200 to be measured. Specifically, it is worn on the upper right arm (upper right limb), left upper arm (left upper limb), right ankle (right lower limb), and left ankle (left upper limb), respectively. Note that the “limb” represents a part included in the limb, and may be a wrist, a fingertip, or the like. The cuffs 24ar, 24al, 24br, and 24bl are collectively referred to as “cuff 24” unless they need to be distinguished from each other.
 検出ユニット20ar,20al,20br,20blは、それぞれ、被測定者200の肢部の脈波を検出するために必要なハードウェアを含む。検出ユニット20ar,20al,20br,20blの構成は全て同様であってよいので、特に区別する必要がない限り、これらを総称して、「検出ユニット20」と呼ぶ。 Each of the detection units 20ar, 20al, 20br, and 20bl includes hardware necessary for detecting the pulse wave of the limb of the person 200 to be measured. Since the configurations of the detection units 20ar, 20al, 20br, and 20bl may all be the same, these are collectively referred to as the “detection unit 20” unless they need to be distinguished from each other.
 情報処理ユニット1は、制御部2と、出力部4と、操作部6と、記憶装置8とを含む。
 制御部2は、脈波解析装置100全体の制御を行なう装置であり、代表的に、CPU(Central Processing Unit)10と、ROM(Read Only Memory)12と、RAM(Random Access Memory)14とを含むコンピュータで構成される。
The information processing unit 1 includes a control unit 2, an output unit 4, an operation unit 6, and a storage device 8.
The control unit 2 is a device that controls the entire pulse wave analysis apparatus 100, and typically includes a CPU (Central Processing Unit) 10, a ROM (Read Only Memory) 12, and a RAM (Random Access Memory) 14. Consists of including computers.
 CPU10は、演算処理部に相当し、ROM12に予め格納されているプログラムを読出して、RAM14をワークメモリとして使用しながら、当該プログラムを実行する。 The CPU 10 corresponds to an arithmetic processing unit, reads a program stored in advance in the ROM 12, and executes the program while using the RAM 14 as a work memory.
 また、制御部2には、出力部4、操作部6および記憶装置8が接続されている。出力部4は、測定された脈波や脈波解析結果などを出力する。出力部4は、LED(Light Emitting Diode)またはLCD(Liquid Crystal Display)などで構成される表示デバイスであってもよいし、プリンタ(ドライバ)であってもよい。 The control unit 2 is connected with an output unit 4, an operation unit 6, and a storage device 8. The output unit 4 outputs the measured pulse wave, the pulse wave analysis result, and the like. The output unit 4 may be a display device constituted by an LED (Light Emitting Diode) or LCD (Liquid Crystal Display), or a printer (driver).
 操作部6は、ユーザからの指示を受付ける。記憶装置8は、各種データやプログラムを保持する。制御部2のCPU10は、記憶装置8に記録されたデータやプログラムの読み出しや書き込みを行なう。記憶装置8は、たとえば、ハードディスク、不揮発性メモリ(たとえば、フラッシュメモリ)、あるいは、着脱可能な外部記録媒体などにより構成されてよい。 The operation unit 6 receives an instruction from the user. The storage device 8 holds various data and programs. The CPU 10 of the control unit 2 reads and writes data and programs recorded in the storage device 8. The storage device 8 may be constituted by, for example, a hard disk, a nonvolatile memory (for example, a flash memory), or a removable external recording medium.
 ここで、各検出ユニット20の構成について具体的に説明する。
 検出ユニット20brは、被測定者200の右上腕に装着されたカフ24brの内圧(以下、「カフ圧」という)の調整および検出を行なうことで、右上腕における脈波を検出する。カフ24brは、図示のない流体袋(たとえば空気袋)を内包している。
Here, the configuration of each detection unit 20 will be specifically described.
The detection unit 20br detects the pulse wave in the upper right arm by adjusting and detecting the internal pressure (hereinafter referred to as “cuff pressure”) of the cuff 24br attached to the upper right arm of the person 200 to be measured. The cuff 24br contains a fluid bag (for example, an air bag) (not shown).
 検出ユニット20brは、圧力センサ28brと、調圧弁26brと、圧力ポンプ25brと、A/D(analog to digital)変換部29brと、配管27brとを含む。カフ24brと、圧力センサ28br,調圧弁26brとは、配管22brによって接続されている。 The detection unit 20br includes a pressure sensor 28br, a pressure regulating valve 26br, a pressure pump 25br, an A / D (analog to digital) converter 29br, and a pipe 27br. The cuff 24br, the pressure sensor 28br, and the pressure regulating valve 26br are connected by a pipe 22br.
 圧力センサ28brは、配管22brを介して伝達される圧力変動を検出するための検出部位であり、一例として、単結晶シリコンなどからなる半導体チップに所定間隔に配列された複数のセンサエレメントを含む。圧力センサ28brによって検出された圧力変動信号は、A/D変換部29brによってデジタル信号に変換されて、脈波信号pbr(t)として制御部2に入力される。 The pressure sensor 28br is a detection part for detecting pressure fluctuation transmitted through the pipe 22br, and includes a plurality of sensor elements arranged at predetermined intervals on a semiconductor chip made of single crystal silicon or the like as an example. The pressure fluctuation signal detected by the pressure sensor 28br is converted into a digital signal by the A / D conversion unit 29br and input to the control unit 2 as a pulse wave signal pbr (t).
 調圧弁26brは、圧力ポンプ25brとカフ24brとの間に介挿され、測定時にカフ24brの加圧に用いられる圧力を所定の範囲に維持する。圧力ポンプ25brは、制御部2からの検出指令に応じて作動し、カフ24brを加圧するためにカフ24br内の流体袋(図示せず)に空気を供給する。 The pressure regulating valve 26br is inserted between the pressure pump 25br and the cuff 24br, and maintains the pressure used to pressurize the cuff 24br in a predetermined range during measurement. The pressure pump 25br operates in response to a detection command from the control unit 2, and supplies air to a fluid bag (not shown) in the cuff 24br in order to pressurize the cuff 24br.
 この加圧によって、カフ24brは測定部位に押圧され、右上腕の脈波に応じた圧力変化がそれぞれ配管22brを介して検出ユニット20brへ伝達される。検出ユニット20brは、この伝達される圧力変化を検出することで、右上腕の脈波を検出する。 The cuff 24br is pressed against the measurement site by this pressurization, and the pressure change corresponding to the pulse wave of the upper right arm is transmitted to the detection unit 20br via the pipe 22br. The detection unit 20br detects the pulse wave of the upper right arm by detecting the transmitted pressure change.
 検出ユニット20blも同様に、圧力センサ28blと、調圧弁26blと、圧力ポンプ25blと、A/D変換部29blと、配管27blとを含む。カフ24blと、圧力センサ28bl,調圧弁26blとは、配管22blによって接続されている。 Similarly, the detection unit 20bl includes a pressure sensor 28bl, a pressure regulating valve 26bl, a pressure pump 25bl, an A / D converter 29bl, and a pipe 27bl. The cuff 24bl, the pressure sensor 28bl, and the pressure regulating valve 26bl are connected by a pipe 22bl.
 また、検出ユニット20arは、圧力センサ28arと、調圧弁26arと、圧力ポンプ25arと、A/D変換部29arと、配管27arとを含む。カフ24arと、圧力センサ28ar,調圧弁26arとは、配管22arによって接続されている。 The detection unit 20ar includes a pressure sensor 28ar, a pressure regulating valve 26ar, a pressure pump 25ar, an A / D conversion unit 29ar, and a pipe 27ar. The cuff 24ar, the pressure sensor 28ar, and the pressure regulating valve 26ar are connected by a pipe 22ar.
 検出ユニット20alも同様に、圧力センサ28alと、調圧弁26alと、圧力ポンプ25alと、A/D変換部29alと、配管27alとを含む。カフ24alと、圧力センサ28al,調圧弁26alとは、配管22alによって接続されている。 Similarly, the detection unit 20al includes a pressure sensor 28al, a pressure regulating valve 26al, a pressure pump 25al, an A / D converter 29al, and a pipe 27al. The cuff 24al, the pressure sensor 28al, and the pressure regulating valve 26al are connected by a pipe 22al.
 検出ユニット20bl,20ar,20al内の各部の機能は、検出ユニット20brと同様であるので、詳細な説明は繰返さない。また、検出ユニット20内の各部についても、特に区別する必要がない限り、“ar”,“br”などの記号は省略して説明する。 Since the function of each part in the detection units 20bl, 20ar, 20al is the same as that of the detection unit 20br, detailed description will not be repeated. Further, each part in the detection unit 20 will be described by omitting symbols such as “ar” and “br” unless it is particularly necessary to distinguish them.
 なお、本実施の形態では、圧力センサ28を用いて脈波を検出する構成について説明するが、動脈容積センサ(図示せず)を用いて脈波を検出する構成であってもよい。この場合、動脈容積センサは、たとえば、動脈に対して光を照射する発光素子と、発光素子によって照射された光の動脈の透過光または反射光を受光する受光素子とを含んでよい。あるいは、複数の電極を含み、被測定者200の測定部位に微少の一定電流を流すとともに、脈波の伝播に応じて生じるインピーダンス(生体インピーダンス)の変化によって生じる電圧変化を検出するようにしてもよい。 In the present embodiment, a configuration for detecting a pulse wave using the pressure sensor 28 will be described. However, a configuration for detecting a pulse wave using an arterial volume sensor (not shown) may be used. In this case, the arterial volume sensor may include, for example, a light emitting element that emits light to the artery, and a light receiving element that receives transmitted light or reflected light of the artery irradiated by the light emitting element. Alternatively, it includes a plurality of electrodes, allows a small constant current to flow through the measurement site of the person 200 to be measured, and detects a voltage change caused by a change in impedance (biological impedance) generated according to the propagation of the pulse wave. Good.
 <機能構成について>
 図2は、本発明の実施の形態に従う脈波解析装置100の機能構成を示す機能ブロック図である。
<About functional configuration>
FIG. 2 is a functional block diagram showing a functional configuration of pulse wave analysis apparatus 100 according to the embodiment of the present invention.
 図2を参照して、本実施の形態の脈波解析装置100は、その機能として、調整部30、脈波測定部102、解析処理部104、血圧測定部106、血圧指標算出部108および出力部4を含む。なお、血圧測定部106および血圧指標算出部108は、脈波解析装置100の機能構成に含まれなくてもよい。 Referring to FIG. 2, pulse wave analysis apparatus 100 according to the present embodiment functions as adjustment unit 30, pulse wave measurement unit 102, analysis processing unit 104, blood pressure measurement unit 106, blood pressure index calculation unit 108, and output. Part 4 is included. Note that the blood pressure measurement unit 106 and the blood pressure index calculation unit 108 may not be included in the functional configuration of the pulse wave analysis device 100.
 調整部30は、カフ24内の圧力を調整する機能部である。調整部30の機能は、たとえば、図1に示した圧力ポンプ25および調圧弁26により達成される。 The adjusting unit 30 is a functional unit that adjusts the pressure in the cuff 24. The function of the adjusting unit 30 is achieved by, for example, the pressure pump 25 and the pressure regulating valve 26 shown in FIG.
 脈波測定部102は、調整部30およびA/D変換部29と接続され、各肢部における脈波(PVR)を測定するための処理を行なう。脈波測定部102は、調整部30に指令信号を与えることでカフ24の内圧を調整するとともに、当該指令信号に応答して検出されたカフ圧信号Par(t),Pal(t),Pbr(t),Pbl(t)を受信する。そして、受信したカフ圧信号Par(t),Pal(t),Pbr(t),Pbl(t)を時系列に記録することで、肢部ごとに、複数拍分の脈波波形を取得する。脈波の測定は、たとえば所定時間(たとえば10秒程度)行なわれる。 The pulse wave measurement unit 102 is connected to the adjustment unit 30 and the A / D conversion unit 29, and performs processing for measuring a pulse wave (PVR) in each limb. The pulse wave measurement unit 102 adjusts the internal pressure of the cuff 24 by giving a command signal to the adjustment unit 30, and detects cuff pressure signals Par (t), Pal (t), Pbr detected in response to the command signal. (T), Pbl (t) is received. Then, by recording the received cuff pressure signals Par (t), Pal (t), Pbr (t), and Pbl (t) in time series, a pulse wave waveform for a plurality of beats is acquired for each limb. . The pulse wave is measured, for example, for a predetermined time (for example, about 10 seconds).
 脈波測定部102による脈波測定結果は、出力部4に出力されてよい。
 図3は、肢部ごとの脈波測定結果の一例を示す図である。図3には、各肢部の脈波波形が同一の時間軸に沿って示されている。図3に示されるように、1拍ごとの脈波の立ち上がり位置が、破線などで示されてもよい。
The pulse wave measurement result by the pulse wave measurement unit 102 may be output to the output unit 4.
FIG. 3 is a diagram illustrating an example of a pulse wave measurement result for each limb. In FIG. 3, the pulse waveform of each limb is shown along the same time axis. As shown in FIG. 3, the rising position of the pulse wave for each beat may be indicated by a broken line or the like.
 解析処理部104は、脈波測定部102によって測定された肢部ごとの脈波を解析することで、被測定者200(図1)の脈波の特徴量として、所定の脈波解析指標(以下「解析指標」と略す)を算出する。本実施の形態において「解析指標」とは、動脈硬化、および/または、血管の狭窄と相関を持つ指標を表わす。つまり、「解析指標」は、動脈硬化の度合い、および/または、血管の狭窄の度合いを示すものである。 The analysis processing unit 104 analyzes a pulse wave for each limb measured by the pulse wave measurement unit 102, thereby obtaining a predetermined pulse wave analysis index (as a pulse wave feature amount of the measurement subject 200 (FIG. 1)). (Hereinafter abbreviated as “analysis index”). In the present embodiment, the “analysis index” represents an index correlated with arteriosclerosis and / or stenosis of blood vessels. That is, the “analysis index” indicates the degree of arteriosclerosis and / or the degree of stenosis of the blood vessel.
 動脈硬化の度合いを示す解析指標としては、たとえば、脈波伝播速度、脈波伝播時間(PTT:Pulse Transit Time)、AI(Augmentation Index)、および、TR(Traveling time to Reflected wave)などが挙げられる。なお、脈波伝播速度は、上腕脈波および足首脈波によって算出されるもの(baPWV)に限定されず、他の2つの測定部位の脈波によって算出されるもの、あるいは、1つの測定部位(肢部)での脈波のみによって算出されるものであってもよい。 Examples of analysis indexes indicating the degree of arteriosclerosis include pulse wave velocity, pulse wave propagation time (PTT: Pulse Transit Time), AI (Augmentation Index), and TR (Traveling time to Reflected wave). . The pulse wave velocity is not limited to the one calculated from the brachial pulse wave and the ankle pulse wave (baPWV), but is calculated from the pulse wave of the other two measurement regions, or one measurement region ( It may be calculated only from the pulse wave at the limb).
 血管の狭窄の程度を示す解析指標としては、たとえば、足首脈波の上昇特徴値、および、脈波の先鋭度などが挙げられる。足首脈波の上昇特徴値は、たとえば、UT(UT:upstroke Time)として算出される。UTは、立ち上がり点からピークまでの足首脈波が上昇する期間として算出される。脈波の先鋭度は、%MAP(正規化脈波面積)として算出される。%MAPは、たとえば、脈波のピーク高さHすなわち脈圧に対する、脈波面積を均等にならしたときの最低血圧からの高さMの割合(=M/H×100)として算出される。 Examples of the analysis index indicating the degree of stenosis of the blood vessel include an ankle pulse wave rising feature value and a pulse wave sharpness. The ankle pulse wave rising feature value is calculated, for example, as UT (UT: upstroke time). The UT is calculated as a period during which the ankle pulse wave rises from the rising point to the peak. The sharpness of the pulse wave is calculated as% MAP (normalized pulse wave area). For example,% MAP is calculated as a ratio of the height M from the lowest blood pressure when the pulse wave area is made equal to the peak height H of the pulse wave, that is, the pulse pressure (= M / H × 100).
 本実施の形態においては、解析指標として、baPWVを算出することとして説明するが、上記したような他の特徴量を算出してもよい。 In the present embodiment, it is described that baPWV is calculated as an analysis index, but other feature quantities as described above may be calculated.
 解析処理部104は、複数拍分の脈波波形から1拍毎の脈波形状(脈波波形の形状)を認識する処理を行なう。具体的には、脈波の区切り処理が行なわれ、脈波波形が1拍毎に切り出される。これにより、1拍毎の脈波形状が認識される。脈波の区切り処理は、特定周波数によるフィルター処理または微分処理などの公知の手法で実現可能である。 The analysis processing unit 104 performs a process of recognizing the pulse wave shape for each beat (the shape of the pulse wave waveform) from the pulse wave waveforms for a plurality of beats. Specifically, a pulse wave separation process is performed, and the pulse wave waveform is cut out for each beat. Thereby, the pulse wave shape for every beat is recognized. The pulse wave separation process can be realized by a known method such as filter processing or differentiation processing using a specific frequency.
 解析処理部104は、認識された1拍毎の脈波形状を集積し、拍ごとに、集積された脈波形状(以下「集積形状」ともいう)との近似度を算出する。本実施の形態において「1拍毎の脈波形状を集積する」とは、1拍毎の脈波形状を平均化することを表わすこととするが、平均化と同等の処理を行なってもよい。 The analysis processing unit 104 accumulates the recognized pulse wave shapes for each beat, and calculates the degree of approximation with the accumulated pulse wave shape (hereinafter also referred to as “accumulated shape”) for each beat. In the present embodiment, “accumulating the pulse wave shape for each beat” means that the pulse wave shape for each beat is averaged, but processing equivalent to averaging may be performed. .
 本実施の形態において、「近似度」とは、2つの波形の近似の度合いを示す値であり、より特定的には、2つの波形がどの程度一致しているかを数値として表わしたものである。近似度は、たとえば、次式(1)により求められる。 In the present embodiment, “approximation” is a value indicating the degree of approximation of two waveforms, and more specifically, a numerical value representing how much the two waveforms match. . The degree of approximation is obtained by the following equation (1), for example.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図4は、本発明の実施の形態において、集積形状と各拍との近似度の算出方法を説明するための図である。 FIG. 4 is a diagram for explaining a method of calculating the degree of approximation between the integrated shape and each beat in the embodiment of the present invention.
 図4を参照して、近似度は、集積形状Waと実測のi拍目の脈波形状Wiとのずれにより生じる面積の逆数として算出される。つまり、近似度は、脈の立ち上がりを起点とした場合の、サンプリング時間ごとの振幅値Pa,Piの差の加算値の逆数として求めることができる。 Referring to FIG. 4, the degree of approximation is calculated as the reciprocal of the area caused by the deviation between the integrated shape Wa and the actually measured i-th pulse wave shape Wi. That is, the degree of approximation can be obtained as the reciprocal of the added value of the difference between the amplitude values Pa and Pi for each sampling time when the rising edge of the pulse is the starting point.
 または、近似度は、サンプリング時間ごとの振幅値Pa,Piの差の積分値の逆数として求めてもよい。 Alternatively, the degree of approximation may be obtained as the reciprocal of the integral value of the difference between the amplitude values Pa and Pi for each sampling time.
 または、振幅値Pa,Piの差に重みを加え、たとえば、次式(2)のように、振幅値Pa,Piの差の2乗和の逆数により近似度が求められてもよい。 Alternatively, the degree of approximation may be obtained by adding a weight to the difference between the amplitude values Pa and Pi and, for example, the reciprocal of the sum of squares of the difference between the amplitude values Pa and Pi as in the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 近似度の計算式は、予め行なわれた実験の結果に基づき定められる。近似度の計算式の設定方法(原理)については後述する。 The formula for calculating the degree of approximation is determined based on the results of experiments performed in advance. A setting method (principle) of the calculation formula for the approximation will be described later.
 なお、本実施の形態では、脈の立ち上がりを起点として集積脈波と1拍分の脈波全体との近似度を求めることとしたが、近似度の算出に用いられる区間を解析指標に強く影響する範囲に限定してもよい。たとえば、脈波波形の立ち上がり点からピークまでの範囲に限定してもよいし、脈波波形の前方1/2部分に限定してもよい。つまり、1拍分の脈波形状のうち、解析指標の算出に影響しない後方部分を、近似度の算出に用いないようにしてもよい。 In this embodiment, the degree of approximation between the integrated pulse wave and the whole pulse wave for one beat is determined from the rise of the pulse as a starting point. However, the interval used for calculating the degree of approximation strongly affects the analysis index. You may limit to the range to do. For example, it may be limited to the range from the rising point to the peak of the pulse wave waveform, or may be limited to the front half portion of the pulse wave waveform. In other words, the rear portion that does not affect the calculation of the analysis index in the pulse wave shape for one beat may not be used for the calculation of the degree of approximation.
 また、近似度の算出には、脈の立ち上がりを起点とした振幅値の差を用いることとしたが、起点の位置(2つの波形を一致させる位置)は、脈の立ち上がりに限定されない。たとえば、脈波波形のピークを起点とするなど、一定の基準位置を起点と定めてもよい。あるいは、一定の基準位置ではなく、拍ごとに、たとえば集積波形との近似度が最大となるような位置を起点として決定してもよい。 In the calculation of the degree of approximation, the difference in amplitude value starting from the rise of the pulse is used, but the position of the start point (the position where the two waveforms match) is not limited to the rise of the pulse. For example, a fixed reference position may be set as the starting point, such as starting from the peak of the pulse wave waveform. Alternatively, instead of a fixed reference position, for example, a position where the degree of approximation with the integrated waveform is maximized may be determined for each beat.
 また、本実施の形態では、近似度を算出することとしたが、集積形状との「ズレ度」を算出してもよい。ズレ度は、式(1),(2)の近似度の逆数として算出可能である。 In this embodiment, the degree of approximation is calculated. However, the “degree of deviation” from the integrated shape may be calculated. The degree of deviation can be calculated as the reciprocal of the degree of approximation of equations (1) and (2).
 解析処理部104は、集積形状との近似度が低い(=ズレ度が高い)と判定された脈波形状の拍を特定し、特定された拍を解析指標の算出対象から除外する。このように、集積形状との近似度が低い脈波形状が除外されることで、不整脈や体動によって突発的に乱れた可能性が高い、安定していない脈波が適切に除外される。 The analysis processing unit 104 specifies a pulse having a pulse wave shape determined to have a low degree of approximation with the integrated shape (= high deviation), and excludes the specified beat from the calculation target of the analysis index. Thus, by removing the pulse wave shape having a low degree of approximation with the integrated shape, an unstable pulse wave that is highly likely to be suddenly disturbed by an arrhythmia or body motion is appropriately excluded.
 従来は、図3のような複数拍分の脈波波形が測定されると、医師が目視により波形が乱れているかを判断していたが、本実施の形態によると、集積形状との近似度を算出することで、演算によって波形の乱れを判別することができる。 Conventionally, when a pulse waveform for a plurality of beats as shown in FIG. 3 is measured, a doctor determines whether the waveform is disturbed by visual observation. However, according to the present embodiment, the degree of approximation with the integrated shape By calculating, it is possible to discriminate waveform disturbance by calculation.
 解析処理部104は、除外されていない拍の脈波波形つまり、安定した脈波波形のみを解析することで、baPWVを算出する。本実施の形態では、左右両方の足首を測定部位として2種のbaPWV、たとえば、右上腕-左足首の脈波伝播速度(以下「baPWV_RL」ともいう)および右上腕-右足首の脈波伝播速度(以下「baPWV_RR」ともいう)が算出する。このように、2種のbaPWVを算出するのは、これらの差も、左下腿部および右下腿部における動脈狭窄の診断にも用いられ得るからである。 The analysis processing unit 104 calculates baPWV by analyzing only the pulse waveform of a pulse that is not excluded, that is, a stable pulse waveform. In the present embodiment, two types of baPWV, for example, right upper arm-left ankle pulse wave velocity (hereinafter also referred to as “baPWV_RL”) and upper right arm-right ankle pulse wave velocity, with both left and right ankles as measurement sites. (Hereinafter also referred to as “baPWV_RR”). The reason why the two types of baPWV are calculated in this manner is that these differences can also be used for diagnosis of arterial stenosis in the left lower leg and the right lower leg.
 なお、本実施の形態において上腕の測定部位を右としているのは、それがデフォルトとして定められているからであって、左を基準としてもよい。また、たとえば、右上腕の血圧が左上腕の血圧よりも所定値(たとえば16~20mmHg)以上下がっている場合には、右上腕に代えて左上腕を測定部位としてもよい。または、操作部6を介して測定部位を左とする旨の指示が入力された場合にも、右上腕に代えて左上腕を測定部位としてもよい。 In the present embodiment, the measurement site of the upper arm is set to the right because it is determined as a default, and the left may be used as a reference. For example, when the blood pressure of the upper right arm is lower than the blood pressure of the upper left arm by a predetermined value (for example, 16 to 20 mmHg), the upper left arm may be used as the measurement site instead of the upper right arm. Alternatively, when an instruction to the left of the measurement site is input via the operation unit 6, the left upper arm may be used as the measurement site instead of the upper right arm.
 baPWV_RLおよびbaPWV_RRの算出に際しては、除外されていない拍の脈波波形のみが解析に用いられる。解析処理部104は、対象とされた各拍について、上腕脈波および足首脈波の立ち上がり位置の時間差(図5の時間Tr,Tl)を算出し、算出した時間の平均値を、血管の長さ(=脈波伝播距離)で除算することにより各baPWVを算出する。 In calculating baPWV_RL and baPWV_RR, only the pulse waveform of a beat not excluded is used for analysis. The analysis processing unit 104 calculates the time difference between the rising positions of the brachial pulse wave and the ankle pulse wave (time Tr and Tl in FIG. 5) for each targeted beat, and calculates the average value of the calculated time as the length of the blood vessel. Each baPWV is calculated by dividing by (= pulse wave propagation distance).
 図5において、時間Tr,Tlは、右上腕の脈波の立ち上がり点P0rとの時間差を示しているものとする。左上腕を測定部位とする場合には、左上腕の脈波の立ち上がり点P0lとの時間差を用いて左上腕-左足首の脈波伝播速度(以下「baPWV_LL」ともいう)、および、左上腕-右足首の脈波伝播速度(以下「baPWV_LR」ともいう)が算出される。図5における時間Tr,Tlは、脈波伝播時間(PTT)を表わしている。 In FIG. 5, the times Tr and Tl indicate the time difference from the rising point P0r of the pulse wave of the upper right arm. When using the left upper arm as the measurement site, the left upper arm—the pulse wave velocity of the left ankle (hereinafter also referred to as “baPWV_LL”) and the left upper arm— The pulse wave velocity of the right ankle (hereinafter also referred to as “baPWV_LR”) is calculated. Times Tr and Tl in FIG. 5 represent pulse wave propagation time (PTT).
 なお、各baPWVの算出に必要な、血管の長さは、被測定者の身長を所定の換算式に当てはめることで算出される。被測定者の身長は、たとえば操作部6によって入力される。 Note that the length of the blood vessel necessary for calculating each baPWV is calculated by applying the height of the measurement subject to a predetermined conversion formula. The height of the measurement subject is input by the operation unit 6, for example.
 解析処理部104は、さらに、解析指標の算出に用いられた脈波形状についての近似度を集積することで、解析指標の算出に用いられた脈波全体の拍動の安定度を算出してもよい。本実施の形態では、baPWV_RLおよびbaPWV_RRの各々について、算出対象となった脈波全体の拍動の安定度を算出する。拍動の安定度は、測定された全拍分の脈波波形ではなく、baPWVの算出に用いられた脈波波形そのものから導出されるため、baPWVの信憑性と直接的な関連がある。したがって、解析処理部104により算出される各拍動の安定度は、対応のbaPWVの信憑性(信頼できる度合)を示しているといえる。 The analysis processing unit 104 further calculates the stability of the pulsation of the whole pulse wave used for calculating the analysis index by accumulating the approximate degree of the pulse wave shape used for calculating the analysis index. Also good. In the present embodiment, for each of baPWV_RL and baPWV_RR, the pulsation stability of the entire pulse wave that is the calculation target is calculated. Since the pulsation stability is derived not from the pulse waveform of all measured beats but from the pulse waveform used for calculating baPWV, it is directly related to the credibility of baPWV. Therefore, it can be said that the stability of each beat calculated by the analysis processing unit 104 indicates the credibility (reliable degree) of the corresponding baPWV.
 なお、近似度ではなくズレ度が算出される場合、解析指標の算出に用いられた脈波形状についてのズレ度を集積した値は、解析指標の算出に用いられた脈波全体の拍動の乱れ度として算出される。 In addition, when the degree of deviation is calculated instead of the degree of approximation, the value obtained by accumulating the degrees of deviation about the pulse wave shape used for calculating the analysis index is the pulsation of the whole pulse wave used for calculating the analysis index. Calculated as the degree of disturbance.
 解析処理部104によって算出された各baPWVおよび各安定度は、出力部4に出力される。出力部4は、baPWV_RLおよびbaPWV_RRを出力するとともに、各baPWVと関連付けて、その値の信憑性を示す指標を出力(表示または印刷)する。各baPWVの信憑性を示す指標としては、拍動の安定度として算出された値そのものを出力してもよいし、算出された値を、レベル値、マーク、または記号等に置き換えて出力してもよい。 Each baPWV and each stability calculated by the analysis processing unit 104 are output to the output unit 4. The output unit 4 outputs baPWV_RL and baPWV_RR, and outputs (displays or prints) an index indicating the credibility of the value in association with each baPWV. As an index indicating the credibility of each baPWV, the value calculated as the pulsation stability itself may be output, or the calculated value is replaced with a level value, a mark, or a symbol and output. Also good.
 血圧測定部106は、脈波測定部102と同様に、調整部30およびA/D変換部29と接続され、各肢部における血圧を測定するための処理を行なう。血圧測定部106は、調整部30に指令信号を与えることでカフ24の内圧を調整するとともに、当該指令信号に応答して検出されたカフ圧信号Par(t),Pal(t),Pbr(t),Pbl(t)を受信する。血圧測定部106は、たとえば、公知のオシロメトリック法に従って、被測定者200の肢部ごとの最高血圧および最低血圧を測定する。より具体的には、肢部ごとに、カフ圧を所定の圧力値まで高速で加圧し、徐速での減圧時に検出される時系列のカフ圧信号に所定のアルゴリズムを適用することで、最高血圧および最低血圧が算出される。血圧測定部106は、脈拍数、平均血圧および脈圧をさらに測定してもよい。 Similarly to the pulse wave measurement unit 102, the blood pressure measurement unit 106 is connected to the adjustment unit 30 and the A / D conversion unit 29, and performs processing for measuring blood pressure in each limb. The blood pressure measurement unit 106 adjusts the internal pressure of the cuff 24 by giving a command signal to the adjustment unit 30 and also detects cuff pressure signals Par (t), Pal (t), Pbr () detected in response to the command signal. t), Pbl (t) is received. The blood pressure measurement unit 106 measures the maximum blood pressure and the minimum blood pressure for each limb of the person 200 to be measured, for example, according to a known oscillometric method. More specifically, for each limb, the cuff pressure is increased at a high speed to a predetermined pressure value, and a predetermined algorithm is applied to a time-series cuff pressure signal detected when the pressure is gradually reduced. Hypertension and diastolic blood pressure are calculated. The blood pressure measurement unit 106 may further measure the pulse rate, average blood pressure, and pulse pressure.
 血圧指標算出部108は、血圧測定部106によって測定された血圧値に基づいて、所定の血圧指標を算出する。本実施の形態における「血圧指標」は、血管の詰まり具合(動脈狭窄の度合い)と相関を持つ指標を表わし、具体的にはたとえば、ABI(Ankle Brachial Index)が挙げられる。本実施の形態では、左右両方の足首と一方の上腕とを測定部位としてABIを算出する。たとえば、右上腕の最高血圧と右足首の最高血圧との比、および、右上腕の最高血圧と左足首の最高血圧との比を、それぞれ「ABI_RR」および「ABI_RL」として算出する。なお、各ABIの算出においても上腕の測定部位を右としているのは、右上腕の最高血圧が左上腕に比して高い場合であり、左上腕の最高血圧が右上腕に比して高い場合には、左上腕を測定部位として用いてもよい。また、右上腕と左上腕の最高血圧の平均を、ABI算出時の上腕血圧としてもよい。また、本実施の形態ではABIを血圧指標として算出することとするが、他の血圧特徴量が用いられてもよい。 The blood pressure index calculation unit 108 calculates a predetermined blood pressure index based on the blood pressure value measured by the blood pressure measurement unit 106. The “blood pressure index” in the present embodiment represents an index having a correlation with the degree of clogging of blood vessels (degree of arterial stenosis), and specifically includes, for example, ABI (Ankle Brachial Index). In the present embodiment, ABI is calculated using both the left and right ankles and one upper arm as measurement sites. For example, the ratio between the highest blood pressure in the upper right arm and the highest blood pressure in the right ankle and the ratio between the highest blood pressure in the upper right arm and the highest blood pressure in the left ankle are calculated as “ABI_RR” and “ABI_RL”, respectively. In the calculation of each ABI, the measurement site of the upper arm is set to the right when the systolic blood pressure of the upper right arm is higher than that of the left upper arm, and when the systolic blood pressure of the left upper arm is higher than that of the upper right arm. Alternatively, the left upper arm may be used as a measurement site. Further, the average of the highest blood pressures of the upper right arm and the left upper arm may be used as the upper arm blood pressure when calculating the ABI. In the present embodiment, ABI is calculated as a blood pressure index, but other blood pressure feature values may be used.
 血圧測定部106での測定結果、および、血圧指標算出部108により算出されたABI_RRおよびABI_RLは、出力部4に出力される。出力部4は、baPWV_RL、baPWV_RRおよびこれらの信憑性を示す指標とともに、肢部ごとの血圧値、ABI_RRおよびABI_RLも出力する。これにより、医師などの医療従事者は、より正確に、動脈硬化の疑いがあるかどうかの診断が可能となる。 The measurement result in the blood pressure measurement unit 106 and the ABI_RR and ABI_RL calculated by the blood pressure index calculation unit 108 are output to the output unit 4. The output unit 4 also outputs blood pressure values, ABI_RR and ABI_RL for each limb, together with baPWV_RL, baPWV_RR and an index indicating their credibility. Thereby, a medical worker such as a doctor can more accurately diagnose whether there is a suspicion of arteriosclerosis.
 以上説明した脈波測定部102、解析処理部104、血圧測定部106および血圧指標算出部108の動作は、ROM12中に格納されたソフトウェアを実行することで実現されてもよいし、これらのうち少なくとも1つについては、ハードウェアで実現されてもよい。また、解析処理部104が実行する処理のうちの一部は、ハードウェアで実現されてもよい。 The operations of the pulse wave measurement unit 102, the analysis processing unit 104, the blood pressure measurement unit 106, and the blood pressure index calculation unit 108 described above may be realized by executing software stored in the ROM 12, At least one may be realized by hardware. Further, a part of the processing executed by the analysis processing unit 104 may be realized by hardware.
 <動作について>
 次に、本実施の形態における脈波解析装置100の動作について説明する。動作の説明にあたっては、本実施の形態において最も特徴的な部分である解析処理部104が実行する処理について説明する。
<About operation>
Next, the operation of pulse wave analysis apparatus 100 in the present embodiment will be described. In the description of the operation, processing executed by the analysis processing unit 104, which is the most characteristic part in the present embodiment, will be described.
 図6は、本発明の実施の形態における脈波解析処理を示すフローチャートである。図6のフローチャートに示す処理は、予めプログラムとしてROM12に格納されており、CPU10がこのプログラムを読み出して実行することにより、脈波解析処理の機能が実現される。 FIG. 6 is a flowchart showing the pulse wave analysis processing in the embodiment of the present invention. The process shown in the flowchart of FIG. 6 is stored in advance in the ROM 12 as a program, and the function of the pulse wave analysis process is realized by the CPU 10 reading and executing this program.
 なお、脈波解析処理が開始される時点において、脈波測定部102により測定された肢部ごとの脈波波形が、RAM14または記憶装置8に記憶されているものとする。つまり、本実施の形態における脈波解析処理は、脈波測定の直後に行なわれるものに限定されず、記憶装置8に記憶された、過去に測定された脈波波形に対して行なわれてもよい。 It is assumed that the pulse wave waveform for each limb measured by the pulse wave measuring unit 102 is stored in the RAM 14 or the storage device 8 when the pulse wave analysis process is started. That is, the pulse wave analysis process in the present embodiment is not limited to the one performed immediately after the pulse wave measurement, and may be performed on a pulse wave waveform measured in the past stored in the storage device 8. Good.
 図6を参照して、解析処理部104は、測定部位である肢部ごとに、記憶された複数拍分の脈波波形の区切り処理を行なう(ステップS102)。これにより、複数拍分の脈波波形が1拍単位で切り出され、1拍毎の脈波形状が認識される。 Referring to FIG. 6, the analysis processing unit 104 performs a process of dividing a stored pulse wave waveform for a plurality of beats for each limb that is a measurement site (step S <b> 102). Thereby, the pulse wave waveform for a plurality of beats is cut out in units of one beat, and the pulse wave shape for each beat is recognized.
 続いて、解析処理部104は、肢部ごとに、認識された全拍の脈波形状を平均化し(ステップS104)、平均化された脈波形状(集積形状)と各脈波形状との近似度を算出する(ステップS106)。近似度の算出には、たとえば上記(1)式が用いられる。肢部ごとに算出された各脈波の近似度は、RAM14に一時記録される。 Subsequently, the analysis processing unit 104 averages the pulse wave shapes of all recognized beats for each limb (step S104), and approximates the averaged pulse wave shape (integrated shape) to each pulse wave shape. The degree is calculated (step S106). For example, the above equation (1) is used to calculate the degree of approximation. The degree of approximation of each pulse wave calculated for each limb is temporarily recorded in the RAM 14.
 解析処理部104は、近似度が低い拍の除外処理を行なう(ステップS108)。具体的には、まず、肢部ごとに、近似度が一定基準を満たさない(つまり、近似度が予め定められた閾値以下の)脈波形状を特定し、特定された脈波形状をbaPWVの算出対象から除外する。なお、脈波波形の特定に用いる閾値は、予め定められた値に限定されない。たとえば、全拍の平均の近似度から閾値を決定して、その基準(決定した閾値)を満たさない脈波形状を除外対象として特定してもよい。除外処理の結果、baPWVの算出に用いられるか否かの情報がRAM14に一時記録される。 The analysis processing unit 104 performs a beat exclusion process with a low degree of approximation (step S108). Specifically, first, for each limb, a pulse wave shape whose degree of approximation does not satisfy a certain standard (that is, the degree of approximation is equal to or less than a predetermined threshold value) is specified, and the specified pulse wave shape is designated as baPWV. Exclude from calculation. Note that the threshold used for specifying the pulse wave waveform is not limited to a predetermined value. For example, a threshold value may be determined from the average degree of approximation of all beats, and a pulse wave shape that does not satisfy the criterion (determined threshold value) may be specified as an exclusion target. As a result of the exclusion process, information on whether or not it is used for calculating baPWV is temporarily recorded in the RAM 14.
 図7は、図6のステップS108における除外処理結果の一例を示す図である。
 図7を参照して、各拍i(i=1,2,3,…,n)に対応付けて、右上腕、左上腕、右足首および左足首それぞれの脈波形状が算出対象から除外されたか否かの情報が記録される。本実施の形態では、たとえば、除外すべき脈波波形と判定された拍No.に対応する欄に、“1”を記録し、それ以外を“0”とする。なお、各肢部における除外処理結果の保持方法は図7のような例に限定されない。
FIG. 7 is a diagram illustrating an example of the exclusion process result in step S108 of FIG.
Referring to FIG. 7, the pulse wave shapes of the upper right arm, left upper arm, right ankle and left ankle are excluded from the calculation target in association with each beat i (i = 1, 2, 3,..., N). Information on whether or not has been recorded is recorded. In the present embodiment, for example, “1” is recorded in the column corresponding to the beat number determined as the pulse wave waveform to be excluded, and “0” is set otherwise. In addition, the holding method of the exclusion process result in each limb is not limited to the example as shown in FIG.
 除外処理が終わると、その処理結果を反映してbaPWV(脈波伝播速度)が算出される(ステップS110)。本実施の形態では、ステップS108の除外処理の結果、近似度が低いと判定された拍を除外して、baPWV_RL、および、baPWV_RRの両方を算出する。 When the exclusion process is finished, baPWV (pulse wave propagation velocity) is calculated reflecting the process result (step S110). In the present embodiment, both baPWV_RL and baPWV_RR are calculated by excluding beats determined to have a low degree of approximation as a result of the exclusion process in step S108.
 ここで、図7のような結果が記録されていると仮定して、各baPWVの算出方法を説明する。baPWV_RLを算出する場合、右上腕の脈波と左足首の脈波とが用いられる。図7を参照すると、右上腕の3拍目の脈波と、左足首の6拍目の脈波とが除外対象として記録されている。したがって、3拍目および6拍目の脈波を除外することでbaPWV_RLが算出される。より具体的には、3拍目および6拍目以外の各拍について、右上腕および左足首の脈波の脈波伝播時間を算出し、算出された脈波伝播時間の平均値と血管の長さの推定値とにより、baPWV_RLを算出する。 Here, the calculation method of each baPWV will be described assuming that the result as shown in FIG. 7 is recorded. When calculating baPWV_RL, the pulse wave of the upper right arm and the pulse wave of the left ankle are used. Referring to FIG. 7, the pulse wave of the third beat of the upper right arm and the pulse wave of the sixth beat of the left ankle are recorded as exclusion targets. Therefore, baPWV_RL is calculated by excluding the third and sixth beats. More specifically, for each beat other than the third beat and the sixth beat, the pulse wave propagation time of the pulse wave of the upper right arm and the left ankle is calculated, and the calculated average value of the pulse wave propagation time and the length of the blood vessel are calculated. Based on the estimated value, baPWV_RL is calculated.
 baPWV_RRを算出する場合、右上腕の脈波と右足首の脈波とが用いられる。図7を参照すると、右上腕の3拍目の脈波と、右足首の5,6拍目の脈波とが除外対象として記録されている。したがって、3拍目、5拍目および6拍目の脈波を除外することでbaPWV_RRが算出される。より具体的には、3拍目、5拍目および6拍目以外の各拍について、右上腕および右足首の脈波の脈波伝播時間を算出し、算出された脈波伝播時間の平均値と血管の長さの推定値とにより、baPWV_RRを算出する。 When calculating baPWV_RR, the pulse wave of the upper right arm and the pulse wave of the right ankle are used. Referring to FIG. 7, the pulse wave of the third beat of the upper right arm and the pulse waves of the fifth and sixth beats of the right ankle are recorded as exclusion targets. Therefore, baPWV_RR is calculated by excluding the third, fifth and sixth beats. More specifically, for each beat other than the third beat, the fifth beat, and the sixth beat, the pulse wave propagation time of the pulse wave of the upper right arm and the right ankle is calculated, and the average value of the calculated pulse wave propagation times And baPWV_RR is calculated from the estimated value of the length of the blood vessel.
 このように、本実施の形態によると、大きく乱れた脈波波形は各baPWVの算出に用いられないので、精度良く解析指標を算出することができる。また、実測の波形を集積することで、近似度算出の基準となる脈波形状が求められる。したがって、測定時の被測定者の病態や病状、あるいは測定条件(投薬直後など)に応じて適切に除外すべき脈波形状を特定することができる。 As described above, according to the present embodiment, the greatly disturbed pulse wave waveform is not used for calculating each baPWV, so that the analysis index can be calculated with high accuracy. Further, by accumulating measured waveforms, a pulse wave shape that is a reference for calculating the degree of approximation is obtained. Therefore, it is possible to specify a pulse wave shape that should be appropriately excluded according to the pathological condition or medical condition of the measurement subject at the time of measurement, or measurement conditions (such as immediately after medication).
 解析処理部104は、次に、baPWVの信憑性を算出する(ステップS112)。本実施の形態では、baPWV_RLおよびbaPWV_RRの算出に用いられた脈波全体の拍動の安定度をそれぞれ算出する。具体的には、baPWV_RLの算出に用いられた脈波全体の拍動の安定度すなわち、baPWV_RLの信憑性は、baPWV_RLの算出に用いられた拍の近似度を集積(たとえば平均)することで算出される。baPWV_RLの算出においては、図7を例に3拍目および6拍目の脈波が除外されたため、baPWV_RLの信憑性は、3拍目および6拍目以外の、右上腕および左足首の拍についての近似度を平均化した値として表わされる。 Next, the analysis processing unit 104 calculates the authenticity of the baPWV (step S112). In the present embodiment, the pulsation stability of the entire pulse wave used for calculating baPWV_RL and baPWV_RR is calculated. Specifically, the stability of the pulsation of the whole pulse wave used for calculating baPWV_RL, that is, the credibility of baPWV_RL is calculated by accumulating (for example, averaging) the approximation of the beat used for calculating baPWV_RL. Is done. In the calculation of baPWV_RL, the pulse waves of the 3rd and 6th beats were excluded using FIG. 7 as an example. Therefore, the credibility of baPWV_RL is for the beats of the right upper arm and left ankle other than the 3rd and 6th beats. It is expressed as a value obtained by averaging the degree of approximation.
 より具体的には、右上腕の脈波形状のうち、3拍目および6拍目以外の拍の近似度の平均値と、左足首の脈波形状のうち、3拍目および6拍目以外の拍の近似度の平均値とを求める。これらの平均値をさらに平均化した値が、算出に用いられた脈波全体の安定度として算出される。 More specifically, among the pulse wave shape of the upper right arm, the average value of the approximations of the beats other than the third and sixth beats and the pulse wave shape of the left ankle other than the third and sixth beats The average value of the degree of approximation of beats is obtained. A value obtained by further averaging these average values is calculated as the stability of the entire pulse wave used for the calculation.
 あるいは、右上腕の脈波形状のうちの3拍目および6拍目以外の拍、および、左足首の脈波形状のうちの3拍目および6拍目以外の拍全ての近似度を平均化した値を、算出に用いられた脈波全体の安定度として算出してもよい。 Alternatively, the approximation degrees of the beats other than the third and sixth beats in the pulse wave shape of the upper right arm and the beats other than the third and sixth beats in the pulse wave shape of the left ankle are averaged. The calculated value may be calculated as the stability of the entire pulse wave used for the calculation.
 baPWV_RRの信憑性も同様の方法で算出される。baPWV_RRの算出においては、図7を例に3拍目、5拍目および6拍目の脈波が除外されたため、baPWV_RRの信憑性は、3拍目、5拍目および6拍目以外の各拍の、集積形状との近似度を集積(たとえば平均)することで算出される。 The authenticity of baPWV_RR is calculated in the same way. In the calculation of baPWV_RR, the pulse waves of the third beat, the fifth beat, and the sixth beat are excluded in FIG. 7 as an example. Therefore, the credibility of baPWV_RR is different from the third beat, the fifth beat, and the sixth beat. It is calculated by accumulating (for example, averaging) the degree of approximation of the beat with the accumulated shape.
 このように、各baPWVの信憑性は、集積形状との近似度を個別に評価した後で、指標算出に用いられた全拍分の近似度を集積して求められる。したがって、全体に対する1拍分の影響度を、従来より行なわれていたbaPWVの算出方法(1拍ごとに脈波伝播時間を算出し、血管長の推定値をそれらの平均で除算する)と同等にすることができる。 As described above, the authenticity of each baPWV is obtained by accumulating the degree of approximation of all the beats used for calculating the index after individually evaluating the degree of approximation with the accumulated shape. Therefore, the influence of one beat on the whole is equivalent to the conventional method for calculating baPWV (calculating the pulse wave propagation time for each beat and dividing the estimated blood vessel length by the average thereof) Can be.
 以上のような解析処理が終わると、出力部4には、各解析結果が出力される(ステップS114)。本実施の形態では、プリンタ(ドライバ)として機能する出力部4が、得られた解析結果を紙媒体に印刷する。紙媒体には、たとえば図8のような解析結果情報が印刷される。 When the above analysis processing is completed, each analysis result is output to the output unit 4 (step S114). In the present embodiment, the output unit 4 functioning as a printer (driver) prints the obtained analysis result on a paper medium. For example, analysis result information as shown in FIG. 8 is printed on the paper medium.
 図8は、本発明の実施の形態における解析結果情報の出力例を示す図である。
 図8を参照して、紙媒体には、脈波解析の結果として、baPWV_RR値91、baPWV_RRの信憑性を示す指標92、baPWV_RL値93、および、baPWV_RLの信憑性を示す指標94が印刷されている。信憑性を示す指標は、たとえば、信憑性が高い(安定度が高い)順に、「+++」、「++」、「+」、「±」、「-」の5段階
の記号で示される。ROM12には、安定度の数値範囲と対応付けて、表示されるべきこれらの記号が予め記憶されているものとする。
FIG. 8 is a diagram showing an output example of analysis result information in the embodiment of the present invention.
Referring to FIG. 8, on the paper medium, baPWV_RR value 91, baPWV_RR credibility index 92, baPWV_RL value 93, and baPWV_RL credibility index 94 are printed as a result of pulse wave analysis. Yes. The index indicating the credibility is indicated by, for example, symbols in five stages of “++++”, “++”, “+”, “±”, and “−” in descending order of credibility (high stability). It is assumed that these symbols to be displayed are stored in advance in the ROM 12 in association with the numerical value range of stability.
 このように、各baPWV値91,93のすぐ下に、それらの値の信憑性を示す指標92,94を配置することで、これらの指標が関連付けられて印刷される。その結果、医師などの医療従事者は、解析指標として出力されたbaPWVの値だけでなくその指標の信憑性の高さを考慮することで、より正しい診断を行なうことが可能となる。 As described above, by placing the indexes 92 and 94 indicating the credibility of these values immediately below the respective baPWV values 91 and 93, these indexes are printed in association with each other. As a result, a medical worker such as a doctor can perform a more correct diagnosis by considering not only the value of baPWV output as an analysis index but also the high credibility of the index.
 本実施の形態の脈波解析装置100は、上述のように、各肢部の血圧測定、および、ABI_RR,ABI_RLの算出も行なう。したがって、図8には、右上腕の血圧81、右足首の血圧82、左上腕の血圧83、左足首の血圧84、ABI_RR値85、および、ABI_RL値86がさらに出力される。 As described above, the pulse wave analysis apparatus 100 of the present embodiment also measures the blood pressure of each limb and calculates ABI_RR and ABI_RL. Therefore, in FIG. 8, the blood pressure 81 of the upper right arm, the blood pressure 82 of the right ankle, the blood pressure 83 of the left upper arm, the blood pressure 84 of the left ankle, the ABI_RR value 85, and the ABI_RL value 86 are further output.
 図8に示されたbaPWVおよび血圧値の単位は、それぞれ、“cm/s”および“mmHg”である。 The units of baPWV and blood pressure value shown in FIG. 8 are “cm / s” and “mmHg”, respectively.
 解析結果情報として、さらに、上述のUTや%MAPも出力されてもよい。また、図9に示すようなグラフが出力されてもよい。 Further, the above-mentioned UT and% MAP may be output as the analysis result information. Further, a graph as shown in FIG. 9 may be output.
 図9は、本発明の実施の形態における解析結果情報の他の出力例を示す図である。
 図9には、baPWVを縦軸、ABIを横軸にとったグラフである。このグラフでは、予め、baPWVとABIとにより定まる動脈硬化度のレベルが識別可能に(たとえば色分けされて)示されている。このグラフにおいて、右下腿部および左下腿部それぞれの動脈硬化レベルが予め定められたマーク,文字,記号などによって示される。
FIG. 9 is a diagram showing another output example of the analysis result information in the embodiment of the present invention.
FIG. 9 is a graph with baPWV on the vertical axis and ABI on the horizontal axis. In this graph, the arteriosclerosis level determined by baPWV and ABI is shown in advance so as to be distinguishable (for example, color-coded). In this graph, the arteriosclerosis levels of the right lower leg and the left lower leg are indicated by predetermined marks, characters, symbols, and the like.
 図9において、右下腿部の動脈硬化度のレベルは、解析処理部104にて算出されたbaPWV_RRと、血圧指標算出部108にて算出されたABI_RRとの交点にプロットされた黒塗りの三角マークの位置によって示されている。左下腿部の動脈硬化レベルは、解析処理部104にて算出されたbaPWV_RLと、血圧指標算出部108にて算出されたABI_RLとの交点にプロットされた白抜きの三角マークの位置によって示されている。 In FIG. 9, the level of arteriosclerosis of the right lower leg is represented by a black triangle plotted at the intersection of baPWV_RR calculated by the analysis processing unit 104 and ABI_RR calculated by the blood pressure index calculation unit 108. It is indicated by the position of the mark. The arteriosclerosis level of the left lower leg is indicated by the position of a white triangle mark plotted at the intersection of baPWV_RL calculated by the analysis processing unit 104 and ABI_RL calculated by the blood pressure index calculation unit 108. Yes.
 なお、本実施の形態では、解析結果情報として、測定されたbaPWV_RRおよびbaPWV_RLの両方が出力されることとした。しかしながら、測定されたbaPWV_RRおよびbaPWV_RLのうち、図6のステップS112で算出された信憑性(安定度)が高い方のbaPWVのみを、脈波解析結果として出力してもよい。たとえば、患者への提示用のレポートは、一般に、簡易な情報のみを印刷するので、患者用のレポートにおいてのみ、一方のbaPWVだけを出力することとしてもよい。そのような場合、図9のグラフに代えて、図10のようなグラフが印刷されてよい。図10には、baPWVを縦軸、ABIを横軸にとったグラフにおいて、安定度が高い方のbaPWVのみがプロットされている。このように、信憑性(安定度)が高い方のbaPWVのみを出力することで、単に値が高い方のbaPWVや、左右のbaPWVの平均値がプロットされる場合よりも、より適切な判断や診断を可能とすることができる。 In the present embodiment, both the measured baPWV_RR and baPWV_RL are output as the analysis result information. However, of the measured baPWV_RR and baPWV_RL, only the baPWV having the higher credibility (stability) calculated in step S112 in FIG. 6 may be output as the pulse wave analysis result. For example, since a report for presentation to a patient generally prints only simple information, only one baPWV may be output only in a report for a patient. In such a case, a graph as shown in FIG. 10 may be printed instead of the graph as shown in FIG. In FIG. 10, only the baPWV with higher stability is plotted in the graph in which the vertical axis represents baPWV and the horizontal axis represents ABI. In this way, by outputting only baPWV with higher credibility (stability), it is possible to perform more appropriate judgment than when the higher value baPWV or the average value of the left and right baPWV is plotted. Diagnosis can be possible.
 <近似度の計算式について>
 上述のように、本実施の形態では、精度良く解析指標を算出するために、各拍ごとの集積脈波との近似度が用いられた。したがって、近似度の計算式は、実験により適切に定める必要がある。
<Approximation formula>
As described above, in this embodiment, the degree of approximation with the integrated pulse wave for each beat is used to calculate the analysis index with high accuracy. Therefore, the calculation formula for the degree of approximation needs to be appropriately determined by experiment.
 図11A~図27Bは、測定ID1~17それぞれについて、1拍ごとの脈波形状が、立ち上がり位置を起点として重ねられた例を示す図である。各図において、図11A~図27Aには、時間軸に沿って、測定された複数拍分の脈波波形が示され、図11B~図27Bには、図11A~図27Aに示された各拍分の脈波形状が、立ち上がり位置を起点として重ねられた様子が示されている。図11A~図27Aの縦軸の値は、圧力をデジタル変換した出力値を表わしており、図11B~図27Bの縦軸の値は、振幅を表わしている。また、図11B~図27Bの横軸の区切りは、サンプリングのポイントを表わしている。 FIG. 11A to FIG. 27B are diagrams showing examples in which the pulse wave shapes for each beat are overlapped starting from the rising position for each of the measurement IDs 1 to 17. In each figure, FIGS. 11A to 27A show pulse wave waveforms measured for a plurality of beats along the time axis, and FIGS. 11B to 27B show the waveforms shown in FIGS. 11A to 27A. A state in which the pulse wave shapes for the beats are overlapped starting from the rising position is shown. The value on the vertical axis in FIGS. 11A to 27A represents the output value obtained by digitally converting the pressure, and the value on the vertical axis in FIGS. 11B to 27B represents the amplitude. Further, the horizontal axis delimiters in FIGS. 11B to 27B represent sampling points.
 図28は、図11A~図27Bの脈波波形を対象とした場合における、装置が算出する近似度の順位と、判読者による近似の程度の順位との関係を示す図である。 FIG. 28 is a diagram showing the relationship between the ranking of the degree of approximation calculated by the apparatus and the ranking of the degree of approximation by the reader when the pulse wave waveforms of FIGS. 11A to 27B are targeted.
 図28における「指数」は、測定IDごとに、上記計算式(1)によって算出された各拍ごとの(図示しない集積形状との)近似度の平均値を、所定の換算式によって100分率で示したものである。「装置の順位」は、100分率で示された指数の昇順での順位を示している。「判読者順位」は、医療従事者や脈波解析装置100の開発者など、脈波に関して十分に知識を有する者により、測定IDごとにマニュアルで判断された、各拍ごとの(図示しない集積形状との)平均的な近似度の順位を示す。 “Index” in FIG. 28 is an average value of the approximation degree (with an integrated shape not shown) calculated for each measurement ID by the above calculation formula (1) by a predetermined conversion formula. It is shown by. "Equipment rank" indicates the rank in ascending order of the index indicated by 100 minutes. The “reader ranking” is determined for each beat (not shown in the figure) manually determined for each measurement ID by a person having sufficient knowledge about pulse waves, such as a medical worker or a developer of the pulse wave analysis device 100. Shows the average degree of approximation (with shape).
 図29は、図28に示された、装置による近似の順位と判読者による近似の順位との相関関係を示す図である。図29に示されるように、2次元の座標平面においてY軸に「人の判定順位(判読者順位)」、X軸に「装置の判定順位」をとった場合の両者の相関の決定係数R2は、0.6844で表わされる。 FIG. 29 is a diagram showing the correlation between the approximate ranking by the apparatus and the approximate ranking by the reader shown in FIG. As shown in FIG. 29, in the two-dimensional coordinate plane, the determination coefficient R2 of the correlation between the two when the “human judgment order (reader order)” is taken on the Y axis and the “device judgment order” is taken on the X axis. Is represented by 0.6844.
 このように、上記式(1)により近似度を算出する場合、判読者順位と近い結果を得ることができているが、近似度の計算式は、判読者順位と装置の判定順位とが一致するような式、つまり、決定係数R2が1.0に近づくような式が、実験により定められることが望ましい。従来、医療従者など人間による目視によって波形の乱れ(不整脈や体動)が判定されていたからである。 As described above, when the degree of approximation is calculated by the above formula (1), a result close to the reader's rank can be obtained. However, the degree of reader's rank matches the judgment order of the device. It is desirable that an equation for determining, that is, an equation such that the determination coefficient R2 approaches 1.0 is determined by experiment. This is because, conventionally, the disturbance of the waveform (arrhythmia or body movement) has been determined by visual observation by a human such as a medical attendant.
 <変形例1>
 上記実施の形態では、baPWVを算出する場合、上腕の測定部位はデフォルトとして定められた方の腕(たとえば右)を測定部位とした。または、右上腕と左上腕との血圧差によってbaPWVの算出に用いる上腕を右とするか左とするかを判定したりした。
<Modification 1>
In the above embodiment, when baPWV is calculated, the measurement site of the upper arm is set to the measurement site of the arm (for example, the right) determined as the default. Alternatively, it is determined whether the upper arm used for calculating baPWV is right or left based on the blood pressure difference between the upper right arm and the left upper arm.
 しかし、解析処理部104が算出する近似度に基づいて、baPWVの算出に用いる上腕の測定部位を決定してもよい。 However, based on the degree of approximation calculated by the analysis processing unit 104, the measurement part of the upper arm used for calculating baPWV may be determined.
 具体的には、図6のステップS110(脈波伝播速度の算出)において、次のような処理が行なわれてもよい。以下の説明においても、右上腕の脈波を用いてbaPWVを算出することがデフォルトとして定められていると仮定する。 Specifically, the following processing may be performed in step S110 (calculation of pulse wave velocity) in FIG. Also in the following description, it is assumed that the calculation of baPWV using the pulse wave of the upper right arm is determined as a default.
 解析処理部104は、直前のステップS108(除外処理)において、右上腕の脈波のうち算出対象から除外されなかった拍“BTr”についての近似度の平均値“AVr”が、予め定められた閾値以上か否かを判断する。平均値AVrが閾値未満と判断された場合、左上腕の脈波をbaPWVの算出に用いる。または、左上腕の脈波のうち算出対象から除外されなかった拍“BTl”についての近似度の平均値“AVl”も、予め定められた閾値未満であれば、測定をやり直すようユーザに報知することとしてもよい。 In the immediately preceding step S108 (exclusion process), the analysis processing unit 104 determines in advance the average value “AVr” of the degree of approximation for the beat “BTr” that is not excluded from the calculation target in the pulse wave of the upper right arm. It is determined whether or not the threshold value is exceeded. When it is determined that the average value AVr is less than the threshold value, the pulse wave of the left upper arm is used for calculating baPWV. Alternatively, if the average value “AVl” of the degree of approximation of the beat “BTl” that is not excluded from the calculation target of the pulse wave of the left upper arm is also less than a predetermined threshold value, the user is notified to perform measurement again. It is good as well.
 または、平均値AVrと、平均値AVlとを比較し、その値が高い方の部位の脈波をbaPWVの算出に用いてもよい。 Alternatively, the average value AVr and the average value AVl may be compared, and the pulse wave of the part with the higher value may be used for calculating baPWV.
 図7を例にした場合、上記の拍BTrは、右上腕の集積脈波との近似度が低かった3拍目以外の拍を表わす。または、拍BTrは、足首脈波での除外結果も考慮して、3、5および6拍目以外の拍を表わしてもよい。同様に、上記の拍BTlは、左上腕の集積脈波との近似度が低かった4拍目以外の拍を表わす。または、拍BTlは、足首脈波での除外結果も考慮して、4~6拍目以外の拍を表わしてもよい。 In the example of FIG. 7, the above beat BTr represents a beat other than the third beat that has a low degree of approximation with the integrated pulse wave of the upper right arm. Alternatively, the beat BTr may represent a beat other than the third, fifth, and sixth beats in consideration of the exclusion result of the ankle pulse wave. Similarly, the above-mentioned beat BT1 represents a beat other than the fourth beat that has a low degree of approximation with the integrated pulse wave of the left upper arm. Alternatively, the beat BT1 may represent a beat other than the 4th to 6th beats in consideration of the exclusion result of the ankle pulse wave.
 足首脈波についても上腕脈波と同様に、左右いずれかの脈波のみをbaPWVの算出に用いるようにし、脈波の安定している上腕脈波および足首脈波によってただ1つのbaPWVを算出することとしてもよい。 Similarly to the brachial pulse wave, only the left or right pulse wave is used for calculating the baPWV, and only one baPWV is calculated based on the brachial pulse wave and the ankle pulse wave where the pulse wave is stable. It is good as well.
 <変形例2>
 上記実施の形態では、baPWV_RLおよびbaPWV_RRを測定することとしたが、1つの測定部位における脈波より算出可能なPWVであってもよい。
<Modification 2>
In the above embodiment, baPWV_RL and baPWV_RR are measured, but PWV that can be calculated from a pulse wave at one measurement site may be used.
 1つの測定部位における脈波よりPWVを算出する場合、PWVは、脈波の伝播距離(Lpt)を脈波伝播時間(PTT)で除算することで求められる。伝播距離は、いわゆる体幹長と言われる、心臓と反射部位である腸骨動脈の分岐部との間の距離を2倍したものである。体幹長は身長に比例する長さである。脈波伝播距離は直接測定ができないが、所定の換算式を用いて求めることができる。PTTは、図30に示されるTppとTRとを所定の換算式に当てはめることで算出される。Tppは、進行波である駆出波のピーク(最大点)の出現時間と反射波のピーク(最大点)の出現時間との時間間隔を表わす。TRは、駆出波の出現時間と進行波が腸骨動脈の分岐部から反射して戻ってくる反射波の出現時間との間の時間間隔を表わす。これらもまた、動脈硬化度の判定を行なうための指標とすることができる。図30においてTppは、駆出波ピーク点であるA点と反射波ピーク点であるB点との間の時間間隔で表わされる。図30においてTRは、駆出波の立ち上がり点から反射波の立上り点までの時間間隔で表わされる。 When calculating the PWV from the pulse wave at one measurement site, the PWV is obtained by dividing the pulse wave propagation distance (Lpt) by the pulse wave propagation time (PTT). The propagation distance is the so-called trunk length, which is twice the distance between the heart and the bifurcation of the iliac artery, which is the reflection site. The trunk length is proportional to the height. Although the pulse wave propagation distance cannot be directly measured, it can be obtained using a predetermined conversion formula. PTT is calculated by applying Tpp and TR shown in FIG. 30 to a predetermined conversion formula. Tpp represents the time interval between the appearance time of the peak (maximum point) of the ejection wave, which is a traveling wave, and the appearance time of the peak (maximum point) of the reflected wave. TR represents the time interval between the appearance time of the ejection wave and the appearance time of the reflected wave where the traveling wave is reflected back from the bifurcation of the iliac artery. These can also be used as an index for determining the degree of arteriosclerosis. In FIG. 30, Tpp is represented by the time interval between the point A which is the ejection wave peak point and the point B which is the reflected wave peak point. In FIG. 30, TR is represented by a time interval from the rising point of the ejection wave to the rising point of the reflected wave.
 または、解析指標としてAIを算出してもよい。その場合、図30を参照して、解析処理部(104)は、A点での振幅P1に対するB点での振幅P2を抽出し、振幅P1を振幅P2で除算することにAI値が得られる。 Alternatively, AI may be calculated as an analysis index. In that case, referring to FIG. 30, the analysis processing unit (104) extracts the amplitude P2 at the point B with respect to the amplitude P1 at the point A, and the AI value is obtained by dividing the amplitude P1 by the amplitude P2. .
 このようなPWVやAIを解析指標として算出する場合には、指標算出に影響する範囲として、脈の立ち上がり点から反射波ピークまでを含む範囲に限定して、近似度を算出してもよい。 When calculating such PWV or AI as an analysis index, the degree of approximation may be calculated by limiting the range that affects the index calculation to a range that includes from the rising point of the pulse to the reflected wave peak.
 <変形例3>
 上記実施の形態における脈波解析装置100は、検出ユニット20、カフ24および情報処理ユニット1を含むものとして説明したが、脈波解析装置は、検出ユニット20およびカフ24を含まない汎用のコンピュータにおいて実現されてもよい。つまり、本実施の形態において、脈波解析装置は、代表的にCPU10によって実現される解析処理部104の機能が含まれていれば、図6に示したような脈波解析処理を実現することができる。汎用のコンピュータは、情報処理ユニット1と同様のハードウェアを有していればよい。
<Modification 3>
Although the pulse wave analysis device 100 in the above embodiment has been described as including the detection unit 20, the cuff 24, and the information processing unit 1, the pulse wave analysis device is a general-purpose computer that does not include the detection unit 20 and the cuff 24. It may be realized. That is, in the present embodiment, the pulse wave analysis device realizes the pulse wave analysis processing as shown in FIG. 6 if the function of the analysis processing unit 104 that is typically realized by the CPU 10 is included. Can do. The general-purpose computer may have the same hardware as the information processing unit 1.
 本実施の形態および各変形例の脈波解析装置が行なう脈波解析方法を、プログラムとして提供することもできる。このようなプログラムは、当該プログラムをコンピュータが読取可能な一時的でない(non-transitory)記録媒体に記録される。このような「コンピュータ読取可能な記録媒体」は、たとえば、CD-ROM(Compact Disc-ROM)などの光学媒体や、メモリカードなどの磁気記録媒体などを含む。また、このようなプログラムをコンピュータ読み取り可能な記録媒体に記録させて、プログラム製品として提供することもできる。また、ネットワークを介したダウンロードによって、プログラムを提供することもできる。 The pulse wave analysis method performed by the pulse wave analysis apparatus according to the present embodiment and each modification may be provided as a program. Such a program is recorded on a non-transitory recording medium in which the program can be read by a computer. Such “computer-readable recording medium” includes, for example, an optical medium such as a CD-ROM (Compact Disc-ROM), a magnetic recording medium such as a memory card, and the like. Further, such a program can be recorded on a computer-readable recording medium and provided as a program product. A program can also be provided by downloading via a network.
 なお、本実施の形態に係るプログラムは、コンピュータのオペレーティングシステム(OS)の一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の配列で所定のタイミングで呼出して処理を実行させるものであってもよい。その場合、プログラム自体には上記モジュールが含まれずOSと協働して処理が実行される。このようなモジュールを含まないプログラムも、本実施の形態に係るプログラムに含まれ得る。 The program according to the present embodiment is a program module that is provided as a part of a computer operating system (OS) and calls necessary modules in a predetermined arrangement at a predetermined timing to execute processing. There may be. In that case, the program itself does not include the module, and the process is executed in cooperation with the OS. A program that does not include such a module can also be included in the program according to the present embodiment.
 また、本実施の形態に係るプログラムは他のプログラムの一部に組込まれて提供されるものであってもよい。その場合にも、プログラム自体には上記他のプログラムに含まれるモジュールが含まれず、他のプログラムと協働して処理が実行される。このような他のプログラムに組込まれたプログラムも、本実施の形態に係るプログラムに含まれ得る。 Further, the program according to the present embodiment may be provided by being incorporated in a part of another program. Even in this case, the program itself does not include the module included in the other program, and the process is executed in cooperation with the other program. Such a program incorporated in another program can also be included in the program according to the present embodiment.
 提供されるプログラム製品は、ハードディスクなどのプログラム格納部にインストールされて実行される。なお、プログラム製品は、プログラム自体と、プログラムが記憶された記憶媒体とを含む。 The provided program product is installed in a program storage unit such as a hard disk and executed. Note that the program product includes the program itself and a storage medium in which the program is stored.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明によれば、脈波解析装置において、体動などの影響の少ない安定した拍のみを用いて脈波解析指標を算出することができる。 According to the present invention, the pulse wave analysis apparatus can calculate the pulse wave analysis index using only stable beats with little influence of body motion or the like.
 1 情報処理ユニット、2 制御部、4 出力部、6 操作部、8 記憶装置、20ar,20al,20br,20bl 検出ユニット、22al,22ar,22bl,22br 配管、24ar,24al,24br,24bl カフ、25al,25ar,25bl,25br 圧力ポンプ、26al,26ar,26bl,26br 調圧弁、27al,27ar,27bl,27br 配管、28al,28ar,28bl,28br 圧力センサ、29al,29ar,29bl,29br A/D変換部、30 調整部、100 脈波解析装置、102 脈波測定部、104 解析処理部、106 血圧測定部、108 血圧指標算出部、200 被測定者。 1 information processing unit, 2 control unit, 4 output unit, 6 operation unit, 8 storage device, 20ar, 20al, 20br, 20bl detection unit, 22al, 22ar, 22bl, 22br piping, 24ar, 24al, 24br, 24bl cuff, 25al , 25ar, 25bl, 25br pressure pump, 26al, 26ar, 26bl, 26br pressure regulating valve, 27al, 27ar, 27bl, 27br piping, 28al, 28ar, 28bl, 28br pressure sensor, 29al, 29ar, 29bl, 29br A / D converter , 30 adjustment unit, 100 pulse wave analysis device, 102 pulse wave measurement unit, 104 analysis processing unit, 106 blood pressure measurement unit, 108 blood pressure index calculation unit, 200 person to be measured.

Claims (9)

  1.  複数拍分の脈波波形を記憶するための記憶部(8)と、
     前記複数拍分の脈波波形を解析することで脈波解析指標を算出するための処理を行なう解析処理部(2)とを備え、
     前記解析処理部(2)は、
      前記複数拍分の脈波波形を構成する1拍毎の脈波形状を集積し、
      集積された脈波形状と前記1拍毎の脈波形状との近似度が低い拍を算出対象から除外して前記脈波解析指標を算出し、
     算出された前記脈波解析指標を、解析結果として出力するための出力部(4)をさらに備えた、脈波解析装置(1)。
    A storage unit (8) for storing pulse waveforms for a plurality of beats;
    An analysis processing unit (2) for performing a process for calculating a pulse wave analysis index by analyzing the pulse waveform of the plurality of beats,
    The analysis processing unit (2)
    The pulse wave shape for each beat constituting the pulse wave waveform for the plurality of beats is accumulated,
    Calculating the pulse wave analysis index by excluding beats having a low degree of approximation between the accumulated pulse wave shape and the pulse wave shape for each beat from the calculation target;
    A pulse wave analysis device (1) further comprising an output unit (4) for outputting the calculated pulse wave analysis index as an analysis result.
  2.  前記解析処理部(2)は、さらに、前記脈波解析指標の算出に用いられた脈波形状についての前記近似度を集積することで、拍動の安定度を算出し、
     前記出力部(4)は、前記安定度を前記脈波解析指標の信憑性を示す指標としてさらに出力する、請求の範囲第1項に記載の脈波解析装置(1)。
    The analysis processing unit (2) further calculates the stability of pulsation by accumulating the degree of approximation of the pulse wave shape used for calculating the pulse wave analysis index,
    The pulse wave analysis device (1) according to claim 1, wherein the output unit (4) further outputs the stability as an index indicating the credibility of the pulse wave analysis index.
  3.  前記記憶部(8)は、前記複数拍分の脈波波形を肢部毎に記憶し、
     前記解析処理部(2)は、前記肢部毎に、前記1拍毎の脈波形状を集積し、かつ、前記近似度、前記脈波解析指標および前記安定度を算出し、
     前記出力部(4)は、前記安定度が高い方の前記脈波解析指標を、前記解析結果として出力する、請求の範囲第2項に記載の脈波解析装置(1)。
    The storage unit (8) stores the pulse waveform for the plurality of beats for each limb,
    The analysis processing unit (2) accumulates the pulse wave shape for each beat for each limb, and calculates the approximation, the pulse wave analysis index, and the stability,
    The pulse wave analysis device (1) according to claim 2, wherein the output unit (4) outputs the pulse wave analysis index having the higher stability as the analysis result.
  4.  前記記憶部(8)は、左右の肢部について、複数拍分の脈波波形を記憶し、
     前記解析処理部(2)は、前記肢部毎に前記近似度を算出し、かつ、前記近似度が高い方の肢部の脈波形状を用いて、前記脈波解析指標を算出する、請求の範囲第1項に記載の脈波解析装置(1)。
    The storage unit (8) stores a pulse waveform for a plurality of beats for the left and right limbs,
    The analysis processing unit (2) calculates the degree of approximation for each limb, and calculates the pulse wave analysis index using a pulse wave shape of the limb having the higher degree of approximation. The pulse wave analysis device (1) according to the first term of the range.
  5.  前記解析処理部(2)は、前記1拍毎の脈波形状のうち、前記脈波解析指標の算出に影響する範囲に限定して、前記近似度を算出する、請求の範囲第1項に記載の脈波解析装置(1)。 The said analysis process part (2) is limited to the range which influences calculation of the said pulse wave analysis parameter | index among the pulse wave shapes for every said beat, The said approximation degree is calculated to Claim 1 characterized by the above-mentioned. The described pulse wave analyzer (1).
  6.  前記脈波解析指標は、動脈硬化の度合い、および/または、血管の狭窄の程度を示す、請求の範囲第1項に記載の脈波解析装置(1)。 The pulse wave analysis device (1) according to claim 1, wherein the pulse wave analysis index indicates a degree of arteriosclerosis and / or a degree of stenosis of a blood vessel.
  7.  前記脈波解析指標は、動脈硬化の度合いを示す指標としての脈波伝播速度を含む、請求の範囲第6項に記載の脈波解析装置(1)。 The pulse wave analysis device (1) according to claim 6, wherein the pulse wave analysis index includes a pulse wave velocity as an index indicating the degree of arteriosclerosis.
  8.  肢部の脈波を検出するための脈波検出部(20ar,20al,20br,20bl)をさらに備え、
     前記脈波解析部(2)は、前記脈波検出部(20ar,20al,20br,20bl)からの検出信号に基づいて、前記複数拍分の脈波波形を測定する、請求の範囲第1項に記載の脈波解析装置(1)。
    A pulse wave detector (20ar, 20al, 20br, 20bl) for detecting a pulse wave of the limb,
    The said pulse wave analysis part (2) measures the pulse wave waveform for the said several beats based on the detection signal from the said pulse wave detection part (20ar, 20al, 20br, 20bl). 2. The pulse wave analyzer (1) described in 1.
  9.  コンピュータを、脈波を解析するための装置として機能させるための、脈波解析用プログラムを記録した記録媒体であって、
     前記脈波解析用プログラムは、前記コンピュータに、
     記憶部に記憶された複数拍分の脈波波形を構成する1拍毎の脈波形状を集積するステップと、
     集積された脈波形状と前記1拍毎の脈波形状との近似度が低い拍を算出対象から除外して脈波解析指標を算出するステップと、
     算出された前記脈波解析指標を、解析結果として出力するステップとをコンピュータに実行させる、記録媒体。
    A recording medium recording a pulse wave analysis program for causing a computer to function as a device for analyzing a pulse wave,
    The pulse wave analysis program is stored in the computer.
    A step of accumulating a pulse wave shape for each beat constituting a pulse wave waveform for a plurality of beats stored in the storage unit;
    Calculating a pulse wave analysis index by excluding beats having a low degree of approximation between the accumulated pulse wave shape and the pulse wave shape for each beat from the calculation target;
    A recording medium that causes a computer to execute the step of outputting the calculated pulse wave analysis index as an analysis result.
PCT/JP2010/069093 2009-10-30 2010-10-27 Pulse wave analyzer and recording medium WO2011052651A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2012103188/14A RU2570282C2 (en) 2009-10-30 2010-10-27 Pulse wave analyser and record medium
CN201080034208.5A CN102469942B (en) 2009-10-30 2010-10-27 Pulse wave resolver and pulse wave analytic method
DE112010004170T DE112010004170T5 (en) 2009-10-30 2010-10-27 Pulse wave analysis device and recording medium
US13/310,421 US9044145B2 (en) 2009-10-30 2011-12-02 Pulse wave analysis device and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009250928A JP5287668B2 (en) 2009-10-30 2009-10-30 Pulse wave analyzer and pulse wave analysis program
JP2009-250928 2009-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/310,421 Continuation US9044145B2 (en) 2009-10-30 2011-12-02 Pulse wave analysis device and recording medium

Publications (1)

Publication Number Publication Date
WO2011052651A1 true WO2011052651A1 (en) 2011-05-05

Family

ID=43922076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069093 WO2011052651A1 (en) 2009-10-30 2010-10-27 Pulse wave analyzer and recording medium

Country Status (6)

Country Link
US (1) US9044145B2 (en)
JP (1) JP5287668B2 (en)
CN (1) CN102469942B (en)
DE (1) DE112010004170T5 (en)
RU (1) RU2570282C2 (en)
WO (1) WO2011052651A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061766A1 (en) * 2011-10-28 2013-05-02 オムロンヘルスケア株式会社 Measuring device, index calculation method, and index calculation program
WO2013061765A1 (en) * 2011-10-28 2013-05-02 オムロンヘルスケア株式会社 Measuring device, evaluation method, and evaluation program
JP2017164300A (en) * 2016-03-16 2017-09-21 フクダ電子株式会社 Blood pressure/pulse wave measuring apparatus and program

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078753B2 (en) * 2012-05-14 2017-02-15 株式会社 ライフインターフェイス Limb-mounted biological information measuring device
CN105246399B (en) * 2013-06-26 2017-10-03 英特尔公司 The detection of leading stroke risk index
JP6208526B2 (en) * 2013-10-15 2017-10-04 日本光電工業株式会社 Biological information display device and biological information display program
CN103941873B (en) * 2014-04-30 2017-05-10 北京智谷睿拓技术服务有限公司 Identification method and device
JP6226822B2 (en) * 2014-06-11 2017-11-08 日本光電工業株式会社 Biological information measuring device, operating method, and program
CN204515353U (en) * 2015-03-31 2015-07-29 深圳市长桑技术有限公司 A kind of intelligent watch
JP2016214303A (en) * 2015-05-14 2016-12-22 日本光電工業株式会社 Index output method, index output device, and index output program
JP6862093B2 (en) * 2016-03-16 2021-04-21 フクダ電子株式会社 Blood pressure pulse wave measuring device
WO2017171802A1 (en) * 2016-03-31 2017-10-05 Edwards Lifesciences Corporation Aortic stenosis screening
JP6683034B2 (en) * 2016-06-24 2020-04-15 オムロンヘルスケア株式会社 Blood pressure pulse wave measuring device
WO2020061887A1 (en) * 2018-09-27 2020-04-02 深圳市伊欧乐科技有限公司 Heart rate measurement method and device, and computer readable storage medium
CN113349751B (en) * 2020-03-05 2024-09-10 深圳市理邦精密仪器股份有限公司 Inflation and deflation control method and device and medical equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136107A (en) * 2003-12-22 2004-05-13 Colin Medical Technology Corp Arteriosclerosis examining apparatus
JP2006247221A (en) * 2005-03-11 2006-09-21 Omron Healthcare Co Ltd Pulse wave detector
JP2006271731A (en) * 2005-03-29 2006-10-12 Toshiba Corp Heartbeat measuring apparatus and heartbeat measuring method
JP2009011585A (en) * 2007-07-05 2009-01-22 Toshiba Corp Apparatus and method for pulse wave processing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328150A (en) 1997-05-30 1998-12-15 Nippon Colin Co Ltd Pulse wave propagation speed information measuring instrument
JP3213296B2 (en) 1999-11-01 2001-10-02 日本コーリン株式会社 Pulse wave velocity information measurement device
RU2207801C2 (en) * 2001-02-21 2003-07-10 Самарский государственный медицинский университет Method for integral evaluation of regional circulation in limbs
JP3542792B2 (en) * 2001-12-17 2004-07-14 コーリンメディカルテクノロジー株式会社 Atherosclerosis inspection device
JP3621379B2 (en) * 2002-01-09 2005-02-16 コーリンメディカルテクノロジー株式会社 Atherosclerosis evaluation device
JP3643565B2 (en) * 2002-02-21 2005-04-27 コーリンメディカルテクノロジー株式会社 Arterial waveform inspection device
JP4517619B2 (en) * 2002-12-05 2010-08-04 オムロンヘルスケア株式会社 Pulse wave measuring device
JP2004313468A (en) * 2003-04-16 2004-11-11 Omron Healthcare Co Ltd Pulse wave measuring apparatus and biological wave analysis program
RU2270609C1 (en) * 2005-02-02 2006-02-27 Дмитрий Николаевич Майстренко Method for detecting indications for correcting disorders of regional hemodynamics after reconstructive operations upon inferior limbs' arteries
JP5255771B2 (en) 2007-01-15 2013-08-07 フクダ電子株式会社 Biological information processing apparatus and biological information processing method
CN101156771A (en) * 2007-09-28 2008-04-09 天津市先石光学技术有限公司 Method and apparatus for improving vascellum hardness measurement precision base on pulse wave frequency spectrum analysis
RU2361527C1 (en) * 2008-03-24 2009-07-20 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ РОССИЙСКИЙ НАУЧНЫЙ ЦЕНТР РАДИОЛОГИИ И ХИРУРГИЧЕСКИХ ТЕХНОЛОГИЙ ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ВЫСОКОТЕХНОЛОГИЧНОЙ МЕДИЦИНСКОЙ ПОМОЩИ (ФГУ "РНЦРХТ Росмедтехнологий") Method of treating obliterating atheroslerosis of vessels of lower limbs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136107A (en) * 2003-12-22 2004-05-13 Colin Medical Technology Corp Arteriosclerosis examining apparatus
JP2006247221A (en) * 2005-03-11 2006-09-21 Omron Healthcare Co Ltd Pulse wave detector
JP2006271731A (en) * 2005-03-29 2006-10-12 Toshiba Corp Heartbeat measuring apparatus and heartbeat measuring method
JP2009011585A (en) * 2007-07-05 2009-01-22 Toshiba Corp Apparatus and method for pulse wave processing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061766A1 (en) * 2011-10-28 2013-05-02 オムロンヘルスケア株式会社 Measuring device, index calculation method, and index calculation program
WO2013061765A1 (en) * 2011-10-28 2013-05-02 オムロンヘルスケア株式会社 Measuring device, evaluation method, and evaluation program
JP2013094261A (en) * 2011-10-28 2013-05-20 Omron Healthcare Co Ltd Measuring device, evaluation method, and evaluation program
JP2013094262A (en) * 2011-10-28 2013-05-20 Omron Healthcare Co Ltd Measuring device, index calculation method, and index calculation program
CN103889319A (en) * 2011-10-28 2014-06-25 欧姆龙健康医疗事业株式会社 Measuring device, evaluation method, and evaluation program
CN103906464A (en) * 2011-10-28 2014-07-02 欧姆龙健康医疗事业株式会社 Measuring device, index calculation method, and index calculation program
JP2017164300A (en) * 2016-03-16 2017-09-21 フクダ電子株式会社 Blood pressure/pulse wave measuring apparatus and program
WO2017158908A1 (en) * 2016-03-16 2017-09-21 フクダ電子株式会社 Blood pressure/pulse wave measurement device and program

Also Published As

Publication number Publication date
RU2012103188A (en) 2013-08-10
JP2011092556A (en) 2011-05-12
US20120095353A1 (en) 2012-04-19
RU2570282C2 (en) 2015-12-10
CN102469942B (en) 2015-11-25
JP5287668B2 (en) 2013-09-11
CN102469942A (en) 2012-05-23
DE112010004170T5 (en) 2012-10-04
US9044145B2 (en) 2015-06-02

Similar Documents

Publication Publication Date Title
JP5287668B2 (en) Pulse wave analyzer and pulse wave analysis program
EP3440995B1 (en) Biological information analysis device, system, and program
RU2567266C2 (en) Method and device for processing photoplethysmographic signals
JP3671059B2 (en) Non-destructive blood pressure measurement device that does not use a pressure band
CN109480800B (en) Apparatus and method for estimating biological information and blood pressure monitoring device
US12029538B2 (en) Wearable device with plethysmogram sensor
US11432728B2 (en) Blood pressure/pulse wave measurement device and program
US20140316291A1 (en) Measurement device, evaluating method, and evaluation program
KR101640498B1 (en) Blood pressure estimating apparatus and method by using variable characteristic ratio
WO2017047384A1 (en) Blood pressure analyzing device, blood pressure measuring device, blood pressure analyzing method, and blood pressure analyzing program
JP2018153250A (en) Blood pressure measuring device, method, and program
KR101918577B1 (en) Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same
JP4626250B2 (en) Pulse wave information display device, program for controlling pulse wave information display device, and pulse wave information display method
JP5887836B2 (en) Measuring device, index calculation method, and index calculation program
KR20190009079A (en) Wearable Blood Pressure Monitor And Method For Providing Blood Pressure Using The Same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034208.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012103188

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 112010004170

Country of ref document: DE

Ref document number: 1120100041709

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826783

Country of ref document: EP

Kind code of ref document: A1