WO2011052626A1 - Shrink label - Google Patents

Shrink label Download PDF

Info

Publication number
WO2011052626A1
WO2011052626A1 PCT/JP2010/069038 JP2010069038W WO2011052626A1 WO 2011052626 A1 WO2011052626 A1 WO 2011052626A1 JP 2010069038 W JP2010069038 W JP 2010069038W WO 2011052626 A1 WO2011052626 A1 WO 2011052626A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
weight
present
shrink
layer
Prior art date
Application number
PCT/JP2010/069038
Other languages
French (fr)
Japanese (ja)
Inventor
卓 荒井
彰 宮崎
Original Assignee
株式会社フジシールインターナショナル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジシールインターナショナル filed Critical 株式会社フジシールインターナショナル
Publication of WO2011052626A1 publication Critical patent/WO2011052626A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing

Definitions

  • the present invention relates to a shrink label. More specifically, the present invention relates to a shrink label having a printed layer made of an acrylic polymer that has excellent followability and tack-free property during shrink processing.
  • plastic bottles such as PET bottles and metal bottles such as bottle cans are widely used as beverage containers for tea and soft drinks.
  • These containers are often equipped with plastic labels for display, decoration, and functionality.
  • plastic labels have decorativeness, workability (followability to containers), wide display area, etc.
  • shrink labels provided with a printed layer are widely used.
  • an active energy ray curable printing ink that is cured by an active energy ray such as ultraviolet (UV) has been used in recent years. Furthermore, among them, there are many radically polymerizable active energy ray-curable printing inks that are cured by radical polymerization to form a printing layer because of their comparatively low cost and not being hindered by water polymerization. In particular, radically polymerizable active energy ray-curable printing inks mainly composed of acrylic resins are used (see Patent Document 1).
  • the above radical polymerizable active energy ray curable printing ink uses a relatively large amount of a polyfunctional monomer as a monomer component in order to obtain sufficient curability, and forms a hard printed layer with a high degree of crosslinking after curing. .
  • a printed layer is used for a shrink label (particularly a highly shrinkable shrink label)
  • the printed layer cannot follow the shrinkage deformation of the shrink film as a base material during shrink processing, and the printed layer is whitened. There has been a problem that causes poor tracking performance.
  • a printing layer formed from a printing ink added with the above urethane acrylate is also used for a shrink label having a very high shrinkage (for example, a shrinkage rate of about 50%)
  • the followability to shrink processing is Insufficient followability may occur.
  • the proportion of the monofunctional monomer in the monomer component is increased in order to further improve the followability, the curability of the printing ink decreases, and the uncured monomer remains in the printed layer. There was a problem that the surface tack) remained. Therefore, the present situation is that a shrink label having a good printed layer with good tack-free property and good tack-free property even with high shrinkage shrinkage and no tack or weak tack.
  • an object of the present invention is to provide a shrink label having a printed layer excellent in both followability to shrink processing and tack-free property.
  • the present inventors have formed a monomer component containing a monofunctional monomer as a main component and containing a specific monomer in a specific ratio on at least one side of the substrate. It was found that by providing a printing layer made of an acrylic polymer (formed by polymerization), it is possible to obtain a shrink label having a printing layer that has both excellent followability to shrink processing and tack-free properties, and completed the present invention. did.
  • the present invention contains at least 80% by weight of a monofunctional monomer on at least one side of a substrate, and acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy-
  • a shrink label comprising a printing layer containing an acrylic polymer formed from a monomer component containing 50% by weight or more of a monomer selected from the group consisting of 3-phenoxypropyl acrylate.
  • the present invention provides the shrink label as described above, wherein the monomer component contains 5 to 90% by weight of acryloylmorpholine.
  • the present invention provides the shrink label as described above, wherein the monomer component contains 5 to 90% by weight of N-acryloyloxyethyl hexahydrophthalimide.
  • the present invention provides the shrink label, wherein the printing layer is a printing layer formed by active energy ray curing.
  • the shrink label of the present invention uses an acrylic polymer formed from a monomer component containing 80% by weight or more of a monofunctional monomer as the acrylic polymer constituting the printed layer.
  • the followability to the deformation of the base material at the time is good.
  • the monomer component forming the acrylic polymer may be selected from the group consisting of acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy-3-phenoxypropyl acrylate.
  • the printed layer has no tack (surface tack) or has very low tack (surface tack) and is excellent in tack-free property.
  • the shrink label of the present invention is excellent in the followability to the shrink processing of the printed layer and tack-free, and is particularly suitable as a highly shrinkable shrink label.
  • excellent tack-free includes not only the case where there is no tack on the surface of the printing layer but also the case where tack is extremely weak.
  • the shrink label of the present invention contains 80% by weight or more of a monofunctional monomer on at least one side of a base material, and acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy It has a printing layer containing an acrylic polymer formed from a monomer component containing 50% by weight or more of a monomer selected from the group consisting of -3-phenoxypropyl acrylate.
  • the above print layer may be referred to as “print layer of the present invention”.
  • the above acrylic polymer may be referred to as “the acrylic polymer of the present invention”.
  • a monomer selected from the group consisting of the above acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy-3-phenoxypropyl acrylate may be referred to as a “specific monomer”.
  • a specific monomer selected from the group consisting of acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy-3-phenoxypropyl acrylate in the monomer component forming the acrylic polymer of the present invention.
  • the printed layer of the present invention is an essential printed layer in the shrink label of the present invention.
  • the printing layer of the present invention contains the acrylic polymer of the present invention as an essential component.
  • the printing layer of this invention may contain color materials (coloring agents), such as a cellulose resin and a pigment, and another additive.
  • the content of the acrylic polymer of the present invention in the total weight (100% by weight) of the printed layer of the present invention varies depending on the content of the pigment and the like and is not particularly limited, but is preferably 30 to 99% by weight, Preferably, it is 45 to 95% by weight.
  • the acrylic polymer of the present invention is a polymer formed from a monomer component containing 80% by weight or more of a monofunctional monomer and 50% by weight or more of the specific monomer.
  • 80% by weight or more of all constituent monomer units constituting the acrylic polymer is a constituent unit derived from a monofunctional monomer, and 50% by weight or more of all constituent monomer units.
  • acrylic polymer means a polymer of monomer components containing (meth) acrylic acid (acrylic acid and / or methacrylic acid) and / or a derivative thereof, that is, a (meth) acryloyl group.
  • (Meth) acryl means “acryl” and / or “methacryl”.
  • the monofunctional monomer is a monomer having only one radical polymerizable functional group in the molecule.
  • the radical polymerizable functional group is preferably an ethylenically unsaturated group (radical polymerizable ethylenically unsaturated group), more preferably an active energy ray polymerizable radical polymerizable ethylenically unsaturated group (active energy ray radical polymerization). Ethylenically unsaturated group). More specifically, for example, vinyl group, propenyl group, isopropenyl group, (meth) acryloyl group and the like can be mentioned. Examples of the monofunctional monomer include known ethylenically unsaturated monofunctional monomers, and are not particularly limited.
  • the monofunctional monomer is preferably a monofunctional monomer having a primary irritation index (PII) value of 2.5 or less according to OECD 404 from the viewpoint of safety, and a monofunctional monomer having a PII value of 2.0 or less. Monomers are more preferred.
  • PII primary irritation index
  • Monofunctional monomers other than the specific monomer include isobornyl acrylate (PII value: 0.6), phenoxyethyl acrylate (PII value: 0.5), nonylphenol EO modified acrylate (PII value: 2.0), 4-acryloyloxymethyl-2-cyclohexyl-1,3-dioxolane (PII value: 0.55) is preferred.
  • the above nonylphenol EO-modified acrylate is represented by the following formula.
  • m is the average added mole number of ethylene oxide and is not particularly limited, but is preferably about 1.
  • the content of the monofunctional monomer in the total amount (100% by weight) of the monomer components forming the acrylic polymer of the present invention is 80% by weight or more (80 to 100% by weight), preferably 85 to 99% by weight. is there.
  • content of a specific monomer is also contained in content of said monofunctional monomer.
  • the content of the monofunctional monomer is less than 80% by weight, that is, 20% by weight of the polyfunctional monomer having two or more radically polymerizable functional groups in the molecule in the total amount of the monomer components forming the acrylic polymer of the present invention. If it is contained in an amount of at least%, the acrylic polymer of the present invention becomes hard, and the followability of the printed layer of the present invention to shrink processing decreases.
  • the specific monomers (acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO modified acrylate, 2-hydroxy-3-phenoxypropyl acrylate) that form the acrylic polymer of the present invention are highly reactive.
  • the acrylic polymer is cured (polymerized) to form an acrylic polymer and a printed layer made of the acrylic polymer is formed, the uncured (unreacted) residual monomer is reduced in the printed layer.
  • the glass transition temperature (Tg) of the acrylic polymer formed by curing these specific monomers is relatively high. For this reason, the tack of a printing layer can be reduced.
  • the proportion of the monofunctional monomer in the monomer component forming the acrylic polymer increases, the reactivity decreases, and the printed layer made of the acrylic polymer tends to have a large tack.
  • the present invention by adding a specific amount of the above specific monomer to the monomer component that forms the acrylic polymer, tack is reduced, and both the followability to the shrink processing of the printed layer and the tack free property are achieved. ing.
  • paracumylphenol EO-modified acrylate (paracumylphenol ethylene oxide-modified acrylate) is represented by the following formula.
  • n is the number of added moles of ethylene oxide, and is not particularly limited, but is preferably an integer of 1 or 2, and 1 is particularly preferable.
  • the average number of added moles of ethylene oxide is not particularly limited, but is preferably about 1.
  • the content of the specific monomer in the total amount (100% by weight) of monomer components forming the acrylic polymer of the present invention is 50% by weight or more (50 to 100% by weight), preferably 70 to 100% by weight, more The amount is preferably 80 to 100% by weight, more preferably 85 to 99% by weight.
  • the content of the specific monomer is less than 50% by weight, the reactivity of the monomer component is low, and the uncured (unreacted) monomer tends to remain in the formed printing layer, or the glass transition of the acrylic polymer after curing. Since the temperature is lowered, the surface tack of the printed layer is increased.
  • the total amount of monomer components forming the acrylic polymer of the present invention is selected from the group consisting of acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy-3-phenoxypropyl acrylate.
  • the total content (total content) of all the specific monomers is the “specific monomer content”.
  • the specific monomer in the acrylic polymer of the present invention may be used alone or in combination of two or more. From the viewpoint of improving the curability of the printing ink when forming the printing layer, it is preferable to use two or more kinds in combination.
  • acryloylmorpholine is preferable from the viewpoint of good curing reactivity, higher glass transition temperature of the cured acrylic polymer, and effective in reducing the tack of the printed layer.
  • the content of acryloylmorpholine in the total amount (100% by weight) of monomer components forming the acrylic polymer of the present invention is preferably 5 to 90% by weight, more preferably 20 to 80%. % By weight, more preferably 30 to 70% by weight.
  • N-acryloyloxyethylhexahydrophthalimide is also used from the viewpoint of good curing reactivity, higher glass transition temperature of the acrylic polymer after curing, and effective in reducing the tack of the printed layer. preferable.
  • the content of N-acryloyloxyethyl hexahydrophthalimide in the total amount (100% by weight) of the monomer component forming the acrylic polymer of the present invention is 5 to It is preferably 90% by weight, more preferably 20 to 80% by weight, still more preferably 30 to 70% by weight.
  • the monomer component forming the acrylic polymer of the present invention is less than 20 wt% [preferably less than 15 wt%, more preferably less than 10 wt%] relative to the total amount (100 wt%) of the monomer component, It may contain a functional monomer.
  • the polyfunctional monomer is a monomer having two or more radical polymerizable functional groups in the molecule.
  • the above monofunctional monomer and polyfunctional monomer may be used for the polymerization of the acrylic polymer of the present invention in the form of an oligomer.
  • the degree of polymerization of the oligomer is not particularly limited, but is preferably 2 to 20, and more preferably 5 to 15. That is, for example, the monofunctional monomer may be polymerized in advance to obtain an oligomer (monofunctional oligomer) having a polymerization degree of 2 to 20 (more preferably 5 to 15) and then used for the polymerization of the acrylic polymer of the present invention. Good.
  • the printing layer of the present invention may contain a cellulose resin in addition to the acrylic polymer of the present invention.
  • Cellulosic resins exhibit the effect of adjusting the viscosity of a composition for forming a printed layer (sometimes referred to as “printing ink”).
  • the coating property can be improved by adding a cellulose resin to increase the viscosity.
  • it since it is non-reactive with the curing reaction of the printing ink (polymerization reaction of the monomer component), it gives the printed layer a certain degree of hardness while maintaining the flexibility of the acrylic polymer, and the surface tack of the printed layer. Demonstrate the effect of reducing.
  • the cellulose-based resin is not particularly limited, but esterified cellulose resins such as nitrocellulose (nitrified cotton), cellulose acetate butyrate (CAB), cellulose acetate, and cellulose acetate propionate (CAP) are preferably exemplified.
  • esterified cellulose resins such as nitrocellulose (nitrified cotton), cellulose acetate butyrate (CAB), cellulose acetate, and cellulose acetate propionate (CAP) are preferably exemplified.
  • CAB cellulose acetate butyrate
  • CAP cellulose acetate propionate
  • the weight average molecular weight of the cellulose resin is not particularly limited, but is preferably 10,000 to 150,000, and more preferably 20,000 to 100,000. If the weight average molecular weight is less than 10,000, the viscosity of the printing ink may not increase, or the tack reduction effect of the printed layer may not be obtained. On the other hand, if it exceeds 150,000, the solubility of the cellulose resin in the printing ink may deteriorate. In addition, the printing ink may have a too high viscosity and the coating property may deteriorate.
  • the content of the cellulose resin in the printing layer of the present invention is not particularly limited, but is preferably 0 to 20 parts by weight with respect to 100 parts by weight of the acrylic polymer of the present invention.
  • the amount is more preferably 1 to 15 parts by weight, still more preferably 2 to 10 parts by weight.
  • the content of the cellulose resin is less than 1 part by weight, the effect of adjusting the viscosity of the printing ink is insufficient, and the applicability of the printing ink may be lowered.
  • the amount exceeds 20 parts by weight the printing ink becomes too viscous and the applicability may be lowered, or the performance of the printing layer may be lowered.
  • the printing layer of the present invention may contain a color material (colorant) for the purpose of coloring or the like.
  • a color material for the purpose of coloring or the like.
  • known or commonly used dyes and pigments used in printing inks can be used, and are not particularly limited, but pigments are preferably used.
  • the pigment may be a known or commonly used organic or inorganic coloring pigment used in printing ink depending on the application, and is not particularly limited.
  • white pigment such as titanium oxide (titanium dioxide), copper Indigo (blue) pigments such as phthalocyanine blue, red pigments such as condensed azo pigments, yellow pigments such as azo lake pigments, carbon black, aluminum flakes, mica (mica), and the like can be selected and used according to the application.
  • extender pigments such as alumina, calcium carbonate, barium sulfate, silica, and acrylic beads can also be used as pigments for the purpose of adjusting gloss. Only 1 type may be used for the said pigment and it may use 2 or more types together.
  • the content of the pigment can be arbitrarily designed according to the type of pigment, the concentration of the target color, etc., but is preferably 1 to 50% by weight, more preferably based on the total amount (100% by weight) of the printed layer. 2 to 40% by weight.
  • the total content of all pigments preferably satisfies the above range.
  • any of rutile type tetragonal high temperature type
  • anatase type tetragonal low temperature type
  • brookite type orthogonal crystal
  • titanium oxide “JR series” manufactured by Teika Co., Ltd. is available.
  • the content of titanium oxide in the white printed layer is preferably 30 to 50% by weight with respect to the total amount of the printed layer from the viewpoints of concealability and suppression of coarse protrusion formation.
  • the printing layer of the present invention includes the acrylic polymer of the present invention and Resins other than cellulosic resins (sometimes called “other resins"), plasticizers, lubricants, anti-settling agents, dispersants, stabilizers, fillers, antioxidants, ultraviolet absorbers, antistatic agents, colors
  • additives such as a parting prevention agent, a fragrance
  • the other resin examples include a silicone compound (silicone oil) added from the viewpoint of leveling properties of printing ink, defoaming effect, and slipperiness of the printing layer.
  • silicone compound is not particularly limited, a straight silicone compound (dimethylsilicone, methylphenylsilicone, methylhydrogensilicone, etc.) that is a polysiloxane having a main chain composed of a siloxane bond and has no substituent other than a methyl group or a phenyl group.
  • a modified silicone compound having a substituent other than a methyl group or a phenyl group at the side chain or terminal.
  • Examples of the substituent in the modified silicone compound include an epoxy group, a fluorine atom, an amino group, a carboxyl group, an aliphatic hydroxyl group (alcoholic hydroxyl group), an aromatic hydroxyl group (phenolic hydroxyl group), and a polyether chain.
  • a substituent etc. are mentioned.
  • Examples of the modified silicone having these substituents include epoxy-modified silicone, fluorine-modified silicone, amino-modified silicone, polyether-modified silicone, carboxyl-modified silicone, carbinol-modified silicone, phenol-modified silicone, and diol-modified silicone.
  • the content of the silicone compound is not particularly limited, but is preferably from 0.1 to 5% by weight, more preferably from 0.2 to 3% by weight, based on the total amount (100% by weight) of the printed layer.
  • the lubricant examples include polyolefin waxes such as polyethylene wax and polyethylene oxide wax, various waxes such as fatty acid amide, fatty acid ester, paraffin wax, polytetrafluoroethylene (PTFE) wax, and carnauba wax. .
  • the content of the lubricant is not particularly limited, but is preferably 0.1 to 10% by weight, more preferably 0.2 to 5% by weight, based on the total amount (100% by weight) of the printed layer.
  • the printing layer of the present invention comprises a polymerizable component [monofunctional monomer including a specific monomer and / or its oligomer (monofunctional oligomer), etc.] that forms the acrylic polymer of the present invention, and a polymerization initiator as necessary. It is formed by applying and curing a composition (printing ink) containing a cellulose resin, a color material (pigment etc.) and other additives.
  • a composition for forming the printing layer may be referred to as “printing ink”.
  • the printing ink curing method known and commonly used ink curing methods such as active energy ray curing and thermal curing can be used.
  • active energy ray curing is preferable from the viewpoint of suppressing thermal deformation of the shrink film as the base material.
  • the active energy rays include visible light, ultraviolet rays, and electron beams.
  • ultraviolet rays are particularly preferable, and near ultraviolet rays are more preferable.
  • a preferred wavelength is 200 to 460 nm.
  • the printing layer of the present invention is preferably a printing layer formed by active energy ray curing (active energy ray curable printing layer), more preferably a printing layer formed by ultraviolet curing (ultraviolet curable printing layer). ).
  • the printing ink for forming the printing layer of the present invention contains a polymerizable component that forms the acrylic polymer of the present invention as an essential component.
  • the polymerizable component contains the above-mentioned monofunctional monomer and / or monofunctional oligomer, and includes specific monomers (acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy- A monomer selected from the group consisting of 3-phenoxypropyl acrylate) as an essential component.
  • the monofunctional monomer in the polymerizable component is a monofunctional monomer exemplified as the monofunctional monomer contained in the monomer component forming the acrylic polymer of the present invention.
  • the monofunctional oligomer is a polymer having a low degree of polymerization of the monofunctional monomer.
  • the degree of polymerization is not particularly limited, but is preferably 2 to 20, and more preferably 5 to 15.
  • the oligomer is a polymer having a low polymerization degree of the monomer component forming the acrylic polymer of the present invention [radically polymerizable functional group (preferably radical polymerizable ethylenically unsaturated group, more preferably Means a polymer polymerized in an active energy ray radically polymerizable ethylenically unsaturated group).
  • radically polymerizable functional group preferably radical polymerizable ethylenically unsaturated group, more preferably Means a polymer polymerized in an active energy ray radically polymerizable ethylenically unsaturated group.
  • the content of the polymerizable component in the total weight (100% by weight) of the printing ink of the present invention is not particularly limited, but is preferably 30 to 99% by weight, more preferably 45 to 95% by weight.
  • the total content of the monofunctional monomer and the monofunctional oligomer in the total amount of the polymerizable component (100 wt%) is preferably 80 wt% or more (80 to 100 wt%), more preferably 85 to 99 wt%.
  • the total content of the specific monomer in the total amount of the polymerizable component (100% by weight) is preferably 50% by weight or more (50 to 100% by weight), more preferably 70 to 100% by weight, and still more preferably 80%. -100% by weight, most preferably 85-99% by weight.
  • the polymerizable component may contain a polyfunctional monomer and / or a polyfunctional oligomer.
  • Said polyfunctional monomer is a monomer which has a 2 or more radically polymerizable functional group in a molecule
  • the polyfunctional oligomer is a polymer having a low polymerization degree of the polyfunctional monomer.
  • the degree of polymerization is not particularly limited, but is preferably 2 to 20, and more preferably 5 to 15.
  • the total content of the polyfunctional monomer and polyfunctional oligomer in the total amount of the polymerizable component (100% by weight) is less than 20% by weight, preferably less than 15% by weight, and more preferably less than 10% by weight.
  • the printing ink of the present invention preferably further contains a polymerization initiator (active energy ray polymerization initiator, thermal polymerization initiator, etc.) corresponding to the type of curing reaction.
  • a polymerization initiator active energy ray polymerization initiator, thermal polymerization initiator, etc.
  • the printing ink of the present invention contains an active energy ray polymerization initiator (sometimes referred to as “photopolymerization initiator”). Is preferred.
  • the photopolymerization initiator is not particularly limited, but a photoradical polymerization initiator is preferable.
  • the radical photopolymerization initiator is not particularly limited.
  • the content of the photo radical polymerization initiator is not particularly limited, but is preferably 0.5 to 10% by weight, more preferably 1 to 7% by weight, based on the total weight (100% by weight) of the printing ink.
  • DAROCUR TPO Commercially available products can also be used as the photopolymerization initiator, for example, trade names “DAROCUR TPO”, “IRGACURE 184, 651, 2959, 907, 369, 1700, 1800, manufactured by Ciba Specialty Chemicals, Inc. 1850, 819 ",” DAROCUR 1173 “and the like.
  • the printing ink of the present invention may further contain the aforementioned cellulose resin, color material (pigment, etc.) and other additives as necessary.
  • the content of the solvent used mainly as a dispersant without participating in the reaction is preferably 5% by weight or less, more preferably 1% by weight or less, Most preferably, no solvent is contained.
  • the solvent here refers to, for example, an organic solvent such as toluene, xylene, methyl ethyl ketone, ethyl acetate, methyl alcohol, and ethyl alcohol, and water.
  • coating processability and These are usually used for the purpose of improving the compatibility and dispersibility of these components.
  • the reactive diluent taken in the printed layer after hardening is not included in this.
  • the printing ink of the present invention can exhibit excellent coating properties and dispersibility between components even without a solvent, and can be used without a solvent, or the amount of the solvent can be extremely reduced. Removal is unnecessary, speeding up and cost reduction can be achieved, and the environmental load can be reduced.
  • the printing ink of the present invention is not particularly limited, but the polymerizable component that forms the acrylic polymer of the present invention, a polymerization initiator, a cellulose resin, a coloring material (pigment, etc.) and other additives as necessary.
  • Each component such as an agent can be blended and mixed.
  • mixers such as butterfly mixers, planetary mixers, pony mixers, dissolvers, tank mixers, homomixers, homodispers, paint shakers, roll mills, sand mills, ball mills, bead mills, line mills, and kneaders are used.
  • the mixing time (retention time) during mixing is not particularly limited, but is preferably 10 to 120 minutes.
  • the obtained printing ink may be used after being filtered, if necessary.
  • the viscosity (23 ⁇ 2 ° C.) of the printing ink of the present invention is not particularly limited.
  • it when applied by flexographic printing, it is preferably 10 to 3000 mPa ⁇ s, more preferably 20 to 1000 mPa ⁇ s. is there.
  • the viscosity exceeds 3000 mPa ⁇ s, the flexographic printability may be reduced, and “decrease” or the like may occur, resulting in a decrease in decorating properties.
  • the viscosity is less than 10 mPa ⁇ s, the storage stability may be deteriorated, for example, the pigment or the additive may easily settle.
  • the viscosity of the printing ink can be controlled by the blending ratio of each blending component, thickener, thinning agent, and the like.
  • “viscosity” is JIS Z under the conditions of 23 ⁇ 2 ° C. and 50 rpm of the cylinder using an E-type viscometer (conical flat plate viscometer) unless otherwise specified. The value measured according to 8803 is meant.
  • the printing layer of the present invention can be formed by applying the above-described printing ink of the present invention to at least one side of the substrate and curing it.
  • the above application can be performed using a known and commonly used application method and printing method.
  • the printing ink of the present invention is preferably applied (coated) by gravure printing, flexographic printing, or inkjet printing from the viewpoints of cost, productivity, printing decoration, and the like.
  • the above curing can be performed by a known and commonly used ink curing method, and among them, active energy ray curing (particularly, ultraviolet curing) is preferable.
  • active energy ray curing particularly, ultraviolet curing
  • an ultraviolet (UV) lamp, an ultraviolet LED, or an ultraviolet laser can be used.
  • the active energy ray to be irradiated varies depending on the composition of the printing ink and is not particularly limited.
  • ultraviolet rays having a wavelength of 200 to 460 nm near ultraviolet rays
  • the integrated light amount is 50 to 2000 (mJ). / Cm 2 ) is preferred.
  • the thickness of the printing layer of the present invention is not particularly limited, but is preferably 0.5 to 5 ⁇ m, more preferably 1 to 4 ⁇ m. If the thickness of the printing layer is less than 0.5 ⁇ m, the strength of the printing layer may be weakened. On the other hand, if the thickness exceeds 5 ⁇ m, the amount of printing ink used increases, which may be undesirable in terms of cost and environment. Furthermore, when it becomes difficult to apply uniformly, the followability to shrink processing may be reduced, or the printed layer may become brittle and easily peel off. Moreover, when the coloring material (coloring agent) is contained, it becomes difficult to harden to a deep part and it may become easy to peel.
  • the base material (base material layer) in the shrink label of the present invention serves as a carrier (support) for the printing layer, and is a layer that mainly affects the strength, rigidity and shrinkage characteristics of the label. If the said base material is a shrink film (heat-shrinkable film), it will not specifically limit, The shrink film used as a base material of a well-known shrink label can be used.
  • the type of resin that forms the shrink film can be appropriately selected according to the required physical properties, application, cost, and the like, and is not particularly limited.
  • a polyester resin for example, a polyester resin, a polyolefin resin, a polystyrene resin
  • the resin include polyvinyl chloride resin, polyamide resin, aramid resin, polyimide resin, polyphenylene sulfide resin, and acrylic resin. These resins may be used alone or in combination of two or more. Furthermore, the same kind or different kinds of resins may be laminated to be used as a laminated film. Of these, polyester resins, polyolefin resins, and polystyrene resins are preferable.
  • the shrink film includes a polyester film made of a polyester resin, a polystyrene film made of a polystyrene resin, a polyolefin film made of a polyolefin resin, a polyester resin as an outer layer, and a polyolefin resin or a polystyrene resin as an inner layer.
  • the heterogeneous laminated film is preferred.
  • a polyester film is particularly preferable from the viewpoint of transparency.
  • polyester-based resin, polyolefin-based resin, and polystyrene-based resin examples include, for example, JP-A-2008-170822, JP-A-2008-170697, JP-A-2008-163215, and JP-A-2008-163231.
  • the polyester resins, polyolefin resins, polystyrene resins, and the like described can be used.
  • polyester resin used for the polyester film examples include polyethylene terephthalate (PET) resin, poly (ethylene-2,6-naphthalenedicarboxylate) (PEN), polylactic acid (PLA), and the like. Among them, polyethylene terephthalate (PET) resin is preferable.
  • PET resin polyethylene terephthalate (PET) using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the diol component; terephthalic acid as the dicarboxylic acid component, ethylene glycol as the diol component, Copolyester (CHDM copolymerized PET) using 4-cyclohexanedimethanol (CHDM) as a copolymerization component, terephthalic acid as a dicarboxylic acid component, ethylene glycol as a diol component, and neopentyl glycol (NPG) as a main component Copolyester (NPG copolymerized PET) used as copolymer component, terephthalic acid as dicarboxylic acid component, ethylene glycol as main component as diol component, diethylene glycol as copolymer component Diol-modified PET, such as copolymerized polyester; (in the dicarboxylic acid component, modified terephthalic acid, modified
  • polystyrene resin used for the polystyrene film examples include styrene, ⁇ -methyl styrene, m-methyl styrene, p-methyl styrene, p-ethyl styrene, p-isobutyl styrene, pt- Examples thereof include resins containing one or more styrene monomers such as butyl styrene and chloromethyl styrene.
  • SBS styrene-butadiene copolymer
  • SIS styrene-butadiene-isoprene copolymer
  • SBS styrene-butadiene-isoprene copolymer
  • SABS styrene-acrylate copolymer
  • polyolefin resins used in the polyolefin film include polyethylene resins such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and metallocene catalyst LLDPE (mLLDPE), polypropylene, and propylene- ⁇ -olefin.
  • polyethylene resins such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and metallocene catalyst LLDPE (mLLDPE), polypropylene, and propylene- ⁇ -olefin.
  • polypropylene resins such as copolymers, ethylene vinyl acetate copolymers, and cyclic olefin resins.
  • the polyolefin film is preferably one having a cyclic olefin resin as an outer layer.
  • the base material in the present invention may have a single layer structure or a laminated structure. That is, the shrink film may be a single layer film or a laminated film in which a plurality of film layers are laminated according to required physical properties, applications, and the like.
  • a laminated film film layers made of the same kind of resin may be laminated, or film layers made of different resins may be laminated.
  • a laminated film having a polyester resin as an outer layer and a polyolefin resin or polystyrene resin as an inner layer, or a laminated film having a cyclic olefin resin as an outer layer and a polyethylene resin or a polypropylene resin as an inner layer is preferable.
  • the shrink film used as the substrate is preferably a uniaxially, biaxially or multiaxially oriented film from the viewpoint of exhibiting shrinkage characteristics.
  • the shrink film is a laminated film, it is preferable that at least one film layer in the laminated film is oriented. When all the film layers are non-oriented, sufficient shrink characteristics may not be exhibited.
  • a uniaxial or biaxially oriented film is often used, and among them, a film that is strongly oriented in the uniaxial direction of the film (substantially uniaxially stretched film) is generally used. It is done. A film uniaxially stretched in the width direction is particularly preferable.
  • the shrink film can be produced by a conventional method such as melt film formation or solution film formation. It is also possible to use a commercially available shrink film.
  • the surface of the shrink film may be subjected to conventional surface treatment such as corona discharge treatment or primer treatment, if necessary.
  • a conventional method such as a co-extrusion method or a dry lamination method can be used as a lamination method.
  • Biaxial stretching in the longitudinal direction (the film production line direction; also referred to as the longitudinal direction or MD direction) and the width direction (the direction perpendicular to the longitudinal direction; also referred to as the transverse direction or TD direction) is used as a method for orienting the shrink film.
  • Uniaxial stretching in the longitudinal direction or the width direction can be used.
  • any of a roll method, a tenter method, and a tube method may be used.
  • the stretching treatment of the film substantially uniaxially stretched in the width direction is, for example, 1.01 to 1.5 times, preferably 1.05 in the longitudinal direction at a temperature of about 70 to 100 ° C. if necessary. After stretching to about 1.3 times, it can be performed by stretching 3 to 6 times, preferably about 4 to 5.5 times in the width direction.
  • the shrinkage rate of the shrink film in the main orientation direction at 90 ° C. for 10 seconds (sometimes referred to as “thermal shrinkage rate (90 ° C., 10 seconds)”) is not particularly limited, but is 15 to 80%. Preferably, it is 20 to 75%, more preferably 25 to 70%.
  • the heat shrinkage (90 ° C., 10 seconds) in the direction perpendicular to the main orientation direction is not particularly limited, but is preferably ⁇ 3 to 15%.
  • the above-mentioned “main orientation direction” is a direction mainly subjected to a stretching process (a direction having the largest thermal shrinkage), and is generally a longitudinal direction or a width direction, for example, substantially in the width direction. In the case of a uniaxially stretched film, it is the width direction.
  • the haze value (%) of the shrink film is preferably less than 10%, more preferably less than 5.0%, and even more preferably less than 2.0%.
  • the haze value is 10% or more, when printing is shown through the shrink film, the printing may become cloudy and the decorativeness may be deteriorated.
  • the thickness of the substrate is not particularly limited, but is preferably 10 to 100 ⁇ m, more preferably 12 to 80 ⁇ m, and still more preferably 15 to 60 ⁇ m.
  • shrink film used as the base material can be used as the shrink film used as the base material.
  • the shrink label of the present invention has the printed layer of the present invention on at least one side of the substrate.
  • the printed layer of the present invention is not necessarily provided on the entire surface of the label, and can be provided only on a part of the substrate.
  • the printing layer of the present invention each containing a different color material is laminated on the substrate, the printing layer of the present invention is further laminated on the printing layer of the present invention provided on the substrate, Or a desired character and design can be formed by not providing a printing layer in a part.
  • the printing layer of this invention may be provided on the base material through the anchor coat layer as needed.
  • the shrink label of the present invention includes an adhesive layer, an ultraviolet protection layer, an anchor coating layer, a primer coating layer, and a printing layer other than the printing layer of the present invention (“A layer such as a nonwoven fabric or paper may be provided as necessary.
  • the other printing layer may be, for example, a printing layer formed from a solvent-based printing ink.
  • the printed layer of the present invention may be provided so as to be inside the label, or may be provided so as to be outside the label.
  • the lamination structure of the shrink label of the present invention is not particularly limited, for example, from the front side (the front side of the label), A two-layer laminated structure comprising a substrate / printing layer of the present invention and a printing layer / substrate of the present invention; Print layer of the present invention / Substrate / Print layer of the present invention, Substrate / Print layer of the present invention / Print layer of the present invention, Print layer of the present invention / Substrate / Print layer of the present invention / Print layer of the present invention , Substrate / other printing layer / printing layer of the present invention, printing layer of the present invention / substrate / other printing layer / printing layer of the present invention, and the like.
  • the “front side” of the shrink label means the side viewing the design of the label (the side of the surface on which the design looks correct), and the “back side” of the shrink label means the above “front side”. Means the other side.
  • the “outside” of the shrink label means the side that does not contact the container (the side opposite to the container) when the shrink label is attached to the container, and the “inside” of the shrink label contacts the container. Means side (container side).
  • the shrinkage rate of the shrink label of the present invention in the main orientation direction at 90 ° C. for 10 seconds is not particularly limited, but is 15% or more (for example, 15 to 80%) ), Preferably 20 to 75%, more preferably 25 to 70%.
  • heat shrinkage (90 ° C., 10 seconds) is less than 15%, the followability with respect to the shape of a container or the like to which the label is attached is insufficient during shrink processing, and a beautiful finish may not be obtained.
  • the heat shrinkage (90 ° C., 10 seconds) in the direction perpendicular to the main orientation direction is not particularly limited, but is preferably ⁇ 3 to 15%.
  • the “main orientation direction” is a direction mainly subjected to a stretching process (a direction having the largest thermal shrinkage rate), and is generally a circumferential direction when the shrink label is a cylindrical shrink label.
  • the printing ink can be cured by radical polymerization to form a printing layer, so that it does not suffer from polymerization inhibition (curing inhibition) due to moisture unlike a printing layer cured by cationic polymerization.
  • the printing layer of this invention can also be provided on the printing layer by water-based ink.
  • the printing layer of this invention uses the acrylic polymer formed from the monomer component which has a monofunctional monomer as a main component as an acrylic polymer which comprises a printing layer. For this reason, the printing layer of this invention is excellent in the followability with respect to a shrink process, and whitening of a print layer does not arise also at the time of the high shrinkage shrink process.
  • an acrylic polymer is formed from a monomer component containing a monofunctional monomer as a main component, curing is insufficient and uncured monomer remains in the printed layer or has a low glass transition temperature (Tg). Since the acrylic polymer is formed, surface tack (stickiness, adhesiveness) occurs in the printing layer, and there is a tendency that problems such as a decrease in wear resistance and blocking occur.
  • Tg glass transition temperature
  • the use of a specific amount of a specific monomer capable of forming an acrylic polymer having excellent curability and high Tg in the monomer component forming the acrylic polymer suppresses the tack of the printed layer. And has achieved excellent tack-free properties.
  • the shrink label of the present invention has both a followability to the shrink processing of the printed layer and a tack-free property.
  • the shrink label of the present invention is not particularly limited, such as a cylindrical label, a wound label, and the like, but from the viewpoint of sufficiently exhibiting the effect of excellent followability to shrink processing, a tubular shrink label (cylindrical shrink label) is preferable.
  • the shrink label of the present invention is generally used as a labeled container by placing it on the container by heat-shrinking it with the front side facing away from the container.
  • containers include, for example, soft drink bottles such as PET bottles, milk containers for home delivery, food containers such as seasonings, alcohol beverage bottles, pharmaceutical containers, containers for chemical products such as detergents and sprays, cups, etc. This includes noodle containers.
  • the material of the container includes plastic such as PET, glass, metal and the like.
  • the shrink label of this invention may be used for adherends other than a container.
  • the printing ink of the present invention is applied on the surface of at least one side of the substrate (shrink film) according to the above-described method for forming a printed layer of the present invention, and the printed layer is formed by curing.
  • the above coating and curing steps may be performed during the shrink film manufacturing process (in-line coating) or after film formation (off-line coating), from the viewpoint of productivity and workability, An off-line coat is preferred.
  • the shrink label of the present invention may be processed into a cylindrical label.
  • the shrink label is formed in a cylindrical shape so that the main orientation direction is the circumferential direction.
  • a shrink label having a predetermined width in the main orientation direction is formed into a cylindrical shape by overlapping both ends in the main orientation direction so that the outer surface (outside) of the shrink label is on the front side, and one side of the label Apply a solvent such as tetrahydrofuran (THF) or an adhesive (hereinafter referred to as an adhesive) to the inner surface of the belt at a width of about 2 to 4 mm, and apply the adhesive applied portion to the outer surface of the other side edge.
  • THF tetrahydrofuran
  • an adhesive hereinafter referred to as an adhesive
  • to the printing layer is not provided in the part which apply
  • the perforation when providing the perforation for label cutting to a cylindrical shrink label, the perforation of predetermined length and a pitch is formed in the direction orthogonal to the circumferential direction.
  • the perforation can be applied by a conventional method (for example, a method of pressing a disk-shaped blade having a cut portion and a non-cut portion repeatedly formed around it, a method using a laser, or the like).
  • the process stage for perforating can be appropriately selected after the printing process and before and after the cylindrical processing process.
  • the cylindrical shrink label can be attached to a container to form a labeled container.
  • the label is thermally contracted by heat treatment, and a container with a label is manufactured by closely contacting the container.
  • the heat treatment include treatment with steam at 80 to 100 ° C. (passing through a heating tunnel filled with steam and steam).
  • the shrink label is attached to the container so that the printed layer is on the inner side.
  • Table 1 shows the composition of the printing inks used in Examples and Comparative Examples (blending amount) and the evaluation results of the obtained shrink labels.
  • the blending composition of the above printing ink was indicated by the blending amount (parts by weight) based on weight.
  • Example 1 Print ink
  • acryloylmorpholine trade name “ACMO”: specific monomer
  • ACMO N-acryloyloxyethylhexahydrophthalimide
  • ASMI acrylic acid copolymer
  • DAROCUR TPO 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide
  • a surfactant 1 part by weight of an organically modified (epoxy modified) polysiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “X-40-2670”) was used.
  • a lubricant 1 weight of oxidized polyethylene wax (manufactured by Clariant Japan Co., Ltd., trade name “Ceridust 3715”) was used. The above components (monomer component, active energy ray polymerization initiator, surfactant and lubricant) were mixed using a homodisper to prepare a printing ink (100 parts by weight).
  • Polyester (PET) -based shrink film (trade name “Space Clean S7042”, thickness: 45 ⁇ m, heat shrinkage rate in main orientation direction (width direction) (90 ° C., 10 seconds) : 60%) on one side using a table-top flexographic printing press (manufactured by RK Print Coat Instruments Ltd., trade name “RK Flexiproof 100”) and 80 L / cm anilox at a process speed of 50 m / min. Printing ink layer (application layer) thickness: 2.5 ⁇ m) was applied.
  • Examples 2 and 4-6 As shown in Table 1, printing inks were prepared in the same manner as in Example 1 except that the types and blending amounts of the specific monomers were changed. Moreover, the shrink label was produced like Example 1 using the said printing ink.
  • Example 3 and Comparative Example 2 As shown in Table 1, the type and blending amount of the specific monomer were changed, and a monofunctional monomer was further added to produce a printing ink in the same manner as in Example 1. Moreover, the shrink label was produced like Example 1 using the said printing ink.
  • Example 7 and 8 Comparative Example 1 As shown in Table 1, the type and blending amount of the specific monomer were changed, and a polyfunctional acrylate was further added to produce a printing ink in the same manner as in Example 1. Moreover, the shrink label was produced like Example 1 using the said printing ink.
  • Example 9 As shown in Table 1, the types and blending amounts of specific monomers are changed, and cellulose acetate propionate (manufactured by Eastman Chemical, trade name “CAP-504-0.2”) is added as a cellulose resin. In the same manner as in Example 1, a printing ink was prepared. Moreover, the shrink label was produced like Example 1 using the said printing ink.
  • cellulose acetate propionate manufactured by Eastman Chemical, trade name “CAP-504-0.2”
  • Example 10 As shown in Table 1, the type and blending amount of the specific monomer, the blending amount of the lubricant, etc. were changed, and as a coloring material (pigment), titanium oxide (trade name “JR-707” manufactured by Teika Co., Ltd.) was used.
  • the printing ink was prepared in the same manner as in Example 1. Moreover, the shrink label was produced like Example 1 using the said printing ink.
  • Comparative Example 3 As shown in Table 1, a printing ink was produced in the same manner as in Example 1 without using a specific monomer as a monomer component. Moreover, the shrink label was produced like Example 1 using the said printing ink.
  • the main orientation direction of a shrink label is a main orientation direction of the shrink film which is a base material.
  • the peeling area of the printing layer is 0%: good peeling resistance ( ⁇ )
  • the peeled area of the printed layer is greater than 0% and less than 30%: Usable level ( ⁇ )
  • the peeled area of the printed layer is 30% or more: Poor peel resistance ( ⁇ )
  • the label pieces were heat-shrinked so as to have a length of 70% compared to before the heat-shrinking treatment ( 30% thermal shrinkage in the main orientation direction (width direction).
  • a measurement sample was obtained that was heat shrunk by 30% in the main orientation direction (width direction).
  • the sample for a measurement which carried out the heat shrink of 40% in the main orientation direction (width direction) was obtained like the above except having changed into the jig
  • a sample for measurement was obtained in the same manner as described above except that the jig was changed to a jig that could be fixed at an interval of 50 mm and thermally contracted by 50% in the main orientation direction (width direction).
  • the above-prepared measurement sample with 30% heat shrinkage, 40% heat shrinkage measurement sample, and 50% heat shrinkage measurement sample were each visually observed for the presence or absence of whitening. Judgment was made based on the following criteria. There is no whitening even in the measurement sample that is 50% heat-shrinked: Excellent shrink followability ( ⁇ ) There is no whitening in the measurement sample with 40% heat shrinkage, but there is whitening in the measurement sample with 50% heat shrinkage.
  • Example 10 There is no whitening in the measurement sample with 30% heat shrinkage, but there is whitening in the measurement sample with 40% heat shrinkage: Usable shrink followability ( ⁇ ) There is also whitening in the measurement sample that was heat-shrinked by 30%. In Example 10, instead of “whether there was whitening”, “whether there were cracks, wrinkles, etc.” was observed and judged in the same manner as described above. The shrink label of Example 10 did not generate cracks, wrinkles, etc. even in the measurement sample subjected to 50% thermal shrinkage ( ⁇ ).
  • Thermal shrinkage in main orientation direction (90 ° C., 10 seconds)
  • a rectangular measurement sample having a length of 200 mm (mark interval 150 mm) and a width of 10 mm in the measurement direction (main alignment direction) was cut out from the shrink labels obtained in Examples and Comparative Examples.
  • the measurement sample is heat-treated for 10 seconds (under no load) in hot water at 90 ° C., the difference between the marked lines before and after the heat treatment is read, and the heat shrinkage rate is calculated by the following formula.
  • Thermal contraction rate (%) (L 0 ⁇ L 1 ) / L 0 ⁇ 100
  • L 0 Marking interval before heat treatment
  • L 1 Marking interval after heat treatment
  • the main orientation direction is the width direction of the shrink label.
  • the thermal contraction rate (90 ° C., 10 seconds) in the direction orthogonal to the main alignment direction can be measured in the same manner as described above by changing the measurement direction to the direction orthogonal to the main alignment direction.
  • the shrink label (Example) of the present invention has both excellent followability of the printed layer for shrink processing and tack-free property of the surface of the printed layer, and furthermore, adhesion between the printed layer and the substrate. It was a shrink label having excellent properties, excellent peel resistance, resistance to scratching, and excellent scratch resistance. On the other hand, in the case where the content of the polyfunctional monomer in the monomer component forming the acrylic polymer exceeds 20% by weight (Comparative Example 1), the followability to shrink processing was lowered.
  • the printed layer was insufficiently cured and the printed layer surface was tacked.
  • the thermal contraction rate (90 degreeC, 10 second) of the main orientation direction of the shrink label obtained by the Example and the comparative example was 60%.

Abstract

Provided is a shrink label having a printed layer that has good following characteristics with respect to shrink treatment and is tack-free. Said shrink label is characterized by having a printed layer on at least one surface of a base material, said printed layer including an acrylic polymer formed from a monomer component that contains at least 80 wt% of a monofunctional monomer and at least 50 wt% of a monomer selected from a group comprising acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, p-cumyl phenol EO-modified acrylate, and 2-hydroxy-3-phenoxypropylacrylate.

Description

シュリンクラベルShrink label
 本発明は、シュリンクラベルに関する。より詳しくは、シュリンク加工時の追従性とタックフリー性に優れた、アクリル系ポリマーからなる印刷層を有するシュリンクラベルに関する。 The present invention relates to a shrink label. More specifically, the present invention relates to a shrink label having a printed layer made of an acrylic polymer that has excellent followability and tack-free property during shrink processing.
 現在、お茶や清涼飲料水等の飲料用容器として、PETボトルなどのプラスチック製ボトルや、ボトル缶等の金属製ボトル等が広く用いられている。これらの容器には、表示や装飾性、機能性の付与のためプラスチックラベルを装着する場合が多く、このプラスチックラベルには、装飾性、加工性(容器への追従性)、広い表示面積等のメリットから、印刷層が設けられたシュリンクラベルが広く使用されている。 Currently, plastic bottles such as PET bottles and metal bottles such as bottle cans are widely used as beverage containers for tea and soft drinks. These containers are often equipped with plastic labels for display, decoration, and functionality. These plastic labels have decorativeness, workability (followability to containers), wide display area, etc. In view of merits, shrink labels provided with a printed layer are widely used.
 プラスチックラベルの印刷層を形成する印刷インキとしては、近年、紫外線(UV)などの活性エネルギー線により硬化する活性エネルギー線硬化型の印刷インキが用いられてきている。さらに、中でも、比較的低コストである点や、水分による重合阻害を受けない等の利点から、ラジカル重合により硬化して印刷層を形成する、ラジカル重合性の活性エネルギー線硬化型印刷インキが多く用いられており、特に、アクリル系樹脂を主成分とするラジカル重合性活性エネルギー線硬化型印刷インキが多く用いられている(特許文献1参照)。 As a printing ink for forming a printing layer of a plastic label, an active energy ray curable printing ink that is cured by an active energy ray such as ultraviolet (UV) has been used in recent years. Furthermore, among them, there are many radically polymerizable active energy ray-curable printing inks that are cured by radical polymerization to form a printing layer because of their comparatively low cost and not being hindered by water polymerization. In particular, radically polymerizable active energy ray-curable printing inks mainly composed of acrylic resins are used (see Patent Document 1).
 しかし、上記のラジカル重合性活性エネルギー線硬化型印刷インキは、十分な硬化性を得るためにモノマー成分として多官能モノマーを比較的多量に用い、硬化後は架橋度の高い硬い印刷層を形成する。このため、かかる印刷層をシュリンクラベル(特に、高収縮性のシュリンクラベル)に用いた場合には、シュリンク加工時に基材であるシュリンクフィルムの収縮変形に印刷層が追従できず、印刷層の白化などの追従性不良を生じる問題があった。 However, the above radical polymerizable active energy ray curable printing ink uses a relatively large amount of a polyfunctional monomer as a monomer component in order to obtain sufficient curability, and forms a hard printed layer with a high degree of crosslinking after curing. . For this reason, when such a printed layer is used for a shrink label (particularly a highly shrinkable shrink label), the printed layer cannot follow the shrinkage deformation of the shrink film as a base material during shrink processing, and the printed layer is whitened. There has been a problem that causes poor tracking performance.
 かかる課題に対して、印刷インキ中にウレタンアクリレートを添加して、印刷層の加工追従性向上を図ったシュリンクラベルが知られている(特許文献2参照)。 In response to such a problem, a shrink label is known in which urethane acrylate is added to the printing ink to improve the processing followability of the printed layer (see Patent Document 2).
特開2002-371217号公報JP 2002-371217 A 国際公開2009/011256号パンフレットInternational Publication No. 2009/011256 Pamphlet
 しかしながら、上記のウレタンアクリレートを添加した印刷インキより形成した印刷層も、非常に高収縮性(例えば、収縮率が50%程度など)のシュリンクラベルに用いた場合には、シュリンク加工に対する追従性は十分ではなく、追従性不良の問題が生じる場合があった。一方、追従性をさらに向上させるため、モノマー成分中の単官能モノマー割合を増やすと、印刷インキの硬化性が低下し、未硬化のモノマーが印刷層中に残存するなどにより、印刷層にタック(表面タック)が残るという問題が生じた。従って、高収縮のシュリンク加工に対しても追従性が良好で、なおかつタックのない又は極めてタックの弱いタックフリー性の良好な印刷層を有するシュリンクラベルは得られていないのが現状である。 However, when a printing layer formed from a printing ink added with the above urethane acrylate is also used for a shrink label having a very high shrinkage (for example, a shrinkage rate of about 50%), the followability to shrink processing is Insufficient followability may occur. On the other hand, if the proportion of the monofunctional monomer in the monomer component is increased in order to further improve the followability, the curability of the printing ink decreases, and the uncured monomer remains in the printed layer. There was a problem that the surface tack) remained. Therefore, the present situation is that a shrink label having a good printed layer with good tack-free property and good tack-free property even with high shrinkage shrinkage and no tack or weak tack.
 即ち、本発明の目的は、シュリンク加工に対する追従性とタックフリー性に共に優れた印刷層を有するシュリンクラベルを提供することにある。 That is, an object of the present invention is to provide a shrink label having a printed layer excellent in both followability to shrink processing and tack-free property.
 本発明者らは、上記目的を達成するため鋭意検討した結果、基材の少なくとも片面側に、単官能モノマーを主成分としてなり、なおかつ、特定のモノマーを特定の割合で含有するモノマー成分から形成(重合により形成)されたアクリル系ポリマーからなる印刷層を設けることにより、シュリンク加工に対する追従性とタックフリー性に共に優れた印刷層を有するシュリンクラベルを得ることができることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the present inventors have formed a monomer component containing a monofunctional monomer as a main component and containing a specific monomer in a specific ratio on at least one side of the substrate. It was found that by providing a printing layer made of an acrylic polymer (formed by polymerization), it is possible to obtain a shrink label having a printing layer that has both excellent followability to shrink processing and tack-free properties, and completed the present invention. did.
 すなわち、本発明は、基材の少なくとも片面側に、単官能モノマーを80重量%以上含有し、かつ、アクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、パラクミルフェノールEO変性アクリレート及び2-ヒドロキシ-3-フェノキシプロピルアクリレートからなる群より選ばれたモノマーを50重量%以上含有するモノマー成分より形成されたアクリル系ポリマーを含む印刷層を有することを特徴とするシュリンクラベルを提供する。 That is, the present invention contains at least 80% by weight of a monofunctional monomer on at least one side of a substrate, and acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy- There is provided a shrink label comprising a printing layer containing an acrylic polymer formed from a monomer component containing 50% by weight or more of a monomer selected from the group consisting of 3-phenoxypropyl acrylate.
 さらに、本発明は、前記モノマー成分中にアクリロイルモルホリンを5~90重量%含有する前記のシュリンクラベルを提供する。 Furthermore, the present invention provides the shrink label as described above, wherein the monomer component contains 5 to 90% by weight of acryloylmorpholine.
 さらに、本発明は、前記モノマー成分中にN-アクリロイルオキシエチルヘキサヒドロフタルイミドを5~90重量%含有する前記のシュリンクラベルを提供する。 Furthermore, the present invention provides the shrink label as described above, wherein the monomer component contains 5 to 90% by weight of N-acryloyloxyethyl hexahydrophthalimide.
 さらに、本発明は、前記印刷層が、活性エネルギー線硬化により形成された印刷層である前記のシュリンクラベルを提供する。 Furthermore, the present invention provides the shrink label, wherein the printing layer is a printing layer formed by active energy ray curing.
 本発明のシュリンクラベルは、印刷層を構成するアクリル系ポリマーとして、単官能モノマーを80重量%以上含有するモノマー成分より形成されたアクリル系ポリマーを用いているため、印刷層が柔軟で、シュリンク加工時の基材の変形に対する追従性(シュリンク加工に対する追従性)が良好である。また、前記アクリル系ポリマーを形成するモノマー成分中に、アクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、パラクミルフェノールEO変性アクリレート及び2-ヒドロキシ-3-フェノキシプロピルアクリレートからなる群より選ばれた特定のモノマーを50重量%以上含有するため、印刷層のタック(表面タック)がなく又はタック性(表面タック性)が極めて低く、タックフリー性に優れている。
 上記のように、本発明のシュリンクラベルは、印刷層のシュリンク加工に対する追従性とタックフリー性に優れており、特に、高収縮性のシュリンクラベルとして好適である。
The shrink label of the present invention uses an acrylic polymer formed from a monomer component containing 80% by weight or more of a monofunctional monomer as the acrylic polymer constituting the printed layer. The followability to the deformation of the base material at the time (followability to shrink processing) is good. The monomer component forming the acrylic polymer may be selected from the group consisting of acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy-3-phenoxypropyl acrylate. Thus, the printed layer has no tack (surface tack) or has very low tack (surface tack) and is excellent in tack-free property.
As described above, the shrink label of the present invention is excellent in the followability to the shrink processing of the printed layer and tack-free, and is particularly suitable as a highly shrinkable shrink label.
 なお、本明細書において、「タックフリー性に優れる」とは、印刷層表面のタックがない場合に加え、タックが極めて弱い場合をも含むものとする。 In this specification, “excellent tack-free” includes not only the case where there is no tack on the surface of the printing layer but also the case where tack is extremely weak.
 本発明のシュリンクラベルは、基材の少なくとも片面側に、単官能モノマーを80重量%以上含有し、かつ、アクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、パラクミルフェノールEO変性アクリレート及び2-ヒドロキシ-3-フェノキシプロピルアクリレートからなる群より選ばれたモノマーを50重量%以上含有するモノマー成分より形成されたアクリル系ポリマーを含む印刷層を有する。なお、上記の印刷層を「本発明の印刷層」と称する場合がある。また、上記のアクリル系ポリマーを「本発明のアクリル系ポリマー」と称する場合がある。さらに、上記のアクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、パラクミルフェノールEO変性アクリレート及び2-ヒドロキシ-3-フェノキシプロピルアクリレートからなる群より選ばれたモノマーを「特定モノマー」と称する場合がある。本発明のアクリル系ポリマーを形成するモノマー成分中に、アクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、パラクミルフェノールEO変性アクリレート及び2-ヒドロキシ-3-フェノキシプロピルアクリレートからなる群より選ばれた2以上のモノマーが含まれる場合には、それら全てのモノマーが「特定モノマー」である。また、特定モノマーは、単官能モノマーに含まれる。 The shrink label of the present invention contains 80% by weight or more of a monofunctional monomer on at least one side of a base material, and acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy It has a printing layer containing an acrylic polymer formed from a monomer component containing 50% by weight or more of a monomer selected from the group consisting of -3-phenoxypropyl acrylate. The above print layer may be referred to as “print layer of the present invention”. Further, the above acrylic polymer may be referred to as “the acrylic polymer of the present invention”. Furthermore, a monomer selected from the group consisting of the above acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy-3-phenoxypropyl acrylate may be referred to as a “specific monomer”. . 2 selected from the group consisting of acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy-3-phenoxypropyl acrylate in the monomer component forming the acrylic polymer of the present invention. When the above monomers are included, all the monomers are “specific monomers”. The specific monomer is included in the monofunctional monomer.
[本発明の印刷層]
 本発明の印刷層は、本発明のシュリンクラベルにおける必須の印刷層である。本発明の印刷層は、上記の本発明のアクリル系ポリマーを必須成分として含有する。また、本発明の印刷層は、セルロース系樹脂、顔料などの色材(着色剤)や、その他の添加剤を含有してもよい。
[Print layer of the present invention]
The printed layer of the present invention is an essential printed layer in the shrink label of the present invention. The printing layer of the present invention contains the acrylic polymer of the present invention as an essential component. Moreover, the printing layer of this invention may contain color materials (coloring agents), such as a cellulose resin and a pigment, and another additive.
 本発明の印刷層の総重量(100重量%)中の、本発明のアクリル系ポリマーの含有量は、顔料などの含有量によっても異なり、特に限定されないが、30~99重量%が好ましく、より好ましくは45~95重量%である。 The content of the acrylic polymer of the present invention in the total weight (100% by weight) of the printed layer of the present invention varies depending on the content of the pigment and the like and is not particularly limited, but is preferably 30 to 99% by weight, Preferably, it is 45 to 95% by weight.
(本発明のアクリル系ポリマー)
 上記の本発明のアクリル系ポリマーは、単官能モノマーを80重量%以上含有し、なおかつ、上記の特定モノマーを50重量%以上含有するモノマー成分より形成されるポリマーである。言い換えると、本発明のアクリル系ポリマーは、該アクリル系ポリマーを構成する全構成モノマー単位中の80重量%以上が単官能モノマーに由来する構成単位であり、全構成モノマー単位中の50重量%以上が特定モノマーに由来する構成単位であるポリマーである。なお、本明細書において、「アクリル系ポリマー」とは、(メタ)アクリル酸(アクリル酸及び/又はメタクリル酸)及び/又はその誘導体を含むモノマー成分の重合体、即ち、(メタ)アクリロイル基を有するモノマーを含むモノマー成分の重合体を意味する。また、「(メタ)アクリル」とは「アクリル」及び/又は「メタクリル」を意味する。
(Acrylic polymer of the present invention)
The acrylic polymer of the present invention is a polymer formed from a monomer component containing 80% by weight or more of a monofunctional monomer and 50% by weight or more of the specific monomer. In other words, in the acrylic polymer of the present invention, 80% by weight or more of all constituent monomer units constituting the acrylic polymer is a constituent unit derived from a monofunctional monomer, and 50% by weight or more of all constituent monomer units. Is a polymer that is a structural unit derived from a specific monomer. In this specification, “acrylic polymer” means a polymer of monomer components containing (meth) acrylic acid (acrylic acid and / or methacrylic acid) and / or a derivative thereof, that is, a (meth) acryloyl group. The polymer of the monomer component containing the monomer which has is meant. “(Meth) acryl” means “acryl” and / or “methacryl”.
 上記の単官能モノマーは、分子中にラジカル重合性の官能基を1つのみ有するモノマーである。ラジカル重合性官能基としては、エチレン性不飽和基(ラジカル重合性のエチレン性不飽和基)が好ましく、さらに好ましくは活性エネルギー線重合性のラジカル重合性エチレン性不飽和基(活性エネルギー線ラジカル重合性のエチレン性不飽和基)である。より具体的には、例えば、ビニル基、プロペニル基、イソプロペニル基、(メタ)アクリロイル基等が挙げられる。上記単官能モノマーとしては、公知のエチレン性不飽和単官能モノマーが挙げられ、特に限定されないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシルなどの直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステル[好ましくは(メタ)アクリル酸C1-12アルキルエステル等];(メタ)アクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸などのカルボキシル基含有重合性不飽和化合物又はその無水物;2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレートなどのヒドロキシル基含有(メタ)アクリル酸エステル[好ましくは(メタ)アクリル酸ヒドロキシC1-8アルキルエステル等];(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸シクロアルキルエステル、イソボルニル(メタ)アクリレートなどの脂環式炭化水素基を有する(メタ)アクリル酸エステル;フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香族炭化水素基を有する(メタ)アクリル酸エステル;N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドなどの(メタ)アクリル酸アミド誘導体;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジプロピルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジプロピルアミノプロピル(メタ)アクリレートなどの(メタ)アクリル酸ジアルキルアミノアルキルエステル類;スチレン、ビニルトルエン、α-メチルスチレンなどのスチレン系化合物;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類;塩化ビニルなどのハロゲン化ビニル;メチルビニルエーテルなどのビニルエーテル類;(メタ)アクリロニトリルなどのシアノ基含有ビニル化合物;エチレン、プロピレンなどのオレフィン類などが挙げられる。なお、特定モノマーも単官能モノマーに含まれる。 The monofunctional monomer is a monomer having only one radical polymerizable functional group in the molecule. The radical polymerizable functional group is preferably an ethylenically unsaturated group (radical polymerizable ethylenically unsaturated group), more preferably an active energy ray polymerizable radical polymerizable ethylenically unsaturated group (active energy ray radical polymerization). Ethylenically unsaturated group). More specifically, for example, vinyl group, propenyl group, isopropenyl group, (meth) acryloyl group and the like can be mentioned. Examples of the monofunctional monomer include known ethylenically unsaturated monofunctional monomers, and are not particularly limited. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth ) Isopropyl acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate (Meth) acrylic acid alkyl esters having a linear or branched alkyl group such as 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate [preferably (meth) acrylic acid C 1-12 alkyl ester, etc.]; (meth) acrylic acid, black Carboxyl group-containing polymerizable unsaturated compounds such as acid, itaconic acid, fumaric acid, maleic acid or the like; 2-hydroxymethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meta ) Acrylate, 6-hydroxyhexyl (meth) acrylate, diethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate and other hydroxyl group-containing (meth) acrylate [preferably hydroxy (meth) acrylate C 1- 8 alkyl ester, etc.]; (meth) cyclohexyl acrylate (meth) acrylic acid cycloalkyl ester having an alicyclic hydrocarbon group such as isobornyl (meth) acrylate (meth) acrylic acid ester; phenyl (meth) (Meth) acrylic acid ester having an aromatic hydrocarbon group such as relate and phenoxyethyl (meth) acrylate; N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide (Meth) acrylic acid amide derivatives such as N, N-diethyl (meth) acrylamide; dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dipropylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) (Meth) acrylic acid dialkylaminoalkyl esters such as acrylate and dipropylaminopropyl (meth) acrylate; styrene compounds such as styrene, vinyltoluene and α-methylstyrene; vinyl acetate and propionic acid Vinyl esters such as alkylsulfonyl; vinyl ethers such as methyl vinyl ether; vinyl halides such as vinyl chloride (meth) cyano group-containing vinyl compounds such as acrylonitrile, ethylene, etc. olefins such as propylene. The specific monomer is also included in the monofunctional monomer.
 上記の中でも、単官能モノマーとしては、安全性の観点から、OECD404による一次刺激性指数(PII)の値が2.5以下である単官能モノマーが好ましく、PII値が2.0以下の単官能モノマーがより好ましい。 Among these, the monofunctional monomer is preferably a monofunctional monomer having a primary irritation index (PII) value of 2.5 or less according to OECD 404 from the viewpoint of safety, and a monofunctional monomer having a PII value of 2.0 or less. Monomers are more preferred.
 特定モノマー以外の単官能モノマーとしては、中でも、イソボルニルアクリレート(PII値:0.6)、フェノキシエチルアクリレート(PII値:0.5)、ノニルフェノールEO変性アクリレート(PII値:2.0)、4-アクリロイルオキシメチル-2-シクロヘキシル-1,3-ジオキソラン(PII値:0.55)が好ましい。 Monofunctional monomers other than the specific monomer include isobornyl acrylate (PII value: 0.6), phenoxyethyl acrylate (PII value: 0.5), nonylphenol EO modified acrylate (PII value: 2.0), 4-acryloyloxymethyl-2-cyclohexyl-1,3-dioxolane (PII value: 0.55) is preferred.
 上記のノニルフェノールEO変性アクリレートは、下記の式で表される。 The above nonylphenol EO-modified acrylate is represented by the following formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中において、mはエチレンオキサイドの平均付加モル数であり、特に限定されないが、約1であることが好ましい。 In the above formula, m is the average added mole number of ethylene oxide and is not particularly limited, but is preferably about 1.
 本発明のアクリル系ポリマーを形成するモノマー成分全量(100重量%)中の、単官能モノマーの含有量は、80重量%以上(80~100重量%)であり、好ましくは85~99重量%である。なお、特定モノマーの含有量も上記の単官能モノマーの含有量に含まれる。単官能モノマーの含有量を80重量%以上とすることにより、本発明のアクリル系ポリマーが比較的柔軟となり、本発明の印刷層のシュリンク加工に対する追従性が向上する。単官能モノマーの含有量が80重量%未満の場合、即ち、本発明のアクリル系ポリマーを形成するモノマー成分全量中に、分子中に2以上のラジカル重合性官能基を有する多官能モノマーを20重量%以上含有する場合には、本発明のアクリル系ポリマーが硬くなり、本発明の印刷層のシュリンク加工に対する追従性が低下する。 The content of the monofunctional monomer in the total amount (100% by weight) of the monomer components forming the acrylic polymer of the present invention is 80% by weight or more (80 to 100% by weight), preferably 85 to 99% by weight. is there. In addition, content of a specific monomer is also contained in content of said monofunctional monomer. By setting the content of the monofunctional monomer to 80% by weight or more, the acrylic polymer of the present invention becomes relatively flexible, and the followability to the shrink processing of the printed layer of the present invention is improved. When the content of the monofunctional monomer is less than 80% by weight, that is, 20% by weight of the polyfunctional monomer having two or more radically polymerizable functional groups in the molecule in the total amount of the monomer components forming the acrylic polymer of the present invention. If it is contained in an amount of at least%, the acrylic polymer of the present invention becomes hard, and the followability of the printed layer of the present invention to shrink processing decreases.
 本発明のアクリル系ポリマーを形成する特定モノマー(アクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、パラクミルフェノールEO変性アクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート)は、反応性が高いため、これらのモノマーを硬化(重合)させてアクリル系ポリマーを形成し、該アクリル系ポリマーからなる印刷層を形成した際に、印刷層中に未硬化(未反応)の残存モノマーが少なくなる。また、これらの特定モノマーを硬化させて形成したアクリル系ポリマーのガラス転移温度(Tg)は比較的高い。このため、印刷層のタックを低減できる。一般的に、アクリル系ポリマーを形成するモノマー成分中の単官能モノマーの割合が多くなると、反応性が低くなり、該アクリル系ポリマーからなる印刷層はタックが大きくなる傾向にある。しかし、本発明においては、アクリル系ポリマーを形成するモノマー成分中に、上記の特定モノマーを特定量配合することにより、タックを低減し、印刷層のシュリンク加工に対する追従性とタックフリー性を両立している。 The specific monomers (acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO modified acrylate, 2-hydroxy-3-phenoxypropyl acrylate) that form the acrylic polymer of the present invention are highly reactive. When the acrylic polymer is cured (polymerized) to form an acrylic polymer and a printed layer made of the acrylic polymer is formed, the uncured (unreacted) residual monomer is reduced in the printed layer. Moreover, the glass transition temperature (Tg) of the acrylic polymer formed by curing these specific monomers is relatively high. For this reason, the tack of a printing layer can be reduced. Generally, when the proportion of the monofunctional monomer in the monomer component forming the acrylic polymer increases, the reactivity decreases, and the printed layer made of the acrylic polymer tends to have a large tack. However, in the present invention, by adding a specific amount of the above specific monomer to the monomer component that forms the acrylic polymer, tack is reduced, and both the followability to the shrink processing of the printed layer and the tack free property are achieved. ing.
 上記のパラクミルフェノールEO変性アクリレート(パラクミルフェノールエチレンオキサイド変性アクリレート)は、下記の式で表される。 The above paracumylphenol EO-modified acrylate (paracumylphenol ethylene oxide-modified acrylate) is represented by the following formula.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式中において、nはエチレンオキサイドの付加モル数であり、特に限定されないが、1または2の整数であることが好ましく、1が特に好ましい。なお、エチレンオキサイドの平均付加モル数は、特に限定されないが、約1が好ましい。 In the above formula, n is the number of added moles of ethylene oxide, and is not particularly limited, but is preferably an integer of 1 or 2, and 1 is particularly preferable. The average number of added moles of ethylene oxide is not particularly limited, but is preferably about 1.
 本発明のアクリル系ポリマーを形成するモノマー成分全量(100重量%)中の、特定モノマーの含有量は、50重量%以上(50~100重量%)であり、好ましくは70~100重量%、より好ましくは80~100重量%、さらに好ましくは85~99重量%である。特定モノマーの含有量が50重量%未満では、モノマー成分の反応性が低くなり形成される印刷層中に未硬化(未反応)モノマーが残存しやすくなったり、硬化後のアクリル系ポリマーのガラス転移温度が低くなるため、印刷層の表面タックが大きくなる。なお、本発明のアクリル系ポリマーを形成するモノマー成分全量中に、アクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、パラクミルフェノールEO変性アクリレート及び2-ヒドロキシ-3-フェノキシプロピルアクリレートからなる群より選ばれた2以上の特定モノマーが含まれる場合には、全ての特定モノマーの含有量の合計量(合計含有量)が「特定モノマーの含有量」である。 The content of the specific monomer in the total amount (100% by weight) of monomer components forming the acrylic polymer of the present invention is 50% by weight or more (50 to 100% by weight), preferably 70 to 100% by weight, more The amount is preferably 80 to 100% by weight, more preferably 85 to 99% by weight. When the content of the specific monomer is less than 50% by weight, the reactivity of the monomer component is low, and the uncured (unreacted) monomer tends to remain in the formed printing layer, or the glass transition of the acrylic polymer after curing. Since the temperature is lowered, the surface tack of the printed layer is increased. The total amount of monomer components forming the acrylic polymer of the present invention is selected from the group consisting of acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy-3-phenoxypropyl acrylate. In the case where two or more specific monomers are included, the total content (total content) of all the specific monomers is the “specific monomer content”.
 本発明のアクリル系ポリマーにおける特定モノマーは、1種のみを用いてもよく、2種以上を併用してもよい。印刷層を形成する際の印刷インキの硬化性向上の観点では、2種以上を併用することが好ましい。 The specific monomer in the acrylic polymer of the present invention may be used alone or in combination of two or more. From the viewpoint of improving the curability of the printing ink when forming the printing layer, it is preferable to use two or more kinds in combination.
 上記の特定モノマーの中でも、硬化反応性が良好で、硬化後のアクリル系ポリマーのガラス転移温度がより高くなり、印刷層のタック低減に有効である観点から、アクリロイルモルホリンが好ましい。特定モノマーとしてアクリロイルモルホリンを用いる場合、本発明のアクリル系ポリマーを形成するモノマー成分全量(100重量%)中の、アクリロイルモルホリンの含有量は、5~90重量%が好ましく、より好ましくは20~80重量%、さらに好ましくは30~70重量%である。 Among the above-mentioned specific monomers, acryloylmorpholine is preferable from the viewpoint of good curing reactivity, higher glass transition temperature of the cured acrylic polymer, and effective in reducing the tack of the printed layer. When acryloylmorpholine is used as the specific monomer, the content of acryloylmorpholine in the total amount (100% by weight) of monomer components forming the acrylic polymer of the present invention is preferably 5 to 90% by weight, more preferably 20 to 80%. % By weight, more preferably 30 to 70% by weight.
 また、特定モノマーとしては、硬化反応性が良好で、硬化後のアクリル系ポリマーのガラス転移温度がより高くなり、印刷層のタック低減に有効である観点から、N-アクリロイルオキシエチルヘキサヒドロフタルイミドも好ましい。特定モノマーとしてN-アクリロイルオキシエチルヘキサヒドロフタルイミドを用いる場合、本発明のアクリル系ポリマーを形成するモノマー成分全量(100重量%)中の、N-アクリロイルオキシエチルヘキサヒドロフタルイミドの含有量は、5~90重量%が好ましく、より好ましくは20~80重量%、さらに好ましくは30~70重量%である。 As the specific monomer, N-acryloyloxyethylhexahydrophthalimide is also used from the viewpoint of good curing reactivity, higher glass transition temperature of the acrylic polymer after curing, and effective in reducing the tack of the printed layer. preferable. When N-acryloyloxyethyl hexahydrophthalimide is used as the specific monomer, the content of N-acryloyloxyethyl hexahydrophthalimide in the total amount (100% by weight) of the monomer component forming the acrylic polymer of the present invention is 5 to It is preferably 90% by weight, more preferably 20 to 80% by weight, still more preferably 30 to 70% by weight.
 本発明のアクリル系ポリマーを形成するモノマー成分は、該モノマー成分全量(100重量%)に対して20重量%未満[好ましくは15重量%未満、さらに好ましくは10重量%未満]であれば、多官能モノマーを含んでいてもよい。多官能モノマーは、分子中に2以上のラジカル重合性官能基を有するモノマーである。 If the monomer component forming the acrylic polymer of the present invention is less than 20 wt% [preferably less than 15 wt%, more preferably less than 10 wt%] relative to the total amount (100 wt%) of the monomer component, It may contain a functional monomer. The polyfunctional monomer is a monomer having two or more radical polymerizable functional groups in the molecule.
 なお、上記の単官能モノマー、多官能モノマーは、オリゴマーの形態で本発明のアクリル系ポリマーの重合に用いてもよい。上記オリゴマーの重合度は、特に限定されないが、2~20が好ましく、より好ましくは5~15である。即ち、例えば、単官能モノマーは、予め重合して、重合度2~20(より好ましくは5~15)のオリゴマー(単官能オリゴマー)とした後に、本発明のアクリル系ポリマーの重合に用いてもよい。 The above monofunctional monomer and polyfunctional monomer may be used for the polymerization of the acrylic polymer of the present invention in the form of an oligomer. The degree of polymerization of the oligomer is not particularly limited, but is preferably 2 to 20, and more preferably 5 to 15. That is, for example, the monofunctional monomer may be polymerized in advance to obtain an oligomer (monofunctional oligomer) having a polymerization degree of 2 to 20 (more preferably 5 to 15) and then used for the polymerization of the acrylic polymer of the present invention. Good.
(セルロース系樹脂)
 本発明の印刷層は、本発明のアクリル系ポリマー以外にも、セルロース系樹脂を含有してもよい。セルロース系樹脂は、印刷層を形成するための組成物(「印刷インキ」と称する場合がある)の粘度を調整する効果を発揮する。印刷インキの粘度が低い場合には、セルロース系樹脂を加えて粘度を高くすることにより、塗布性(塗工性)を向上させることができる。また、印刷インキの硬化反応(モノマー成分の重合反応)に対して非反応性であるため、アクリル系ポリマーの柔軟性は維持したまま、印刷層にある程度の硬さを与え、印刷層の表面タックを低減する効果を発揮する。上記セルロース系樹脂は、特に限定されないが、ニトロセルロース(硝化綿)や、セルロースアセテートブチレート(CAB)、セルロースアセテート、セルロースアセテートプロピオネート(CAP)等のエステル化されたセルロース樹脂が好ましく例示される。中でも、セルロースアセテートブチレート(CAB)、セルロースアセテートプロピオネート(CAP)が特に好ましい。
(Cellulosic resin)
The printing layer of the present invention may contain a cellulose resin in addition to the acrylic polymer of the present invention. Cellulosic resins exhibit the effect of adjusting the viscosity of a composition for forming a printed layer (sometimes referred to as “printing ink”). When the viscosity of the printing ink is low, the coating property (coating property) can be improved by adding a cellulose resin to increase the viscosity. In addition, since it is non-reactive with the curing reaction of the printing ink (polymerization reaction of the monomer component), it gives the printed layer a certain degree of hardness while maintaining the flexibility of the acrylic polymer, and the surface tack of the printed layer. Demonstrate the effect of reducing. The cellulose-based resin is not particularly limited, but esterified cellulose resins such as nitrocellulose (nitrified cotton), cellulose acetate butyrate (CAB), cellulose acetate, and cellulose acetate propionate (CAP) are preferably exemplified. The Among these, cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) are particularly preferable.
 上記セルロース系樹脂の重量平均分子量は、特に限定されないが、1万~15万が好ましく、より好ましくは2万~10万である。上記重量平均分子量が1万未満では印刷インキの粘度が上がらない場合や、印刷層のタック低減の効果が得られない場合がある。一方、15万を超えると印刷インキ中でのセルロース系樹脂の溶解性が悪くなる場合がある。また、印刷インキが高粘度となりすぎて塗布性が低下する場合がある。 The weight average molecular weight of the cellulose resin is not particularly limited, but is preferably 10,000 to 150,000, and more preferably 20,000 to 100,000. If the weight average molecular weight is less than 10,000, the viscosity of the printing ink may not increase, or the tack reduction effect of the printed layer may not be obtained. On the other hand, if it exceeds 150,000, the solubility of the cellulose resin in the printing ink may deteriorate. In addition, the printing ink may have a too high viscosity and the coating property may deteriorate.
 上記セルロース系樹脂は、市販品を用いることも可能である。例えば、イーストマンケミカル社製「CAB-381-20、CAB-381-0.5、CAB-551-0.1、CAP-504-0.2、CAP-482-0.5など」、ベルジュラックNC社製「HIGシリーズ」、「LIGシリーズ」などが市場で入手可能である。 Commercially available products can also be used as the cellulose resin. For example, “CAB-381-20, CAB-381-0.5, CAB-551-0.1, CAP-504-0.2, CAP-482-0.5, etc.” manufactured by Eastman Chemical Co., Bergerac NC's "HIG series" and "LIG series" are available on the market.
 本発明の印刷層中の上記セルロース系樹脂の含有量は、特に限定されないが、本発明のアクリル系ポリマー100重量部に対して、0~20重量部が好ましい。セルロース系樹脂を添加する場合には、より好ましくは1~15重量部、さらに好ましくは2~10重量部である。セルロース系樹脂の含有量が1重量部未満では、印刷インキの粘度を調整する効果が不十分であり、印刷インキの塗布性が低下する場合がある。一方、20重量部を超えると、印刷インキが高粘度となりすぎて塗布性が低下する場合や印刷層の性能が低下する場合がある。 The content of the cellulose resin in the printing layer of the present invention is not particularly limited, but is preferably 0 to 20 parts by weight with respect to 100 parts by weight of the acrylic polymer of the present invention. When a cellulose resin is added, the amount is more preferably 1 to 15 parts by weight, still more preferably 2 to 10 parts by weight. When the content of the cellulose resin is less than 1 part by weight, the effect of adjusting the viscosity of the printing ink is insufficient, and the applicability of the printing ink may be lowered. On the other hand, when the amount exceeds 20 parts by weight, the printing ink becomes too viscous and the applicability may be lowered, or the performance of the printing layer may be lowered.
(色材)
 本発明の印刷層は、着色などの目的で、色材(着色剤)を含有してもよい。色材としては、印刷インキに用いられる公知乃至慣用の染料や顔料を用いることが可能で、特に限定されないが、顔料が好ましく用いられる。上記顔料は、用途等に応じて、印刷インキに用いられる公知乃至慣用の有機、無機の着色顔料を用いることができ、特に限定されないが、例えば、酸化チタン(二酸化チタン)等の白顔料、銅フタロシアニンブルー等の藍(青色)顔料、縮合アゾ系顔料などの赤色顔料、アゾレーキ系顔料等の黄色顔料、カーボンブラック、アルミフレーク、雲母(マイカ)等が用途に合わせて選択、使用できる。また、顔料として、その他にも、光沢調整などの目的で、アルミナ、炭酸カルシウム、硫酸バリウム、シリカ、アクリルビーズ等の体質顔料も使用できる。上記顔料は1種のみを用いてもよいし、2種以上を併用してもよい。
(Coloring material)
The printing layer of the present invention may contain a color material (colorant) for the purpose of coloring or the like. As the coloring material, known or commonly used dyes and pigments used in printing inks can be used, and are not particularly limited, but pigments are preferably used. The pigment may be a known or commonly used organic or inorganic coloring pigment used in printing ink depending on the application, and is not particularly limited. For example, white pigment such as titanium oxide (titanium dioxide), copper Indigo (blue) pigments such as phthalocyanine blue, red pigments such as condensed azo pigments, yellow pigments such as azo lake pigments, carbon black, aluminum flakes, mica (mica), and the like can be selected and used according to the application. In addition, extender pigments such as alumina, calcium carbonate, barium sulfate, silica, and acrylic beads can also be used as pigments for the purpose of adjusting gloss. Only 1 type may be used for the said pigment and it may use 2 or more types together.
 上記顔料の含有量は、顔料の種類や目的の色の濃度等に応じて任意に設計できるが、印刷層の総量(100重量%)に対して、1~50重量%が好ましく、より好ましくは2~40重量%である。印刷層中に2種以上の顔料が含まれる場合には、全顔料の合計含有量が上記範囲を満たすことが好ましい。 The content of the pigment can be arbitrarily designed according to the type of pigment, the concentration of the target color, etc., but is preferably 1 to 50% by weight, more preferably based on the total amount (100% by weight) of the printed layer. 2 to 40% by weight. When two or more kinds of pigments are contained in the printing layer, the total content of all pigments preferably satisfies the above range.
 本発明の印刷層を白色印刷層として用いる場合の酸化チタンとしては、ルチル型(正方晶高温型)、アナターゼ型(正方晶低温型)、ブルッカイト型(斜方晶)のいずれを用いてもよいが、例えば、テイカ(株)製、酸化チタン「JRシリーズ」等が入手可能である。また、白色印刷層の酸化チタンの含有量は、隠蔽性と粗大突起形成抑制の観点から、印刷層の総量に対して、30~50重量%が好ましい。 As the titanium oxide when the printing layer of the present invention is used as a white printing layer, any of rutile type (tetragonal high temperature type), anatase type (tetragonal low temperature type), and brookite type (orthogonal crystal) may be used. However, for example, titanium oxide “JR series” manufactured by Teika Co., Ltd. is available. In addition, the content of titanium oxide in the white printed layer is preferably 30 to 50% by weight with respect to the total amount of the printed layer from the viewpoints of concealability and suppression of coarse protrusion formation.
(その他の添加剤)
 本発明の印刷層は、必須成分である本発明のアクリル系ポリマー、及び、任意成分であるセルロース系樹脂や色材(顔料等)以外にも、必要に応じて、本発明のアクリル系ポリマー及びセルロース系樹脂以外の樹脂(「その他の樹脂」と称する場合がある)、可塑剤、滑剤、沈降防止剤、分散剤、安定剤、充填剤、酸化防止剤、紫外線吸収剤、帯電防止剤、色別れ防止剤、香料、消臭剤等の添加剤を、本発明の効果を損なわない範囲内で含有していてもよい。
(Other additives)
In addition to the acrylic polymer of the present invention, which is an essential component, and the cellulose resin and color materials (pigments, etc.), which are essential components, the printing layer of the present invention includes the acrylic polymer of the present invention and Resins other than cellulosic resins (sometimes called "other resins"), plasticizers, lubricants, anti-settling agents, dispersants, stabilizers, fillers, antioxidants, ultraviolet absorbers, antistatic agents, colors You may contain additives, such as a parting prevention agent, a fragrance | flavor, and a deodorizing agent, in the range which does not impair the effect of this invention.
 上記のその他の樹脂としては、例えば、印刷インキのレベリング性、消泡効果や印刷層の滑り性の観点から添加される、シリコーン化合物(シリコーンオイル)が挙げられる。上記シリコーン化合物は、特に限定されないが、主鎖がシロキサン結合からなるポリシロキサンであり、メチル基、フェニル基以外の置換基を有しないストレートシリコーン化合物(ジメチルシリコーン、メチルフェニルシリコーン、メチルハイドロジェンシリコーンなど)であってもよいし、側鎖または末端にメチル基、フェニル基以外の置換基を有する変性シリコーン化合物であってもよい。上記変性シリコーン化合物における置換基としては、例えば、エポキシ基、フッ素原子、アミノ基、カルボキシル基、脂肪族ヒドロキシル基(アルコール性水酸基)、芳香族ヒドロキシル基(フェノール性水酸基)、ポリエーテル鎖を含有する置換基などが挙げられる。これらの置換基を有する変性シリコーンとしては、例えば、エポキシ変性シリコーン、フッ素変性シリコーン、アミノ変性シリコーン、ポリエーテル変性シリコーン、カルボキシル変性シリコーン、カルビノール変性シリコーン、フェノール変性シリコーン、ジオール変性シリコーンなどが例示される。これらの変性シリコーン化合物としては、例えば、国際公開2007/007803号パンフレットに記載の化合物などを用いることが可能である。上記のシリコーン化合物の含有量は、特に限定されないが、印刷層の総量(100重量%)に対して、0.1~5重量%が好ましく、より好ましくは0.2~3重量%である。 Examples of the other resin include a silicone compound (silicone oil) added from the viewpoint of leveling properties of printing ink, defoaming effect, and slipperiness of the printing layer. Although the silicone compound is not particularly limited, a straight silicone compound (dimethylsilicone, methylphenylsilicone, methylhydrogensilicone, etc.) that is a polysiloxane having a main chain composed of a siloxane bond and has no substituent other than a methyl group or a phenyl group. Or a modified silicone compound having a substituent other than a methyl group or a phenyl group at the side chain or terminal. Examples of the substituent in the modified silicone compound include an epoxy group, a fluorine atom, an amino group, a carboxyl group, an aliphatic hydroxyl group (alcoholic hydroxyl group), an aromatic hydroxyl group (phenolic hydroxyl group), and a polyether chain. A substituent etc. are mentioned. Examples of the modified silicone having these substituents include epoxy-modified silicone, fluorine-modified silicone, amino-modified silicone, polyether-modified silicone, carboxyl-modified silicone, carbinol-modified silicone, phenol-modified silicone, and diol-modified silicone. The As these modified silicone compounds, for example, compounds described in International Publication No. 2007/007803 pamphlet can be used. The content of the silicone compound is not particularly limited, but is preferably from 0.1 to 5% by weight, more preferably from 0.2 to 3% by weight, based on the total amount (100% by weight) of the printed layer.
 上記滑剤としては、例えば、ポリエチレンワックス、酸化ポリエチレン系ワックス等のポリオレフィン系ワックス、脂肪酸アマイド、脂肪酸エステル、パラフィンワックス、ポリテトラフルオロエチレン(PTFE)ワックス、カルナウバワックス等の各種ワックス類が例示される。上記の滑剤の含有量は、特に限定されないが、印刷層の総量(100重量%)に対して、0.1~10重量%が好ましく、より好ましくは0.2~5重量%である。 Examples of the lubricant include polyolefin waxes such as polyethylene wax and polyethylene oxide wax, various waxes such as fatty acid amide, fatty acid ester, paraffin wax, polytetrafluoroethylene (PTFE) wax, and carnauba wax. . The content of the lubricant is not particularly limited, but is preferably 0.1 to 10% by weight, more preferably 0.2 to 5% by weight, based on the total amount (100% by weight) of the printed layer.
(本発明の印刷層の形成方法、印刷インキ)
 本発明の印刷層は、本発明のアクリル系ポリマーを形成する重合性成分[特定モノマーをはじめとする単官能モノマー及び/又はそのオリゴマー(単官能オリゴマー)等]、必要に応じて、重合開始剤、セルロース系樹脂、色材(顔料等)およびその他の添加剤を含有する組成物(印刷インキ)を塗布し、硬化させることにより形成される。上記の印刷層を形成するための組成物を「印刷インキ」と称する場合がある。
(Method for forming printed layer of the present invention, printing ink)
The printing layer of the present invention comprises a polymerizable component [monofunctional monomer including a specific monomer and / or its oligomer (monofunctional oligomer), etc.] that forms the acrylic polymer of the present invention, and a polymerization initiator as necessary. It is formed by applying and curing a composition (printing ink) containing a cellulose resin, a color material (pigment etc.) and other additives. The composition for forming the printing layer may be referred to as “printing ink”.
 上記の印刷インキの硬化方法としては、活性エネルギー線硬化や熱硬化などの公知慣用のインキの硬化方法を用いることができる。中でも、基材であるシュリンクフィルムの熱変形を抑制する観点から、活性エネルギー線硬化が好ましい。上記の活性エネルギー線としては、可視光、紫外線、電子線などが挙げられる。中でも、生産性の観点から、特に紫外線が好ましく、より好ましくは近紫外線である。好ましい波長は200~460nmである。即ち、本発明の印刷層は活性エネルギー線硬化により形成された印刷層(活性エネルギー線硬化型印刷層)であることが好ましく、より好ましくは紫外線硬化により形成された印刷層(紫外線硬化型印刷層)である。 As the above-described printing ink curing method, known and commonly used ink curing methods such as active energy ray curing and thermal curing can be used. Among these, active energy ray curing is preferable from the viewpoint of suppressing thermal deformation of the shrink film as the base material. Examples of the active energy rays include visible light, ultraviolet rays, and electron beams. Among these, from the viewpoint of productivity, ultraviolet rays are particularly preferable, and near ultraviolet rays are more preferable. A preferred wavelength is 200 to 460 nm. That is, the printing layer of the present invention is preferably a printing layer formed by active energy ray curing (active energy ray curable printing layer), more preferably a printing layer formed by ultraviolet curing (ultraviolet curable printing layer). ).
 本発明の印刷層を形成するための印刷インキ(「本発明の印刷インキ」と称する場合がある)は、本発明のアクリル系ポリマーを形成する重合性成分を必須成分として含有する。上記の重合性成分は、前述の単官能モノマー及び/又は単官能オリゴマーを含有し、かつ、特定モノマー(アクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、パラクミルフェノールEO変性アクリレート及び2-ヒドロキシ-3-フェノキシプロピルアクリレートからなる群より選ばれたモノマー)を必須成分として含有する。 The printing ink for forming the printing layer of the present invention (sometimes referred to as “printing ink of the present invention”) contains a polymerizable component that forms the acrylic polymer of the present invention as an essential component. The polymerizable component contains the above-mentioned monofunctional monomer and / or monofunctional oligomer, and includes specific monomers (acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy- A monomer selected from the group consisting of 3-phenoxypropyl acrylate) as an essential component.
 上記の重合性成分における単官能モノマーは、前述の本発明のアクリル系ポリマーを形成するモノマー成分に含まれる単官能モノマーとして例示した単官能モノマーである。また、上記の単官能オリゴマーは、該単官能モノマーの低重合度の重合体である。該重合度は、特に限定されないが、2~20が好ましく、より好ましくは5~15である。 The monofunctional monomer in the polymerizable component is a monofunctional monomer exemplified as the monofunctional monomer contained in the monomer component forming the acrylic polymer of the present invention. The monofunctional oligomer is a polymer having a low degree of polymerization of the monofunctional monomer. The degree of polymerization is not particularly limited, but is preferably 2 to 20, and more preferably 5 to 15.
 なお、本明細書において、オリゴマーとは、本発明のアクリル系ポリマーを形成するモノマー成分の低重合度の重合体[ラジカル重合性官能基(好ましくはラジカル重合性のエチレン性不飽和基、より好ましくは活性エネルギー線ラジカル重合性のエチレン性不飽和基)において重合した重合体]を意味する。本明細書においては、上記の重合体の中でも、分子量が1万以下の重合体(好ましくは、7000以下の重合体)をオリゴマーと称する。 In the present specification, the oligomer is a polymer having a low polymerization degree of the monomer component forming the acrylic polymer of the present invention [radically polymerizable functional group (preferably radical polymerizable ethylenically unsaturated group, more preferably Means a polymer polymerized in an active energy ray radically polymerizable ethylenically unsaturated group). In the present specification, among the polymers described above, a polymer having a molecular weight of 10,000 or less (preferably a polymer having a molecular weight of 7000 or less) is referred to as an oligomer.
 本発明の印刷インキの総重量(100重量%)中の、上記重合性成分の含有量は、特に限定されないが、30~99重量%が好ましく、より好ましくは45~95重量%である。 The content of the polymerizable component in the total weight (100% by weight) of the printing ink of the present invention is not particularly limited, but is preferably 30 to 99% by weight, more preferably 45 to 95% by weight.
 上記重合性成分全量(100重量%)中の、単官能モノマー及び単官能オリゴマーの合計含有量は、80重量%以上(80~100重量%)が好ましく、より好ましくは85~99重量%である。また、上記重合性成分全量(100重量%)中の、特定モノマーの合計含有量は、50重量%以上(50~100重量%)が好ましく、より好ましくは70~100重量%、さらに好ましくは80~100重量%、最も好ましくは85~99重量%である。 The total content of the monofunctional monomer and the monofunctional oligomer in the total amount of the polymerizable component (100 wt%) is preferably 80 wt% or more (80 to 100 wt%), more preferably 85 to 99 wt%. . The total content of the specific monomer in the total amount of the polymerizable component (100% by weight) is preferably 50% by weight or more (50 to 100% by weight), more preferably 70 to 100% by weight, and still more preferably 80%. -100% by weight, most preferably 85-99% by weight.
 上記重合性成分は、多官能モノマー及び/又は多官能オリゴマーを含有していてもよい。上記の多官能モノマーは、分子中に2以上のラジカル重合性官能基を有するモノマーである。上記の多官能オリゴマーは、上記多官能モノマーの低重合度の重合体である。該重合度は、特に限定されないが、2~20が好ましく、より好ましくは5~15である。重合性成分全量(100重量%)中の多官能モノマーおよび多官能オリゴマーの合計含有量は20重量%未満であり、好ましくは15重量%未満、さらに好ましくは10重量%未満である。 The polymerizable component may contain a polyfunctional monomer and / or a polyfunctional oligomer. Said polyfunctional monomer is a monomer which has a 2 or more radically polymerizable functional group in a molecule | numerator. The polyfunctional oligomer is a polymer having a low polymerization degree of the polyfunctional monomer. The degree of polymerization is not particularly limited, but is preferably 2 to 20, and more preferably 5 to 15. The total content of the polyfunctional monomer and polyfunctional oligomer in the total amount of the polymerizable component (100% by weight) is less than 20% by weight, preferably less than 15% by weight, and more preferably less than 10% by weight.
 本発明の印刷インキは、上記重合性成分に加えて、さらに、硬化反応の種類に応じた重合開始剤(活性エネルギー線重合開始剤、熱重合開始剤など)を含有することが好ましい。特に、本発明の印刷層が活性エネルギー線硬化により形成される場合には、本発明の印刷インキは、活性エネルギー線重合開始剤(「光重合開始剤」と称する場合がある)を含有することが好ましい。 In addition to the polymerizable component, the printing ink of the present invention preferably further contains a polymerization initiator (active energy ray polymerization initiator, thermal polymerization initiator, etc.) corresponding to the type of curing reaction. In particular, when the printing layer of the present invention is formed by active energy ray curing, the printing ink of the present invention contains an active energy ray polymerization initiator (sometimes referred to as “photopolymerization initiator”). Is preferred.
 上記光重合開始剤としては、特に限定されないが、光ラジカル重合開始剤が好ましい。光ラジカル重合開始剤としては、特に限定されないが、例えば、ベンゾイン、ベンゾインアルキルエーテル類、ベンジルケタール類、アセトフェノン、α-ヒドロキシシクロヘキシルフェニルケトン、アセトフェノン誘導体、ベンジル、ベンゾフェノン、ベンゾフェノン誘導体、α-アシロキシムエステル、チオキサントン誘導体、アントラキノン誘導体、芳香族過酸化エステル類などが挙げられる。これらは単独もしくは2種以上を混合して使用される。光ラジカル重合開始剤の含有量は、特に限定されないが、印刷インキの総重量(100重量%)に対して、0.5~10重量%が好ましく、より好ましくは1~7重量%である。 The photopolymerization initiator is not particularly limited, but a photoradical polymerization initiator is preferable. The radical photopolymerization initiator is not particularly limited. For example, benzoin, benzoin alkyl ethers, benzyl ketals, acetophenone, α-hydroxycyclohexyl phenyl ketone, acetophenone derivatives, benzyl, benzophenone, benzophenone derivatives, α-acyloxime esters Thioxanthone derivatives, anthraquinone derivatives, aromatic peroxide esters and the like. These may be used alone or in admixture of two or more. The content of the photo radical polymerization initiator is not particularly limited, but is preferably 0.5 to 10% by weight, more preferably 1 to 7% by weight, based on the total weight (100% by weight) of the printing ink.
 上記光重合開始剤としては、市販品を用いることも可能であり、例えば、チバ・スペシャルティ・ケミカルズ製、商品名「DAROCUR TPO」、「IRGACURE 184、651、2959、907、369、1700、1800、1850、819」、「DAROCUR 1173」などが挙げられる。 Commercially available products can also be used as the photopolymerization initiator, for example, trade names “DAROCUR TPO”, “IRGACURE 184, 651, 2959, 907, 369, 1700, 1800, manufactured by Ciba Specialty Chemicals, Inc. 1850, 819 "," DAROCUR 1173 "and the like.
 本発明の印刷インキは、さらに、必要に応じて、前述のセルロース系樹脂、色材(顔料等)およびその他の添加剤を含有してもよい。 The printing ink of the present invention may further contain the aforementioned cellulose resin, color material (pigment, etc.) and other additives as necessary.
 本発明の印刷インキ中の、反応に関与せず主に分散剤として使用される溶剤の含有量は、5重量%以下であることが好ましく、より好ましくは1重量%以下であり、さらに、実質的に溶剤を含有しないことが最も好ましい。なお、ここでいう溶剤とは、例えば、トルエン、キシレン、メチルエチルケトン、酢酸エチル、メチルアルコール、エチルアルコールなどの有機溶媒や水のことをいい、グラビア、フレキソ印刷インキ等では、塗布加工性やインキ中の各成分の相溶性や分散性を改良する目的で通常用いられているものである。なお、硬化後の印刷層に取り込まれる反応性希釈剤はこれに含まれない。本発明の印刷インキは、無溶剤でも、優れた塗布性、含有成分同士の分散性を発揮でき、無溶剤で用いることができる、又は、溶剤の量を極めて少なくできるため、溶剤(溶媒)の除去が不要となり、高速化、コストダウンがはかれるほか、環境負荷を少なくすることが可能である。 In the printing ink of the present invention, the content of the solvent used mainly as a dispersant without participating in the reaction is preferably 5% by weight or less, more preferably 1% by weight or less, Most preferably, no solvent is contained. The solvent here refers to, for example, an organic solvent such as toluene, xylene, methyl ethyl ketone, ethyl acetate, methyl alcohol, and ethyl alcohol, and water. In gravure and flexographic printing inks, coating processability and These are usually used for the purpose of improving the compatibility and dispersibility of these components. In addition, the reactive diluent taken in the printed layer after hardening is not included in this. The printing ink of the present invention can exhibit excellent coating properties and dispersibility between components even without a solvent, and can be used without a solvent, or the amount of the solvent can be extremely reduced. Removal is unnecessary, speeding up and cost reduction can be achieved, and the environmental load can be reduced.
 本発明の印刷インキは、特に限定されないが、上記の本発明のアクリル系ポリマーを形成する重合性成分、必要に応じて、重合開始剤、セルロース系樹脂、色材(顔料等)およびその他の添加剤などの各成分を配合し、混合して製造することができる。混合は、バタフライミキサー、プラネタリーミキサー、ポニーミキサー、ディゾルバー、タンクミキサー、ホモミキサー、ホモディスパーなどのミキサーや、ペイントシェイカー、ロールミル、サンドミル、ボールミル、ビーズミル、ラインミルなどのミル、ニーダーなどが用いられる。混合の際の混合時間(滞留時間)は、特に限定されないが、10~120分が好ましい。得られた印刷インキは、必要に応じて、濾過してから用いてもよい。 The printing ink of the present invention is not particularly limited, but the polymerizable component that forms the acrylic polymer of the present invention, a polymerization initiator, a cellulose resin, a coloring material (pigment, etc.) and other additives as necessary. Each component such as an agent can be blended and mixed. For mixing, mixers such as butterfly mixers, planetary mixers, pony mixers, dissolvers, tank mixers, homomixers, homodispers, paint shakers, roll mills, sand mills, ball mills, bead mills, line mills, and kneaders are used. The mixing time (retention time) during mixing is not particularly limited, but is preferably 10 to 120 minutes. The obtained printing ink may be used after being filtered, if necessary.
 本発明の印刷インキの粘度(23±2℃)は、特に限定されないが、例えば、フレキソ印刷により塗工される場合には、10~3000mPa・sが好ましく、より好ましくは20~1000mPa・sである。粘度が3000mPa・sを超える場合には、フレキソ印刷性が低下し、「かすれ」などが生じて、加飾性が低下する場合がある。また、粘度が10mPa・s未満の場合には、顔料や添加剤が沈降しやすくなる等、貯蔵安定性が低下する場合がある。印刷インキの粘度は、各配合成分の配合比、増粘剤、減粘剤等によって制御することが可能である。なお、本明細書中、「粘度」とは、特に限定しない限り、E型粘度計(円錐平板形回転粘度計)を用い、23±2℃、円筒の回転数50回転の条件下、JIS Z 8803に準じて測定した値を意味している。 The viscosity (23 ± 2 ° C.) of the printing ink of the present invention is not particularly limited. For example, when applied by flexographic printing, it is preferably 10 to 3000 mPa · s, more preferably 20 to 1000 mPa · s. is there. When the viscosity exceeds 3000 mPa · s, the flexographic printability may be reduced, and “decrease” or the like may occur, resulting in a decrease in decorating properties. On the other hand, when the viscosity is less than 10 mPa · s, the storage stability may be deteriorated, for example, the pigment or the additive may easily settle. The viscosity of the printing ink can be controlled by the blending ratio of each blending component, thickener, thinning agent, and the like. In the present specification, “viscosity” is JIS Z under the conditions of 23 ± 2 ° C. and 50 rpm of the cylinder using an E-type viscometer (conical flat plate viscometer) unless otherwise specified. The value measured according to 8803 is meant.
 本発明の印刷層は、基材の少なくとも片面側に上記の本発明の印刷インキを塗布し、硬化させることにより形成することができる。 The printing layer of the present invention can be formed by applying the above-described printing ink of the present invention to at least one side of the substrate and curing it.
 上記の塗布は、公知慣用の塗布方法、印刷方法を用いて行うことができる。中でも、本発明の印刷インキは、コストや生産性、印刷の装飾性などの観点から、グラビア印刷、フレキソ印刷またはインクジェット印刷方式で塗布(塗工)されることが好ましい。 The above application can be performed using a known and commonly used application method and printing method. Among these, the printing ink of the present invention is preferably applied (coated) by gravure printing, flexographic printing, or inkjet printing from the viewpoints of cost, productivity, printing decoration, and the like.
 上記の硬化は、前述の通り、公知慣用のインキの硬化方法で行うことが可能であり、中でも、活性エネルギー線硬化(特に紫外線硬化)が好ましい。具体的には、例えば、紫外線(UV)ランプ、紫外線LEDや紫外線レーザーなどを用いて行うことができる。照射する活性エネルギー線は、印刷インキの組成によっても異なり、特に限定されないが、硬化性の観点から、波長が200~460nmの紫外線(近紫外線)が好ましく、また、積算光量は50~2000(mJ/cm2)が好ましい。 As described above, the above curing can be performed by a known and commonly used ink curing method, and among them, active energy ray curing (particularly, ultraviolet curing) is preferable. Specifically, for example, an ultraviolet (UV) lamp, an ultraviolet LED, or an ultraviolet laser can be used. The active energy ray to be irradiated varies depending on the composition of the printing ink and is not particularly limited. However, from the viewpoint of curability, ultraviolet rays having a wavelength of 200 to 460 nm (near ultraviolet rays) are preferable, and the integrated light amount is 50 to 2000 (mJ). / Cm 2 ) is preferred.
 本発明の印刷層の厚み(単層の厚み)は、特に限定されないが、0.5~5μmが好ましく、より好ましくは1~4μmである。印刷層の厚みが0.5μm未満では、印刷層の強度が弱くなる場合がある。一方、厚みが5μmを超えると、印刷インキの使用量が増加し、コスト面や環境面で好ましくない場合がある。さらに、均一に塗布することが困難となる場合、シュリンク加工に対する追従性が低下する場合や、印刷層がもろくなって剥離しやすくなる場合がある。また、色材(着色剤)が入っている場合は、深部まで硬化しにくくなり、剥離しやすくなる場合がある。 The thickness of the printing layer of the present invention (single layer thickness) is not particularly limited, but is preferably 0.5 to 5 μm, more preferably 1 to 4 μm. If the thickness of the printing layer is less than 0.5 μm, the strength of the printing layer may be weakened. On the other hand, if the thickness exceeds 5 μm, the amount of printing ink used increases, which may be undesirable in terms of cost and environment. Furthermore, when it becomes difficult to apply uniformly, the followability to shrink processing may be reduced, or the printed layer may become brittle and easily peel off. Moreover, when the coloring material (coloring agent) is contained, it becomes difficult to harden to a deep part and it may become easy to peel.
[基材]
 本発明のシュリンクラベルにおける基材(基材層)は、印刷層の担体(支持体)となり、ラベルの強度、剛性や収縮特性に主たる影響を及ぼす層である。上記基材は、シュリンクフィルム(熱収縮性フィルム)であれば、特に限定されず、公知のシュリンクラベルの基材として用いられるシュリンクフィルムを用いることができる。上記シュリンクフィルムを形成する樹脂の種類は、要求物性、用途、コストなどに応じて、適宜選択することが可能であり、特に限定されないが、例えば、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂、アラミド樹脂、ポリイミド樹脂、ポリフェニレンスルフィド樹脂、アクリル系樹脂等の樹脂が挙げられる。これらの樹脂は1種のみを用いてもよいし、2種以上を用いてもよい。さらに、同種又は異種の樹脂を積層して積層フィルムとして用いてもよい。中でも、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂が好ましい。即ち、上記シュリンクフィルムは、ポリエステル系樹脂からなるポリエステル系フィルム、ポリスチレン系樹脂からなるポリスチレン系フィルム、ポリオレフィン系樹脂からなるポリオレフィン系フィルム、ポリエステル系樹脂を外層とし、ポリオレフィン系樹脂又はポリスチレン系樹脂を内層とした異種積層フィルムが好ましい。上記の中でも、透明性の観点から、特にポリエステル系フィルムが好ましい。上記のポリエステル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂としては、例えば、特開2008-170822号公報、特開2008-170697号公報、特開2008-163215号公報、特開2008-163231号公報に記載のポリエステル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂などを用いることができる。
[Base material]
The base material (base material layer) in the shrink label of the present invention serves as a carrier (support) for the printing layer, and is a layer that mainly affects the strength, rigidity and shrinkage characteristics of the label. If the said base material is a shrink film (heat-shrinkable film), it will not specifically limit, The shrink film used as a base material of a well-known shrink label can be used. The type of resin that forms the shrink film can be appropriately selected according to the required physical properties, application, cost, and the like, and is not particularly limited. For example, a polyester resin, a polyolefin resin, a polystyrene resin, Examples of the resin include polyvinyl chloride resin, polyamide resin, aramid resin, polyimide resin, polyphenylene sulfide resin, and acrylic resin. These resins may be used alone or in combination of two or more. Furthermore, the same kind or different kinds of resins may be laminated to be used as a laminated film. Of these, polyester resins, polyolefin resins, and polystyrene resins are preferable. That is, the shrink film includes a polyester film made of a polyester resin, a polystyrene film made of a polystyrene resin, a polyolefin film made of a polyolefin resin, a polyester resin as an outer layer, and a polyolefin resin or a polystyrene resin as an inner layer. The heterogeneous laminated film is preferred. Among the above, a polyester film is particularly preferable from the viewpoint of transparency. Examples of the polyester-based resin, polyolefin-based resin, and polystyrene-based resin include, for example, JP-A-2008-170822, JP-A-2008-170697, JP-A-2008-163215, and JP-A-2008-163231. The polyester resins, polyolefin resins, polystyrene resins, and the like described can be used.
 上記ポリエステル系フィルムに用いられるポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)系樹脂やポリ(エチレン-2,6-ナフタレンジカルボキシレート)(PEN)、ポリ乳酸(PLA)等を用いることができ、中でも好ましくはポリエチレンテレフタレート(PET)系樹脂である。上記PET系樹脂としては、ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコールを用いたポリエチレンテレフタレート(PET);ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコールを主成分、1,4-シクロヘキサンジメタノール(CHDM)を共重合成分として用いた共重合ポリエステル(CHDM共重合PET)、ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコールを主成分、ネオペンチルグリコール(NPG)を共重合成分として用いた共重合ポリエステル(NPG共重合PET)、ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコールを主成分、ジエチレングリコールを共重合成分として用いた共重合ポリエステルなどのジオール変性PET;ジカルボン酸変性PET(ジカルボン酸成分において、テレフタル酸を主成分にイソフタル酸及び/又はアジピン酸で変性)などが挙げられる。 Examples of the polyester resin used for the polyester film include polyethylene terephthalate (PET) resin, poly (ethylene-2,6-naphthalenedicarboxylate) (PEN), polylactic acid (PLA), and the like. Among them, polyethylene terephthalate (PET) resin is preferable. As the PET resin, polyethylene terephthalate (PET) using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the diol component; terephthalic acid as the dicarboxylic acid component, ethylene glycol as the diol component, Copolyester (CHDM copolymerized PET) using 4-cyclohexanedimethanol (CHDM) as a copolymerization component, terephthalic acid as a dicarboxylic acid component, ethylene glycol as a diol component, and neopentyl glycol (NPG) as a main component Copolyester (NPG copolymerized PET) used as copolymer component, terephthalic acid as dicarboxylic acid component, ethylene glycol as main component as diol component, diethylene glycol as copolymer component Diol-modified PET, such as copolymerized polyester; (in the dicarboxylic acid component, modified terephthalic acid as a main component with isophthalic acid and / or adipic acid) the dicarboxylic acid-modified PET, and the like.
 上記ポリスチレン系フィルムに用いられるポリスチレン系樹脂としては、構成モノマーとして、例えば、スチレン、α-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-エチルスチレン、p-イソブチルスチレン、p-t-ブチルスチレン、クロロメチルスチレン等のスチレン系単量体を1種又は2種以上含む樹脂が挙げられる。具体的には、例えば、一般ポリスチレン、スチレン-ブタジエン共重合体(SBS)、スチレン-ブタジエン-イソプレン共重合体(SBIS)、スチレン-アクリル酸エステル共重合体等が好ましく例示される。 Examples of the polystyrene resin used for the polystyrene film include styrene, α-methyl styrene, m-methyl styrene, p-methyl styrene, p-ethyl styrene, p-isobutyl styrene, pt- Examples thereof include resins containing one or more styrene monomers such as butyl styrene and chloromethyl styrene. Specifically, for example, general polystyrene, styrene-butadiene copolymer (SBS), styrene-butadiene-isoprene copolymer (SBIS), styrene-acrylate copolymer, and the like are preferably exemplified.
 上記ポリオレフィン系フィルムに用いられるポリオレフィン系樹脂としては、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、メタロセン触媒系LLDPE(mLLDPE)などのポリエチレン系樹脂、ポリプロピレン、プロピレン-α-オレフィン共重合体などのポリプロピレン系樹脂、エチレン酢酸ビニル共重合体、環状オレフィン樹脂等が挙げられる。特に、ポリオレフィン系フィルムとしては、環状オレフィン樹脂を外層とするものが好ましい。例えば、環状オレフィン樹脂を外層とし、ポリエチレン系樹脂又はポリプロピレン系樹脂を内層(中心層)とするものが好ましい。 Examples of polyolefin resins used in the polyolefin film include polyethylene resins such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and metallocene catalyst LLDPE (mLLDPE), polypropylene, and propylene-α-olefin. Examples include polypropylene resins such as copolymers, ethylene vinyl acetate copolymers, and cyclic olefin resins. In particular, the polyolefin film is preferably one having a cyclic olefin resin as an outer layer. For example, it is preferable to use a cyclic olefin resin as an outer layer and a polyethylene resin or a polypropylene resin as an inner layer (center layer).
 本発明における基材は単層構成であってもよいし、積層構成を有していてもよい。即ち、上記シュリンクフィルムは、単層フィルムであってもよいし、要求物性、用途などに応じて、複数のフィルム層を積層した積層フィルムであってもよい。また、積層フィルムの場合、同種の樹脂からなるフィルム層を積層していてもよいし、異なる樹脂からなるフィルム層を積層していてもよい。積層フィルムの場合、ポリエステル系樹脂を外層とし、ポリオレフィン系樹脂又はポリスチレン系樹脂を内層とした積層フィルムや、環状オレフィン樹脂を外層とし、ポリエチレン系樹脂又はポリプロピレン系樹脂を内層とした積層フィルムが好ましい。 The base material in the present invention may have a single layer structure or a laminated structure. That is, the shrink film may be a single layer film or a laminated film in which a plurality of film layers are laminated according to required physical properties, applications, and the like. In the case of a laminated film, film layers made of the same kind of resin may be laminated, or film layers made of different resins may be laminated. In the case of a laminated film, a laminated film having a polyester resin as an outer layer and a polyolefin resin or polystyrene resin as an inner layer, or a laminated film having a cyclic olefin resin as an outer layer and a polyethylene resin or a polypropylene resin as an inner layer is preferable.
 上記基材として用いられるシュリンクフィルムは、シュリンク特性を発揮する観点から、1軸、2軸または多軸に配向したフィルムであることが好ましい。シュリンクフィルムが積層フィルムの場合には、積層フィルム中の少なくとも1層のフィルム層が配向していることが好ましい。全てのフィルム層が無配向の場合には、十分なシュリンク特性を発揮できない場合がある。シュリンクフィルムとしては、特に1軸または2軸配向フィルムが用いられることが多く、中でも、フィルムの1軸方向に強く配向しているフィルム(実質的に1軸延伸されたフィルム)が一般的に用いられる。特に幅方向に1軸延伸されたフィルムが好ましい。 The shrink film used as the substrate is preferably a uniaxially, biaxially or multiaxially oriented film from the viewpoint of exhibiting shrinkage characteristics. When the shrink film is a laminated film, it is preferable that at least one film layer in the laminated film is oriented. When all the film layers are non-oriented, sufficient shrink characteristics may not be exhibited. As the shrink film, a uniaxial or biaxially oriented film is often used, and among them, a film that is strongly oriented in the uniaxial direction of the film (substantially uniaxially stretched film) is generally used. It is done. A film uniaxially stretched in the width direction is particularly preferable.
 上記シュリンクフィルムは、溶融製膜または溶液製膜などの慣用の方法によって作製することができる。また、市販のシュリンクフィルムを用いることも可能である。シュリンクフィルムの表面には、必要に応じて、コロナ放電処理やプライマー処理等の慣用の表面処理が施されていてもよい。積層構成のシュリンクフィルムを作製する場合、積層の方法としては、慣用の方法、例えば、共押出法、ドライラミネート法などを用いることが可能である。シュリンクフィルムに配向を施す方法としては、長手方向(フィルムの製造ライン方向。縦方向又はMD方向とも称する)および幅方向(長手方向と直交する方向。横方向又はTD方向とも称する)の2軸延伸、長手方向又は幅方向の1軸延伸を用いることができる。延伸方式は、ロール方式、テンター方式、チューブ方式の何れの方式を用いてもよい。例えば、幅方向に実質的に1軸延伸されたフィルムの延伸処理は、70~100℃程度の温度で、必要に応じて長手方向に例えば1.01~1.5倍、好ましくは1.05~1.3倍程度に延伸した後、幅方向に3~6倍、好ましくは4~5.5倍程度延伸することにより行うことができる。 The shrink film can be produced by a conventional method such as melt film formation or solution film formation. It is also possible to use a commercially available shrink film. The surface of the shrink film may be subjected to conventional surface treatment such as corona discharge treatment or primer treatment, if necessary. When a shrink film having a laminated structure is produced, a conventional method such as a co-extrusion method or a dry lamination method can be used as a lamination method. Biaxial stretching in the longitudinal direction (the film production line direction; also referred to as the longitudinal direction or MD direction) and the width direction (the direction perpendicular to the longitudinal direction; also referred to as the transverse direction or TD direction) is used as a method for orienting the shrink film. Uniaxial stretching in the longitudinal direction or the width direction can be used. As the stretching method, any of a roll method, a tenter method, and a tube method may be used. For example, the stretching treatment of the film substantially uniaxially stretched in the width direction is, for example, 1.01 to 1.5 times, preferably 1.05 in the longitudinal direction at a temperature of about 70 to 100 ° C. if necessary. After stretching to about 1.3 times, it can be performed by stretching 3 to 6 times, preferably about 4 to 5.5 times in the width direction.
 上記シュリンクフィルムの、主配向方向の、90℃、10秒における熱収縮率(「熱収縮率(90℃、10秒)」と称する場合がある)は、特に限定されないが、15~80%が好ましく、より好ましくは20~75%、さらに好ましくは25~70%である。主配向方向と直交する方向の熱収縮率(90℃、10秒)は、特に限定されないが、-3~15%が好ましい。なお、上記「主配向方向」とは主に延伸処理が施された方向(最も熱収縮率が大きい方向)であり、一般的には長手方向又は幅方向であり、例えば、幅方向に実質的に1軸延伸されたフィルムの場合には幅方向である。 The shrinkage rate of the shrink film in the main orientation direction at 90 ° C. for 10 seconds (sometimes referred to as “thermal shrinkage rate (90 ° C., 10 seconds)”) is not particularly limited, but is 15 to 80%. Preferably, it is 20 to 75%, more preferably 25 to 70%. The heat shrinkage (90 ° C., 10 seconds) in the direction perpendicular to the main orientation direction is not particularly limited, but is preferably −3 to 15%. The above-mentioned “main orientation direction” is a direction mainly subjected to a stretching process (a direction having the largest thermal shrinkage), and is generally a longitudinal direction or a width direction, for example, substantially in the width direction. In the case of a uniaxially stretched film, it is the width direction.
 上記シュリンクフィルムが透明フィルムの場合、シュリンクフィルムのヘイズ値(%)(JIS K 7105準拠)は、10%未満が好ましく、より好ましくは5.0%未満、さらに好ましくは2.0%未満である。ヘイズ値が10%以上の場合には、シュリンクフィルムを通して印刷を見せる場合に、印刷が曇り、装飾性が低下することがある。 When the shrink film is a transparent film, the haze value (%) of the shrink film (based on JIS K 7105) is preferably less than 10%, more preferably less than 5.0%, and even more preferably less than 2.0%. . When the haze value is 10% or more, when printing is shown through the shrink film, the printing may become cloudy and the decorativeness may be deteriorated.
 上記基材の厚みは、特に限定されないが、10~100μmが好ましく、より好ましくは12~80μm、さらに好ましくは15~60μmである。 The thickness of the substrate is not particularly limited, but is preferably 10 to 100 μm, more preferably 12 to 80 μm, and still more preferably 15 to 60 μm.
 上記基材として用いられるシュリンクフィルムは、市販品を用いることも可能である。例えば、東洋紡(株)製「スペースクリーン S7042」、三菱樹脂(株)製「LX-10S」、「LX-61S」(以上、ポリエステル系フィルム);シーアイ化成(株)製「ボンセット」、グンゼ(株)製「GMLS」(以上、ポリスチレン系フィルム);グンゼ(株)製「FL」(ポリオレフィン系フィルム);三菱樹脂(株)製「エコロージュ」(ポリ乳酸系フィルム);三菱樹脂(株)製「DL」、グンゼ(株)製「HGS」(以上、表層がポリエステル系樹脂、中心層がポリスチレン系樹脂の積層フィルム)等が挙げられる。 Commercially available products can be used as the shrink film used as the base material. For example, “Space Clean S7042” manufactured by Toyobo Co., Ltd., “LX-10S”, “LX-61S” manufactured by Mitsubishi Plastics (hereinafter polyester film); “Bonnset” manufactured by CI Kasei Co., Ltd., Gunze “GMLS” (polystyrene film) manufactured by Gunze Co., Ltd. “FL” (polyolefin film) manufactured by Gunze Co., Ltd. “Ecology” manufactured by Mitsubishi Plastics Co., Ltd. (polylactic acid film); Mitsubishi Plastics Co., Ltd. “DL” manufactured by Gunze Co., Ltd. and “HGS” manufactured by Gunze Co., Ltd. (the above is a laminated film having a polyester resin as a surface layer and a polystyrene resin as a central layer).
[シュリンクラベル]
 本発明のシュリンクラベルは、前述のとおり、上記基材の少なくとも片面側に、上記の本発明の印刷層を有する。上記の本発明の印刷層は、必ずしもラベルの全面に設けられる必要はなく、基材の一部分にのみ設けることができる。具体的には、それぞれ異なる色材を含有する本発明の印刷層を基材に積層したり、基材に設けられた本発明の印刷層の上にさらに本発明の印刷層を積層したり、又は、一部分には印刷層を設けなかったりすることにより、所望の文字、デザインを形成することができる。また、本発明の印刷層は、必要に応じて、アンカーコート層を介して基材上に設けられていてもよい。
[Shrink label]
As described above, the shrink label of the present invention has the printed layer of the present invention on at least one side of the substrate. The printed layer of the present invention is not necessarily provided on the entire surface of the label, and can be provided only on a part of the substrate. Specifically, the printing layer of the present invention each containing a different color material is laminated on the substrate, the printing layer of the present invention is further laminated on the printing layer of the present invention provided on the substrate, Or a desired character and design can be formed by not providing a printing layer in a part. Moreover, the printing layer of this invention may be provided on the base material through the anchor coat layer as needed.
 さらに、本発明のシュリンクラベルには、基材、本発明の印刷層の他にも、接着剤層、紫外線防止層、アンカーコート層、プライマーコート層、本発明の印刷層以外の印刷層(「他の印刷層」と称する場合がある)、不織布、紙等の層を必要に応じて設けてもよい。上記の他の印刷層は、例えば、溶剤系印刷インキから形成される印刷層であってもよい。 Furthermore, in addition to the base material and the printing layer of the present invention, the shrink label of the present invention includes an adhesive layer, an ultraviolet protection layer, an anchor coating layer, a primer coating layer, and a printing layer other than the printing layer of the present invention (“ A layer such as a nonwoven fabric or paper may be provided as necessary. The other printing layer may be, for example, a printing layer formed from a solvent-based printing ink.
 本発明のシュリンクラベルにおいて、本発明の印刷層は、ラベルの内側になるように設けられてもよいし、ラベルの外側になるように設けられてもよい。
 本発明のシュリンクラベルの積層構成は、特に限定されないが、例えば、表側(ラベルの表側)から、
基材/本発明の印刷層、本発明の印刷層/基材からなる2層積層構成;
本発明の印刷層/基材/本発明の印刷層、基材/本発明の印刷層/本発明の印刷層、本発明の印刷層/基材/本発明の印刷層/本発明の印刷層、基材/他の印刷層/本発明の印刷層、本発明の印刷層/基材/他の印刷層/本発明の印刷層等の多層積層構成が挙げられる。
In the shrink label of the present invention, the printed layer of the present invention may be provided so as to be inside the label, or may be provided so as to be outside the label.
Although the lamination structure of the shrink label of the present invention is not particularly limited, for example, from the front side (the front side of the label),
A two-layer laminated structure comprising a substrate / printing layer of the present invention and a printing layer / substrate of the present invention;
Print layer of the present invention / Substrate / Print layer of the present invention, Substrate / Print layer of the present invention / Print layer of the present invention, Print layer of the present invention / Substrate / Print layer of the present invention / Print layer of the present invention , Substrate / other printing layer / printing layer of the present invention, printing layer of the present invention / substrate / other printing layer / printing layer of the present invention, and the like.
 なお、本明細書において、シュリンクラベルの「表側」とは、ラベルのデザインを見る側(デザインが正しく見える方の面側)を意味し、シュリンクラベルの「裏側」とは、前記の「表側」の反対側を意味する。また、シュリンクラベルの「外側」とは、シュリンクラベルを容器に装着する場合に、容器とは接しない側(容器とは反対側)を意味し、シュリンクラベルの「内側」とは、容器と接する側(容器側)を意味する。 In the present specification, the “front side” of the shrink label means the side viewing the design of the label (the side of the surface on which the design looks correct), and the “back side” of the shrink label means the above “front side”. Means the other side. The “outside” of the shrink label means the side that does not contact the container (the side opposite to the container) when the shrink label is attached to the container, and the “inside” of the shrink label contacts the container. Means side (container side).
 本発明のシュリンクラベルの、主配向方向の、90℃、10秒における熱収縮率(熱収縮率(90℃、10秒))は、特に限定されないが、15%以上(例えば、15~80%)が好ましく、より好ましくは20~75%、さらに好ましくは25~70%である。熱収縮率(90℃、10秒)が15%未満では、シュリンク加工の際に、ラベルを装着する容器等の形状に対する追従性が不十分であり、美麗な仕上がりが得られない場合がある。主配向方向と直交する方向の熱収縮率(90℃、10秒)は、特に限定されないが、-3~15%が好ましい。なお、上記「主配向方向」とは、主に延伸処理が施された方向(最も熱収縮率が大きい方向)であり、シュリンクラベルが筒状シュリンクラベルの場合には、一般に周方向である。 The shrinkage rate of the shrink label of the present invention in the main orientation direction at 90 ° C. for 10 seconds (heat shrinkage rate (90 ° C., 10 seconds)) is not particularly limited, but is 15% or more (for example, 15 to 80%) ), Preferably 20 to 75%, more preferably 25 to 70%. When the heat shrinkage (90 ° C., 10 seconds) is less than 15%, the followability with respect to the shape of a container or the like to which the label is attached is insufficient during shrink processing, and a beautiful finish may not be obtained. The heat shrinkage (90 ° C., 10 seconds) in the direction perpendicular to the main orientation direction is not particularly limited, but is preferably −3 to 15%. The “main orientation direction” is a direction mainly subjected to a stretching process (a direction having the largest thermal shrinkage rate), and is generally a circumferential direction when the shrink label is a cylindrical shrink label.
 本発明のシュリンクラベルにおいては、印刷インキをラジカル重合により硬化して印刷層を形成しうるため、カチオン重合により硬化してなる印刷層のように、水分による重合阻害(硬化阻害)を受けないという点でも有利である。このため、例えば、本発明の印刷層は、水性インキによる印刷層上に設けることも可能である。さらに、本発明の印刷層は、印刷層を構成するアクリル系ポリマーとして、単官能モノマーを主成分とするモノマー成分から形成しているアクリル系ポリマーを用いている。このため、本発明の印刷層は、シュリンク加工に対する追従性に優れ、高収縮のシュリンク加工時においても、印刷層の白化が生じない。 In the shrink label of the present invention, the printing ink can be cured by radical polymerization to form a printing layer, so that it does not suffer from polymerization inhibition (curing inhibition) due to moisture unlike a printing layer cured by cationic polymerization. This is also advantageous. For this reason, for example, the printing layer of this invention can also be provided on the printing layer by water-based ink. Furthermore, the printing layer of this invention uses the acrylic polymer formed from the monomer component which has a monofunctional monomer as a main component as an acrylic polymer which comprises a printing layer. For this reason, the printing layer of this invention is excellent in the followability with respect to a shrink process, and whitening of a print layer does not arise also at the time of the high shrinkage shrink process.
 一般的に、単官能モノマーを主成分とするモノマー成分からアクリル系ポリマーを形成する場合には、硬化が不十分となり未硬化モノマーが印刷層中に残存したり、ガラス転移温度(Tg)の低いアクリル系ポリマーが形成されるため、印刷層に表面タック(ベタつき、粘着性)が生じ、耐摩耗性の低下やブロッキングなどの問題が生じる傾向にある。これに対して、本発明においては、アクリル系ポリマーを形成するモノマー成分中に、硬化性に優れ、Tgの高いアクリル系ポリマーを形成できる特定モノマーを特定量用いることにより、印刷層のタックを抑制し、優れたタックフリー性を達成している。これにより、本発明のシュリンクラベルは、印刷層のシュリンク加工に対する追従性とタックフリー性を両立している。 In general, when an acrylic polymer is formed from a monomer component containing a monofunctional monomer as a main component, curing is insufficient and uncured monomer remains in the printed layer or has a low glass transition temperature (Tg). Since the acrylic polymer is formed, surface tack (stickiness, adhesiveness) occurs in the printing layer, and there is a tendency that problems such as a decrease in wear resistance and blocking occur. In contrast, in the present invention, the use of a specific amount of a specific monomer capable of forming an acrylic polymer having excellent curability and high Tg in the monomer component forming the acrylic polymer suppresses the tack of the printed layer. And has achieved excellent tack-free properties. As a result, the shrink label of the present invention has both a followability to the shrink processing of the printed layer and a tack-free property.
 本発明のシュリンクラベルは、筒状ラベル、巻き付けラベル等、特に限定されないが、シュリンク加工に対する優れた追従性の効果を十分に発揮できる観点からは、筒状のシュリンクラベル(筒状シュリンクラベル)が好ましい。 The shrink label of the present invention is not particularly limited, such as a cylindrical label, a wound label, and the like, but from the viewpoint of sufficiently exhibiting the effect of excellent followability to shrink processing, a tubular shrink label (cylindrical shrink label) is preferable.
 本発明のシュリンクラベルは、一般的に、表側が容器と反対側にくるように配置させ熱収縮させることにより容器に装着し、ラベル付き容器として用いられる。このような容器には、例えば、PETボトルなどのソフトドリンク用ボトル、宅配用牛乳容器、調味料などの食品用容器、アルコール飲料用ボトル、医薬品容器、洗剤、スプレーなどの化学製品の容器、カップ麺容器などが含まれる。また容器の材質としても、PETなどのプラスチック製、ガラス製、金属製などが含まれる。なお、本発明のシュリンクラベルは、容器以外の被着体に用いられてもよい。 The shrink label of the present invention is generally used as a labeled container by placing it on the container by heat-shrinking it with the front side facing away from the container. Such containers include, for example, soft drink bottles such as PET bottles, milk containers for home delivery, food containers such as seasonings, alcohol beverage bottles, pharmaceutical containers, containers for chemical products such as detergents and sprays, cups, etc. This includes noodle containers. Also, the material of the container includes plastic such as PET, glass, metal and the like. In addition, the shrink label of this invention may be used for adherends other than a container.
 本発明のシュリンクラベルは、前述の本発明の印刷層の形成方法に従い、基材(シュリンクフィルム)の少なくとも片面側の表面上に、本発明の印刷インキを、塗布し、硬化させて印刷層を設けることにより、作製することができる。上記の塗布、硬化工程は、シュリンクフィルムの製造工程中に行われてもよいし(インラインコート)、フィルム製膜後に行われてもよい(オフラインコート)が、生産性や加工性の観点から、オフラインコートが好ましい。また、必要に応じて、本発明の印刷層以外の印刷層等を設けてもよい。 In the shrink label of the present invention, the printing ink of the present invention is applied on the surface of at least one side of the substrate (shrink film) according to the above-described method for forming a printed layer of the present invention, and the printed layer is formed by curing. By providing, it can produce. The above coating and curing steps may be performed during the shrink film manufacturing process (in-line coating) or after film formation (off-line coating), from the viewpoint of productivity and workability, An off-line coat is preferred. Moreover, you may provide printing layers other than the printing layer of this invention as needed.
(筒状シュリンクラベルの加工方法)
 本発明のシュリンクラベルの加工方法(筒状シュリンクラベルの加工方法)の例を下記に示す。本発明のシュリンクラベルは筒状ラベルに加工してもよい。例えば、シュリンクラベルの主配向方向が周方向となるように円筒状に成形する。具体的には、主配向方向に所定幅を有するシュリンクラベルを、シュリンクラベルの外面(外側)が表側となるように主配向方向の両端を重ね合わせて筒状に形成し、ラベルの一方の側縁部に、帯状に約2~4mm幅で、テトラヒドロフラン(THF)などの溶剤や接着剤(以下接着剤等)を内面に塗布し、該接着剤等塗布部を、他方の側縁部の外面に接着し、筒状のシュリンクラベルを得る。なお、上記の接着剤などを塗工する部分及び接着する部分には、印刷層が設けられていないことが好ましい。
(Cylinder shrink label processing method)
An example of the shrink label processing method (cylindrical shrink label processing method) of the present invention is shown below. The shrink label of the present invention may be processed into a cylindrical label. For example, the shrink label is formed in a cylindrical shape so that the main orientation direction is the circumferential direction. Specifically, a shrink label having a predetermined width in the main orientation direction is formed into a cylindrical shape by overlapping both ends in the main orientation direction so that the outer surface (outside) of the shrink label is on the front side, and one side of the label Apply a solvent such as tetrahydrofuran (THF) or an adhesive (hereinafter referred to as an adhesive) to the inner surface of the belt at a width of about 2 to 4 mm, and apply the adhesive applied portion to the outer surface of the other side edge. To obtain a cylindrical shrink label. In addition, it is preferable that the printing layer is not provided in the part which apply | coats said adhesive agent etc., and the part to adhere | attach.
 なお、筒状シュリンクラベルにラベル切除用のミシン目を設ける場合は、所定の長さ及びピッチのミシン目を周方向と直交する方向に形成する。ミシン目は慣用の方法(例えば、周囲に切断部と非切断部とが繰り返し形成された円板状の刃物を押し当てる方法やレーザーを用いる方法等)により施すことができる。ミシン目を施す工程段階は、印刷工程の後や、筒状加工工程の前後など、適宜選択ことができる。 In addition, when providing the perforation for label cutting to a cylindrical shrink label, the perforation of predetermined length and a pitch is formed in the direction orthogonal to the circumferential direction. The perforation can be applied by a conventional method (for example, a method of pressing a disk-shaped blade having a cut portion and a non-cut portion repeatedly formed around it, a method using a laser, or the like). The process stage for perforating can be appropriately selected after the printing process and before and after the cylindrical processing process.
 筒状シュリンクラベルは容器に装着してラベル付き容器とすることができる。例えば、筒状シュリンクラベルを、所定の容器に外嵌した後、加熱処理によって、ラベルを熱収縮させ、容器に追従密着させることによってラベル付き容器を作製する。上記加熱処理としては、例えば、80~100℃のスチームで処理する(スチームおよび湯気が充満した加熱トンネルを通過させる)ことなどが例示される。なお、上記において、シュリンクラベルは、印刷層が内側となるように容器に装着されていることが好ましい。 The cylindrical shrink label can be attached to a container to form a labeled container. For example, after a cylindrical shrink label is externally fitted to a predetermined container, the label is thermally contracted by heat treatment, and a container with a label is manufactured by closely contacting the container. Examples of the heat treatment include treatment with steam at 80 to 100 ° C. (passing through a heating tunnel filled with steam and steam). In addition, in the above, it is preferable that the shrink label is attached to the container so that the printed layer is on the inner side.
 以下に、実施例に基づいて、本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 なお、表1には、実施例、比較例で用いた印刷インキの配合組成(配合量)及び得られたシュリンクラベルの評価結果を示した。上記の印刷インキの配合組成は、重量基準の配合量(重量部)で示した。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
Table 1 shows the composition of the printing inks used in Examples and Comparative Examples (blending amount) and the evaluation results of the obtained shrink labels. The blending composition of the above printing ink was indicated by the blending amount (parts by weight) based on weight.
 実施例1
(印刷インキ)
 モノマー成分として、アクリロイルモルホリン((株)興人製、商品名「ACMO」:特定モノマー)50重量部、N-アクリロイルオキシエチルヘキサヒドロフタルイミド(東亞合成(株)製、商品名「アロニックス M-140」:特定モノマー)43重量部を用いた。
 活性エネルギー線重合開始剤として、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(チバ・スペシャルティ・ケミカルズ製、商品名「DAROCUR TPO」)5重量部を用いた。
 界面活性剤として、有機変性(エポキシ変性)ポリシロキサン(信越化学工業(株)製、商品名「X-40-2670」)1重量部を用いた。
 滑剤として、酸化ポリエチレン系ワックス(クラリアントジャパン(株)製、商品名「Ceridust 3715」)1重量を用いた。
 上記の各成分(モノマー成分、活性エネルギー線重合開始剤、界面活性剤及び滑剤)を、ホモディスパーを用いて混合して、印刷インキ(100重量部)を作製した。
Example 1
(Printing ink)
As monomer components, 50 parts by weight of acryloylmorpholine (trade name “ACMO”: specific monomer) manufactured by Kojin Co., Ltd., N-acryloyloxyethylhexahydrophthalimide (manufactured by Toagosei Co., Ltd., trade name “Aronix M-140”) ": Specific monomer) 43 parts by weight was used.
As an active energy ray polymerization initiator, 5,4 parts by weight of 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (manufactured by Ciba Specialty Chemicals, trade name “DAROCUR TPO”) was used.
As a surfactant, 1 part by weight of an organically modified (epoxy modified) polysiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “X-40-2670”) was used.
As a lubricant, 1 weight of oxidized polyethylene wax (manufactured by Clariant Japan Co., Ltd., trade name “Ceridust 3715”) was used.
The above components (monomer component, active energy ray polymerization initiator, surfactant and lubricant) were mixed using a homodisper to prepare a printing ink (100 parts by weight).
(シュリンクラベル)
 上記の印刷インキを、ポリエステル(PET)系シュリンクフィルム(東洋紡(株)製、商品名「スペースクリーン S7042」、厚み:45μm、主配向方向(幅方向)の熱収縮率(90℃、10秒):60%)の片面に、卓上フレキソ印刷機(RK Print Coat Instruments Ltd.製、商品名「RK フレキシプルーフ100」)および80L/cmのアニロックスを用いて、工程速度50m/分で全面フレキソ印刷(印刷インキ層(塗布層)厚み:2.5μm)を施した。
 続いて、上記の印刷インキを塗工したシュリンクフィルムに、紫外線照射装置(フュージョンUVシステムズジャパン(株)製、商品名「LIGHT HAMMER-10」:H+バルブ)を用いて、ランプ出力120W/cm、工程速度50m/分の条件で2回(2パス)、紫外線照射を行い、印刷インキ層を硬化させて、シュリンクラベル(印刷層厚み:2.5μm)を得た。
(Shrink label)
Polyester (PET) -based shrink film (trade name “Space Clean S7042”, thickness: 45 μm, heat shrinkage rate in main orientation direction (width direction) (90 ° C., 10 seconds) : 60%) on one side using a table-top flexographic printing press (manufactured by RK Print Coat Instruments Ltd., trade name “RK Flexiproof 100”) and 80 L / cm anilox at a process speed of 50 m / min. Printing ink layer (application layer) thickness: 2.5 μm) was applied.
Subsequently, on the shrink film coated with the above printing ink, using an ultraviolet irradiation device (trade name “LIGHT HAMMER-10” manufactured by Fusion UV Systems Japan Co., Ltd .: H + bulb), a lamp output of 120 W / cm, Ultraviolet irradiation was performed twice (2 passes) at a process speed of 50 m / min, and the printing ink layer was cured to obtain a shrink label (printing layer thickness: 2.5 μm).
 実施例2及び4~6
 表1に示すように、特定モノマーの種類や配合量などを変更して、実施例1と同様にして、印刷インキを作製した。また、上記印刷インキを用いて、実施例1と同様にして、シュリンクラベルを作製した。
Examples 2 and 4-6
As shown in Table 1, printing inks were prepared in the same manner as in Example 1 except that the types and blending amounts of the specific monomers were changed. Moreover, the shrink label was produced like Example 1 using the said printing ink.
 実施例3、比較例2
 表1に示すように、特定モノマーの種類や配合量などを変更し、さらに単官能モノマーを添加して、実施例1と同様にして、印刷インキを作製した。また、上記印刷インキを用いて、実施例1と同様にして、シュリンクラベルを作製した。
Example 3 and Comparative Example 2
As shown in Table 1, the type and blending amount of the specific monomer were changed, and a monofunctional monomer was further added to produce a printing ink in the same manner as in Example 1. Moreover, the shrink label was produced like Example 1 using the said printing ink.
 実施例7、8、比較例1
 表1に示すように、特定モノマーの種類や配合量などを変更し、さらに多官能アクリレートを添加して、実施例1と同様にして、印刷インキを作製した。また、上記印刷インキを用いて、実施例1と同様にして、シュリンクラベルを作製した。
Examples 7 and 8, Comparative Example 1
As shown in Table 1, the type and blending amount of the specific monomer were changed, and a polyfunctional acrylate was further added to produce a printing ink in the same manner as in Example 1. Moreover, the shrink label was produced like Example 1 using the said printing ink.
 実施例9
 表1に示すように、特定モノマーの種類や配合量などを変更し、さらにセルロース系樹脂として、酢酸プロピオン酸セルロース(イーストマンケミカル製、商品名「CAP-504-0.2」)を添加して、実施例1と同様にして、印刷インキを作製した。また、上記印刷インキを用いて、実施例1と同様にして、シュリンクラベルを作製した。
Example 9
As shown in Table 1, the types and blending amounts of specific monomers are changed, and cellulose acetate propionate (manufactured by Eastman Chemical, trade name “CAP-504-0.2”) is added as a cellulose resin. In the same manner as in Example 1, a printing ink was prepared. Moreover, the shrink label was produced like Example 1 using the said printing ink.
 実施例10
 表1に示すように、特定モノマーの種類や配合量、滑剤の配合量などを変更し、さらに色材(顔料)として、酸化チタン(テイカ(株)製、商品名「JR-707」)を添加して、実施例1と同様にして、印刷インキを作製した。また、上記印刷インキを用いて、実施例1と同様にして、シュリンクラベルを作製した。
Example 10
As shown in Table 1, the type and blending amount of the specific monomer, the blending amount of the lubricant, etc. were changed, and as a coloring material (pigment), titanium oxide (trade name “JR-707” manufactured by Teika Co., Ltd.) was used. The printing ink was prepared in the same manner as in Example 1. Moreover, the shrink label was produced like Example 1 using the said printing ink.
 比較例3
 表1に示すように、モノマー成分として特定モノマーを用いずに、実施例1と同様にして、印刷インキを作製した。また、上記印刷インキを用いて、実施例1と同様にして、シュリンクラベルを作製した。
Comparative Example 3
As shown in Table 1, a printing ink was produced in the same manner as in Example 1 without using a specific monomer as a monomer component. Moreover, the shrink label was produced like Example 1 using the said printing ink.
(評価)
 実施例及び比較例で得られたシュリンクラベルの、主配向方向の熱収縮率(90℃、10秒)、表面タック性(タックフリー性)、耐剥離性(テープ剥離試験)、耐もみ性(もみ試験)、耐スクラッチ性(スクラッチ試験)シュリンク加工に対する追従性(シュリンク追従性)を、以下の方法で評価した。なお、実施例および比較例において、シュリンクラベルの主配向方向は、基材であるシュリンクフィルムの主配向方向である。
(Evaluation)
Thermal shrinkage (90 ° C., 10 seconds), surface tackiness (tack-free property), peel resistance (tape peel test), resistance to fringe (in the main orientation direction) of the shrink labels obtained in Examples and Comparative Examples The following method evaluated the followability (shrink followability) with respect to shrink processing (scratch test) and scratch resistance (scratch test). In addition, in an Example and a comparative example, the main orientation direction of a shrink label is a main orientation direction of the shrink film which is a base material.
(1)表面タック性(タックフリー性)
 実施例及び比較例で、シュリンクラベルを作製した直後(紫外線照射による硬化処理直後)に、シュリンクラベルの印刷層表面を指で触り、タックの有無により以下の基準で判断した。
タックが全くない(タックフリー) : タックフリー性良好(○)
わずかにタックがある       : 使用可能なレベル(△)
強いタックがある         : タックフリー性不良(×)
(1) Surface tack (tack free)
In Examples and Comparative Examples, immediately after producing a shrink label (immediately after the curing treatment by ultraviolet irradiation), the surface of the printed layer of the shrink label was touched with a finger and judged according to the following criteria based on the presence or absence of tack.
No tack (tack free): Good tack free (○)
Slightly tacky: Usable level (△)
Strong tack: Tack free defect (×)
(2)耐剥離性(テープ剥離試験)
 碁盤目のクロスカットを入れない以外は、JIS K 5600-5-6に準じて、試験を行った。実施例及び比較例で得られたシュリンクラベルの印刷層の表面に、幅18mmの粘着テープ(ニチバン(株)製、商品名「セロテープ(登録商標)」)を貼り付け、この粘着テープを90度方向に引き剥がした。
 粘着テープを貼り付けた印刷層表面のうち、5mm(長手方向;主配向方向に対して直交方向)×5mm(幅方向;主配向方向)の領域において、印刷層の剥離面積(割合)を目視で観察し、下記の基準で判断した。
印刷層の剥離がない(印刷層の剥離面積が0%である) : 耐剥離性良好(○)
印刷層の剥離面積が0%より大きく30%未満である  : 使用可能なレベル(△)
印刷層の剥離面積が30%以上である         : 耐剥離性不良(×)
(2) Peel resistance (tape peel test)
The test was conducted in accordance with JIS K 5600-5-6, except that no cross cuts were made on the grid. An adhesive tape having a width of 18 mm (manufactured by Nichiban Co., Ltd., trade name “Cello Tape (registered trademark))” is pasted on the surface of the printed layer of the shrink label obtained in Examples and Comparative Examples. It was peeled off in the direction.
In the area of 5 mm (longitudinal direction; orthogonal direction to the main orientation direction) × 5 mm (width direction; main orientation direction) in the surface of the printed layer with the adhesive tape attached, the peeled area (ratio) of the printed layer was visually observed. And judged according to the following criteria.
There is no peeling of the printing layer (the peeling area of the printing layer is 0%): good peeling resistance (○)
The peeled area of the printed layer is greater than 0% and less than 30%: Usable level (△)
The peeled area of the printed layer is 30% or more: Poor peel resistance (×)
(3)耐もみ性(もみ試験)
 実施例及び比較例で得られたシュリンクラベルから、100mm(長手方向;主配向方向に対して直交方向)×100mm(幅方向;主配向方向)の測定用サンプルを採取した。測定用サンプルの両端を両手でつかみ、10回手でもんだ。印刷層が剥離していないか(印刷層の残存面積(割合))を目視で観察し、以下の基準で評価した。
印刷層の残存面積が90%以上である       : 耐もみ性良好(○)
印刷層の残存面積が90%未満である       : 耐もみ性不良(×)
(3) Scratch resistance (scratch test)
Samples for measurement measuring 100 mm (longitudinal direction; orthogonal direction to the main orientation direction) × 100 mm (width direction; main orientation direction) were collected from the shrink labels obtained in the examples and comparative examples. Hold both ends of the sample for measurement with both hands, and even 10 times. Whether the printed layer was peeled off (remaining area (ratio) of the printed layer) was visually observed and evaluated according to the following criteria.
The remaining area of the printed layer is 90% or more: Good resistance to padding (○)
The remaining area of the printed layer is less than 90%: Poor resistance to padding (×)
(4)耐スクラッチ性(スクラッチ試験)
 実施例及び比較例で得られたシュリンクラベルから、100mm(長手方向;主配向方向に対して直交方向)×100mm(幅方向;主配向方向)の測定用サンプルを採取した。測定用サンプルを平滑なテーブルの上に置き、印刷層を設けた側の表面を、手の爪の甲の部分で、10往復(長手方向20mmの区間)こすった後に表面を観察し、下記の基準で判断した。
印刷層は全く剥離していない。   :  耐スクラッチ性良好(○)
印刷層にわずかに剥離がみられる。 :  耐スクラッチ性はやや不良であるが使用可能なレベル(△)
印刷層が著しく剥離している。   :  耐スクラッチ性不良(×)
(4) Scratch resistance (scratch test)
Samples for measurement measuring 100 mm (longitudinal direction; orthogonal direction to the main orientation direction) × 100 mm (width direction; main orientation direction) were collected from the shrink labels obtained in the examples and comparative examples. Place the sample for measurement on a smooth table, observe the surface after rubbing the surface on the side where the printed layer was provided 10 times in the back of the nail of the hand (20 mm in the longitudinal direction). Judged by criteria.
The printed layer is not peeled at all. : Good scratch resistance (○)
There is slight peeling on the printed layer. : Scratch resistance is slightly poor but usable level (△)
The printed layer is peeled off significantly. : Scratch resistance failure (×)
(5)シュリンク加工に対する追従性(シュリンク追従性)
(測定用サンプル)
 実施例及び比較例で得られたシュリンクラベルから、12cm(長手方向;主配向方向に対して直交方向)×12cm(幅方向;主配向方向)の大きさのラベル片を切り出した。上記ラベル片の主配向方向(幅方向)の両端[治具によりチャックされる部分(両端部でそれぞれ10mmずつ)を除き、100mm間隔]を、70mm間隔に固定できる治具に固定した(熱収縮処理前はたるんだ状態である)。上記治具に両端を固定したラベル片を、90℃の温水に20秒間浸漬して熱処理し、ラベル片を熱収縮処理前と比較して70%の長さになるように熱収縮させた(主配向方向(幅方向)に30%熱収縮させた)。このようにして、主配向方向(幅方向)に30%熱収縮させた測定用サンプルを得た。
 また、治具を60mm間隔に固定できる治具に変更した以外は上記と同様にして、主配向方向(幅方向)に40%熱収縮させた測定用サンプルを得た。
 さらに、治具を50mm間隔に固定できる治具に変更した以外は上記と同様にして、主配向方向(幅方向)に50%熱収縮させた測定用サンプルを得た。
(測定)
 上記で作製した、30%熱収縮させた測定用サンプル、40%熱収縮させた測定用サンプル、50%熱収縮させた測定用サンプルの印刷層の白化の有無を、それぞれ目視にて観察し、以下の基準で判断した。
50%熱収縮させた測定用サンプルでも白化がない : 優れたシュリンク追従性(◎)
40%熱収縮させた測定用サンプルでは白化がないが、50%熱収縮させた測定用サンプルでは白化がある : シュリンク追従性良好(○)
30%熱収縮させた測定用サンプルでは白化がないが、40%熱収縮させた測定用サンプルでは白化がある : 使用可能なシュリンク追従性(△)
30%熱収縮させた測定用サンプルでも白化がある : シュリンク追従性不良(×)
 なお、実施例10では、「白化の有無」にかえて「割れ、シワ等の発生の有無」を観察し、上記と同様にして判断した。実施例10のシュリンクラベルは、50%熱収縮させた測定用サンプルでも割れ、シワ等は発生しなかった(◎)。
(5) Followability to shrink processing (shrink followability)
(Sample for measurement)
From the shrink labels obtained in Examples and Comparative Examples, a label piece having a size of 12 cm (longitudinal direction; a direction perpendicular to the main orientation direction) × 12 cm (width direction; the main orientation direction) was cut out. Both ends of the label piece in the main orientation direction (width direction) [100 mm intervals excluding portions chucked by the jig (each 10 mm at both ends)] were fixed to a jig that can be fixed at 70 mm intervals (thermal contraction) It is in a slack state before processing). The label pieces having both ends fixed to the jig were immersed in warm water at 90 ° C. for 20 seconds and heat-treated, and the label pieces were heat-shrinked so as to have a length of 70% compared to before the heat-shrinking treatment ( 30% thermal shrinkage in the main orientation direction (width direction). In this way, a measurement sample was obtained that was heat shrunk by 30% in the main orientation direction (width direction).
Moreover, the sample for a measurement which carried out the heat shrink of 40% in the main orientation direction (width direction) was obtained like the above except having changed into the jig | tool which can fix a jig | tool at a 60 mm space | interval.
Furthermore, a sample for measurement was obtained in the same manner as described above except that the jig was changed to a jig that could be fixed at an interval of 50 mm and thermally contracted by 50% in the main orientation direction (width direction).
(Measurement)
The above-prepared measurement sample with 30% heat shrinkage, 40% heat shrinkage measurement sample, and 50% heat shrinkage measurement sample were each visually observed for the presence or absence of whitening. Judgment was made based on the following criteria.
There is no whitening even in the measurement sample that is 50% heat-shrinked: Excellent shrink followability (◎)
There is no whitening in the measurement sample with 40% heat shrinkage, but there is whitening in the measurement sample with 50% heat shrinkage.
There is no whitening in the measurement sample with 30% heat shrinkage, but there is whitening in the measurement sample with 40% heat shrinkage: Usable shrink followability (△)
There is also whitening in the measurement sample that was heat-shrinked by 30%.
In Example 10, instead of “whether there was whitening”, “whether there were cracks, wrinkles, etc.” was observed and judged in the same manner as described above. The shrink label of Example 10 did not generate cracks, wrinkles, etc. even in the measurement sample subjected to 50% thermal shrinkage (◎).
(6)主配向方向の熱収縮率(90℃、10秒)
 実施例及び比較例で得られたシュリンクラベルから、測定方向(主配向方向)に長さ200mm(標線間隔150mm)、幅10mmの長方形の測定用サンプルを切り出した。
 上記測定用サンプルを、90℃の温水中で、10秒熱処理(無荷重下)し、熱処理前後の標線間隔の差を読み取り、以下の計算式で熱収縮率を算出する。
 熱収縮率(%) = (L0-L1)/L0×100
 L0 : 熱処理前の標線間隔
 L1 : 熱処理後の標線間隔
 なお、実施例及び比較例においては、主配向方向はシュリンクラベルの幅方向である。
 また、主配向方向と直交する方向の熱収縮率(90℃、10秒)は、測定方向を主配向方向と直交する方向に変更して、上記と同様に測定することができる。
(6) Thermal shrinkage in main orientation direction (90 ° C., 10 seconds)
A rectangular measurement sample having a length of 200 mm (mark interval 150 mm) and a width of 10 mm in the measurement direction (main alignment direction) was cut out from the shrink labels obtained in Examples and Comparative Examples.
The measurement sample is heat-treated for 10 seconds (under no load) in hot water at 90 ° C., the difference between the marked lines before and after the heat treatment is read, and the heat shrinkage rate is calculated by the following formula.
Thermal contraction rate (%) = (L 0 −L 1 ) / L 0 × 100
L 0 : Marking interval before heat treatment L 1 : Marking interval after heat treatment In the examples and comparative examples, the main orientation direction is the width direction of the shrink label.
Further, the thermal contraction rate (90 ° C., 10 seconds) in the direction orthogonal to the main alignment direction can be measured in the same manner as described above by changing the measurement direction to the direction orthogonal to the main alignment direction.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 評価結果からわかるとおり、本発明のシュリンクラベル(実施例)は、シュリンク加工に対する印刷層の優れた追従性および印刷層表面のタックフリー性を両立しており、さらに、印刷層と基材の密着性に優れており、耐剥離性、耐もみ性に優れ、また耐スクラッチ性にも優れた、優れた特性を有するシュリンクラベルであった。
 一方、アクリル系ポリマーを形成するモノマー成分中の多官能モノマーの含有量が20重量%を超える場合(比較例1)には、シュリンク加工に対する追従性が低下した。また、アクリル系ポリマーを形成するモノマー成分中の特定モノマーの含有量が50重量%未満の場合(比較例2、3)には、印刷層の硬化が不十分となり印刷層表面にタックが生じた。
 なお、実施例および比較例で得られたシュリンクラベルの主配向方向の熱収縮率(90℃、10秒)は、60%であった。
As can be seen from the evaluation results, the shrink label (Example) of the present invention has both excellent followability of the printed layer for shrink processing and tack-free property of the surface of the printed layer, and furthermore, adhesion between the printed layer and the substrate. It was a shrink label having excellent properties, excellent peel resistance, resistance to scratching, and excellent scratch resistance.
On the other hand, in the case where the content of the polyfunctional monomer in the monomer component forming the acrylic polymer exceeds 20% by weight (Comparative Example 1), the followability to shrink processing was lowered. In addition, when the content of the specific monomer in the monomer component forming the acrylic polymer is less than 50% by weight (Comparative Examples 2 and 3), the printed layer was insufficiently cured and the printed layer surface was tacked. .
In addition, the thermal contraction rate (90 degreeC, 10 second) of the main orientation direction of the shrink label obtained by the Example and the comparative example was 60%.

Claims (4)

  1.  基材の少なくとも片面側に、単官能モノマーを80重量%以上含有し、かつ、アクリロイルモルホリン、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、パラクミルフェノールEO変性アクリレート及び2-ヒドロキシ-3-フェノキシプロピルアクリレートからなる群より選ばれたモノマーを50重量%以上含有するモノマー成分より形成されたアクリル系ポリマーを含む印刷層を有することを特徴とするシュリンクラベル。 Contains at least 80% by weight of a monofunctional monomer on at least one side of the substrate, and includes acryloylmorpholine, N-acryloyloxyethylhexahydrophthalimide, paracumylphenol EO-modified acrylate, and 2-hydroxy-3-phenoxypropyl acrylate A shrink label comprising a printed layer containing an acrylic polymer formed from a monomer component containing 50% by weight or more of a monomer selected from the group consisting of:
  2.  前記モノマー成分中にアクリロイルモルホリンを5~90重量%含有する請求項1に記載のシュリンクラベル。 The shrink label according to claim 1, wherein the monomer component contains 5 to 90% by weight of acryloylmorpholine.
  3.  前記モノマー成分中にN-アクリロイルオキシエチルヘキサヒドロフタルイミドを5~90重量%含有する請求項1または2に記載のシュリンクラベル。 The shrink label according to claim 1 or 2, wherein the monomer component contains 5 to 90% by weight of N-acryloyloxyethyl hexahydrophthalimide.
  4.  前記印刷層が、活性エネルギー線硬化により形成された印刷層である請求項1~3のいずれかの項に記載のシュリンクラベル。 The shrink label according to any one of claims 1 to 3, wherein the printed layer is a printed layer formed by active energy ray curing.
PCT/JP2010/069038 2009-10-30 2010-10-27 Shrink label WO2011052626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009250795A JP5513847B2 (en) 2009-10-30 2009-10-30 Shrink label
JP2009-250795 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052626A1 true WO2011052626A1 (en) 2011-05-05

Family

ID=43922051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069038 WO2011052626A1 (en) 2009-10-30 2010-10-27 Shrink label

Country Status (2)

Country Link
JP (1) JP5513847B2 (en)
WO (1) WO2011052626A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083656A (en) * 2013-09-17 2015-04-30 株式会社リコー Active energy ray-curable ink, ink cartridge containing ink, method for forming image or cured product, and apparatus for forming image or cured product
JP2018154766A (en) * 2017-03-17 2018-10-04 株式会社Dnpファインケミカル Active energy ray-curable ink composition, laminate using the same, image forming method for forming image on substrate, and method for producing printed matter
JP2020023702A (en) * 2013-09-17 2020-02-13 株式会社リコー Active energy ray-curable inkjet ink, ink cartridge containing ink, image or cured product forming method, and image or cured product forming device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017899B2 (en) * 2012-09-11 2016-11-02 セーレン株式会社 Pattern forming leather
EP2945755B1 (en) * 2013-02-06 2019-09-11 Sun Chemical Corporation Digital printing inks
JP6144390B2 (en) * 2016-06-14 2017-06-07 日立マクセル株式会社 Energy ray curable inkjet ink composition
JP6732151B1 (en) * 2019-03-06 2020-07-29 東京インキ株式会社 Non-laminating printing ink composition, non-laminating packaging printed material and non-laminating packaging printed material manufacturing method
JP6732150B1 (en) * 2019-03-06 2020-07-29 東京インキ株式会社 Gravure printing ink composition for styrene film for thermal lamination
JP2020203975A (en) * 2019-06-17 2020-12-24 セイコーエプソン株式会社 Radiation-curable inkjet composition and inkjet method
JP7435121B2 (en) 2020-03-25 2024-02-21 セイコーエプソン株式会社 Radiation-curable inkjet composition and inkjet method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220218A (en) * 1988-07-29 1991-09-27 Nippondenso Co Ltd Resin composition and printing ink composition
JPH10219135A (en) * 1997-02-03 1998-08-18 Toyo Ink Mfg Co Ltd Solventless curable resin composition and its curing method
JPH10315630A (en) * 1997-05-21 1998-12-02 Dainippon Ink & Chem Inc Uv setting thermal transfer ink
JP2000327724A (en) * 1999-05-25 2000-11-28 Toagosei Co Ltd Active energy ray-curable type composition
JP2008007687A (en) * 2006-06-30 2008-01-17 Toyo Ink Mfg Co Ltd Active energy ray-curable composition
WO2009011256A1 (en) * 2007-07-18 2009-01-22 Fuji Seal International, Inc. Shrink label with hologram layer and labeled vessel
JP2009067860A (en) * 2007-09-12 2009-04-02 Teikoku Printing Inks Mfg Co Ltd Method for manufacturing uv-curable ink, and ink based on the method, printed material and molded product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220218A (en) * 1988-07-29 1991-09-27 Nippondenso Co Ltd Resin composition and printing ink composition
JPH10219135A (en) * 1997-02-03 1998-08-18 Toyo Ink Mfg Co Ltd Solventless curable resin composition and its curing method
JPH10315630A (en) * 1997-05-21 1998-12-02 Dainippon Ink & Chem Inc Uv setting thermal transfer ink
JP2000327724A (en) * 1999-05-25 2000-11-28 Toagosei Co Ltd Active energy ray-curable type composition
JP2008007687A (en) * 2006-06-30 2008-01-17 Toyo Ink Mfg Co Ltd Active energy ray-curable composition
WO2009011256A1 (en) * 2007-07-18 2009-01-22 Fuji Seal International, Inc. Shrink label with hologram layer and labeled vessel
JP2009067860A (en) * 2007-09-12 2009-04-02 Teikoku Printing Inks Mfg Co Ltd Method for manufacturing uv-curable ink, and ink based on the method, printed material and molded product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083656A (en) * 2013-09-17 2015-04-30 株式会社リコー Active energy ray-curable ink, ink cartridge containing ink, method for forming image or cured product, and apparatus for forming image or cured product
JP2020023702A (en) * 2013-09-17 2020-02-13 株式会社リコー Active energy ray-curable inkjet ink, ink cartridge containing ink, image or cured product forming method, and image or cured product forming device
JP2018154766A (en) * 2017-03-17 2018-10-04 株式会社Dnpファインケミカル Active energy ray-curable ink composition, laminate using the same, image forming method for forming image on substrate, and method for producing printed matter

Also Published As

Publication number Publication date
JP2011095602A (en) 2011-05-12
JP5513847B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5513847B2 (en) Shrink label
JP5478275B2 (en) Label printing ink and label
JP5311820B2 (en) Active energy ray-curable resin composition for plastic film and plastic label
JP5352087B2 (en) Shrink label
JP4977203B2 (en) Shrink label with hologram layer and labeled container
JP2008163231A (en) Printing ink and plastic label
JP2016142840A (en) Plastic label and method for manufacturing plastic label
JP4901488B2 (en) Plastic label and manufacturing method thereof
JP5021939B2 (en) Active energy ray-curable resin composition for plastic film coating and plastic label
JP5736572B2 (en) Shrink label
JP2008170822A (en) Plastic label and manufacturing method for the same
JP5604687B2 (en) Shrink label
JP5044118B2 (en) Coating agent for plastic label and plastic label
JP4927626B2 (en) Shrink label
JP5072532B2 (en) Plastic label
JP4977204B2 (en) Shrink label with hologram layer and labeled container
JP5540315B2 (en) Plastic label
JP5352823B2 (en) Shrink labels and labeled containers
JP5768297B2 (en) Shrink label
JP5088930B2 (en) Active energy ray-curable resin composition for plastic label and plastic label
JP4905658B2 (en) Active energy ray-curable resin composition for plastic film and plastic label
JP5324745B2 (en) Active energy ray-curable resin composition for plastic label and plastic label
JP2016080821A (en) Shrink label and laminate for shrink label
JP6296741B2 (en) Plastic labels and containers with plastic labels
JP5296309B2 (en) Active energy ray-curable resin composition for plastic film and plastic label

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826758

Country of ref document: EP

Kind code of ref document: A1