WO2011052370A1 - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
WO2011052370A1
WO2011052370A1 PCT/JP2010/067842 JP2010067842W WO2011052370A1 WO 2011052370 A1 WO2011052370 A1 WO 2011052370A1 JP 2010067842 W JP2010067842 W JP 2010067842W WO 2011052370 A1 WO2011052370 A1 WO 2011052370A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging lens
imaging
refractive power
focal length
Prior art date
Application number
PCT/JP2010/067842
Other languages
French (fr)
Japanese (ja)
Inventor
永悟 佐野
麻衣子 西田
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011052370A1 publication Critical patent/WO2011052370A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses

Definitions

  • the present invention relates to an imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device.
  • a first lens having a positive refractive power in order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, and a first lens having a positive refractive power.
  • a so-called reverse Ernostar type imaging lens that is configured by four lenses and aims at high performance is disclosed (for example, see Patent Document 1).
  • the first lens having positive refractive power, the second lens having negative refractive power, the third lens having positive refractive power, and the fourth lens having negative refractive power are arranged in order from the object side.
  • a so-called telephoto type imaging lens that aims to reduce the overall lens length (distance on the optical axis from the most object-side lens surface of the entire imaging lens system to the image-side focal point) has been disclosed (for example, Patent Documents). 2).
  • the fourth lens is a positive lens, and the main lens of the optical system is larger than the case where the fourth lens is a negative lens as in the telephoto type. Since the point position becomes the image side and the back focus becomes long, this is a disadvantageous type for downsizing. Further, of the four lenses, only one lens has a negative refractive power, and it is difficult to correct the Petzval sum, and good performance cannot be ensured at the periphery of the image.
  • the imaging lens disclosed in Patent Document 2 has a narrow imaging angle of view and insufficient aberration correction. Further, if the entire lens length is shortened, it is difficult to cope with an increase in the number of pixels of the imaging element due to performance degradation. There is a problem.
  • the present invention has been made in view of such a problem, and an object thereof is to provide a four-lens imaging lens in which various aberrations are favorably corrected while being smaller than a conventional type.
  • the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
  • L Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: Diagonal length of the imaging surface of the solid-state imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device)
  • the image-side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens.
  • the imaging lens is parallel.
  • the flat plate portion is calculated as the above L value after the air conversion distance. Further, the following conditional expression is more desirable.
  • An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device From the object side, A biconvex first lens having positive refractive power; A second lens having negative refractive power and having a concave surface facing the image side; A third meniscus lens having positive refractive power and having a convex surface facing the image side; A fourth lens having at least one surface formed as an aspherical surface and having a negative refractive power and a concave surface facing the image side; An imaging lens having an aperture stop between the first lens and the second lens and satisfying the following conditional expression:
  • the basic configuration of the present invention is a biconvex first lens having positive refractive power and negative refraction in order from the object side.
  • a second lens having a concave surface on the image side with a force, a meniscus third lens having a positive refractive power and a convex surface on the image side, and at least one surface is formed as an aspheric surface, And a fourth lens having negative refractive power and having a concave surface facing the image side.
  • a positive lens group composed of a first lens, a second lens, and a third lens and a negative fourth lens with a concave surface facing the image side are arranged to reduce the overall length of the imaging lens. This is an advantageous configuration.
  • the refraction angle of the peripheral marginal ray passing through the object side surface of the first lens does not become too large, and the imaging lens can be downsized and good. It is possible to achieve both aberration correction.
  • Conditional expression (1) is a conditional expression for appropriately setting the focal length of the second lens. If the value of conditional expression (1) exceeds the lower limit, the negative refracting power of the second lens can be maintained moderately, and both the shortening of the total lens length and good correction of axial chromatic aberration and curvature of field are compatible. can do.
  • the negative refractive power of the second lens does not become too large, and the occurrence of lateral chromatic aberration due to excessively jumping up the light rays in the peripheral portion can be suppressed.
  • Conditional expression (2) is a condition for appropriately setting the shape of the second lens.
  • the second lens has a shape having a negative refractive power stronger on the image side surface than on the object side surface.
  • conditional expression (2) exceeds the lower limit, the refractive power of the image side surface of the second lens can be increased, and correction of coma aberration, field curvature, astigmatism, and chromatic aberration can be easily performed. .
  • the curvature of the object side surface of the second lens becomes gentle, and the aberration of the off-axis light beam passing near the periphery of this surface can be suppressed.
  • the upper limit it is possible to suppress the negative refracting power of the image side surface of the second lens from becoming too strong, and to correct aberrations in a balanced manner.
  • the radius of curvature of the image-side surface does not become too small, and the shape has no problem in lens processing.
  • Abbe number of the second lens Conditional expression (3) is a conditional expression for appropriately setting the Abbe number of the second lens and correcting chromatic aberration satisfactorily.
  • the axial chromatic aberration can be corrected well, but the image side surface of the second lens is a strong divergent surface, so that the incident of peripheral rays The angle becomes large and chromatic aberration of magnification occurs.
  • the longitudinal chromatic aberration can be sufficiently corrected, but the lateral chromatic aberration generated by the peripheral light beam also becomes large.
  • the upper limit is exceeded, the lateral chromatic aberration of the peripheral luminous flux can be kept small, but the longitudinal chromatic aberration cannot be corrected.
  • Conditional expression (4) is a conditional expression for appropriately setting the focal length of the third lens.
  • the focal length of the third lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed.
  • the focal length of the third lens can be maintained moderately, and a reduction in the overall length of the imaging lens can be achieved.
  • f1 Focal length of the first lens
  • f Focal length of the entire imaging lens
  • Conditional expression (5) appropriately sets the focal length of the first lens, and appropriately achieves shortening of the entire length of the imaging lens and aberration correction. Is a conditional expression.
  • conditional expression (5) When the value of conditional expression (5) is less than the upper limit, the refractive power of the first lens can be maintained moderately, and the synthetic principal point of the first lens to the third lens can be arranged closer to the object side. The overall length of the imaging lens can be shortened. On the other hand, by exceeding the lower limit, the refractive power of the first lens does not become unnecessarily large, and high-order spherical aberration and coma aberration generated in the first lens can be suppressed to be small.
  • Conditional expression (6) is a condition for appropriately setting the shape of the first lens.
  • the first lens has a shape having a positive refractive power stronger on the image side surface than on the object side surface.
  • conditional expression (6) is less than the upper limit, the positive refractive power of the image side surface of the first lens does not become too strong, and the peripheral portion of the image side surface of the second lens has excessive negative refraction.
  • Conditional expression (7) is a conditional expression for appropriately setting the focal length of the fourth lens.
  • the value of conditional expression (7) is less than the upper limit, the negative refractive power of the fourth lens does not increase more than necessary, and the light beam that forms an image on the periphery of the imaging surface of the solid-state imaging device is excessively raised. Thus, the telecentric characteristics of the image-side light beam can be easily ensured.
  • the negative refracting power of the fourth lens can be appropriately maintained, and the overall length of the lens is shortened and various off-axis aberrations such as field curvature and distortion are corrected well. Can do.
  • the image side surface of the fourth lens is formed as an aspherical surface, has a negative refractive power in the vicinity of the optical axis, and has a inflection point because the negative refractive power becomes weaker toward the periphery.
  • the imaging lens according to any one of 1 to 7 above.
  • the negative refracting power becomes weaker as the image side surface of the fourth lens goes from the optical axis to the periphery, and the telecentric characteristics of the image-side light beam can be easily secured by making the aspherical shape having an inflection point. Further, the image side surface of the second lens need not excessively weaken the negative refracting power at the periphery of the lens, and it is possible to satisfactorily correct off-axis aberrations.
  • the “inflection point” is a point on the aspheric surface where the tangent plane of the aspherical vertex is a plane perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.
  • the peripheral portion of the fourth lens does not protrude greatly in the image plane direction, and is disposed between the fourth lens and the solid-state imaging device, an optical low-pass filter,
  • the back focus can be shortened while avoiding contact with a parallel plate such as an infrared cut filter or a seal glass of a solid-state image sensor package or a substrate of a solid-state image sensor, which is advantageous for shortening the overall length of the imaging lens. It becomes composition.
  • the imaging lens of the present invention it is possible to obtain an effect that various aberrations are corrected satisfactorily while having a four-lens configuration and being smaller than the conventional type.
  • FIG. 2 is a cross-sectional view of an imaging lens of Example 1.
  • FIG. FIG. 3 is an aberration diagram of the imaging lens of Example 1.
  • 6 is a cross-sectional view of an imaging lens of Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens of Example 2.
  • FIG. 6 is a cross-sectional view of an imaging lens of Example 3.
  • FIG. 6 is an aberration diagram of the imaging lens of Example 3.
  • FIG. 6 is a cross-sectional view of an imaging lens of Example 4.
  • FIG. 6 is an aberration diagram of the imaging lens of Example 4.
  • 6 is a cross-sectional view of an imaging lens of Example 5.
  • FIG. 10 is an aberration diagram of the imaging lens of Example 5.
  • 6 is a cross-sectional view of an imaging lens of Example 6.
  • FIG. 10 is an aberration diagram of the imaging lens of Example 6.
  • FIG. 10 is a cross-sectional view of an imaging lens of Example 7.
  • FIG. 10 is an aberration diagram of the imaging lens of Example 7.
  • FIG. 10 is a cross-sectional view of an imaging lens of Example 8.
  • FIG. 10 is an aberration diagram of the imaging lens of Example 8.
  • FIG. 10 is a cross-sectional view of an imaging lens of Example 9.
  • FIG. 10 is an aberration diagram of the imaging lens of Example 9.
  • FIG. 10 is an aberration diagram of the imaging lens of Example 9.
  • f Focal length of the entire imaging lens system fB: Back focus
  • F F number 2Y: Diagonal length of the imaging surface of the solid-state imaging device
  • ENTP Entrance pupil position (distance from the first surface to the entrance pupil position)
  • EXTP exit pupil position (distance from imaging surface to exit pupil position)
  • H1 Front principal point position (distance from first surface to front principal point position)
  • H2 Rear principal point position (distance from the final surface to the rear principal point position)
  • R radius of curvature
  • D axial distance between axes
  • Nd refractive index of lens material with respect to d-line
  • ⁇ d Abbe number of lens material
  • the surface where “*” is written after each surface number is aspherical It is a surface having
  • the shape of the aspherical surface is expressed by the following formula 1, where the vertex of the surface is the origin, the X axis is taken in the optical axis direction, and the height in the direction perpendicular to the optical axis is h.
  • Ai i-th order aspheric coefficient
  • R radius of curvature
  • K conic constant
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • the aspheric coefficient is shown below.
  • FIG. 1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • L4 is a fourth lens
  • S is an aperture stop
  • F is an optical low-pass filter, an IR cut filter, or a sealing glass for a solid-state image sensor.
  • I is an imaging surface.
  • FIG. 2 is an aberration diagram (spherical aberration, astigmatism, distortion, meridional coma) of the imaging lens of Example 1.
  • the aspheric coefficient is shown below.
  • FIG. 3 is a cross-sectional view of the imaging lens of the second embodiment.
  • FIG. 4 is an aberration diagram (spherical aberration, astigmatism, distortion, meridional coma) of the imaging lens of Example 2.
  • the aspheric coefficient is shown below.
  • FIG. 5 is a cross-sectional view of the imaging lens of the third embodiment.
  • FIG. 5 is a cross-sectional view of the imaging lens of the third embodiment.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • L4 is a fourth lens
  • S is an aperture stop
  • F is an optical low-pass filter, an IR cut filter, or a sealing glass for a solid-state image sensor.
  • I is an imaging surface.
  • FIG. 6 is an aberration diagram (spherical aberration, astigmatism, distortion, meridional coma) of the imaging lens of Example 3.
  • the aspheric coefficient is shown below.
  • FIG. 7 is a sectional view of the imaging lens of Example 4.
  • f2 / f -1.74
  • (r3 + r4) / (r3-r4) 2.92
  • ⁇ 2 23.4
  • f3 / f 0.56
  • f1 / f 0.84
  • (r1 + r2) / (r1-r2) ⁇ 0.57
  • f4 / f ⁇ 0.55
  • FIG. 7 is a sectional view of the imaging lens of Example 4. In FIG.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • L4 is a fourth lens
  • S is an aperture stop
  • F is an optical low-pass filter, an IR cut filter, or a sealing glass for a solid-state image sensor.
  • I is an imaging surface.
  • FIG. 8 is an aberration diagram (spherical aberration, astigmatism, distortion, meridional coma) of the imaging lens of Example 4.
  • the aspheric coefficient is shown below.
  • FIG. 9 is a sectional view of the imaging lens of Example 5.
  • f2 / f ⁇ 2.35
  • (r3 + r4) / (r3-r4) 4.69
  • ⁇ 2 23.4
  • f3 / f 0.52
  • f1 / f 0.93
  • (r1 + r2) / (r1-r2) ⁇ 0.69
  • f4 / f ⁇ 0.51
  • FIG. 9 is a sectional view of the imaging lens of Example 5. In FIG.
  • L1 is a first lens
  • L2 is a second lens
  • L3 is a third lens
  • L4 is a fourth lens
  • S is an aperture stop
  • F is an optical low-pass filter
  • IR cut filter or a seal glass for a solid-state image sensor.
  • I is an imaging surface.
  • FIG. 10 is an aberration diagram (spherical aberration, astigmatism, distortion, and meridional coma) of the imaging lens of Example 5.
  • the aspheric coefficient is shown below.
  • FIG. 11 is a sectional view of the imaging lens of Example 6.
  • FIG. 12 is an aberration diagram (spherical aberration, astigmatism, distortion, and meridional coma) of the imaging lens of Example 6.
  • the aspheric coefficient is shown below.
  • FIG. 13 is a cross-sectional view of the imaging lens of the seventh embodiment.
  • FIG. 14 is an aberration diagram (spherical aberration, astigmatism, distortion, meridional coma) of the imaging lens of Example 7.
  • FIG. 15 is a cross-sectional view of the imaging lens of the eighth embodiment.
  • f2 / f -1.80
  • (r3 + r4) / (r3-r4) 5.00
  • ⁇ 2 18.0
  • f3 / f 0.37
  • f1 / f 0.98
  • (r1 + r2) / (r1-r2) ⁇ 0.99
  • f4 / f ⁇ 0.41
  • FIG. 15 is a cross-sectional view of the imaging lens of the eighth embodiment. In FIG.
  • FIG. 16 is an aberration diagram of the imaging lens of Example 8 (spherical aberration, astigmatism, distortion, and meridional coma).
  • FIG. 17 is a cross-sectional view of the imaging lens of Example 9.
  • f2 / f ⁇ 1.57 (2)
  • (r3 + r4) / (r3-r4) 2.00
  • ⁇ 2 21.3
  • f3 / f 0.62
  • f1 / f 0.74
  • (r1 + r2) / (r1-r2) ⁇ 0.89
  • f4 / f ⁇ 0.46
  • FIG. 17 is a cross-sectional view of the imaging lens of Example 9. In FIG.
  • FIG. 18 is an aberration diagram of the imaging lens of Example 9 (spherical aberration, astigmatism, distortion, and meridional coma).
  • the plastic material has a large refractive index change at the time of temperature change, if all of the first lens to the fourth lens are made of plastic lenses, the image point position of the entire imaging lens changes when the ambient temperature changes. Have the problem of doing.
  • the temperature change of the plastic material can be reduced by mixing inorganic fine particles in the plastic material. More specifically, mixing fine particles with a transparent plastic material generally causes light scattering and lowers the transmittance, so it was difficult to use as an optical material. By making it smaller than the wavelength, it is possible to substantially prevent scattering.
  • the refractive index of the plastic material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is possible to make almost no change in the refractive index by using these temperature dependencies so as to cancel each other.
  • a plastic material with extremely low temperature dependency of the refractive index is obtained.
  • the refractive index change due to temperature change can be reduced.
  • the temperature change of the entire imaging lens system It is possible to suppress the image point position fluctuation at the time.
  • an energy curable resin as the material of the imaging lens, since the optical performance degradation when exposed to high temperatures is small compared to a lens using a thermoplastic resin such as polycarbonate or polyolefin, It is effective for the reflow process, is easier to manufacture than a glass mold lens, is inexpensive, and can achieve both low cost and mass productivity of an imaging apparatus incorporating an imaging lens.
  • the energy curable resin refers to both a thermosetting resin and an ultraviolet curable resin.
  • the plastic lens of the present invention may be formed using the above-mentioned energy curable resin.
  • the principal ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily designed to be sufficiently small in the periphery of the imaging surface.
  • recent techniques have made it possible to reduce shading by reviewing the arrangement of the color filters of the solid-state imaging device and the on-chip microlens array. Specifically, if the pitch of the arrangement of the color filters and the on-chip microlens array is set slightly smaller than the pixel pitch of the imaging surface of the imaging device, the color filter or Since the on-chip microlens array is shifted to the optical axis side of the imaging lens, the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel. Thereby, the shading which generate
  • the present embodiment is a design example aiming at further miniaturization with respect to the portion where the requirement is relaxed.

Abstract

Provided is an imaging lens configured with four lenses, wherein each aberration is effectively corrected even though the size of the imaging lens is smaller than conventional imaging lenses. An imaging lens for forming an image to be taken on a photoelectric conversion unit of a solid-state image sensor is provided, from the object side, with: a double-convex first lens which has a positive refractive power; a second lens which has a negative refractive power and a concave surface facing the image side; a meniscus-shaped third lens which has a positive refractive power and a convex surface facing the image side; and a fourth lens, at least one surface of which is an aspheric surface, and which has a negative refractive power and a concave surface facing the image side. Further, an aperture stop is provided between the first lens and the second lens, and the following condition is fulfilled: -2.50 <f2/f< -1.50 (f2 represents the focal length of the second lens, and f represents the focal length of the entire imaging lens system).

Description

撮像レンズImaging lens
 本発明は固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズに関する。 The present invention relates to an imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device.
 近年、CCD(Charged Coupled Device)型イメージセンサ或いはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像素子の高性能化及び小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及しつつある。また、これらの撮像装置に搭載される撮像レンズには、更なる高性能化及び小型化への要求が高まっている。このような用途の撮像レンズとしては、2枚或いは3枚構成のレンズに比べ高性能化が可能であるということで、4枚構成の撮像レンズが提案されている。 In recent years, with the improvement and miniaturization of imaging devices using solid-state imaging devices such as CCD (Charged Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors, mobile phones equipped with imaging devices and Portable information terminals are becoming popular. In addition, there is an increasing demand for higher performance and miniaturization of imaging lenses mounted on these imaging devices. As an imaging lens for such an application, a four-lens imaging lens has been proposed because it can achieve higher performance than a two- or three-lens configuration.
 この4枚構成の撮像レンズとして、物体側より順に正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズ、正の屈折力を有する第4レンズで構成し、高性能化を目指した、所謂逆エルノスタータイプの撮像レンズが開示されている(例えば、特許文献1参照)。 As this four-lens imaging lens, in order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, and a first lens having a positive refractive power. A so-called reverse Ernostar type imaging lens that is configured by four lenses and aims at high performance is disclosed (for example, see Patent Document 1).
 また、物体側から順に正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズで構成し、撮像レンズ全長(撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離)の小型化を目指した、所謂テレフォトタイプの撮像レンズが開示されている(例えば、特許文献2参照)。 In addition, the first lens having positive refractive power, the second lens having negative refractive power, the third lens having positive refractive power, and the fourth lens having negative refractive power are arranged in order from the object side. A so-called telephoto type imaging lens that aims to reduce the overall lens length (distance on the optical axis from the most object-side lens surface of the entire imaging lens system to the image-side focal point) has been disclosed (for example, Patent Documents). 2).
特開2004-341013号公報Japanese Patent Laid-Open No. 2004-341013 特開2002-365530号公報JP 2002-365530 A
 しかしながら、特許文献1に記載の撮像レンズは、逆エルノスタータイプであるため、第4レンズが正レンズであり、テレフォトタイプのように第4レンズが負レンズの場合に比べ、光学系の主点位置が像側になってバックフォーカスが長くなるため、小型化には不利なタイプである。更に、4枚レンズのうち負の屈折力を有するレンズは1枚であり、ペッツバール和の補正が困難で、画像周辺部では良好な性能を確保できていない。 However, since the imaging lens described in Patent Document 1 is an inverted Ernostar type, the fourth lens is a positive lens, and the main lens of the optical system is larger than the case where the fourth lens is a negative lens as in the telephoto type. Since the point position becomes the image side and the back focus becomes long, this is a disadvantageous type for downsizing. Further, of the four lenses, only one lens has a negative refractive power, and it is difficult to correct the Petzval sum, and good performance cannot be ensured at the periphery of the image.
 また、特許文献2に記載の撮像レンズは、撮影画角が狭いことに加えて収差補正が不十分で、更にレンズ全長を短縮化すると、性能の劣化による撮像素子の高画素化に対応が困難となる問題がある。 In addition, the imaging lens disclosed in Patent Document 2 has a narrow imaging angle of view and insufficient aberration correction. Further, if the entire lens length is shortened, it is difficult to cope with an increase in the number of pixels of the imaging element due to performance degradation. There is a problem.
 本発明はかかる問題に鑑みてなされたものであり、従来タイプより小型でありながらも諸収差が良好に補正された4枚構成の撮像レンズを提供することを目的とする。 The present invention has been made in view of such a problem, and an object thereof is to provide a four-lens imaging lens in which various aberrations are favorably corrected while being smaller than a conventional type.
 ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。 Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
 L/2Y<1.10
 但し、
 L:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
 2Y:固体撮像素子の撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)
 ここで、像側焦点とは撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。
L / 2Y <1.10
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: Diagonal length of the imaging surface of the solid-state imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device)
Here, the image-side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens.
 なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルタ、赤外線カットフィルタ、または固体撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離とした上で上記Lの値を計算するものとする。また、下記の条件式がより望ましい。 When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of a solid-state image sensor package is disposed between the image-side surface of the imaging lens and the image-side focal position, the imaging lens is parallel. The flat plate portion is calculated as the above L value after the air conversion distance. Further, the following conditional expression is more desirable.
 L/2Y<1.00 L / 2Y <1.00
 上記目的は下記に記載した発明により達成される。 The above object is achieved by the invention described below.
 1.固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
 物体側より順に、
 正の屈折力を有して両凸形状の第1レンズと、
 負の屈折力を有して像側に凹面を向けた第2レンズと、
 正の屈折力を有して像側に凸面を向けたメニスカス形状の第3レンズと、
 少なくとも1面が非球面に形成され、負の屈折力を有して像側に凹面を向けた第4レンズと、から成り、
 前記第1レンズと前記第2レンズの間に開口絞りを有し、以下の条件式を満足することを特徴とする撮像レンズ。
1. An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device,
From the object side,
A biconvex first lens having positive refractive power;
A second lens having negative refractive power and having a concave surface facing the image side;
A third meniscus lens having positive refractive power and having a convex surface facing the image side;
A fourth lens having at least one surface formed as an aspherical surface and having a negative refractive power and a concave surface facing the image side;
An imaging lens having an aperture stop between the first lens and the second lens and satisfying the following conditional expression:
 -2.50<f2/f<-1.50・・・(1)
 但し、
 f2:前記第2レンズの焦点距離
 f:撮像レンズ全系の焦点距離
 本発明の基本構成は、物体側より順に、正の屈折力を有して両凸形状の第1レンズと、負の屈折力を有して像側に凹面を向けた第2レンズと、正の屈折力を有して像側に凸面を向けたメニスカス形状の第3レンズと、少なくとも1面が非球面に形成され、負の屈折力を有して像側に凹面を向けた第4レンズとから成る。物体側から順に、第1レンズ、第2レンズ及び第3レンズからなる正レンズ群と、像側に凹面を向けた負の第4レンズとを配置することで、撮像レンズ全長の小型化には有利な構成となる。
-2.50 <f2 / f <-1.50 (1)
However,
f2: Focal length of the second lens f: Focal length of the entire imaging lens system The basic configuration of the present invention is a biconvex first lens having positive refractive power and negative refraction in order from the object side. A second lens having a concave surface on the image side with a force, a meniscus third lens having a positive refractive power and a convex surface on the image side, and at least one surface is formed as an aspheric surface, And a fourth lens having negative refractive power and having a concave surface facing the image side. In order from the object side, a positive lens group composed of a first lens, a second lens, and a third lens and a negative fourth lens with a concave surface facing the image side are arranged to reduce the overall length of the imaging lens. This is an advantageous configuration.
 更に、4枚構成のうちの2枚を負レンズとすることで、発散作用を有する面を多くしてペッツバール和の補正が容易になり、画面周辺部まで良好な結像性能を確保した撮像レンズを得ることが可能となる。また、最も像側に配置された第4レンズを少なくとも1面の非球面とすることで、画面周辺部での諸収差を良好に補正することができる。 Furthermore, by using two of the four lens elements as negative lenses, it is possible to easily correct the Petzval sum by increasing the diverging surface and to ensure good imaging performance up to the periphery of the screen. Can be obtained. In addition, by setting the fourth lens arranged closest to the image side to at least one aspherical surface, various aberrations at the peripheral portion of the screen can be corrected satisfactorily.
 加えて、第1レンズと第2レンズの間に開口絞りを配置することで、第1レンズの物体側面を通過する周辺マージナル光線の屈折角が大きくなり過ぎず、撮像レンズの小型化と良好な収差補正を両立することができる。 In addition, by arranging an aperture stop between the first lens and the second lens, the refraction angle of the peripheral marginal ray passing through the object side surface of the first lens does not become too large, and the imaging lens can be downsized and good. It is possible to achieve both aberration correction.
 条件式(1)は第2レンズの焦点距離を適切に設定するための条件式である。条件式(1)の値が下限を上回ることで、第2レンズの負の屈折力を適度に維持することができ、レンズ全長の短縮化と軸上色収差、像面湾曲の良好な補正を両立することができる。 Conditional expression (1) is a conditional expression for appropriately setting the focal length of the second lens. If the value of conditional expression (1) exceeds the lower limit, the negative refracting power of the second lens can be maintained moderately, and both the shortening of the total lens length and good correction of axial chromatic aberration and curvature of field are compatible. can do.
 一方、上限を下回ることで、第2レンズの負の屈折力が大きくなり過ぎず、周辺部の光線が過度に跳ね上げられることによる倍率色収差の発生を抑えることができる。 On the other hand, when the value falls below the upper limit, the negative refractive power of the second lens does not become too large, and the occurrence of lateral chromatic aberration due to excessively jumping up the light rays in the peripheral portion can be suppressed.
 また、下記の条件式がより望ましい。 Also, the following conditional expression is more desirable.
 -2.40<f2/f<-1.50
 2.以下の条件式を満足することを特徴とする前記1に記載の撮像レンズ。
-2.40 <f2 / f <-1.50
2. 2. The imaging lens according to 1, wherein the following conditional expression is satisfied.
 2.00≦(r3+r4)/(r3-r4)≦5.00・・・(2)
 但し、
 r3:前記第2レンズの物体側面の曲率半径
 r4:前記第2レンズの像側面の曲率半径
 条件式(2)は、第2レンズの形状を適切に設定する条件である。この条件式(2)の範囲内で、第2レンズは物体側の面より像側の面の方が強い負の屈折力を有する形状となる。
2.00 ≦ (r3 + r4) / (r3-r4) ≦ 5.00 (2)
However,
r3: radius of curvature of the object side surface of the second lens r4: radius of curvature of the image side surface of the second lens Conditional expression (2) is a condition for appropriately setting the shape of the second lens. Within the range of the conditional expression (2), the second lens has a shape having a negative refractive power stronger on the image side surface than on the object side surface.
 条件式(2)の値が下限を上回ることで、第2レンズの像側の面の屈折力を強くすることができ、コマ収差、像面湾曲、非点収差、色収差の補正が容易にできる。一方、第2レンズの物体側の面の曲率は緩くなり、この面の周縁付近を通過する軸外光束の収差を抑えることができる。一方、上限を下回ることで、第2レンズの像側の面の負屈折力が強くなり過ぎるのを抑え、バランスよく収差を補正できる。また、像側の面の曲率半径が小さくなり過ぎず、レンズ加工上問題のない形状となる。 When the value of conditional expression (2) exceeds the lower limit, the refractive power of the image side surface of the second lens can be increased, and correction of coma aberration, field curvature, astigmatism, and chromatic aberration can be easily performed. . On the other hand, the curvature of the object side surface of the second lens becomes gentle, and the aberration of the off-axis light beam passing near the periphery of this surface can be suppressed. On the other hand, by being below the upper limit, it is possible to suppress the negative refracting power of the image side surface of the second lens from becoming too strong, and to correct aberrations in a balanced manner. In addition, the radius of curvature of the image-side surface does not become too small, and the shape has no problem in lens processing.
 また、下記の条件式がより望ましい。 Also, the following conditional expression is more desirable.
 2.10<(r3+r4)/(r3-r4)<4.80
 3.以下の条件式を満足することを特徴とする前記1又は前記2に記載の撮像レンズ。
2.10 <(r3 + r4) / (r3-r4) <4.80
3. 3. The imaging lens as described in 1 or 2 above, wherein the following conditional expression is satisfied.
 15<ν2<27・・・(3)
 但し、
 ν2:前記第2レンズのアッベ数
 条件式(3)は第2レンズのアッベ数を適切に設定し、色収差を良好に補正するための条件式である。
15 <ν2 <27 (3)
However,
ν2: Abbe number of the second lens Conditional expression (3) is a conditional expression for appropriately setting the Abbe number of the second lens and correcting chromatic aberration satisfactorily.
 負の第2レンズに比較的分散の大きな材料を使用することにより、軸上色収差を良好に補正することができる反面、第2レンズの像側面が強い発散面であるため、周辺の光線の入射角が大きくなり、倍率色収差が発生してしまう。 By using a material with relatively large dispersion for the negative second lens, the axial chromatic aberration can be corrected well, but the image side surface of the second lens is a strong divergent surface, so that the incident of peripheral rays The angle becomes large and chromatic aberration of magnification occurs.
 条件式(3)の値が下限を下回ると、軸上色収差は十分に補正することができるが、周辺光束で発生する倍率色収差も大きくなってしまう。一方、上限を上回ると、周辺光束の倍率色収差は小さく抑えることができるが、軸上色収差を補正しきれない。 When the value of the conditional expression (3) is below the lower limit, the longitudinal chromatic aberration can be sufficiently corrected, but the lateral chromatic aberration generated by the peripheral light beam also becomes large. On the other hand, if the upper limit is exceeded, the lateral chromatic aberration of the peripheral luminous flux can be kept small, but the longitudinal chromatic aberration cannot be corrected.
 また、下記の条件式がより望ましい。 Also, the following conditional expression is more desirable.
 20<ν2<27
 4.以下の条件式を満足することを特徴とする前記1~3の何れか1項に記載の撮像レンズ。
20 <ν2 <27
4). 4. The imaging lens according to any one of 1 to 3, wherein the following conditional expression is satisfied.
 0.35<f3/f<0.65・・・(4)
 但し、
 f3:前記第3レンズの焦点距離
 f:撮像レンズ全系の焦点距離
 条件式(4)は第3レンズの焦点距離を適切に設定するための条件式である。条件式(4)の値が下限を上回ることで、第3レンズの焦点距離が小さくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。一方、上限を下回ることで、第3レンズの焦点距離を適度に維持することができ、撮像レンズ全長の短縮化を達成することができる。
0.35 <f3 / f <0.65 (4)
However,
f3: Focal length of the third lens f: Focal length of the entire imaging lens Conditional expression (4) is a conditional expression for appropriately setting the focal length of the third lens. When the value of conditional expression (4) exceeds the lower limit, the focal length of the third lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed. On the other hand, by being below the upper limit, the focal length of the third lens can be maintained moderately, and a reduction in the overall length of the imaging lens can be achieved.
 また、下記の条件式がより望ましい。 Also, the following conditional expression is more desirable.
 0.40<f3/f<0.62
 5.以下の条件式を満足することを特徴とする前記1~4の何れか1項に記載の撮像レンズ。
0.40 <f3 / f <0.62
5. 5. The imaging lens according to any one of 1 to 4, wherein the following conditional expression is satisfied.
 0.70<f1/f<1.05・・・(5)
 但し、
 f1:前記第1レンズの焦点距離
 f:撮像レンズ全系の焦点距離
 条件式(5)は第1レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。
0.70 <f1 / f <1.05 (5)
However,
f1: Focal length of the first lens f: Focal length of the entire imaging lens Conditional expression (5) appropriately sets the focal length of the first lens, and appropriately achieves shortening of the entire length of the imaging lens and aberration correction. Is a conditional expression.
 条件式(5)の値が上限を下回ることで、第1レンズの屈折力を適度に維持することができ、第1レンズから第3レンズの合成主点をより物体側へ配置することができ、撮像レンズ全長を短くすることができる。一方、下限を上回ることで、第1レンズの屈折力が必要以上に大きくなり過ぎず、第1レンズで発生する、高次の球面収差やコマ収差を小さく抑えることができる。 When the value of conditional expression (5) is less than the upper limit, the refractive power of the first lens can be maintained moderately, and the synthetic principal point of the first lens to the third lens can be arranged closer to the object side. The overall length of the imaging lens can be shortened. On the other hand, by exceeding the lower limit, the refractive power of the first lens does not become unnecessarily large, and high-order spherical aberration and coma aberration generated in the first lens can be suppressed to be small.
 また、下記の条件式がより望ましい。 Also, the following conditional expression is more desirable.
 0.75<f1/f<0.95
 6.以下の条件式を満足することを特徴とする前記1~5の何れか1項に記載の撮像レンズ。
0.75 <f1 / f <0.95
6). 6. The imaging lens according to any one of 1 to 5, wherein the following conditional expression is satisfied.
 -1.00<(r1+r2)/(r1-r2)<-0.50・・・(6)
 但し、
 r1:前記第1レンズの物体側面の曲率半径
 r2:前記第1レンズの像側面の曲率半径
 条件式(6)は第1レンズの形状を適切に設定する条件である。この条件式の範囲内で、第1レンズは物体側の面より像側の面の方が強い正の屈折力を有する形状となる。条件式(6)の値が上限を下回ることで、第1レンズの像側の面の正の屈折力が強くなり過ぎず、第2レンズの像側の面の周辺部が過度の負の屈折力をもつことによるコマ収差、像面湾曲、色収差の発生を抑えることが出来る。下限を上回ることで、第1レンズ周辺部の物体側に空間が生まれ、絞りの配置が容易になるため、全長の短縮が容易になる。
-1.00 <(r1 + r2) / (r1-r2) <-0.50 (6)
However,
r1: radius of curvature of the object side surface of the first lens r2: radius of curvature of the image side surface of the first lens Conditional expression (6) is a condition for appropriately setting the shape of the first lens. Within the range of this conditional expression, the first lens has a shape having a positive refractive power stronger on the image side surface than on the object side surface. When the value of conditional expression (6) is less than the upper limit, the positive refractive power of the image side surface of the first lens does not become too strong, and the peripheral portion of the image side surface of the second lens has excessive negative refraction. Generation of coma, curvature of field, and chromatic aberration due to force can be suppressed. By exceeding the lower limit, a space is created on the object side in the periphery of the first lens, and the arrangement of the diaphragm becomes easy, so that the overall length can be easily shortened.
 また、下記の条件式がより望ましい。 Also, the following conditional expression is more desirable.
 -0.95<(r1+r2)/(r1-r2)<-0.52
 7.以下の条件式を満足することを特徴とする前記1~6の何れか1項に記載の撮像レンズ。
−0.95 <(r1 + r2) / (r1−r2) <− 0.52
7). The imaging lens according to any one of 1 to 6, wherein the following conditional expression is satisfied.
 -0.70<f4/f<-0.40・・・(7)
 但し、
 f4:前記第4レンズの焦点距離
 f:撮像レンズ全系の焦点距離
 条件式(7)は第4レンズの焦点距離を適切に設定するための条件式である。条件式(7)の値が上限を下回ることで、第4レンズの負の屈折力が必要以上に大きくなり過ぎず、固体撮像素子の撮像面周辺部に結像する光束が過度に跳ね上げられることがなくなり、像側光束のテレセントリック特性の確保を容易にすることができる。一方、下限を上回ることで、第4レンズの負の屈折力を適度に維持することができ、レンズ全長の短縮化及び像面湾曲や歪曲収差等の軸外諸収差の補正を良好に行うことができる。
−0.70 <f4 / f <−0.40 (7)
However,
f4: Focal length of the fourth lens f: Focal length of the entire imaging lens Conditional expression (7) is a conditional expression for appropriately setting the focal length of the fourth lens. When the value of conditional expression (7) is less than the upper limit, the negative refractive power of the fourth lens does not increase more than necessary, and the light beam that forms an image on the periphery of the imaging surface of the solid-state imaging device is excessively raised. Thus, the telecentric characteristics of the image-side light beam can be easily ensured. On the other hand, by exceeding the lower limit, the negative refracting power of the fourth lens can be appropriately maintained, and the overall length of the lens is shortened and various off-axis aberrations such as field curvature and distortion are corrected well. Can do.
 また、下記の条件式がより望ましい。 Also, the following conditional expression is more desirable.
 -0.68<f4/f<-0.42
 8.前記第4レンズの像側面は非球面に形成されており、その光軸近傍では負の屈折力を有し、周辺に向かうに従い負の屈折力が弱くなり変曲点を有することを特徴とする前記1~7の何れか1項に記載の撮像レンズ。
-0.68 <f4 / f <-0.42
8). The image side surface of the fourth lens is formed as an aspherical surface, has a negative refractive power in the vicinity of the optical axis, and has a inflection point because the negative refractive power becomes weaker toward the periphery. 8. The imaging lens according to any one of 1 to 7 above.
 第4レンズの像側面を、光軸から周辺に行くに従って負の屈折力が弱くなり、また変曲点を有する非球面形状とすることで、像側光束のテレセントリック特性が確保し易くなる。また、第2レンズの像側面は、レンズ周辺部で過度に負の屈折力を弱くする必要がなくなり、軸外収差を良好に補正することが可能となる。 The negative refracting power becomes weaker as the image side surface of the fourth lens goes from the optical axis to the periphery, and the telecentric characteristics of the image-side light beam can be easily secured by making the aspherical shape having an inflection point. Further, the image side surface of the second lens need not excessively weaken the negative refracting power at the periphery of the lens, and it is possible to satisfactorily correct off-axis aberrations.
 ここで、「変曲点」とは有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面が光軸と垂直な平面となるような非球面上の点のことである。 Here, the “inflection point” is a point on the aspheric surface where the tangent plane of the aspherical vertex is a plane perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.
 9.前記第4レンズは両凹形状であることを特徴とする前記1~8の何れか1項に記載の撮像レンズ。 9. 9. The imaging lens according to any one of 1 to 8, wherein the fourth lens has a biconcave shape.
 第4レンズを両凹形状とすることで、第4レンズの周辺部が像面方向に大きく張り出すことがなくなり、第4レンズと固体撮像素子との間に配置される、光学的ローパスフィルタ、赤外線カットフィルタ、または固体撮像素子パッケージのシールガラス等の平行平板や、固体撮像素子の基板等との接触を避けながらも、バックフォーカスを短くすることができ、撮像レンズ全長の短縮化に有利な構成となる。 By making the fourth lens a biconcave shape, the peripheral portion of the fourth lens does not protrude greatly in the image plane direction, and is disposed between the fourth lens and the solid-state imaging device, an optical low-pass filter, The back focus can be shortened while avoiding contact with a parallel plate such as an infrared cut filter or a seal glass of a solid-state image sensor package or a substrate of a solid-state image sensor, which is advantageous for shortening the overall length of the imaging lens. It becomes composition.
 10.全てのレンズがプラスチック材料で形成されていることを特徴とする前記1~9の何れか1項に記載の撮像レンズ。 10. 10. The imaging lens according to any one of 1 to 9, wherein all the lenses are made of a plastic material.
 近年では、固体撮像装置全体の小型化を目的とし、同じ画素数の固体撮像素子であっても、画素ピッチが小さく、結果として撮像面サイズの小さいものが開発されている。このような撮像面サイズの小さい固体撮像素子向けの撮像レンズは、全系の焦点距離を比較的に短くする必要があるため、各レンズの曲率半径や外径がかなり小さくなってしまう。従って、手間のかかる研磨加工により製造するガラスレンズと比較すれば、全てのレンズを、射出成形により製造されるプラスチックレンズで構成することにより、曲率半径や外径の小さなレンズであっても安価に大量生産が可能となる。また、プラスチックレンズはプレス温度を低くできることから、成形金型の損耗を抑えることができ、その結果、成形金型の交換回数やメンテナンス回数を減少させ、コスト低減を図ることができる。 Recently, for the purpose of downsizing the entire solid-state imaging device, even a solid-state imaging device having the same number of pixels has been developed with a small pixel pitch and consequently a small imaging surface size. In such an imaging lens for a solid-state imaging device having a small imaging surface size, it is necessary to relatively shorten the focal length of the entire system, so that the curvature radius and the outer diameter of each lens are considerably reduced. Therefore, compared to glass lenses manufactured by time-consuming polishing, all lenses are made of plastic lenses manufactured by injection molding, so that even lenses with small radii of curvature and outer diameters are inexpensive. Mass production is possible. In addition, since the plastic lens can lower the press temperature, it is possible to suppress the wear of the molding die, and as a result, the number of replacements and maintenance times of the molding die can be reduced, and the cost can be reduced.
 本発明の撮像レンズによれば、4枚構成であって従来タイプより小型でありながらも諸収差が良好に補正されるという効果を奏することができる。 According to the imaging lens of the present invention, it is possible to obtain an effect that various aberrations are corrected satisfactorily while having a four-lens configuration and being smaller than the conventional type.
実施例1の撮像レンズの断面図である。2 is a cross-sectional view of an imaging lens of Example 1. FIG. 実施例1の撮像レンズの収差図である。FIG. 3 is an aberration diagram of the imaging lens of Example 1. 実施例2の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 2. FIG. 実施例2の撮像レンズの収差図である。6 is an aberration diagram of the imaging lens of Example 2. FIG. 実施例3の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 3. FIG. 実施例3の撮像レンズの収差図である。6 is an aberration diagram of the imaging lens of Example 3. FIG. 実施例4の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 4. FIG. 実施例4の撮像レンズの収差図である。FIG. 6 is an aberration diagram of the imaging lens of Example 4. 実施例5の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 5. FIG. 実施例5の撮像レンズの収差図である。FIG. 10 is an aberration diagram of the imaging lens of Example 5. 実施例6の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 6. FIG. 実施例6の撮像レンズの収差図である。10 is an aberration diagram of the imaging lens of Example 6. FIG. 実施例7の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 7. FIG. 実施例7の撮像レンズの収差図である。10 is an aberration diagram of the imaging lens of Example 7. FIG. 実施例8の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 8. FIG. 実施例8の撮像レンズの収差図である。10 is an aberration diagram of the imaging lens of Example 8. FIG. 実施例9の撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens of Example 9. FIG. 実施例9の撮像レンズの収差図である。10 is an aberration diagram of the imaging lens of Example 9. FIG.
 以下に、本発明の撮像レンズの実施例を示す。各実施例に使用する記号は下記の通りである。 Examples of the imaging lens of the present invention are shown below. Symbols used in each example are as follows.
 f   :撮像レンズ全系の焦点距離
 fB  :バックフォーカス
 F   :Fナンバー
 2Y  :固体撮像素子の撮像面対角線長
 ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
 EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
 H1  :前側主点位置(第1面から前側主点位置までの距離)
 H2  :後側主点位置(最終面から後側主点位置までの距離)
 R   :曲率半径
 D   :軸上面間隔
 Nd  :レンズ材料のd線に対する屈折率
 νd  :レンズ材料のアッベ数
 また各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面である。
f: Focal length of the entire imaging lens system fB: Back focus F: F number 2Y: Diagonal length of the imaging surface of the solid-state imaging device ENTP: Entrance pupil position (distance from the first surface to the entrance pupil position)
EXTP: exit pupil position (distance from imaging surface to exit pupil position)
H1: Front principal point position (distance from first surface to front principal point position)
H2: Rear principal point position (distance from the final surface to the rear principal point position)
R: radius of curvature D: axial distance between axes Nd: refractive index of lens material with respect to d-line νd: Abbe number of lens material Also, in each example, the surface where “*” is written after each surface number is aspherical It is a surface having
 非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして、以下の数1で表す。 The shape of the aspherical surface is expressed by the following formula 1, where the vertex of the surface is the origin, the X axis is taken in the optical axis direction, and the height in the direction perpendicular to the optical axis is h.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 但し、
 Ai:i次の非球面係数
 R :曲率半径
 K :円錐定数
 また、非球面係数においては10のべき乗数(例えば2.5×10-02)をE(例えば2.5E-02)を用いて表すものとする。
However,
Ai: i-th order aspheric coefficient R: radius of curvature K: conic constant Further, in the aspheric coefficient, a power of 10 (for example, 2.5 × 10 −02 ) is used by E (for example, 2.5E-02). It shall represent.
 [実施例1]
 撮像レンズの全体諸元を以下に示す。
[Example 1]
The overall specifications of the imaging lens are shown below.
 f=3.26mm
 fB=0.36mm
 F=2.45
 2Y=4.536mm
 ENTP=0.41mm
 EXTP=-2.23mm
 H1=-0.43mm
 H2=-2.89mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd   νd  有効半径(mm)
1       ∞     0.00               0.98
2(*)    1.958    0.55   1.54470   56.2    0.88
3(*)   -6.692    0.02               0.72
4(絞り)   ∞     0.05               0.62
5(*)    2.392    0.30   1.63200   23.4    0.68
6(*)    1.453    0.74               0.71
7(*)   -2.539    0.62   1.54470   56.2    0.97
8(*)   -0.735    0.05               1.23
9(*)   -83.072    0.47   1.54470   56.2    1.77
10(*)    0.915    0.60               1.93
11       ∞     0.30   1.51630   64.1    2.19
12       ∞                     2.26
 なお、全てのレンズはプラスチック材料から形成されている。
f = 3.26mm
fB = 0.36mm
F = 2.45
2Y = 4.536mm
ENTP = 0.41mm
EXTP = −2.23mm
H1 = -0.43mm
H2 = -2.89mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 ∞ 0.00 0.98
2 (*) 1.958 0.55 1.54470 56.2 0.88
3 (*) -6.692 0.02 0.72
4 (Aperture) ∞ 0.05 0.62
5 (*) 2.392 0.30 1.63200 23.4 0.68
6 (*) 1.453 0.74 0.71
7 (*) -2.539 0.62 1.54470 56.2 0.97
8 (*) -0.735 0.05 1.23
9 (*) -83.072 0.47 1.54470 56.2 1.77
10 (*) 0.915 0.60 1.93
11 ∞ 0.30 1.51630 64.1 2.19
12 ∞ 2.26
All the lenses are made of a plastic material.
 非球面係数を以下に示す。 The aspheric coefficient is shown below.
 第2面
 K=-0.26814E+01,A4=-0.11747E-01,A6=-0.17618E-01,A8=-0.18096E+00,A10=0.26150E+00,A12=-0.15102E+00
 第3面
 K=0.27630E+02,A4=0.60811E-02,A6=-0.15114E+00,A8=0.11782E+00,A10=0.67109E-01,A12=-0.13453E+00
 第5面
 K=-0.12093E+02,A4=0.14326E+00,A6=0.55269E-01,A8=-0.68445E+00,A10=0.12947E+01,A12=-0.50101E+00
 第6面
 K=-0.59109E+01,A4=0.24783E+00,A6=-0.15038E+00,A8=0.21536E+00,A10=-0.71892E+00,A12=0.11219E+01
 第7面
 K=-0.31719E+01,A4=-0.33897E-01,A6=-0.20382E+00,A8=0.31602E+00,A10=-0.18128E+00,A12=-0.13936E-02
 第8面
 K=-0.45298E+01,A4=-0.31995E+00,A6=0.39754E+00,A8=-0.42892E+00,A10=0.34598E+00,A12=-0.10483E+00
 第9面
 K=-0.50000E+02,A4=-0.15384E+00,A6=0.86586E-01,A8=-0.49242E-02,A10=-0.85682E-02,A12=0.27935E-02,A14=-0.27890E-03
 第10面
 K=-0.89315E+01,A4=-0.13200E+00,A6=0.66980E-01,A8=-0.31101E-01,A10=0.89225E-02,A12=-0.14659E-02,A14=0.11392E-03
 撮像レンズの単レンズデータを以下に示す。
2nd surface K = -0.26814E + 01, A4 = -0.11747E-01, A6 = -0.17618E-01, A8 = -0.18096E + 00, A10 = 0.26150E + 00, A12 = -0.15102E + 00
3rd surface K = 0.27630E + 02, A4 = 0.60811E-02, A6 = -0.15114E + 00, A8 = 0.11782E + 00, A10 = 0.67109E-01, A12 = -0.13453E + 00
5th surface K = -0.12093E + 02, A4 = 0.14326E + 00, A6 = 0.55269E-01, A8 = -0.68445E + 00, A10 = 0.12947E + 01, A12 = -0.50101E + 00
6th surface K = -0.59109E + 01, A4 = 0.24783E + 00, A6 = -0.15038E + 00, A8 = 0.21536E + 00, A10 = -0.71892E + 00, A12 = 0.11219E + 01
7th surface K = -0.31719E + 01, A4 = -0.33897E-01, A6 = -0.20382E + 00, A8 = 0.31602E + 00, A10 = -0.18128E + 00, A12 = -0.13936E-02
8th surface K = -0.45298E + 01, A4 = -0.31995E + 00, A6 = 0.39754E + 00, A8 = -0.42892E + 00, A10 = 0.34598E + 00, A12 = -0.10483E + 00
9th surface K = -0.50000E + 02, A4 = -0.15384E + 00, A6 = 0.86586E-01, A8 = -0.49242E-02, A10 = -0.85682E-02, A12 = 0.27935E-02, A14 = -0.27890E-03
10th surface K = -0.89315E + 01, A4 = -0.13200E + 00, A6 = 0.66980E-01, A8 = -0.31101E-01, A10 = 0.89225E-02, A12 = -0.14659E-02, A14 = 0.11392E-03
Single lens data of the imaging lens is shown below.
 レンズ 始面  焦点距離(mm)
 1    2    2.844
 2    5    -6.688
 3    7    1.694
 4    9    -1.658
 条件式(1)から(7)に対応する値を以下に示す。
(1)f2/f=-2.05
(2)(r3+r4)/(r3-r4)=4.10
(3)ν2=23.4
(4)f3/f=0.52
(5)f1/f=0.87
(6)(r1+r2)/(r1-r2)=-0.55
(7)f4/f=-0.51
 図1は実施例1の撮像レンズの断面図である。図1において、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、Sは開口絞り、Fは光学的ローパスフィルタ、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板、Iは撮像面である。図2は実施例1の撮像レンズの収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
Lens Start surface Focal length (mm)
1 2 2.844
2 5 -6.688
3 7 1.694
4 9 -1.658
Values corresponding to conditional expressions (1) to (7) are shown below.
(1) f2 / f = −2.05
(2) (r3 + r4) / (r3-r4) = 4.10
(3) ν2 = 23.4
(4) f3 / f = 0.52
(5) f1 / f = 0.87
(6) (r1 + r2) / (r1-r2) = − 0.55
(7) f4 / f = −0.51
1 is a cross-sectional view of the imaging lens of Example 1. FIG. In FIG. 1, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, S is an aperture stop, F is an optical low-pass filter, an IR cut filter, or a sealing glass for a solid-state image sensor. A parallel plate assuming I and the like, I is an imaging surface. FIG. 2 is an aberration diagram (spherical aberration, astigmatism, distortion, meridional coma) of the imaging lens of Example 1.
 [実施例2]
 撮像レンズの全体諸元を以下に示す。
[Example 2]
The overall specifications of the imaging lens are shown below.
 f=3.26mm
 fB=0.28mm
 F=2.46
 2Y=4.536mm
 ENTP=0.35mm
 EXTP=-2.32mm
 H1=-0.48mm
 H2=-2.97mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd   νd  有効半径(mm)
1       ∞     0.00               0.94
2(*)    1.781    0.47   1.54470   56.2    0.82
3(*)   -18.198    0.02               0.67
4(絞り)   ∞     0.05               0.62
5(*)    2.618    0.30   1.63200   23.4    0.68
6(*)    1.578    0.80               0.71
7(*)   -3.296    0.71   1.54470   56.2    1.05
8(*)   -0.763    0.20               1.26
9(*)   -13.100    0.32   1.54470   56.2    1.87
10(*)    0.939    0.60               2.02
11       ∞     0.30   1.51630   64.1    2.50
12       ∞                     2.50
 なお、全てのレンズはプラスチック材料から形成されている。
f = 3.26mm
fB = 0.28mm
F = 2.46
2Y = 4.536mm
ENTP = 0.35mm
EXTP = -2.32mm
H1 = −0.48mm
H2 = -2.97mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 ∞ 0.00 0.94
2 (*) 1.781 0.47 1.54470 56.2 0.82
3 (*) -18.198 0.02 0.67
4 (Aperture) ∞ 0.05 0.62
5 (*) 2.618 0.30 1.63200 23.4 0.68
6 (*) 1.578 0.80 0.71
7 (*) -3.296 0.71 1.54470 56.2 1.05
8 (*) -0.763 0.20 1.26
9 (*) -13.100 0.32 1.54470 56.2 1.87
10 (*) 0.939 0.60 2.02
11 ∞ 0.30 1.51630 64.1 2.50
12 ∞ 2.50
All the lenses are made of a plastic material.
 非球面係数を以下に示す。 The aspheric coefficient is shown below.
 第2面
 K=-0.15459E+01,A4=-0.28791E-02,A6=-0.24289E-01,A8=-0.11838E+00,A10=0.20184E+00,A12=-0.14321E+00
 第3面
 K=0.47814E+02,A4=0.96387E-02,A6=-0.13456E+00,A8=0.77628E-01,A10=0.77298E-01,A12=-0.10311E+00
 第5面
 K=-0.14118E+02,A4=0.13980E+00,A6=0.43187E-01,A8=-0.57737E+00,A10=0.10821E+01,A12=-0.48591E+00
 第6面
 K=-0.56003E+01,A4=0.22057E+00,A6=-0.11437E+00,A8=0.30521E+00,A10=-0.89179E+00,A12=0.10503E+01
 第7面
 K=0.28826E+01,A4=-0.37862E-01,A6=-0.24223E+00,A8=0.46212E+00,A10=-0.36944E+00,A12=0.12434E+00
 第8面
 K=-0.45017E+01,A4=-0.34542E+00,A6=0.39522E+00,A8=-0.44197E+00,A10=0.31771E+00,A12=-0.81224E-01
 第9面
 K=0.11884E+02,A4=-0.15197E+00,A6=0.88924E-01,A8=-0.51121E-02,A10=-0.86921E-02,A12=0.27123E-02,A14=-0.25245E-03
 第10面
 K=-0.82395E+01,A4=-0.12508E+00,A6=0.67661E-01,A8=-0.30945E-01,A10=0.90430E-02,A12=-0.14549E-02,A14=0.99735E-04
 撮像レンズの単レンズデータを以下に示す。
2nd surface K = -0.15459E + 01, A4 = -0.28791E-02, A6 = -0.24289E-01, A8 = -0.11838E + 00, A10 = 0.20184E + 00, A12 = -0.14321E + 00
3rd surface K = 0.47814E + 02, A4 = 0.96387E-02, A6 = -0.13456E + 00, A8 = 0.77628E-01, A10 = 0.77298E-01, A12 = -0.10311E + 00
5th surface K = -0.14118E + 02, A4 = 0.13980E + 00, A6 = 0.43187E-01, A8 = -0.57737E + 00, A10 = 0.10821E + 01, A12 = -0.48591E + 00
6th surface K = -0.56003E + 01, A4 = 0.22057E + 00, A6 = -0.11437E + 00, A8 = 0.30521E + 00, A10 = -0.89179E + 00, A12 = 0.10503E + 01
7th surface K = 0.28826E + 01, A4 = -0.37862E-01, A6 = -0.24223E + 00, A8 = 0.46212E + 00, A10 = -0.36944E + 00, A12 = 0.12434E + 00
8th surface K = -0.45017E + 01, A4 = -0.34542E + 00, A6 = 0.39522E + 00, A8 = -0.44197E + 00, A10 = 0.31771E + 00, A12 = -0.81224E-01
9th surface K = 0.11884E + 02, A4 = -0.15197E + 00, A6 = 0.88924E-01, A8 = -0.51121E-02, A10 = -0.86921E-02, A12 = 0.27123E-02, A14 = -0.25245E-03
10th surface K = -0.82395E + 01, A4 = -0.12508E + 00, A6 = 0.67661E-01, A8 = -0.30945E-01, A10 = 0.90430E-02, A12 = -0.14549E-02, A14 = 0.99735E-04
Single lens data of the imaging lens is shown below.
 レンズ 始面  焦点距離(mm)
 1    2    3.002
 2    5    -7.072
 3    7    1.660
 4    9    -1.596
 条件式(1)から(7)に対応する値を以下に示す。
(1)f2/f=-2.17
(2)(r3+r4)/(r3-r4)=4.03
(3)ν2=23.4
(4)f3/f=0.51
(5)f1/f=0.92
(6)(r1+r2)/(r1-r2)=-0.82
(7)f4/f=-0.49
 図3は実施例2の撮像レンズの断面図である。図3において、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、Sは開口絞り、Fは光学的ローパスフィルタ、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板、Iは撮像面である。図4は実施例2の撮像レンズの収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
Lens Start surface Focal length (mm)
1 2 3.002
2 5 -7.072
3 7 1.660
4 9 -1.596
Values corresponding to conditional expressions (1) to (7) are shown below.
(1) f2 / f = -2.17
(2) (r3 + r4) / (r3-r4) = 4.03
(3) ν2 = 23.4
(4) f3 / f = 0.51
(5) f1 / f = 0.92
(6) (r1 + r2) / (r1-r2) = − 0.82
(7) f4 / f = −0.49
FIG. 3 is a cross-sectional view of the imaging lens of the second embodiment. In FIG. 3, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, S is an aperture stop, F is an optical low-pass filter, an IR cut filter, or a sealing glass for a solid-state image sensor. A parallel plate assuming I and the like, I is an imaging surface. FIG. 4 is an aberration diagram (spherical aberration, astigmatism, distortion, meridional coma) of the imaging lens of Example 2.
 [実施例3]
 撮像レンズの全体諸元を以下に示す。
[Example 3]
The overall specifications of the imaging lens are shown below.
 f=3.26mm
 fB=0.34mm
 F=2.46
 2Y=4.536mm
 ENTP=0.43mm
 EXTP=-2.24mm
 H1=-0.44mm
 H2=-2.92mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd   νd  有効半径(mm)
1       ∞     0.00               1.00
2(*)    1.636    0.53   1.54470   56.2    0.86
3(*)   -17.079    0.04               0.68
4(絞り)   ∞     0.05               0.60
5(*)    3.649    0.30   1.63200   23.4    0.66
6(*)    1.906    0.70               0.69
7(*)   -2.108    0.67   1.54470   56.2    0.88
8(*)   -0.705    0.05               1.14
9(*)  -1000.000    0.49   1.54470   56.2    1.76
10(*)    0.885    0.60               1.96
11       ∞     0.30   1.51630   64.1    2.22
12       ∞                     2.29
 なお、全てのレンズはプラスチック材料から形成されている。
f = 3.26mm
fB = 0.34mm
F = 2.46
2Y = 4.536mm
ENTP = 0.43mm
EXTP = -2.24mm
H1 = -0.44mm
H2 = -2.92mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 ∞ 0.00 1.00
2 (*) 1.636 0.53 1.54470 56.2 0.86
3 (*) -17.079 0.04 0.68
4 (Aperture) ∞ 0.05 0.60
5 (*) 3.649 0.30 1.63200 23.4 0.66
6 (*) 1.906 0.70 0.69
7 (*) -2.108 0.67 1.54470 56.2 0.88
8 (*) -0.705 0.05 1.14
9 (*) -1000.000 0.49 1.54470 56.2 1.76
10 (*) 0.885 0.60 1.96
11 ∞ 0.30 1.51630 64.1 2.22
12 ∞ 2.29
All the lenses are made of a plastic material.
 非球面係数を以下に示す。 The aspheric coefficient is shown below.
 第2面
 K=-0.16817E+01,A4=0.83191E-02,A6=0.30773E-01,A8=-0.23470E+00,A10=0.31437E+00,A12=-0.18225E+00
 第3面
 K=-0.50000E+02,A4=0.55720E-01,A6=-0.20957E+00,A8=0.84907E-01,A10=0.24816E+00,A12=-0.32181E+00
 第5面
 K=0.57301E+01,A4=0.13291E+00,A6=-0.14000E+00,A8=-0.23532E+00,A10=0.92288E+00,A12=-0.63012E+00
 第6面
 K=-0.12286E+02,A4=0.32160E+00,A6=-0.26249E+00,A8=0.12941E+00,A10=0.10177E-01,A12=0.18198E+00
 第7面
 K=-0.47352E+00,A4=-0.49541E-01,A6=-0.19155E+00,A8=0.10745E+00,A10=0.34955E-01,A12=-0.17517E+00
 第8面
 K=-0.42581E+01,A4=-0.36830E+00,A6=0.44957E+00,A8=-0.49955E+00,A10=0.29701E+00,A12=-0.57079E-01
 第9面
 K=0.50000E+02,A4=-0.13819E+00,A6=0.69622E-01,A8=-0.22948E-02,A10=-0.74642E-02,A12=0.23681E-02,A14=-0.23298E-03
 第10面
 K=-0.83990E+01,A4=-0.12725E+00,A6=0.66635E-01,A8=-0.31867E-01,A10=0.97193E-02,A12=-0.17419E-02,A14=0.14169E-03
 撮像レンズの単レンズデータを以下に示す。
2nd surface K = -0.16817E + 01, A4 = 0.83191E-02, A6 = 0.30773E-01, A8 = -0.23470E + 00, A10 = 0.31437E + 00, A12 = -0.18225E + 00
3rd surface K = -0.50000E + 02, A4 = 0.55720E-01, A6 = -0.20957E + 00, A8 = 0.84907E-01, A10 = 0.24816E + 00, A12 = -0.32181E + 00
5th surface K = 0.57301E + 01, A4 = 0.13291E + 00, A6 = -0.14000E + 00, A8 = -0.23532E + 00, A10 = 0.92288E + 00, A12 = -0.63012E + 00
6th surface K = -0.12286E + 02, A4 = 0.32160E + 00, A6 = -0.26249E + 00, A8 = 0.12941E + 00, A10 = 0.10177E-01, A12 = 0.18198E + 00
7th surface K = -0.47352E + 00, A4 = -0.49541E-01, A6 = -0.19155E + 00, A8 = 0.10745E + 00, A10 = 0.34955E-01, A12 = -0.17517E + 00
8th surface K = -0.42581E + 01, A4 = -0.36830E + 00, A6 = 0.44957E + 00, A8 = -0.49955E + 00, A10 = 0.29701E + 00, A12 = -0.57079E-01
9th surface K = 0.50000E + 02, A4 = -0.13819E + 00, A6 = 0.69622E-01, A8 = -0.22948E-02, A10 = -0.74642E-02, A12 = 0.23681E-02, A14 = -0.23298E-03
10th surface K = -0.83990E + 01, A4 = -0.12725E + 00, A6 = 0.66635E-01, A8 = -0.31867E-01, A10 = 0.97193E-02, A12 = -0.17419E-02, A14 = 0.14169E-03
Single lens data of the imaging lens is shown below.
 レンズ 始面  焦点距離(mm)
 1    2    2.769
 2    5    -6.765
 3    7    1.664
 4    9    -1.622
 条件式(1)から(7)に対応する値を以下に示す。
(1)f2/f=-2.08
(2)(r3+r4)/(r3-r4)=3.19
(3)ν2=23.4
(4)f3/f=0.51
(5)f1/f=0.85
(6)(r1+r2)/(r1-r2)=-0.83
(7)f4/f=-0.50
 図5は実施例3の撮像レンズの断面図である。図5において、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、Sは開口絞り、Fは光学的ローパスフィルタ、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板、Iは撮像面である。図6は実施例3の撮像レンズの収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
Lens Start surface Focal length (mm)
1 2 2.769
2 5 -6.765
3 7 1.664
4 9 -1.622
Values corresponding to conditional expressions (1) to (7) are shown below.
(1) f2 / f = −2.08
(2) (r3 + r4) / (r3-r4) = 3.19
(3) ν2 = 23.4
(4) f3 / f = 0.51
(5) f1 / f = 0.85
(6) (r1 + r2) / (r1-r2) = − 0.83
(7) f4 / f = −0.50
FIG. 5 is a cross-sectional view of the imaging lens of the third embodiment. In FIG. 5, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, S is an aperture stop, F is an optical low-pass filter, an IR cut filter, or a sealing glass for a solid-state image sensor. A parallel plate assuming I and the like, I is an imaging surface. FIG. 6 is an aberration diagram (spherical aberration, astigmatism, distortion, meridional coma) of the imaging lens of Example 3.
 [実施例4]
 撮像レンズの全体諸元を以下に示す。
[Example 4]
The overall specifications of the imaging lens are shown below.
 f=3.23mm
 fB=0.53mm
 F=2.45
 2Y=4.536mm
 ENTP=0.37mm
 EXTP=-2.04mm
 H1=-0.46mm
 H2=-2.7mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd   νd  有効半径(mm)
1       ∞     0.00               0.96
2(*)    1.851    0.48   1.54470   56.2    0.86
3(*)   -6.817    0.02               0.73
4(絞り)   ∞     0.07               0.61
5(*)    3.453    0.30   1.63200   23.4    0.65
6(*)    1.691    0.70               0.70
7(*)   -2.856    0.73   1.54470   56.2    0.97
8(*)   -0.800    0.20               1.25
9(*)    4.249    0.31   1.54470   56.2    1.73
10(*)    0.764    0.40               1.93
11       ∞     0.30   1.51630   64.1    2.50
12       ∞                     2.50
 なお、全てのレンズはプラスチック材料から形成されている。
f = 3.23mm
fB = 0.53mm
F = 2.45
2Y = 4.536mm
ENTP = 0.37mm
EXTP = −2.04mm
H1 = -0.46mm
H2 = -2.7mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 ∞ 0.00 0.96
2 (*) 1.851 0.48 1.54470 56.2 0.86
3 (*) -6.817 0.02 0.73
4 (Aperture) ∞ 0.07 0.61
5 (*) 3.453 0.30 1.63200 23.4 0.65
6 (*) 1.691 0.70 0.70
7 (*) -2.856 0.73 1.54470 56.2 0.97
8 (*) -0.800 0.20 1.25
9 (*) 4.249 0.31 1.54470 56.2 1.73
10 (*) 0.764 0.40 1.93
11 ∞ 0.30 1.51630 64.1 2.50
12 ∞ 2.50
All the lenses are made of a plastic material.
 非球面係数を以下に示す。 The aspheric coefficient is shown below.
 第2面
 K=-0.16936E+01,A4=-0.19458E-01,A6=-0.64258E-01,A8=0.59439E-02,A10=-0.68961E-01
 第3面
 K=0.30000E+02,A4=0.17943E-01,A6=-0.22199E+00,A8=0.43212E+00,A10=-0.72780E+00,A12=0.48883E+00
 第5面
 K=-0.29400E+02,A4=0.16648E+00,A6=-0.11830E+00,A8=-0.38545E+00,A10=0.15951E+01,A12=-0.16489E+01
 第6面
 K=-0.11087E+02,A4=0.33129E+00,A6=-0.28693E+00,A8=0.53007E-01,A10=0.52475E+00,A12=-0.63855E+00
 第7面
 K=0.73287E+01,A4=0.10229E+00,A6=-0.54248E+00,A8=0.11071E+01,A10=-0.91218E+00,A12=0.35166E+00
 第8面
 K=-0.55600E+01,A4=-0.39762E+00,A6=0.51162E+00,A8=-0.66716E+00,A10=0.56491E+00,A12=-0.16848E+00
 第9面
 K=-0.89159E+00,A4=-0.38884E+00,A6=0.21604E+00,A8=-0.18315E-01,A10=-0.22847E-01,A12=0.84676E-02,A14=-0.93280E-03
 第10面
 K=-0.61692E+01,A4=-0.19043E+00,A6=0.10570E+00,A8=-0.42066E-01,A10=0.10037E-01,A12=-0.12388E-02,A14=0.56813E-04
 撮像レンズの単レンズデータを以下に示す。
2nd surface K = -0.16936E + 01, A4 = -0.19458E-01, A6 = -0.64258E-01, A8 = 0.59439E-02, A10 = -0.68961E-01
3rd surface K = 0.30000E + 02, A4 = 0.17943E-01, A6 = -0.22199E + 00, A8 = 0.43212E + 00, A10 = -0.72780E + 00, A12 = 0.48883E + 00
5th surface K = -0.29400E + 02, A4 = 0.16648E + 00, A6 = -0.11830E + 00, A8 = -0.38545E + 00, A10 = 0.15951E + 01, A12 = -0.16489E + 01
6th surface K = -0.11087E + 02, A4 = 0.33129E + 00, A6 = -0.28693E + 00, A8 = 0.53007E-01, A10 = 0.52475E + 00, A12 = -0.63855E + 00
7th surface K = 0.73287E + 01, A4 = 0.10229E + 00, A6 = -0.54248E + 00, A8 = 0.11071E + 01, A10 = -0.91218E + 00, A12 = 0.35166E + 00
8th surface K = -0.55600E + 01, A4 = -0.39762E + 00, A6 = 0.51162E + 00, A8 = -0.66716E + 00, A10 = 0.56491E + 00, A12 = -0.16848E + 00
9th surface K = -0.89159E + 00, A4 = -0.38884E + 00, A6 = 0.21604E + 00, A8 = -0.18315E-01, A10 = -0.22847E-01, A12 = 0.84676E-02, A14 = -0.93280E-03
10th surface K = -0.61692E + 01, A4 = -0.19043E + 00, A6 = 0.10570E + 00, A8 = -0.42066E-01, A10 = 0.10037E-01, A12 = -0.12388E-02, A14 = 0.56813E-04
Single lens data of the imaging lens is shown below.
 レンズ 始面  焦点距離(mm)
 1    2    2.726
 2    5    -5.612
 3    7    1.811
 4    9    -1.767
 条件式(1)から(7)に対応する値を以下に示す。
(1)f2/f=-1.74
(2)(r3+r4)/(r3-r4)=2.92
(3)ν2=23.4
(4)f3/f=0.56
(5)f1/f=0.84
(6)(r1+r2)/(r1-r2)=-0.57
(7)f4/f=-0.55
 図7は実施例4の撮像レンズの断面図である。図7において、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、Sは開口絞り、Fは光学的ローパスフィルタ、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板、Iは撮像面である。図8は実施例4の撮像レンズの収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
Lens Start surface Focal length (mm)
1 2 2.726
2 5 -5.612
3 7 1.811
4 9 -1.767
Values corresponding to conditional expressions (1) to (7) are shown below.
(1) f2 / f = -1.74
(2) (r3 + r4) / (r3-r4) = 2.92
(3) ν2 = 23.4
(4) f3 / f = 0.56
(5) f1 / f = 0.84
(6) (r1 + r2) / (r1-r2) = − 0.57
(7) f4 / f = −0.55
FIG. 7 is a sectional view of the imaging lens of Example 4. In FIG. 7, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, S is an aperture stop, F is an optical low-pass filter, an IR cut filter, or a sealing glass for a solid-state image sensor. A parallel plate assuming I and the like, I is an imaging surface. FIG. 8 is an aberration diagram (spherical aberration, astigmatism, distortion, meridional coma) of the imaging lens of Example 4.
 [実施例5]
 撮像レンズの全体諸元を以下に示す。
[Example 5]
The overall specifications of the imaging lens are shown below.
 f=3.26mm
 fB=0.35mm
 F=2.46
 2Y=4.536mm
 ENTP=0.34mm
 EXTP=-2.28mm
 H1=-0.43mm
 H2=-2.9mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd   νd  有効半径(mm)
1       ∞     0.00               0.94
2(*)    1.940    0.46   1.54470   56.2    0.84
3(*)   -10.409    0.02               0.70
4(絞り)   ∞     0.05               0.63
5(*)    2.242    0.30   1.63200   23.4    0.69
6(*)    1.453    0.80               0.71
7(*)   -3.043    0.62   1.54470   56.2    1.03
8(*)   -0.762    0.05               1.25
9(*)   -35.685    0.50   1.54470   56.2    1.76
10(*)    0.934    0.60               1.96
11       ∞     0.30   1.51630   64.1    2.19
12       ∞                     2.25
 なお、全てのレンズはプラスチック材料から形成されている。
f = 3.26mm
fB = 0.35mm
F = 2.46
2Y = 4.536mm
ENTP = 0.34mm
EXTP = -2.28mm
H1 = -0.43mm
H2 = -2.9mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 ∞ 0.00 0.94
2 (*) 1.940 0.46 1.54470 56.2 0.84
3 (*) -10.409 0.02 0.70
4 (Aperture) ∞ 0.05 0.63
5 (*) 2.242 0.30 1.63200 23.4 0.69
6 (*) 1.453 0.80 0.71
7 (*) -3.043 0.62 1.54470 56.2 1.03
8 (*) -0.762 0.05 1.25
9 (*) -35.685 0.50 1.54470 56.2 1.76
10 (*) 0.934 0.60 1.96
11 ∞ 0.30 1.51630 64.1 2.19
12 ∞ 2.25
All the lenses are made of a plastic material.
 非球面係数を以下に示す。 The aspheric coefficient is shown below.
 第2面
 K=-0.22834E+01,A4=-0.13804E-01,A6=-0.34432E-01,A8=-0.15941E+00,A10=0.25524E+00,A12=-0.15999E+00
 第3面
 K=0.50000E+02,A4=-0.51938E-02,A6=-0.15543E+00,A8=0.11091E+00,A10=0.92223E-01,A12=-0.14237E+00
 第5面
 K=-0.99582E+01,A4=0.14153E+00,A6=0.37260E-01,A8=-0.63606E+00,A10=0.13793E+01,A12=-0.74559E+00
 第6面
 K=-0.54972E+01,A4=0.24332E+00,A6=-0.19087E+00,A8=0.38562E+00,A10=-0.91366E+00,A12=0.11017E+01
 第7面
 K=-0.33134E+01,A4=-0.31725E-01,A6=-0.18905E+00,A8=0.31784E+00,A10=-0.23541E+00,A12=0.65441E-01
 第8面
 K=-0.45046E+01,A4=-0.31538E+00,A6=0.39716E+00,A8=-0.43879E+00,A10=0.33688E+00,A12=-0.94144E-01
 第9面
 K=-0.30678E+02,A4=-0.15297E+00,A6=0.87441E-01,A8=-0.49381E-02,A10=-0.85921E-02,A12=0.27727E-02,A14=-0.27462E-03
 第10面
 K=-0.82268E+01,A4=-0.12639E+00,A6=0.66957E-01,A8=-0.31217E-01,A10=0.89964E-02,A12=-0.14562E-02,A14=0.10592E-03
 撮像レンズの単レンズデータを以下に示す。
2nd surface K = -0.22834E + 01, A4 = -0.13804E-01, A6 = -0.34432E-01, A8 = -0.15941E + 00, A10 = 0.25524E + 00, A12 = -0.15999E + 00
3rd surface K = 0.50000E + 02, A4 = -0.51938E-02, A6 = -0.15543E + 00, A8 = 0.11091E + 00, A10 = 0.92223E-01, A12 = -0.14237E + 00
5th surface K = -0.99582E + 01, A4 = 0.14153E + 00, A6 = 0.37260E-01, A8 = -0.63606E + 00, A10 = 0.13793E + 01, A12 = -0.74559E + 00
6th surface K = -0.54972E + 01, A4 = 0.24332E + 00, A6 = -0.19087E + 00, A8 = 0.38562E + 00, A10 = -0.91366E + 00, A12 = 0.11017E + 01
7th surface K = -0.33134E + 01, A4 = -0.31725E-01, A6 = -0.18905E + 00, A8 = 0.31784E + 00, A10 = -0.23541E + 00, A12 = 0.65441E-01
8th surface K = -0.45046E + 01, A4 = -0.31538E + 00, A6 = 0.39716E + 00, A8 = -0.43879E + 00, A10 = 0.33688E + 00, A12 = -0.94144E-01
9th surface K = -0.30678E + 02, A4 = -0.15297E + 00, A6 = 0.87441E-01, A8 = -0.49381E-02, A10 = -0.85921E-02, A12 = 0.27727E-02, A14 = -0.27462E-03
10th surface K = -0.82268E + 01, A4 = -0.12639E + 00, A6 = 0.66957E-01, A8 = -0.31217E-01, A10 = 0.89964E-02, A12 = -0.14562E-02, A14 = 0.10592E-03
Single lens data of the imaging lens is shown below.
 レンズ 始面  焦点距離(mm)
 1    2    3.042
 2    5    -7.668
 3    7    1.703
 4    9    -1.663
 条件式(1)から(7)に対応する値を以下に示す。
(1)f2/f=-2.35
(2)(r3+r4)/(r3-r4)=4.69
(3)ν2=23.4
(4)f3/f=0.52
(5)f1/f=0.93
(6)(r1+r2)/(r1-r2)=-0.69
(7)f4/f=-0.51
 図9は実施例5の撮像レンズの断面図である。図9において、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、Sは開口絞り、Fは光学的ローパスフィルタ、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板、Iは撮像面である。図10は実施例5の撮像レンズの収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
Lens Start surface Focal length (mm)
1 2 3.042
2 5 -7.668
3 7 1.703
4 9 -1.663
Values corresponding to conditional expressions (1) to (7) are shown below.
(1) f2 / f = −2.35
(2) (r3 + r4) / (r3-r4) = 4.69
(3) ν2 = 23.4
(4) f3 / f = 0.52
(5) f1 / f = 0.93
(6) (r1 + r2) / (r1-r2) = − 0.69
(7) f4 / f = −0.51
FIG. 9 is a sectional view of the imaging lens of Example 5. In FIG. 9, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, S is an aperture stop, F is an optical low-pass filter, an IR cut filter, or a seal glass for a solid-state image sensor. A parallel plate assuming I and the like, I is an imaging surface. FIG. 10 is an aberration diagram (spherical aberration, astigmatism, distortion, and meridional coma) of the imaging lens of Example 5.
 [実施例6]
 撮像レンズの全体諸元を以下に示す。
[Example 6]
The overall specifications of the imaging lens are shown below.
 f=3.17mm
 fB=0.37mm
 F=2.76
 2Y=4.536mm
 ENTP=0.4mm
 EXTP=-2.39mm
 H1=-0.07mm
 H2=-2.8mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd   νd  有効半径(mm)
1       ∞     0.00               0.89
2(*)    1.618    0.46   1.54470   56.2    0.78
3(*)   -33.861    0.05               0.64
4(絞り)   ∞     0.05               0.52
5(*)    3.363    0.30   1.81360   25.7    0.53
6(*)    1.736    0.71               0.60
7(*)   -3.530    0.87   1.54470   56.2    0.99
8(*)   -0.645    0.05               1.21
9(*)    6.995    0.42   1.54470   56.2    1.76
10(*)    0.653    0.61               2.00
11       ∞     0.30   1.51630   64.1    2.09
12       ∞                     2.15
 なお、第1レンズ、第3レンズ及び第4レンズはプラスチック材料から形成され、第2レンズはガラス材料から形成されている。
f = 3.17mm
fB = 0.37mm
F = 2.76
2Y = 4.536mm
ENTP = 0.4mm
EXTP = -2.39mm
H1 = -0.07mm
H2 = -2.8mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 ∞ 0.00 0.89
2 (*) 1.618 0.46 1.54470 56.2 0.78
3 (*) -33.861 0.05 0.64
4 (Aperture) ∞ 0.05 0.52
5 (*) 3.363 0.30 1.81360 25.7 0.53
6 (*) 1.736 0.71 0.60
7 (*) -3.530 0.87 1.54470 56.2 0.99
8 (*) -0.645 0.05 1.21
9 (*) 6.995 0.42 1.54470 56.2 1.76
10 (*) 0.653 0.61 2.00
11 ∞ 0.30 1.51630 64.1 2.09
12 ∞ 2.15
The first lens, the third lens, and the fourth lens are made of a plastic material, and the second lens is made of a glass material.
 非球面係数を以下に示す。 The aspheric coefficient is shown below.
 第2面
 K=-0.12464E+01,A4=0.10586E-01,A6=0.88035E-02,A8=-0.23667E+00,A10=0.36470E+00,A12=-0.50904E+00
 第3面
 K=0.30000E+02,A4=-0.12331E+00,A6=0.10511E-01,A8=0.12380E-01,A10=-0.93159E+00,A12=0.12984E+01
 第5面
 K=-0.19486E+02,A4=-0.69825E-01,A6=0.53173E-01,A8=-0.25869E+00,A10=0.98527E-01,A12=0.60041E+00
 第6面
 K=-0.11408E+02,A4=0.21915E+00,A6=-0.26489E+00,A8=0.24070E+00,A10=-0.11393E+00,A12=0.23080E+00
 第7面
 K=0.44499E+01,A4=-0.49461E-01,A6=-0.77497E-01,A8=0.51106E-01,A10=0.81568E-01,A12=-0.50913E-01
 第8面
 K=-0.38423E+01,A4=-0.30757E+00,A6=0.36250E+00,A8=-0.44299E+00,A10=0.30040E+00,A12=-0.72127E-01
 第9面
 K=0.57434E+01,A4=-0.15398E+00,A6=0.81711E-01,A8=-0.68951E-02,A10=-0.65231E-02,A12=0.21392E-02,A14=-0.21119E-03
 第10面
 K=-0.54509E+01,A4=-0.10992E+00,A6=0.66389E-01,A8=-0.29163E-01,A10=0.78016E-02,A12=-0.10827E-02,A14=0.56328E-04
 撮像レンズの単レンズデータを以下に示す。
2nd surface K = -0.12464E + 01, A4 = 0.10586E-01, A6 = 0.88035E-02, A8 = -0.23667E + 00, A10 = 0.36470E + 00, A12 = -0.50904E + 00
3rd surface K = 0.30000E + 02, A4 = -0.12331E + 00, A6 = 0.10511E-01, A8 = 0.12380E-01, A10 = -0.93159E + 00, A12 = 0.12984E + 01
5th surface K = -0.19486E + 02, A4 = -0.69825E-01, A6 = 0.53173E-01, A8 = -0.25869E + 00, A10 = 0.98527E-01, A12 = 0.60041E + 00
6th surface K = -0.11408E + 02, A4 = 0.21915E + 00, A6 = -0.26489E + 00, A8 = 0.24070E + 00, A10 = -0.11393E + 00, A12 = 0.23080E + 00
7th surface K = 0.44499E + 01, A4 = -0.49461E-01, A6 = -0.77497E-01, A8 = 0.51106E-01, A10 = 0.81568E-01, A12 = -0.50913E-01
8th surface K = -0.38423E + 01, A4 = -0.30757E + 00, A6 = 0.36250E + 00, A8 = -0.44299E + 00, A10 = 0.30040E + 00, A12 = -0.72127E-01
9th surface K = 0.57434E + 01, A4 = -0.15398E + 00, A6 = 0.81711E-01, A8 = -0.68951E-02, A10 = -0.65231E-02, A12 = 0.21392E-02, A14 = -0.21119E-03
10th surface K = -0.54509E + 01, A4 = -0.10992E + 00, A6 = 0.66389E-01, A8 = -0.29163E-01, A10 = 0.78016E-02, A12 = -0.10827E-02, A14 = 0.56328E-04
Single lens data of the imaging lens is shown below.
 レンズ 始面  焦点距離(mm)
 1    2    2.847
 2    5    -4.809
 3    7    1.310
 4    9    -1.355
 条件式(1)から(7)に対応する値を以下に示す。
(1)f2/f=-1.52
(2)(r3+r4)/(r3-r4)=3.13
(3)ν2=25.7
(4)f3/f=0.41
(5)f1/f=0.90
(6)(r1+r2)/(r1-r2)=-0.91
(7)f4/f=-0.43
 図11は実施例6の撮像レンズの断面図である。図11において、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、Sは開口絞り、Fは光学的ローパスフィルタ、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板、Iは撮像面である。図12は実施例6の撮像レンズの収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
Lens Start surface Focal length (mm)
1 2 2.847
2 5 -4.809
3 7 1.310
4 9 -1.355
Values corresponding to conditional expressions (1) to (7) are shown below.
(1) f2 / f = −1.52
(2) (r3 + r4) / (r3-r4) = 3.13
(3) ν2 = 25.7
(4) f3 / f = 0.41
(5) f1 / f = 0.90
(6) (r1 + r2) / (r1-r2) = − 0.91
(7) f4 / f = −0.43
FIG. 11 is a sectional view of the imaging lens of Example 6. In FIG. 11, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, S is an aperture stop, F is an optical low-pass filter, an IR cut filter, or a sealing glass for a solid-state image sensor. A parallel plate assuming I and the like, I is an imaging surface. FIG. 12 is an aberration diagram (spherical aberration, astigmatism, distortion, and meridional coma) of the imaging lens of Example 6.
 [実施例7]
 撮像レンズの全体諸元を以下に示す。
[Example 7]
The overall specifications of the imaging lens are shown below.
 f=3.23mm
 fB=0.32mm
 F=2.44
 2Y=4.536mm
 ENTP=0.47mm
 EXTP=-2.28mm
 H1=-0.3mm
 H2=-2.91mm
 撮像レンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd   νd  有効半径(mm)
1       ∞     0.00               1.04
2(*)    1.482    0.55   1.54470   56.2    0.87
3(*)   -16.482    0.05               0.73
4(絞り)   ∞     0.10               0.58
5(*)    6.389    0.30   1.81360   25.7    0.60
6(*)    2.396    0.50               0.67
7(*)   -2.042    0.87   1.54470   56.2    0.84
8(*)   -0.811    0.05               1.19
9(*)   13.433    0.63   1.54470   56.2    1.89
10(*)    1.038    0.55               2.13
11       ∞     0.30   1.51630   64.1    2.29
12       ∞                     2.33
 なお、第1レンズ、第3レンズ及び第4レンズはプラスチック材料から形成され、第2レンズはガラス材料から形成されている。
f = 3.23mm
fB = 0.32mm
F = 2.44
2Y = 4.536mm
ENTP = 0.47mm
EXTP = -2.28mm
H1 = -0.3mm
H2 = -2.91mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 ∞ 0.00 1.04
2 (*) 1.482 0.55 1.54470 56.2 0.87
3 (*) -16.482 0.05 0.73
4 (Aperture) ∞ 0.10 0.58
5 (*) 6.389 0.30 1.81360 25.7 0.60
6 (*) 2.396 0.50 0.67
7 (*) -2.042 0.87 1.54470 56.2 0.84
8 (*) -0.811 0.05 1.19
9 (*) 13.433 0.63 1.54470 56.2 1.89
10 (*) 1.038 0.55 2.13
11 ∞ 0.30 1.51630 64.1 2.29
12 ∞ 2.33
The first lens, the third lens, and the fourth lens are made of a plastic material, and the second lens is made of a glass material.
 非球面係数を以下に示す。 The aspheric coefficient is shown below.
 第2面
 K=-0.10804E+01,A4=0.28140E-01,A6=0.29499E-01,A8=-0.19556E+00,A10=0.33356E+00,A12=-0.35312E+00
 第3面
 K=-0.30000E+02,A4=0.44782E-01,A6=-0.18092E+00,A8=0.91452E-01,A10=-0.40545E+00,A12=0.39078E+00
 第5面
 K=0.26447E+02,A4=0.83473E-01,A6=-0.14020E+00,A8=-0.43089E+00,A10=0.99821E+00,A12=-0.76003E+00
 第6面
 K=-0.15122E+02,A4=0.25350E+00,A6=-0.17470E+00,A8=-0.12759E+00,A10=0.34579E+00,A12=-0.10690E+00
 第7面
 K=-0.24691E+00,A4=-0.24837E-01,A6=-0.24649E+00,A8=0.37275E+00,A10=-0.63155E-01,A12=-0.89487E-01
 第8面
 K=-0.35974E+01,A4=-0.31950E+00,A6=0.37727E+00,A8=-0.46761E+00,A10=0.36505E+00,A12=-0.96939E-01
 第9面
 K=0.22700E+02,A4=-0.15327E+00,A6=0.82030E-01,A8=-0.44748E-02,A10=-0.84313E-02,A12=0.25452E-02,A14=-0.22761E-03
 第10面
 K=-0.66779E+01,A4=-0.12047E+00,A6=0.68020E-01,A8=-0.32607E-01,A10=0.91571E-02,A12=-0.13546E-02,A14=0.78449E-04
 撮像レンズの単レンズデータを以下に示す。
2nd surface K = -0.10804E + 01, A4 = 0.28140E-01, A6 = 0.29499E-01, A8 = -0.19556E + 00, A10 = 0.33356E + 00, A12 = -0.35312E + 00
3rd surface K = -0.30000E + 02, A4 = 0.44782E-01, A6 = -0.18092E + 00, A8 = 0.91452E-01, A10 = -0.40545E + 00, A12 = 0.39078E + 00
5th surface K = 0.26447E + 02, A4 = 0.83473E-01, A6 = -0.14020E + 00, A8 = -0.43089E + 00, A10 = 0.99821E + 00, A12 = -0.76003E + 00
6th surface K = -0.15122E + 02, A4 = 0.25350E + 00, A6 = -0.17470E + 00, A8 = -0.12759E + 00, A10 = 0.34579E + 00, A12 = -0.10690E + 00
7th surface K = -0.24691E + 00, A4 = -0.24837E-01, A6 = -0.24649E + 00, A8 = 0.37275E + 00, A10 = -0.63155E-01, A12 = -0.89487E-01
8th surface K = -0.35974E + 01, A4 = -0.31950E + 00, A6 = 0.37727E + 00, A8 = -0.46761E + 00, A10 = 0.36505E + 00, A12 = -0.96939E-01
9th surface K = 0.22700E + 02, A4 = -0.15327E + 00, A6 = 0.82030E-01, A8 = -0.44748E-02, A10 = -0.84313E-02, A12 = 0.25452E-02, A14 = -0.22761E-03
10th surface K = -0.66779E + 01, A4 = -0.12047E + 00, A6 = 0.68020E-01, A8 = -0.32607E-01, A10 = 0.91571E-02, A12 = -0.13546E-02, A14 = 0.78449E-04
Single lens data of the imaging lens is shown below.
 レンズ 始面  焦点距離(mm)
 1    2    2.523
 2    5    -4.876
 3    7    1.979
 4    9    -2.104
 条件式(1)から(7)に対応する値を以下に示す。
(1)f2/f=-1.51
(2)(r3+r4)/(r3-r4)=2.20
(3)ν2=25.7
(4)f3/f=0.61
(5)f1/f=0.78
(6)(r1+r2)/(r1-r2)=-0.83
(7)f4/f=-0.65
 図13は実施例7の撮像レンズの断面図である。図13において、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、Sは開口絞り、Fは光学的ローパスフィルタ、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板、Iは撮像面である。図14は実施例7の撮像レンズの収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
Lens Start surface Focal length (mm)
1 2 2.523
2 5 -4.876
3 7 1.979
4 9 -2.104
Values corresponding to conditional expressions (1) to (7) are shown below.
(1) f2 / f = −1.51
(2) (r3 + r4) / (r3-r4) = 2.20
(3) ν2 = 25.7
(4) f3 / f = 0.61
(5) f1 / f = 0.78
(6) (r1 + r2) / (r1-r2) = − 0.83
(7) f4 / f = −0.65
FIG. 13 is a cross-sectional view of the imaging lens of the seventh embodiment. In FIG. 13, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, S is an aperture stop, F is an optical low-pass filter, an IR cut filter, or a seal glass for a solid-state image sensor. A parallel plate assuming I and the like, I is an imaging surface. FIG. 14 is an aberration diagram (spherical aberration, astigmatism, distortion, meridional coma) of the imaging lens of Example 7.
 [実施例8]
 撮像レンズの全体諸元を以下に示す。
[Example 8]
The overall specifications of the imaging lens are shown below.
 f=3.17mm
 fB=0.41mm
 F=2.4
 2Y=4.536mm
 ENTP=0.44mm
 EXTP=-2.44mm
 H1=0.08mm
 H2=-2.76mm
 撮像レンズの面データを以下に示す。
面番号   R(mm)  D(mm)  Nd   νd  有効半径(mm)
1      ∞     0.00              1.01
2(*)   1.699   0.51   1.54470   56.2    0.88
3(*)  -434.783   0.05              0.76
4(絞り)  ∞     0.05              0.60
5(*)   2.123   0.31   1.94590   18.0    0.63
6(*)   1.415   0.60              0.66
7(*)   -3.219   0.97   1.54470   56.2    1.02
8(*)   -0.590   0.05              1.25
9(*)   3.743   0.30   1.54470   56.2    1.69
10(*)   0.567   0.65              1.92
11      ∞     0.30   1.51630   64.1    2.07
12      ∞                     2.13
 なお、第1レンズ、第3レンズ及び第4レンズはプラスチック材料から形成され、第2レンズはガラス材料から形成されている。
f = 3.17mm
fB = 0.41mm
F = 2.4
2Y = 4.536mm
ENTP = 0.44mm
EXTP = -2.44mm
H1 = 0.08mm
H2 = -2.76mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 ∞ 0.00 1.01
2 (*) 1.699 0.51 1.54470 56.2 0.88
3 (*) -434.783 0.05 0.76
4 (Aperture) ∞ 0.05 0.60
5 (*) 2.123 0.31 1.94590 18.0 0.63
6 (*) 1.415 0.60 0.66
7 (*) -3.219 0.97 1.54470 56.2 1.02
8 (*) -0.590 0.05 1.25
9 (*) 3.743 0.30 1.54470 56.2 1.69
10 (*) 0.567 0.65 1.92
11 ∞ 0.30 1.51630 64.1 2.07
12 ∞ 2.13
The first lens, the third lens, and the fourth lens are made of a plastic material, and the second lens is made of a glass material.
 非球面係数を以下に示す。
第2面
 K=-0.15740E+01,A4=0.22067E-02,A6=0.17900E-01,A8=-0.21202E+00,A10=0.25851E+00,A12=-0.22485E+00
第3面
 K=-0.30000E+02,A4=-0.16112E+00,A6=0.85149E-01,A8=0.25673E-01,A10=-0.44441E+00,A12=0.35822E+00
第5面
 K=-0.16785E+01,A4=-0.10537E+00,A6=0.12390E+00,A8=-0.10139E+00,A10=-0.63288E-01,A12=0.11374E+00
第6面
 K=-0.59936E+01,A4=0.22146E+00,A6=-0.19877E+00,A8=0.36513E+00,A10=-0.48228E+00,A12=0.27550E+00
第7面
 K=0.10547E+01,A4=-0.40014E-01,A6=-0.15612E+00,A8=0.25747E+00,A10=-0.77319E-01,A12=-0.57611E-02
第8面
 K=-0.44372E+01,A4=-0.35401E+00,A6=0.41169E+00,A8=-0.46487E+00,A10=0.30460E+00,A12=-0.76778E-01
第9面
 K=-0.24612E+02,A4=-0.18034E+00,A6=0.10193E+00,A8=-0.11323E-01,A10=-0.86089E-02,A12=0.33135E-02,A14=-0.37994E-03
第10面
 K=-0.56557E+01,A4=-0.12507E+00,A6=0.70810E-01,A8=-0.29853E-01,A10=0.80872E-02,A12=-0.12687E-02,A14=0.83659E-04
 撮像レンズの単レンズデータを以下に示す。
レンズ   始面   焦点距離(mm)
1      2     3.109
2      5     -5.705
3      7     1.175
4      9     -1.269
 条件式(1)から(7)に対応する値を以下に示す。
(1)f2/f=-1.80
(2)(r3+r4)/(r3-r4)=5.00
(3)ν2=18.0
(4)f3/f=0.37
(5)f1/f=0.98
(6)(r1+r2)/(r1-r2)=-0.99
(7)f4/f=-0.41
 図15は実施例8の撮像レンズの断面図である。図15において、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、Sは開口絞り、Fは光学的ローパスフィルタ、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板、Iは撮像面である。図16は実施例8の撮像レンズの収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
The aspheric coefficient is shown below.
2nd surface K = -0.15740E + 01, A4 = 0.22067E-02, A6 = 0.17900E-01, A8 = -0.21202E + 00, A10 = 0.25851E + 00, A12 = -0.22485E + 00
3rd surface K = -0.30000E + 02, A4 = -0.16112E + 00, A6 = 0.85149E-01, A8 = 0.25673E-01, A10 = -0.44441E + 00, A12 = 0.35822E + 00
5th surface K = -0.16785E + 01, A4 = -0.10537E + 00, A6 = 0.12390E + 00, A8 = -0.10139E + 00, A10 = -0.63288E-01, A12 = 0.11374E + 00
6th surface K = -0.59936E + 01, A4 = 0.22146E + 00, A6 = -0.19877E + 00, A8 = 0.36513E + 00, A10 = -0.48228E + 00, A12 = 0.27550E + 00
7th surface K = 0.10547E + 01, A4 = -0.40014E-01, A6 = -0.15612E + 00, A8 = 0.25747E + 00, A10 = -0.77319E-01, A12 = -0.57611E-02
8th surface K = -0.44372E + 01, A4 = -0.35401E + 00, A6 = 0.41169E + 00, A8 = -0.46487E + 00, A10 = 0.30460E + 00, A12 = -0.76778E-01
9th surface K = -0.24612E + 02, A4 = -0.18034E + 00, A6 = 0.10193E + 00, A8 = -0.11323E-01, A10 = -0.86089E-02, A12 = 0.33135E-02, A14 = -0.37994E-03
10th surface K = -0.56557E + 01, A4 = -0.12507E + 00, A6 = 0.70810E-01, A8 = -0.29853E-01, A10 = 0.80872E-02, A12 = -0.12687E-02, A14 = 0.83659E-04
Single lens data of the imaging lens is shown below.
Lens Start surface Focal length (mm)
1 2 3.109
2 5 -5.705
3 7 1.175
4 9 -1.269
Values corresponding to conditional expressions (1) to (7) are shown below.
(1) f2 / f = -1.80
(2) (r3 + r4) / (r3-r4) = 5.00
(3) ν2 = 18.0
(4) f3 / f = 0.37
(5) f1 / f = 0.98
(6) (r1 + r2) / (r1-r2) = − 0.99
(7) f4 / f = −0.41
FIG. 15 is a cross-sectional view of the imaging lens of the eighth embodiment. In FIG. 15, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, S is an aperture stop, F is an optical low-pass filter, an IR cut filter, or a seal glass of a solid-state image sensor. A parallel plate assuming I and the like, I is an imaging surface. FIG. 16 is an aberration diagram of the imaging lens of Example 8 (spherical aberration, astigmatism, distortion, and meridional coma).
 [実施例9]
 撮像レンズの全体諸元を以下に示す。
[Example 9]
The overall specifications of the imaging lens are shown below.
 f=3.18mm
 fB=0.09mm
 F=2.2
 2Y=4.536mm
 ENTP=0.6mm
 EXTP=-1.79mm
 H1=-1.61mm
 H2=-3.1mm
 撮像レンズの面データを以下に示す。
面番号   R(mm)  D(mm)  Nd   νd  有効半径(mm)
1      ∞     0.00              1.23
2(*)   1.351   0.67   1.54470   56.2    0.97
3(*)  -22.251   0.05              0.78
4(絞り)  ∞     0.05              0.61
5(*)   9.025   0.30   1.92290   21.3    0.63
6(*)   3.008   0.38              0.67
7(*)   -5.952   1.19   1.54470   56.2    0.82
8(*)   -0.976   0.30              1.32
9(*)   -2.049   0.30   1.54470   56.2    1.66
10(*)   1.411   0.35              1.96
11      ∞     0.30   1.51630   64.1    2.20
12      ∞                     2.20
 なお、第1レンズ、第3レンズ及び第4レンズはプラスチック材料から形成され、第2レンズはガラス材料から形成されている。
f = 3.18mm
fB = 0.09mm
F = 2.2
2Y = 4.536mm
ENTP = 0.6mm
EXTP = -1.79mm
H1 = -1.61mm
H2 = -3.1mm
The surface data of the imaging lens is shown below.
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 ∞ 0.00 1.23
2 (*) 1.351 0.67 1.54470 56.2 0.97
3 (*) -22.251 0.05 0.78
4 (Aperture) ∞ 0.05 0.61
5 (*) 9.025 0.30 1.92290 21.3 0.63
6 (*) 3.008 0.38 0.67
7 (*) -5.952 1.19 1.54470 56.2 0.82
8 (*) -0.976 0.30 1.32
9 (*) -2.049 0.30 1.54470 56.2 1.66
10 (*) 1.411 0.35 1.96
11 ∞ 0.30 1.51630 64.1 2.20
12 ∞ 2.20
The first lens, the third lens, and the fourth lens are made of a plastic material, and the second lens is made of a glass material.
 非球面係数を以下に示す。
第2面
 K=-0.96907E+00,A4=0.24019E-01,A6=0.84796E-01,A8=-0.22271E+00,A10=0.28774E+00,A12=-0.17442E+00
第3面
 K=-0.30000E+02,A4=0.84287E-01,A6=-0.18816E+00,A8=0.20886E+00,A10=-0.30122E+00,A12=0.16373E+00
第5面
 K=0.30000E+02,A4=0.11403E+00,A6=-0.65865E-01,A8=-0.31411E+00,A10=0.93783E+00,A12=-0.83395E+00
第6面
 K=-0.10302E+02,A4=0.17911E+00,A6=-0.14445E+00,A8=0.47641E+00,A10=-0.79293E+00,A12=0.68086E+00
第7面
 K=0.17802E+02,A4=-0.85831E-01,A6=-0.87201E-01,A8=0.35773E-03,A10=0.16761E+00,A12=-0.19170E+00
第8面
 K=-0.55360E+01,A4=-0.35963E+00,A6=0.42612E+00,A8=-0.43422E+00,A10=0.26144E+00,A12=-0.57313E-01
第9面
 K=0.28252E+00,A4=-0.23522E+00,A6=0.15611E+00,A8=-0.24606E-02,A10=-0.12016E-01,A12=0.17307E-02,A14=0.12003E-03
第10面
 K=-0.13695E+02,A4=-0.13749E+00,A6=0.70698E-01,A8=-0.28906E-01,A10=0.74311E-02,A12=-0.12460E-02,A14=0.10580E-03
 撮像レンズの単レンズデータを以下に示す。
レンズ   始面   焦点距離(mm)
1      2     2.362
2      5     -5.009
3      7     1.977
4      9     -1.489
 条件式(1)から(7)に対応する値を以下に示す。
(1)f2/f=-1.57
(2)(r3+r4)/(r3-r4)=2.00
(3)ν2=21.3
(4)f3/f=0.62
(5)f1/f=0.74
(6)(r1+r2)/(r1-r2)=-0.89
(7)f4/f=-0.46
 図17は実施例9の撮像レンズの断面図である。図17において、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、Sは開口絞り、Fは光学的ローパスフィルタ、IRカットフィルタ若しくは固体撮像素子のシールガラス等を想定した平行平板、Iは撮像面である。図18は実施例9の撮像レンズの収差図(球面収差、非点収差、歪曲収差、メリディオナルコマ収差)である。
The aspheric coefficient is shown below.
2nd surface K = -0.96907E + 00, A4 = 0.24019E-01, A6 = 0.84796E-01, A8 = -0.22271E + 00, A10 = 0.28774E + 00, A12 = -0.17442E + 00
3rd surface K = -0.30000E + 02, A4 = 0.84287E-01, A6 = -0.18816E + 00, A8 = 0.20886E + 00, A10 = -0.30122E + 00, A12 = 0.16373E + 00
5th surface K = 0.30000E + 02, A4 = 0.11403E + 00, A6 = -0.65865E-01, A8 = -0.31411E + 00, A10 = 0.93783E + 00, A12 = -0.83395E + 00
6th surface K = -0.10302E + 02, A4 = 0.17911E + 00, A6 = -0.14445E + 00, A8 = 0.47641E + 00, A10 = -0.79293E + 00, A12 = 0.68086E + 00
7th surface K = 0.17802E + 02, A4 = -0.85831E-01, A6 = -0.87201E-01, A8 = 0.35773E-03, A10 = 0.16761E + 00, A12 = -0.19170E + 00
8th surface K = -0.55360E + 01, A4 = -0.35963E + 00, A6 = 0.42612E + 00, A8 = -0.43422E + 00, A10 = 0.26144E + 00, A12 = -0.57313E-01
9th surface K = 0.28252E + 00, A4 = -0.23522E + 00, A6 = 0.15611E + 00, A8 = -0.24606E-02, A10 = -0.12016E-01, A12 = 0.17307E-02, A14 = 0.12003E-03
10th surface K = -0.13695E + 02, A4 = -0.13749E + 00, A6 = 0.70698E-01, A8 = -0.28906E-01, A10 = 0.74311E-02, A12 = -0.12460E-02, A14 = 0.10580E-03
Single lens data of the imaging lens is shown below.
Lens Start surface Focal length (mm)
1 2 2.362
2 5 -5.009
3 7 1.977
4 9 -1.489
Values corresponding to conditional expressions (1) to (7) are shown below.
(1) f2 / f = −1.57
(2) (r3 + r4) / (r3-r4) = 2.00
(3) ν2 = 21.3
(4) f3 / f = 0.62
(5) f1 / f = 0.74
(6) (r1 + r2) / (r1-r2) = − 0.89
(7) f4 / f = −0.46
FIG. 17 is a cross-sectional view of the imaging lens of Example 9. In FIG. 17, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, S is an aperture stop, F is an optical low-pass filter, an IR cut filter, or a sealing glass for a solid-state image sensor. A parallel plate assuming I and the like, I is an imaging surface. FIG. 18 is an aberration diagram of the imaging lens of Example 9 (spherical aberration, astigmatism, distortion, and meridional coma).
 ここで、プラスチック材料は温度変化時の屈折率変化が大きいため、第1レンズから第4レンズの全てをプラスチックレンズで構成すると、周囲温度が変化した際に撮像レンズ全系の像点位置が変動してしまうという問題を抱えてしまう。 Here, since the plastic material has a large refractive index change at the time of temperature change, if all of the first lens to the fourth lens are made of plastic lenses, the image point position of the entire imaging lens changes when the ambient temperature changes. Have the problem of doing.
 そこで最近では、プラスチック材料中に無機微粒子を混合させることにより、プラスチック材料の温度変化を小さくできることが分かってきた。詳細に説明すると、一般に透明なプラスチック材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。プラスチック材料は温度が上昇することにより屈折率が低下してしまうが、無機粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにすることができる。具体的には、母材となるプラスチック材料に最大長が20ナノメートル以下の無機粒子を分散させることにより、屈折率の温度依存性の極めて低いプラスチック材料となる。例えばアクリルに酸化ニオブ(Nb)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。本発明において、比較的屈折力の大きな正レンズ(L1)、または全てのレンズ(L1~L4)に、このような無機粒子を分散させたプラスチック材料を用いることにより、撮像レンズ全系の温度変化時の像点位置変動を小さく抑えることが可能となる。 Recently, it has been found that the temperature change of the plastic material can be reduced by mixing inorganic fine particles in the plastic material. More specifically, mixing fine particles with a transparent plastic material generally causes light scattering and lowers the transmittance, so it was difficult to use as an optical material. By making it smaller than the wavelength, it is possible to substantially prevent scattering. The refractive index of the plastic material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is possible to make almost no change in the refractive index by using these temperature dependencies so as to cancel each other. Specifically, by dispersing inorganic particles having a maximum length of 20 nanometers or less in a plastic material as a base material, a plastic material with extremely low temperature dependency of the refractive index is obtained. For example, by dispersing fine particles of niobium oxide (Nb 2 O 5 ) in acrylic, the refractive index change due to temperature change can be reduced. In the present invention, by using a plastic material in which such inorganic particles are dispersed in the positive lens (L1) having a relatively large refractive power, or all the lenses (L1 to L4), the temperature change of the entire imaging lens system It is possible to suppress the image point position fluctuation at the time.
 また近年、撮像装置を低コストに且つ大量に実装する方法として、予め半田がポッティングされた基板に対し、ICチップその他の電子部品と光学素子とを載置したままリフロー処理(加熱処理)し、半田を溶融させることにより電子部品と光学素子とを基板に同時実装するという技術が提案されている。 In recent years, as a method for mounting an image pickup apparatus at a low cost and in large quantities, a reflow process (heating process) is performed on a substrate on which solder has been potted in advance, with an IC chip or other electronic component and an optical element placed on the substrate. A technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting solder.
 このようなリフロー処理を用いて実装を行うためには、電子部品と共に光学素子を約200~260度に加熱する必要があるが、このような高温下では熱可塑性樹脂を用いたレンズでは熱変形し或いは変色して、その光学性能が低下してしまうという問題点がある。このような問題を解決するための方法の一つとして、耐熱性能に優れたガラスモールドレンズを使用し、小型化と高温環境での光学性能を両立する技術が提案されているが、熱可塑性樹脂を用いたレンズよりもコストが高いため、撮像装置の低コスト化の要求に応えられないという問題があった。 In order to perform mounting using such a reflow process, it is necessary to heat the optical element together with the electronic component to about 200 to 260 degrees, but at such a high temperature, a lens using a thermoplastic resin is thermally deformed. However, there is a problem that the optical performance deteriorates due to discoloration. As one of the methods for solving such a problem, a technology has been proposed that uses a glass mold lens having excellent heat resistance performance and achieves both miniaturization and optical performance in a high temperature environment. Since the cost is higher than the lens using the lens, there has been a problem that it is impossible to meet the demand for cost reduction of the imaging device.
 そこで、撮像レンズの材料にエネルギー硬化性樹脂を使用することで、ポリカーボネイト系やポリオレフィン系のような熱可塑性樹脂を用いたレンズに比べ、高温に曝されたときの光学性能の低下が小さいため、リフロー処理に有効であり、かつガラスモールドレンズよりも製造しやすく安価となり、撮像レンズを組み込んだ撮像装置の低コストと量産性を両立できる。なお、エネルギー硬化性樹脂とは、熱硬化性樹脂及び紫外線硬化性樹脂の何れをも指すものとする。 Therefore, by using an energy curable resin as the material of the imaging lens, since the optical performance degradation when exposed to high temperatures is small compared to a lens using a thermoplastic resin such as polycarbonate or polyolefin, It is effective for the reflow process, is easier to manufacture than a glass mold lens, is inexpensive, and can achieve both low cost and mass productivity of an imaging apparatus incorporating an imaging lens. The energy curable resin refers to both a thermosetting resin and an ultraviolet curable resin.
 また、本発明のプラスチックレンズを前述のエネルギー硬化性樹脂も用いて形成しても良い。 Also, the plastic lens of the present invention may be formed using the above-mentioned energy curable resin.
 なお、本実施例は、固体撮像素子の撮像面に入射する光束の主光線入射角については、撮像面周辺部において必ずしも十分小さい設計になっていない。しかし、最近の技術では、固体撮像素子の色フィルタやオンチップマイクロレンズアレイの配列の見直しによって、シェーディングを軽減することができるようになってきた。具体的には撮像素子の撮像面の画素ピッチに対し、色フィルタやオンチップマイクロレンズアレイの配列のピッチを僅かに小さく設定すれば、撮像面の周辺部にゆくほど各画素に対し色フィルタやオンチップマイクロレンズアレイが撮像レンズ光軸側へシフトするため、斜入射の光束を効率的に各画素の受光部に導くことができる。これにより固体撮像素子で発生するシェーディングを小さく抑えることができる。本実施例は、前記要求が緩和された分について、より小型化を目指した設計例となっている。 In the present embodiment, the principal ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily designed to be sufficiently small in the periphery of the imaging surface. However, recent techniques have made it possible to reduce shading by reviewing the arrangement of the color filters of the solid-state imaging device and the on-chip microlens array. Specifically, if the pitch of the arrangement of the color filters and the on-chip microlens array is set slightly smaller than the pixel pitch of the imaging surface of the imaging device, the color filter or Since the on-chip microlens array is shifted to the optical axis side of the imaging lens, the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel. Thereby, the shading which generate | occur | produces with a solid-state image sensor can be restrained small. The present embodiment is a design example aiming at further miniaturization with respect to the portion where the requirement is relaxed.
 L1 第1レンズ
 L2 第2レンズ
 L3 第3レンズ
 L4 第4レンズ
 S 開口絞り
 F 平行平板
 I 撮像面
L1 1st lens L2 2nd lens L3 3rd lens L4 4th lens S Aperture stop F Parallel plate I Imaging surface

Claims (10)

  1.  固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
     物体側より順に、
     正の屈折力を有して両凸形状の第1レンズと、
     負の屈折力を有して像側に凹面を向けた第2レンズと、
     正の屈折力を有して像側に凸面を向けたメニスカス形状の第3レンズと、
     少なくとも1面が非球面に形成され、負の屈折力を有して像側に凹面を向けた第4レンズと、から成り、
     前記第1レンズと前記第2レンズの間に開口絞りを有し、以下の条件式を満足することを特徴とする撮像レンズ。
     -2.50<f2/f<-1.50
     但し、
     f2:前記第2レンズの焦点距離
     f:撮像レンズ全系の焦点距離
    An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device,
    From the object side,
    A biconvex first lens having positive refractive power;
    A second lens having negative refractive power and having a concave surface facing the image side;
    A third meniscus lens having positive refractive power and having a convex surface facing the image side;
    A fourth lens having at least one surface formed as an aspheric surface and having negative refractive power and a concave surface facing the image side;
    An imaging lens having an aperture stop between the first lens and the second lens and satisfying the following conditional expression:
    -2.50 <f2 / f <-1.50
    However,
    f2: focal length of the second lens f: focal length of the entire imaging lens system
  2.  以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
     2.00≦(r3+r4)/(r3-r4)≦5.00
     但し、
     r3:前記第2レンズの物体側面の曲率半径
     r4:前記第2レンズの像側面の曲率半径
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    2.00 ≦ (r3 + r4) / (r3-r4) ≦ 5.00
    However,
    r3: radius of curvature of the object side surface of the second lens r4: radius of curvature of the image side surface of the second lens
  3.  以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の撮像レンズ。
     15<ν2<27
     但し、
     ν2:前記第2レンズのアッベ数
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    15 <ν2 <27
    However,
    ν2: Abbe number of the second lens
  4.  以下の条件式を満足することを特徴とする請求項1~3の何れか1項に記載の撮像レンズ。
     0.35<f3/f<0.65
     但し、
     f3:前記第3レンズの焦点距離
     f:撮像レンズ全系の焦点距離
    The imaging lens according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
    0.35 <f3 / f <0.65
    However,
    f3: focal length of the third lens f: focal length of the entire imaging lens system
  5.  以下の条件式を満足することを特徴とする請求項1~4の何れか1項に記載の撮像レンズ。
     0.70<f1/f<1.05
     但し、
     f1:前記第1レンズの焦点距離
     f:撮像レンズ全系の焦点距離
    5. The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    0.70 <f1 / f <1.05
    However,
    f1: Focal length of the first lens f: Focal length of the entire imaging lens system
  6.  以下の条件式を満足することを特徴とする請求項1~5の何れか1項に記載の撮像レンズ。
     -1.00<(r1+r2)/(r1-r2)<-0.50
     但し、
     r1:前記第1レンズの物体側面の曲率半径
     r2:前記第1レンズの像側面の曲率半径
    6. The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    −1.00 <(r1 + r2) / (r1−r2) <− 0.50
    However,
    r1: radius of curvature of the object side surface of the first lens r2: radius of curvature of the image side surface of the first lens
  7.  以下の条件式を満足することを特徴とする請求項1~6の何れか1項に記載の撮像レンズ。
     -0.70<f4/f<-0.40
     但し、
     f4:前記第4レンズの焦点距離
     f:撮像レンズ全系の焦点距離
    The imaging lens according to any one of claims 1 to 6, wherein the following conditional expression is satisfied.
    -0.70 <f4 / f <-0.40
    However,
    f4: focal length of the fourth lens f: focal length of the entire imaging lens system
  8.  前記第4レンズの像側面は非球面に形成されており、その光軸近傍では負の屈折力を有し、周辺に向かうに従い負の屈折力が弱くなり変曲点を有することを特徴とする請求項1~7の何れか1項に記載の撮像レンズ。 The image side surface of the fourth lens is formed as an aspherical surface, has a negative refractive power in the vicinity of the optical axis, and has a inflection point because the negative refractive power becomes weaker toward the periphery. The imaging lens according to any one of claims 1 to 7.
  9.  前記第4レンズは両凹形状であることを特徴とする請求項1~8の何れか1項に記載の撮像レンズ。 9. The imaging lens according to claim 1, wherein the fourth lens has a biconcave shape.
  10.  全てのレンズがプラスチック材料で形成されていることを特徴とする請求項1~9の何れか1項に記載の撮像レンズ。 10. The imaging lens according to claim 1, wherein all the lenses are made of a plastic material.
PCT/JP2010/067842 2009-10-26 2010-10-12 Imaging lens WO2011052370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-245232 2009-10-26
JP2009245232 2009-10-26

Publications (1)

Publication Number Publication Date
WO2011052370A1 true WO2011052370A1 (en) 2011-05-05

Family

ID=43921796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067842 WO2011052370A1 (en) 2009-10-26 2010-10-12 Imaging lens

Country Status (1)

Country Link
WO (1) WO2011052370A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130339A (en) * 2012-12-28 2014-07-10 Genius Electronic Optical Co Image capturing lens and portable electronic device
CN103941380A (en) * 2014-03-23 2014-07-23 浙江舜宇光学有限公司 Miniature imaging lens
JP5836532B1 (en) * 2015-08-05 2015-12-24 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd Imaging lens
WO2019134314A1 (en) * 2018-01-05 2019-07-11 浙江舜宇光学有限公司 Optical imaging system
US10969566B2 (en) 2018-01-05 2021-04-06 Zhejiang Sunny Optical Co., Ltd Optical imaging system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017984A (en) * 2005-07-07 2007-01-25 Samsung Electronics Co Ltd Optical imaging system
JP2007219079A (en) * 2006-02-15 2007-08-30 Fujinon Corp Imaging lens
JP2007264498A (en) * 2006-03-29 2007-10-11 Kyocera Corp Imaging lens, optical module, and mobile terminal
JP2008033327A (en) * 2006-07-25 2008-02-14 Samsung Electro-Mechanics Co Ltd Subminiature imaging optical system
JP2008090150A (en) * 2006-10-04 2008-04-17 Sony Corp Imaging lens and imaging apparatus
JP2008090041A (en) * 2006-10-03 2008-04-17 Sanyo Electric Co Ltd Image pickup lens and image pickup device including same
JP2008185880A (en) * 2007-01-31 2008-08-14 Enplas Corp Imaging lens and imaging device equipped with the same
JP2008242180A (en) * 2007-03-28 2008-10-09 Konica Minolta Opto Inc Imaging lens, imaging apparatus and personal digital assistant
JP2009014899A (en) * 2007-07-03 2009-01-22 Komatsulite Mfg Co Ltd Imaging lens
JP2009020182A (en) * 2007-07-10 2009-01-29 Fujinon Corp Imaging lens, camera module, and image pickup unit
JP2009069196A (en) * 2007-09-10 2009-04-02 Fujinon Corp Imaging lens, camera module and imaging equipment
JP2009069193A (en) * 2007-09-10 2009-04-02 Fujinon Corp Imaging lens, camera module and imaging equipment
JP2009069195A (en) * 2007-09-10 2009-04-02 Fujinon Corp Imaging lens, camera module and imaging equipment
JP2009069194A (en) * 2007-09-10 2009-04-02 Fujinon Corp Imaging lens, camera module and imaging equipment
JP2009192820A (en) * 2008-02-14 2009-08-27 Fujinon Corp Imaging lens and image pickup device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017984A (en) * 2005-07-07 2007-01-25 Samsung Electronics Co Ltd Optical imaging system
JP2007219079A (en) * 2006-02-15 2007-08-30 Fujinon Corp Imaging lens
JP2007264498A (en) * 2006-03-29 2007-10-11 Kyocera Corp Imaging lens, optical module, and mobile terminal
JP2008033327A (en) * 2006-07-25 2008-02-14 Samsung Electro-Mechanics Co Ltd Subminiature imaging optical system
JP2008090041A (en) * 2006-10-03 2008-04-17 Sanyo Electric Co Ltd Image pickup lens and image pickup device including same
JP2008090150A (en) * 2006-10-04 2008-04-17 Sony Corp Imaging lens and imaging apparatus
JP2008185880A (en) * 2007-01-31 2008-08-14 Enplas Corp Imaging lens and imaging device equipped with the same
JP2008242180A (en) * 2007-03-28 2008-10-09 Konica Minolta Opto Inc Imaging lens, imaging apparatus and personal digital assistant
JP2009014899A (en) * 2007-07-03 2009-01-22 Komatsulite Mfg Co Ltd Imaging lens
JP2009020182A (en) * 2007-07-10 2009-01-29 Fujinon Corp Imaging lens, camera module, and image pickup unit
JP2009069196A (en) * 2007-09-10 2009-04-02 Fujinon Corp Imaging lens, camera module and imaging equipment
JP2009069193A (en) * 2007-09-10 2009-04-02 Fujinon Corp Imaging lens, camera module and imaging equipment
JP2009069195A (en) * 2007-09-10 2009-04-02 Fujinon Corp Imaging lens, camera module and imaging equipment
JP2009069194A (en) * 2007-09-10 2009-04-02 Fujinon Corp Imaging lens, camera module and imaging equipment
JP2009192820A (en) * 2008-02-14 2009-08-27 Fujinon Corp Imaging lens and image pickup device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130339A (en) * 2012-12-28 2014-07-10 Genius Electronic Optical Co Image capturing lens and portable electronic device
US9110247B2 (en) 2012-12-28 2015-08-18 Genius Electronic Optical Co., Ltd. Imaging lens and portable electronic apparatus having the same
CN103941380A (en) * 2014-03-23 2014-07-23 浙江舜宇光学有限公司 Miniature imaging lens
JP5836532B1 (en) * 2015-08-05 2015-12-24 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd Imaging lens
WO2019134314A1 (en) * 2018-01-05 2019-07-11 浙江舜宇光学有限公司 Optical imaging system
US10969566B2 (en) 2018-01-05 2021-04-06 Zhejiang Sunny Optical Co., Ltd Optical imaging system

Similar Documents

Publication Publication Date Title
JP4947423B2 (en) Imaging lens
JP5673680B2 (en) Imaging lens
JP5177776B2 (en) Imaging lens, imaging device, and portable terminal
JP4947236B2 (en) Imaging lens, imaging device, and portable terminal
JP5652347B2 (en) Imaging lens
JP4977869B2 (en) Imaging lens, imaging device, and portable terminal
JP5720676B2 (en) Imaging lens
WO2011021271A1 (en) Imaging lens, imaging device, and portable terminal
JP4924141B2 (en) Imaging lens, imaging device, and portable terminal
WO2011086827A1 (en) Image-capturing lens, image-capturing device, and portable terminal
JP2010008562A (en) Imaging lens
JP2012068292A (en) Imaging lens, imaging apparatus and portable terminal
JP2013140398A (en) Imaging lens
WO2011052370A1 (en) Imaging lens
JP5630505B2 (en) Imaging lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP