JP2013140398A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2013140398A
JP2013140398A JP2013085143A JP2013085143A JP2013140398A JP 2013140398 A JP2013140398 A JP 2013140398A JP 2013085143 A JP2013085143 A JP 2013085143A JP 2013085143 A JP2013085143 A JP 2013085143A JP 2013140398 A JP2013140398 A JP 2013140398A
Authority
JP
Japan
Prior art keywords
lens
imaging
focal length
conditional expression
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013085143A
Other languages
Japanese (ja)
Inventor
Masafumi Isono
雅史 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013085143A priority Critical patent/JP2013140398A/en
Publication of JP2013140398A publication Critical patent/JP2013140398A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imaging lens that is compact, has sufficient brightness of about F2, and is composed of five lenses, and where various aberrations are favorably corrected.SOLUTION: An imaging lens for forming a subject image on a photo-electric conversion part of a solid imaging element comprises in order from an object side: a positive first lens; a positive second lens; a negative third lens, a positive fourth lens; and a negative fifth lens.

Description

本発明は、CCD型イメージセンサ或いはCMOS型イメージセンサ等の固体撮像素子を用いた撮像装置に好適で、小型で明るい撮像レンズに関するものである。   The present invention relates to a small and bright imaging lens suitable for an imaging device using a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor.

近年、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子を用いた撮像装置が搭載された携帯端末の普及に伴い、より高画質の画像が得られるよう、高画素数の撮像素子を使用した撮像装置が搭載されたものが市場に供給されるようになってきた。高画素数の撮像素子は大型化を伴っていたが、近年、画素の高細化が進み、撮像素子が小型化されるようになってきた。このような高細化された撮像素子に使用される撮像レンズは高い解像力が要求されるが、解像力はF値により限界があり、F値の小さい明るいレンズの方が高解像力を得られるため、従来のようにF2.8程度のF値では十分な性能が得られなくなってきた。そこで、高画素化、高細化、小型化された撮像素子に適した、F2程度の明るい撮像レンズが求められるようになってきた。このような用途の撮像レンズとしては、3枚若しくは4枚構成の撮像レンズに比べて大口径比化及び高性能化が可能である5枚構成の撮像レンズが提案されている。   In recent years, with the widespread use of mobile terminals equipped with imaging devices using solid-state imaging devices such as CCD-type image sensors and CMOS-type image sensors, high-pixel-number imaging devices are used so that higher-quality images can be obtained. Those equipped with the above-described imaging device have been supplied to the market. An image sensor with a large number of pixels has been accompanied by an increase in size, but in recent years, an increase in the size of pixels has progressed, and the image sensor has become smaller. An imaging lens used for such a high-definition imaging device is required to have a high resolving power, but the resolving power is limited by the F value, and a bright lens with a small F value can obtain a high resolving power. As in the past, with an F value of about F2.8, sufficient performance cannot be obtained. Accordingly, there has been a demand for a bright imaging lens of about F2, which is suitable for imaging devices with high pixels, high resolution, and miniaturization. As an imaging lens for such an application, an imaging lens having a five-lens configuration has been proposed that can have a larger aperture ratio and higher performance than an imaging lens having three or four lenses.

5枚構成の撮像レンズとして、物体側より順に、正若しくは負の屈折力を有する第1レンズ、及び正の屈折力を有する第2レンズからなる前群、開口絞り、並びに負の屈折力を有する第3レンズ、正の屈折力を有する第4レンズ、及び負若しくは正の屈折力を有する第5レンズからなる後群で構成された撮像レンズが開示されている。(例えば、特許文献1乃至特許文献3参照)   As a five-lens imaging lens, in order from the object side, a front lens group including a first lens having a positive or negative refractive power and a second lens having a positive refractive power, an aperture stop, and a negative refractive power An imaging lens configured by a rear group including a third lens, a fourth lens having a positive refractive power, and a fifth lens having a negative or positive refractive power is disclosed. (For example, see Patent Documents 1 to 3)

特開2007−279282号公報JP 2007-279282 A 特開2006−293042号公報JP 2006-293042 A 特開2007−322844号公報JP 2007-322844 A

しかしながら、特許文献1に記載の撮像レンズは、前群が球面系で構成されているためF2程度に明るくすると、球面収差やコマ収差の補正が不十分で良好な性能を確保できない。また、前群及び後群の双方が正の屈折力を有する構成のため、後群が負の屈折力を有するテレフォトタイプのような構成に比べ、光学系の主点位置が像側になりバックフォーカスが長くなるため、小型化には不利なタイプである。   However, since the imaging lens described in Patent Document 1 is configured with a spherical system in the front group, if the lens is brightened to about F2, correction of spherical aberration and coma is insufficient and good performance cannot be ensured. In addition, since both the front group and the rear group have a positive refractive power, the principal point position of the optical system is on the image side compared to a configuration of a telephoto type in which the rear group has a negative refractive power. Since the back focus becomes long, it is a disadvantageous type for downsizing.

また、特許文献2に記載の撮像レンズは、F2程度の明るさを有しているが、第1レンズ及び第2レンズの双方が正の屈折力を有する構成のため、前群での色補正が不十分である。更に、特許文献1と同様に前群及び後群の双方が正の屈折力を有する構成であると共に、最終レンズも正レンズであるため、小型化には不利なタイプである。   Further, the imaging lens described in Patent Document 2 has a brightness of about F2, but since both the first lens and the second lens have a positive refractive power, color correction in the front group is performed. Is insufficient. Furthermore, since both the front group and the rear group have a positive refractive power as in Patent Document 1, and the final lens is also a positive lens, this is a disadvantageous type for downsizing.

更に、特許文献3に記載の撮像レンズは、F2程度の明るさを有しているが、4枚構成であるため収差補正が不十分であり、高画素化に対応した撮像レンズに適しているとは言い難い。   Furthermore, although the imaging lens described in Patent Document 3 has a brightness of about F2, it has a four-lens configuration, so aberration correction is insufficient, and is suitable for an imaging lens that supports high pixel count. It's hard to say.

本発明はかかる問題に鑑みてなされたものであり、小型でF2程度の十分な明るさを有し、諸収差が良好に補正された、5枚構成の撮像レンズを提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a five-lens imaging lens having a small size, sufficient brightness of about F2, and various aberrations corrected satisfactorily. .

前記目的は、下記に記載した発明により達成される。   The object is achieved by the invention described below.

1.固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
物体側より順に、正の第1レンズと、正の第2レンズと、負の第3レンズ、正の第4レンズ、負の第5レンズからなることを特徴とする撮像レンズ。
1. An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device,
An imaging lens comprising, in order from the object side, a positive first lens, a positive second lens, a negative third lens, a positive fourth lens, and a negative fifth lens.

2.前記第1レンズは以下の条件式を満足することを特徴とする前記1に記載の撮像レンズ。   2. 2. The imaging lens according to 1 above, wherein the first lens satisfies the following conditional expression.

0.3<f/f1<0.8 ・・・(1)
但し、
f:全系の焦点距離
f1:前記第1レンズの焦点距離
3.前記第2レンズは以下の条件式を満足することを特徴とする前記1又は前記2に記載の撮像レンズ。
0.3 <f / f1 <0.8 (1)
However,
f: focal length of the entire system f1: focal length of the first lens The imaging lens according to 1 or 2, wherein the second lens satisfies the following conditional expression.

0.7<f/f2<2.2 ・・・(2)
但し、
f:全系の焦点距離
f2:前記第2レンズの焦点距離
4.前記第1レンズと前記第2レンズは以下の条件式を満足することを特徴とする前記1に記載の撮像レンズ。
0.7 <f / f2 <2.2 (2)
However,
f: focal length of the entire system f2: focal length of the second lens 2. The imaging lens according to 1, wherein the first lens and the second lens satisfy the following conditional expression.

0.2<f2/f1<0.7 ・・・(3)
但し、
f1:前記第1レンズの焦点距離
f2:前記第2レンズの焦点距離
5.前記第5レンズは以下の条件式を満足することを特徴とする前記1〜4の何れか1項に記載の撮像レンズ。
0.2 <f2 / f1 <0.7 (3)
However,
f1: Focal length of the first lens f2: Focal length of the second lens The imaging lens according to any one of 1 to 4, wherein the fifth lens satisfies the following conditional expression.

−2.3<f/f5<−0.8 ・・・(4)
但し、
f:全系の焦点距離
f5:前記第5レンズの焦点距離
6.前記第5レンズは以下の条件式を満足することを特徴とする前記1〜5の何れか1項に記載の撮像レンズ。
-2.3 <f / f5 <-0.8 (4)
However,
f: focal length of entire system f5: focal length of the fifth lens The imaging lens according to any one of 1 to 5, wherein the fifth lens satisfies the following conditional expression.

0.06<t10/f<0.16・・・(5)
但し、
f:全系の焦点距離
t10:前記第5レンズの軸上厚み
7.前記第5レンズの像側面は非球面に形成されていて、その中心では負の屈折力を持ち周辺に向かうに従い負の屈折力が弱くなると共に、変曲点を有することを特徴とする前記1〜6の何れか1項に記載の撮像レンズ。
0.06 <t10 / f <0.16 (5)
However,
f: focal length of entire system t10: axial thickness of the fifth lens The image side surface of the fifth lens is formed as an aspherical surface, has a negative refractive power at the center thereof, the negative refractive power becomes weaker toward the periphery, and has an inflection point. The imaging lens of any one of -6.

8.前記第1レンズ乃至前記第5レンズはプラスチック材料から形成されていることを特徴とする前記1〜7の何れか1項に記載の撮像レンズ。   8). The imaging lens according to any one of 1 to 7, wherein the first lens to the fifth lens are made of a plastic material.

請求項1の効果
小型で収差の良好に補正された撮像レンズを得るための、本発明の基本構成は、物体側より順に、正の第1レンズと、正の第2レンズと、負の第3レンズと、正の第4レンズと、負の第5レンズとからなる。物体側より順に、第1レンズ、第2レンズ、第3レンズ、第4レンズからなる正レンズ群と、負の第5レンズを配置する、いわゆるテレフォトタイプのこのレンズ構成は、撮像レンズ全長の小型化には有利な構成である。
The basic configuration of the present invention for obtaining a compact imaging lens with good aberration correction is, in order from the object side, a positive first lens, a positive second lens, and a negative first lens. It consists of three lenses, a positive fourth lens, and a negative fifth lens. In order from the object side, a so-called telephoto type lens configuration in which a positive lens group including a first lens, a second lens, a third lens, and a fourth lens and a negative fifth lens are arranged is the total length of the imaging lens. This is an advantageous configuration for downsizing.

更に、5枚構成のうち2枚を負レンズとすることで、発散作用を有する面を多くしてペッツバール和の補正を容易とし、画面周辺部まで良好な結像性能を確保した撮像レンズを得ることが可能となる。   Furthermore, by using two negative lenses in the five-lens configuration, it is easy to correct the Petzval sum by increasing the diverging surfaces, and an imaging lens that secures good imaging performance to the periphery of the screen is obtained. It becomes possible.

請求項2の効果
条件式(1)は第1レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(1)の値が下限を上回ることで、第1レンズの焦点距離を適度に維持することができ、レンズ全長の短縮化を達成することができる。一方、上限を下回ることで、第1レンズの焦点距離が小さくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。
Effect of Claim 2 Conditional expression (1) is a conditional expression for appropriately setting the focal length of the first lens to appropriately shorten the imaging lens and to correct aberrations. When the value of conditional expression (1) exceeds the lower limit, the focal length of the first lens can be appropriately maintained, and shortening of the total lens length can be achieved. On the other hand, when the value is lower than the upper limit, the focal length of the first lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed.

また、下式の条件式とすることがより望ましい。   Moreover, it is more desirable to use the following conditional expression.

0.32<f/f1<0.7・・・(1A)
請求項3の効果
条件式(2)は第2レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(2)の値が下限を上回ることで、第2レンズの焦点距離を適度に維持することができ、レンズ全長の短縮化を達成することができる。一方、上限を下回ることで、第2レンズの焦点距離が小さくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。
0.32 <f / f1 <0.7 (1A)
Effect of Claim 3 Conditional expression (2) is a conditional expression for appropriately setting the focal length of the second lens to appropriately shorten the imaging lens and to correct aberrations. When the value of conditional expression (2) exceeds the lower limit, the focal length of the second lens can be appropriately maintained, and shortening of the total lens length can be achieved. On the other hand, when the value is below the upper limit, the focal length of the second lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed.

また、下式の条件式とすることがより望ましい。   Moreover, it is more desirable to use the following conditional expression.

0.9<f/f2<1.8・・・(2A)
請求項4の効果
条件式(3)は第1レンズと第2レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(3)の値が下限を上回ることで、第1レンズと第2レンズの焦点距離を適度に維持することができ、レンズ全長の短縮化を達成することができる。一方、上限を下回ることで、第2レンズの焦点距離に対して第1レンズの焦点距離が小さくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。
0.9 <f / f2 <1.8 (2A)
Effect of Claim 4 Conditional expression (3) is a conditional expression for appropriately setting the focal lengths of the first lens and the second lens and appropriately achieving shortening of the entire length of the imaging lens and correction of aberration. When the value of conditional expression (3) exceeds the lower limit, the focal lengths of the first lens and the second lens can be appropriately maintained, and the overall length of the lens can be shortened. On the other hand, by being below the upper limit, the focal length of the first lens does not become too small with respect to the focal length of the second lens, and generation of higher-order spherical aberration and coma aberration can be suppressed.

また、下式の条件式とすることがより望ましい。   Moreover, it is more desirable to use the following conditional expression.

0.215<f2/f1<0.6・・・(3A)
請求項5の効果
条件式(4)は第5レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(4)の値が上限を下回ることで、第5レンズの焦点距離を適度に維持することができ、レンズ全長の短縮化を達成することができる。一方、下限を上回ることで、第5レンズの焦点距離が小さくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。
0.215 <f2 / f1 <0.6 (3A)
Effect of Claim 5 Conditional expression (4) is a conditional expression for appropriately setting the focal length of the fifth lens and appropriately achieving shortening of the entire length of the imaging lens and aberration correction. When the value of conditional expression (4) is less than the upper limit, the focal length of the fifth lens can be appropriately maintained, and shortening of the total lens length can be achieved. On the other hand, by exceeding the lower limit, the focal length of the fifth lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed.

また、下式の条件式とすることがより望ましい。   Moreover, it is more desirable to use the following conditional expression.

−1.9<f/f5<−1.2・・・(4A)
請求項6の効果
条件式(5)は第5レンズの軸上厚みを適切に設定し、撮像レンズの像面性を適切に達成するための条件式である。条件式(5)の値が範囲内にはいることで、撮像レンズの像面性がオーバー側やアンダー側に倒れ過ぎるのを防ぐことができる。
-1.9 <f / f5 <-1.2 (4A)
Effect of Claim 6 Conditional expression (5) is a conditional expression for appropriately setting the axial thickness of the fifth lens and appropriately achieving the image plane property of the imaging lens. When the value of conditional expression (5) is within the range, it is possible to prevent the image plane property of the imaging lens from falling too much toward the over side or the under side.

また、下式の条件式とすることがより望ましい。   Moreover, it is more desirable to use the following conditional expression.

0.09<t10/f<0.14・・・(5A)
請求項7の効果
第5レンズの像側面を、光軸から周辺に行くに従って負の屈折力が弱くなり、また変曲点を有する非球面形状とすることで、像側光束のテレセントリック特性が確保し易くなる。また、第3レンズの像側面は、レンズ周辺部で過度に負の屈折力を弱くする必要がなくなり軸外収差を良好に補正することが可能となる。
0.09 <t10 / f <0.14 (5A)
The image side surface of the fifth lens has a negative refracting power as it goes from the optical axis to the periphery, and an aspherical shape having an inflection point, so that the telecentric characteristic of the image-side light beam is ensured. It becomes easy to do. Further, the image side surface of the third lens does not need to weaken the negative refractive power excessively in the lens peripheral portion, and can correct the off-axis aberration well.

ここで、「変曲点」とは有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面が光軸と垂直な平面となるような非球面上の点のことである。   Here, the “inflection point” is a point on the aspheric surface where the tangent plane of the aspherical vertex is a plane perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.

請求項8の効果
近年では、固体撮像装置全体の小型化を目的とし、同じ画素数の固体撮像素子であっても、画素ピッチが小さく、結果として撮像面サイズの小さいものが開発されている。このような撮像面サイズの小さい固体撮像素子向けの撮像レンズは、全系の焦点距離を比較的短くする必要があるため、各レンズの曲率半径や外径がかなり小さくなってしまう。従って、手間のかかる研磨加工により製造するガラスレンズと比較すれば、全てのレンズを、射出成形により製造されるプラスチックレンズで構成することにより、曲率半径や外径の小さなレンズであっても安価に大量生産が可能となる。また、プラスチックレンズはプレス温度を低くできることから、成形金型の損耗を抑えることができ、その結果、成形金型の交換回数やメンテナンス回数を減少させ、コスト低減を図ることができる。
In recent years, for the purpose of downsizing the entire solid-state imaging device, even a solid-state imaging device having the same number of pixels has been developed with a small pixel pitch and consequently a small imaging surface size. In such an imaging lens for a solid-state imaging device having a small imaging surface size, it is necessary to make the focal length of the entire system relatively short, so that the curvature radius and the outer diameter of each lens are considerably reduced. Therefore, compared to glass lenses manufactured by time-consuming polishing, all lenses are made of plastic lenses manufactured by injection molding, so that even lenses with small radii of curvature and outer diameters are inexpensive. Mass production is possible. In addition, since the plastic lens can lower the press temperature, it is possible to suppress the wear of the molding die, and as a result, the number of replacements and maintenance times of the molding die can be reduced, and the cost can be reduced.

実施例1の撮像レンズのレンズ構成図である。2 is a lens configuration diagram of an imaging lens of Example 1. FIG. 実施例1の撮像レンズの収差図である。FIG. 3 is an aberration diagram of the imaging lens of Example 1. 実施例2の撮像レンズのレンズ構成図である。4 is a lens configuration diagram of an imaging lens of Example 2. FIG. 実施例2の撮像レンズの収差図である。6 is an aberration diagram of the imaging lens of Example 2. FIG. 実施例3の撮像レンズのレンズ構成図である。6 is a lens configuration diagram of an imaging lens of Example 3. FIG. 実施例3の撮像レンズの収差図である。6 is an aberration diagram of the imaging lens of Example 3. FIG.

以下に本発明の撮像レンズの実施例を示す。各実施例に使用する記号は下記の通りである。
f:撮像レンズ全系の焦点距離
fB:バックフォーカス
F:Fナンバー
2Y:固体撮像素子の撮像面対角線長
R:曲率半径
D:軸上面間隔
Nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。
Examples of the imaging lens of the present invention are shown below. Symbols used in each example are as follows.
f: Focal length of the entire imaging lens system fB: Back focus F: F number 2Y: Diagonal length of the imaging surface of the solid-state imaging device R: Radius of curvature D: Axis upper surface spacing Nd: Refractive index νd of lens material with respect to d-line: Lens material In each example, the surface described with “*” after each surface number is a surface having an aspherical shape, and the aspherical shape has an apex at the surface as the origin and X in the optical axis direction. The axis is taken, and the height in the direction perpendicular to the optical axis is represented by h as follows.

Figure 2013140398
Figure 2013140398

但し、
Ai:i次の非球面係数
R:曲率半径
K:円錐定数
また、非球面係数において、10のべき乗数(例えば2.5×10-02)をE(例えば2.5E−02)を用いて表すものとする。
(実施例1)
全体諸元を以下に示す。
However,
Ai: i-th order aspherical coefficient R: radius of curvature K: conic constant Further, in the aspherical coefficient, a power of 10 (for example, 2.5 × 10 −02 ) is used by using E (for example, 2.5E-02). It shall represent.
Example 1
The overall specifications are shown below.

f=5.908mm
fB=0.498mm
F=2.5
2Y=7.2mm
面データを以下に示す。
面番号 R(mm) D(mm) Nd νd
1* 10.739 0.600 1.5305 55.7
2* -68.175 0.100
3(絞り) ∞ 0.123
4* 5.582 0.947 1.5305 55.7
5* -3.257 0.050
6* -603.057 0.778 1.5834 30.2
7* 2.239 1.068
8* -11.871 1.263 1.5305 55.7
9* -1.774 0.539
10* 7.425 0.700 1.5305 55.7
11* 1.556 1.032
12 ∞ 0.300 1.5168 64.2
13 ∞
なお、全てのレンズはプラスチック材料から形成されている。
f = 5.908 mm
fB = 0.498mm
F = 2.5
2Y = 7.2mm
The surface data is shown below.
Surface number R (mm) D (mm) Nd νd
1 * 10.739 0.600 1.5305 55.7
2 * -68.175 0.100
3 (aperture) ∞ 0.123
4 * 5.582 0.947 1.5305 55.7
5 * -3.257 0.050
6 * -603.057 0.778 1.5834 30.2
7 * 2.239 1.068
8 * -11.871 1.263 1.5305 55.7
9 * -1.774 0.539
10 * 7.425 0.700 1.5305 55.7
11 * 1.556 1.032
12 ∞ 0.300 1.5168 64.2
13 ∞
All the lenses are made of a plastic material.

非球面係数を以下に示す。
第1面
K=0.00000E+00,A4=-0.74373E-02,A6=0.16315E-02,A8=0.59676E-03,A10=-0.41854E-03
第2面
K=0.00000E+00,A4=0.89543E-03,A6=0.43281E-02,A8=0.20517E-03,A10=-0.86988E-03
第4面
K=0.12169E+01,A4=-0.32386E-02,A6=-0.11501E-02,A8=-0.28904E-02,A10=0.66773E-03,
A12=-0.87003E-03
第5面
K=-0.11768E+01,A4=-0.35947E-02,A6=-0.72178E-02,A8=0.17631E-02,
A10=-0.57797E-03,A12=-0.27160E-03
第6面
K=0.14753E+06,A4=-0.23865E-01,A6=0.31374E-02,A8=0.26905E-02,A10=-0.45643E-03
第7面
K=-0.22081E+01,A4=-0.99330E-02,A6=0.43867E-02,A8=0.24873E-03,A10=0.16785E-03,
A12=-0.65730E-04
第8面
K=0.16197E+02,A4=0.19069E-01,A6=-0.62317E-02,A8=0.13100E-02,A10=-0.13285E-03,
A12=0.11883E-04
第9面
K=-0.41255E+01,A4=-0.13528E-01,A6=0.27806E-02,A8=-0.55501E-03,A10=0.11436E-03,
A12=-0.41722E-05
第10面
K=-0.67305E-01,A4=-0.39579E-01,A6=0.46208E-02,A8=-0.90835E-04,
A10=-0.89962E-05, A12=0.32760E-06
第11面
K=-0.49508E+01,A4=-0.24002E-01,A6=0.31965E-02,A8=-0.32746E-03,A10=0.19120E-04,
A12=-0.37131E-06
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 1 17.535
2 4 4.027
3 6 -3.822
4 8 3.769
5 10 -3.871
各条件式に対応する値を以下に示す。
The aspheric coefficient is shown below.
First side
K = 0.00000E + 00, A4 = -0.74373E-02, A6 = 0.16315E-02, A8 = 0.59676E-03, A10 = -0.41854E-03
Second side
K = 0.00000E + 00, A4 = 0.89543E-03, A6 = 0.43281E-02, A8 = 0.20517E-03, A10 = -0.86988E-03
4th page
K = 0.12169E + 01, A4 = -0.32386E-02, A6 = -0.11501E-02, A8 = -0.28904E-02, A10 = 0.66773E-03,
A12 = -0.87003E-03
5th page
K = -0.11768E + 01, A4 = -0.35947E-02, A6 = -0.72178E-02, A8 = 0.17631E-02,
A10 = -0.57797E-03, A12 = -0.27160E-03
6th page
K = 0.14753E + 06, A4 = -0.23865E-01, A6 = 0.31374E-02, A8 = 0.26905E-02, A10 = -0.45643E-03
7th page
K = -0.22081E + 01, A4 = -0.99330E-02, A6 = 0.43867E-02, A8 = 0.24873E-03, A10 = 0.16785E-03,
A12 = -0.65730E-04
8th page
K = 0.16197E + 02, A4 = 0.19069E-01, A6 = -0.62317E-02, A8 = 0.13100E-02, A10 = -0.13285E-03,
A12 = 0.11883E-04
9th page
K = -0.41255E + 01, A4 = -0.13528E-01, A6 = 0.27806E-02, A8 = -0.55501E-03, A10 = 0.11436E-03,
A12 = -0.41722E-05
10th page
K = -0.67305E-01, A4 = -0.39579E-01, A6 = 0.46208E-02, A8 = -0.90835E-04,
A10 = -0.89962E-05, A12 = 0.32760E-06
11th page
K = -0.49508E + 01, A4 = -0.24002E-01, A6 = 0.31965E-02, A8 = -0.32746E-03, A10 = 0.19120E-04,
A12 = -0.37131E-06
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 1 17.535
2 4 4.027
3 6 -3.822
4 8 3.769
5 10 -3.871
The values corresponding to each conditional expression are shown below.

f/f1=0.337
f/f2=1.467
f2/f1=0.230
f/f5=−1.526
t10/f=0.118
図1は実施例1のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図2は実施例1の収差図(球面収差、非点収差、歪曲収差)である。
(実施例2)
全体諸元を以下に示す。
f / f1 = 0.337
f / f2 = 1.467
f2 / f1 = 0.230
f / f5 = −1.526
t10 / f = 0.118
1 is a cross-sectional view of the lens of Example 1. FIG. In the figure, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, L5 is a fifth lens, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 2 is an aberration diagram of Example 1 (spherical aberration, astigmatism, distortion).
(Example 2)
The overall specifications are shown below.

f=5.909mm
fB=0.499mm
F=2.2
2Y=7.2mm
面データを以下に示す。
面番号 R(mm) D(mm) Nd νd
1* 8.124 0.639 1.5305 55.7
2* -34.455 0.100
3(絞り) ∞ 0.162
4* 6.595 0.957 1.5305 55.7
5* -3.650 0.050
6* 45.743 0.640 1.5834 30.2
7* 2.213 1.047
8* -11.807 1.285 1.5305 55.7
9* -1.752 0.523
10* 7.548 0.702 1.5305 55.7
11* 1.574 1.094
12 ∞ 0.300 1.5168 64.2
13 ∞
なお、全てのレンズはプラスチック材料から形成されている。
f = 5.909 mm
fB = 0.499mm
F = 2.2
2Y = 7.2mm
The surface data is shown below.
Surface number R (mm) D (mm) Nd νd
1 * 8.124 0.639 1.5305 55.7
2 * -34.455 0.100
3 (Aperture) ∞ 0.162
4 * 6.595 0.957 1.5305 55.7
5 * -3.650 0.050
6 * 45.743 0.640 1.5834 30.2
7 * 2.213 1.047
8 * -11.807 1.285 1.5305 55.7
9 * -1.752 0.523
10 * 7.548 0.702 1.5305 55.7
11 * 1.574 1.094
12 ∞ 0.300 1.5168 64.2
13 ∞
All the lenses are made of a plastic material.

非球面係数を以下に示す。
第1面
K=0.16198E+01,A4=-0.70468E-02,A6=0.17117E-02,A8=0.73635E-03,A10=-0.36980E-03
第2面
K=0.30168E+02,A4=0.80150E-03,A6=0.46886E-02,A8=0.30010E-03,A10=-0.76389E-03
第4面
K=0.20560E+01,A4=-0.30276E-02,A6=-0.84363E-03,A8=-0.24484E-02,A10=0.95793E-03,
A12=-0.75652E-03
第5面
K=-0.14969E+01,A4=-0.26132E-02,A6=-0.73018E-02,A8=0.18608E-02,
A10=-0.43885E-03,A12=-0.16085E-03
第6面
K=-0.50000E+02,A4=-0.24770E-01,A6=0.31511E-02,A8=0.27033E-02,A10=-0.43200E-03
第7面
K=-0.22602E+01,A4=-0.10310E-01,A6=0.43008E-02,A8=0.27754E-03,A10=0.17645E-03,
A12=-0.59090E-04
第8面
K=0.16456E+02,A4=0.18954E-01,A6=-0.62573E-02,A8=0.13022E-02,A10=-0.13258E-03,
A12=0.12946E-04
第9面
K=-0.40651E+01,A4=-0.14408E-01,A6=0.28002E-02,A8=-0.55199E-03,A10=0.11545E-03,
A12=-0.39287E-05
第10面
K=0.92772E+00,A4=-0.38836E-01,A6=0.46062E-02,A8=-0.93985E-04,A10=-0.91908E-05,
A12=0.33995E-06
第11面
K=-0.50337E+01,A4=-0.24037E-01,A6=0.32802E-02,A8=-0.32938E-03,A10=0.18915E-04,
A12=-0.36697E-06
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 1 12.457
2 4 4.578
3 6 -4.008
4 8 3.715
5 10 -3.908
各条件式に対応する値を以下に示す。
The aspheric coefficient is shown below.
First side
K = 0.16198E + 01, A4 = -0.70468E-02, A6 = 0.17117E-02, A8 = 0.73635E-03, A10 = -0.36980E-03
Second side
K = 0.30168E + 02, A4 = 0.80150E-03, A6 = 0.46886E-02, A8 = 0.30010E-03, A10 = -0.76389E-03
4th page
K = 0.20560E + 01, A4 = -0.30276E-02, A6 = -0.84363E-03, A8 = -0.24484E-02, A10 = 0.95793E-03,
A12 = -0.75652E-03
5th page
K = -0.14969E + 01, A4 = -0.26132E-02, A6 = -0.73018E-02, A8 = 0.18608E-02,
A10 = -0.43885E-03, A12 = -0.16085E-03
6th page
K = -0.50000E + 02, A4 = -0.24770E-01, A6 = 0.31511E-02, A8 = 0.27033E-02, A10 = -0.43200E-03
7th page
K = -0.22602E + 01, A4 = -0.10310E-01, A6 = 0.43008E-02, A8 = 0.27754E-03, A10 = 0.17645E-03,
A12 = -0.59090E-04
8th page
K = 0.16456E + 02, A4 = 0.18954E-01, A6 = -0.62573E-02, A8 = 0.13022E-02, A10 = -0.13258E-03,
A12 = 0.12946E-04
9th page
K = -0.40651E + 01, A4 = -0.14408E-01, A6 = 0.28002E-02, A8 = -0.55199E-03, A10 = 0.11545E-03,
A12 = -0.39287E-05
10th page
K = 0.92772E + 00, A4 = -0.38836E-01, A6 = 0.46062E-02, A8 = -0.93985E-04, A10 = -0.91908E-05,
A12 = 0.33995E-06
11th page
K = -0.50337E + 01, A4 = -0.24037E-01, A6 = 0.32802E-02, A8 = -0.32938E-03, A10 = 0.18915E-04,
A12 = -0.36697E-06
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 1 12.457
2 4 4.578
3 6 -4.008
4 8 3.715
5 10 -3.908
The values corresponding to each conditional expression are shown below.

f/f1=0.474
f/f2=1.291
f2/f1=0.368
f/f5=−1.512
t10/f=0.119
図3は実施例2のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図4は実施例2の収差図(球面収差、非点収差、歪曲収差)である。
(実施例3)
全体諸元を以下に示す。
f / f1 = 0.474
f / f2 = 1.291
f2 / f1 = 0.368
f / f5 = −1.512
t10 / f = 0.119
FIG. 3 is a sectional view of the lens of Example 2. In the figure, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, L5 is a fifth lens, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 4 is an aberration diagram of Example 2 (spherical aberration, astigmatism, distortion).
(Example 3)
The overall specifications are shown below.

f=5.910mm
fB=0.500mm
F=2.05
2Y=7.2mm
面データを以下に示す。
面番号 R(mm) D(mm) Nd νd
1* 6.603 0.688 1.5305 55.7
2* -44.176 0.100
3(絞り) ∞ 0.152
4* 6.390 0.977 1.5305 55.7
5* -4.395 0.050
6* 42.925 0.600 1.5834 30.2
7* 2.268 1.020
8* -14.845 1.331 1.5305 55.7
9* -1.779 0.531
10* 8.019 0.715 1.5305 55.7
11* 1.595 1.036
12 ∞ 0.300 1.5168 64.2
13 ∞
なお、全てのレンズはプラスチック材料から形成されている。
f = 5.910 mm
fB = 0.500mm
F = 2.05
2Y = 7.2mm
The surface data is shown below.
Surface number R (mm) D (mm) Nd νd
1 * 6.603 0.688 1.5305 55.7
2 * -44.176 0.100
3 (Aperture) ∞ 0.152
4 * 6.390 0.977 1.5305 55.7
5 * -4.395 0.050
6 * 42.925 0.600 1.5834 30.2
7 * 2.268 1.020
8 * -14.845 1.331 1.5305 55.7
9 * -1.779 0.531
10 * 8.019 0.715 1.5305 55.7
11 * 1.595 1.036
12 ∞ 0.300 1.5168 64.2
13 ∞
All the lenses are made of a plastic material.

非球面係数を以下に示す。
第1面
K=0.14048E+01,A4=-0.70966E-02,A6=0.10360E-02,A8=0.89534E-03,A10=-0.29188E-03
第2面
K=0.49085E+03,A4=0.11452E-03,A6=0.45589E-02,A8=0.42466E-03,A10=-0.54884E-03
第4面
K=0.50000E+01,A4=-0.17082E-02,A6=0.16256E-03,A8=-0.22519E-02,A10=0.11262E-02,
A12=-0.63708E-03
第5面
K=-0.14947E+01,A4=-0.25253E-02,A6=-0.69692E-02,A8=0.19263E-02,
A10=-0.39357E-03,A12=-0.11786E-03
第6面
K=-0.50000E+02,A4=-0.28085E-01,A6=0.24172E-02,A8=0.25930E-02,A10=-0.38613E-03
第7面
K=-0.22790E+01,A4=-0.10809E-01,A6=0.41003E-02,A8=0.38893E-03,A10=0.18077E-03,
A12=-0.66114E-04
第8面
K=0.25321E+02,A4=0.15881E-01,A6=-0.61505E-02,A8=0.12926E-02,A10=-0.13488E-03,
A12=0.13432E-04
第9面
K=-0.40392E+01,A4=-0.15076E-01,A6=0.27224E-02,A8=-0.59535E-03,A10=0.11365E-03,
A12=-0.33434E-05
第10面
K=0.18663E+01,A4=-0.37350E-01,A6=0.45514E-02,A8=-0.10252E-03,A10=-0.94808E-05,
A12=0.41864E-06
第11面
K=-0.49193E+01,A4=-0.23372E-01,A6=0.32737E-02,A8=-0.33571E-03,A10=0.18959E-04,
A12=-0.32549E-06
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 1 10.880
2 4 5.068
3 6 -4.127
4 8 3.680
5 10 -3.903
各条件式に対応する値を以下に示す。
The aspheric coefficient is shown below.
First side
K = 0.14048E + 01, A4 = -0.70966E-02, A6 = 0.10360E-02, A8 = 0.89534E-03, A10 = -0.29188E-03
Second side
K = 0.49085E + 03, A4 = 0.11452E-03, A6 = 0.45589E-02, A8 = 0.42466E-03, A10 = -0.54884E-03
4th page
K = 0.50000E + 01, A4 = -0.17082E-02, A6 = 0.16256E-03, A8 = -0.22519E-02, A10 = 0.11262E-02,
A12 = -0.63708E-03
5th page
K = -0.14947E + 01, A4 = -0.25253E-02, A6 = -0.69692E-02, A8 = 0.19263E-02,
A10 = -0.39357E-03, A12 = -0.11786E-03
6th page
K = -0.50000E + 02, A4 = -0.28085E-01, A6 = 0.24172E-02, A8 = 0.25930E-02, A10 = -0.38613E-03
7th page
K = -0.22790E + 01, A4 = -0.10809E-01, A6 = 0.41003E-02, A8 = 0.38893E-03, A10 = 0.18077E-03,
A12 = -0.66114E-04
8th page
K = 0.25321E + 02, A4 = 0.15881E-01, A6 = -0.61505E-02, A8 = 0.12926E-02, A10 = -0.13488E-03,
A12 = 0.13432E-04
9th page
K = -0.40392E + 01, A4 = -0.15076E-01, A6 = 0.27224E-02, A8 = -0.59535E-03, A10 = 0.11365E-03,
A12 = -0.33434E-05
10th page
K = 0.18663E + 01, A4 = -0.37350E-01, A6 = 0.45514E-02, A8 = -0.10252E-03, A10 = -0.94808E-05,
A12 = 0.41864E-06
11th page
K = -0.49193E + 01, A4 = -0.23372E-01, A6 = 0.32737E-02, A8 = -0.33571E-03, A10 = 0.18959E-04,
A12 = -0.32549E-06
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 1 10.880
2 4 5.068
3 6 -4.127
4 8 3.680
5 10 -3.903
The values corresponding to each conditional expression are shown below.

f/f1=0.543
f/f2=1.166
f2/f1=0.466
f/f5=−1.514
t10/f=0.121
図5は実施例3のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図6は実施例3の収差図(球面収差、非点収差、歪曲収差)である。
f / f1 = 0.543
f / f2 = 1.166
f2 / f1 = 0.466
f / f5 = −1.514
t10 / f = 0.121
FIG. 5 is a sectional view of the lens of Example 3. In the figure, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, L5 is a fifth lens, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 6 is an aberration diagram of Example 3 (spherical aberration, astigmatism, distortion).

ここで、プラスチック材料は温度変化時の屈折率変化が大きいため、第1レンズから第5レンズの全てをプラスチックレンズで構成すると、周囲温度が変化した際に、撮像レンズ全系の像点位置が変動してしまうという問題を抱えてしまう。   Here, since the plastic material has a large refractive index change when the temperature changes, if all of the first lens to the fifth lens are made of plastic lenses, the image point position of the entire imaging lens system changes when the ambient temperature changes. I have the problem of fluctuating.

そこで最近では、プラスチック材料中に無機微粒子を混合させ、プラスチック材料の温度変化を小さくできることが分かってきた。詳細に説明すると、一般に透明なプラスチック材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。プラスチック材料は温度が上昇することにより屈折率が低下してしまうが、無機粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにすることができる。具体的には、母材となるプラスチック材料に最大長が20ナノメートル以下の無機粒子を分散させることにより、屈折率の温度依存性の極めて低いプラスチック材料となる。例えばアクリルに酸化ニオブ(Nb25)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。本発明において、比較的屈折力の大きな正レンズ(L2,L4)、または全てのレンズ(L1〜L5)に、このような無機粒子を分散させたプラスチック材料を用いることにより、撮像レンズ全系の温度変化時の像点位置変動を小さく抑えることが可能となる。 Therefore, recently, it has been found that inorganic fine particles can be mixed in a plastic material to reduce the temperature change of the plastic material. More specifically, mixing fine particles with a transparent plastic material generally causes light scattering and lowers the transmittance, so it was difficult to use as an optical material. By making it smaller than the wavelength, it is possible to substantially prevent scattering. The refractive index of the plastic material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is possible to make almost no change in the refractive index by using these temperature dependencies so as to cancel each other. Specifically, by dispersing inorganic particles having a maximum length of 20 nanometers or less in a plastic material as a base material, a plastic material with extremely low temperature dependency of the refractive index is obtained. For example, by dispersing fine particles of niobium oxide (Nb 2 O 5 ) in acrylic, the refractive index change due to temperature change can be reduced. In the present invention, a plastic material in which such inorganic particles are dispersed is used for the positive lenses (L2, L4) or all the lenses (L1 to L5) having a relatively large refractive power. It is possible to suppress the image point position fluctuation at the time of temperature change to be small.

なお、本実施例は、固体撮像素子の撮像面に入射する光束の主光線入射角については、撮像面周辺部において必ずしも十分小さい設計になっていない。しかし、最近の技術では、固体撮像素子の色フィルタやオンチップマイクロレンズアレイの配列の見直しによって、シェーディングを軽減することができるようになってきた。具体的には撮像素子の撮像面の画素ピッチに対し、色フィルタやオンチップマイクロレンズアレイの配列のピッチをわずかに小さく設定すれば、撮像面の周辺部にいくほど各画素に対し色フィルタやオンチップマイクロレンズアレイが撮像レンズ光軸側へシフトするため、斜入射の光束を効率的に各画素の受光部に導くことができる。これにより固体撮像素子で発生するシェーディングを小さく抑えることができる。本実施例は、前記要求が緩和された分について、より小型化を目指した設計例となっている。   In the present embodiment, the chief ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily designed to be sufficiently small at the periphery of the imaging surface. However, recent techniques have made it possible to reduce shading by reviewing the arrangement of the color filters of the solid-state imaging device and the on-chip microlens array. Specifically, if the pitch of the arrangement of the color filters and the on-chip microlens array is set slightly smaller than the pixel pitch of the image pickup surface of the image pickup device, the color filter or Since the on-chip microlens array is shifted to the optical axis side of the imaging lens, the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel. Thereby, the shading which generate | occur | produces with a solid-state image sensor can be restrained small. The present embodiment is a design example aiming at further miniaturization with respect to the portion where the requirement is relaxed.

L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
S 開口絞り
I 撮像面
F 平行平板
L1 1st lens L2 2nd lens L3 3rd lens L4 4th lens L5 5th lens S Aperture stop I Imaging surface F Parallel flat plate

1.固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
物体側より順に、物体側に凸面を向けた正の第1レンズと、両面が非球面の第2レンズと、負の第3レンズ像側に凸面を向けたメニスカス形状の正の第4レンズ、負の第5レンズからなり、前記第1レンズから前記第5レンズの各々が接合されずに配置されており、前記第1レンズから前記第4レンズまでの合成が正の屈折力を有し、前記第5レンズの像側面は非球面に形成されていて、光軸との交点以外の位置に変曲点を有し、以下の条件式を満足することを特徴とする撮像レンズ。
0.06<t10/f≦0.121・・・(5)
但し、
f:全系の焦点距離
t10:前記第5レンズの軸上厚み
2.前記第5レンズは以下の条件式を満足することを特徴とする前記1に記載の撮像レンズ。
0.09<t10/f≦0.121
3.前記第5レンズは以下の条件式を満足することを特徴とする前記1に記載の撮像レンズ。
0.06<t10/f≦0.118
4.前記第5レンズは以下の条件式を満足することを特徴とする前記1〜3の何れか1項に記載の撮像レンズ。
0.09<t10/f≦0.118
5.前記第3レンズは像側に凹面を向けていることを特徴とする前記1〜4の何れか1項に記載の撮像レンズ。
6.前記第3レンズは物体側に凹面を向けていることを特徴とする前記1〜5の何れか1項に記載の撮像レンズ。
7.以下の条件式を満足することを特徴とする前記1〜6の何れか1項に記載の撮像レンズ。
2.05≦F≦2.5
但し、
F:Fナンバー
1. An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device,
In order from the object side, a positive first lens having a convex surface facing the object side, a second lens having both aspheric surfaces , a negative third lens, and a meniscus positive fourth lens having a convex surface facing the image side . lens and, Ri and negative fifth lens Tona, wherein and each of the fifth lens from the first lens is arranged without being bonded, the refractive synthesis from the first lens to the fourth lens is a positive has a force, the image side surface of the fifth lens is formed into an aspheric, having an inflection point at a position other than the intersection of the optical axis, characterized that you satisfy the following condition Imaging lens.
0.06 <t10 / f ≦ 0.121 (5)
However,
f: Focal length of the entire system
t10: axial thickness of the fifth lens
2. The imaging lens according to 1, wherein the fifth lens satisfies the following conditional expression.
0.09 <t10 / f ≦ 0.121
3. The imaging lens according to 1, wherein the fifth lens satisfies the following conditional expression.
0.06 <t10 / f ≦ 0.118
4). The imaging lens according to any one of 1 to 3, wherein the fifth lens satisfies the following conditional expression.
0.09 <t10 / f ≦ 0.118
5. 5. The imaging lens according to claim 1, wherein the third lens has a concave surface facing the image side.
6). 6. The imaging lens according to any one of 1 to 5, wherein the third lens has a concave surface facing the object side.
7). 7. The imaging lens according to any one of 1 to 6, wherein the following conditional expression is satisfied.
2.05 ≦ F ≦ 2.5
However,
F: F number

.前記第1レンズは以下の条件式を満足することを特徴とする前記1〜7の何れか1項に記載の撮像レンズ。 8 . The imaging lens according to any one of 1 to 7, wherein the first lens satisfies the following conditional expression.

0.3<f/f1<0.8 ・・・(1)
但し、
f:全系の焦点距離
f1:前記第1レンズの焦点距離
.前記第2レンズは以下の条件式を満足することを特徴とする前記1〜8の何れか1項に記載の撮像レンズ。
0.3 <f / f1 <0.8 (1)
However,
f: focal length of the entire system f1: focal length of the first lens
9 . The imaging lens according to any one of 1 to 8, wherein the second lens satisfies the following conditional expression.

0.7<f/f2<2.2 ・・・(2)
但し、
f:全系の焦点距離
f2:前記第2レンズの焦点距離
10.前記第1レンズと前記第2レンズは以下の条件式を満足することを特徴とする前記1〜9の何れか1項に記載の撮像レンズ。
0.7 <f / f2 <2.2 (2)
However,
f: focal length of the entire system f2: focal length of the second lens
10 . The imaging lens according to any one of 1 to 9, wherein the first lens and the second lens satisfy the following conditional expression.

0.2<f2/f1<0.7 ・・・(3)
但し、
f1:前記第1レンズの焦点距離
f2:前記第2レンズの焦点距離
11.前記第5レンズは以下の条件式を満足することを特徴とする前記1〜10の何れか1項に記載の撮像レンズ。
0.2 <f2 / f1 <0.7 (3)
However,
f1: Focal length of the first lens f2: Focal length of the second lens
11 . The imaging lens according to any one of 1 to 10 , wherein the fifth lens satisfies the following conditional expression.

−2.3<f/f5<−0.8 ・・・(4)
但し、
f:全系の焦点距離
f5:前記第5レンズの焦点距
-2.3 <f / f5 <-0.8 (4)
However,
f: the entire system of the focal length f5: focal length of said fifth lens

12.前記第5レンズ、その中心では負の屈折力を持ち周辺に向かうに従い負の屈折力が弱くなることを特徴とする請求項1〜11の何れか1項に記載の撮像レンズ。 12 . It said fifth lens is an imaging lens according to any one of claim 1 to 11, wherein the Turkey a weak negative refractive power in accordance with its center towards the periphery has a negative refractive power.

13.前記第1レンズ乃至前記第5レンズはプラスチック材料から形成されていることを特徴とする前記1〜12の何れか1項に記載の撮像レンズ。 13 . The imaging lens according to any one of 1 to 12 , wherein the first lens to the fifth lens are made of a plastic material.

請求項1の効果
小型で収差の良好に補正された撮像レンズを得るための、本発明の基本構成は、物体側より順に、物体側に凸面を向けた正の第1レンズと、両面が非球面の第2レンズと、負の第3レンズ像側に凸面を向けたメニスカス形状の正の第4レンズ、負の第5レンズからなる。物体側より順に、第1レンズ、第2レンズ、第3レンズ、第4レンズからなる正レンズ群と、負の第5レンズを配置する、いわゆるテレフォトタイプのこのレンズ構成は、撮像レンズ全長の小型化には有利な構成である。
The basic configuration of the present invention for obtaining a compact imaging lens with good aberration correction is, in order from the object side, a positive first lens with a convex surface facing the object side, and non-double-sided surfaces. It consists of a second lens of spherical, a third negative lens, a positive fourth lens having a meniscus shape with a convex surface directed toward the image side, a negative fifth lens. In order from the object side, a so-called telephoto type lens configuration in which a positive lens group including a first lens, a second lens, a third lens, and a fourth lens and a negative fifth lens are arranged is the total length of the imaging lens. This is an advantageous configuration for downsizing.

更に、5枚構成のうち2枚を負レンズとすることで、発散作用を有する面を多くしてペッツバール和の補正を容易とし、画面周辺部まで良好な結像性能を確保した撮像レンズを得ることが可能となる。
条件式(5)は第5レンズの軸上厚みを適切に設定し、撮像レンズの像面性を適切に達成するための条件式である。条件式(5)の値が範囲内にはいることで、撮像レンズの像面性がオーバー側やアンダー側に倒れ過ぎるのを防ぐことができる。
第5レンズの像側面を、変曲点を有する非球面形状とすることで、像側光束のテレセントリック特性が確保し易くなる。
ここで、「変曲点」とは有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面が光軸と垂直な平面となるような非球面上の点のことである。
Furthermore, by using two negative lenses in the five-lens configuration, it is easy to correct the Petzval sum by increasing the diverging surfaces, and an imaging lens that secures good imaging performance to the periphery of the screen is obtained. It becomes possible.
Conditional expression (5) is a conditional expression for appropriately setting the axial thickness of the fifth lens and appropriately achieving the image plane property of the imaging lens. When the value of conditional expression (5) is within the range, it is possible to prevent the image plane property of the imaging lens from falling too much toward the over side or the under side.
By making the image side surface of the fifth lens an aspherical shape having an inflection point, it becomes easy to ensure the telecentric characteristics of the image-side light beam.
Here, the “inflection point” is a point on the aspheric surface where the tangent plane of the aspherical vertex is a plane perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.

請求項の効果
条件式(1)は第1レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(1)の値が下限を上回ることで、第1レンズの焦点距離を適度に維持することができ、レンズ全長の短縮化を達成することができる。一方、上限を下回ることで、第1レンズの焦点距離が小さくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。
Effect of Claim 8 Conditional expression (1) is a conditional expression for appropriately setting the focal length of the first lens to appropriately shorten the imaging lens and correct aberrations. When the value of conditional expression (1) exceeds the lower limit, the focal length of the first lens can be appropriately maintained, and shortening of the total lens length can be achieved. On the other hand, when the value is lower than the upper limit, the focal length of the first lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed.

0.32<f/f1<0.7・・・(1A)
請求項の効果
条件式(2)は第2レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(2)の値が下限を上回ることで、第2レンズの焦点距離を適度に維持することができ、レンズ全長の短縮化を達成することができる。一方、上限を下回ることで、第2レンズの焦点距離が小さくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。
0.32 <f / f1 <0.7 (1A)
Effect of Claim 9 Conditional expression (2) is a conditional expression for appropriately setting the focal length of the second lens and appropriately achieving shortening of the entire length of the imaging lens and correction of aberration. When the value of conditional expression (2) exceeds the lower limit, the focal length of the second lens can be appropriately maintained, and shortening of the total lens length can be achieved. On the other hand, when the value is below the upper limit, the focal length of the second lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed.

0.9<f/f2<1.8・・・(2A)
請求項10の効果
条件式(3)は第1レンズと第2レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(3)の値が下限を上回ることで、第1レンズと第2レンズの焦点距離を適度に維持することができ、レンズ全長の短縮化を達成することができる。一方、上限を下回ることで、第2レンズの焦点距離に対して第1レンズの焦点距離が小さくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。
0.9 <f / f2 <1.8 (2A)
Effect of Claim 10 Conditional expression (3) is a conditional expression for appropriately setting the focal length of the first lens and the second lens, and appropriately achieving shortening of the entire length of the imaging lens and correction of aberration. When the value of conditional expression (3) exceeds the lower limit, the focal lengths of the first lens and the second lens can be appropriately maintained, and the overall length of the lens can be shortened. On the other hand, by being below the upper limit, the focal length of the first lens does not become too small with respect to the focal length of the second lens, and generation of higher-order spherical aberration and coma aberration can be suppressed.

0.215<f2/f1<0.6・・・(3A)
請求項11の効果
条件式(4)は第5レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(4)の値が上限を下回ることで、第5レンズの焦点距離を適度に維持することができ、レンズ全長の短縮化を達成することができる。一方、下限を上回ることで、第5レンズの焦点距離が小さくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。
0.215 <f2 / f1 <0.6 (3A)
Effect of Claim 11 Conditional expression (4) is a conditional expression for appropriately setting the focal length of the fifth lens and appropriately achieving shortening of the entire length of the imaging lens and correction of aberration. When the value of conditional expression (4) is less than the upper limit, the focal length of the fifth lens can be appropriately maintained, and shortening of the total lens length can be achieved. On the other hand, by exceeding the lower limit, the focal length of the fifth lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed.

−1.9<f/f5<−1.2・・・(4A -1.9 <f / f5 <-1.2 (4A )

求項12の効果
第5レンズを、光軸から周辺に向かうに従って負の屈折力が弱くなるようにすることで、第3レンズの像側面は、レンズ周辺部で過度に負の屈折力を弱くする必要がなくなり軸外収差を良好に補正することが可能となる。
The effect fifth lens of Motomeko 12, by a so that a weak negative refractive power toward the periphery from the optical axis, the image side surface of the third lens is overly negative refractive lens periphery It is not necessary to weaken the force, and it is possible to correct the off-axis aberration well.

請求項13の効果
近年では、固体撮像装置全体の小型化を目的とし、同じ画素数の固体撮像素子であっても、画素ピッチが小さく、結果として撮像面サイズの小さいものが開発されている。このような撮像面サイズの小さい固体撮像素子向けの撮像レンズは、全系の焦点距離を比較的短くする必要があるため、各レンズの曲率半径や外径がかなり小さくなってしまう。従って、手間のかかる研磨加工により製造するガラスレンズと比較すれば、全てのレンズを、射出成形により製造されるプラスチックレンズで構成することにより、曲率半径や外径の小さなレンズであっても安価に大量生産が可能となる。また、プラスチックレンズはプレス温度を低くできることから、成形金型の損耗を抑えることができ、その結果、成形金型の交換回数やメンテナンス回数を減少させ、コスト低減を図ることができる。
In recent years the effects of claim 13, for the purpose of miniaturization of the entire solid-state imaging device, a solid-state imaging device having the same number of pixels, a small pixel pitch, having a small imaging surface size is developed as a result. In such an imaging lens for a solid-state imaging device having a small imaging surface size, it is necessary to make the focal length of the entire system relatively short, so that the curvature radius and the outer diameter of each lens are considerably reduced. Therefore, compared to glass lenses manufactured by time-consuming polishing, all lenses are made of plastic lenses manufactured by injection molding, so that even lenses with small radii of curvature and outer diameters are inexpensive. Mass production is possible. In addition, since the plastic lens can lower the press temperature, it is possible to suppress the wear of the molding die, and as a result, the number of replacements and maintenance times of the molding die can be reduced, and the cost can be reduced.

Claims (8)

固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
物体側より順に、正の第1レンズと、正の第2レンズと、負の第3レンズ、正の第4レンズ、負の第5レンズからなることを特徴とする撮像レンズ。
An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device,
An imaging lens comprising, in order from the object side, a positive first lens, a positive second lens, a negative third lens, a positive fourth lens, and a negative fifth lens.
前記第1レンズは以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
0.3<f/f1<0.8
但し、
f:全系の焦点距離
f1:前記第1レンズの焦点距離
The imaging lens according to claim 1, wherein the first lens satisfies the following conditional expression.
0.3 <f / f1 <0.8
However,
f: focal length of the entire system f1: focal length of the first lens
前記第2レンズは以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の撮像レンズ。
0.7<f/f2<2.2
但し、
f:全系の焦点距離
f2:前記第2レンズの焦点距離
The imaging lens according to claim 1, wherein the second lens satisfies the following conditional expression.
0.7 <f / f2 <2.2
However,
f: focal length of the entire system f2: focal length of the second lens
前記第1レンズと前記第2レンズは以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
0.2<f2/f1<0.7
但し、
f1:前記第1レンズの焦点距離
f2:前記第2レンズの焦点距離
The imaging lens according to claim 1, wherein the first lens and the second lens satisfy the following conditional expression.
0.2 <f2 / f1 <0.7
However,
f1: Focal length of the first lens f2: Focal length of the second lens
前記第5レンズは以下の条件式を満足することを特徴とする請求項1〜4の何れか1項に記載の撮像レンズ。
−2.3<f/f5<−0.8
但し、
f:全系の焦点距離
f5:前記第5レンズの焦点距離
The imaging lens according to claim 1, wherein the fifth lens satisfies the following conditional expression.
-2.3 <f / f5 <-0.8
However,
f: focal length of the entire system f5: focal length of the fifth lens
前記第5レンズは以下の条件式を満足することを特徴とする請求項1〜5の何れか1項に記載の撮像レンズ。
0.06<t10/f<0.16
但し、
f:全系の焦点距離
t10:前記第5レンズの軸上厚み
The imaging lens according to claim 1, wherein the fifth lens satisfies the following conditional expression.
0.06 <t10 / f <0.16
However,
f: focal length of entire system t10: axial thickness of the fifth lens
前記第5レンズの像側面は非球面に形成されていて、その中心では負の屈折力を持ち周辺に向かうに従い負の屈折力が弱くなると共に、変曲点を有することを特徴とする請求項1〜6の何れか1項に記載の撮像レンズ。 The image side surface of the fifth lens is formed as an aspheric surface, and has a negative refractive power at the center thereof, and the negative refractive power becomes weaker toward the periphery, and has an inflection point. The imaging lens according to any one of 1 to 6. 前記第1レンズ乃至前記第5レンズはプラスチック材料から形成されていることを特徴とする請求項1〜7の何れか1項に記載の撮像レンズ。 The imaging lens according to claim 1, wherein the first lens to the fifth lens are made of a plastic material.
JP2013085143A 2013-04-15 2013-04-15 Imaging lens Pending JP2013140398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085143A JP2013140398A (en) 2013-04-15 2013-04-15 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085143A JP2013140398A (en) 2013-04-15 2013-04-15 Imaging lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008190823A Division JP5298682B2 (en) 2008-07-24 2008-07-24 Imaging lens

Publications (1)

Publication Number Publication Date
JP2013140398A true JP2013140398A (en) 2013-07-18

Family

ID=49037811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085143A Pending JP2013140398A (en) 2013-04-15 2013-04-15 Imaging lens

Country Status (1)

Country Link
JP (1) JP2013140398A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509282B (en) * 2014-02-27 2015-11-21 Samsung Electro Mech Lens module
CN105093483A (en) * 2014-05-23 2015-11-25 亚太光电股份有限公司 Imaging lens
CN105842827A (en) * 2015-01-16 2016-08-10 大立光电股份有限公司 Optical camera system, image pickup device and electronic device
US9417438B2 (en) 2014-09-29 2016-08-16 Largan Precision Co., Ltd. Photographing lens system, image capturing device and electronic device
CN106772929A (en) * 2015-11-24 2017-05-31 三星电机株式会社 Optical imaging system
CN108072968A (en) * 2016-11-09 2018-05-25 大立光电股份有限公司 Image capturing optical lens system, image capturing device and electronic device
US10067315B2 (en) 2014-05-16 2018-09-04 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly
CN109960005A (en) * 2017-12-22 2019-07-02 南昌欧菲光电技术有限公司 Pick-up lens and electronic device
CN110749980A (en) * 2019-11-22 2020-02-04 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111929846A (en) * 2020-09-22 2020-11-13 瑞泰光学(常州)有限公司 Image pickup optical lens
TWI790224B (en) * 2018-03-12 2023-01-21 大陸商信泰光學(深圳)有限公司 Lens assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321926A (en) * 1976-08-12 1978-02-28 Canon Inc Lens for projection and photography
JPH03288809A (en) * 1990-04-06 1991-12-19 Casio Comput Co Ltd Photographing lens
JP2005077692A (en) * 2003-08-29 2005-03-24 Kyocera Corp Variable power imaging lens
JP2009294528A (en) * 2008-06-06 2009-12-17 Fujinon Corp Imaging lens composed of five lenses and imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321926A (en) * 1976-08-12 1978-02-28 Canon Inc Lens for projection and photography
JPH03288809A (en) * 1990-04-06 1991-12-19 Casio Comput Co Ltd Photographing lens
JP2005077692A (en) * 2003-08-29 2005-03-24 Kyocera Corp Variable power imaging lens
JP2009294528A (en) * 2008-06-06 2009-12-17 Fujinon Corp Imaging lens composed of five lenses and imaging apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9470876B2 (en) 2014-02-27 2016-10-18 Samsung Electro-Mechanics Co., Ltd. Lens module
TWI509282B (en) * 2014-02-27 2015-11-21 Samsung Electro Mech Lens module
US10067315B2 (en) 2014-05-16 2018-09-04 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly
CN105093483A (en) * 2014-05-23 2015-11-25 亚太光电股份有限公司 Imaging lens
EP2947492A3 (en) * 2014-05-23 2016-03-09 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly
CN105093483B (en) * 2014-05-23 2019-05-10 科太光电股份有限公司 Imaging lens
US9417438B2 (en) 2014-09-29 2016-08-16 Largan Precision Co., Ltd. Photographing lens system, image capturing device and electronic device
CN105842827A (en) * 2015-01-16 2016-08-10 大立光电股份有限公司 Optical camera system, image pickup device and electronic device
CN105842827B (en) * 2015-01-16 2018-01-09 大立光电股份有限公司 Optical camera system, image-taking device and electronic installation
CN106772929A (en) * 2015-11-24 2017-05-31 三星电机株式会社 Optical imaging system
CN108072968A (en) * 2016-11-09 2018-05-25 大立光电股份有限公司 Image capturing optical lens system, image capturing device and electronic device
TWI625546B (en) * 2016-11-09 2018-06-01 大立光電股份有限公司 Photographing optical lens system, imaging apparatus and electronic device
CN109960005A (en) * 2017-12-22 2019-07-02 南昌欧菲光电技术有限公司 Pick-up lens and electronic device
TWI790224B (en) * 2018-03-12 2023-01-21 大陸商信泰光學(深圳)有限公司 Lens assembly
CN110749980A (en) * 2019-11-22 2020-02-04 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN110749980B (en) * 2019-11-22 2021-11-02 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN111929846A (en) * 2020-09-22 2020-11-13 瑞泰光学(常州)有限公司 Image pickup optical lens

Similar Documents

Publication Publication Date Title
JP5298682B2 (en) Imaging lens
JP5428240B2 (en) Imaging lens
JP4947423B2 (en) Imaging lens
JP5904208B2 (en) Imaging lens, imaging optical device, and digital device
JP4858648B2 (en) Imaging lens, imaging device, and portable terminal
JP6300410B2 (en) Imaging lens
JP2013140398A (en) Imaging lens
WO2010140515A1 (en) Image pickup lens, image pickup device having image pickup lens, and portable terminal having image pickup device
WO2013111612A1 (en) Image pickup lens
JP2015158569A (en) Imaging lens having configuration comprising six optical elements
JP2010008562A (en) Imaging lens
JPWO2005116715A1 (en) Imaging lens, imaging unit, and portable terminal
JP2009282223A (en) Imaging lens, imaging unit and personal digital assistant
JP2014041388A (en) Imaging lens
JP2014123097A (en) Image capturing lens
JP2012068292A (en) Imaging lens, imaging apparatus and portable terminal
JP6001430B2 (en) Imaging lens
JP2006003900A (en) Small-sized imaging lens system
JP2006243093A (en) Imaging lens
JP2018116241A (en) Imaging lens
JP2006098429A (en) Imaging lens
WO2011052370A1 (en) Imaging lens
JP4442184B2 (en) Imaging lens
JP2012220590A (en) Imaging lens and imaging module
JP2013130893A (en) Imaging lenses for solid-state imaging element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140325