JP5428240B2 - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP5428240B2
JP5428240B2 JP2008212644A JP2008212644A JP5428240B2 JP 5428240 B2 JP5428240 B2 JP 5428240B2 JP 2008212644 A JP2008212644 A JP 2008212644A JP 2008212644 A JP2008212644 A JP 2008212644A JP 5428240 B2 JP5428240 B2 JP 5428240B2
Authority
JP
Japan
Prior art keywords
lens
imaging
focal length
conditional expression
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008212644A
Other languages
Japanese (ja)
Other versions
JP2010048996A (en
Inventor
宏明 田中
雅史 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008212644A priority Critical patent/JP5428240B2/en
Publication of JP2010048996A publication Critical patent/JP2010048996A/en
Application granted granted Critical
Publication of JP5428240B2 publication Critical patent/JP5428240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、CCD型イメージセンサ若しくはCMOS型イメージセンサ等の固体撮像素子を用いた、小型で明るい撮像レンズに関する。   The present invention relates to a small and bright imaging lens using a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor.

近年、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子を用いた撮像装置が搭載された携帯端末の普及の増大に伴い、より高画質の画像が得られるよう、高画素数を有する撮像素子を使用した撮像装置が搭載されたものが市場に供給されるようになってきた。その高画素数を有する撮像素子は大型化を伴っていたが、近年、画素の高細化が進み、撮像素子が小型化されるようになってきた。このような高細化された撮像素子に使用される撮像レンズは高い解像力が要求されるが、解像力はF値により限界があり、F値の小さい明るいレンズの方が高解像力を得られるため、従来のようにF2.8程度のF値では十分な性能が得られなくなってきた。そこで、高画素化、高細化、小型化された撮像素子に適した、F2.2程度の明るい撮像レンズが求められるようになってきた。このような用途の撮像レンズとしては、3枚あるいは4枚構成のレンズに比べ大口径比化及び高性能化が可能な5枚構成の撮像レンズが提案されている。   In recent years, with the widespread use of portable terminals equipped with an imaging device using a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor, imaging having a high number of pixels so that a higher quality image can be obtained. A device equipped with an imaging device using an element has been supplied to the market. Although the image pickup device having the high number of pixels has been accompanied by an increase in size, in recent years, an increase in the size of pixels has progressed, and the image pickup device has been reduced in size. An imaging lens used for such a high-definition imaging device is required to have a high resolving power, but the resolving power is limited by the F value, and a bright lens with a small F value can obtain a high resolving power. As in the past, with an F value of about F2.8, sufficient performance cannot be obtained. Accordingly, there has been a demand for a bright imaging lens of about F2.2 that is suitable for imaging devices with high pixels, thinning, and miniaturization. As an imaging lens for such applications, an imaging lens having a five-lens configuration is proposed that can have a large aperture ratio and high performance as compared with a lens having three or four lenses.

5枚構成の撮像レンズとして、物体側より順に、正または負の屈折力を有する第1レンズ、正の屈折力を有する第2レンズからなる前群、開口絞り、負の屈折力を有する第3レンズ、正の屈折力を有する第4レンズ、負または正の屈折力を有する第5レンズからなる後群で構成された撮像レンズが開示されている。(例えば特許文献1,2参照)
特開2007−279282号公報 特開2006−293042号公報
As a five-lens imaging lens, in order from the object side, a first lens having a positive or negative refractive power, a front group consisting of a second lens having a positive refractive power, an aperture stop, and a third lens having a negative refractive power. An imaging lens configured by a rear group including a lens, a fourth lens having a positive refractive power, and a fifth lens having a negative or positive refractive power is disclosed. (For example, see Patent Documents 1 and 2)
JP 2007-279282 A JP 2006-293042 A

しかしながら、特許文献1に記載の撮像レンズは、前群が球面系で構成されているためF2.2程度に明るくすると、球面収差やコマ収差の補正が不十分で良好な性能を確保できない。また、前群及び後群とも正の屈折力を有する構成のため、後群が負の屈折力を有するテレフォトタイプのような構成に比べ、光学系の主点位置が像側になりバックフォーカスが長くなるため、小型化には不利なタイプである。   However, since the imaging lens described in Patent Document 1 is configured with a spherical system in the front group, when the lens is brightened to about F2.2, correction of spherical aberration and coma is insufficient and good performance cannot be ensured. Also, because the front group and rear group have positive refractive power, the main point position of the optical system is on the image side and back focus compared to the configuration of the telephoto type where the rear group has negative refractive power. This is a disadvantageous type for downsizing.

また、特許文献2に記載の撮像レンズは、F2.2程度の明るさを有しているが、第1レンズ及び第2レンズともに正の屈折力を有する構成のため、前群での色補正が不十分である。更に、特許文献1と同様に前群及び後群とも正の屈折力を有する構成であるとともに、最終レンズも正レンズであるため、小型化には不利なタイプである。   The imaging lens described in Patent Document 2 has a brightness of about F2.2. However, since both the first lens and the second lens have positive refractive power, color correction in the front group is performed. Is insufficient. Further, as in Patent Document 1, both the front group and the rear group have a positive refractive power, and the final lens is also a positive lens, which is a disadvantageous type for downsizing.

本発明はかかる問題に鑑みてなされたものであり、小型でF2.2程度の十分な明るさを有し、諸収差が良好に補正された5枚構成の撮像レンズを提供することを目的とする。   The present invention has been made in view of such a problem, and has an object to provide a five-lens imaging lens having a small size, sufficient brightness of about F2.2, and various aberrations corrected satisfactorily. To do.

前記目的は、下記に記載した発明により達成される。   The object is achieved by the invention described below.

1.固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
物体側より順に、正の第1レンズ、負の第2レンズ、正の第3レンズ、負の第4レンズ、及び負の第5レンズからなり、前記第4レンズの像側面は非球面に形成されており、その中心では負の屈折力を有し、周辺に向かうに従い負の屈折力が弱くなり、変曲点を有し、以下の条件式(1),(2)及び(5a)を満足することを特徴とする撮像レンズ。
45<ν4 …(1)
1.45<f/f1<3.4 …(2)
0.09<t10/f<0.14 …(5a)
但し、
ν4:前記第4レンズのアッベ数
f:全系の焦点距離
f1:前記第1レンズの焦点距離
t10:前記第5レンズの軸上厚み
である。
1. An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device,
In order from the object side, the lens includes a positive first lens, a negative second lens, a positive third lens, a negative fourth lens, and a negative fifth lens, and the image side surface of the fourth lens is formed as an aspherical surface. It has a negative refractive power at its center, the negative refractive power becomes weaker toward the periphery, has an inflection point, and the following conditional expressions (1), (2) and (5a) An imaging lens characterized by satisfaction.
45 <ν4 (1)
1.45 <f / f1 <3.4 (2)
0.09 <t10 / f <0.14 (5a)
However,
ν4: Abbe number of the fourth lens
f: Focal length of the entire system
f1: Focal length of the first lens
t10: axial thickness of the fifth lens
It is.

2.前記第2レンズは以下の条件式(3)を満足することを特徴とする前記1に記載の撮像レンズ。
−3.0<f/f2<−1.1(3)
但し、
f:全系の焦点距離
f2:前記第2レンズの焦点距離
である。
2. 2. The imaging lens according to 1, wherein the second lens satisfies the following conditional expression (3).
-3.0 <f / f2 <-1.1 ... (3)
However,
f: focal length of the entire system f2: focal length of the second lens
It is.

3.前記第2レンズは以下の条件式(4)を満足することを特徴とする前記1又は前記2に記載の撮像レンズ。
0.3<(R3+R4)/(R3−R4)<1.4(4)
但し、
R3:前記第2レンズの物体側面の曲率半径
R4:前記第2レンズの像側面の曲率半径
である。
3. The imaging lens according to 1 or 2, wherein the second lens satisfies the following conditional expression (4).
0.3 <(R3 + R4) / (R3-R4) <1.4 ... (4)
However,
R3: radius of curvature of the object side surface of the second lens R4: radius of curvature of the image side surface of the second lens
It is.

4.前記第5レンズは以下の条件式(5b)を満足することを特徴とする前記1〜3の何れか1項に記載の撮像レンズ。
0.09<t10/f≦0.115 …(5b)
但し、
f:全系の焦点距離
t10:前記第5レンズの軸上厚み
である。
4). The imaging lens according to any one of 1 to 3, wherein the fifth lens satisfies the following conditional expression (5b).
0.09 <t10 / f ≦ 0.115 (5b)
However,
f: focal length of entire system t10: axial thickness of the fifth lens
It is.

5.前記第1レンズは以下の条件式(2a)を満足することを特徴とする前記1〜4の何れか1項に記載の撮像レンズ。
1.45<f/f1≦1.725 …(2a)
但し、
f:全系の焦点距離
f1:前記第1レンズの焦点距離
である。
.前記撮像レンズは全てプラスチック材料で形成されていることを特徴とする前記1〜の何れか1項に記載の撮像レンズ。
5). The imaging lens according to any one of 1 to 4, wherein the first lens satisfies the following conditional expression (2a).
1.45 <f / f1 ≦ 1.725 (2a)
However,
f: Focal length of the entire system
f1: Focal length of the first lens
It is.
6 . The imaging lens according to any one of 1 to 5 , wherein the imaging lens is made of a plastic material.

小型で収差が良好に補正された撮像レンズを得るための本発明の基本構成は、物体側より順に、正の第1レンズ、負の第2レンズ、正の第3レンズ、負の第4レンズ及び負の第5レンズからなる。物体側より順に、第1レンズ、第2レンズ、第3レンズ及び第4レンズからなる正レンズ群と、負の第5レンズとを配置する所謂テレフォトタイプのこのレンズ構成は撮像レンズ全長の小型化に有利な構成である。 The basic configuration of the present invention for obtaining a compact imaging lens with good aberration correction is, in order from the object side, a positive first lens, a negative second lens, a positive third lens, and a negative fourth lens. And a negative fifth lens. This so-called telephoto type lens configuration in which a positive lens group including a first lens, a second lens, a third lens, and a fourth lens and a negative fifth lens are arranged in this order from the object side is a compact imaging lens having a total length. This is an advantageous configuration.

更に、5枚構成のうち3枚を負レンズとすることで、発散作用を有する面を多くしてペッツバール和の補正を容易にし、画面周辺部まで良好な結像性能を確保した撮像レンズを得ることが可能となる。   Furthermore, by using three negative lenses in the five-lens configuration, it is possible to easily correct the Petzval sum by increasing the diverging surface, and to obtain an imaging lens that ensures good imaging performance up to the periphery of the screen It becomes possible.

特に3枚を負レンズとし、条件式(1)を満足することで、軸上色収差と倍率色収差の偏った補正を抑制し、バランスの良い補正効果が得られる。   In particular, when three negative lenses are used and the conditional expression (1) is satisfied, the correction of biased axial chromatic aberration and lateral chromatic aberration is suppressed, and a well-balanced correction effect can be obtained.

前記基本構成において、以下の条件式(2)を満足することが望ましく、以下の条件式(2a)又は(2b)を満足することがより望ましい。  In the basic configuration, it is desirable to satisfy the following conditional expression (2), and it is more desirable to satisfy the following conditional expression (2a) or (2b).
1.45<f/f1<3.4 …(2)1.45 <f / f1 <3.4 (2)
1.45<f/f1≦1.725 …(2a)1.45 <f / f1 ≦ 1.725 (2a)
1.51<f/f1<2.5 …(2b)1.51 <f / f1 <2.5 (2b)
但し、However,
f:全系の焦点距離f: Focal length of the entire system
f1:前記第1レンズの焦点距離f1: Focal length of the first lens
である。It is.

条件式(2)は第1レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(2)の値が下限を上回ることで、第1レンズの焦点距離を適度に維持することができ、レンズ全長の短縮化を達成することができる。一方、上限を下回ることで、第1レンズの焦点距離が小さくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。  Conditional expression (2) is a conditional expression for appropriately setting the focal length of the first lens and appropriately achieving shortening of the entire length of the imaging lens and correction of aberration. When the value of conditional expression (2) exceeds the lower limit, the focal length of the first lens can be appropriately maintained, and shortening of the total lens length can be achieved. On the other hand, when the value is lower than the upper limit, the focal length of the first lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed.

前記基本構成において、以下の条件式(3)を満足することが望ましく、以下の条件式(3a)を満足することがより望ましい。  In the basic configuration, it is preferable that the following conditional expression (3) is satisfied, and it is more preferable that the following conditional expression (3a) is satisfied.
−3.0<f/f2<−1.1 …(3)−3.0 <f / f2 <−1.1 (3)
−2.2<f/f2<−1.3 …(3a)−2.2 <f / f2 <−1.3 (3a)
但し、However,
f:全系の焦点距離f: Focal length of the entire system
f2:前記第2レンズの焦点距離f2: Focal length of the second lens
である。It is.

条件式(3)は第2レンズの焦点距離を適切に設定し、撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(3)の値が下限を上回ることで、第2レンズの焦点距離を適度に維持することができ、レンズ全長の短縮化を達成することができる。一方、上限を下回ることで、第2レンズの焦点距離の絶対値が大きくなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。  Conditional expression (3) is a conditional expression for appropriately setting the focal length of the second lens to appropriately shorten the imaging lens and to correct the aberration. When the value of conditional expression (3) exceeds the lower limit, the focal length of the second lens can be appropriately maintained, and shortening of the total lens length can be achieved. On the other hand, when the value is below the upper limit, the absolute value of the focal length of the second lens does not become too large, and generation of higher-order spherical aberration and coma aberration can be suppressed.

前記基本構成において、以下の条件式(4)を満足することが望ましく、以下の条件式(4a)を満足することがより望ましい。  In the basic configuration, it is preferable that the following conditional expression (4) is satisfied, and it is more preferable that the following conditional expression (4a) is satisfied.
0.3<(R3+R4)/(R3−R4)<1.4 …(4)0.3 <(R3 + R4) / (R3-R4) <1.4 (4)
0.45<(R3+R4)/(R3−R4)<1.1 …(4a)0.45 <(R3 + R4) / (R3-R4) <1.1 (4a)
但し、However,
R3:前記第2レンズの物体側面の曲率半径R3: radius of curvature of object side surface of the second lens
R4:前記第2レンズの像側面の曲率半径R4: radius of curvature of the image side surface of the second lens
である。It is.

条件式(4)は第2レンズでの収差補正とレンズ径方向の大きさとを適切に設定するための条件式である。条件式(4)の値が下限を上回ることで、第2レンズのレンズ径を適度に維持することができ、レンズ全系の径方向の小型化を達成することができる。一方、上限を下回ることで、第2レンズでの収差補正を像側面に偏ることなく、両面でバランスよく補正することができる。  Conditional expression (4) is a conditional expression for appropriately setting the aberration correction in the second lens and the size in the lens radial direction. When the value of conditional expression (4) exceeds the lower limit, the lens diameter of the second lens can be appropriately maintained, and the size reduction of the entire lens system in the radial direction can be achieved. On the other hand, by being below the upper limit, the aberration correction by the second lens can be corrected in a balanced manner on both sides without being biased toward the image side surface.

前記基本構成において、以下の条件式(5)を満足することが望ましく、以下の条件式(5a)を満足することがより望ましく、以下の条件式(5b)を満足することが更に望ましい。  In the basic configuration, it is preferable that the following conditional expression (5) is satisfied, it is more preferable that the following conditional expression (5a) is satisfied, and it is more preferable that the following conditional expression (5b) is satisfied.
0.06<t10/f<0.16 …(5)0.06 <t10 / f <0.16 (5)
0.09<t10/f<0.14 …(5a)0.09 <t10 / f <0.14 (5a)
0.09<t10/f≦0.115 …(5b)0.09 <t10 / f ≦ 0.115 (5b)
但し、However,
f:全系の焦点距離f: Focal length of the entire system
t10:前記第5レンズの軸上厚みt10: axial thickness of the fifth lens
である。It is.

条件式(5)は第5レンズの軸上厚みを適切に設定し、撮像レンズの像面性を適切に達成するための条件式である。条件式(5)の値が範囲内に入ることで、撮像レンズの像面性がオーバー側やアンダー側に倒れ過ぎるのを防ぐことができる。  Conditional expression (5) is a conditional expression for appropriately setting the axial thickness of the fifth lens and appropriately achieving the image plane property of the imaging lens. When the value of conditional expression (5) falls within the range, it is possible to prevent the image plane property of the imaging lens from falling too much toward the over side or the under side.

前記基本構成において、第4レンズの像側面を、光軸から周辺に行くに従って負の屈折力が弱くなり、また変曲点を有する非球面形状とすることで、像側光束のテレセントリック特性が確保し易くなる。また、第3レンズの像側面は、レンズ周辺部で過度に負の屈折力を弱くする必要がなくなり、軸外収差を良好に補正することが可能となる。ここで、「変曲点」とは有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面が光軸と垂直な平面となるような非球面上の点のことである。 In the above basic configuration, the image side surface of the fourth lens has an aspherical shape in which the negative refractive power becomes weaker as it goes from the optical axis to the periphery, and the telecentric characteristic of the image side light beam is ensured. It becomes easy to do. Further, the image side surface of the third lens does not need to excessively weaken the negative refractive power at the periphery of the lens, and the off-axis aberration can be corrected well. Here, the “inflection point” is a point on the aspheric surface where the tangent plane of the aspherical vertex is a plane perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.

近年では、固体撮像装置全体の小型化を目的とし、同じ画素数の固体撮像素子であっても、画素ピッチが小さく、結果として撮像面サイズの小さいものが開発されている。このような撮像面サイズの小さい固体撮像素子向けの撮像レンズは、全系の焦点距離を比較的に短くする必要があるため、各レンズの曲率半径や外径がかなり小さくなってしまう。従って、手間のかかる研磨加工により製造するガラスレンズと比較すれば、全てのレンズを、射出成形により製造されるプラスチックレンズで構成することにより、曲率半径や外径の小さなレンズであっても安価に大量生産が可能となる。また、プラスチックレンズはプレス温度を低くできることから、成形金型の損耗を抑えることができ、その結果、成形金型の交換回数やメンテナンス回数を減少させ、コスト低減を図ることができる。 In recent years, for the purpose of downsizing the entire solid-state imaging device, even a solid-state imaging device having the same number of pixels has been developed with a small pixel pitch and consequently a small imaging surface size. In such an imaging lens for a solid-state imaging device having a small imaging surface size, it is necessary to relatively shorten the focal length of the entire system, so that the curvature radius and the outer diameter of each lens are considerably reduced. Therefore, compared to glass lenses manufactured by time-consuming polishing, all lenses are made of plastic lenses manufactured by injection molding, so that even lenses with small radii of curvature and outer diameters are inexpensive. Mass production is possible. In addition, since the plastic lens can lower the press temperature, it is possible to suppress the wear of the molding die, and as a result, the number of replacements and maintenance times of the molding die can be reduced, and the cost can be reduced.

以下に本発明の撮像レンズの実施例を示す。各実施例に使用する記号は下記の通りである。   Examples of the imaging lens of the present invention are shown below. Symbols used in each example are as follows.

f :撮像レンズ全系の焦点距離
fB:バックフォーカス
F :Fナンバー
2Y:固体撮像素子の撮像面対角線長
R :曲率半径
D :軸上面間隔
Nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
また、各実施例において、各面番号の後に「*」が記載されている面は非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸を取り、光軸と垂直方向の高さをhとして以下の「数1」で表す。
f: Focal length of the entire imaging lens fB: Back focus F: F number 2Y: Diagonal length of the imaging surface of the solid-state imaging device R: Radius of curvature D: Spacing on the axis Nd: Refractive index of lens material with respect to d-line νd: Lens material Further, in each example, the surface described with “*” after each surface number is a surface having an aspherical shape, and the aspherical shape has an apex at the surface as the origin and the optical axis direction. Is expressed by the following “Equation 1” where the height in the direction perpendicular to the optical axis is h.

Figure 0005428240
Figure 0005428240

但し、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
また、非球面係数において、10のべき乗数(たとえば2.5×10−02)をE(例えば2.5E−02)を用いて表すものとする。
(実施例1)
全体諸元を以下に示す。
However,
Ai: i-th order aspheric coefficient R: radius of curvature K: conic constant Further, in the aspheric coefficient, a power of 10 (for example, 2.5 × 10 −02 ) is used by E (for example, 2.5E-02). It shall represent.
Example 1
The overall specifications are shown below.

f=5.949mm
fB=0.500mm
F=2.2
2Y=7.2mm
面データを以下に示す。
面番号 R(mm) D(mm) Nd νd
1(絞り) ∞ 0.000
2(*) 3.848 1.744 1.5305 55.7
3(*) -2.939 0.050
4(*) -84.372 0.786 1.5834 30.2
5(*) 2.319 0.760
6(*) -11.368 1.448 1.5305 55.7
7(*) -1.845 0.100
8(*) 4.263 0.650 1.5305 55.7
9(*) 1.739 0.368
10(*) 7.872 0.650 1.5305 55.7
11(*) 3.415 0.624
12 ∞ 0.300 1.5168 64.2
13 ∞
なお、全てのレンズはプラスチック材料から形成されている。
f = 5.949mm
fB = 0.500mm
F = 2.2
2Y = 7.2mm
The surface data is shown below.
Surface number R (mm) D (mm) Nd νd
1 (aperture) ∞ 0.000
2 (*) 3.848 1.744 1.5305 55.7
3 (*) -2.939 0.050
4 (*) -84.372 0.786 1.5834 30.2
5 (*) 2.319 0.760
6 (*) -11.368 1.448 1.5305 55.7
7 (*) -1.845 0.100
8 (*) 4.263 0.650 1.5305 55.7
9 (*) 1.739 0.368
10 (*) 7.872 0.650 1.5305 55.7
11 (*) 3.415 0.624
12 ∞ 0.300 1.5168 64.2
13 ∞
All the lenses are made of a plastic material.

非球面係数を以下に示す。
第2面
K=-0.59210E+00,A4=-0.56653E-02,A6=0.15475E-03,A8=-0.19293E-02,A10=0.12381E-03
第3面
K=-0.19350E+01,A4=-0.12540E-02,A6=-0.77825E-02,A8=0.27710E-02,A10=-0.53117E-03
第4面
K=0.22939E+04,A4=-0.29649E-01,A6=0.11868E-02,A8=0.31394E-02,A10=-0.58894E-03
第5面
K=-0.24719E+01,A4=-0.13764E-01,A6=0.47263E-02,A8=-0.12221E-03,
A10=0.21429E-03,A12=-0.58986E-04
第6面
K=0.11026E+02,A4=0.26380E-01,A6=-0.86116E-02,A8=0.19403E-02,
A10=-0.20520E-03,A12=0.13618E-04
第7面
K=-0.45605E+01,A4=-0.17547E-01,A6=0.43663E-02,A8=-0.87483E-03,
A10=0.15770E-03,A12=-0.10199E-04
第8面
K=-0.34613E+01,A4=-0.49284E-01,A6=0.56693E-02,A8=-0.17679E-03,
A10=-0.18418E-04,A12=0.93104E-06
第9面
K=-0.43249E+01,A4=-0.23758E-01,A6=0.37364E-02,A8=-0.47059E-03,
A10=0.30634E-04,A12=-0.89096E-06
第10面
K=-0.11231E+02,A4=-0.42865E-02,A6=0.43380E-04,A8=0.17022E-04,
A10=0.59641E-06,A12=-0.48186E-07
第11面
K=-0.14983E+02,A4=-0.10336E-01,A6=0.67881E-03,A8=-0.55582E-05,
A10=-0.47360E-06,A12=0.41243E-07
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.449
2 4 -3.855
3 6 3.943
4 8 -6.078
5 10 -11.978
各条件式に対応する値を以下に示す。
The aspheric coefficient is shown below.
Second side
K = -0.59210E + 00, A4 = -0.56653E-02, A6 = 0.15475E-03, A8 = -0.19293E-02, A10 = 0.12381E-03
Third side
K = -0.19350E + 01, A4 = -0.12540E-02, A6 = -0.77825E-02, A8 = 0.27710E-02, A10 = -0.53117E-03
4th page
K = 0.22939E + 04, A4 = -0.29649E-01, A6 = 0.11868E-02, A8 = 0.31394E-02, A10 = -0.58894E-03
5th page
K = -0.24719E + 01, A4 = -0.13764E-01, A6 = 0.47263E-02, A8 = -0.12221E-03,
A10 = 0.21429E-03, A12 = -0.58986E-04
6th page
K = 0.11026E + 02, A4 = 0.26380E-01, A6 = -0.86116E-02, A8 = 0.19403E-02,
A10 = -0.20520E-03, A12 = 0.13618E-04
7th page
K = -0.45605E + 01, A4 = -0.17547E-01, A6 = 0.43663E-02, A8 = -0.87483E-03,
A10 = 0.15770E-03, A12 = -0.10199E-04
8th page
K = -0.34613E + 01, A4 = -0.49284E-01, A6 = 0.56693E-02, A8 = -0.17679E-03,
A10 = -0.18418E-04, A12 = 0.93104E-06
9th page
K = -0.43249E + 01, A4 = -0.23758E-01, A6 = 0.37364E-02, A8 = -0.47059E-03,
A10 = 0.30634E-04, A12 = -0.89096E-06
10th page
K = -0.11231E + 02, A4 = -0.42865E-02, A6 = 0.43380E-04, A8 = 0.17022E-04,
A10 = 0.59641E-06, A12 = -0.48186E-07
11th page
K = -0.14983E + 02, A4 = -0.10336E-01, A6 = 0.67881E-03, A8 = -0.55582E-05,
A10 = -0.47360E-06, A12 = 0.41243E-07
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.449
2 4 -3.855
3 6 3.943
4 8 -6.078
5 10 -11.978
The values corresponding to each conditional expression are shown below.

ν4=55.7
f/f1=1.725
f/f2=−1.543
(R3+R4)/(R3−R4)=0.947
t10/f=0.109
図1は実施例1の撮像レンズの断面図である。図中、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図2は実施例1の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
(実施例2)
全体諸元を以下に示す。
ν4 = 55.7
f / f1 = 1.725
f / f2 = −1.543
(R3 + R4) / (R3-R4) = 0.947
t10 / f = 0.109
1 is a cross-sectional view of the imaging lens of Example 1. FIG. In the figure, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, L5 is a fifth lens, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 2 is an aberration diagram (spherical aberration, astigmatism, distortion) of the imaging lens of Example 1.
(Example 2)
The overall specifications are shown below.

f=5.629mm
fB=0.500mm
F=2.2
2Y=7.2mm
面データを以下に示す。
面番号 R(mm) D(mm) Nd νd
1(絞り) ∞ 0.000
2(*) 4.487 1.733 1.5305 55.7
3(*) -2.892 0.100
4(*) -27.229 0.953 1.5834 30.2
5(*) 2.590 0.659
6(*) -16.884 1.436 1.5305 55.7
7(*) -2.414 0.100
8(*) 3.142 0.600 1.5305 55.7
9(*) 1.762 0.334
10(*) 2.462 0.600 1.5305 55.7
11(*) 1.994 0.685
12 ∞ 0.300 1.5168 64.2
13 ∞
なお、全てのレンズはプラスチック材料から形成されている。
f = 5.629 mm
fB = 0.500mm
F = 2.2
2Y = 7.2mm
The surface data is shown below.
Surface number R (mm) D (mm) Nd νd
1 (aperture) ∞ 0.000
2 (*) 4.487 1.733 1.5305 55.7
3 (*) -2.892 0.100
4 (*) -27.229 0.953 1.5834 30.2
5 (*) 2.590 0.659
6 (*) -16.884 1.436 1.5305 55.7
7 (*) -2.414 0.100
8 (*) 3.142 0.600 1.5305 55.7
9 (*) 1.762 0.334
10 (*) 2.462 0.600 1.5305 55.7
11 (*) 1.994 0.685
12 ∞ 0.300 1.5168 64.2
13 ∞
All the lenses are made of a plastic material.

非球面係数を以下に示す。
第2面
K=-0.14770E+01,A4=-0.57769E-02,A6=-0.15662E-02,A8=-0.83629E-03,
A10=-0.11239E-03
第3面
K=-0.13531E+01,A4=-0.27407E-02,A6=-0.49698E-02,A8=0.13375E-02,A10=-0.27696E-03
第4面
K=0.30000E+02,A4=-0.22845E-01,A6=0.65590E-03,A8=0.16894E-02,A10=-0.23691E-03
第5面
K=-0.25176E+01,A4=-0.97960E-02,A6=0.27368E-02,A8=-0.24306E-03,
A10=0.91554E-04,A12=-0.12528E-04
第6面
K=-0.61130E+01,A4=0.21094E-01,A6=-0.52670E-02,A8=0.10117E-02,
A10=-0.83043E-04,A12=0.55844E-05
第7面
K=-0.34732E+01,A4=-0.11227E-01,A6=0.28221E-02,A8=-0.43003E-03,
A10=0.79132E-04,A12=-0.79038E-06
第8面
K=-0.43887E+01,A4=-0.36756E-01,A6=0.34840E-02,A8=-0.12406E-03,
A10=-0.10210E-04,A12=0.82727E-06
第9面
K=-0.39343E+01,A4=-0.19770E-01,A6=0.20377E-02,A8=-0.23156E-03,
A10=0.13159E-04,A12=-0.26279E-06
第10面
K=-0.10236E+02,A4=-0.13594E-01,A6=0.44884E-03,A8=0.36946E-04,
A10=0.70507E-06,A12=-0.13431E-06
第11面
K=-0.62333E+01,A4=-0.13741E-01,A6=0.32070E-03,A8=0.31411E-04,A10=0.50738E-06,
A12=-0.10341E-06
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.609
2 4 -4.007
3 6 5.134
4 8 -8.902
5 10 -35.597
各条件式に対応する値を以下に示す。
The aspheric coefficient is shown below.
Second side
K = -0.14770E + 01, A4 = -0.57769E-02, A6 = -0.15662E-02, A8 = -0.83629E-03,
A10 = -0.11239E-03
Third side
K = -0.13531E + 01, A4 = -0.27407E-02, A6 = -0.49698E-02, A8 = 0.13375E-02, A10 = -0.27696E-03
4th page
K = 0.30000E + 02, A4 = -0.22845E-01, A6 = 0.65590E-03, A8 = 0.16894E-02, A10 = -0.23691E-03
5th page
K = -0.25176E + 01, A4 = -0.97960E-02, A6 = 0.27368E-02, A8 = -0.24306E-03,
A10 = 0.91554E-04, A12 = -0.12528E-04
6th page
K = -0.61130E + 01, A4 = 0.21094E-01, A6 = -0.52670E-02, A8 = 0.10117E-02,
A10 = -0.83043E-04, A12 = 0.55844E-05
7th page
K = -0.34732E + 01, A4 = -0.11227E-01, A6 = 0.28221E-02, A8 = -0.43003E-03,
A10 = 0.79132E-04, A12 = -0.79038E-06
8th page
K = -0.43887E + 01, A4 = -0.36756E-01, A6 = 0.34840E-02, A8 = -0.12406E-03,
A10 = -0.10210E-04, A12 = 0.82727E-06
9th page
K = -0.39343E + 01, A4 = -0.19770E-01, A6 = 0.20377E-02, A8 = -0.23156E-03,
A10 = 0.13159E-04, A12 = -0.26279E-06
10th page
K = -0.10236E + 02, A4 = -0.13594E-01, A6 = 0.44884E-03, A8 = 0.36946E-04,
A10 = 0.70507E-06, A12 = -0.13431E-06
11th page
K = -0.62333E + 01, A4 = -0.13741E-01, A6 = 0.32070E-03, A8 = 0.31411E-04, A10 = 0.50738E-06,
A12 = -0.10341E-06
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.609
2 4 -4.007
3 6 5.134
4 8 -8.902
5 10 -35.597
The values corresponding to each conditional expression are shown below.

ν4=55.7
f/f1=1.560
f/f2=−1.405
(R3+R4)/(R3−R4)=0.826
t10/f=0.107
図3は実施例2の撮像レンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図4は実施例2の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
(実施例3)
全体諸元を以下に示す。
ν4 = 55.7
f / f1 = 1.560
f / f2 = −1.405
(R3 + R4) / (R3-R4) = 0.826
t10 / f = 0.107
FIG. 3 is a cross-sectional view of the imaging lens of the second embodiment. In the figure, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, L5 is a fifth lens, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 4 is an aberration diagram (spherical aberration, astigmatism, distortion) of the imaging lens of Example 2.
(Example 3)
The overall specifications are shown below.

f=5.200mm
fB=0.500mm
F=2.2
2Y=7.2mm
面データを以下に示す。
面番号 R(mm) D(mm) Nd νd
1(絞り) ∞ 0.000
2(*) 3.818 1.619 1.5305 55.7
3(*) -2.685 0.062
4(*) -9.830 0.837 1.5834 30.2
5(*) 2.844 0.680
6(*) -6.511 1.261 1.5305 55.7
7(*) -1.953 0.050
8(*) 2.847 0.600 1.5305 55.7
9(*) 1.728 0.247
10(*) 2.504 0.600 1.5305 55.7
11(*) 1.862 0.740
12 ∞ 0.300 1.5168 64.2
13 ∞
なお、全てのレンズはプラスチック材料から形成されている。
f = 5.200mm
fB = 0.500mm
F = 2.2
2Y = 7.2mm
The surface data is shown below.
Surface number R (mm) D (mm) Nd νd
1 (aperture) ∞ 0.000
2 (*) 3.818 1.619 1.5305 55.7
3 (*) -2.685 0.062
4 (*) -9.830 0.837 1.5834 30.2
5 (*) 2.844 0.680
6 (*) -6.511 1.261 1.5305 55.7
7 (*) -1.953 0.050
8 (*) 2.847 0.600 1.5305 55.7
9 (*) 1.728 0.247
10 (*) 2.504 0.600 1.5305 55.7
11 (*) 1.862 0.740
12 ∞ 0.300 1.5168 64.2
13 ∞
All the lenses are made of a plastic material.

非球面係数を以下に示す。
第2面
K=-0.10256E+01,A4=-0.48351E-02,A6=-0.27601E-02,A8=-0.41626E-03,
A10=-0.62403E-03
第3面
K=-0.96216E+00,A4=-0.42254E-02,A6=-0.59181E-02,A8=0.17037E-02,A10=-0.46446E-03
第4面
K=0.20443E+02,A4=-0.30036E-01,A6=0.24382E-02,A8=0.18604E-02,A10=-0.12427E-03
第5面
K=-0.35691E+01,A4=-0.90071E-02,A6=0.31872E-02,A8=-0.38993E-03,
A10=0.88658E-04,A12=-0.51420E-05
第6面
K=-0.30269E+01,A4=0.23636E-01,A6=-0.75619E-02,A8=0.11000E-02,
A10=-0.30408E-04,A12=-0.11264E-04
第7面
K=-0.21070E+01,A4=-0.82588E-02,A6=0.23338E-02,A8=-0.74860E-03,
A10=0.13866E-03,A12=-0.31432E-06
第8面
K=-0.44235E+01,A4=-0.37339E-01,A6=0.35759E-02,A8=-0.84348E-04,
A10=-0.83679E-05,A12=0.45025E-06
第9面
K=-0.39589E+01,A4=-0.20259E-01,A6=0.21464E-02,A8=-0.23547E-03,
A10=0.13610E-04,A12=-0.31509E-06
第10面
K=-0.13150E+02,A4=-0.84996E-02,A6=0.61261E-03,A8=-0.15591E-04,
A10=0.58399E-06,A12=0.10743E-07
第11面
K=-0.65023E+01,A4=-0.13867E-01,A6=0.93903E-03,A8=-0.96760E-05,
A10=-0.20072E-05,A12=0.11702E-06
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.252
2 4 -3.691
3 6 4.800
4 8 -10.179
5 10 -20.246
各条件式に対応する値を以下に示す。
The aspheric coefficient is shown below.
Second side
K = -0.10256E + 01, A4 = -0.48351E-02, A6 = -0.27601E-02, A8 = -0.41626E-03,
A10 = -0.62403E-03
Third side
K = -0.96216E + 00, A4 = -0.42254E-02, A6 = -0.59181E-02, A8 = 0.17037E-02, A10 = -0.46446E-03
4th page
K = 0.20443E + 02, A4 = -0.30036E-01, A6 = 0.24382E-02, A8 = 0.18604E-02, A10 = -0.12427E-03
5th page
K = -0.35691E + 01, A4 = -0.90071E-02, A6 = 0.31872E-02, A8 = -0.38993E-03,
A10 = 0.88658E-04, A12 = -0.51420E-05
6th page
K = -0.30269E + 01, A4 = 0.23636E-01, A6 = -0.75619E-02, A8 = 0.11000E-02,
A10 = -0.30408E-04, A12 = -0.11264E-04
7th page
K = -0.21070E + 01, A4 = -0.82588E-02, A6 = 0.23338E-02, A8 = -0.74860E-03,
A10 = 0.13866E-03, A12 = -0.31432E-06
8th page
K = -0.44235E + 01, A4 = -0.37339E-01, A6 = 0.35759E-02, A8 = -0.84348E-04,
A10 = -0.83679E-05, A12 = 0.45025E-06
9th page
K = -0.39589E + 01, A4 = -0.20259E-01, A6 = 0.21464E-02, A8 = -0.23547E-03,
A10 = 0.13610E-04, A12 = -0.31509E-06
10th page
K = -0.13150E + 02, A4 = -0.84996E-02, A6 = 0.61261E-03, A8 = -0.15591E-04,
A10 = 0.58399E-06, A12 = 0.10743E-07
11th page
K = -0.65023E + 01, A4 = -0.13867E-01, A6 = 0.93903E-03, A8 = -0.96760E-05,
A10 = -0.20072E-05, A12 = 0.11702E-06
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.252
2 4 -3.691
3 6 4.800
4 8 -10.179
5 10 -20.246
The values corresponding to each conditional expression are shown below.

ν4=55.7
f/f1=1.599
f/f2=−1.409
(R3+R4)/(R3−R4)=0.551
t10/f=0.115
図5は実施例3の撮像レンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図6は実施例3の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
(実施例4)
全体諸元を以下に示す。
ν4 = 55.7
f / f1 = 1.599
f / f2 = -1.409
(R3 + R4) / (R3-R4) = 0.551
t10 / f = 0.115
FIG. 5 is a cross-sectional view of the imaging lens of the third embodiment. In the figure, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, L5 is a fifth lens, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 6 is an aberration diagram (spherical aberration, astigmatism, distortion) of the imaging lens of Example 3.
Example 4
The overall specifications are shown below.

f=4.800mm
fB=0.500mm
F=2.2
2Y=7.2mm
面データを以下に示す。
面番号 R(mm) D(mm) Nd νd
1(絞り) ∞ 0.000
2(*) 5.042 1.619 1.5305 55.7
3(*) -2.107 0.050
4(*) -9.768 0.887 1.5834 30.2
5(*) 2.373 0.428
6(*) -15.724 1.572 1.5305 55.7
7(*) -1.791 0.050
8(*) 5.773 0.600 1.5305 55.7
9(*) 2.127 0.050
10(*) 1.813 0.600 1.5305 55.7
11(*) 1.483 0.865
12 ∞ 0.300 1.5168 64.2
13 ∞
なお、全てのレンズはプラスチック材料から形成されている。
f = 4.800mm
fB = 0.500mm
F = 2.2
2Y = 7.2mm
The surface data is shown below.
Surface number R (mm) D (mm) Nd νd
1 (aperture) ∞ 0.000
2 (*) 5.042 1.619 1.5305 55.7
3 (*) -2.107 0.050
4 (*) -9.768 0.887 1.5834 30.2
5 (*) 2.373 0.428
6 (*) -15.724 1.572 1.5305 55.7
7 (*) -1.791 0.050
8 (*) 5.773 0.600 1.5305 55.7
9 (*) 2.127 0.050
10 (*) 1.813 0.600 1.5305 55.7
11 (*) 1.483 0.865
12 ∞ 0.300 1.5168 64.2
13 ∞
All the lenses are made of a plastic material.

非球面係数を以下に示す。
第2面
K=-0.34623E+01,A4=-0.72868E-02,A6=-0.26917E-02,A8=-0.17267E-02,
A10=-0.26025E-03
第3面
K=-0.18608E+01,A4=0.17507E-02,A6=-0.93875E-02,A8=0.17788E-02,A10=-0.30151E-03
第4面
K=0.30000E+02,A4=-0.32528E-01,A6=0.92324E-02,A8=-0.16155E-02,A10=0.63142E-03
第5面
K=-0.56742E+01,A4=-0.26156E-02,A6=0.29424E-02,A8=-0.10067E-02,
A10=0.21960E-03,A12=-0.18639E-04
第6面
K=-0.30000E+02,A4=0.29410E-01,A6=-0.57243E-02,A8=0.98623E-03,
A10=-0.55392E-04,A12=-0.24518E-05
第7面
K=-0.18950E+01,A4=-0.21965E-02,A6=0.12653E-02,A8=-0.46558E-03,
A10=0.12542E-03,A12=-0.31432E-06
第8面
K=-0.44235E+01,A4=-0.37339E-01,A6=0.35759E-02,A8=-0.84348E-04,
A10=-0.33832E-04,A12=0.45025E-06
第9面
K=-0.52362E+01,A4=-0.20259E-01,A6=0.20932E-02,A8=-0.23547E-03,
A10=0.13610E-04,A12=-0.31509E-06
第10面
K=-0.63617E+01,A4=-0.84996E-02,A6=-0.75293E-03,A8=0.73259E-04,
A10=0.58399E-06,A12=0.10743E-07
第11面
K=-0.45386E+01,A4=-0.14863E-01,A6=0.16385E-02,A8=-0.24424E-03,
A10=0.15782E-04,A12=-0.26624E-06
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.040
2 4 -3.187
3 6 3.667
4 8 -6.730
5 10 -41.501
各条件式に対応する値を以下に示す。
The aspheric coefficient is shown below.
Second side
K = -0.34623E + 01, A4 = -0.72868E-02, A6 = -0.26917E-02, A8 = -0.17267E-02,
A10 = -0.26025E-03
Third side
K = -0.18608E + 01, A4 = 0.17507E-02, A6 = -0.93875E-02, A8 = 0.17788E-02, A10 = -0.30151E-03
4th page
K = 0.30000E + 02, A4 = -0.32528E-01, A6 = 0.92324E-02, A8 = -0.16155E-02, A10 = 0.63142E-03
5th page
K = -0.56742E + 01, A4 = -0.26156E-02, A6 = 0.29424E-02, A8 = -0.10067E-02,
A10 = 0.21960E-03, A12 = -0.18639E-04
6th page
K = -0.30000E + 02, A4 = 0.29410E-01, A6 = -0.57243E-02, A8 = 0.98623E-03,
A10 = -0.55392E-04, A12 = -0.24518E-05
7th page
K = -0.18950E + 01, A4 = -0.21965E-02, A6 = 0.12653E-02, A8 = -0.46558E-03,
A10 = 0.12542E-03, A12 = -0.31432E-06
8th page
K = -0.44235E + 01, A4 = -0.37339E-01, A6 = 0.35759E-02, A8 = -0.84348E-04,
A10 = -0.33832E-04, A12 = 0.45025E-06
9th page
K = -0.52362E + 01, A4 = -0.20259E-01, A6 = 0.20932E-02, A8 = -0.23547E-03,
A10 = 0.13610E-04, A12 = -0.31509E-06
10th page
K = -0.63617E + 01, A4 = -0.84996E-02, A6 = -0.75293E-03, A8 = 0.73259E-04,
A10 = 0.58399E-06, A12 = 0.10743E-07
11th page
K = -0.45386E + 01, A4 = -0.14863E-01, A6 = 0.16385E-02, A8 = -0.24424E-03,
A10 = 0.15782E-04, A12 = -0.26624E-06
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.040
2 4 -3.187
3 6 3.667
4 8 -6.730
5 10 -41.501
The values corresponding to each conditional expression are shown below.

ν4=55.7
f/f1=1.579
f/f2=−1.506
(R3+R4)/(R3−R4)=0.609
t10/f=0.125
図7は実施例4の撮像レンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図8は実施例4の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
(実施例5)
全体諸元を以下に示す。
ν4 = 55.7
f / f1 = 1.579
f / f2 = -1.506
(R3 + R4) / (R3-R4) = 0.609
t10 / f = 0.125
FIG. 7 is a sectional view of the imaging lens of Example 4. In the figure, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, L5 is a fifth lens, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 8 is an aberration diagram (spherical aberration, astigmatism, distortion) of the imaging lens of Example 4.
(Example 5)
The overall specifications are shown below.

f=5.950mm
fB=0.500mm
F=2.2
2Y=7.2mm
面データを以下に示す。
面番号 R(mm) D(mm) Nd νd
1(絞り) ∞ 0.000
2(*) 3.836 1.894 1.5305 55.7
3(*) -2.959 0.050
4(*) -96.943 0.740 1.5834 30.2
5(*) 2.379 0.727
6(*) -8.928 1.377 1.5305 55.7
7(*) -1.782 0.100
8(*) 4.446 0.650 1.5305 55.7
9(*) 1.749 0.403
10(*) 7.452 0.650 1.5305 55.7
11(*) 3.306 0.608
12 ∞ 0.300 1.5168 64.2
13 ∞
なお、全てのレンズはプラスチック材料から形成されている。
f = 5.950mm
fB = 0.500mm
F = 2.2
2Y = 7.2mm
The surface data is shown below.
Surface number R (mm) D (mm) Nd νd
1 (aperture) ∞ 0.000
2 (*) 3.836 1.894 1.5305 55.7
3 (*) -2.959 0.050
4 (*) -96.943 0.740 1.5834 30.2
5 (*) 2.379 0.727
6 (*) -8.928 1.377 1.5305 55.7
7 (*) -1.782 0.100
8 (*) 4.446 0.650 1.5305 55.7
9 (*) 1.749 0.403
10 (*) 7.452 0.650 1.5305 55.7
11 (*) 3.306 0.608
12 ∞ 0.300 1.5168 64.2
13 ∞
All the lenses are made of a plastic material.

非球面係数を以下に示す。
第2面
K=-0.41347E+00,A4=-0.52824E-02,A6=0.52405E-03,A8=-0.15226E-02,A10=0.83977E-04
第3面
K=-0.23712E+01,A4=-0.32100E-03,A6=-0.79654E-02,A8=0.27564E-02,A10=-0.45081E-03
第4面
K=0.27446E+04,A4=-0.30176E-01,A6=0.74490E-03,A8=0.31270E-02,A10=-0.56314E-03
第5面
K=-0.26815E+01,A4=-0.14226E-01,A6=0.46278E-02,A8=-0.17638E-03,
A10=0.21144E-03,A12=-0.51014E-04
第6面
K=0.90448E+01,A4=0.27613E-01,A6=-0.86836E-02,A8=0.19101E-02,
A10=-0.20342E-03,A12=0.17303E-04
第7面
K=-0.43827E+01,A4=-0.19366E-01,A6=0.44588E-02,A8=-0.86555E-03,
A10=0.15756E-03,A12=-0.10791E-04
第8面
K=-0.22525E+01,A4=-0.49664E-01,A6=0.55412E-02,A8=-0.17798E-03,
A10=-0.19699E-04,A12=0.34330E-06
第9面
K=-0.45423E+01,A4=-0.24632E-01,A6=0.38320E-02,A8=-0.48017E-03,
A10=0.30175E-04,A12=-0.82044E-06
第10面
K=-0.33332E+02,A4=-0.50707E-02,A6=0.87549E-04,A8=0.20687E-04,
A10=0.74982E-06,A12=-0.45919E-07
第11面
K=-0.14958E+02,A4=-0.11428E-01,A6=0.68932E-03,A8=-0.57292E-05,
A10=-0.41947E-06,A12=0.58520E-07
単レンズデータを以下に示す。
レンズ 始面 焦点距離(mm)
1 2 3.486
2 4 -3.969
3 6 3.935
4 8 -5.933
5 10 -11.845
各条件式に対応する値を以下に示す。
The aspheric coefficient is shown below.
Second side
K = -0.41347E + 00, A4 = -0.52824E-02, A6 = 0.52405E-03, A8 = -0.15226E-02, A10 = 0.83977E-04
Third side
K = -0.23712E + 01, A4 = -0.32100E-03, A6 = -0.79654E-02, A8 = 0.27564E-02, A10 = -0.45081E-03
4th page
K = 0.27446E + 04, A4 = -0.30176E-01, A6 = 0.74490E-03, A8 = 0.31270E-02, A10 = -0.56314E-03
5th page
K = -0.26815E + 01, A4 = -0.14226E-01, A6 = 0.46278E-02, A8 = -0.17638E-03,
A10 = 0.21144E-03, A12 = -0.51014E-04
6th page
K = 0.90448E + 01, A4 = 0.27613E-01, A6 = -0.86836E-02, A8 = 0.19101E-02,
A10 = -0.20342E-03, A12 = 0.17303E-04
7th page
K = -0.43827E + 01, A4 = -0.19366E-01, A6 = 0.44588E-02, A8 = -0.86555E-03,
A10 = 0.15756E-03, A12 = -0.10791E-04
8th page
K = -0.22525E + 01, A4 = -0.49664E-01, A6 = 0.55412E-02, A8 = -0.17798E-03,
A10 = -0.19699E-04, A12 = 0.34330E-06
9th page
K = -0.45423E + 01, A4 = -0.24632E-01, A6 = 0.38320E-02, A8 = -0.48017E-03,
A10 = 0.30175E-04, A12 = -0.82044E-06
10th page
K = -0.33332E + 02, A4 = -0.50707E-02, A6 = 0.87549E-04, A8 = 0.20687E-04,
A10 = 0.74982E-06, A12 = -0.45919E-07
11th page
K = -0.14958E + 02, A4 = -0.11428E-01, A6 = 0.68932E-03, A8 = -0.57292E-05,
A10 = -0.41947E-06, A12 = 0.58520E-07
Single lens data is shown below.
Lens Start surface Focal length (mm)
1 2 3.486
2 4 -3.969
3 6 3.935
4 8 -5.933
5 10 -11.845
The values corresponding to each conditional expression are shown below.

ν4=55.7
f/f1=1.707
f/f2=−1.499
(R3+R4)/(R3−R4)=0.952
t10/f=0.109
図9は実施例5の撮像レンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図10は実施例5の撮像レンズの収差図(球面収差、非点収差、歪曲収差)である。
ν4 = 55.7
f / f1 = 1.707
f / f2 = −1.499
(R3 + R4) / (R3-R4) = 0.952
t10 / f = 0.109
FIG. 9 is a sectional view of the imaging lens of Example 5. In the figure, L1 is a first lens, L2 is a second lens, L3 is a third lens, L4 is a fourth lens, L5 is a fifth lens, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 10 is an aberration diagram (spherical aberration, astigmatism, distortion) of the imaging lens of Example 5.

ここで、プラスチック材料は温度変化時の屈折率変化が大きいため、第1レンズから第5レンズの全てをプラスチックレンズで構成すると、周囲温度が変化した際に、撮像レンズ全系の像点位置が変動してしまうという問題を抱えてしまう。   Here, since the plastic material has a large refractive index change when the temperature changes, if all of the first lens to the fifth lens are made of plastic lenses, the image point position of the entire imaging lens system changes when the ambient temperature changes. I have the problem of fluctuating.

そこで最近では、プラスチック材料中に無機微粒子を混合させ、プラスチック材料の温度変化を小さくできることが分かってきた。詳細に説明すると、一般に透明なプラスチック材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。プラスチック材料は温度が上昇することにより屈折率が低下してしまうが、無機粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにすることができる。具体的には、母材となるプラスチック材料に最大長が20ナノメートル以下の無機粒子を分散させることにより、屈折率の温度依存性のきわめて低いプラスチック材料となる。例えばアクリルに酸化ニオブ(Nb)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。本発明において、比較的屈折力の大きな正レンズ(L1,L3)、または全てのレンズ(L1〜L5)に、このような無機粒子を分散させたプラスチック材料を用いることにより、撮像レンズ全系の温度変化時の像点位置変動を小さく抑えることが可能となる。 Therefore, recently, it has been found that inorganic fine particles can be mixed in a plastic material to reduce the temperature change of the plastic material. More specifically, mixing fine particles with a transparent plastic material generally causes light scattering and lowers the transmittance, so it was difficult to use as an optical material. By making it smaller than the wavelength, it is possible to substantially prevent scattering. The refractive index of the plastic material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is possible to make almost no change in the refractive index by using these temperature dependencies so as to cancel each other. Specifically, by dispersing inorganic particles having a maximum length of 20 nanometers or less in a plastic material as a base material, a plastic material with extremely low temperature dependency of the refractive index is obtained. For example, by dispersing fine particles of niobium oxide (Nb 2 O 5 ) in acrylic, the refractive index change due to temperature change can be reduced. In the present invention, a plastic material in which such inorganic particles are dispersed is used for the positive lenses (L1, L3) or all the lenses (L1 to L5) having a relatively large refractive power. It is possible to suppress the image point position fluctuation at the time of temperature change to be small.

なお、本実施例は、固体撮像素子の撮像面に入射する光束の主光線入射角については、撮像面周辺部において必ずしも十分小さい設計になっていない。しかし、最近の技術では、固体撮像素子の色フィルタやオンチップマイクロレンズアレイの配列の見直しによって、シェーディングを軽減することができるようになってきた。具体的には撮像素子の撮像面の画素ピッチに対し、色フィルタやオンチップマイクロレンズアレイの配列のピッチをわずかに小さく設定すれば、撮像面の周辺部にいくほど各画素に対し色フィルタやオンチップマイクロレンズアレイが撮像レンズ光軸側へシフトするため、斜入射の光束を効率的に各画素の受光部に導くことができる。これにより固体撮像素子で発生するシェーディングを小さく抑えることができる。本実施例は、前記要求が緩和された分について、より小型化を目指した設計例となっている。   In the present embodiment, the chief ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily designed to be sufficiently small at the periphery of the imaging surface. However, recent techniques have made it possible to reduce shading by reviewing the arrangement of the color filters of the solid-state imaging device and the on-chip microlens array. Specifically, if the pitch of the arrangement of the color filters and the on-chip microlens array is set slightly smaller than the pixel pitch of the image pickup surface of the image pickup device, the color filter or Since the on-chip microlens array is shifted to the optical axis side of the imaging lens, the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel. Thereby, the shading which generate | occur | produces with a solid-state image sensor can be restrained small. The present embodiment is a design example aiming at further miniaturization with respect to the portion where the requirement is relaxed.

実施例1の撮像レンズの断面図である。2 is a cross-sectional view of an imaging lens of Example 1. FIG. 実施例1の撮像レンズの収差図である。FIG. 3 is an aberration diagram of the imaging lens of Example 1. 実施例2の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 2. FIG. 実施例2の撮像レンズの収差図である。6 is an aberration diagram of the imaging lens of Example 2. FIG. 実施例3の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 3. FIG. 実施例3の撮像レンズの収差図である。6 is an aberration diagram of the imaging lens of Example 3. FIG. 実施例4の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 4. FIG. 実施例4の撮像レンズの収差図である。FIG. 6 is an aberration diagram of the imaging lens of Example 4. 実施例5の撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens of Example 5. FIG. 実施例5の撮像レンズの収差図である。FIG. 10 is an aberration diagram of the imaging lens of Example 5.

符号の説明Explanation of symbols

L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
S 開口絞り
I 撮像面
F 平行平板
L1 1st lens L2 2nd lens L3 3rd lens L4 4th lens L5 5th lens S Aperture stop I Imaging surface F Parallel flat plate

Claims (6)

固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、
物体側より順に、正の第1レンズ、負の第2レンズ、正の第3レンズ、負の第4レンズ、及び負の第5レンズからなり、前記第4レンズの像側面は非球面に形成されており、その中心では負の屈折力を有し、周辺に向かうに従い負の屈折力が弱くなり、変曲点を有し、以下の条件式(1),(2)及び(5a)を満足することを特徴とする撮像レンズ。
45<ν4 …(1)
1.45<f/f1<3.4 …(2)
0.09<t10/f<0.14 …(5a)
但し、
ν4:前記第4レンズのアッベ数
f:全系の焦点距離
f1:前記第1レンズの焦点距離
t10:前記第5レンズの軸上厚み
である。
An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device,
In order from the object side, the lens includes a positive first lens, a negative second lens, a positive third lens, a negative fourth lens, and a negative fifth lens, and the image side surface of the fourth lens is formed as an aspherical surface. It has a negative refractive power at its center, the negative refractive power becomes weaker toward the periphery, has an inflection point, and the following conditional expressions (1), (2) and (5a) An imaging lens characterized by satisfaction.
45 <ν4 (1)
1.45 <f / f1 <3.4 (2)
0.09 <t10 / f <0.14 (5a)
However,
ν4: Abbe number of the fourth lens
f: Focal length of the entire system
f1: Focal length of the first lens
t10: axial thickness of the fifth lens
It is.
前記第2レンズは以下の条件式(3)を満足することを特徴とする請求項に記載の撮像レンズ。
−3.0<f/f2<−1.1 …(3)
但し、
f:全系の焦点距離
f2:前記第2レンズの焦点距離
である。
The imaging lens according to claim 1 , wherein the second lens satisfies the following conditional expression (3) .
−3.0 <f / f2 <−1.1 (3)
However,
f: focal length of the entire system f2: focal length of the second lens
It is.
前記第2レンズは以下の条件式(4)を満足することを特徴とする請求項1又は請求項2に記載の撮像レンズ。
0.3<(R3+R4)/(R3−R4)<1.4 …(4)
但し、
R3:前記第2レンズの物体側面の曲率半径
R4:前記第2レンズの像側面の曲率半径
である。
The second lens The imaging lens according to claim 1 or claim 2, characterized by satisfying the following conditional expression (4).
0.3 <(R3 + R4) / (R3-R4) <1.4 (4)
However,
R3: radius of curvature of the object side surface of the second lens R4: radius of curvature of the image side surface of the second lens
It is.
前記第5レンズは以下の条件式(5b)を満足することを特徴とする請求項1〜の何れか1項に記載の撮像レンズ。
0.09<t10/f≦0.115 …(5b)
但し、
f:全系の焦点距離
t10:前記第5レンズの軸上厚み
である。
It said fifth lens is an imaging lens according to any one of claim 1 to 3, characterized by satisfying the following conditional expression (5b).
0.09 <t10 / f ≦ 0.115 (5b)
However,
f: focal length of entire system t10: axial thickness of the fifth lens
It is.
前記第1レンズは以下の条件式(2a)を満足することを特徴とする請求項1〜の何れか1項に記載の撮像レンズ。
1.45<f/f1≦1.725 …(2a)
但し、
f:全系の焦点距離
f1:前記第1レンズの焦点距離
である。
Wherein the first lens is an imaging lens according to any one of claim 1 to 4, characterized by satisfying the following conditional expression (2a).
1.45 <f / f1 ≦ 1.725 (2a)
However,
f: Focal length of the entire system
f1: Focal length of the first lens
It is.
前記撮像レンズは全てプラスチック材料で形成されていることを特徴とする請求項1〜の何れか1項に記載の撮像レンズ。 The imaging lens imaging lens according to any one of claim 1 to 5, characterized in that all are formed of a plastic material.
JP2008212644A 2008-08-21 2008-08-21 Imaging lens Active JP5428240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212644A JP5428240B2 (en) 2008-08-21 2008-08-21 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212644A JP5428240B2 (en) 2008-08-21 2008-08-21 Imaging lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013248918A Division JP2014041388A (en) 2013-12-02 2013-12-02 Imaging lens

Publications (2)

Publication Number Publication Date
JP2010048996A JP2010048996A (en) 2010-03-04
JP5428240B2 true JP5428240B2 (en) 2014-02-26

Family

ID=42066132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212644A Active JP5428240B2 (en) 2008-08-21 2008-08-21 Imaging lens

Country Status (1)

Country Link
JP (1) JP5428240B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160116714A1 (en) * 2014-10-22 2016-04-28 Young Optics Inc. Optical lens
CN110398819A (en) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 Camera optical camera lens
US11435554B2 (en) 2017-10-24 2022-09-06 Zhejiang Sunny Optical Co., Ltd. Imaging lens assembly

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008164A (en) 2010-06-22 2012-01-12 Olympus Corp Imaging optical system and imaging apparatus with the same
KR101171517B1 (en) 2010-06-24 2012-08-06 삼성전기주식회사 Subminiature Optical System
KR101208235B1 (en) 2010-08-23 2012-12-04 삼성전기주식회사 Subminiature Optical System
US8976466B2 (en) 2011-03-11 2015-03-10 Olympus Corporation Imaging optical system and imaging apparatus using the same
JP5644681B2 (en) * 2011-06-03 2014-12-24 コニカミノルタ株式会社 Imaging device and portable terminal
KR101898547B1 (en) * 2011-06-10 2018-10-29 엘지이노텍 주식회사 Imaging lens
JP5750698B2 (en) * 2011-09-01 2015-07-22 株式会社オプトロジック Imaging lens
TWI438476B (en) * 2012-01-12 2014-05-21 Largan Precision Co Ltd Image capturing system
US8964309B2 (en) 2012-03-19 2015-02-24 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
JP2015111174A (en) * 2012-03-28 2015-06-18 富士フイルム株式会社 Imaging lens
JP5985904B2 (en) * 2012-06-29 2016-09-06 カンタツ株式会社 Imaging lens
WO2014050476A1 (en) * 2012-09-25 2014-04-03 コニカミノルタ株式会社 Image pickup lens, image pickup device, and mobile terminal
TWI490536B (en) * 2013-02-06 2015-07-01 玉晶光電股份有限公司 Portable electronic device with its optical imaging lens
CN103412394B (en) * 2013-03-19 2017-05-10 玉晶光电(厦门)有限公司 Portable electronic device and optical imaging lens thereof
WO2014162779A1 (en) * 2013-04-01 2014-10-09 ソニー株式会社 Image pickup lens and image pickup apparatus
JP6144954B2 (en) * 2013-04-22 2017-06-07 カンタツ株式会社 Imaging lens
JP6144973B2 (en) 2013-06-21 2017-06-07 カンタツ株式会社 Imaging lens
KR20150051108A (en) 2013-11-01 2015-05-11 삼성전기주식회사 Lens module
JP2014041388A (en) * 2013-12-02 2014-03-06 Konica Minolta Inc Imaging lens
JP6381261B2 (en) 2014-04-10 2018-08-29 カンタツ株式会社 Imaging lens
KR101578647B1 (en) 2014-08-11 2015-12-18 주식회사 코렌 Photographic Lens Optical System
TWI518360B (en) 2014-08-26 2016-01-21 大立光電股份有限公司 Image capturing optical system, image capturing device and electronic device
CN104898253B (en) * 2015-02-13 2017-07-25 玉晶光电(厦门)有限公司 Portable electron device and its optical imaging lens
CN105676430B (en) * 2016-03-14 2018-05-29 中国科学院西安光学精密机械研究所 Star sensor optical imaging system
CN107315235B (en) * 2017-07-19 2019-11-19 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN107422454B (en) * 2017-07-19 2019-09-13 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN111679411B (en) * 2020-08-12 2020-11-06 诚瑞光学(常州)股份有限公司 Image pickup optical lens
CN113433673B (en) * 2021-07-27 2022-08-16 浙江舜宇光学有限公司 Optical imaging lens

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740219A (en) * 1980-08-22 1982-03-05 Minolta Camera Co Ltd Photographic lens with short length
JPS6059570B2 (en) * 1981-09-11 1985-12-25 キヤノン株式会社 compact photographic lens
JP2551933B2 (en) * 1986-02-07 1996-11-06 ミノルタ株式会社 Lens system
JP3007695B2 (en) * 1989-12-28 2000-02-07 旭光学工業株式会社 Imaging lens
JPH06331889A (en) * 1993-05-19 1994-12-02 Minolta Camera Co Ltd Photographing optical system including plastic lens
JP3414552B2 (en) * 1995-06-06 2003-06-09 オリンパス光学工業株式会社 Zoom lens
JP2001166207A (en) * 1999-05-20 2001-06-22 Konica Corp Zoom lens
JP4139159B2 (en) * 2002-08-05 2008-08-27 株式会社リコー Document reading lens, document reading method and apparatus, and image forming apparatus
JP4847172B2 (en) * 2006-03-28 2011-12-28 富士フイルム株式会社 Imaging lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160116714A1 (en) * 2014-10-22 2016-04-28 Young Optics Inc. Optical lens
US9804363B2 (en) * 2014-10-22 2017-10-31 Young Optics Inc. Optical lens
US11435554B2 (en) 2017-10-24 2022-09-06 Zhejiang Sunny Optical Co., Ltd. Imaging lens assembly
CN110398819A (en) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 Camera optical camera lens

Also Published As

Publication number Publication date
JP2010048996A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5428240B2 (en) Imaging lens
JP5298682B2 (en) Imaging lens
JP4947423B2 (en) Imaging lens
JP5904208B2 (en) Imaging lens, imaging optical device, and digital device
JP4858648B2 (en) Imaging lens, imaging device, and portable terminal
JP5095662B2 (en) Imaging lens for solid-state imaging device
JP5673680B2 (en) Imaging lens
JP4977869B2 (en) Imaging lens, imaging device, and portable terminal
JP2014041388A (en) Imaging lens
JP2013140398A (en) Imaging lens
WO2013111612A1 (en) Image pickup lens
JP2010008562A (en) Imaging lens
JP4781487B1 (en) Imaging lens
JP2012068292A (en) Imaging lens, imaging apparatus and portable terminal
JP2014123097A (en) Image capturing lens
JP6474434B2 (en) Imaging lens
WO2011052370A1 (en) Imaging lens
JP2013011906A (en) Imaging lens for solid-state imaging element
JP2013011907A (en) Imaging lens for solid-state imaging element
JP5318297B2 (en) Imaging lens for solid-state imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150