WO2011052355A1 - Reactive sputtering film-forming apparatus and method for manufacturing film using same - Google Patents

Reactive sputtering film-forming apparatus and method for manufacturing film using same Download PDF

Info

Publication number
WO2011052355A1
WO2011052355A1 PCT/JP2010/067562 JP2010067562W WO2011052355A1 WO 2011052355 A1 WO2011052355 A1 WO 2011052355A1 JP 2010067562 W JP2010067562 W JP 2010067562W WO 2011052355 A1 WO2011052355 A1 WO 2011052355A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
mask
substrate holder
film
gas
Prior art date
Application number
PCT/JP2010/067562
Other languages
French (fr)
Japanese (ja)
Inventor
英和 鈴木
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Publication of WO2011052355A1 publication Critical patent/WO2011052355A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0068Reactive sputtering characterised by means for confinement of gases or sputtered material, e.g. screens, baffles

Definitions

  • the present invention relates to a reactive sputtering film forming apparatus for forming a film on a substrate by reactive sputtering, and a film manufacturing method using the same.
  • the sputter deposition apparatus strikes out the target material attached to the cathode with gas ions (sputtering), and deposits the target material particles (sputtered particles) generated thereby on the substrate arranged to face the target.
  • gas is introduced into the apparatus, electric power is applied to the target to generate plasma, and gas ions are generated in order to perform sputtering.
  • a reactive sputter film forming apparatus is known as the sputter film forming apparatus.
  • a reactive gas such as nitrogen (N 2 ) or oxygen (O 2 ) is introduced into the chamber together with an inert gas such as argon (Ar) for causing sputtering.
  • an inert gas such as argon (Ar) for causing sputtering.
  • Ar argon
  • target material particles are knocked out when Ar ions in the plasma strike the target, the target material particles react with the reactive gas, and these reaction products are applied to the substrate. accumulate. Further, when the concentration of the reactive gas is high, a compound layer made of the reactive gas is formed on the surface of the target, and these are deposited on the substrate by sputtering.
  • the film formed by the reactive sputter film forming apparatus is used for various purposes.
  • thin film transistors used in liquid crystal displays
  • barrier films such as TiN and MoN used in semiconductor wiring
  • transparent conductive films such as indium tin oxide (ITO) used in liquid crystal displays and thin film solar cells, etc. Is mentioned.
  • ITO indium tin oxide
  • the reactive gas in order to improve the uniformity of the reactive gas atom concentration in the film, the reactive gas can be uniformly supplied to a space (film forming space) where the target and the substrate face each other. It is desirable.
  • Patent Documents 1 and 2 Various proposals have been made from this viewpoint.
  • the sputter deposition apparatus According to the sputter deposition apparatus according to Patent Document 1, there is provided a mechanism for allowing a reactive gas to flow outward from the central portion of the cathode unit along the target surface.
  • the gas pipe for introducing the reactive gas extending in the direction in which the targets are juxtaposed is provided on the back side of the plurality of targets arranged in parallel at a predetermined interval.
  • An injection port for injecting reactive gas from the gas pipe toward the target is provided.
  • FIG. 1 of Patent Document 3 discloses a sputtering film forming apparatus provided with a shield called a mask or the like that prevents deposition of a film on an outer peripheral end of the substrate or a substrate holder on which the substrate is placed. .
  • the mask is arranged at a predetermined distance from the substrate holder and the substrate.
  • the substrate when the substrate is placed on the substrate holder, at least one of the substrate holder and the mask is moved so that the mask and the substrate holder are separated so that the substrate can be placed on the substrate holder.
  • the substrate is placed on the substrate holder, and at least one of the substrate holder and the mask is moved so that the mask and the substrate on the substrate holder are in contact with each other.
  • the mask and the substrate may rub against each other and dust may be generated.
  • the mask and the substrate holder may be rubbed to generate dust when the mask and the substrate holder are brought into contact with each other.
  • the present invention has been made in view of such a problem, and an object of the present invention is to reduce the generation of dust while reducing the generation of dust locally in a reactive sputtering film forming apparatus provided with a mask. It is another object of the present invention to provide a reactive sputtering film forming apparatus in which the atomic concentration of reactive gas in the film is reduced and a film manufacturing method using the same.
  • the present invention is provided in a chamber, a substrate holder provided in the chamber and having a substrate setting portion for setting a substrate, and installed in the substrate holder during reactive sputtering.
  • a reactive sputter deposition apparatus comprising: a mask for covering a predetermined region from an edge of a substrate; and a first gas supply port for supplying a gas containing a reactive gas into the chamber, wherein at least the reactivity
  • the mask and the substrate holder are configured so that a space is formed between the mask, the substrate holder, and the substrate placed on the substrate holder, and the substrate is interposed via the space.
  • the apparatus further comprises suppression means for suppressing entry of reactive gas from the periphery of the holder into the substrate installation portion.
  • the present invention is a mask for covering a predetermined region from the edge of the substrate installed in the substrate holder provided in the reactive sputter deposition apparatus, and forms the labyrinth structure together with the substrate holder. It has at least 1 convex part or a recessed part in at least one part of the area
  • the present invention is also a film manufacturing method for manufacturing a film on a substrate, wherein the film is formed on the substrate using the reactive sputtering film forming apparatus of the present invention.
  • the present invention is a method for forming a film on a substrate by reactive sputtering, wherein the substrate is transported into a chamber and a mask for covering a predetermined area from the edge of the substrate and a substrate for installing the substrate are provided.
  • a gas containing a reactive gas is supplied into the chamber from a first gas supply port provided in the chamber, and a voltage is applied to a target provided in the chamber to cause plasma discharge in the chamber. And supplying an inert gas from the second gas supply port to the space.
  • the reactive gas directed to the exhaust port provided in the chamber is outside the substrate holder (on the side facing the center of the substrate, that is, the substrate mounting portion of the substrate holder).
  • the substrate that is in the vicinity of the mask is prevented from entering the gap between the mask, the substrate holder, and the substrate (the gap formed to suppress dust generation) from the side facing the (substrate mounting portion).
  • An increase in the concentration of reactive gas atoms in the film locally at the outer peripheral portion can be reduced. Further, since the gap is provided during reactive sputtering, dust generation due to rubbing between the mask, the substrate and the substrate holder can be suppressed.
  • FIG. 1 is a schematic view showing a reactive sputtering film forming apparatus according to an embodiment of the present invention. It is the schematic which shows an example of the reactive sputter film-forming apparatus which has an effect equivalent to the reactive sputter film-forming apparatus shown in FIG. It is the schematic which shows an example of the reactive sputter film-forming apparatus which has an effect equivalent to the reactive sputter film-forming apparatus shown in FIG. It is the schematic which shows the structure of the conventional reactive sputter film-forming apparatus. It is a route diagram of a flow of reactive gas in a conventional reactive sputter film forming apparatus and film forming method.
  • sputter particles are applied to the outer peripheral portion of the substrate placed on the substrate placement portion (substrate placement portion) of the substrate holder or the region where the substrate of the substrate holder is not placed.
  • a mask is disposed so as to cover a predetermined region from the edge of the substrate (a predetermined region on the outer peripheral portion of the substrate including the edge of the substrate). Thereby, unwanted deposition of sputtered particles on the substrate or substrate holder can be suppressed.
  • a variation in the concentration of reactive gas atoms in the film between the outer peripheral part and the central part of the film there may be a variation in the concentration of reactive gas atoms in the film between the outer peripheral part and the central part of the film. That is, conventionally, the mask and the substrate holder, and the mask and the substrate are separated from each other, and as will be described later, the reactive gas enters from the outside of the mask through the gap formed in the separation portion. The reactive gas atom concentration in the film at the outer periphery of the substrate is locally increased. As a result, the variation occurs.
  • the above-described variation can be reduced as described later.
  • contact is made in this way, rubbing occurs at the contact portion, and dust generation occurs due to the rubbing. That is, since at least a part of the outer peripheral portion of the substrate is covered with a mask, in order to place the substrate on the substrate holder, it is necessary to move the mask in at least one of the upper, lower, left and right directions. The mask is brought into contact with the substrate holder and the substrate.
  • the mask When the mask is disposed so as to cover a part of the outer peripheral portion of the substrate, if the mask and the substrate holder are brought into contact with each other and / or the mask and the substrate are brought into contact with each other, the contact portions are rubbed and dust generation is generated. It will occur.
  • the present invention at least during the reactive sputtering process, in order to suppress the generation of the dust, between the mask and the substrate holder, and the substrate placed on the mask and the substrate holder, A gap is provided between the substrate holder and the substrate so that the rubbing does not occur. Therefore, the rubbing can be suppressed during reactive sputtering, and the generation of dust due to the rubbing can be reduced or prevented.
  • the reactive gas enters from the outside to the inside of the mask as described above, and the film formed in the film A local increase in the concentration of reactive gas atoms will occur.
  • a configuration for relatively increasing the pressure in the gap is provided.
  • a gas supply port for supplying an inert gas to the gap is provided, and the inert gas is supplied to the gap from the gas supply port.
  • the reactive gas can be adjusted by locally adjusting the gap between the substrate and the mask, the gap between the substrate holder and the mask, and the partial pressure of the inert gas in the vicinity thereof.
  • the structure for example, labyrinth structure
  • the gap path becomes longer and the conductance of the gap becomes smaller (the conductance is inversely proportional to the length of the path), and the reactive gas.
  • the suppression means for example, by combining a configuration for supplying an inert gas into the gap and the labyrinth structure, the above-described operation can be performed more effectively.
  • the suppression means may have any configuration. .
  • the “gap” is a space formed between two target elements (for example, a mask and a substrate holder, a mask and a substrate, etc.) without contact. Point to.
  • the suppression means is provided, in order to reduce dust generation caused by rubbing between the mask, the substrate holder, and the substrate, at least during reactive sputtering, between the mask and the substrate holder, and the mask. Even if a gap is provided between the substrate and the substrate, the reactive gas entering from the outside of the substrate holder or the mask through the gap can be reduced. Concentration variation can be suppressed. In addition, since it becomes difficult for the reactive gas to flow into the substrate side through the gap, the reactive gas atom concentration at the outer peripheral edge of the substrate of the film is within the substrate (periphery of the edge), between the substrates (between processing and apparatus) And before and after maintenance), the variation between devices can be improved.
  • the reactive sputtering film forming apparatus according to the present embodiment will be described with reference to FIGS.
  • the substrate 5 and the mask 8 installed on the substrate holder 6 having the substrate mounting portion, and the substrate holder 6 and the mask 8 are not in contact with each other at least during reactive sputtering.
  • the distance is a few millimeters.
  • a gas supply port 16 facing the gap 15 between the substrate holder 6 and the mask 8 is formed in the substrate holder 6. That is, the gas supply port 16 is arranged to supply the inert gas to the gap 15 and the gap 17 between the substrate 5 and the mask 8.
  • the gas supply port 10 similar to the conventional technique is also installed.
  • the gas supply port 16 facing the gap 15 can supply a chemically inert gas (inert gas), and the gas supply port 10 reacts with a reactive gas or a chemically inert gas. Sex gas can be supplied.
  • reference numeral 1 denotes a chamber, and a target electrode 3 on which a target 2 is mounted is attached to the chamber 1 via an insulator 4 that electrically insulates the chamber 1 and the target electrode 3.
  • Ti or the like is used as a target.
  • the substrate 5 to be deposited is placed on the substrate holder 6, and they are arranged facing the target 2 in the chamber 1.
  • the shield 7 is a shield that prevents film deposition in the chamber 1.
  • the mask 8 has a shape that covers a predetermined area from the edge of the substrate, such as the outer periphery of the substrate, in order to prevent or reduce film deposition on the outer periphery of the substrate 5.
  • the surface of the mask 8 on the substrate holder side is preferably provided with a step so that the mask covers the surface of the substrate holder 6 on which the substrate 5 is not placed.
  • the substrate holder 6 does not have the substrate 5 placed thereon.
  • the gap 15 between the mask 8 can be reduced.
  • the gap 15 serves as an entrance for the reactive gas to enter from the outside to the inside of the substrate holder 6 as described above.
  • the gap 15 is not provided. 15 can be made smaller, the opening of the entrance can be made smaller, and the amount of reactive gas flowing into the gap 15 from the outside of the substrate holder 6 can be reduced.
  • the mask 8 Since dust generation may occur when the substrate 5 and the mask 8 come into contact with each other, the mask 8 is arranged so as not to come into contact with the substrate 5 at least during reactive sputtering.
  • the gap between the mask 8 and the substrate 5 is preferably short in order to reduce film deposition (film wraparound) where the mask 8 covers the outer periphery of the substrate, and is preferably about 2 to 3 mm. Further, when the substrate holder 6 and the mask 8 are also brought into contact with each other, dust may be generated. Therefore, they are arranged so as not to contact each other at least during reactive sputtering.
  • At least one of the substrate holder 6 and the mask 8 is provided with a movable mechanism (not shown) such as an actuator for moving itself.
  • a control device (not shown) is connected to the movable mechanism, and the movable mechanism is driven by the control of the control device, so that at least one of the substrate holder 6 and the mask 8 moves.
  • the control device controls the movable mechanism to widen the distance between the substrate holder 6 and the mask 8. Therefore, the substrate 5 can be easily installed on the substrate holder 6.
  • the control device controls the movable mechanism to narrow the distance between the substrate holder 6 and the mask 8, and then performs film formation.
  • the movable mechanism is controlled so that the distance between the substrate holder 6 and the mask 8 is a predetermined distance set in advance.
  • the movable mechanism may be manually controlled by the user instead of the control device. That is, when the substrate 5 is placed on the substrate holder 6, the user may manually adjust the movable mechanism so that at least one of the substrate holder 6 and the mask 8 moves.
  • the shape of the mask 8 is set so as to form the gaps 15 and 17 as shown in FIG. 1, or the movable mechanism is provided on at least one of the mask 8 and the substrate holder 6. Therefore, at least during reactive sputtering, the mask 8 and the substrate holder 6 are configured such that gaps 15 and 17 are formed between the mask 8 and the substrate holder 6 and the substrate 5.
  • the inside of the chamber 1 is evacuated to a vacuum by a vacuum pump (not shown) provided at the exhaust port 9.
  • a predetermined gas is supplied into the chamber 1 from a first gas supply port 10 and a second gas supply port 16 provided in the chamber 1.
  • a reactive gas for example, N 2
  • the film 7 is supplied to the film formation space 11 surrounded by the shield 7, the mask 8 and the substrate 5.
  • a plurality of second gas supply ports 16 are arranged on the outer periphery of the substrate 5 installed in the substrate holder 6, and only a chemically inert gas (for example, Ar) is supplied from the second gas supply port 16. .
  • a cathode magnet (not shown) is installed on the back side of the target 2 of the target electrode 3.
  • a DC power source (not shown) is connected to the target electrode 3, and a negative voltage is applied to the target electrode 3 to cause plasma discharge in the film formation space 11.
  • the gas (positive ions) ionized by the plasma discharge is accelerated by the negative voltage to the target electrode 3 to sputter the target 2 and be sputtered.
  • the particles of the target 2 are deposited together with the N 2 gas activated by the plasma discharge, whereby a TiN film that is a compound of Ti as the target 2 and N 2 as the reactive gas is formed on the substrate 5. .
  • An inert gas (for example, Ar) and a part of the reactive gas (for example, N 2 ) that has not been deposited as a film are discharged through the discharge port 12 to the external space 14 outside the film formation space 11.
  • a part of the gas passes through the gap 13 between the target 2 and the shield 7 and is discharged to the external space 14 outside the film formation space 11.
  • the gas discharge port 12 Comparing the conductance of the gas discharge port 12 and the gap 13, the gas discharge port 12 is configured to have a larger conductance than the gap 13, and therefore a portion that has not been deposited as an inert gas and film.
  • Most of the reactive gas is discharged to the external space 14 through the gas discharge port 12. In other words, the inert gas and a part of the reactive gas not deposited as a film are exhausted from the exhaust port 9 toward the exhaust port 9 of the chamber 1 through the gas exhaust port 12 and the gap 13.
  • the second gas supply port 16 for supplying only a chemically inert gas (inert gas) is provided outside the substrate placement portion of the substrate holder 6. Therefore, an inert gas is supplied from the second gas supply port 16, and a chemically inert gas in the gap 17 between the substrate 5 and the mask 8 and the gap 15 between the substrate holder 6 and the mask 8.
  • a chemically inert gas supplied from the second gas supply port 16 and a chemically inert gas in the gap 17 between the substrate 5 and the mask 8 and the gap 15 between the substrate holder 6 and the mask 8.
  • the reactive gas that has not contributed to the substrate deposition proceeds from the film formation space 11 to the exhaust port 9 via the discharge port 12 and the gap 13 by driving the vacuum pump.
  • the gap 15 is formed outside the substrate holder 6, that is, on the side of the external space 14 facing the film formation space 11, generation of dust is suppressed at least during reactive sputtering.
  • the reactive gas toward the exhaust port 9 flows from the gap 15 into the film formation space 11 through the gap 17.
  • a second gas supply port 16 for supplying a chemically inert gas to the gaps 15 and 17 is provided, and the inert gas is supplied from the second gas supply port 16. Therefore, the pressure in the gaps 15 and 17 can be higher than that in the film formation space 11 and the external space 14, and the film formation space 11 of the reactive gas toward the exhaust port 9 through the gap 15 and the gap 17. The inflow to can be suppressed.
  • the control device controls at least one of the substrate holder 6 and the mask 8 by controlling the movable mechanism.
  • the substrate holder 6 and the mask 8 are sufficiently separated.
  • the substrate is transferred by a transfer robot (not shown) as transfer means, and the substrate is placed on the substrate placement portion of the substrate holder 6.
  • the control device controls the movable mechanism to move at least one of the substrate holder 6 and the mask 8, so that a gap 15 is formed between the mask 8 and the substrate holder 6, and between the mask 8 and the substrate 5. A gap 17 is formed between them.
  • At least the gaps 15 and 17 may be formed at the time of reactive sputtering, and when the substrate 5 is placed on the substrate holder 6, the gap between the mask 8 and the substrate holder 6 and the substrate 5 is sufficient. However, when the gaps 15 and 17 are appropriate spaces, the substrate holder 6 and the mask 8 need not be moved.
  • control device controls a gas supply mechanism (not shown) to supply a reactive gas or a mixed gas of a reactive gas and an inert gas from the first gas supply port 10 into the chamber 1.
  • An inert gas is supplied from the second gas supply port 16 to the gaps 15 and 17.
  • control device controls the direct current power source to apply a predetermined negative voltage to the target electrode 3 to cause plasma discharge in the film forming space 11. Thereby, the compound of the sputtered particles sputtered from the target 2 and the reactive gas is formed on the substrate 5.
  • FIG. 4 shows a reactive sputter deposition apparatus for comparison, which is a conventional reactive sputter deposition apparatus using a mask.
  • the apparatus shown in FIG. 4 has the same configuration as the reactive sputtering film forming apparatus shown in FIG. 1 except that the second gas supply port 16 is not provided.
  • FIG. 5 is an explanatory diagram for explaining the flow of the reactive gas in the reactive sputtering film forming apparatus shown in FIG.
  • FIG. 6 is a schematic view showing an appearance of a substrate on which the film is formed by the reactive sputtering film forming apparatus shown in FIG.
  • the reactive gas supplied from the gas supply port 10 to the film formation space 11 is discharged to the external space 14 through the discharge port 12 and then to the film formation space 11 through the gap 15. Some are resupplied.
  • the reactive gas re-supplied from the external space 14 through the gap 15 to the film formation space 11 is activated by the plasma and easily deposits as a film on the end of the substrate 5 near the gap 15. Therefore, it is considered that the reactive gas atom concentration of the film deposited on the edge of the substrate 5 is higher than that of the film deposited on other parts of the substrate 5.
  • FIG. 6 is a schematic diagram of the appearance of the substrate 5 on which Ti 2 is formed using Ti as the target 2 and Ar and N 2 as the chemically inert gas and the reactive gas, respectively.
  • a region 101 where no TiN is deposited is formed on the periphery of the substrate 5 covered with the mask 8.
  • Most of the region where TiN formed on the substrate 5 indicated by reference numeral 102 in FIG. 6 is deposited has the same color as Ti as the target 2.
  • the boundary between the region 101 where TiN is not deposited and the region (film) 102 having the same color as Ti was a gold (brown with a metallic luster) film 103.
  • the film 102 having the same color as Ti in the region b shown in FIG. 6 and the N atom concentration (reactive gas atom concentration) of the gold film 103 in the region B in the vicinity of the region b are represented by an X-ray microanalyzer (EPMA: Electron Probe Micro Analyzer), the N atom concentration of the film 102 having the same color as Ti is 31 at. %, Whereas the golden film 103 is 45 at. %Met.
  • the reason why the N atom concentration in the film of the gold film 103 is high is that, as described above, there is N 2 gas re-supplied from the external space 14 through the gap 15 to the film forming space 11.
  • the distance between the substrate holder 6 and the mask 8 (the size of the gap 15) was changed, and the conductance of the gap 15, that is, the ease of passing the N 2 gas that is a reactive gas in the gap 15 was tried.
  • the area of the golden film 103 increases, and when the substrate holder 6 and the mask 8 are brought into contact with each other in order to eliminate the gap 15, The gold film 103 disappeared in the vicinity of the portion where the mask 8 was brought into contact.
  • the N 2 gas re-supplied from the external space 14 through the gap 15 to the film formation space 11 exists, so that a film having a high N atom concentration is deposited on the edge of the substrate 5. Since the amount of N 2 gas supplied again depends on the conductance of the gap 15, it can be said that the area of the golden film 103 having a high N atom concentration is increased as the gap 15 is increased.
  • the substrate holder 6 and the mask 8 are also sized according to the substrate 5. Therefore, it is difficult to make the gap 17 between the substrate 5 and the mask 8 and the gap 15 between the substrate holder 6 and the mask 8 uniform in the circumferential direction of the substrate 5.
  • the nonuniformity of the gap 15 in the circumferential direction of the substrate 5 makes the amount of the reactive gas re-supplied from the gap 15 to the film forming space 11 nonuniform in the circumferential direction of the substrate 5.
  • the reactive gas atom concentration of the film deposited on the edge of the substrate 5 is different in the circumferential direction of the substrate 5.
  • the amount (deposition area) of the film having a high reactive gas atom concentration to be deposited differs in the circumferential direction of the substrate 5.
  • the mask 8 In order to remove the deposited film, the mask 8 needs to be replaced periodically.
  • the dimensional error and the mounting error of the mask 8 are the difference in the gap 15 before and after the replacement of the mask 8. That is, before and after the replacement of the mask 8, a film having a high reactive gas atom concentration at the edge of the substrate 5 is likely to have a different reactive gas atom concentration. The same applies between devices. In order to avoid such a situation, the dimensional error and the mounting error of the mask 8 must be reduced. Therefore, the mask 8 is likely to be expensive, and it takes time to make adjustments necessary for mounting when replacing the mask 8.
  • the inert gas flows in the direction of the solid line arrow P ⁇ b> 1 (from the second gas supply port 16. In the direction toward the external space 14). Therefore, it is possible to prevent or reduce the re-supply of the reactive gas from the external space 14 (arrow Q in FIG. 4).
  • the reactive gas atom concentration of the film deposited on the edge of the substrate is set to that of the film deposited on the other part of the substrate without bringing the substrate and the mask into contact with the substrate holder and the mask.
  • the amount of the reactive gas atoms deposited on the edge of the substrate can be reduced (the deposition area can be reduced) compared to that of the film deposited on other parts of the substrate.
  • the inert gas supplied to the gaps 15 and 17 from the second gas supply port 16 also proceeds in the arrow direction P2 of FIG. 1 (the direction from the second gas supply port 16 toward the film formation space 11). . Therefore, even if the mask 8 and the substrate 5 are separated from each other and the gap 17 is formed during the reactive sputtering, the film formation space is caused by the outflow of the inert gas in the arrow direction P2 from the gap 17 toward the film formation space 11. Reactive gas entering the gap 17 from 11 can be suppressed. Therefore, in order to suppress dust generation, even if the mask 8 and the substrate 5 are separated from each other, the reactive gas existing in the film formation space 11 penetrates into a region covered with the mask 8 where deposition is not desired.
  • the gas is supplied from the second gas supply port 16 regardless of the size of the gaps 15 and 17.
  • the inert gas proceeding in the arrow direction P1
  • the invasion of the reactive gas from the external space 14 to the film forming space 11 via the gaps 15 and 17 can be reduced. Therefore, even if the substrate is enlarged, the reactive sputter deposition apparatus with excellent productivity that can improve the uniformity of the reactive gas atomic concentration of the film deposited on the edge of the substrate in the circumferential direction of the substrate. Can be provided.
  • the second gas supply port 16 is provided in the substrate holder 6
  • the second gas supply port is provided in the mask 8 and the mask 8 and the substrate holder as shown in FIG. Even if it is provided facing the gap 17 of 6, the same effect can be obtained. Further, as shown in FIG. 3, it may be provided in the space 17 between the mask 8 and the substrate holder 6. That is, as long as the inert gas can be supplied to the gaps 15 and 17, the arrangement position of the second gas supply port 16 for supplying the inert gas may be any.
  • the substrate 5 is a glass substrate for LCD application having a size of 550 mm ⁇ 650 mm ⁇ thickness 0.7 mm.
  • Ar which is a chemically inert gas, was supplied at 144 sccm from a gas supply port 16 provided facing the gap 15, and N 2 as a reactive gas was supplied at 256 sccm from the gas supply port 10.
  • a TiN film having an average film thickness of 170 nm was formed on the substrate 5.
  • the edge of the substrate 5 covered with the mask 8 was a region 101 where no TiN film was deposited.
  • Most of the region of the substrate 5 on which the TiN film was deposited indicated by reference numeral 102 in FIG. 6 was the same color as Ti as the target 2.
  • the boundary between the region 101 where no TiN film is deposited and the film 102 having the same color as the Ti is the gold film 103.
  • Table 1 shows the N atom concentration of the TiN film formed using the comparative example and this example.
  • the N atom concentration in the gold film 103 in the comparative example is 41 to 45 at. %, While that of the TiN film in this example is 32 to 35 at. %Met.
  • the N atom concentration in the film 102 of the same color as Ti in the comparative example is 28 to 31 at. % Of the TiN film in this example is 27 to 29 at.
  • the TiN film formed in this example was able to bring the N atom concentration in the gold film 103 close to that of the film 102 having the same color as Ti.
  • Table 2 shows the width of the gold film 103 of the TiN film formed using the comparative example and this example. In the comparative example, it was 4 to 8 millimeters, whereas in the present example, it was 1 to 3 millimeters, and the amount of the golden film 103 could be reduced (deposition area was reduced).
  • a labyrinth structure is provided at least in the gap 15, and the labyrinth structure prevents the reactive gas from passing from the external space 14 to the film formation space 11 side via the gaps 15 and 17.
  • the “labyrinth structure” refers to a structure that reduces the conductance of the gas passing through the labyrinth structure.
  • a member in which at least one concave portion is formed and a member in which at least one convex portion are formed are fitted in a non-contact manner to form a small passage between them.
  • the first member on which at least one convex portion is formed and the second member on which at least one convex portion are formed are staggered so that the respective convex portions are not in contact with each other, and one convex portion is the other. It may be a structure that is arranged so as to be non-contact with the member.
  • the labyrinth structure according to the present embodiment is any structure as long as the conductance with respect to the gas passing through the labyrinth structure itself can be reduced by a combination of convex portions and concave portions formed on two predetermined members. There may be.
  • the convex portion and the concave portion are formed on a mask or a substrate holder.
  • the mask is configured to form a closed loop at the outer peripheral portion of the substrate holder
  • the convex portion and the concave portion are arranged in a predetermined region of the mask and the substrate holder in consideration of suppressing the inflow of the reactive gas. It is preferable to form so as to make a round in the direction.
  • a groove having a predetermined width may be formed in the circumferential direction so as to be a closed loop in the region of the mask or the substrate holder having the labyrinth structure.
  • the concave portion and the convex portion are end to end in the circumferential direction of the mask. It is preferable to form up to.
  • the labyrinth structure suppresses the reactive gas that enters the film formation space 11 from the external space 14 through the gaps 15 and 17. Therefore, if the intrusion of the reactive gas from the external space 14 can be reduced, the technical object of the present embodiment can be achieved. Therefore, it is not an essential condition to form the labyrinth structure in the entire circumferential direction of the mask and the substrate holder. For example, when the reactive gas enters from a certain direction outside the substrate holder 6 and the mask 8 due to the structure of the apparatus, the labyrinth structure may be provided only in that direction.
  • the reactivity of the predetermined ratio is not provided without providing a labyrinth structure in the entire circumferential direction of the mask 8 and the substrate holder 6.
  • a labyrinth structure may be provided to such an extent that gas entry can be cut.
  • a labyrinth structure may be provided in an intermittent manner in the circumferential direction of the mask 8 and the substrate holder 6.
  • At least one concave portion or convex portion for forming a labyrinth structure is formed in at least a part of a region (surface to be opposed to the substrate holder 6) along the circumferential direction of the mask 8,
  • the substrate holder 6 may be formed with a recess or projection in at least a part of the region along the circumferential direction of the substrate holder so that the labyrinth structure is formed together with the recess or projection formed in the mask.
  • FIG. 7 is a view for explaining a labyrinth structure as a suppressing means according to the present embodiment.
  • FIG. 7 shows an example in which the gap 15 between the substrate holder 6 and the mask 8 is formed with these labyrinth structures.
  • a plurality of convex portions 22 for forming a labyrinth structure are formed on the outer side of the substrate mounting portion on which the substrate 5 is mounted on the surface of the substrate holder 6 facing the mask 8.
  • Each of these convex portions 22 is provided so as to form a closed loop in the circumferential direction of the substrate holder 6.
  • a plurality of grooves 21 as concave portions for forming a labyrinth structure are formed on the surface of the mask 8 facing the substrate holder 6.
  • Each of these grooves 21 is also provided so as to form a closed loop in the circumferential direction of the mask 8.
  • the width of the groove 21 is larger than the width of the convex portion 22.
  • a labyrinth structure is formed by the groove 21 and the convex portion 22 during reactive sputtering. Therefore, the movable mechanism is controlled by the control device or manually to adjust the position of at least one of the mask 8 and the substrate holder 6 so that the convex portion 22 fits in the groove 21 in a non-contact manner. Thereby, a non-contact space with a small conductance is formed between the groove 21 and the convex portion 22. Since the conductance is inversely proportional to the length of the path, the path of the gap 15 becomes longer by forming the gap 15 with the labyrinth structure as shown in FIG. Therefore, the conductance of the gap 15 can be reduced.
  • the mask 8 and the substrate holder 6 are not in contact with each other, dust generation can be suppressed, and furthermore, the conductance in the non-contact space is small, so that the reactive gas entering from the gap 15 can be suppressed. .
  • FIG. 8 is a view for explaining the suppression means according to the present embodiment.
  • at least one of the convex portions 22 provided in the substrate holder 6 shown in FIG. 7 is used as the second gas supply port 16 described in the first embodiment.
  • the conductance of the gap 15 can be reduced by the labyrinth structure.

Abstract

Disclosed is a reactive sputtering film-forming apparatus provided with a mask, wherein local increase of the atomic concentration of film-forming components in the outer circumferential portion of a substrate is reduced, while reducing generation of dusts. Also disclosed is a method for manufacturing a film using the reactive sputtering film-forming apparatus. The reactive sputtering film-forming apparatus is provided with: a chamber (1); a substrate holder (6) for disposing the substrate (5); a mask (8); and a first gas supply port (10), through which a gas containing a reactive gas is supplied to the inside of the chamber (1). The mask (8) and the substrate holder (6) are configured such that gaps (15, 17) are formed between the mask (8), and the substrate holder (6) and the substrate (5), at least at the time of performing reactive sputtering. The reactive sputtering film-forming apparatus is also provided with a second gas supply port (16), an inert gas is supplied from the second gas supply port, and entry of the reactive gas from the periphery of the substrate holder (6) to the area having the substrate disposed thereon is suppressed.

Description

反応性スパッタ成膜装置、およびそれを用いた膜の製造方法Reactive sputtering film forming apparatus and film manufacturing method using the same
 本発明は、反応性スパッタリングにより基板上に膜を形成する反応性スパッタ成膜装置、およびそれを用いた膜の製造方法に関する。 The present invention relates to a reactive sputtering film forming apparatus for forming a film on a substrate by reactive sputtering, and a film manufacturing method using the same.
 スパッタ成膜装置は、カソードに取り付けられたターゲットの材料をガスのイオンでたたき出し(スパッタリング)、それによって生じたターゲット材粒子(スパッタ粒子)をターゲットに対向するように配置された基板に堆積させることにより、基板に成膜を行う装置である。そのため、スパッタ成膜装置では、装置内にガスを導入し、ターゲットに電力を印加してプラズマを生成し、スパッタリングを行うためにガスのイオンを生じさせる。 The sputter deposition apparatus strikes out the target material attached to the cathode with gas ions (sputtering), and deposits the target material particles (sputtered particles) generated thereby on the substrate arranged to face the target. Thus, an apparatus for forming a film on a substrate. Therefore, in the sputtering film forming apparatus, gas is introduced into the apparatus, electric power is applied to the target to generate plasma, and gas ions are generated in order to perform sputtering.
 上記のスパッタ成膜装置としては、反応性スパッタ成膜装置が知られている。反応性スパッタ成膜装置では、チャンバ内に、スパッタリングを行わせるためのアルゴン(Ar)などの不活性ガスと併せて、窒素(N)や酸素(O)などの反応性ガスが導入される。このような反応性スパッタ成膜装置では、プラズマ内のArイオンがターゲットをたたくことによってターゲット材粒子がたたき出され、そのターゲット材粒子が反応性ガスと反応し、これらの反応生成物が基板に堆積する。また反応性ガスの濃度が高いと、ターゲットの表面に反応性ガスによる化合物層が形成され、これらがスパッタリングされることにより基板に堆積する。 A reactive sputter film forming apparatus is known as the sputter film forming apparatus. In the reactive sputtering film forming apparatus, a reactive gas such as nitrogen (N 2 ) or oxygen (O 2 ) is introduced into the chamber together with an inert gas such as argon (Ar) for causing sputtering. The In such a reactive sputter deposition apparatus, target material particles are knocked out when Ar ions in the plasma strike the target, the target material particles react with the reactive gas, and these reaction products are applied to the substrate. accumulate. Further, when the concentration of the reactive gas is high, a compound layer made of the reactive gas is formed on the surface of the target, and these are deposited on the substrate by sputtering.
 反応性スパッタ成膜装置で成膜した膜は様々な用途に用いられている。例えば液晶ディスプレイで用いられる薄膜トランジスタ(TFT)や半導体の配線で用いられる、TiN,MoNなどのバリア膜、また同じく液晶ディスプレイや、薄膜太陽電池で用いられる酸化インジウム錫(ITO)などの透明導電膜などが挙げられる。近年これらの用途では、製造工程における基板の大面積化が進んでいるため、大面積な基板においても、成膜される膜の膜厚や膜質が、所望の均一性を満たすことが求められる。 The film formed by the reactive sputter film forming apparatus is used for various purposes. For example, thin film transistors (TFTs) used in liquid crystal displays, barrier films such as TiN and MoN used in semiconductor wiring, and transparent conductive films such as indium tin oxide (ITO) used in liquid crystal displays and thin film solar cells, etc. Is mentioned. In recent years, in these applications, since the area of the substrate in the manufacturing process has been increased, it is required that the film thickness and quality of the film to be formed satisfy the desired uniformity even in a large area substrate.
 反応性スパッタ成膜装置において、膜中の反応性ガス原子濃度の均一性を向上させるためには、ターゲットと基板が対向する空間(成膜空間)へ、反応性ガスを均一に供給可能であることが望ましい。この観点で様々な提案がなされている(特許文献1~2)。 In the reactive sputtering film forming apparatus, in order to improve the uniformity of the reactive gas atom concentration in the film, the reactive gas can be uniformly supplied to a space (film forming space) where the target and the substrate face each other. It is desirable. Various proposals have been made from this viewpoint (Patent Documents 1 and 2).
 特許文献1に係わるスパッタ成膜装置によれば、反応性ガスをカソードユニットの中央部からターゲット表面に沿って外方へ流す機構を設けている。特許文献2に係わるスパッタ成膜装置によれば、所定の間隔を置いて並設した複数枚のターゲットの背面側にターゲットの並設方向に伸びる反応性ガスを導入するガス管を有し、このガス管からターゲットに向かって反応性ガスを噴射する噴射口を有している。 According to the sputter deposition apparatus according to Patent Document 1, there is provided a mechanism for allowing a reactive gas to flow outward from the central portion of the cathode unit along the target surface. According to the sputter film forming apparatus according to Patent Document 2, the gas pipe for introducing the reactive gas extending in the direction in which the targets are juxtaposed is provided on the back side of the plurality of targets arranged in parallel at a predetermined interval. An injection port for injecting reactive gas from the gas pipe toward the target is provided.
 一方、特許文献3の図1には、基板の外周部端や基板が設置される基板ホルダへの膜の堆積を防止する、マスクなどと呼ばれるシールドを備えたスパッタ成膜装置が開示されている。このスパッタ成膜装置でスパッタリングを行う際には、上記マスクを、基板ホルダおよび基板から所定距離だけ離間して配置している。 On the other hand, FIG. 1 of Patent Document 3 discloses a sputtering film forming apparatus provided with a shield called a mask or the like that prevents deposition of a film on an outer peripheral end of the substrate or a substrate holder on which the substrate is placed. . When sputtering is performed with this sputter deposition apparatus, the mask is arranged at a predetermined distance from the substrate holder and the substrate.
特開2004-346406号公報JP 2004-346406 A 特開2008-274366号公報JP 2008-274366 A 特開2006-89793号公報JP 2006-89793 A
 しかしながら、マスクを備えたスパッタ成膜装置で反応性スパッタ成膜を行った場合、マスク近傍である基板外周部において局所的に膜質が異なるという問題が生じた。すなわち、ターゲットとしてTiを用いて、反応性ガスとしてNを、不活性ガスとしてArを使用してTiNを成膜した場合、基板外周部には、基板中央部と色の異なる金色(金属光沢を持つ茶色)の膜が形成されていた。これらを分析したところ、基板中央部に対して金色の膜の部分においては膜中のN原子濃度が高かった。 However, when reactive sputter deposition is performed with a sputter deposition apparatus equipped with a mask, a problem arises in that the film quality is locally different at the outer periphery of the substrate in the vicinity of the mask. That is, when TiN is formed using Ti as a target, N 2 as a reactive gas, and Ar as an inert gas, a gold color (metallic luster) having a different color from the central portion of the substrate is formed on the outer periphery of the substrate. A brown) film was formed. When these were analyzed, the N atom concentration in the film was higher in the gold film portion than in the center of the substrate.
 そこで、マスクを備えたスパッタ成膜装置において、上記特許文献1に記載しているように、反応性ガスをターゲットの表面を流れるようにしたとしても、上記課題は解決できなかった。 Therefore, even if the reactive gas is allowed to flow on the surface of the target in the sputter deposition apparatus equipped with a mask as described in Patent Document 1, the above problem cannot be solved.
 また、基板とマスクが接触するように配置したところ、基板とマスクの、あるいは基板ホルダとマスクの間隔を無くした場合には、基板とマスクとの、あるいは基板ホルダとマスクとの接触による発塵が生じる問題がある。 In addition, when the substrate and the mask are placed in contact with each other, if there is no gap between the substrate and the mask or between the substrate holder and the mask, dust generation is caused by the contact between the substrate and the mask or between the substrate holder and the mask. There is a problem that occurs.
 すなわち、基板を基板ホルダに載置する場合、基板ホルダとマスクの少なくとも一方を移動させて、マスクと基板ホルダとの間を、基板が基板ホルダ上に設置できる程度に離間させる。次いで、基板を基板ホルダ上に載置し、マスクと基板ホルダ上の基板とが接触するように基板ホルダとマスクの少なくとも一方を移動させる。このマスクを基板と接触させる際にはマスクと基板とが擦れ、発塵が生じることがある。あるいは、マスクと基板ホルダとを接触させる場合にも、マスクと基板ホルダとの接触の際にマスクと基板ホルダとが擦れ、発塵が生じることがある。 That is, when the substrate is placed on the substrate holder, at least one of the substrate holder and the mask is moved so that the mask and the substrate holder are separated so that the substrate can be placed on the substrate holder. Next, the substrate is placed on the substrate holder, and at least one of the substrate holder and the mask is moved so that the mask and the substrate on the substrate holder are in contact with each other. When the mask is brought into contact with the substrate, the mask and the substrate may rub against each other and dust may be generated. Alternatively, even when the mask and the substrate holder are brought into contact with each other, the mask and the substrate holder may be rubbed to generate dust when the mask and the substrate holder are brought into contact with each other.
 本発明は、このような課題に鑑みてなされたもので、その目的とするところは、マスクを設けた反応性スパッタ成膜装置において、発塵の発生を低下しながら、基板外周部において局所的に膜中の反応性ガスの原子濃度が高くなることを低減した反応性スパッタ成膜装置およびそれを用いた膜の製造方法を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to reduce the generation of dust while reducing the generation of dust locally in a reactive sputtering film forming apparatus provided with a mask. It is another object of the present invention to provide a reactive sputtering film forming apparatus in which the atomic concentration of reactive gas in the film is reduced and a film manufacturing method using the same.
 このような目的を達成するために、本発明は、チャンバと、前記チャンバ内に設けられ、基板を設置するための基板設置部を有する基板ホルダと、反応性スパッタリング時に前記基板ホルダに設置された基板の縁から所定の領域を覆うためのマスクと、前記チャンバ内に反応性ガスを含むガスを供給する第一のガス供給口とを備える反応性スパッタ成膜装置であって、少なくとも前記反応性スパッタリング時には、前記マスクと、前記基板ホルダおよび該基板ホルダに設置される基板との間に空間が形成されるように前記マスクおよび前記基板ホルダは構成されており、前記空間を介した、前記基板ホルダの周囲から前記基板設置部への反応性ガスの進入を抑制するための抑制手段をさらに備えることを特徴とする。 In order to achieve such an object, the present invention is provided in a chamber, a substrate holder provided in the chamber and having a substrate setting portion for setting a substrate, and installed in the substrate holder during reactive sputtering. A reactive sputter deposition apparatus comprising: a mask for covering a predetermined region from an edge of a substrate; and a first gas supply port for supplying a gas containing a reactive gas into the chamber, wherein at least the reactivity At the time of sputtering, the mask and the substrate holder are configured so that a space is formed between the mask, the substrate holder, and the substrate placed on the substrate holder, and the substrate is interposed via the space. The apparatus further comprises suppression means for suppressing entry of reactive gas from the periphery of the holder into the substrate installation portion.
 また、本発明は、反応性スパッタ成膜装置が備える基板ホルダに設置された基板の縁から所定の領域を覆うためのマスクであって、前記基板ホルダと共にラビリンス構造を形成するように、該基板ホルダと対向すべき面の周方向の領域の少なくとも一部に、少なくとも1つの凸部または凹部を有することを特徴とする。 Further, the present invention is a mask for covering a predetermined region from the edge of the substrate installed in the substrate holder provided in the reactive sputter deposition apparatus, and forms the labyrinth structure together with the substrate holder. It has at least 1 convex part or a recessed part in at least one part of the area | region of the circumferential direction of the surface which should oppose a holder, It is characterized by the above-mentioned.
 また、本発明は、基板に膜を製造する膜の製造方法であって、上記本発明の反応性スパッタ成膜装置を用いて基板に膜を形成することを特徴とする。 The present invention is also a film manufacturing method for manufacturing a film on a substrate, wherein the film is formed on the substrate using the reactive sputtering film forming apparatus of the present invention.
 さらに、本発明は、反応性スパッタリングにより基板上に膜を形成する方法であって、チャンバ内に基板を搬送し、前記基板の縁から所定の領域を覆うマスクと前記基板を設置するための基板ホルダとが離間した状態で、前記該基板ホルダ上に前記基板を設置する工程と、前記マスクと、前記基板ホルダおよび該基板ホルダに設置された基板との間に空間が形成された状態で、前記チャンバ内に設けられた第一のガス供給口から該チャンバ内に反応性ガスを含むガスを供給し、前記チャンバ内に設けられたターゲットに電圧を印加して前記チャンバ内にプラズマ放電を起こさせ、かつ第二のガス供給口から前記空間に不活性ガスを供給する工程とを有することを特徴とする。 Furthermore, the present invention is a method for forming a film on a substrate by reactive sputtering, wherein the substrate is transported into a chamber and a mask for covering a predetermined area from the edge of the substrate and a substrate for installing the substrate are provided. In a state where a space is formed between the step of placing the substrate on the substrate holder in a state where the holder is separated from the mask, the substrate, and the substrate placed on the substrate holder, A gas containing a reactive gas is supplied into the chamber from a first gas supply port provided in the chamber, and a voltage is applied to a target provided in the chamber to cause plasma discharge in the chamber. And supplying an inert gas from the second gas supply port to the space.
 本発明によれば、反応性スパッタリングを行うチャンバ内において、該チャンバ内に設けられた排気口に向かう反応性ガスが、基板ホルダの外側(基板中心と対向する側、すなわち基板ホルダの基板設置部(基板載置部)と対向する側)から、マスクと基板ホルダおよび基板との間の隙間(発塵を抑えるために形成した隙間)に入るのを抑制しているので、マスク近傍である基板外周部において局所的に膜中の反応性ガス原子濃度が高くなることを低減することができる。さらに、反応性スパッタリング中に上記隙間を設けるようにしたので、マスクと基板および基板ホルダとの擦れによる発塵を抑制することができる。 According to the present invention, in the chamber where reactive sputtering is performed, the reactive gas directed to the exhaust port provided in the chamber is outside the substrate holder (on the side facing the center of the substrate, that is, the substrate mounting portion of the substrate holder). The substrate that is in the vicinity of the mask is prevented from entering the gap between the mask, the substrate holder, and the substrate (the gap formed to suppress dust generation) from the side facing the (substrate mounting portion). An increase in the concentration of reactive gas atoms in the film locally at the outer peripheral portion can be reduced. Further, since the gap is provided during reactive sputtering, dust generation due to rubbing between the mask, the substrate and the substrate holder can be suppressed.
本発明の一実施形態に係る反応性スパッタ成膜装置を示す概略図である。1 is a schematic view showing a reactive sputtering film forming apparatus according to an embodiment of the present invention. 図1に示す反応性スパッタ成膜装置と同等の効果を持つ反応性スパッタ成膜装置の一例を示す概略図である。It is the schematic which shows an example of the reactive sputter film-forming apparatus which has an effect equivalent to the reactive sputter film-forming apparatus shown in FIG. 図1に示す反応性スパッタ成膜装置と同等の効果を持つ反応性スパッタ成膜装置の一例を示す概略図である。It is the schematic which shows an example of the reactive sputter film-forming apparatus which has an effect equivalent to the reactive sputter film-forming apparatus shown in FIG. 従来の反応性スパッタ成膜装置の構成を示す概略図である。It is the schematic which shows the structure of the conventional reactive sputter film-forming apparatus. 従来の反応性スパッタ成膜装置、及び成膜方法における反応性ガスの流れの経路図である。It is a route diagram of a flow of reactive gas in a conventional reactive sputter film forming apparatus and film forming method. 従来の反応性スパッタ成膜装置、及び成膜方法でTiNを成膜した基板の外観を示す模式図である。It is a schematic diagram which shows the external appearance of the board | substrate which formed the TiN film into the conventional reactive sputter film-forming apparatus and the film-forming method. 本発明の一実施形態に係るマスクと基板ホルダのラビリンス構造の一例を示す図である。It is a figure which shows an example of the labyrinth structure of the mask and substrate holder which concern on one Embodiment of this invention. 本発明の一実施形態に係る基板ホルダとマスクのラビリンス構造の一例を示す図である。It is a figure which shows an example of the labyrinth structure of the substrate holder and mask which concern on one Embodiment of this invention.
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 
 本発明の一実施形態では、反応性スパッタリングにおいて、基板ホルダの基板設置部(基板載置部)に設置された基板の外周部や、基板ホルダの基板が設置されていない領域へのスパッタ粒子の堆積を抑制するために、基板の縁からの所定の領域(基板の縁を含む、基板の外周部の所定の領域)を覆うようにマスクを配置する。これにより、基板や基板ホルダへのスパッタ粒子の望まない堆積を抑制することができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings described below, components having the same function are denoted by the same reference numerals, and repeated description thereof is omitted.
In one embodiment of the present invention, in the reactive sputtering, sputter particles are applied to the outer peripheral portion of the substrate placed on the substrate placement portion (substrate placement portion) of the substrate holder or the region where the substrate of the substrate holder is not placed. In order to suppress deposition, a mask is disposed so as to cover a predetermined region from the edge of the substrate (a predetermined region on the outer peripheral portion of the substrate including the edge of the substrate). Thereby, unwanted deposition of sputtered particles on the substrate or substrate holder can be suppressed.
 このようなマスクを用いる反応性スパッタ成膜装置により基板上に成膜された膜において、該膜の外周部と中央部とにおける膜中の反応性ガス原子濃度にバラツキが生じる場合がある。すなわち、従来では、マスクと基板ホルダ、およびマスクと基板とが離間しており、後述するが、該離間部に形成された隙間を介して、マスクの外側から反応性ガスが進入することにより、基板外周部における、膜中の反応性ガス原子濃度が局所的に高くなる。これにより、上記バラツキが生じるのである。 In a film formed on a substrate by a reactive sputtering film forming apparatus using such a mask, there may be a variation in the concentration of reactive gas atoms in the film between the outer peripheral part and the central part of the film. That is, conventionally, the mask and the substrate holder, and the mask and the substrate are separated from each other, and as will be described later, the reactive gas enters from the outside of the mask through the gap formed in the separation portion. The reactive gas atom concentration in the film at the outer periphery of the substrate is locally increased. As a result, the variation occurs.
 そこで、マスクと基板ホルダとを、およびマスクと基板とを接触させると、後述のように、上記バラツキを低減することができる。しかしながら、このように接触させると、接触部分において擦れが生じ、該擦れにより発塵が発生してしまう。すなわち、基板の外周部の一部分を少なくともマスクで覆うので、基板を基板ホルダに載置するために、マスクを上下左右の少なくともいずれか一方向に動かす必要があり、基板が載置された後に、マスクを基板ホルダおよび基板に接触させることになる。上記基板の外周部の一部を覆うようにマスクを配置する際に、マスクと基板ホルダとを、および/またはマスクと基板とを接触させると、それらの接触部分が擦れてしまい、発塵が生じてしまう。 Therefore, when the mask and the substrate holder are brought into contact with each other and the mask and the substrate are brought into contact with each other, the above-described variation can be reduced as described later. However, when contact is made in this way, rubbing occurs at the contact portion, and dust generation occurs due to the rubbing. That is, since at least a part of the outer peripheral portion of the substrate is covered with a mask, in order to place the substrate on the substrate holder, it is necessary to move the mask in at least one of the upper, lower, left and right directions. The mask is brought into contact with the substrate holder and the substrate. When the mask is disposed so as to cover a part of the outer peripheral portion of the substrate, if the mask and the substrate holder are brought into contact with each other and / or the mask and the substrate are brought into contact with each other, the contact portions are rubbed and dust generation is generated. It will occur.
 そこで、本発明の一実施形態では、少なくとも反応性スパッタリング処理時においては、上記発塵の発生を抑制するために、マスクと基板ホルダとの間、ならびにマスクと基板ホルダに載置された基板との間に隙間を設けて、マスクを基板ホルダおよび基板から離間させ、上記擦れが生じないようにする。従って、反応性スパッタリング時において、上記擦れを抑制することができ、該擦れが原因の発塵の発生を低減、ないしは防止することができる。 Therefore, in one embodiment of the present invention, at least during the reactive sputtering process, in order to suppress the generation of the dust, between the mask and the substrate holder, and the substrate placed on the mask and the substrate holder, A gap is provided between the substrate holder and the substrate so that the rubbing does not occur. Therefore, the rubbing can be suppressed during reactive sputtering, and the generation of dust due to the rubbing can be reduced or prevented.
 しかしながら、反応性スパッタリング時に、マスクを基板ホルダおよび基板と離間させて隙間を形成すると、上述のように該隙間から反応性ガスがマスクの外側から内側に侵入してしまい、形成される膜において膜中の反応性ガス原子濃度の局所的な増加が起きてしまう。 However, if a gap is formed by separating the mask from the substrate holder and the substrate during reactive sputtering, the reactive gas enters from the outside to the inside of the mask as described above, and the film formed in the film A local increase in the concentration of reactive gas atoms will occur.
 そこで本発明の一実施形態では、上記隙間を介した、基板ホルダ(マスク)の外側から基板ホルダ(マスク)の内側(成膜空間)への反応性ガスの進入を抑制する抑制手段としての、上記隙間の圧力を相対的に高めるための構成を設けている。このような圧力を相対的に高めるための構成としては、例えば、上記隙間に不活性ガスを供給するためのガス供給口を設け、該ガス供給口から上記隙間に不活性ガスを供給するようにすれば良い。このように、反応性スパッタ成膜装置において、基板とマスク、及び基板ホルダとマスクとの隙間及びその近傍における不活性ガスの分圧を局所的に高く調整可能とすることにより、反応性ガスが外部空間(例えば、マスクの外側の空間等)から隙間を通って基板側の内部空間(成膜空間)へ流入し難くなり、膜の基板の外周部縁における局所的な反応性ガス原子濃度が高くなることを改善出来る。また、上記局所的に高くなった不活性ガスの圧力の影響により、マスクの内側に存在する成膜空間にある反応性ガスがマスクと基板との間の隙間に侵入することを抑制することもできるので、マスクの効果をより一層強めることができる。 Therefore, in one embodiment of the present invention, as a suppressing means for suppressing the ingress of reactive gas from the outside of the substrate holder (mask) to the inside (film formation space) of the substrate holder (mask) through the gap, A configuration for relatively increasing the pressure in the gap is provided. As a configuration for relatively increasing the pressure, for example, a gas supply port for supplying an inert gas to the gap is provided, and the inert gas is supplied to the gap from the gas supply port. Just do it. As described above, in the reactive sputter deposition apparatus, the reactive gas can be adjusted by locally adjusting the gap between the substrate and the mask, the gap between the substrate holder and the mask, and the partial pressure of the inert gas in the vicinity thereof. It becomes difficult to flow from the external space (for example, the space outside the mask) through the gap to the internal space (film formation space) on the substrate side, and the local reactive gas atom concentration at the outer peripheral edge of the substrate of the film is reduced. It can improve to become high. In addition, due to the influence of the locally increased inert gas pressure, it is possible to prevent the reactive gas in the film formation space existing inside the mask from entering the gap between the mask and the substrate. As a result, the mask effect can be further enhanced.
 あるいは、上記抑制手段としての、上記隙間のコンダクタンスを相対的に小さくするための構成(例えば、ラビリンス構造)を設けても良い。このように、隙間が基板ホルダとマスクのラビリンス構造で形成されるようにすると、隙間の経路が長くなることにより隙間のコンダクタンスが小さくなり(コンダクタンスは経路の長さに反比例する)、反応性ガスが外部空間から隙間を通って基板側の内部空間へ流入し難くなる。上記抑制手段として、例えば、隙間へと不活性ガスを供給する構成と、上記ラビリンス構造とを組み合わせると、上述の作用をより効果的に行うことが出来る。 Or you may provide the structure (for example, labyrinth structure) for making the conductance of the said gap relatively small as the said suppression means. Thus, when the gap is formed by the labyrinth structure of the substrate holder and the mask, the gap path becomes longer and the conductance of the gap becomes smaller (the conductance is inversely proportional to the length of the path), and the reactive gas. Does not easily flow from the external space through the gap into the internal space on the substrate side. As the suppression means, for example, by combining a configuration for supplying an inert gas into the gap and the labyrinth structure, the above-described operation can be performed more effectively.
 本発明では、マスクと基板ホルダ、基板との擦れによる発塵を抑えながら、マスク近くに形成される膜において、膜中の反応性ガス原子濃度の局所的な増加を抑制することが本質であり、上記発塵を抑制するために形成される隙間を介して、マスクの外側から内側に向かって到来する、反応性ガスを低減することができれば、上記抑制手段はいずれの構成であっても良い。 In the present invention, it is essential to suppress a local increase in the concentration of reactive gas atoms in a film formed near the mask while suppressing dust generation due to rubbing between the mask, the substrate holder, and the substrate. As long as the reactive gas arriving from the outside to the inside of the mask through the gap formed to suppress the dust generation can be reduced, the suppression means may have any configuration. .
 なお、本明細書において、「隙間」とは、対象となる2つの要素(例えば、マスクと基板ホルダや、マスクと基板など)が接触せずに、該2つの要素の間に形成された空間を指す。 In this specification, the “gap” is a space formed between two target elements (for example, a mask and a substrate holder, a mask and a substrate, etc.) without contact. Point to.
 本発明では、上記抑制手段を設けているので、マスクと基板ホルダおよび基板との擦れにより生じる発塵を低減するために、少なくとも反応性スパッタリングの際に、マスクと基板ホルダとの間、およびマスクと基板との間にそれぞれ隙間を設けたとしても、基板ホルダやマスクの外側から隙間を介して進入する反応性ガスを低減することができるので、形成される膜における膜中の反応性ガス原子濃度のバラツキを抑えることができる。また、反応性ガスが隙間を通って基板側へ流入し難くなることにより、膜の基板の外周部縁における反応性ガス原子濃度の基板内(縁の周方向)、基板間(処理間・装置のメンテナンス前後間)、装置間でのバラツキを改善出来る。 In the present invention, since the suppression means is provided, in order to reduce dust generation caused by rubbing between the mask, the substrate holder, and the substrate, at least during reactive sputtering, between the mask and the substrate holder, and the mask. Even if a gap is provided between the substrate and the substrate, the reactive gas entering from the outside of the substrate holder or the mask through the gap can be reduced. Concentration variation can be suppressed. In addition, since it becomes difficult for the reactive gas to flow into the substrate side through the gap, the reactive gas atom concentration at the outer peripheral edge of the substrate of the film is within the substrate (periphery of the edge), between the substrates (between processing and apparatus) And before and after maintenance), the variation between devices can be improved.
 (第1の実施形態) 
 以下、図1~3を参照して本形態に係る反応性スパッタ成膜装置ついて説明する。 
 図1において、基板載置部を有する基板ホルダ6に設置された基板5とマスク8とは、及び基板ホルダ6とマスク8とは、少なくとも反応性スパッタリングの際には互いに非接触であり、それらの距離は数ミリメートルである。基板ホルダ6とマスク8との間の隙間15に面したガス供給口16は基板ホルダ6に形成されている。すなわち、ガス供給口16は、隙間15、および基板5とマスク8との間の隙間17に不活性ガスを供給するように配置されている。また、図1に示すとおり、従来の技術と同様のガス供給口10も設置されている。隙間15に面したガス供給口16からは化学的に不活性なガス(不活性ガス)が供給可能であり、またガス供給口10からは反応性ガス、または化学的に不活性なガスと反応性ガスとが供給可能となっている。
(First embodiment)
Hereinafter, the reactive sputtering film forming apparatus according to the present embodiment will be described with reference to FIGS.
In FIG. 1, the substrate 5 and the mask 8 installed on the substrate holder 6 having the substrate mounting portion, and the substrate holder 6 and the mask 8 are not in contact with each other at least during reactive sputtering. The distance is a few millimeters. A gas supply port 16 facing the gap 15 between the substrate holder 6 and the mask 8 is formed in the substrate holder 6. That is, the gas supply port 16 is arranged to supply the inert gas to the gap 15 and the gap 17 between the substrate 5 and the mask 8. Moreover, as shown in FIG. 1, the gas supply port 10 similar to the conventional technique is also installed. The gas supply port 16 facing the gap 15 can supply a chemically inert gas (inert gas), and the gas supply port 10 reacts with a reactive gas or a chemically inert gas. Sex gas can be supplied.
 図1において、符号1はチャンバで、ターゲット2が装着されたターゲット電極3は、チャンバ1とターゲット電極3を電気的に絶縁する絶縁体4を介してチャンバ1に取りつけられている。ターゲットとしてはTiなどが用いられる。成膜される基板5は基板ホルダ6に設置され、それらはチャンバ1内のターゲット2に正対して配置されている。シールド7はチャンバ1への膜の堆積を防止するシールドである。マスク8は基板5の外周部への膜の堆積を防止、ないしは軽減するため、基板外周部といった、基板の縁からの所定の領域を覆いかぶさる形状となっている。すなわち、基板ホルダ6の基板5が載置されていない面の上方にもマスクがかぶさるように、マスク8の基板ホルダ側の面は、段差が設けられていることが好ましい。このように、マスク8の基板ホルダ側の面に段差を設けることにより、基板5とマスク8との間に隙間17を形成しても、基板ホルダ6の基板5が載置されていない領域とマスク8との間の隙間15を小さくすることができる。該隙間15は、上述のように基板ホルダ6の外側から内側に反応性ガスが侵入する進入口となるが、上述のように基板5とマスク8との間に隙間17を形成しても隙間15を小さくすることができるので、上記進入口の開口部を小さくすることができ、基板ホルダ6の外側から隙間15に流入する反応性ガスの量を低減することができる。 1, reference numeral 1 denotes a chamber, and a target electrode 3 on which a target 2 is mounted is attached to the chamber 1 via an insulator 4 that electrically insulates the chamber 1 and the target electrode 3. Ti or the like is used as a target. The substrate 5 to be deposited is placed on the substrate holder 6, and they are arranged facing the target 2 in the chamber 1. The shield 7 is a shield that prevents film deposition in the chamber 1. The mask 8 has a shape that covers a predetermined area from the edge of the substrate, such as the outer periphery of the substrate, in order to prevent or reduce film deposition on the outer periphery of the substrate 5. That is, the surface of the mask 8 on the substrate holder side is preferably provided with a step so that the mask covers the surface of the substrate holder 6 on which the substrate 5 is not placed. In this way, by providing a step on the surface of the mask 8 on the substrate holder side, even if the gap 17 is formed between the substrate 5 and the mask 8, the substrate holder 6 does not have the substrate 5 placed thereon. The gap 15 between the mask 8 can be reduced. The gap 15 serves as an entrance for the reactive gas to enter from the outside to the inside of the substrate holder 6 as described above. However, even if the gap 17 is formed between the substrate 5 and the mask 8 as described above, the gap 15 is not provided. 15 can be made smaller, the opening of the entrance can be made smaller, and the amount of reactive gas flowing into the gap 15 from the outside of the substrate holder 6 can be reduced.
 基板5とマスク8が接触すると発塵が生じることがあるため、マスク8は、少なくとも反応性スパッタリング時には基板5と接触しないように配置されている。マスク8が基板外周部へ覆いかぶさる箇所への膜の堆積(膜の回りこみ)を少なくするため、マスク8と基板5の間の隙間は短い方が望ましく、2~3mm程度が好ましい。また、基板ホルダ6とマスク8も接触すると発塵が生じることがあるため、少なくとも反応性スパッタリング時にはお互いに接触しないように配置されている。 Since dust generation may occur when the substrate 5 and the mask 8 come into contact with each other, the mask 8 is arranged so as not to come into contact with the substrate 5 at least during reactive sputtering. The gap between the mask 8 and the substrate 5 is preferably short in order to reduce film deposition (film wraparound) where the mask 8 covers the outer periphery of the substrate, and is preferably about 2 to 3 mm. Further, when the substrate holder 6 and the mask 8 are also brought into contact with each other, dust may be generated. Therefore, they are arranged so as not to contact each other at least during reactive sputtering.
 基板ホルダ6とマスク8の少なくとも一方には、例えばアクチュエータ等の、自身を可動させるための可動機構(不図示)が設けられている。この可動機構には、不図示の制御装置が接続されており、該制御装置の制御により上記可動機構が駆動し、基板ホルダ6およびマスク8の少なくとも一方が移動する。基板ホルダ6から基板5を取り出し、基板ホルダ6に新たな基板5を設置する場合には、制御装置が可動機構を制御して基板ホルダ6とマスク8との間隔を広げる。そのため、基板ホルダ6へ基板5の設置を簡便に行うことができる。一方、基板ホルダ6に基板5を設置後、制御装置が可動機構を制御して基板ホルダ6とマスク8との間隔を狭めた後、成膜を行う。この場合、基板ホルダ6とマスク8の間隔は予め設定した所定間隔になるように、可動機構により制御する。 
 なお、上記可動機構を、制御装置ではなく、ユーザが手動で制御しても良い。すなわち、基板5を基板ホルダ6に載置する場合は、基板ホルダ6およびマスク8の少なくとも一方が移動するように可動機構をユーザが手動で調節しても良い。
At least one of the substrate holder 6 and the mask 8 is provided with a movable mechanism (not shown) such as an actuator for moving itself. A control device (not shown) is connected to the movable mechanism, and the movable mechanism is driven by the control of the control device, so that at least one of the substrate holder 6 and the mask 8 moves. When taking out the substrate 5 from the substrate holder 6 and installing a new substrate 5 on the substrate holder 6, the control device controls the movable mechanism to widen the distance between the substrate holder 6 and the mask 8. Therefore, the substrate 5 can be easily installed on the substrate holder 6. On the other hand, after the substrate 5 is set on the substrate holder 6, the control device controls the movable mechanism to narrow the distance between the substrate holder 6 and the mask 8, and then performs film formation. In this case, the movable mechanism is controlled so that the distance between the substrate holder 6 and the mask 8 is a predetermined distance set in advance.
Note that the movable mechanism may be manually controlled by the user instead of the control device. That is, when the substrate 5 is placed on the substrate holder 6, the user may manually adjust the movable mechanism so that at least one of the substrate holder 6 and the mask 8 moves.
 このように、本実施形態では、図1に示すように隙間15、17を形成するようにマスク8の形状を設定したり、上記可動機構をマスク8および基板ホルダ6の少なくとも一方に設たりしているので、少なくとも反応性スパッタリング時には、マスク8と、基板ホルダ6および基板5との間に隙間15、17が形成されるようにマスク8および基板ホルダ6が構成されることになる。 As described above, in this embodiment, the shape of the mask 8 is set so as to form the gaps 15 and 17 as shown in FIG. 1, or the movable mechanism is provided on at least one of the mask 8 and the substrate holder 6. Therefore, at least during reactive sputtering, the mask 8 and the substrate holder 6 are configured such that gaps 15 and 17 are formed between the mask 8 and the substrate holder 6 and the substrate 5.
 チャンバ1内は排気口9に設けられた不図示の真空ポンプにより真空に排気される。チャンバ1内には、チャンバ1に設けられた第一のガス供給口10と第二のガス供給口16とから所定のガスが供給される。第一のガス供給口10からは、反応性ガス(例えば、N)、または化学的に不活性なガス(例えばAr)と反応性ガス(例えば、N)との混合ガスを、ターゲット2、シールド7、マスク8と基板5で囲まれた成膜空間11へ供給する。第二のガス供給口16は、基板ホルダ6に設置された基板5の外周に複数配置されており、第二のガス供給口16からは化学的に不活性なガス(例えばAr)のみ供給する。 The inside of the chamber 1 is evacuated to a vacuum by a vacuum pump (not shown) provided at the exhaust port 9. A predetermined gas is supplied into the chamber 1 from a first gas supply port 10 and a second gas supply port 16 provided in the chamber 1. A reactive gas (for example, N 2 ) or a mixed gas of a chemically inert gas (for example, Ar) and a reactive gas (for example, N 2 ) is supplied from the first gas supply port 10 to the target 2. The film 7 is supplied to the film formation space 11 surrounded by the shield 7, the mask 8 and the substrate 5. A plurality of second gas supply ports 16 are arranged on the outer periphery of the substrate 5 installed in the substrate holder 6, and only a chemically inert gas (for example, Ar) is supplied from the second gas supply port 16. .
 ターゲット電極3のターゲット2に対して背面側には不図示のカソードマグネットが設置されている。またターゲット電極3には不図示の直流電源が接続されており、ターゲット電極3に負電圧を印加して成膜空間11にプラズマ放電を起こさせる。例えば、反応性ガスとしてNを用い、ターゲット2としてTiを用いる場合、プラズマ放電により電離されたガス(正イオン)はターゲット電極3への負電圧により加速されてターゲット2をスパッタし、スパッタされたターゲット2の粒子が、プラズマ放電により活性化されたNガスと共に堆積することにより、ターゲット2であるTiと反応性ガスであるNの化合物であるTiN膜が基板5へ成膜される。不活性なガス(例えばAr)及び膜として堆積しなかった一部の反応性ガス(例えばN)は、排出口12を通って成膜空間11の外側の外部空間14へと排出される。また、一部のガスはターゲット2とシールド7との間の隙間13を通って成膜空間11の外側の外部空間14へと排出される。ガス排出口12と隙間13のコンダクタンスを比較すると、ガス排出口12の方が隙間13に比べてコンダクタンスが大きくなるように構成されているので、不活性なガス及び膜として堆積しなかった一部の反応性ガスの大半は、ガス排出口12を通って外部空間14へと排出される。すなわち、不活性なガス及び膜として堆積しなかった一部の反応性ガスは、ガス排出口12および隙間13を介してチャンバ1の排気口9に向かい、該排気口9から排気される。 A cathode magnet (not shown) is installed on the back side of the target 2 of the target electrode 3. A DC power source (not shown) is connected to the target electrode 3, and a negative voltage is applied to the target electrode 3 to cause plasma discharge in the film formation space 11. For example, when N 2 is used as the reactive gas and Ti is used as the target 2, the gas (positive ions) ionized by the plasma discharge is accelerated by the negative voltage to the target electrode 3 to sputter the target 2 and be sputtered. The particles of the target 2 are deposited together with the N 2 gas activated by the plasma discharge, whereby a TiN film that is a compound of Ti as the target 2 and N 2 as the reactive gas is formed on the substrate 5. . An inert gas (for example, Ar) and a part of the reactive gas (for example, N 2 ) that has not been deposited as a film are discharged through the discharge port 12 to the external space 14 outside the film formation space 11. A part of the gas passes through the gap 13 between the target 2 and the shield 7 and is discharged to the external space 14 outside the film formation space 11. Comparing the conductance of the gas discharge port 12 and the gap 13, the gas discharge port 12 is configured to have a larger conductance than the gap 13, and therefore a portion that has not been deposited as an inert gas and film. Most of the reactive gas is discharged to the external space 14 through the gas discharge port 12. In other words, the inert gas and a part of the reactive gas not deposited as a film are exhausted from the exhaust port 9 toward the exhaust port 9 of the chamber 1 through the gas exhaust port 12 and the gap 13.
 ところで、化学的に不活性なガス(不活性ガス)のみ供給する第二のガス供給口16は基板ホルダ6の基板載置部分の外側に設けられている。そのため、第二のガス供給口16から不活性ガスを供給し、基板5とマスク8との間の隙間17、及び基板ホルダ6とマスク8との間の隙間15における化学的に不活性なガスの圧力を高くすることにより、外部空間14から隙間17、および隙間15を通って成膜空間14へと再供給される反応性ガスの量を減らすことが出来る。 Incidentally, the second gas supply port 16 for supplying only a chemically inert gas (inert gas) is provided outside the substrate placement portion of the substrate holder 6. Therefore, an inert gas is supplied from the second gas supply port 16, and a chemically inert gas in the gap 17 between the substrate 5 and the mask 8 and the gap 15 between the substrate holder 6 and the mask 8. By increasing the pressure, the amount of reactive gas re-supplied from the external space 14 through the gap 17 and the gap 15 to the film formation space 14 can be reduced.
 すなわち、基板堆積に寄与しなかった反応性ガスは、真空ポンプの駆動により、排出口12および隙間13を介して成膜空間11から排気口9へと進行する。このとき、基板ホルダ6の外側、すなわち成膜空間11と対向する外部空間14側には、隙間15が形成されているので、少なくとも反応性スパッタリング時には発塵を生じることは抑制されるが、上記排気口9へと向かう反応性ガスが隙間15から隙間17を介して成膜空間11へと流入してしまう。しかしながら、本実施形態では、隙間15、17に化学的に不活性なガスを供給するための第二のガス供給口16を設け、該第二のガス供給口16から不活性ガスを供給しているので、隙間15、17の圧力を、成膜空間11および外部空間14よりも高くすることができ、上記排気口9へと向かう反応性ガスの、隙間15および隙間17を介する成膜空間11への流入を抑制することができる。 That is, the reactive gas that has not contributed to the substrate deposition proceeds from the film formation space 11 to the exhaust port 9 via the discharge port 12 and the gap 13 by driving the vacuum pump. At this time, since the gap 15 is formed outside the substrate holder 6, that is, on the side of the external space 14 facing the film formation space 11, generation of dust is suppressed at least during reactive sputtering. The reactive gas toward the exhaust port 9 flows from the gap 15 into the film formation space 11 through the gap 17. However, in this embodiment, a second gas supply port 16 for supplying a chemically inert gas to the gaps 15 and 17 is provided, and the inert gas is supplied from the second gas supply port 16. Therefore, the pressure in the gaps 15 and 17 can be higher than that in the film formation space 11 and the external space 14, and the film formation space 11 of the reactive gas toward the exhaust port 9 through the gap 15 and the gap 17. The inflow to can be suppressed.
 次に、本実施形態に係る反応性スパッタ成膜装置による、基板に膜を形成する方法について説明する。 
 基板ホルダ6とマスク8との間の間隔が、基板ホルダ6に基板5を載置できない程である場合は、制御装置が可動機構を制御して、基板ホルダ6およびマスク8の少なくとも一方を移動させて、基板ホルダ6とマスク8とを十分に離間させる。次いで、搬送手段としての搬送ロボット(不図示)により基板を搬送し、基板ホルダ6の基板載置部に基板を載置する。次いで、制御装置が可動機構を制御して、基板ホルダ6およびマスク8の少なくとも一方を移動させて、マスク8と基板ホルダ6との間に隙間15が形成され、かつマスク8と基板5との間に隙間17が形成されるようにする。
Next, a method for forming a film on a substrate by the reactive sputtering film forming apparatus according to the present embodiment will be described.
When the distance between the substrate holder 6 and the mask 8 is such that the substrate 5 cannot be placed on the substrate holder 6, the control device controls at least one of the substrate holder 6 and the mask 8 by controlling the movable mechanism. Thus, the substrate holder 6 and the mask 8 are sufficiently separated. Next, the substrate is transferred by a transfer robot (not shown) as transfer means, and the substrate is placed on the substrate placement portion of the substrate holder 6. Next, the control device controls the movable mechanism to move at least one of the substrate holder 6 and the mask 8, so that a gap 15 is formed between the mask 8 and the substrate holder 6, and between the mask 8 and the substrate 5. A gap 17 is formed between them.
 なお、本実施形態では、反応性スパッタリング時には少なくとも隙間15、17が形成されていれば良く、基板5を基板ホルダ6に載置した時点で、マスク8と、基板ホルダ6および基板5との間が、適切な空間である隙間15、17である場合は、基板ホルダ6やマスク8の移動は行わなくても良い。 In the present embodiment, at least the gaps 15 and 17 may be formed at the time of reactive sputtering, and when the substrate 5 is placed on the substrate holder 6, the gap between the mask 8 and the substrate holder 6 and the substrate 5 is sufficient. However, when the gaps 15 and 17 are appropriate spaces, the substrate holder 6 and the mask 8 need not be moved.
 次いで、制御装置がガス供給機構(不図示)を制御して、第一のガス供給口10からチャンバ1内へと反応性ガス、または反応性ガスと不活性ガスとの混合ガスを供給し、第二のガス供給口16から隙間15、17へと不活性ガスを供給する。また、制御装置が直流電源を制御して、ターゲット電極3に所定の負電圧を印加して成膜空間11内にプラズマ放電を起こさせる。これにより、ターゲット2からスパッタされたスパッタ粒子と反応性ガスとの化合物を基板5上に成膜する。 Next, the control device controls a gas supply mechanism (not shown) to supply a reactive gas or a mixed gas of a reactive gas and an inert gas from the first gas supply port 10 into the chamber 1. An inert gas is supplied from the second gas supply port 16 to the gaps 15 and 17. Further, the control device controls the direct current power source to apply a predetermined negative voltage to the target electrode 3 to cause plasma discharge in the film forming space 11. Thereby, the compound of the sputtered particles sputtered from the target 2 and the reactive gas is formed on the substrate 5.
 以下、本実施形態に係る反応性スパッタ成膜装置と、第二のガス供給口16を設けない装置とを対比して、本実施形態の効果を説明する。 
 図4は比較のための反応性スパッタ成膜装置であって、従来の、マスクを用いた反応性スパッタ成膜装置である。図4に示す装置は、第二のガス供給口16を設けない点以外は、図1に示す反応性スパッタ成膜装置と同じ構成である。図5は、図4に示す反応性スパッタ成膜装置における反応性ガスの流れを説明するための説明図である。図6は、図4に示す反応性スパッタ成膜装置により成膜を行った基板の外観を示す模式図である。
Hereinafter, the effect of this embodiment will be described by comparing the reactive sputtering film forming apparatus according to this embodiment with an apparatus that does not include the second gas supply port 16.
FIG. 4 shows a reactive sputter deposition apparatus for comparison, which is a conventional reactive sputter deposition apparatus using a mask. The apparatus shown in FIG. 4 has the same configuration as the reactive sputtering film forming apparatus shown in FIG. 1 except that the second gas supply port 16 is not provided. FIG. 5 is an explanatory diagram for explaining the flow of the reactive gas in the reactive sputtering film forming apparatus shown in FIG. FIG. 6 is a schematic view showing an appearance of a substrate on which the film is formed by the reactive sputtering film forming apparatus shown in FIG.
 第一のガス供給口10を介して成膜空間11へ供給された反応性ガスの大半は、基板5、シールド7、及びマスク8へ膜として堆積することにより消費されるが、一部は上述の通り排出口12を通って成膜空間11の外側の外部空間14へと排出される。一方、基板5とマスク8、及び基板ホルダ6とマスク8は上述のとおり非接触である。すなわち、外部空間14と成膜空間11とは、排出口12、およびターゲット2とシールド7との間の隙間13だけでなく、基板ホルダ6とマスク8との間の隙間15を介しても繋がっている。よって、隙間15を通って外部空間14と成膜空間11を行き来する不活性ガス、及び反応性ガスがわずかながら存在する。図5は、従来の図4に示す反応性スパッタ成膜装置における反応性ガスの経路を示すものである。図5に示すとおり、ガス供給口10から成膜空間11へと供給された反応性ガスにおいて、排出口12を通って外部空間14へ排出された後、隙間15を通って成膜空間11へ再供給されるものがある。外部空間14から隙間15を通って成膜空間11へ再供給される反応性ガスは、プラズマにより活性化され、隙間15に近い基板5の端へ膜として堆積しやすい。そのため、基板5の端に堆積する膜の反応性ガス原子濃度は、基板5の他の部位に堆積する膜のそれに比べて高くなったものと思われる。 Most of the reactive gas supplied to the film formation space 11 via the first gas supply port 10 is consumed by depositing as a film on the substrate 5, the shield 7, and the mask 8, but part of the reactive gas is described above. Is discharged to the external space 14 outside the film formation space 11 through the discharge port 12. On the other hand, the substrate 5 and the mask 8 and the substrate holder 6 and the mask 8 are not contacted as described above. That is, the external space 14 and the film formation space 11 are connected not only through the discharge port 12 and the gap 13 between the target 2 and the shield 7 but also through the gap 15 between the substrate holder 6 and the mask 8. ing. Therefore, there are a small amount of inert gas and reactive gas that go back and forth between the external space 14 and the film formation space 11 through the gap 15. FIG. 5 shows a reactive gas path in the conventional reactive sputtering film forming apparatus shown in FIG. As shown in FIG. 5, the reactive gas supplied from the gas supply port 10 to the film formation space 11 is discharged to the external space 14 through the discharge port 12 and then to the film formation space 11 through the gap 15. Some are resupplied. The reactive gas re-supplied from the external space 14 through the gap 15 to the film formation space 11 is activated by the plasma and easily deposits as a film on the end of the substrate 5 near the gap 15. Therefore, it is considered that the reactive gas atom concentration of the film deposited on the edge of the substrate 5 is higher than that of the film deposited on other parts of the substrate 5.
 基板5の端に堆積する反応ガス原子濃度が高い膜について、図6を用いて説明する。図6は、ターゲット2はTi、化学的に不活性なガスと反応性ガスとはそれぞれArとNを使用してTiNを成膜した基板5の外観の模式図である。図6に示すとおり、マスク8が覆い被さる基板5の端には、TiNが堆積していない領域101が周上に形成されていた。図6の符号102に示す基板5上に形成されたTiNが堆積した領域の大半は、ターゲット2であるTiと同じ色であった。一方、TiNが堆積していない領域101と、Tiと同じ色の領域(膜)102の境界は、金色(金属光沢を持つ茶色)の膜103であった。図6に示す領域bでのTiと同じ色の膜102と、領域b近傍である領域Bにおける金色の膜103のN原子濃度(反応性ガス原子濃度)とを、X線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)を用いて調べたところ、Tiと同じ色の膜102のN原子濃度は31at.%でであったのに対し、金色の膜103は45at.%であった。 A film having a high concentration of reactive gas atoms deposited on the edge of the substrate 5 will be described with reference to FIG. FIG. 6 is a schematic diagram of the appearance of the substrate 5 on which Ti 2 is formed using Ti as the target 2 and Ar and N 2 as the chemically inert gas and the reactive gas, respectively. As shown in FIG. 6, a region 101 where no TiN is deposited is formed on the periphery of the substrate 5 covered with the mask 8. Most of the region where TiN formed on the substrate 5 indicated by reference numeral 102 in FIG. 6 is deposited has the same color as Ti as the target 2. On the other hand, the boundary between the region 101 where TiN is not deposited and the region (film) 102 having the same color as Ti was a gold (brown with a metallic luster) film 103. The film 102 having the same color as Ti in the region b shown in FIG. 6 and the N atom concentration (reactive gas atom concentration) of the gold film 103 in the region B in the vicinity of the region b are represented by an X-ray microanalyzer (EPMA: Electron Probe Micro Analyzer), the N atom concentration of the film 102 having the same color as Ti is 31 at. %, Whereas the golden film 103 is 45 at. %Met.
 金色の膜103の膜中のN原子濃度が高くなった理由を、上述したように外部空間14から隙間15を通って成膜空間11へ再供給されるNガスが存在するからであると考え、基板ホルダ6とマスク8との間の距離(隙間15の大きさ)を変え、隙間15のコンダクタンス、すなわち隙間15における反応性ガスであるNガスの通りやすさを変えることを試みた。基板ホルダ6とマスク8との間の距離を遠ざけるに従い、金色の膜103の面積が大きくなること、また隙間15を無くすために基板ホルダ6とマスク8とを接触させたところ、基板ホルダ6とマスク8を接触させた箇所の近傍では金色の膜103が無くなった。つまり、上述のように外部空間14から隙間15を通って成膜空間11へ再供給されるNガスが存在するが故に、基板5の端にN原子濃度が高い膜が堆積すること、また、再供給されるNガスの量は隙間15のコンダクタンスに依存するが故に、隙間15を広くするに従いN原子濃度が高い金色の膜103の面積が広くなったと言える。 The reason why the N atom concentration in the film of the gold film 103 is high is that, as described above, there is N 2 gas re-supplied from the external space 14 through the gap 15 to the film forming space 11. In consideration, the distance between the substrate holder 6 and the mask 8 (the size of the gap 15) was changed, and the conductance of the gap 15, that is, the ease of passing the N 2 gas that is a reactive gas in the gap 15 was tried. . As the distance between the substrate holder 6 and the mask 8 increases, the area of the golden film 103 increases, and when the substrate holder 6 and the mask 8 are brought into contact with each other in order to eliminate the gap 15, The gold film 103 disappeared in the vicinity of the portion where the mask 8 was brought into contact. That is, as described above, the N 2 gas re-supplied from the external space 14 through the gap 15 to the film formation space 11 exists, so that a film having a high N atom concentration is deposited on the edge of the substrate 5. Since the amount of N 2 gas supplied again depends on the conductance of the gap 15, it can be said that the area of the golden film 103 having a high N atom concentration is increased as the gap 15 is increased.
 一方、ディスプレイ等の大面積基板用の成膜装置では、基板ホルダ6とマスク8も基板5に準じた大きさである。故に、基板5とマスク8との間の隙間17、および基板ホルダ6とマスク8との間の隙間15を、基板5の周方向において均一にするのは難しい。隙間15の基板5の周方向における不均一は、隙間15から成膜空間11へ再供給される反応性ガスの量を、基板5の周方向において不均一にする。すなわち、基板5の端にN原子濃度が高い膜が堆積することのみならず、基板5の端に堆積する膜の反応性ガス原子濃度が基板5の周方向において異なり、また基板5の端に堆積する反応性ガス原子濃度が高い膜の量(堆積面積)が基板5の周方向において異なる。 On the other hand, in a film forming apparatus for a large area substrate such as a display, the substrate holder 6 and the mask 8 are also sized according to the substrate 5. Therefore, it is difficult to make the gap 17 between the substrate 5 and the mask 8 and the gap 15 between the substrate holder 6 and the mask 8 uniform in the circumferential direction of the substrate 5. The nonuniformity of the gap 15 in the circumferential direction of the substrate 5 makes the amount of the reactive gas re-supplied from the gap 15 to the film forming space 11 nonuniform in the circumferential direction of the substrate 5. That is, not only a film having a high N atom concentration is deposited on the edge of the substrate 5, but also the reactive gas atom concentration of the film deposited on the edge of the substrate 5 is different in the circumferential direction of the substrate 5. The amount (deposition area) of the film having a high reactive gas atom concentration to be deposited differs in the circumferential direction of the substrate 5.
 堆積した膜を除去するため、マスク8は定期的に交換する必要がある。マスク8の寸法誤差と取り付け誤差とは、マスク8の交換前後での隙間15の違いとなる。すなわち、マスク8の交換前後において、基板5の端の反応性ガス原子濃度が高い膜は反応性ガス原子濃度が異なりやすい。装置間においても同様である。また、そうならないためにはマスク8の寸法誤差と取り付け誤差を小さくせねばならないので、マスク8が高価に成りやすく、且つマスク8の交換時の取り付けに必要な調整に時間かかる。 In order to remove the deposited film, the mask 8 needs to be replaced periodically. The dimensional error and the mounting error of the mask 8 are the difference in the gap 15 before and after the replacement of the mask 8. That is, before and after the replacement of the mask 8, a film having a high reactive gas atom concentration at the edge of the substrate 5 is likely to have a different reactive gas atom concentration. The same applies between devices. In order to avoid such a situation, the dimensional error and the mounting error of the mask 8 must be reduced. Therefore, the mask 8 is likely to be expensive, and it takes time to make adjustments necessary for mounting when replacing the mask 8.
 本実施形態では、図1に示したように、第二のガス供給口16から不活性ガスのみを供給することにより、不活性ガスが実線の矢印P1の方向(第二のガス供給口16から外部空間14に向かう方向)に流れる。そのため、外部空間14から反応性ガスが再供給される(図4の矢印Q)のを防ぐ、ないしは低減することができる。 In the present embodiment, as shown in FIG. 1, by supplying only the inert gas from the second gas supply port 16, the inert gas flows in the direction of the solid line arrow P <b> 1 (from the second gas supply port 16. In the direction toward the external space 14). Therefore, it is possible to prevent or reduce the re-supply of the reactive gas from the external space 14 (arrow Q in FIG. 4).
 そのため、本実施形態では、基板とマスクとを、および基板ホルダとマスクとを接触させることなく、基板の端に堆積する膜の反応性ガス原子濃度を基板の他の部位に堆積する膜のそれに近づけること、及び、基板の端に堆積する反応性ガス原子濃度が基板の他の部位に堆積する膜のそれに比べて高い膜の量を少なく(堆積面積を狭く)することが出来る。 Therefore, in the present embodiment, the reactive gas atom concentration of the film deposited on the edge of the substrate is set to that of the film deposited on the other part of the substrate without bringing the substrate and the mask into contact with the substrate holder and the mask. As a result, the amount of the reactive gas atoms deposited on the edge of the substrate can be reduced (the deposition area can be reduced) compared to that of the film deposited on other parts of the substrate.
 また、第二のガス供給口16から隙間15、17に供給された不活性ガスは、図1の矢印方向P2(第二のガス供給口16から成膜空間11に向かう方向)にも進行する。よって、反応性スパッタリング中に、マスク8と基板5とが離間して隙間17を形成しても、該隙間17から成膜空間11に向かう矢印方P2の不活性ガスの流出により、成膜空間11から隙間17に進入する反応性ガスを抑制することができる。従って、発塵を抑えるために、マスク8と基板5とを離間しても、成膜空間11に存在する反応性ガスが、マスク8に覆われた、堆積を望まない領域へと侵入するのを抑制することができ、より一層のマスク効果を実現することができる。すなわち、マスク8と基板とを離間させても良好のマスク効果を得ることができるので、発塵を抑えつつ、堆積を望まない領域への膜の堆積を抑えることができる。 Further, the inert gas supplied to the gaps 15 and 17 from the second gas supply port 16 also proceeds in the arrow direction P2 of FIG. 1 (the direction from the second gas supply port 16 toward the film formation space 11). . Therefore, even if the mask 8 and the substrate 5 are separated from each other and the gap 17 is formed during the reactive sputtering, the film formation space is caused by the outflow of the inert gas in the arrow direction P2 from the gap 17 toward the film formation space 11. Reactive gas entering the gap 17 from 11 can be suppressed. Therefore, in order to suppress dust generation, even if the mask 8 and the substrate 5 are separated from each other, the reactive gas existing in the film formation space 11 penetrates into a region covered with the mask 8 where deposition is not desired. Can be suppressed, and a further mask effect can be realized. That is, even if the mask 8 and the substrate are separated from each other, a good mask effect can be obtained, so that it is possible to suppress film deposition in a region where deposition is not desired while suppressing dust generation.
 さらに、本実施形態では、隙間15、17の大きさが基板5の周方向で異なっていても、該隙間15,17の大きさに関係なく、第二のガス供給口16から供給された、矢印方向P1に進む不活性ガスにより、外部空間14から隙間15、17を介する成膜空間11への反応性ガスの侵入を低減することができる。よって、基板が大型化しても、基板の端に堆積する膜の反応性ガス原子濃度の均一性を基板の周方向においてに向上することが可能な、生産性に優れた反応性スパッタ成膜装置を提供することが可能である。 Furthermore, in this embodiment, even if the sizes of the gaps 15 and 17 are different in the circumferential direction of the substrate 5, the gas is supplied from the second gas supply port 16 regardless of the size of the gaps 15 and 17. By the inert gas proceeding in the arrow direction P1, the invasion of the reactive gas from the external space 14 to the film forming space 11 via the gaps 15 and 17 can be reduced. Therefore, even if the substrate is enlarged, the reactive sputter deposition apparatus with excellent productivity that can improve the uniformity of the reactive gas atomic concentration of the film deposited on the edge of the substrate in the circumferential direction of the substrate. Can be provided.
 なお、上記実施形態では、第二のガス供給口16を基板ホルダ6に設けた例を説明したが、第二のガス供給口は、図2に示すようにマスク8に、マスク8と基板ホルダ6の隙間17に面して設けても同様の効果が得られる。また、図3に示すように、マスク8と基板ホルダ6との隙間17の空間に設けてもよい。すなわち、不活性ガスを隙間15、17に供給することができれば、不活性ガスを供給するための第二のガス供給口16の配置位置はいずれであっても良い。 In the above embodiment, the example in which the second gas supply port 16 is provided in the substrate holder 6 has been described. However, the second gas supply port is provided in the mask 8 and the mask 8 and the substrate holder as shown in FIG. Even if it is provided facing the gap 17 of 6, the same effect can be obtained. Further, as shown in FIG. 3, it may be provided in the space 17 between the mask 8 and the substrate holder 6. That is, as long as the inert gas can be supplied to the gaps 15 and 17, the arrangement position of the second gas supply port 16 for supplying the inert gas may be any.
 (実施例、比較例) 
 本実施例では、基板5は大きさ550mm×650mm×厚さ0.7mmのLCD用途向けガラス基板を使用した。化学的に不活性なガスであるArは隙間15に面して設けたガス供給口16より144sccm供給し、また反応性ガスであるNはガス供給口10より256sccm供給した。不図示の直流電源から35Kwを60秒間印加することにより、基板5に平均膜厚170nmのTiNを成膜した。
(Examples and comparative examples)
In this embodiment, the substrate 5 is a glass substrate for LCD application having a size of 550 mm × 650 mm × thickness 0.7 mm. Ar, which is a chemically inert gas, was supplied at 144 sccm from a gas supply port 16 provided facing the gap 15, and N 2 as a reactive gas was supplied at 256 sccm from the gas supply port 10. By applying 35 Kw from a DC power source (not shown) for 60 seconds, a TiN film having an average film thickness of 170 nm was formed on the substrate 5.
 また、本実施形態との比較のための反応性スパッタ成膜装置、及び反応性スパッタ成膜方法と、本実施例とを比較するため、隙間15に面したガス供給口16が無い、図4の反応性スパッタ成膜装置(従来の装置であって、比較例)において、ガス供給口10よりArガスを144sccm、Nガスを256sccm供給しての成膜も行った。 Further, in order to compare the reactive sputtering film forming apparatus and reactive sputtering film forming method for comparison with the present embodiment with this example, there is no gas supply port 16 facing the gap 15, FIG. In the reactive sputtering film forming apparatus (conventional apparatus, which is a comparative example), film formation was performed by supplying 144 sccm of Ar gas and 256 sccm of N 2 gas from the gas supply port 10.
 図6の模式図に示すとおり、マスク8が覆い被さる基板5の端は、TiN膜が堆積していない領域101となった。図6の符号102に示す基板5のTiN膜が堆積した領域の大半は、上記ターゲット2であるTiと同じ色であった。一方、TiN膜が堆積していない領域101と、上記Tiと同じ色の膜102の境界は、金色の膜103であった。本実施例と従来の技術である図4の装置(比較例)で成膜した基板5の、図6に示す金色の膜103のN原子濃度とその幅を測定することにより、本実施形態の効果の確認を行った。N原子濃度を測定した箇所は、図6に図示したA~C点である金色の膜103の幅方向中央と、Tiと同じ色の膜102のa~cである。 As shown in the schematic diagram of FIG. 6, the edge of the substrate 5 covered with the mask 8 was a region 101 where no TiN film was deposited. Most of the region of the substrate 5 on which the TiN film was deposited indicated by reference numeral 102 in FIG. 6 was the same color as Ti as the target 2. On the other hand, the boundary between the region 101 where no TiN film is deposited and the film 102 having the same color as the Ti is the gold film 103. By measuring the N atom concentration and the width of the gold film 103 shown in FIG. 6 of the substrate 5 formed by the apparatus of the present example and the prior art apparatus (comparative example) of FIG. The effect was confirmed. The locations where the N atom concentration was measured are the center in the width direction of the gold film 103, which are points A to C shown in FIG. 6, and a to c of the film 102 of the same color as Ti.
 得られた結果について、表1,2を用いて説明する。 The results obtained will be described with reference to Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1は比較例と本実施例を用いて成膜したTiN膜のN原子濃度を示す。比較例での金色の膜103におけるN原子濃度は41~45at.%であったのに対し、本実施例でのTiN膜のそれは32~35at.%であった。また、比較例でのTiと同じ色の膜102におけるN原子濃度は28~31at.%であったのに対し、本実施例でのTiN膜のそれは27~29at.%であり、本実施例で成膜したTiN膜は、金色の膜103におけるN原子濃度をTiと同じ色の膜102に近づけることが出来た。また、表2に比較例と本実施例を用いて成膜したTiN膜の金色の膜103の幅を示す。比較例でのそれは4~8ミリメートルであったのに対し、本実施例でのそれは1~3ミリメートルであり、金色の膜103の量を少なく(堆積面積を狭く)することが出来た。 Table 1 shows the N atom concentration of the TiN film formed using the comparative example and this example. The N atom concentration in the gold film 103 in the comparative example is 41 to 45 at. %, While that of the TiN film in this example is 32 to 35 at. %Met. The N atom concentration in the film 102 of the same color as Ti in the comparative example is 28 to 31 at. % Of the TiN film in this example is 27 to 29 at. The TiN film formed in this example was able to bring the N atom concentration in the gold film 103 close to that of the film 102 having the same color as Ti. Table 2 shows the width of the gold film 103 of the TiN film formed using the comparative example and this example. In the comparative example, it was 4 to 8 millimeters, whereas in the present example, it was 1 to 3 millimeters, and the amount of the golden film 103 could be reduced (deposition area was reduced).
 (第2の実施形態) 
 第1の実施形態では、隙間15、17の圧力を相対的に高くする構成、すなわち、第二のガス供給口16を設けて、該第二のガス供給口16から不活性ガスを供給する構成により、外部空間14の反応性ガス(排気口9に向かう反応性ガス)が隙間15、17を通過して成膜空間11に進入することを抑制している。
(Second Embodiment)
In the first embodiment, a configuration in which the pressures of the gaps 15 and 17 are relatively increased, that is, a configuration in which a second gas supply port 16 is provided and an inert gas is supplied from the second gas supply port 16 is provided. Thus, the reactive gas in the external space 14 (reactive gas toward the exhaust port 9) is prevented from passing through the gaps 15 and 17 and entering the film forming space 11.
 本実施形態では、少なくとも隙間15にラビリンス構造を設け、該ラビリンス構造により、外部空間14から隙間15、17を介して成膜空間11側へと反応性ガスが通過するのを抑制している。 In the present embodiment, a labyrinth structure is provided at least in the gap 15, and the labyrinth structure prevents the reactive gas from passing from the external space 14 to the film formation space 11 side via the gaps 15 and 17.
 なお、本明細書において、「ラビリンス構造」とは、該ラビリンス構造を通過するガスに対するコンダクタンスを小さくさせる構造を指す。よって、例えば、ラビリンス構造は、少なくとも1つの凹部が形成された部材と、少なくとも1つの凸部が形成された部材とを非接触に嵌合させて、それらの間に小さな通路を形成するような構造である。あるいは、少なくとも1つの凸部が形成された第1の部材と、少なくとも1つの凸部が形成された第2の部材とをそれぞれの凸部を非接触に互い違いに、かつ一方の凸部が他方の部材にも非接触となるように配置する構造であっても良い。いずれにせよ、本実施形態に係るラビリンス構造は、所定の2つの部材に形成された凸部や凹部の組み合わせにより、ラビリンス構造自身を通過するガスに対するコンダクタンスを小さくできる構造であればいずれの構造であっても良い。 In the present specification, the “labyrinth structure” refers to a structure that reduces the conductance of the gas passing through the labyrinth structure. Thus, for example, in the labyrinth structure, a member in which at least one concave portion is formed and a member in which at least one convex portion are formed are fitted in a non-contact manner to form a small passage between them. Structure. Alternatively, the first member on which at least one convex portion is formed and the second member on which at least one convex portion are formed are staggered so that the respective convex portions are not in contact with each other, and one convex portion is the other. It may be a structure that is arranged so as to be non-contact with the member. In any case, the labyrinth structure according to the present embodiment is any structure as long as the conductance with respect to the gas passing through the labyrinth structure itself can be reduced by a combination of convex portions and concave portions formed on two predetermined members. There may be.
 なお、本実施形態では、上記凸部や凹部は、マスクや基板ホルダに形成される。マスクが基板ホルダの外周部において閉ループを形成するように構成される場合、反応性ガスの流入を抑制することを考慮すると、上記凸部や凹部は、マスクや基板ホルダの所定の領域において、周方向に一周するように形成することが好ましい。例えば、凹部を形成する場合は、マスクや基板ホルダのラビリンス構造とする領域において、所定の幅の溝を周方向に閉ループとなるように形成すれば良い。同様に、凸部を形成する場合も、マスクや基板ホルダのラビリンス構造とする領域において、突起部を周方向に閉ループとなるように形成すれば良い。 In the present embodiment, the convex portion and the concave portion are formed on a mask or a substrate holder. When the mask is configured to form a closed loop at the outer peripheral portion of the substrate holder, the convex portion and the concave portion are arranged in a predetermined region of the mask and the substrate holder in consideration of suppressing the inflow of the reactive gas. It is preferable to form so as to make a round in the direction. For example, in the case of forming the recess, a groove having a predetermined width may be formed in the circumferential direction so as to be a closed loop in the region of the mask or the substrate holder having the labyrinth structure. Similarly, when forming a convex part, what is necessary is just to form a projection part so that it may become a closed loop in the circumferential direction in the area | region used as the labyrinth structure of a mask or a substrate holder.
 また、マスクが基板ホルダの外周部において閉ループを形成しないように構成される場合(すなわち、基板の外周部の一部のみをマスクする場合)、凹部や凸部をマスクの周方向において端から端まで形成することが好ましい。 Further, when the mask is configured not to form a closed loop at the outer peripheral portion of the substrate holder (that is, when only a part of the outer peripheral portion of the substrate is masked), the concave portion and the convex portion are end to end in the circumferential direction of the mask. It is preferable to form up to.
 ただし、本実施形態で重要なことは、ラビリンス構造により、外部空間14から隙間15、17を通って成膜空間11へと進入する反応性ガスを抑制することである。よって、上記外部空間14からの反応性ガスの進入を低減できれば、本実施形態の技術目的は達成できるので、マスクや基板ホルダの周方向の全部においてラビリンス構造を形成することが必須条件ではない。例えば、装置の構造上、基板ホルダ6およびマスク8の外側のある方向からの反応性ガスの進入が多い場合は、その方向のみにラビリンス構造を設けても良い。あるいは、外部空間14からの反応性ガスの進入を所定の割合だけカットすれば良い場合は、マスク8および基板ホルダ6の周方向の全部にラビリンス構造を設けずに、上記所定の割合の反応性ガスの進入をカットできる程度にラビリンス構造を設けるようにしても良い。さらには、マスク8および基板ホルダ6の周方向において、途切れ途切れにラビリンス構造を設けるようにしても良い。 However, what is important in the present embodiment is that the labyrinth structure suppresses the reactive gas that enters the film formation space 11 from the external space 14 through the gaps 15 and 17. Therefore, if the intrusion of the reactive gas from the external space 14 can be reduced, the technical object of the present embodiment can be achieved. Therefore, it is not an essential condition to form the labyrinth structure in the entire circumferential direction of the mask and the substrate holder. For example, when the reactive gas enters from a certain direction outside the substrate holder 6 and the mask 8 due to the structure of the apparatus, the labyrinth structure may be provided only in that direction. Alternatively, when it is sufficient to cut the ingress of the reactive gas from the external space 14 by a predetermined ratio, the reactivity of the predetermined ratio is not provided without providing a labyrinth structure in the entire circumferential direction of the mask 8 and the substrate holder 6. A labyrinth structure may be provided to such an extent that gas entry can be cut. Furthermore, a labyrinth structure may be provided in an intermittent manner in the circumferential direction of the mask 8 and the substrate holder 6.
 すなわち、本実施形態では、マスク8の周方向に沿った領域(基板ホルダ6と対向すべき面)の少なくとも一部に、ラビリンス構造を形成するための凹部または凸部を少なくとも1つ形成し、基板ホルダ6にもマスクに形成された凹部または凸部と共にラビリンス構造を形成するように、基板ホルダの周方向に沿った領域の少なくとも一部に凹部または凸部を形成すれば良い。このように、マスク8および基板ホルダ6の周方向の少なくとも一部にラビリンス構造を設けることによって、外部空間14から隙間15、17を通って進入する反応性ガスを低減することができる。 That is, in the present embodiment, at least one concave portion or convex portion for forming a labyrinth structure is formed in at least a part of a region (surface to be opposed to the substrate holder 6) along the circumferential direction of the mask 8, The substrate holder 6 may be formed with a recess or projection in at least a part of the region along the circumferential direction of the substrate holder so that the labyrinth structure is formed together with the recess or projection formed in the mask. Thus, by providing the labyrinth structure in at least a part of the circumferential direction of the mask 8 and the substrate holder 6, the reactive gas entering from the external space 14 through the gaps 15 and 17 can be reduced.
 図7は、本実施形態に係る抑制手段としてのラビリンス構造を説明するための図である。図7では、基板ホルダ6とマスク8との間の隙間15がこれらのラビリンス構造で形成される一例を示す。 
 図7において、基板ホルダ6の、マスク8と対向する面における基板5が載置される基板載置部の外側には、ラビリンス構造を構成するための複数の凸部22が形成されている。これら凸部22の各々は、基板ホルダ6の周方向において、閉ループを形成するように設けられている。また、マスク8の基板ホルダ6と対向する面には、ラビリンス構造を形成するための凹部としての溝21が複数形成されている。これら溝21の各々も、マスク8の周方向において、閉ループを形成するように設けられている。本実施形態では、上記溝21および凸部22が非接触に勘合してラビリンス構造を形成するので、溝21の幅は、凸部22の幅よりも大きい。
FIG. 7 is a view for explaining a labyrinth structure as a suppressing means according to the present embodiment. FIG. 7 shows an example in which the gap 15 between the substrate holder 6 and the mask 8 is formed with these labyrinth structures.
In FIG. 7, a plurality of convex portions 22 for forming a labyrinth structure are formed on the outer side of the substrate mounting portion on which the substrate 5 is mounted on the surface of the substrate holder 6 facing the mask 8. Each of these convex portions 22 is provided so as to form a closed loop in the circumferential direction of the substrate holder 6. In addition, a plurality of grooves 21 as concave portions for forming a labyrinth structure are formed on the surface of the mask 8 facing the substrate holder 6. Each of these grooves 21 is also provided so as to form a closed loop in the circumferential direction of the mask 8. In the present embodiment, since the groove 21 and the convex portion 22 are fitted in a non-contact manner to form a labyrinth structure, the width of the groove 21 is larger than the width of the convex portion 22.
 本実施形態では、反応性スパッタリング時には、上記溝21および凸部22によりラビリンス構造が形成される。よって、制御装置または手動により可動機構を制御して、マスク8および基板ホルダ6の少なくとも一方の位置を調整し、溝21に凸部22が非接触に嵌合するようにする。これにより、溝21と凸部22との間にコンダクタンスの小さい非接触空間が形成される。コンダクタンスは経路の長さに反比例するので、図7のようなラビリンス構造で隙間15を形成することにより、隙間15の経路が長くなる。よって、隙間15のコンダクタンスを小さくすることができる。このようにマスク8と基板ホルダ6とは非接触なので、発塵を抑えることができ、さらには、上記非接触空間のコンダクタンスが小さいので、隙間15から進入する反応性ガスを抑制することができる。 In this embodiment, a labyrinth structure is formed by the groove 21 and the convex portion 22 during reactive sputtering. Therefore, the movable mechanism is controlled by the control device or manually to adjust the position of at least one of the mask 8 and the substrate holder 6 so that the convex portion 22 fits in the groove 21 in a non-contact manner. Thereby, a non-contact space with a small conductance is formed between the groove 21 and the convex portion 22. Since the conductance is inversely proportional to the length of the path, the path of the gap 15 becomes longer by forming the gap 15 with the labyrinth structure as shown in FIG. Therefore, the conductance of the gap 15 can be reduced. As described above, since the mask 8 and the substrate holder 6 are not in contact with each other, dust generation can be suppressed, and furthermore, the conductance in the non-contact space is small, so that the reactive gas entering from the gap 15 can be suppressed. .
 (第3の実施形態) 
 本実施形態では、第1の実施形態と第2の実施形態とを組み合わせている。図8は、本実施形態に係る抑制手段を説明するための図である。 
 図8では、図7に示す、基板ホルダ6に設けられた凸部22の少なくとも1つを、第1の実施形態にて説明した第二のガス供給口16にしている。第2の実施形態で説明したように、本実施形態では、ラビリンス構造により隙間15のコンダクタンスを小さくすることができる。このような小さなコンダクタンスの隙間15に第二のガス供給口16から不活性ガスを流すことにより、隙間15の不活性ガスの分圧を局所的に高く調整することがより行いやすくなり、反応性ガスが外部空間14から隙間15を通って成膜空間11へ流入し難くなるという上述の作用をより効果的に行うことが出来る。
(Third embodiment)
In the present embodiment, the first embodiment and the second embodiment are combined. FIG. 8 is a view for explaining the suppression means according to the present embodiment.
In FIG. 8, at least one of the convex portions 22 provided in the substrate holder 6 shown in FIG. 7 is used as the second gas supply port 16 described in the first embodiment. As described in the second embodiment, in this embodiment, the conductance of the gap 15 can be reduced by the labyrinth structure. By flowing an inert gas from the second gas supply port 16 into the gap 15 having such a small conductance, it becomes easier to locally adjust the partial pressure of the inert gas in the gap 15 to be more reactive. The above-described operation of making it difficult for the gas to flow into the film formation space 11 from the external space 14 through the gap 15 can be performed more effectively.

Claims (8)

  1.  チャンバと、
     前記チャンバ内に設けられ、基板を設置するための基板設置部を有する基板ホルダと、
     反応性スパッタリング時に前記基板ホルダに設置された基板の縁から所定の領域を覆うためのマスクと、
     前記チャンバ内に反応性ガスを含むガスを供給する第一のガス供給口と、を備える反応性スパッタ成膜装置であって、
     少なくとも前記反応性スパッタリング時には、前記マスクと、前記基板ホルダおよび該基板ホルダに設置される基板との間に空間が形成されるように前記マスクおよび前記基板ホルダは構成されており、
     前記空間を介した、前記基板ホルダの周囲から前記基板設置部への反応性ガスの進入を抑制するための抑制手段をさらに備えることを特徴とする反応性スパッタ成膜装置。
    A chamber;
    A substrate holder provided in the chamber and having a substrate placement portion for placing a substrate;
    A mask for covering a predetermined region from the edge of the substrate placed on the substrate holder during reactive sputtering;
    A first gas supply port for supplying a gas containing a reactive gas into the chamber;
    At least during the reactive sputtering, the mask and the substrate holder are configured such that a space is formed between the mask and the substrate holder and the substrate placed on the substrate holder.
    A reactive sputter deposition apparatus, further comprising suppression means for suppressing entry of a reactive gas from the periphery of the substrate holder through the space into the substrate installation portion.
  2.  前記抑制手段は、
     前記空間へと不活性ガスを供給するための第二のガス供給口を有し、
     前記反応性スパッタリング時において、前記第二のガス供給口から前記不活性ガスが供給されることを特徴とする請求項1に記載の反応性スパッタ成膜装置。
    The suppression means is
    A second gas supply port for supplying an inert gas to the space;
    The reactive sputter deposition apparatus according to claim 1, wherein the inert gas is supplied from the second gas supply port during the reactive sputtering.
  3.  前記抑制手段は、
     前記基板ホルダと前記マスクとにより前記空間の一部に形成されたラビリンス構造を有することを特徴とする請求項1に記載の反応性スパッタ成膜装置。
    The suppression means is
    The reactive sputter deposition apparatus according to claim 1, comprising a labyrinth structure formed in a part of the space by the substrate holder and the mask.
  4.  前記マスクの、前記基板ホルダと対向する面の周方向の少なくとも一部に、複数の凸部または凹部が形成されており、
     前記基板ホルダの、前記マスクと対向する面の周方向の少なくとも一部であって、基板設置部の外側に、複数の凸部または凹部が形成されており、
     前記ラビリンス構造は、前記マスクに形成された、複数の凸部または凹部と、前記基板ホルダに形成された、複数の凸部または凹部とが非接触に組み合わされることにより形成されることを特徴とする請求項3に記載の反応性スパッタ成膜装置。
    A plurality of convex portions or concave portions are formed on at least part of the circumferential direction of the surface of the mask facing the substrate holder,
    The substrate holder is at least a part of the circumferential direction of the surface facing the mask, and a plurality of convex portions or concave portions are formed outside the substrate installation portion,
    The labyrinth structure is formed by combining a plurality of convex portions or concave portions formed on the mask and a plurality of convex portions or concave portions formed on the substrate holder in a non-contact manner. The reactive sputter film forming apparatus according to claim 3.
  5.  反応性スパッタ成膜装置が備える基板ホルダに設置された基板の縁から所定の領域を覆うためのマスクであって、
     前記基板ホルダと共にラビリンス構造を形成するように、該基板ホルダと対向すべき面の周方向の領域の少なくとも一部に、少なくとも1つの凸部または凹部を有することを特徴とするマスク。
    A mask for covering a predetermined area from the edge of the substrate installed in the substrate holder provided in the reactive sputter deposition apparatus,
    A mask having at least one convex portion or concave portion in at least a part of a circumferential region of a surface to be opposed to the substrate holder so as to form a labyrinth structure together with the substrate holder.
  6.  基板に膜を製造する膜の製造方法であって、請求項1に記載の反応性スパッタ成膜装置を用いて基板に膜を形成することを特徴とする膜の製造方法。 A film production method for producing a film on a substrate, wherein the film is formed on the substrate using the reactive sputtering film forming apparatus according to claim 1.
  7.  反応性スパッタリングにより基板上に膜を形成する方法であって、
     チャンバ内に基板を搬送し、前記基板の縁から所定の領域を覆うマスクと前記基板を設置するための基板ホルダとが離間した状態で、前記該基板ホルダ上に前記基板を設置する工程と、
     前記マスクと、前記基板ホルダおよび該基板ホルダに設置された基板との間に空間が形成された状態で、前記チャンバ内に設けられた第一のガス供給口から該チャンバ内に反応性ガスを含むガスを供給し、前記チャンバ内に設けられたターゲットに電圧を印加して前記チャンバ内にプラズマ放電を起こさせ、かつ第二のガス供給口から前記空間に不活性ガスを供給する工程と
     を有することを特徴とする方法。
    A method of forming a film on a substrate by reactive sputtering,
    Placing the substrate on the substrate holder in a state where the substrate is transported into the chamber and a mask covering a predetermined region from the edge of the substrate and a substrate holder for installing the substrate are separated from each other;
    Reactive gas is introduced into the chamber from a first gas supply port provided in the chamber in a state where a space is formed between the mask and the substrate holder and the substrate placed on the substrate holder. Supplying a gas containing, applying a voltage to a target provided in the chamber to cause a plasma discharge in the chamber, and supplying an inert gas from the second gas supply port to the space. A method characterized by comprising.
  8.  前記供給する工程の前に、前記基板ホルダおよび前記マスクの少なくとも一方を移動させて、前記空間を形成する工程をさらに有することを特徴とする請求項7に記載の方法。 The method according to claim 7, further comprising the step of forming the space by moving at least one of the substrate holder and the mask before the supplying step.
PCT/JP2010/067562 2009-10-28 2010-10-06 Reactive sputtering film-forming apparatus and method for manufacturing film using same WO2011052355A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009247793 2009-10-28
JP2009-247793 2009-10-28

Publications (1)

Publication Number Publication Date
WO2011052355A1 true WO2011052355A1 (en) 2011-05-05

Family

ID=43921782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067562 WO2011052355A1 (en) 2009-10-28 2010-10-06 Reactive sputtering film-forming apparatus and method for manufacturing film using same

Country Status (1)

Country Link
WO (1) WO2011052355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019176343A1 (en) * 2018-03-16 2021-02-04 株式会社アルバック Film formation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363743A (en) * 2001-06-08 2002-12-18 Matsushita Electric Ind Co Ltd Sputtering device
JP2003342724A (en) * 2002-05-29 2003-12-03 Kobe Steel Ltd Reactive film deposition apparatus and reactive film deposition method
JP2006089793A (en) * 2004-09-22 2006-04-06 Sharp Corp Film deposition system
JP2007258336A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Mask for thin film patterning and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363743A (en) * 2001-06-08 2002-12-18 Matsushita Electric Ind Co Ltd Sputtering device
JP2003342724A (en) * 2002-05-29 2003-12-03 Kobe Steel Ltd Reactive film deposition apparatus and reactive film deposition method
JP2006089793A (en) * 2004-09-22 2006-04-06 Sharp Corp Film deposition system
JP2007258336A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Mask for thin film patterning and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019176343A1 (en) * 2018-03-16 2021-02-04 株式会社アルバック Film formation method
JP7007457B2 (en) 2018-03-16 2022-01-24 株式会社アルバック Film formation method

Similar Documents

Publication Publication Date Title
US9905401B2 (en) Reactive sputtering apparatus
JP5911958B2 (en) Mask structure, apparatus and method for depositing a layer on a rectangular substrate
KR101409617B1 (en) Sputtering device
EP1905865A1 (en) Sputtering apparatus and method for manufacturing transparent conducting film
WO2011024853A1 (en) Film-forming apparatus
JP2013102221A (en) Methods and arrangement for reduction of by-product deposition in plasma processing system
US20090020416A1 (en) Sputter coating device and method of depositing a layer on a substrate
KR102287784B1 (en) Film forming apparatus and film forming method
JPWO2008149891A1 (en) Deposition equipment
TWI652361B (en) Edge exclusion mask, and method and apparatus for layer deposition on substrate by using the same
US8992743B2 (en) Sputtering method and sputtering apparatus
WO2011052355A1 (en) Reactive sputtering film-forming apparatus and method for manufacturing film using same
CN109778128B (en) Sputtering device
JP4902051B2 (en) Bias sputtering equipment
JPH11323546A (en) Sputtering apparatus for large-sized substrate
KR20130087244A (en) Physical vapor deposition plating apparatus of guide roll and plating method
JP5265309B2 (en) Sputtering method
JP7312006B2 (en) Deposition method
KR100710801B1 (en) Sputtering apparatus to produce film having uniform thickness
CN110965031A (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
TWI632246B (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
TWI523964B (en) In-line sputtering apparatus
KR20120088981A (en) Sputtering mask and sputtering apparatus using the same
KR20090058993A (en) Magnetron sputtering apparatus and method for driving the same
Bender Thin‐Film PVD (Rotary Target)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP