WO2011052279A1 - 相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法 - Google Patents

相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法 Download PDF

Info

Publication number
WO2011052279A1
WO2011052279A1 PCT/JP2010/063490 JP2010063490W WO2011052279A1 WO 2011052279 A1 WO2011052279 A1 WO 2011052279A1 JP 2010063490 W JP2010063490 W JP 2010063490W WO 2011052279 A1 WO2011052279 A1 WO 2011052279A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
recording film
pulse
change recording
femtosecond
Prior art date
Application number
PCT/JP2010/063490
Other languages
English (en)
French (fr)
Inventor
宗明 長谷
孝太郎 牧野
富永 淳二
Original Assignee
国立大学法人筑波大学
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学, 独立行政法人産業技術総合研究所 filed Critical 国立大学法人筑波大学
Priority to US13/503,346 priority Critical patent/US9029068B2/en
Priority to JP2011538290A priority patent/JP5641485B2/ja
Publication of WO2011052279A1 publication Critical patent/WO2011052279A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00456Recording strategies, e.g. pulse sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1395Beam splitters or combiners
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0097Erasing, e.g. resetting, circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/04Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping

Definitions

  • phase change recording film materials used as optical recording such as DVD-RAM or solid electric memory called solid phase change memory (PCRAM)
  • phase change between crystal and amorphous occurs.
  • the present invention relates to a phase change device having a phase change recording film in which such a phase change occurs and a phase change switching method for inducing a phase change of the phase change recording film.
  • a recording film used in optical recording such as DVD-RAM and solid phase change memory (PCRAM) is a compound called chalcogen mainly composed of Te or Sb.
  • chalcogen mainly composed of Te or Sb.
  • a pulsed laser beam such as a semiconductor laser or pulse current into the thin film, causing a phase change from crystal to amorphous or vice versa.
  • JP-A-5-101388 Japanese Patent Laid-Open No. 7-309065 JP-A-8-45076 JP 2000-322740 A Japanese Patent Laid-Open No. 2003-272229 JP 2003-281723 A JP 2006-168182 A JP 2006-277839 A JP 2002-214137 A JP 2009-59902 A
  • the phase change process is generated by increasing the temperature by laser irradiation or current heating. For this reason, the recording speed is limited by the rotational speed of the disk and the speed of the thermal phase change.
  • a typical recording linear velocity is about 20 m / s (about 6 times speed) to 60 m / s (about 17 times speed) as disclosed in Patent Document 7 (Japanese Patent Laid-Open No. 2006-168182), which is about 50 ns. Corresponds to the degree.
  • the rate of phase change in a Ge—Sb—Te-based material which is a representative substance used as a material for a phase change optical recording film, is predicted to be 1 nanosecond (10 ⁇ 9 seconds) or less, and thermal Since the speed of phase change is too fast to be considered as phase change, research on the elucidation of the phase change process has become active in recent years. (For example, refer nonpatent literature 3). That is, the details of the phase change mechanism in materials that are put into practical use as DVD-RAM and the like are still unclear.
  • An object of the present invention is to obtain a remarkably fast recording-erasing speed as compared with the conventional technology relating to an optical recording medium using phase change, and the phase change speed is set to the time of lattice vibration (phonon) of the phase change recording film. It is an object of the present invention to realize a technique for controlling at a cycle (about 270 fs) speed.
  • the present invention provides a phase change apparatus having a phase change recording film comprising a phase change recording film and a means for supplying a femtosecond pulse laser to irradiate the phase change recording film.
  • a phase change apparatus having a phase change recording film comprising a phase change recording film and a means for supplying a femtosecond pulse laser to irradiate the phase change recording film.
  • Forms a pulse train of a femtosecond pulse laser and induces a phase change of the phase change recording film by irradiating the time interval of the pulse train with a time period of lattice vibration of the material of the phase change recording film.
  • a phase change device having a phase change recording film characterized by being configured.
  • the present invention is a phase change apparatus having a phase change recording film comprising a phase change recording film and a means for irradiating the phase change recording film with a femtosecond pulse laser, the means comprising:
  • the femtosecond pulse laser is shaped into a pulse train having a first pulse and a second pulse, and the time interval between the first pulse and the second pulse, which is the time interval of the pulse train, is changed to the material of the phase change recording film.
  • a phase change device having a phase change recording film, characterized in that the phase change of the phase change recording film is induced by irradiating in accordance with the time period of the lattice vibration.
  • the time interval of the pulse train is preferably set to the natural frequency of the phonon mode that appears strongly after the phase change in the phase change from amorphous to crystal or from crystal to amorphous.
  • phase change state is controlled by changing the intensity of the second pulse.
  • the phase change recording film is formed on a silicon wafer, and the pulse train is introduced through an optical waveguide formed on the silicon wafer to irradiate the phase change recording film.
  • the femtosecond pulse laser is divided by a pulse shaping device using a Michelson interferometer, a Mach-Zehnder interferometer, or a liquid crystal light modulation element, and shaped into a pulse train having a femtosecond time interval. Preferably there is.
  • the present invention is a phase change switching method in which a phase change recording film is subjected to phase change by irradiating a phase change recording film with a femtosecond pulse laser, and the femtosecond pulse laser is shaped into a pulse train, Phase change of the phase change recording film is characterized by inducing a phase change of the phase change recording film by irradiating the time interval of the pulse train with a time period of lattice vibration of the material of the phase change recording film.
  • a phase change switching method is provided.
  • the present invention provides a phase change switching method in which a phase change recording film is irradiated with a femtosecond pulse laser to change the phase of the phase change recording film. And a pulse train having a second pulse, and the time interval between the first pulse and the second pulse, which is the time interval of the pulse train, is made to coincide with the time period of lattice vibration of the material of the phase change recording film.
  • a phase change switching method for changing the phase of a phase change recording film wherein the phase change of the phase change recording film is induced by irradiation.
  • the time interval of the pulse train is preferably set to the natural frequency of the phonon mode that appears strongly after the phase change in the phase change from amorphous to crystal or from crystal to amorphous.
  • the femtosecond pulse laser is preferably divided by a pulse shaping device using a Michelson interferometer, a Mach-Zehnder interferometer, or a liquid crystal light modulation element, and shaped into a pulse train having a femtosecond time interval. .
  • phase change recording film applicable to an optical recording film or a solid phase change memory (electrical memory) with a laser
  • phase change from crystal to amorphous and phase change from amorphous to crystal can be induced at an ultra-high speed of femtosecond, it becomes possible to create a high-speed solid phase change memory capable of writing and erasing at terahertz frequencies. .
  • phase change can be induced even when a femtosecond pulse laser emitted from a small non-amplified femtosecond pulse laser light source is used as excitation light (power is 31 mW or less), and phase change is caused. Since it is very power-saving, if a femtosecond pulse laser emitted from an ultra-compact fiber type femtosecond pulse laser light source can be used as excitation light, a versatile high-speed recording / erasing device can be created. You can also.
  • FIG. 1 is a figure explaining the principle of the femtosecond laser pulse control of the umbrella flip flop transition in this invention
  • (b) is a figure which shows the displacement of Ge atom in the phase change from an amorphous to a crystal
  • FIG. It is a figure explaining the relationship between the femtosecond pulse laser which comes from a laser pulse light source, and the laser pulse train which has the time interval of the femtosecond after shaping this laser. It is a figure explaining the structure of the femtosecond pulse laser supply apparatus of this invention.
  • a mode for carrying out a phase change device having a phase change recording film and a phase change switching method of the phase change recording film according to the present invention will be described below with reference to the drawings based on the embodiments.
  • the present inventor shows the phonon (lattice vibration) time period (vibration period) directly involved in the phase change of the phase change recording film material as shown in FIG.
  • Control of the phonon amplitude by synchronizing the time interval ⁇ t of the excitation laser pulse train as shown in a) (if the laser pulse train includes two pulses, the time interval ⁇ t between these two pulses)
  • the phase change can occur at high speed (within 1 ns) through a non-thermal (coherent) process rather than a thermal process.
  • phase change recording film used as a phase change device, and controlled the light in ultrafast time units of femtoseconds.
  • a phase change device having a phase change recording film for generating a phase change switch and a phase change switching method for the phase change recording film have been conceived.
  • femtosecond pulse laser light (referred to as “femtosecond pulse laser” in this specification). Is shaped into a laser pulse train having a femtosecond time interval (laser pulse train for excitation) using a Michelson interferometer, a Mach-Zehnder interferometer, or a pulse waveform shaping device using a liquid crystal light modulation element. Are repeatedly emitted as excitation light to the phase change recording film to forcibly generate a phase change in ultrafast time units of femtoseconds.
  • the laser pulse train is obtained by moving at least one of the mirror pair constituting the interferometer arranged on the electric stage or the piezo stage with an accuracy of about 1 ⁇ m.
  • the time interval of (double pulse in the case of interferometer) was controlled.
  • a two-pulse laser pulse train (two excitation pulses) having a femtosecond time interval is shaped using a Michelson interferometer. A configuration in which two excitation pulses) are repeatedly irradiated will be described.
  • the time interval of the laser pulse train is changed to a phonon mode (A 1 mode due to the structure of GeTe 4 directly related to the phase change.
  • a 1 mode spectroscopically means “totally symmetric mode”.
  • the phase change process can be induced at a high speed through a non-thermal (coherent) process instead of thermal control.
  • a pulse waveform shaping device using a liquid crystal light modulation element it is possible to shape a laser pulse train of up to about 10 shots. Even in this case, the time interval of the laser pulse train is directly related to the phase change. It is important to synchronize with the time period (vibration period) of the phonon mode.
  • the phonon mode to be synchronized for example, it is desirable to match the strongest mode that appears after the phase change.
  • the vibration mode where the frequency that appears strongly after the phase change is 3.7 THz.
  • This vibration mode is a phonon vibration localized in a GeTe 4 lattice containing Ge atoms considered to play a central role in the phase change model.
  • Ge—Sb—Te based materials such as Ge 1 Sb 2 Te 5 and Ge 1 Sb 4 Te 7 , the phase change from amorphous to crystal (or vice versa). It is better to match with the natural frequency of the phonon mode that appears strongly after phase change.
  • the number of pulses constituting a laser pulse train having a shaped femtosecond time interval is two cases (a femtosecond pulse laser).
  • the phase change state can be sequentially controlled by changing the light intensity of the second pulse.
  • the relationship between the “femtosecond pulse laser” coming from the laser pulse light source and the “laser pulse train having a femtosecond time interval” after shaping the laser will be described.
  • a femtosecond pulse laser see FIG. 2A
  • the pulse is divided into two at a femtosecond (eg, 270 fs) time interval by a Michelson interferometer or the like.
  • the laser beam is shaped into a “laser pulse train having a femtosecond time interval” (see FIG. 2B), which is composed of two excitation pulses (first pulse and second pulse).
  • the means for shaping a laser pulse train composed of two excitation pulses having a time interval of femtoseconds will be described in detail in an embodiment to be described later and FIG.
  • a plurality of pulse trains composed of these two excitation pulses are repeated (see FIG. 2C), and irradiated to the phase change recording film.
  • the repetition period of the pulse train composed of two excitation pulses is, for example, about 80 MHz (see FIG. 2C). Therefore, two excitation pulses (a pair) are repeatedly irradiated at 80 MHz.
  • the control mechanism for sequentially controlling the phase change state described above is such that the first pulse induces coherent phonons in the material structure of the target phase change recording film, gives coherent fluctuations, and the second pulse The phase change state of the substance is changed stepwise according to its strength.
  • the pulse width is 100 fs (if possible, 20 fs or less) as a femtosecond pulse laser (see FIG. 2B).
  • the wavelength (energy) of the femtosecond pulse laser is preferably not less than the band gap energy of the substance of the target phase change recording film, and the Ge—Sb—Te having a band gap energy of about 0.5 to 0.7 eV.
  • electronic excitation and coherent phonon excitation can be performed without problems at a central wavelength of a normal titanium sapphire laser of 750 to 900 nm (1.65 to 1.38 eV).
  • the repetition period of the laser pulse train obtained by shaping the femtosecond pulse laser must be longer than the phase change time scale (within 1 ns), and this repetition period may be 1 GHz or less in frequency. is necessary.
  • about 70 to 80 MHz is used as a repetition of the non-amplification type titanium sapphire laser (see the example of 80 MHz in FIG. 2C), but the amplification type titanium sapphire laser has a frequency of about 1 kHz to 1 MHz. It becomes a repetition cycle.
  • the phonon amplitude is controlled by synchronizing the time interval of the laser pulse train (the time interval of two pulses included in the laser pulse train), and a coherent (non-thermal) process is performed.
  • Phase change can be induced at a very high speed of femtosecond (switching of phase change), but it is necessary to measure the state of this phase change in the real-time region and prove the effect of the present invention. .
  • Raman scattering spectroscopy and infrared spectroscopy which are conventional phonon measurement methods, can basically only identify structural changes before and after phase changes, and track structural changes due to ultra-fast femtosecond phase changes. It is extremely difficult to do. Therefore, in the research and development of the present invention, a time-resolved reflectivity measuring means by pump / probe spectroscopy was used in the measurement of phase change and the verification of the effect.
  • a pump using a femtosecond pulse laser as a light source in order to measure an ultrafast phase change state in a phase change recording film material occurring in 1 nanosecond (10 ⁇ 9 seconds) or less in a real time region.
  • -Coherent phonons were measured using time-resolved reflectance measurement means by probe spectroscopy.
  • Pump-probe spectroscopy is a well-known technique, which is a means of observing a phenomenon that occurs at a high speed, such as a chemical reaction, divided in time.
  • the time-resolved reflectance measurement by this pump-probe spectroscopy is well-known (for example, refer patent document 9).
  • the time-resolved reflectance measurement means uses a femtosecond pulse laser as pump light (excitation light) and probe light (search light), and at least one of the pump light and probe light is time-delayed by an optical delay circuit to record phase change.
  • the coherent phonon which is a lattice vibration in the phase change recording film material, is excited by irradiation of pump light by condensing with a lens or a concave mirror to the film material, and the solid sample is condensed with the lens or the concave mirror.
  • Non-Patent Document 3 and Patent Document 10 As described above, as a mechanism of phase change, as shown in Non-Patent Document 3 and Patent Document 10, in Ge—Sb—Te-based materials, a model in which Ge atoms in the basic unit cell are slightly displaced. (Umbrella flip-flop transition: see FIG. 1A), phonons resulting from the structure of GeTe 4 including Ge atoms (A 1 mode; total symmetry mode) to GeTe 6 By measuring the phonon frequency change associated with the transition to (A 1 mode; total symmetry mode), it becomes possible to identify the structural change associated with the phase change in real time in femtoseconds.
  • a 1 mode total symmetry mode
  • the dynamic process of the phase change can be identified from the phonon frequency change.
  • a means for integrating and monitoring the vibration signal of the coherent phonon is required, but it is desirable to use a first scan type (see Japanese Patent Application Laid-Open No. 2004-226224) that can monitor the coherent phonon in real time.
  • Embodiment 1 of a phase change device having a phase change recording film and a phase change switching method for a phase change recording film according to the present invention will be described below.
  • the phase change device having the phase change recording film of the present invention includes a femtosecond pulse laser supply device 1 and a phase change unit 14.
  • the phase change unit 14 includes a silicon wafer 16 as a base material, a phase change recording film 18 used as a phase change device, and an optical waveguide 17 as shown in FIG.
  • the phase change recording film 18 is formed on the silicon wafer 16 and is composed of a superlattice thin film of Ge 2 Sb 2 Te 5 .
  • this superlattice thin film is composed of a repeating structure of a phase change thin film 19 of GeTe / Sb 2 Te 3 .
  • the superlattice thin film has a multilayer structure in which 20 phase change thin films 19 of GeTe and Sb 2 Te 3 are stacked.
  • the thickness of each layer of GeTe and Sb 2 Te 3 was about 0.5 nm.
  • the optical waveguide 17 is formed on the silicon wafer 16, the output end of the optical waveguide 17 is connected to the phase change recording film 18 by a coupling element 23 (or coupling agent), and the input end of the optical waveguide 17 is The optical fiber 4 and the coupling element 24 (or coupling agent) are connected.
  • the optical waveguide 17 introduces a laser pulse train having a time interval of femtosecond obtained by shaping the femtosecond pulse laser from the light source 2 with the Michelson interferometer 3 or the like, and a coupling element 23 ( Or, it is irradiated through a coupling agent).
  • the phase change device having the phase change recording film 18 according to the present invention includes an optical recording device, an ultrafast switching switch for turning on / off current using a switching function based on phase change, or a solid phase change memory (digital) using phase change. Memory).
  • the femtosecond pulse laser supply apparatus 1 introduces a femtosecond pulse laser into a femtosecond pulse laser light source 2 that generates a femtosecond pulse laser, a Michelson interferometer 3, and an optical waveguide 17. And an optical fiber 4 to be used.
  • the Michelson interferometer 3 includes a half mirror 5 and two mirrors 6 and 7 (a pair of mirrors).
  • a high-speed switching shutter 8 is provided in the optical path of one of the mirrors 6.
  • an electric stage 25 (or a piezo stage) is provided under the mirror 7, and the excitation pulse from one of the two mirrors 6 and 7 can be delayed in time ( ⁇ t).
  • a moving mirror 10 is provided in the optical path between the Michelson interferometer 3 and the coupling element 9 on the input side of the optical fiber 4, and the excitation light pulse train from the Michelson interferometer 3 is provided.
  • the search light can be delayed in time.
  • the femtosecond pulse laser from the light source 2 is shaped into a laser pulse train composed of two excitation pulses having a femtosecond time interval (see FIG. 2B), and this laser pulse train is repeated a plurality of times (FIG. 2C). And input to the optical fiber 4 through the coupling element 9.
  • the time interval ⁇ t of the two pulses is controlled.
  • the femtosecond pulse laser supply apparatus 1 includes a beam splitter 11 that divides excitation light and search light, and a beam splitter 12 for recombining excitation light and search light, It also constitutes time-resolved reflectance measuring means.
  • the femtosecond pulse laser (see FIG. 2A) supplied from the femtosecond pulse laser light source 2 has a pulse width of 20 fs, a center wavelength of 850 nm, a repetition period of 80 MHz, and a time-resolved reflectivity measurement.
  • the number of signal integrations in the first scan in the means is 2000.
  • the time-resolved reflectance measurement was performed using a femtosecond pulse laser with a pulse width of 20 fs, a center wavelength of 850 nm, and a repetition period of 80 MHz, and the number of signal integrations in the first scan was 2000.
  • the pulse for exciting the phase change recording film 18 is blocked by the shutter 8 or the like in the Michelson interferometer 3 so as to be a single pulse (intensity is 31 mW) that arrives at a repetition period of 80 MHz.
  • a single pulse intensity is 31 mW
  • time-resolved reflectance measurement is performed.
  • the results of this time-resolved reflectance measurement are shown in FIG.
  • the structure of the phase change recording film is once reset (amorphous) in advance.
  • a coherent phonon signal appears as a vibration component over a period of several picoseconds.
  • the femtosecond pulse laser is divided into laser pulse trains (double pulses composed of a first pulse and a second pulse) having a femtosecond time interval by the Michelson interferometer 3 (see FIG. 2B). ), Repeating this laser pulse train (see FIG. 2C), coupling element 9, optical fiber 4, coupling element 24 (or coupling agent), optical waveguide 17 and coupling element 23 (or coupling agent). Then, the case where the phase-change recording film 18 is irradiated from its end face and time-resolved reflectance measurement is performed will be described.
  • FIG. 6 shows the frequency change of the coherent phonon when the time interval ⁇ t of the laser pulse train (double pulse) generated by the Michelson interferometer 3 is changed.
  • the intensity of the pulse at this time is equal to the intensity of the single pulse and is 31 mW for both the first excitation pulse and the second excitation pulse.
  • FIG. 1 indicates that the phase change from amorphous to crystal occurs in a resonant manner and at an ultrafast time of 280 fs or less.
  • the frequency of the A 1 mode due to the structure of GeTe 4 is shifted gradually to the low frequency side, it can be seen up to about 3.7THz at about 31 mW. Even if this result is seen, it is proved that the phase change is sequentially controlled according to the magnitude of the light intensity of the second pulse.
  • Example 2 of the phase change device having the phase change recording film and the phase change switching method of the phase change recording film according to the present invention will be described based on the configuration shown in FIG.
  • the second embodiment has basically the same configuration as that of the first embodiment.
  • the phase change device having the phase change recording film of the present invention is applied as an open / close switch for turning on / off current. .
  • Example 2 a phase change recording film, which is a phase change device, is irradiated with a first pulse of a laser pulse train (double pulse) shaped from a femtosecond pulse laser to generate coherent phonons, By controlling the light by irradiating the second pulse, a phase change is forcibly generated in ultrafast time units of femtoseconds, and the conductivity is changed to control current conduction as shown in FIG. This is configured as an open / close switch 15.
  • the phase change unit 14 in the second embodiment has the same configuration as that of the first embodiment, and the description thereof is omitted here.
  • the optical waveguide 17 formed on the silicon wafer 16 has a diameter of 10 ⁇ m. .
  • each of the phase change thin films 19 of GeTe and Sb 2 Te 3 constituting the phase change recording film 18 was about 1 nm.
  • electrodes 20 made of Al (aluminum) are arranged above and below the phase change recording film 18, a DC voltage of 3 V is applied, and an ammeter 22 is inserted into the circuit 21. .
  • the phase change recording film 18 was once reset (amorphous) in advance by a current pulse of 0.2 mA and a pulse time of 5 ns as described in Patent Document 10.
  • the laser pulse train (double pulse) is applied to the phase change recording film 18 via the optical fiber 4, the coupling element 24 (or coupling agent), the optical waveguide 17 and the coupling element 23 (or coupling agent). Irradiated from the end face.
  • the excitation pulse of the laser pulse train resonates with the lattice vibration of the phase change recording film 18 depending on the condition setting of the laser pulse train shaped from the femtosecond pulse laser. An example in the case of not doing so will be described below.
  • an optical waveguide 17 having a diameter of 10 ⁇ m is formed on a silicon wafer, and a phase change recording film comprising a repeating structure of a GeTe / Sb 2 Te 3 phase change thin film 19 on one end face of the optical waveguide 17.
  • the phase change unit 14 having 18 was prepared, and the thickness of each layer of the phase change thin film 19 of GeTe and Sb 2 Te 3 was about 1 nm.
  • Electrodes 20 made of Al were disposed above and below the phase change unit 14, a DC voltage of 3 V was applied, and an ammeter 22 was inserted into the circuit 21.
  • the phase change recording film 18 is once reset (amorphous) in advance by a current pulse of 0.2 mA and a pulse time of 5 ns, and then a femtosecond pulse laser having a center wavelength of 850 nm (frequency about 350 THz) (full width at half maximum is about 20 fs,
  • the laser pulse train double pulse
  • Agent the optical waveguide 17 and the coupling element 23 (or coupling agent)
  • the phase change recording film 18 was irradiated from its end face.
  • the time interval ⁇ t in the laser pulse train (double pulse) needs to be set so that the repetition frequency of the laser pulse train resonates with the vibration frequency of the phase change recording film.
  • the time interval ⁇ t 276 fs is a meaningful condition.
  • phase change recording film for causing the phase change was not a superlattice structure but a single-layer Ge 2 Sb 2 Te 5 phase change thin film.
  • the reason why the single-layer structure is used is to show that the same control principle is applied to the multilayer structure and the single-layer structure, and there is no essential difference.
  • the incident power of the laser pulse train may provide the activation energy necessary for the phase change. An example of the case where it cannot be exceeded will be described below.
  • the phase change recording film As in Example 2, an optical waveguide 17 having a diameter of 10 ⁇ m was formed on the silicon wafer 16. As described above, the phase change recording film is a Ge 2 Sb 2 Te 5 phase change thin film 19 composed of a single layer. The film thickness of the phase change recording film is a phase change thin film formed by stacking superlattice structures as described in Example 2. The total film thickness of the recording film 19 was the same. Next, a DC voltage of 3 V was applied as in Example 2, and an ammeter was inserted into the circuit.
  • the device resistance before and after the irradiation with the laser pulse train shaped from the femtosecond pulse laser was measured, it was 1 M ⁇ before the measurement and 1 M ⁇ after the measurement. This is considered to be due to the fact that the femtosecond pulse laser, which is a different condition from Example 2, has an intensity of 5 mW, and the incident power of the laser pulse train cannot exceed the activation energy required for phase change. .
  • a phase change from amorphous to crystal in a Ge—Sb—Te-based material put into practical use for DVD-RAM or the like can be performed without using a large-scale laser system such as a femtosecond regenerative amplifier. It can be caused by a power saving power of about 31 mW that can be easily achieved even with a type femtosecond pulse laser, and in an ultrafast time of 280 fs or less.
  • the present invention is not only used as an optical recording device applied to a DVD-RAM or the like, but also used as an ultrafast optical switching device in a terahertz region by controlling the movement of atoms, or recorded at a terahertz speed. It can be used as a completely new large-capacity solid-state memory device in which erasable light and electrons are fused.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 従来の相変化を利用した光記録媒体に関する技術に比べて、格段と速い記録-消去速度を得ることを目的とし、相変化速度をフォノンの時間周期(約270fs)の速さで制御可能とする。 フェムト秒パルスレーザーを、マイケルソン型干渉計よって、第1のパルスと第2のパルスを有するパルス列に整形し、第1のパルスと第2のパルスの間の時間間隔を、照射すべき相変化記録膜の材料の格子振動の時間周期に一致させることによって相変化を誘起する。

Description

相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法
 DVD-RAM等の光記録、或いは固体相変化メモリ(PCRAM)と呼ばれる固体電気メモリ、等として利用される相変化記録膜材料では、結晶-アモルファス間の相変化が生じるが、本発明は、このような相変化が生じる相変化記録膜を有する相変化装置及び相変化記録膜の相変化を誘起する相変化スイッチング方法に関する。
 DVD-RAM等に代表される光記録や固体相変化メモリ(PCRAM)で使用されている記録膜は、TeまたはSbを主成分とするカルコゲンと呼ばれる化合物であり、この材料の20ナノメートル程度の薄膜に、半導体レーザー等のパルス状レーザービームやパルス電流を入射させることによって膜の温度を融点以上まで上昇させ、結晶からアモルファスへの相変化、或いはその逆の相変化を起こす技術が確立している。
 従来、信号の記録と再生は、結晶とアモルファス状態間における反射率の差(屈折率の差)を利用して行っている。
 相変化を利用した光記録媒体に関する技術は公知であり(例えば、特許文献1~8参照)、現在では、100万回以上の記録-消去回数を誇る3元化合物(Ge-Sb-Te系材料)や4元化合物(Ag-In-Sb-Te系材料)が既に実用化されている。
 一方、フェムト秒パルスレーザーを固体に照射した際には、位相の揃ったフォノン(コヒーレントフォノン)が発生することが知られており(例えば、特許文献9参照)、このコヒーレントフォノンの振幅は光パルス列によって制御できる点は知られている(非特許文献1、2参照)。また、相変化型光記録膜の材料の相変化過程の解明に関する研究もなされている(非特許文献3参照)。
特開平5-101388号公報 特開平7-309065号公報 特開平8-45076号公報 特開2000-322740号公報 特開2003-272229号公報 特開2003-281723号公報 特開2006-168182号公報 特開2006-277839号公報 特開2002-214137号公報 特開2009-59902号公報
Appl. Phys. Lett. Vol.69, 2474 (1996) Appl. Phys. Lett. Vol.83, 4921 (2003) A.V.Kolobov,P Fons,A. I. Frenkel, A.L.Ankudinov,J.Tominaga, T. Uruga,Nature Materials Vol.3,703 (2004)
 上記特許文献1-7に例示した従来の相変化を利用した光記録媒体に関する技術では、相変化過程をレーザー照射や電流加熱によって温度を上昇させることによって発生させていた。そのため、記録速度は、ディスクの回転速度と熱的相変化の速さによって制限されていた。典型的な記録線速度は、特許文献7(特開2006-168182号公報)にもある様に20m/s(約6倍速)~60m/s(約17倍速)程度であり、これは約50ns程度に相当する。
 しかし、相変化型光記録膜の材料として用いられる代表的物質であるGe-Sb-Te系材料における相変化の速度は、1ナノ秒(10-9秒)以下と予測されており、熱的相変化と考えるには相変化のスピードが速すぎる為、近年、相変化過程の解明に関する研究が盛んになってきている。(例えば、非特許文献3参照)。即ち、DVD-RAM等として実用化されている材料における相変化メカニズムの詳細は、現在でも未解明のままである。
 本発明は、従来の相変化を利用した光記録媒体に関する技術に比べて、格段と速い記録-消去速度を得ることを目的とし、相変化速度を相変化記録膜の格子振動(フォノン)の時間周期(約270fs)の速さで制御する技術を実現することを課題とする。
 具体的には、1ナノ秒以下の相変化を十分時間分解できるフェムト秒の時間間隔を有するレーザーパルス列を用いて原子の運動をコヒーレント制御することにより、相変化の速度をフォノンの時間周期(約270fs)の速さで制御する相変化記録膜を有する相変化装置及び相変化記録膜の相変化を誘起する相変化スイッチング方法を実現することを課題とする。
 本発明は上記課題を解決するために、相変化記録膜と、フェムト秒パルスレーザーを供給し相変化記録膜に照射する手段を備えた相変化記録膜を有する相変化装置であって、前記手段は、フェムト秒パルスレーザーをパルス列に整形し、該パルス列の時間間隔を、前記相変化記録膜の材料の格子振動の時間周期に一致させて照射することによって相変化記録膜の相変化を誘起する構成であることを特徴とする相変化記録膜を有する相変化装置を提供する。
 本発明は上記課題を解決するために、相変化記録膜と、相変化記録膜にフェムト秒パルスレーザーを照射する手段を備えた相変化記録膜を有する相変化装置であって、前記手段は、フェムト秒パルスレーザーを、第1のパルスと第2のパルスを有するパルス列に整形し、該パルス列の時間間隔である第1のパルスと第2のパルスの時間間隔を、前記相変化記録膜の材料の格子振動の時間周期に一致させて照射することによって相変化記録膜の相変化を誘起する構成であることを特徴とする相変化記録膜を有する相変化装置を提供する。
 前記パルス列の時間間隔は、アモルファスから結晶又は結晶からアモルファスへの相変化において、相変化後に強く現れるフォノンモードの固有振動数に設定されていることが好ましい。
 前記第2のパルスの強度を変化させることにより前記相変化の状態を制御する構成であることが好ましい。
 前記相変化記録膜は、シリコンウエハー上に形成されており、該シリコンウエハー上に形成された光導波路を通して前記パルス列が導入され、相変化記録膜に照射される構成であることが好ましい。
 前記フェムト秒パルスレーザーは、マイケルソン型干渉計、マッハ・ツェンダー型干渉計、又は液晶光変調素子を用いたパルス整形装置により分割されて、フェムト秒の時間間隔を有するパルス列に整形される構成であることが好ましい。
 前記相変化記録膜の材料は、GeSbTeであり、前記パルス列の時間間隔Δtは、Ge原子を含むGeTe格子に局在した格子振動の時間周期に合わせ、Δt=276fs(=3.62THz)に設定する構成であることが好ましい。ただし、Δt=276fsに限定されず、Δt=270fs~278fsの範囲(周波数にして3.6~3.7THz)で設定しても実施可能である。
 本発明は上記課題を解決するために、相変化記録膜にフェムト秒パルスレーザーを照射して相変化記録膜を相変化させる相変化スイッチング方法であって、フェムト秒パルスレーザーをパルス列に整形し、該パルス列の時間間隔を、前記相変化記録膜の材料の格子振動の時間周期に一致させて照射することによって相変化記録膜の相変化を誘起することを特徴とする相変化記録膜を相変化させる相変化スイッチング方法を提供する。
 本発明は上記課題を解決するために、相変化記録膜にフェムト秒パルスレーザーを照射して相変化記録膜を相変化させる相変化スイッチング方法であって、フェムト秒パルスレーザーを、第1のパルスと第2のパルスを有するパルス列に整形し、該パルス列の時間間隔である第1のパルスと第2のパルスの時間間隔を、前記相変化記録膜の材料の格子振動の時間周期に一致させて照射することによって相変化記録膜の相変化を誘起することを特徴とする相変化記録膜を相変化させる相変化スイッチング方法を提供する。
 前記パルス列の時間間隔は、アモルファスから結晶又は結晶からアモルファスへの相変化において、相変化後に強く表れるフォノンモードの固有振動数に設定することが好ましい。
 前記第2のパルスの強度を変化させることにより前記相変化の状態を制御することことが好ましい。
 前記フェムト秒パルスレーザーを、マイケルソン型干渉計、マッハ・ツェンダー型干渉計、又は液晶光変調素子を用いたパルス整形装置により分割して、フェムト秒の時間間隔を有するパルス列に整形することが好ましい。
 前記相変化記録膜の材料として、GeSbTeを使用し、前記時間間隔Δtは、Ge原子を含むGeTe格子に局在した格子振動の時間周期に合わせ、Δt=276fs(=3.62THz)に設定することが好ましい。ただし、Δt=276fsに限定されず、Δt=270fs~278fsの範囲(周波数にして3.6~3.7THz)で設定しても実施可能である。
 本発明によれば次のような効果が生じる。
(1)光記録膜や固体相変化メモリ(電気メモリ)に適用可能な相変化記録膜に、レーザー照射することで、フェムト秒の超高速(周波数にしてテラヘルツ=1012Hz)で相変化を誘起できるので、相変化の書き換え速度を格段に向上させることができる。
(2)結晶からアモルファスへの相変化及びアモルファスから結晶への相変化を、フェムト秒の超高速で誘起できるので、テラヘルツ周波数での書き込み及び消去可能な高速固体相変化メモリの創成が可能になる。
(3)小型の非増幅型フェムト秒パルスレーザー光源から発光されるフェムト秒パルスレーザーを励起光(パワーが31mW以下)として用いても、相変化の誘起が可能であり、相変化を起こすという観点からは非常に省電力であることから、さらに超小型のファイバー型フェムト秒パルスレーザー光源から発光されるフェムト秒パルスレーザーを励起光として利用できれば、汎用性のある高速の記録-消去装置を作ることもできる。
(a)は、本発明における、アンブレラ・フリップ・フロップ転移のフェムト秒レーザーパルス制御の原理を説明する図であり、(b)は、アモルファスから結晶への相変化におけるGe原子の変位を模式的に示す図である。 レーザーパルス光源から来るフェムト秒パルスレーザーと、該レーザーを整形した後のフェムト秒の時間間隔を有するレーザーパルス列との関係を説明する図である。 本発明のフェムト秒パルスレーザー供給装置の構成を説明する図である。 シングルパルスを照射した際のアモルファス状態における時間分解反射率測定信号を示す図、及びそのフーリエ変換スペクトルを示す挿入図である。 ダブルパルスを照射した際の時間分解反射率測定信号を示す図、及びそのフーリエ変換スペクトルを示す挿入図である。 ダブルパルスの時間間隔を変化させた時の、フォノン周波数の変化を示す図である。 ダブルパルスにおける2つ目の励起パルスの強度を変化させた時の、フォノン周波数の変化を示す図である。 本発明の相変化ユニットの構成を示す図である。
 本発明に係る相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法実施するための形態を実施例に基づき図面を参照して、以下説明する。
(本発明の原理、基本的な構成等)
 原子の集団運動である格子振動(フォノン)の周波数は、固体の構造変化に非常に敏感であり、これまでラマン散乱分光やコヒーレントフォノン分光は、強誘電体等における構造相転移の動的過程の計測に用いられてきた。特に、光記録膜材料におけるラマン散乱の適用に限っては、例えば、特開平07-141693号公報や特開平10-166738号公報において報告されている。
 しかし、フェムト秒パルスレーザー(パルス幅がフェムト秒(fs:10-15sec)のレーザー)を光源とするコヒーレントフォノン分光を光記録膜材料の相変化の動的過程の計測に適用した例は少なく、例えば、非特許文献「M. Forst, T. Dekorsy, C. Trappe, M. Laurenzis, H. Kurz, and B. Bechevet, Appl. Phys. Lett. Vol. 77, 1964 (2000)」や、「M. Hase, Y. Miyamoto, and J.Tominaga, Phys. Rev. B Vol. 79, 174112 (2009)」 で報告されているのみである。
 本発明者は、相変化過程の解明に関する研究を鋭意進めた結果、上記のとおり相変化記録膜材料の相変化に直接関与するフォノン(格子振動)の時間周期(振動周期)に、図1(a)に示すような励起用のレーザーパルス列の時間間隔Δt(レーザーパルス列が2つのパルスを含む場合は、これらの2つのパルスの間の時間間隔Δt)を、同期させることによって、フォノン振幅の制御を行い、熱的ではなく非熱的(コヒーレント)な過程を経ることで相変化を高速(1ns以内)で起こすことができるという知見を得た。
 本発明者は、この知見に基づいて、相変化デバイスとして使用する相変化記録膜にコヒーレントフォノン(非熱的格子振動)を導入し、光制御することにより、フェムト秒の超高速時間単位で強制的に相変化スイッチを発生させる相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法を想到した。
 より具体的には、本発明の相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法では、フェムト秒パルスレーザー光(本明細書では「フェムト秒パルスレーザー」という。)をマイケルソン型干渉計、マッハ・ツェンダー型干渉計又は液晶光変調素子を用いたパルス波形整形装置等でフェムト秒の時間間隔を有するレーザーパルス列(励起用のレーザーパルス列)に整形し、このレーザーパルス列を、励起光として繰り返し相変化記録膜に照射することで、フェムト秒の超高速時間単位で強制的に相変化を発生させるものである。
 ここで、マイケルソン型干渉計、マッハ・ツェンダー型干渉計では、電動ステージもしくはピエゾステージ上に配置された干渉計を構成するミラー対の少なくとも一方を1μm程度の精度で移動させることにより、レーザーパルス列(干渉計の場合はダブルパルス)の時間間隔を制御した。
 また、液晶光変調素子を用いたパルス波形整形装置においては、非特許文献(A. M. Weiner, D. E. Leaird, J. S. Patel and J. R. Wullert, II: IEEE J. Quantum Electron. 28, 908 (1992)、及びM. Hase, T. Itano, K. Mizoguchi and S. Nakashima, Jpn. J. Appl. Phys.37, L281 (1998))にもあるように、典型的には128チャンネルのパネルを備えた液晶光変調素子に与える位相及び振幅変調パターンを適切に与えることにより、任意の時間間隔をもつ最高で10発程度のレーザーパルス列を整形することが可能である。この10発の場合、第1の励起パルスから第10の励起パルスの照射には、2760fs程度の時間が必要になる。
 なお、後記するが、本発明の実施例では、マイケルソン型干渉計を用いてフェムト秒の時間間隔を有する2発のレーザーパルス列(2つの励起パルス)に整形し、この2発のレーザーパルス列(2つの励起パルス)を、繰り返し照射する構成について説明する。
 その際、レーザーパルス列の時間間隔を、相変化に直接関与するフォノンモード(GeTeの構造に起因するAモード。ここで、「Aモード」は分光学的に「全対称モード」を意味する。)の時間周期(振動周期)に同期させることによって、フォノン振幅の制御を行い、熱的ではなく非熱的(コヒーレント)な過程を経ることで相変化過程を高速で誘起させることができる。液晶光変調素子を用いたパルス波形整形装置を用いた場合には、最高で10発程度のレーザーパルス列に整形することが可能であり、この場合でもレーザーパルス列の時間間隔を、相変化に直接関与するフォノンモードの時間周期(振動周期)に同期させることが肝要である。
 同期させるフォノンモードについては、例えば、相変化の後に現れる最も強度の強いモードに合わせることが望ましい。具体的には、相変化記録膜材料のGeSbTeの場合、アモルファスから結晶への相変化の場合では、相変化後に強く現れる周波数が3.7THzの振動モードに合わせると良い。この振動モードは、相変化モデルにおいて中心的役割を果たすと考えられるGe原子を含むGeTe格子に局在したフォノン振動である。また、GeSbTeに限らず、Ge1SbTe5、Ge1Sb4Te7などのGe-Sb-Te系材料の場合でも、アモルファスから結晶(あるいはその逆)への相変化において相変化後に強く表れるフォノンモードの固有振動数に合わせると良い。
 本発明では、整形したフェムト秒の時間間隔を有するレーザーパルス列を構成するパルス数が、図1(a)に示すように、第1のパルス及び第2のパルスの2つの場合(フェムト秒パルスレーザー光がマイケルソン干渉計等により2分割された場合)、第2のパルスの光強度を変化させることによって、相変化の状態を逐次制御できる。
 ここで、図2において、レーザーパルス光源から来る「フェムト秒パルスレーザー」と、該レーザーを整形した後の「フェムト秒の時間間隔を有するレーザーパルス列」との関係を説明する。例えば周期が80MHzで無限のパルスを有するフェムト秒パルスレーザー(図2(a)参照)について、パルスがマイケルソン型干渉計等でフェムト秒(例.270fs)の時間間隔をおいて2分割されて2つの励起パルス(第1のパルス及び第2のパルス)から成る「フェムト秒の時間間隔を有するレーザーパルス列」(図2(b)参照)に整形される。このように、フェムト秒の時間間隔を有する2つの励起パルスから成るレーザーパルス列を整形する手段については、後記する実施例及び図3において詳述する。
 そして、この2つの励起パルスから成るパルス列が、複数繰り返され(図2(c)参照)、相変化記録膜に照射される。2つの励起パルスから成るパルス列の繰り返し周期は、例えば約80MHzである(図2(c)参照)。従って、2つの励起パルス(の対)が80MHzで繰り返して照射されるということになる。
 上記の相変化の状態を逐次制御する制御のメカニズムは、第1のパルスは、対象となる相変化記録膜の物質構造にコヒーレントフォノンを誘起し、コヒーレントな揺らぎを与え、第2のパルスは、その強度に応じて物質の相変化状態を段階的に変化させるというものである。
 テラヘルツ周波数領域の高周波数フォノンを確実に時間分解して実時間領域における減衰振動波形としてフェムト秒単位で計測する(これにより、格子振動の状態(相変化の状態)を実時間領域でフェムト秒単位で計測する)為には、フェムト秒パルスレーザーとして、パルス幅は100fs(可能ならば20fs以下)が望ましい(図2(b)参照)。
 また、フェムト秒パルスレーザーの波長(エネルギー)は対象となる相変化記録膜の物質のバンドギャップエネルギー以上であることが好ましく、バンドギャップエネルギーが0.5~0.7eV程度のGe-Sb-Te系相変化記録膜材料の場合は、通常のチタン・サファイヤレーザーの中心波長である750~900nm(1.65~1.38eV)で、問題なく電子励起及びコヒーレントフォノンの励起を行うことができる。
 さらに、フェムト秒パルスレーザーを整形して得られるレーザーパルス列の繰り返し周期は、相変化の時間スケール(1ns以内)よりも長くなくてはならず、この繰り返し周期は周波数にして1GHz以下であることが必要である。典型的には非増幅型のチタン・サファイヤレーザーの繰り返しとして70~80MHz程度が用いられる(図2(c)の80MHzの例を参照)が、増幅型のチタン・サファイヤレーザーでは1kHz~1MHz程度の繰り返し周期となる。
 以上のとおり、本発明では、レーザーパルス列の時間間隔(レーザーパルス列に含まれる2つのパルスの時間間隔)を、同期させることによって、フォノン振幅の制御を行い、コヒーレント(非熱的)な過程を経ることで相変化をフェムト秒の超高速で誘起すること(相変化のスイッチングを行うこと)ができるが、この相変化の状態を実時間領域で計測し、本発明の効果を実証する必要がある。
 しかしながら、従来のフォノン測定手段であるラマン散乱分光法や赤外分光法等では、基本的に相変化前後の構造変化を同定できるにすぎず、フェムト秒の超高速の相変化による構造変化を追跡することは、極めて困難である。そこで、本発明の研究開発では、相変化の測定、効果の実証においては、ポンプ・プローブ分光による時間分解反射率測定手段を用いた。
 即ち、本発明では、1ナノ秒(10-9秒)以下で生じる相変化記録膜材料における超高速の相変化の状態を実時間領域で計測する為に、フェムト秒パルスレーザーを光源としたポンプ・プローブ分光による時間分解反射率測定手段を用い、コヒーレントフォノンの測定を行った。ポンプ・プローブ分光は、化学反応のような高速で生じる現象を、時間的に分割して観測する手段であり、周知の技術である。そして、このポンプ・プローブ分光による時間分解反射率測定は、公知である(例えば、特許文献9参照)。
 時間分解反射率測定手段は、フェムト秒パルスレーザーをポンプ光(励起光)及びプローブ光(探索光)として用い、それらポンプ光及びプローブ光の少なくとも一方を光学遅延回路で時間遅延し、相変化記録膜材料へのレンズ或いは凹面鏡での集光によるポンプ光照射によって相変化記録膜材料中に位相が揃った格子振動であるコヒーレントフォノンを励起し、その固体試料への前記レンズ或いは凹面鏡での集光によるプローブ光照射で相変化記録膜材料の反射率変化を測定する手段である。
 上記したとおり、相変化のメカニズムとして、非特許文献3および特許文献10に示されているように、Ge-Sb-Te系材料においては、基本単位格子内にあるGe原子が微少変位するというモデル(アンブレラ・フリップ・フロップ転移:図1(a)参照)を念頭に置き、Ge原子を含むGeTeの構造に起因するフォノン(Aモード;全対称モード)からGeTeの構造に起因するフォノン(Aモード;全対称モード)への遷移に伴うフォノン周波数変化等の測定を行えば、相変化に伴う構造変化をフェムト秒の実時間で同定することが可能になる。
 このように、相変化に直接関与する格子振動(フォノン)を実時間領域で測定することができれば、相変化の動的過程(相変化に伴う構造変化)をフォノンの振動数変化から同定することが可能である。そのために、コヒーレントフォノンの振動信号を積算してモニターする手段が必要であるが、実時間でコヒーレントフォノンをモニターできるファーストスキャン型(特開2004-226224号公報参照)を用いることが望ましい。
 以下、本発明に係る相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法の実施例1を説明する。本発明の相変化記録膜を有する相変化装置は、図3に示すように、フェムト秒パルスレーザー供給装置1と相変化ユニット14とを備えている。
 相変化ユニット14は、後記する実施例2の図8に示すが、基材であるシリコンウエハー16と、相変化デバイスとして使用する相変化記録膜18と、光導波路17とを備えている。
 相変化記録膜18は、本実施例1では、シリコンウエハー16上に形成され、GeSbTeの超格子薄膜から構成されている。具体的には、この超格子薄膜は、GeTe/SbTeの相変化薄膜19の繰り返し構造からなるものである。要するに、超格子薄膜は、GeTe及びSbTeの相変化薄膜19が、相互に20層ずつ積層された多層構造である。本実施例1では、GeTe及びSbTeのそれぞれ一層の厚さは約0.5nmとした。
 光導波路17はシリコンウエハー16上に形成されており、光導波路17の出力端は、相変化記録膜18とカップリング素子23(又はカップリング剤)で接続され、光導波路17の入力端は、光ファイバー4とカップリング素子24(又はカップリング剤)で接続されている。光導波路17は、光源2からのフェムト秒パルスレーザーをマイケルソン型干渉計3等で整形したフェムト秒の時間間隔を有するレーザーパルス列を導入し、相変化記録膜18の端面にカップリング素子23(又はカップリング剤)を介して照射する。
 本発明の相変化記録膜18を有する相変化装置は、光記録装置、相変化によるスイッチング機能を利用し電流をオン・オフする超高速開閉スイッチ、又は相変化を利用した固体相変化メモリ(デジタルメモリ)等として利用される。
 フェムト秒パルスレーザー供給装置1は、図3に示すように、フェムト秒パルスレーザーを発生させるフェムト秒パルスレーザーの光源2と、マイケルソン型干渉計3と、光導波路17にフェムト秒パルスレーザーを導入する光ファイバー4とを備えている。マイケルソン型干渉計3は、ハーフミラー5と、2つのミラー6、7(一対のミラー)を有し、一方のミラー6の光路中には、高速の切り替えシャッター8が設けられている。また、ミラー7の下には、電動ステージ25(もしくはピエゾステージ)が備えてあり、2つのミラー6、7の一方からの励起パルスを時間遅延(Δt)させることができる。
 そして、マイケルソン型干渉計3と、光ファイバー4の入力側のカップリング素子9との間の光路中に、移動ミラー10が設けられており、マイケルソン型干渉計3からの励起光パルス列に対して探索光(プローブ光)を時間遅延させることができる。
 光源2からのフェムト秒パルスレーザーは、フェムト秒の時間間隔を有する2つの励起パルスから成るレーザーパルス列が整形され(図2(b)参照)、このレーザーパルス列が複数繰り返され(図2(c)参照)、カップリング素子9を介して光ファイバー4に入力される。移動ミラー7を1μm程度の精度で移動させることにより、2つのパルスの時間間隔Δtが制御される。
 また、このフェムト秒パルスレーザー供給装置1は、図3に示すように、励起光と探索光を分割するビームスプリッタ11、ならびに励起光と探索光を再結合させる為のビームスプリッタ12を有し、時間分解反射率測定手段をも構成している。
 フェムト秒パルスレーザーの光源2から供給されるフェムト秒パルスレーザー(図2(a)参照)は、この実施例1では、パルス幅20fs、中心波長850nm、繰り返し周期80MHzとし、また時間分解反射率測定手段における、ファーストスキャンにおける信号の積算回数は2000回とする。
(作用)
 実施例1の構成をさらに明確にするために、その作用、測定例を説明する。時間分解反射率測定の形態は、上記したように、パルス幅20fs、中心波長850nm、繰り返し周期80MHzのフェムト秒パルスレーザーを使用し、またファーストスキャンにおける信号の積算回数は2000回とした。
 相変化記録膜18を励起するパルスを、まず、マイケルソン型干渉計3においてシャッター8などで遮断することにより、繰り返し周期80MHzで到達するシングルパルス(強度は31mW)とし、このパルスを相変化記録膜に照射し、時間分解反射率測定を行った場合を説明する。この時間分解反射率測定の結果を図4に示す。ここで相変化記録膜の構造は予め一旦リセット状態(アモルファス)にしてある。この図4に示すように、数ピコ秒の時間に亘ってコヒーレントフォノン信号が振動成分として現れている。
 このフーリエ変換スペクトル(図4の挿入図)を見ると、3.8THz付近に強いピークがあり、また4.9THz付近に幅の広い弱いピークがある。これらは、それぞれGeTeの構造に起因するAモード及びランダムに繋がったTe原子の鎖構造に起因するAモードである。
 次に、フェムト秒パルスレーザーを、マイケルソン型干渉計3によりフェムト秒の時間間隔を有するレーザーパルス列(第1のパルスと第2のパルスから成るダブルパルス)に分割し(図2(b)参照)、このレーザーパルス列の繰り返し(図2(c)参照)をカップリング素子9、光ファイバー4、カップリング素子24(又はカップリング剤)、光導波路17及びカップリング素子23(又はカップリング剤)を介して、相変化記録膜18にその端面から照射し、時間分解反射率測定を行った場合を説明する。
 この実施例1では、レーザーパルス列(ダブルパルス)の時間間隔(Δt)を、276fs(=3.62THz)に設定した場合の時間分解反射率測定の結果を図5に示す。図5に示すとおり、時間領域では振動振幅が増大し、また周波数領域では3.8THz付近のモードが鋭くなり、またピーク周波数がシフトしていることが分かる(より詳細な周波数シフトの解析は図6以降に記載する)。
 次に、マイケルソン型干渉計3により発生させたレーザーパルス列(ダブルパルス)の時間間隔Δtを変化させた時のコヒーレントフォノンの周波数変化を図6に示す。この時のパルスの強度は、上記シングルパルスの強度と等しく第1の励起パルス及び第2の励起パルス共に31mWである。
 図6において、点線(3.83THz)は、図4に示す上記シングルパルスのみの場合を示しているが、レーザーパルス列の時間間隔がΔt=130fsから276fsに増えるに従い周波数が元の場合より低周波数側に約3.7THzまでシフトしていることが分かる。
 ところで、結晶のGeSbTe の薄膜超格子におけるGeTeの構造に起因するAモードの周波数は、約3.7THzであることが分かっているから、図5は、レーザーパルス列(ダブルパルス)により共鳴的に、しかも280fs以下の超高速時間でアモルファスから結晶への相変化が起こっていることを示している。
 また、図6のΔt=276fsの測定直後に、第2のパルスを切ってコヒーレントフォノンを測定したところ、GeTeの構造に起因するAモードの周波数はやはり3.7THzのままであった。すなわち、レーザーパルス列の励起によって誘起されたアモルファスから結晶への相変化は、ダブルパルスを切った後でも長時間保持されており、従って時間が経てば元に戻ってしまう可逆的なものではなく、不可逆的なものである事が分かる。
 さらに、レーザーパルス列の時間間隔を一定(Δt=276fs)として、レーザーパルス列の2つ目のパルス(第2のパルス)の光強度を変化させた時のコヒーレントフォノンの周波数変化を図7に示す。
 この第2のパルスの光強度の増加と共に、GeTeの構造に起因するAモードの周波数は徐々に低周波数側にシフトし、31mW程度で約3.7THzに達する事が分かる。この結果を見ても、第2のパルスの光強度の大きさに応じて相変化が逐次制御されていることが実証されている。
 本発明に係る相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法の実施例2を、図8に示す構成に基づいて説明する。実施例2は、実施例1と基本的に同じ構成であるが、特に、本発明の相変化記録膜を有する相変化装置が、電流をオン・オフする開閉スイッチとして適用されている構成である。
 即ち、実施例2は、相変化デバイスである相変化記録膜に、フェムト秒パルスレーザーから整形されたレーザーパルス列(ダブルパルス)の第1のパルスを照射し、コヒーレントフォノンを発生し、これをさらに第2のパルスを照射して光制御することにより、フェムト秒の超高速時間単位で強制的に相変化を発生させ、導電率を変えて、図8に示すように、電流の導通を制御する開閉スイッチ15として構成したものである。
 実施例2における相変化ユニット14は、実施例1と同じ構成であり、その説明はここでは省略するが、実施例2では、シリコンウエハー16上に形成された光導波路17は、直径10μmとした。
 また、実施例2では、相変化記録膜18を構成するGeTe及びSbTeの相変化薄膜19それぞれ一層の厚さは約1nmとした。相変化記録膜18の上下には、図8に示すように、Al(アルミニウム)からなる電極20を配置されており、3Vの直流電圧が印可され、回路21に電流計22が挿入されている。
 このような構成において、相変化記録膜18は、特許文献10にもあるように0.2mAでパルス時間5nsの電流パルス等により、予め一旦リセット状態(アモルファス)にした。中心波長850nm(周波数約350THz)のフェムト秒パルスレーザーを実施例1と同様の構成のマイケルソン型干渉計でレーザーパルス列(ダブルパルス)に整形し、レーザーパルス列の時間間隔Δt=276fs(=3.62THz)に設定した。
 そして、このレーザーパルス列(ダブルパルス)を、光ファイバー4、カップリング素子24(又はカップリング剤)、光導波路17及びカップリング素子23(又はカップリング剤)を介して、相変化記録膜18にその端面から照射した。
 フェムト秒パルスレーザーから整形されたレーザーパルス列(ダブルパルス)を相変化記録膜に照射した前後の相変化記録膜のデバイス抵抗を測定したところ、測定前が1MΩ、測定後が10kΩであったことから、相変化を生じ、電流をオン・オフする開閉スイッチとして機能することが実証された。
(別条件測定例1)
 実施例2と同様の構成の図8に示す相変化ユニット14において、フェムト秒パルスレーザーから整形されたレーザーパルス列の条件設定によっては、レーザーパルス列の励起パルスが相変化記録膜18の格子振動と共鳴しない場合の例を、以下説明する。
 実施例2と同様に、シリコンウエハー上に直径10μmの光導波路17を形成し、この光導波路17の一方の端面にGeTe/SbTeの相変化薄膜19の繰り返し構造からなる相変化記録膜18をもった相変化ユニット14を作製し、ここで、GeTe及びSbTeの相変化薄膜19のそれぞれ一層の厚さは約1nmとした。相変化ユニット14の上下にはAlからなる電極20を配置し、3Vの直流電圧を印可し、回路21に電流計22を挿入した。
 相変化記録膜18は、0.2mAでパルス時間5nsの電流パルス等により、予め一旦リセット状態(アモルファス)にして、中心波長850nm(周波数約350THz)のフェムト秒パルスレーザー(半値全幅が約20fs、強度31mW)を、予めマイケルソン型干渉計でレーザーパルス列(ダブルパルス)にし、レーザーパルス列の時間間隔Δt=160fs(=6.25THz)に設定した後、光ファイバー4、カップリング素子24(又はカップリング剤)、光導波路17及びカップリング素子23(又はカップリング剤)を介して、相変化記録膜18にその端面から照射した。
 フェムト秒パルスレーザーから整形されたレーザーパルス列を照射した前後のデバイス抵抗を測定したところ、測定前が1MΩ、測定後も1MΩであった。このことは、レーザーパルス列の時間間隔Δtによっては、レーザーパルス列の繰り返し周波数が相変化記録膜の振動周波数と共鳴しておらず、相変化記録膜の相変化が生じないということである。
 このことから、本発明では、レーザーパルス列(ダブルパルス)における時間間隔Δtは、レーザーパルス列の繰り返し周波数が相変化記録膜の振動周波数と共鳴するように設定することが必要であり、実施例2においては、例えば、時間間隔Δt=276fsは意義のある条件である。
(別条件測定例2)
 この測定例2では、相変化を生じさせる相変化記録膜は、超格子構造でなく一層からなるGeSbTe相変化薄膜を使用した。ここで、一層構造を用いた理由は、多層構造でも一層構造でも同様の制御原理が適用されることを示す為であり、本質的な違いはない。この相変化記録膜をシリコンウエハー上に形成して成る相変化ユニットにおいて、フェムト秒パルスレーザーから整形されたレーザーパルス列の条件設定によっては、レーザーパルス列の入射パワーが相変化に必要な活性化エネルギーを超えられない場合の例を、以下説明する。
 相変化記録膜についても、実施例2と同様に、シリコンウエハー16上に直径10μmの光導波路17を形成した。相変化記録膜は、上記のとおり、一層からなるGeSbTe相変化薄膜19であるが、その膜厚は、実施例2記載のような超格子構造を積層して成る相変化薄記録膜19の全体の膜厚と同じとした。次に実施例2と同様に3Vの直流電圧を印可し、回路に電流計を挿入した。
 相変化記録膜は、予め一旦リセット状態(アモルファス)にして、中心波長850nm(周波数約350THz)のフェムト秒パルスレーザー(半値全幅が約20fs、強度5mW)を、予めマイケルソン型干渉計でレーザーパルス列(ダブルパルス)にし、レーザーパルス列の時間間隔Δt=276fs(=3.62THz)に設定した後、ファイバー4、カップリング素子24(又はカップリング剤)、光導波路17及びカップリング素子23(又はカップリング剤)を介して、相変化記録膜18にその端面から照射した。
 フェムト秒パルスレーザーから整形したレーザーパルス列を照射した前後のデバイス抵抗を測定したところ、測定前が1MΩ、測定後も1MΩであった。このことは、実施例2と異なる条件であるフェムト秒パルスレーザーが強度5mWであり、レーザーパルス列の入射パワーが相変化に必要な活性化エネルギーを超えられないことに起因しているものと考えられる。
 このことから、実施例2においては、レーザーパルス列(ダブルパルス)における時間間隔Δt=276fsに加え、フェムト秒パルスレーザーの強度31mWは意義のある条件である。
 以上、本発明を実施するための最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されるものではなく、特許請求の範囲に記載された技術的事項の範囲内でいろいろな実施例があることは言うまでもない。
 本発明によれば、DVD-RAM等に実用化されているGe-Sb-Te系材料におけるアモルファスから結晶への相変化を、フェムト秒再生増幅器等の大規模なレーザーシステムを用いる必要なく、ファイバー型フェムト秒パルスレーザーでも簡単に達成できる31mW程度の省電力パワーで、しかも280fs以下という超高速時間で引き起こすことができる。
 従って、本発明は、DVD-RAM等に適用する光記録装置としての利用のみならず、原子の運動を制御することによるテラヘルツ領域の超高速光スイッチ装置としての利用、或いはテラヘルツの速度で記録-消去可能な光と電子を融合させた全く新しい大容量固体メモリ装置としての利用が可能となる。
 さらに、テラヘルツ周波数での超高速光スイッチができれば、現存の光通信で問題となっている光-電気変換を伴う光中継器を一新することが可能になり、その結果、現在の光通信の容量(160Gbit/s程度)を遙かに超える1Tbit/s以上の通信速度の実現も可能になる。
 1 フェムト秒パルスレーザー供給装置
 2 光源
 3 マイケルソン型干渉計
 4 光ファイバー
 5 ハーフミラー
 6、7 2つのミラー
 8 切り替えシャッター
 9 カップリング素子
 10 移動ミラー
 11 励起光および探索光を分割するビームスプリッタ
 12 励起光および探索光を再結合させる為のビームスプリッタ
 14 相変化ユニット
 15 開閉スイッチ
 16 シリコンウエハー
 17 光導波路
 18 相変化記録膜
 19 相変化薄膜
 20 電極
 21 回路
 22 電流計
 23、24 カップリング素子
 25 電動ステージ

Claims (13)

  1.  相変化記録膜と、フェムト秒パルスレーザーを供給し相変化記録膜に照射する手段を備えた相変化記録膜を有する相変化装置であって、
     前記手段は、1個のフェムト秒レーザーパルスから、複数のパルスを有するパルス列に分割し、該パルス列の時間間隔を、前記相変化記録膜の材料の格子振動の時間周期に一致させて照射することによって相変化記録膜の相変化を誘起する構成であることを特徴とする相変化記録膜を有する相変化装置。
  2.  相変化記録膜と、相変化記録膜にフェムト秒パルスレーザーを照射する手段を備えた相変化記録膜を有する相変化装置であって、
     前記手段は、1個のフェムト秒レーザーパルスを、第1のパルスと第2のパルスを有するパルス列に分割し、該パルス列の時間間隔である第1のパルスと第2のパルスの時間間隔を、前記相変化記録膜の材料の格子振動の時間周期に一致させて照射することによって相変化記録膜の相変化を誘起する構成であることを特徴とする相変化記録膜を有する相変化装置。
  3.  前記パルス列の時間間隔は、アモルファスから結晶又は結晶からアモルファスへの相変化において、相変化後に強く表れるフォノンモードの固有振動数に設定されていることを特徴とする請求項1又は2に記載の相変化記録膜を有する相変化装置。
  4.  前記第2のパルスの強度を変化させることにより前記相変化の状態を制御する構成であることを特徴とする請求項2記載の相変化記録膜を有する相変化装置。
  5.  前記相変化記録膜は、シリコンウエハー上に形成されており、該シリコンウエハー上に形成された光導波路を通して前記パルス列が導入され、相変化記録膜に照射される構成であることを特徴とする請求項1~4のいずれかに記載の相変化記録膜を有する相変化装置。
  6.  前記フェムト秒パルスレーザーは、マイケルソン型干渉計、マッハ・ツェンダー型干渉計、又は液晶光変調素子を用いたパルス整形装置により分割されて、フェムト秒の時間間隔を有するパルス列に整形される構成であることを特徴とする請求項1~5のいずれかに記載の相変化記録膜を有する相変化装置。
  7.  前記相変化記録膜の材料は、GeSbTeであり、前記パルス列の時間間隔Δtは、Ge原子を含むGeTe格子に局在した格子振動の時間周期に合わせ、Δt=276fs(周波数にして3.62THz)に設定されていることを特徴とする請求項1~6のいずれかに記載の相変化記録膜を有する相変化装置。
  8.  相変化記録膜にフェムト秒パルスレーザーを照射して相変化記録膜を相変化させる相変化スイッチング方法であって、
     1個のフェムト秒レーザーパルスから、複数のパルスを有するパルス列に分割し、該パルス列の時間間隔を、前記相変化記録膜の材料の格子振動の時間周期に一致させて照射することによって相変化記録膜の相変化を誘起することを特徴とする相変化記録膜を相変化させる相変化スイッチング方法。
  9.  相変化記録膜にフェムト秒パルスレーザーを照射して相変化記録膜を相変化させる相変化スイッチング方法であって、
     1個のフェムト秒レーザーパルスを、第1のパルスと第2のパルスを有するパルス列に分割し、該パルス列の時間間隔である第1のパルスと第2のパルスの時間間隔を、前記相変化記録膜の材料の格子振動の時間周期に一致させて照射することによって相変化記録膜の相変化を誘起することを特徴とする相変化記録膜を相変化させる相変化スイッチング方法。
  10.  前記パルス列の時間間隔は、アモルファスから結晶又は結晶からアモルファスへの相変化において、相変化後に強く表れるフォノンモードの固有振動数に設定することを特徴とする請求項8又は9に記載の相変化記録膜を相変化させる相変化スイッチング方法。
  11.  前記第2のパルスの強度を変化させることにより前記相変化の状態を制御することを特徴とする請求項9記載の相変化記録膜を相変化させる相変化スイッチング方法。
  12.  前記フェムト秒パルスレーザーを、マイケルソン型干渉計、マッハ・ツェンダー型干渉計、又は液晶光変調素子を用いたパルス整形装置により分割して、フェムト秒の時間間隔を有するパルス列に整形することを特徴とする請求項8~11のいずれかに記載の相変化記録膜を相変化させる相変化スイッチング方法。
  13.  前記相変化記録膜の材料として、GeSbTeを使用し、前記パルス列の時間間隔Δtは、Ge原子を含むGeTe格子に局在した格子振動の時間周期に合わせ、Δt=276fs(周波数にして3.62THz)に設定することを特徴とする請求項8~12のいずれかに記載の相変化記録膜を相変化させる相変化スイッチング方法。
PCT/JP2010/063490 2009-10-28 2010-08-09 相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法 WO2011052279A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/503,346 US9029068B2 (en) 2009-10-28 2010-08-09 Phase change device having phase change recording film, and phase change switching method for phase change recording film
JP2011538290A JP5641485B2 (ja) 2009-10-28 2010-08-09 相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-248134 2009-10-28
JP2009248134 2009-10-28

Publications (1)

Publication Number Publication Date
WO2011052279A1 true WO2011052279A1 (ja) 2011-05-05

Family

ID=43921709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063490 WO2011052279A1 (ja) 2009-10-28 2010-08-09 相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法

Country Status (3)

Country Link
US (1) US9029068B2 (ja)
JP (1) JP5641485B2 (ja)
WO (1) WO2011052279A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754836A (zh) * 2014-01-20 2014-04-30 中国科学院合肥物质科学研究院 制备高化学反应活性碲胶体溶液及碲化物纳米材料的方法
JP2021196215A (ja) * 2020-06-11 2021-12-27 株式会社オプトゲート 光デバイス検査機
WO2024116559A1 (ja) * 2022-11-28 2024-06-06 国立研究開発法人産業技術総合研究所 テラヘルツ波発生装置及びその設計方法並びにテラヘルツ波発生方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10508985B2 (en) * 2017-06-05 2019-12-17 Northwestern University Systems and methods for pump-probe spectroscopy
FR3140713A1 (fr) * 2022-10-07 2024-04-12 Commissariat à l'Energie Atomique et aux Energies Alternatives Commutateur à base d’un matériau à changement de phase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037773A1 (ja) * 2007-09-20 2009-03-26 Pioneer Corporation 記録再生方法、記録再生装置及び記録媒体
JP2009181649A (ja) * 2008-01-31 2009-08-13 Toshiba Corp 情報記録媒体、情報記録方法及び情報記録再生装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268862A (en) * 1989-04-25 1993-12-07 The Regents Of The Unversity Of California Three-dimensional optical memory
JP2769393B2 (ja) * 1991-04-26 1998-06-25 直弘 丹野 立体光記録装置
JP3226305B2 (ja) 1991-10-02 2001-11-05 松下電器産業株式会社 光記録装置
JP3180559B2 (ja) 1994-05-16 2001-06-25 三菱化学株式会社 光学的情報記録用媒体及び記録方法
JPH0845076A (ja) 1994-08-02 1996-02-16 Asahi Chem Ind Co Ltd 光記録媒体の記録および再生方法
KR100248299B1 (ko) * 1997-09-24 2000-03-15 구자홍 광기록매체의초기화방법및그의장치
JP2000322740A (ja) 1999-05-12 2000-11-24 Ricoh Co Ltd 光記録媒体及びその記録方法
JP4558217B2 (ja) 2001-01-12 2010-10-06 独立行政法人理化学研究所 金属試料の特性を光学的に測定する方法及び装置
JP2003272229A (ja) 2002-03-20 2003-09-26 Ricoh Co Ltd 相変化型光記録媒体
JP2003281723A (ja) 2002-03-22 2003-10-03 Ricoh Co Ltd 相変化型光記録媒体とその記録方法
JP4248486B2 (ja) 2004-12-15 2009-04-02 株式会社リコー 相変化型光記録媒体
JP2006277839A (ja) 2005-03-29 2006-10-12 Tdk Corp 光記録媒体
JP4621897B2 (ja) 2007-08-31 2011-01-26 独立行政法人産業技術総合研究所 固体メモリ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037773A1 (ja) * 2007-09-20 2009-03-26 Pioneer Corporation 記録再生方法、記録再生装置及び記録媒体
JP2009181649A (ja) * 2008-01-31 2009-08-13 Toshiba Corp 情報記録媒体、情報記録方法及び情報記録再生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754836A (zh) * 2014-01-20 2014-04-30 中国科学院合肥物质科学研究院 制备高化学反应活性碲胶体溶液及碲化物纳米材料的方法
JP2021196215A (ja) * 2020-06-11 2021-12-27 株式会社オプトゲート 光デバイス検査機
WO2024116559A1 (ja) * 2022-11-28 2024-06-06 国立研究開発法人産業技術総合研究所 テラヘルツ波発生装置及びその設計方法並びにテラヘルツ波発生方法

Also Published As

Publication number Publication date
JPWO2011052279A1 (ja) 2014-01-20
JP5641485B2 (ja) 2014-12-17
US20120256104A1 (en) 2012-10-11
US9029068B2 (en) 2015-05-12

Similar Documents

Publication Publication Date Title
Rudé et al. Ultrafast and broadband tuning of resonant optical nanostructures using phase‐change materials
Makino et al. Significant volume expansion as a precursor to ablation and micropattern formation in phase change material induced by intense terahertz pulses
Stafe et al. Pulsed laser ablation of solids
Dai et al. Observation of superfluorescence from a quantum ensemble of coherent excitons in a ZnTe crystal: Evidence for spontaneous Bose-Einstein condensation of excitons
JP5641485B2 (ja) 相変化記録膜を有する相変化装置、及び相変化記録膜の相変化スイッチング方法
Mao et al. Imaging femtosecond laser-induced electronic excitation in glass
Rybin et al. Optically reconfigurable spherical Ge‐Sb‐Te nanoparticles with reversible switching
Misawa et al. Microfabrication by femtosecond laser irradiation
Gan et al. Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550 nm window
Mandal et al. Attosecond delay lines: design, characterization and applications
Zhang et al. Ultra‐high nonlinear saturable absorption responses and ultra‐fast carrier dynamics of organic DAST
Qian et al. Femtosecond studies of coherent acoustic phonons in gold nanoparticles embedded in TiO 2 thin films
Zoppel et al. Enhancement of laser ablation yield by two color excitation
Kim et al. Ultrafast dynamics and phase changes in crystalline and amorphous GaAs
Jia et al. The ultrafast excitation processes in femtosecond laser-induced damage in dielectric omnidirectional reflectors
Zoppel et al. Two color laser ablation: Enhanced yield, improved machining
Zijlstra Photothermal properties of gold nanorods and their application to five-dimensional optical recording
Lee et al. Toward understanding the mechanism of nonlinear optical characteristics of PbTe thin film for nano-optical memory
JP2006071424A (ja) ナノ薄膜熱物性測定方法および測定装置
Kreutz et al. Electron excitation in glasses followed by time-and space-measuring tools
小林真隆 Multi-timescale dynamics using high-repetition-rate single-shot spectroscopy
Kudryashov et al. Structural mimicry of carbon driven by ultrashort laser pulses
Elbandrawy Femtosecond laser ablation with single and two-photon excitation for MEMS
Rudé Moreno Micro-nano structured optical devices using Ge2Sb2Te5
Yang et al. Laser-Induced Phase Transition and Its Application in Nano-Optical Storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538290

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13503346

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10826414

Country of ref document: EP

Kind code of ref document: A1