WO2011051622A1 - Procédé et dispositif de séparation de mélanges gazeux par perméation - Google Patents

Procédé et dispositif de séparation de mélanges gazeux par perméation Download PDF

Info

Publication number
WO2011051622A1
WO2011051622A1 PCT/FR2010/052303 FR2010052303W WO2011051622A1 WO 2011051622 A1 WO2011051622 A1 WO 2011051622A1 FR 2010052303 W FR2010052303 W FR 2010052303W WO 2011051622 A1 WO2011051622 A1 WO 2011051622A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
gas flow
absorption
permeation
separation unit
Prior art date
Application number
PCT/FR2010/052303
Other languages
English (en)
Inventor
Sylvain Gerard
Nicolas Dupont
Jean-Luc Dubois
Serge Tretjak
Nabil Tlili
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude, Arkema France filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US13/505,299 priority Critical patent/US20120210870A1/en
Priority to IN3072DEN2012 priority patent/IN2012DN03072A/en
Priority to CN2010800493691A priority patent/CN102648038A/zh
Priority to RU2012122855/05A priority patent/RU2012122855A/ru
Priority to BR112012010350A priority patent/BR112012010350A2/pt
Priority to EP10788104A priority patent/EP2496335A1/fr
Publication of WO2011051622A1 publication Critical patent/WO2011051622A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1487Removing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to a method and a device for separating gaseous mixtures by permeation.
  • Semipermeable membranes based on hollow polymer fibers are used in many separation units, for example for the treatment of natural gas, the manufacture of ammonia or methanol, the purification of hydrogen or biogas, etc.
  • the performance of the selective permeation separation units can deteriorate progressively due to the presence of certain compounds, generally minority, in their feed stream. These compounds, which we will call “poisons", can also lead to premature aging of the membranes, which can go as far as their rapid destruction. Different solutions exist to treat this phenomenon.
  • the permeation separation unit is on a recycling loop of a process for the synthesis of methanol or ammonia and is placed downstream of a pre-treatment unit of the following type.
  • PSA Pressure Swing Adsorption
  • US-B-7318854 discloses a pre-treatment for absorbing the carbon dioxide contained in the feed stream of modules comprising polypropylene membranes.
  • the absorbent used is confined in the shell part of the membrane module, outside the polypropylene hollow fibers.
  • the process has the disadvantage of being cyclic. Indeed, a phase of regeneration of the absorbent by passage of a purge gas is necessary after a production phase of 8 hours. Due to the cyclic nature of the process, a large area of membranes must be installed.
  • the direct contact of the absorbent with the constituent elements of the membrane module (polymer fibers of the membranes, sealing materials) requires a total compatibility of the materials and restricts the possible choices for the absorbent.
  • the document FR 07 04708 describes a deacidification process for a natural gas comprising hydrocarbons, hydrogen sulphide (H 2 S) and water.
  • the natural gas is first depleted of water during an absorption step with a liquid rich in H 2 S.
  • the pressure of the contacting zone of the natural gas and the H 2 S rich liquid is between 45 and 75 bar.
  • This depleted gas is then separated through a membrane to obtain a retentate depleted of hydrogen sulfide.
  • the pressure of the separation step through the membrane is not disclosed.
  • US 2004/0099138 A1 discloses a process for producing high purity methane from natural gas. This process comprises a step of separation of heavy hydrocarbon compounds from natural gas by high pressure absorption, greater than 5.5 MPa.
  • the absorbent is a stream rich in carbon dioxide.
  • the flow of natural gas that is low in heavy hydrocarbons is then separated through a membrane so as to obtain a retentate depleted of carbon dioxide.
  • the pressure of the separation step through the membrane is not disclosed.
  • US 2008/0078294 A1 discloses a process for separating hydrogen sulphide, carbon dioxide and hydrogen from a stream. This process includes a step of separating the hydrogen sulfide by absorption with a solvent to produce a low hydrogen sulfide stream. This low hydrogen sulfide stream is then separated through a membrane to obtain a hydrogen-rich permeate. The pressure of the different separation steps are not disclosed.
  • An object of the invention is to overcome all or part of the disadvantages mentioned above, that is to say in particular to provide a method and a device for separating gaseous mixtures by permeation, continuous, which minimizes the impact of certain poisons on its performance and offers a good availability rate (multi-year planned shutdown).
  • the invention relates to a method for purifying a given gas stream comprising one or more constituents to be recovered, one or more impurities to be removed and one or more poisons for a permeation separation unit, comprising the following steps:
  • the given gas flow is brought into contact with one or more liquid solvents suitable and intended to selectively absorb said poisons so as to obtain at least a first flow gaseous depleted in said poisons and a second liquid stream;
  • step b) separating said first gaseous stream from step a) in said permeation separation unit, at a given absolute pressure P, into at least a third gaseous stream depleted of impurities and a fourth stream; the separation carried out in step a) being carried out at an absolute pressure of between 50% and 200% of said given absolute pressure P.
  • the given gas stream to be purified is of any type that can be purified by selective permeation through one or more membranes. It is essentially gaseous. It may contain drops of liquid and / or solid particles in trace amounts.
  • the purification operation essentially consists in removing from this stream one or more compounds which will be called "impurities" so as to obtain a purified stream, that is to say, where the impurity concentration has been lowered below one. predetermined threshold. In particular, it may be to remove the C0 2 from a synthesis gas stream (H 2 / CO), or a hydrocarbon stream constituting the recycle of a catalytic hydrocarbon oxidation process , or a flow of methane.
  • the given gas flow is treated in an absorption separation unit intended to remove one or more species harmful to the membrane or membranes implemented in the permeation step b).
  • These compounds will be called "poisons".
  • compounds such as alcohols (eg methanol, ethanol, etc.), aldehydes (eg formaldehyde, acetaldehyde, acrolein, etc.), ketones (eg acetone, etc.), acids carboxylic acids (eg acetic acid, acrylic acid ...) amines, amides, aromatic compounds (eg benzene, toluene ...) can be considered as "poisons" for polymeric semi-permeable membranes.
  • the absorption unit in question is physically distinct from the permeation unit. Between the two units is at least one pipe. There may also be in particular a heat exchanger for adjusting the temperature of the first gas stream before admission into the permeation unit, and a compressor.
  • the given gas stream is brought into contact with one or more liquid solvents, for example in a liquid-gas absorption column.
  • Their function is to selectively absorb the poison or poisons contained in the given gas stream.
  • selective absorption it is meant that these solvents absorb more the poisons in question than the other bodies that constitute the given gas stream.
  • concentration of poisons in the given gas stream is gradually lowered by passing these poisons in the solvents.
  • the solvent or solvents are gradually loaded into poisons.
  • One or more solvents may be used depending on their affinity for one or more of the poisons to be removed.
  • the second liquid stream includes solvents and poisons that have been removed from the starting gas stream by absorption.
  • a portion of the absorbent compounds may eventually be in the first stream, in a small amount, as drops.
  • the absorbing compound is chosen so as to ensure maximum absorption of the poisons at the pressure and temperature conditions of the process step, and not to act as a poison on the membrane or in the rest of the process. .
  • some aromatic heavy solvents may be considered poisons for oxidation catalysts.
  • the aqueous liquids and preferably the water can be chosen as absorbing compounds because they are not a poison for the membrane or for the catalysts used preferentially.
  • the first gas stream where the poison concentration has been reduced, is sent to a selective permeation separation unit by a piping system. It must enter the permeation unit with a given absolute pressure.
  • the permeation separation unit implements one or more membranes whose permeability vis-à-vis the species that it is desired to preserve and the impurities that it is desired to eliminate is different.
  • membranes examples include, for example, products based on hollow fibers composed of a polymer chosen from: polyimides, cellulose-type polymers, polysulfones, polyamides, polyesters, polyethers, polyether ketones polyetherimides, polyethylenes, polyacetylenes, polyethersulfones, polysiloxanes, polyvinylidene fluorides, polybenzimidazoles, polybenzoxazoles, polyacrylonitriles, polyazoaromatics and copolymers of these polymers.
  • a polymer chosen from: polyimides, cellulose-type polymers, polysulfones, polyamides, polyesters, polyethers, polyether ketones polyetherimides, polyethylenes, polyacetylenes, polyethersulfones, polysiloxanes, polyvinylidene fluorides, polybenzimidazoles, polybenzoxazoles, polyacrylonitriles, polyazoaromatics and copolymers of these polymers
  • At least two new gaseous streams are thus obtained: a third gaseous stream, depleted of impurities, that is to say purified, i. e. enriched in compounds that it is desired to preserve, and a fourth gaseous stream enriched with impurities.
  • Enrichment corresponds to an increase in the volume concentration in the species considered, while depletion corresponds to a decrease in the volume concentration. It is each time with reference to the concentration in the flow to be treated.
  • step a) also benefits from a high level of pressure, which increases its efficiency.
  • the flow is compressed gas given at an absolute pressure of between one-half and twice that required for the first gas flow at the inlet of the permeation separation unit. It may be necessary to recompress the first gaseous flow from step a) according to the compression level of the gas flow given before step a) and the pressure drops that it undergoes during step a) .
  • the invention may comprise one or more of the following characteristics: in step a), said given gas stream and said liquid solvents are circulated in countercurrent manner in means of facilitating the absorption of said poisons by said one or more solvents. These means of facilitating may be in particular trays or packings intended to promote contact between the solvents and the given gas flow.
  • the method comprises a step c) where said second liquid flow is expanded to at least one capacity where it separates into at least a fifth liquid stream depleted in said poisons which is recycled in whole or part in said absorption unit and a sixth gas stream. said sixth gas stream is added to said third impurity depleted gas stream obtained in step b).
  • the sixth gas stream, rich in poisons, may optionally be combined with the purified stream from step b).
  • the absorbent compound (s) used in step a) can be a liquid stream of aqueous or organic solvent.
  • the solvent used is preferably water.
  • the circulation of the absorbent compounds is preferably countercurrent of the gases to be treated.
  • the purification process according to the invention makes it possible to avoid the accumulation in a solid and fixed adsorbent of compounds present in small quantities in the gas to be treated and to reduce the risks of associated inflammation.
  • compounds which, in very small quantities, do not represent any risk can accumulate in excess of a critical concentration sufficient to ignite and propagate the inflammation to the treated gas and / or the adsorbent (eg charcoal).
  • the adsorbent eg charcoal
  • the accumulation of these compounds can lead to their explosion.
  • aromatic compounds such as toluene present in a gas to be treated in very small amounts adsorb on activated carbon, the treated gas also containing NOx type compounds.
  • the toluene remains adsorbed and can thus accumulate.
  • the nitration reaction of toluene is catalyzed by the solid support (here activated carbon).
  • the accumulation of nitro derivatives of toluene (powerful explosive) on activated carbon becomes extremely dangerous.
  • the absorption compared to the adsorption has a lower investment cost and a much lower sensitivity to contamination, or even zero if water is used as the solvent.
  • step c) said second liquid stream from the absorption separation unit, loaded with poisons for the membrane, can be decompressed into a capacity or equivalent means, so as to release the absorbed poisons in the form a gas flow.
  • the solvent (s) thus freed from a portion of the poisons can be recycled to the solvent feed of the absorption separation unit. Purge and solvent booster may be necessary to avoid poison accumulation.
  • the gas stream rich in poisons can be added to the purified gas stream from step b).
  • the solvents used are to be used separately or in groups, several different flash capacities and recycling circuits are used.
  • the given gas stream then sees these solvents successively during step a) in as many reactors as necessary.
  • the invention also relates to a method implementing at least one petrochemical unit and comprising the following successive steps:
  • the purification as described above is ideally applied to a petrochemical process operating at a relatively low pressure, for example less than 10 bar.
  • the use of membranes on a stream to be recycled, at a higher pressure than said petrochemical process, is generally intended to purge this stream of certain compounds that it is not desired to recycle in said petrochemical process.
  • the liquid effluent of this column charged in poisons for the membrane, can be decompressed at the pressure of recycling of said petrochemical process.
  • the gas phase generated by this decompression enriched with harmful compounds for the membrane, can be recycled to the petrochemical process in order to valorize these compounds.
  • the method according to the invention has the advantage of not being cyclic and thus greatly simplifying the design and conduct of the pre-treatment process.
  • the operation of the high pressure pre-treatment process makes it possible to achieve very low levels of poisons to be removed from the stream sent to the permeation separation unit.
  • the nature of the solvent (s) is chosen so that the solubility of the poisons is high. In general, if the poisons are hydrophilic, water will be preferred as the solvent; if the poisons are rather hydrophobic, a hydrophobic solvent will be preferred, such as, for example, ditolyl ether.
  • the absorbing compound can be a miscible mixture of different solvents (for example ditolyl ether and dimethylphthalate) allowing the absorption of all the poisons without resorting to a multistage absorption process.
  • solvents for example ditolyl ether and dimethylphthalate
  • the nature of the solvent will also be chosen so that it is not itself a "poison" for the membrane. Indeed, the solvent will be present in the purified gas sent to the permeation unit in a concentration equal to its vapor pressure under the conditions of temperature and pressure of the absorption unit.
  • the invention also relates to a purification plant of a given gas flow comprising:
  • an absorption separation unit separate from said permeation separation unit, fluidically connected as input to a source of said given gas stream and one or more liquid solvent sources adapted and adapted to absorb one or more poisons for said permeation separation unit (5) included in said given gas stream, a first outlet of said absorption separation unit being fluidly connected to said unit permeation separation.
  • connection means that there is connection by a system of pipes capable of transporting a flow of material.
  • This connection system may include valves, intermediate storages, bypasses, heat exchangers, compressors, but not chemical reactors.
  • the invention may comprise one or more of the following features: said absorption separation unit comprises at least one liquid-gas absorption column, countercurrent, comprising means for facilitating absorption of said poisons in said liquid solvents.
  • one of said liquid solvent sources is a capacity fluidly connected at the input to a second output of said absorption separation unit, this connection comprising expansion means.
  • the relaxation means are typically valves.
  • said capacitance has at least two outputs, one of which is fluidly connected to an input of said absorption separation unit.
  • one of said capacitance outlets is fluidly connected to a given output of said permeation unit.
  • said source of said gas stream is a petrochemical unit and said given output of said permeation unit is fluidly connected to an inlet of said petrochemical unit.
  • Said petrochemical unit in a nonlimiting manner, is capable and intended to carry out any one of the following methods:
  • the petrochemical process 14 is a unit of oxidation of propylene to acrylic acid. It converts a propylene stream 13 in the presence of an oxygen stream (17) into a stream of acrylic acid. During the conversion, a given gas stream 1 is produced. It comprises an impurity, C0 2 , a poison, acrolein, and a mixture of propane and propylene which it is desired to recycle in the petrochemical unit 14.
  • the stream 1 is compressed at a pressure of 12 bar absolute and injected into a unit 2 of absorption separation. This consists of a plate column supplied countercurrently by the gas stream 1 and by recycled water 9 and a makeup 12 from a source 18 of water.
  • This unit 2 performs step a) of the process at a temperature of 30 ° C and 12 bar abs. During absorption, the water gradually becomes poisonous. At the outlet of the absorption unit 2, a first stream 3 of poison-depleted gas is obtained, as well as a stream 4 of water charged with poison. Stream 3 is injected after heating in a permeation separation unit 5 to
  • This comprises a membrane which preferably passes CO 2 and preferably retains propane and propylene.
  • the flow 4 of poison-laden water is expanded in a capacity 8 via a valve 4a. This expansion separates the stream 4 into a poison-rich gas stream 10 which is added to the stream 6 purified before recycling in the petrochemical unit 14 and a stream of water 9 less charged with poison which is compressed and sent to the inlet of the tank.
  • a purge of liquid 11 prevents the accumulation of poison in the water circuit 9, 4. means 12 can inject water, especially to make the extra.
  • An absorption column (2) consisting of 20 trays countercurrently contacts 460 kmol / h of the gas stream (1) with 5 tons / h of a stream of liquid water; the gas stream (3) produced by said absorption column is depleted in poison (here acrolein) and is fed to a polyetherimide type semi-permeable membrane (5); this membrane makes it possible to produce a stream (6) depleted of CO2 which is recycled to the unit (14), and a stream (7) which is purged or used in other units such as ovens.
  • the following table shows the flow rates of the main constituents of the main flows in the example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Procédé de purification d'un flux gazeux donné comprenant un ou plusieurs constituants à récupérer, une ou plusieurs impuretés à éliminer et un ou plusieurs poisons pour une unité de séparation par perméation, comprenant les étapes suivantes : a) Dans une unité de séparation par absorption, distincte de ladite unité de séparation par perméation, on met en contact le flux gazeux donné avec un ou plusieurs solvants liquides aptes et destinés à absorber sélectivement lesdits poisons de manière à obtenir au moins un premier flux gazeux appauvri en lesdits poisons et un second flux liquide; et b) On sépare ledit premier flux gazeux issu de l'étape a) dans ladite unité de séparation par perméation, à une pression absolue P donnée, en au moins un troisième flux gazeux appauvri en impuretés et un quatrième flux; la séparation opérée à l'étape a) étant réalisée à une pression absolue comprise entre 50% et 200% de ladite pression absolue P donnée.

Description

Procédé et dispositif de séparation de mélanges gazeux par perméation
L'invention concerne un procédé et un dispositif de séparation de mélanges gazeux par perméation.
Des membranes semi-perméables à base de fibres creuses polymères sont mises en œuvre dans de nombreuses unités de séparation, par exemple pour le traitement du gaz naturel, la fabrication d'ammoniac ou de méthanol, la purification de l'hydrogène ou de biogaz, etc. Cependant, les performances des unités de séparation par perméation sélective peuvent se dégrader progressivement du fait de la présence de certains composés, en général minoritaires, dans leur flux d'alimentation. Ces composés, que nous qualifierons de « poisons», peuvent aussi entraîner un vieillissement prématuré des membranes, pouvant aller jusqu'à leur destruction rapide. Différentes solutions existent pour traiter ce phénomène. Dans le document EP-B-209970, l'unité de séparation par perméation se trouve sur une boucle de recyclage d'un procédé de synthèse de méthanol ou d'ammoniac et est placée en aval d'une unité de pré-traitement de type PSA (Pressure Swing Adsorption). Ce genre de procédé par modulation de pression est un procédé cyclique alternant entre phase de production et de régénération. Il nécessite un contrôle complexe, ainsi que de nombreux équipements et vannes, ce qui pénalise l'investissement. De plus, la contamination potentielle du flux à traiter par des composés organiques peut entraîner une dégradation rapide du ou des adsorbants mis en jeu dans ces procédés par adsorption, avec des conséquences négatives sur les coûts opératoires et la disponibilité de l'unité de prétraitement.
Le document US-B-7318854 décrit un pré-traitement pour absorber le dioxyde de carbone contenu dans le flux d'alimentation de modules comportant des membranes en polypropylène. L'absorbant utilisé est confiné dans la partie calandre du module membranaire, à l'extérieur des fibres creuses en polypropylène. Le procédé présente l'inconvénient d'être cyclique. En effet, une phase de régénération de l'absorbant par passage d'un gaz de balayage est nécessaire après une phase de production de 8 heures. Du fait du caractère cyclique du procédé, il faut installer une grande surface de membranes. De plus, le contact direct de l'absorbant avec les éléments constitutifs du module membranaire (fibres polymère des membranes, matériaux d'étanchéité) nécessite une compatibilité totale des matériaux et restreint les choix possibles pour l'absorbant.
Le document FR 07 04708 décrit un procédé de désacidification d'un gaz naturel comprenant des hydrocarbures, de l'hydrogène sulfuré (H2S) et de l'eau. Dans ce procédé, le gaz naturel est d'abord appauvri en eau lors d'une étape d'absorption avec un liquide riche en H2S. La pression de la zone de mise en contact du gaz naturel et du liquide riche en H2S est comprise entre 45 et 75 bars. Ce gaz appauvri en eau est ensuite séparé à travers une membrane de manière à obtenir un rétentat appauvri en hydrogène sulfuré. La pression de l'étape de séparation à travers la membrane n'est pas divulguée.
Le document US 2004/0099138 Al divulgue un procédé de production de méthane à haut degrés de pureté à partir de gaz naturel. Ce procédé comprend une étape de séparation des composés hydrocarbonés lourds du gaz naturel par absorption à haute pression, supérieure à 5,5 MPa. L'absorbant est un flux riche en dioxyde de carbone. Le flux de gaz naturel pauvre en hydrocarbures lourds est ensuite séparé à travers une membrane de manière à obtenir un rétentat appauvri en dioxyde de carbone. La pression de l'étape de séparation à travers la membrane n'est pas divulguée.
Le document US 2008/0078294 Al divulgue un procédé destiné à séparer le sulfure d'hydrogène, le dioxyde de carbone et l'hydrogène d'un flux. Ce procédé comprend une étape consistant à séparer le sulfure d'hydrogène par absorption avec un solvant pour produire un flux pauvre en sulfure d'hydrogène. Ce flux pauvre en sulfure d'hydrogène est ensuite séparé à travers une membrane de façon à obtenir un perméat riche en hydrogène. La pression des différentes étapes de séparation ne sont pas divulguées.
Un but de l'invention est de pallier tout ou partie des inconvénients évoqués ci- dessus, c'est à dire en particulier de fournir un procédé et un dispositif de séparation de mélanges gazeux par perméation, continu, qui minimise l'impact de certains poisons sur ses performances et offre un bon taux de disponibilité (arrêt planifié pluriannuel).
A cette fin, l'invention concerne un procédé de purification d'un flux gazeux donné comprenant un ou plusieurs constituants à récupérer, une ou plusieurs impuretés à éliminer et un ou plusieurs poisons pour une unité de séparation par perméation, comprenant les étapes suivantes :
a) Dans une unité de séparation par absorption, distincte de ladite unité de séparation par perméation, on met en contact le flux gazeux donné avec un ou plusieurs solvants liquides aptes et destinés à absorber sélectivement lesdits poisons de manière à obtenir au moins un premier flux gazeux appauvri en lesdits poisons et un second flux liquide ; et
b) On sépare ledit premier flux gazeux issu de l'étape a) dans ladite unité de séparation par perméation, à une pression absolue P donnée, en au moins un troisième flux gazeux appauvri en impuretés et un quatrième flux ; la séparation opérée à l'étape a) étant réalisée à une pression absolue comprise entre 50% et 200% de ladite pression absolue P donnée.
Le flux gazeux donné à purifier est de tout type pouvant être purifié par perméation sélective à travers une ou des membranes. Il est essentiellement gazeux. Il peut contenir des gouttes de liquide et/ou des particules solides à l'état de traces. L'opération de purification consiste essentiellement à enlever de ce flux un ou plusieurs composés qu'on appellera « impuretés » de façon à obtenir un flux purifié », c'est à dire où la concentration en impuretés a été abaissée en dessous d'un seuil prédéterminé. En particulier, il peut s'agir de retirer le C02 d'un flux de gaz de synthèse (H2/CO), ou d'un flux d'hydrocarbures constituant le recycle d'un procédé d'oxydation catalytique d'hydrocarbures, ou encore d'un flux de méthane.
A l'étape a), le flux gazeux donné subit un traitement dans une unité de séparation par absorption destinée à enlever une ou plusieurs espèces nuisibles pour la ou les membranes mises en œuvre à l'étape b) de perméation. On qualifiera ces composés de « poisons ». De façon non limitative, des composés tels que les alcools (ex. méthanol, éthanol...), les aldéhydes (ex. formaldéhyde, acétaldéhyde, acroléine...), les cétones (ex. acétone...), les acides carboxyliques (ex. acide acétique, acide acrylique...) les aminés, les amides, les composés aromatiques (ex. benzène, toluène...) peuvent être considérés comme des « poisons » pour des membranes semi-perméables polymères. L'unité d'absorption en question est physiquement distincte de l'unité de perméation. Entre les deux unités se trouve au moins une canalisation. Il peut y avoir aussi notamment un échangeur de chaleur pour ajuster la température du premier flux gazeux avant son admission dans l'unité de perméation, ainsi qu'un compresseur.
Le flux gazeux donné est mis en contact avec un ou plusieurs solvants liquides, par exemple dans une colonne d'absorption liquide-gaz. Leur fonction est d'absorber sélectivement le ou les poisons contenus dans le flux gazeux donné. Par absorption sélective, on veut dire que ces solvants absorbent davantage les poisons en question que les autres corps qui constituent le flux gazeux donné. Ainsi la concentration en poisons dans le flux gazeux donné s'abaisse progressivement par passage de ces poisons dans les solvants. Le ou les solvants se chargent progressivement en poisons. On peut utiliser un ou plusieurs solvants en fonction de leur affinité pour un ou plusieurs des poisons à retirer. Comme exemples de solvants liquides utilisables dans le procédé selon l'invention, on peut citer : eau, solvants organiques à haut point d'ébullition (par exemple le ditolyléther) ou solvants organiques à bas point d'ébullition (toluène, cyclohexane). Le second flux liquide comprend notamment les solvants et les poisons qui ont été retirés du flux gazeux de départ par absorption. Une portion des composés absorbants peut éventuellement se retrouver dans le premier flux, en petite quantité, sous forme de gouttes. De préférence, le composé absorbant est choisi de manière à assurer une absorption maximale des poisons aux conditions de pression et de température de l'étape du procédé, et à ne pas agir lui-même comme poison sur la membrane ou dans le reste du procédé. Par exemple, certains solvants lourds de type aromatiques peuvent être considérés comme des poisons pour les catalyseurs d'oxydation. Dans le procédé selon l'invention, les liquides aqueux et de préférence l'eau peuvent être choisis comme composés absorbants car ils ne sont pas un poison ni pour al membrane, ni pour les catalyseurs mis en œuvre préférentiellement.
A l'étape b), le premier flux gazeux, où la concentration en poisons à été réduite, est envoyé à une unité de séparation par perméation sélective par un système de canalisations. Il doit entrer dans l'unité de perméation avec une pression absolue donnée. L'unité de séparation par perméation met en œuvre une ou plusieurs membranes dont la perméabilité vis-à-vis des espèces qu'on souhaite conserver et des impuretés qu'on souhaite éliminer est différente. Comme exemples de membranes, on peut citer par exemple des produits à base de fibres creuses composées d'un polymère choisi parmi : les polyimides, les polymères de type dérivés cellulosiques, les polysulfones, les polyamides, les polyesters, les polyéthers, les polyéthers cétones, les polyétherimides, les polyéthylènes, les polyacétylènes, les polyéthersulfones, les polysiloxanes, les polyvinilidènes fluorides, les polybenzimidazoles, les polybenzoxazoles, les polyacrylonitriles, les polyazoaromatiques et les copolymères de ces polymères.
Ainsi, il est possible, selon des modalités connues de l'homme du métier, de séparer les deux types d'espèces. On obtient ainsi au moins deux nouveaux flux gazeux : un troisième flux gazeux, appauvri en impuretés, c'est à dire purifié, i. e. enrichi en composés que l'on souhaite conserver, et un quatrième flux gazeux enrichi en impuretés. Un enrichissement correspond à une augmentation de la concentration volumique en la ou les espèces considérées, tandis qu'un appauvrissement correspond à une baisse de la concentration volumique. C'est à chaque fois en référence à la concentration dans le flux à traiter.
Le principal avantage qu'il y a à retirer les poisons par absorption réside dans le caractère continu de l'opération et sa simplicité de mise en œuvre. En outre, la perméation devant se faire à l'étape b) à un certain niveau de pression absolue, on comprime le flux gazeux donné dès avant l'étape a) d'absorption. Grâce à cette intégration entre les deux étapes, l'étape a) bénéficie aussi d'un haut niveau de pression, ce qui renforce son efficacité. Pour ce faire, avant l'opération de séparation par absorption, on comprime le flux gazeux donné à une pression absolue comprise entre la moitié et le double de celle qui est nécessaire au premier flux gazeux à l'entrée de l'unité de séparation par perméation. Il peut s'avérer nécessaire de recomprimer le premier flux gazeux issue de l'étape a) en fonction du niveau de compression du flux gazeux donné avant l'étape a) et des pertes de charges qu'il subit durant l'étape a).
Selon des modes de réalisations particuliers, l'invention peut comporter une ou plusieurs des caractéristiques suivantes : - à l'étape a), on fait circuler ledit flux gazeux donné et lesdits solvants liquides à contre-courant dans des moyens de facilitation de l'absorption desdits poisons par lesdits un ou plusieurs solvants. Ces moyens de facilitations peuvent être notamment des plateaux ou des garnissages destinés à favoriser le contact entre les solvants et le flux gazeux donné. le procédé comprend une étape c) où on détend ledit second flux liquide vers au moins une capacité où il se sépare en au moins un cinquième flux liquide appauvri en lesdits poisons que l'on recycle en tout ou partie dans ladite unité d'absorption et un sixième flux gazeux . ledit sixième flux gazeux est ajouté audit troisième flux gazeux appauvri en impuretés obtenu à l'étape b). Le sixième flux gazeux, riche en poisons, peut éventuellement être réuni au flux purifié issue de l'étape b). Le ou les composés absorbants mis en œuvre à l'étape a) peuvent être un courant liquide de solvant aqueux ou organique. Le solvant utilisé est préférentiellement de l'eau.
La circulation des composés absorbants se fait de préférence à contre-courant des gaz à traiter. L'absorption peut se faire à une pression proche de la pression d'alimentation des membranes, de préférence légèrement supérieure, suffisante pour compenser les pertes de charge dans les équipements entre l'entrée de la colonne et l'entrée de l'unité de séparation par perméation. Elle est en général supérieure de plusieurs bars à la pression atmosphérique. L'absorption peut se faire à la température d'alimentation de l'eau disponible sur le site, en général inférieure à 30°C. La combinaison d'une pression relativement haute (quelques bars, avec 1 bar = 100000 pascals) et d'une température relativement basse (moins de 30°C) permet d'atteindre des concentrations en poisons dans ledit premier flux plus basses que si on opérait à la pression atmosphérique. De plus, réaliser l'absorption à une pression proche de la pression de l'unité de séparation par perméation permet d'utiliser une seule unité de compression par rapport à une solution où l'absorption serait réalisée à une pression inférieure à celle de l'unité de séparation par perméation.
Grâce à l'étape a) d'absorption, le procédé de purification selon l'invention permet d'éviter l'accumulation dans un adsorbant solide et fixe de composés présents en faibles quantités dans le gaz à traiter et de réduire les risques d'inflammation associés. En effet, des composés qui en très faibles quantités ne représentent aucun risque peuvent en s' accumulant dépasser une concentration critique suffisante pour s'enflammer et propager l'inflammation au gaz traité et/ou à l'adsorbant (ex. charbon). L'accumulation de ces composés peut conduire à leur explosion. Par exemple, les composés aromatiques comme le toluène présents dans un gaz à traiter en très faibles quantités s' adsorbent sur un charbon actif, le gaz traité contenant aussi des composés de type NOx. Si la variation de pression et/ou l'augmentation de température du procédé par adsorption, réalisée pour la régénération, ne sont pas suffisantes, le toluène reste adsorbé et peut ainsi s'accumuler. La réaction de nitration du toluène est catalysée par le support solide (ici le charbon actif). L'accumulation de dérivés nitrés du toluène (puissant explosif) sur un charbon actif devient alors extrêmement dangereuse. D'autre part, l'absorption comparativement à l'adsorption, présente un coût d'investissement inférieur, ainsi qu'une sensibilité à la contamination bien plus faible, voire nulle si l'on utilise l'eau comme solvant.
A l'étape c), ledit second flux liquide issu de l'unité de séparation par absorption, chargé en poisons pour la membrane, peut-être décomprimé dans une capacité ou tout moyen équivalent, de manière à relâcher les poisons absorbés sous la forme d'un flux gazeux. Le ou les solvants, ainsi débarrassés d'une partie des poisons, peuvent être recyclés vers l'alimentation en solvant de l'unité de séparation par absorption. Une purge et un appoint en solvant peuvent être nécessaires pour éviter une accumulation de poisons. Dans certains cas, le flux gazeux riche en poisons peut être ajouté au flux gazeux purifié issu de l'étape b).
Si les solvants utilisés doivent être mis en œuvre séparément ou par groupes, on utilise plusieurs capacités flash et circuits de recyclage distincts. Le flux gazeux donné voit alors ces solvants successivement durant l'étape a) dans autant de réacteurs que nécessaire.
L'invention concerne aussi un procédé mettant en œuvre au moins une unité pétrochimique et comprenant les étapes successives suivantes :
extraction d'un flux gazeux donné de ladite unité pétrochimique ; purification dudit flux gazeux donné et obtention d'au moins un flux gazeux purifié ; et
recyclage dans ladite unité pétrochimique d'au moins une partie dudit flux gazeux purifié ;
caractérisé en ce que ladite purification dudit flux gazeux donné met en œuvre un procédé de purification tel que décrit ci-dessus.
La purification telle que décrite ci-dessus s'applique idéalement à un procédé pétrochimique opérant à une pression assez basse, par exemple inférieure à 10 bar. L'utilisation de membranes sur un flux à recycler, à plus haute pression que ledit procédé pétrochimique, a en général pour but de purger ce flux de certains composés qu'on ne souhaite pas recycler dans ledit procédé pétrochimique.
L'effluent liquide de cette colonne, chargé en poisons pour la membrane, peut-être décomprimé à la pression de recyclage dudit procédé pétrochimique. La phase gaz générée par cette décompression, enrichie en composés nuisibles pour la membrane, peut être recyclée vers le procédé pétrochimique afin de valoriser ces composés.
Le procédé selon l'invention présente l'avantage de ne pas être cyclique et ainsi de simplifier considérablement le design et la conduite du procédé de pré-traitement. L'opération du procédé de pré-traitement à pression élevée permet d'atteindre des teneurs très basses en poisons à éliminer du flux envoyé à l'unité de séparation par perméation. La nature du ou des solvants est choisie de sorte que la solubilité des poisons y soit forte. De manière générale, si les poisons sont hydrophiles, on privilégiera l'eau comme solvant ; si les poisons sont plutôt hydrophobes, on privilégiera un solvant hydrophobe, tel que par exemple le ditolyléther. Si les poisons sont de natures très différentes, le composé absorbant peut être un mélange miscible de différents solvants (par exemple ditolyléther et diméthylphtalate) permettant l'absorption de tous les poisons sans recourir à un procédé d'absorption à plusieurs étapes. La nature du solvant sera également choisie de sorte qu'il ne soit pas lui-même un « poison » pour la membrane. En effet, le solvant sera présent dans le gaz purifié envoyé vers l'unité de perméation en concentration égale à sa tension de vapeur dans les conditions de température et pression de l'unité d'absorption.
L'invention concerne aussi une installation de purification d'un flux gazeux donné comprenant :
une unité de séparation par perméation ; et
une unité de séparation par absorption distincte de ladite unité de séparation par perméation, connectée fluidiquement en entrée à une source dudit flux gazeux donné et une ou plusieurs sources de solvants liquides aptes et destinés à absorber un ou plusieurs poisons pour ladite unité de séparation par perméation (5) compris dans ledit flux gazeux donné , une première sortie de ladite unité de séparation par absorption étant connectée fluidiquement à ladite unité de séparation par perméation.
Par « connexion fluidique » ou « connecté fluidiquement », on veut dire qu'il y a connexion par un système de canalisations aptes à transporter un flux de matière. Ce système de connexion peut comprendre des vannes, des stockages intermédiaires, des dérivations, des échangeurs de chaleur, des compresseurs, mais pas de réacteurs chimiques.
Selon des modes de réalisations particuliers, l'invention peut comporter une ou plusieurs des caractéristiques suivantes : - ladite unité de séparation par absorption comprend au moins une colonne d'absorption liquide-gaz, à contre-courant, comportant des moyens de facilitation de l'absorption desdits poisons dans lesdits solvants liquides. l'une desdites sources de solvants liquides est une capacité connectée fluidiquement en entrée à une seconde sortie de ladite unité de séparation par absorption, cette connexion comportant des moyens de détente. Les moyens de détente sont typiquement des vannes. ladite capacité possède au moins deux sorties dont l'une est connectée fluidiquement à une entrée de ladite unité de séparation par absorption . une desdites sorties de la capacité est connectée fluidiquement à une sortie donnée de ladite unité de perméation . - ladite source dudit flux gazeux est une unité pétrochimique et ladite sortie donnée de ladite unité de perméation est connectée fluidiquement à une entrée de ladite unité pétrochimique.
Ladite unité pétrochimique, de façon non limitative, est apte et destinée à mettre en œuvre l'un quelconque des procédés suivants :
1/ ammoxydation du propane et/ou propylène en acrylonitrile, de isobutane et/ou isobutène en méthacrylonitrile, du méthylstyrène en atroponitrile ; 2/ oxydation du propane et/ou propylène en acroléine, en acide acrylique, de l'isobutane et /ou isobutène en méthacroléine, en acide méthacrylique, du n-butane en anhydride maléique ;
3/ déshydrogénation oxydante du butène en butadiène, de l'isopentène en isoprène ; 4/ oxydation de l'éthylène en oxyde d'éthylène, de l'éthylène en 1,2-dichloroéthane ;
5/ déshydrogénation de méthanol en formol, d'éthanol en acétaldéhyde, de t-butanol en isobutène, en méthacroléine, en acide méthacrylique, du glycérol en acroléine, en acide acrylique ;
6/ oxydation de acroléine en acide acrylique, de la méthacroléine en acide méthacrylique ;
11 acétoxylation d'éthylène en acétate de vinyle.
D'autres particularités et avantages apparaîtront à la lecture de la description ci- après, faite en référence à la figure 1 qui représente une vue schématique et partielle illustrant un exemple de dispositif selon l'invention.
Sur la figure 1, le procédé pétrochimique 14 est une unité d'oxydation du propylène en acide acrylique. Il convertit un flux 13 de propylène, en présence d'un flux oxygène (17) en un flux 15 d'acide acrylique. Au cours de la conversion, un flux gazeux donné 1 est produit. Il comprend une impureté, le C02, un poison, acroléine, et un mélange de propane et de propylène qu'on souhaite recycler dans l'unité pétrochimique 14. Le flux 1 est comprimé à une pression de 12 bar absolu et injecté dans une unité 2 de séparation par absorption. Celle-ci est constituée d'une colonne à plateaux alimentée à contre-courant par le flux gazeux 1 et par de l'eau recyclée 9 et un appoint 12 en provenance d'une source 18 d'eau. Cette unité 2 réalise l'étape a) du procédé à une température de 30°C et 12 bar abs. Au cours de l'absorption, l'eau se charge progressivement en poison. En sortie de l'unité 2 d'absorption, on obtient un premier flux 3 de gaz appauvri en poison, ainsi qu'un flux 4 d'eau chargée en poison. Le flux 3 est injecté après chauffage dans une unité de séparation par perméation 5 à
50°C et à une pression de 11.5 bar abs. Celle-ci comprend une membrane qui laisse passer préférentiellement le C02 et retient préférentiellement le propane et le propylène. On recueille en sortie de l'unité 5 d'une part un flux gazeux 7 enrichi en impureté et à pression inférieure à la pression d'entrée de l'unité 5 et un flux gazeux 6 enrichi en propane et propylène. Le flux 4 d'eau chargée de poison est détendu dans une capacité 8 via une vanne 4a. Cette détente sépare le flux 4 en un flux gazeux 10 riche en poison qui est ajouté au flux 6 purifié avant le recyclage dans l'unité pétrochimique 14 et un flux d'eau 9 moins chargé en poison qui est comprimé et envoyé en entrée de l'unité 2 d'absorption. Une purge de liquide 11 permet d'éviter l'accumulation de poison dans le circuit d'eau 9, 4. Des moyens 12 permettent d'injecter de l'eau, notamment pour faire l'appoint.
Exemple :
Une unité pétrochimique (14) produisant 14.5 tonnes/h d'acide acrylique et un flux gazeux (1) qui est traité selon l'invention.
Une colonne d'absorption (2) constituée de 20 plateaux met en contact à contre-courant 460 kmol/h du flux gazeux (1) avec 5 tonnes/h d'un flux d'eau liquide ; le flux gazeux (3) produit par ladite colonne d'absorption est appauvri en poison (ici l'acroléine) et est alimenté à une membrane (5) semi perméable de type polyétherimide ; cette membrane permet de produire un flux (6) appauvri en C02 qui est recyclé vers l'unité (14), et un flux (7) qui est purgé ou utilisé dans d'autres unités telles que des fours. Le tableau suivant présente les débits des principaux constituants des principaux flux dans l'exemple.
Flux (voir FIG. 1)
Composés (kmol/h)
13 17 1 3 6 7
Oxygène (A conserver) 0 437 27 27 17 1 1
Propylène (A conserver) 306 0 8 8 7 1
Propane (A conserver) 14 0 274 274 260 14
C02 (Impureté) 0 0 109 109 50 59
Acroléine (Poison) 0 0 3.6 0.05 3.5 0.03

Claims

Revendications
Procédé de purification (16) d'un flux gazeux donné (1) comprenant un ou plusieurs constituants à récupérer, une ou plusieurs impuretés à éliminer et un ou plusieurs poisons pour une unité de séparation par perméation (5), comprenant les étapes suivantes :
a) Dans une unité de séparation par absorption
(2), distincte de ladite unité de séparation par perméation (5), on met en contact le flux gazeux donné (1) avec un ou plusieurs solvants liquides (9, 12) aptes et destinés à absorber sélectivement lesdits poisons de manière à obtenir au moins un premier flux gazeux
(3) appauvri en lesdits poisons et un second flux liquide
(4) ; et b) On sépare ledit premier flux gazeux (3) issu de l'étape a) dans ladite unité de séparation par perméation
(5), à une pression absolue P donnée, en au moins un troisième flux gazeux
(6) appauvri en impuretés et un quatrième flux
(7) ; la séparation opérée à l'étape a) étant réalisée à une pression absolue comprise entre 50% et 200% de ladite pression absolue P donnée.
Procédé de purification (16) selon la revendication 1, caractérisé en ce que, à l'étape a), on fait circuler ledit flux gazeux donné (1) et lesdits solvants liquides (9, 12) à contre-courant dans des moyens de facilitation de l'absorption desdits poisons par lesdits un ou plusieurs solvants (9, 12).
Procédé de purification (16) selon l'une quelconque des revendications 1 ou 2, caractérisé en ce qu'il comprend une étape c) où on détend ledit second flux liquide (4) vers au moins une capacité (8) où il se sépare en au moins un cinquième flux liquide (9) appauvri en lesdits poisons que l'on recycle en tout ou partie dans ladite unité d'absorption (2) et un sixième flux gazeux (10).
Procédé de purification (16) selon la revendication 3, caractérisé en ce que ledit sixième flux gazeux (10) est ajouté audit troisième flux gazeux (6) appauvri en impuretés obtenu à l'étape b).
Procédé mettant en œuvre au moins une unité pétrochimique (14) et comprenant les étapes successives suivantes :
- extraction d'un flux gazeux donné (1) de ladite unité pétrochimique (14) ;
- purification (16) dudit flux gazeux donné (1) et obtention d'au moins un flux gazeux purifié (6) ; et - recyclage dans ladite unité pétrochimique (14) d'au moins une partie dudit flux gazeux purifié (6) ;
caractérisé en ce que ladite purification (16) dudit flux gazeux donné (1) met en œuvre un procédé de purification (16) selon l'une quelconque des revendications 1 à 4.
Installation de purification (16) d'un flux gazeux donné (1) comprenant :
- une unité de séparation par perméation (5) ; et
- une unité de séparation par absorption (2) distincte de ladite unité de séparation par perméation (5), connectée fluidiquement en entrée à une source (14) dudit flux gazeux donné (1) et une ou plusieurs sources (8, 18) de solvants liquides aptes et destinés à absorber un ou plusieurs poisons pour ladite unité de séparation par perméation (5) compris dans ledit flux gazeux donné (1), une première sortie (3) de ladite unité de séparation par absorption (2) étant connectée fluidiquement à ladite unité de séparation par perméation (5).
Installation de purification (16) selon la revendication 6, caractérisée en ce que ladite unité de séparation par absorption (2) comprend au moins une colonne d'absorption liquide-gaz, à contre-courant, comportant des moyens de facilitation de l'absorption desdits poisons dans lesdits solvants liquides.
Installation de purification (16) selon l'une quelconque des revendications 6 ou 7, caractérisée en ce que :
- l'une desdites sources de solvants liquides est une capacité (8) connectée fluidiquement en entrée à une seconde sortie (4) de ladite unité de séparation par absorption (2), cette connexion comportant des moyens (4a) de détente ; et
- ladite capacité
(8) possède au moins deux sorties (9, 10) dont l'une
(9) est connectée fluidiquement à une entrée de ladite unité de séparation par absorption (2).
Installation de purification (16) selon la revendication 8, caractérisée en ce qu'une desdites sorties (10) de la capacité (8) est connectée fluidiquement à une sortie donnée (6) de ladite unité de perméation (5).
10. Installation selon l'une quelconque des revendications 6 à 9, caractérisée en ce que ladite source (14) dudit flux gazeux (1) est une unité pétrochimique et ladite sortie donnée (6) de ladite unité de perméation (5) est connectée fluidiquement à une entrée de ladite unité pétrochimique.
PCT/FR2010/052303 2009-11-02 2010-10-27 Procédé et dispositif de séparation de mélanges gazeux par perméation WO2011051622A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/505,299 US20120210870A1 (en) 2009-11-02 2010-10-27 Method and device for separating gaseous mixtures by means of permeation
IN3072DEN2012 IN2012DN03072A (fr) 2009-11-02 2010-10-27
CN2010800493691A CN102648038A (zh) 2009-11-02 2010-10-27 用于通过渗透分离气体混合物的方法和装置
RU2012122855/05A RU2012122855A (ru) 2009-11-02 2010-10-27 Способ и устройство для разделения газовых смесей путем проникновения
BR112012010350A BR112012010350A2 (pt) 2009-11-02 2010-10-27 metodo e dispositivo para separacao de misturas gasosas por permeacao
EP10788104A EP2496335A1 (fr) 2009-11-02 2010-10-27 Procédé et dispositif de séparation de mélanges gazeux par perméation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957730 2009-11-02
FR0957730A FR2951959B1 (fr) 2009-11-02 2009-11-02 Procede et dispositif de separation de melanges gazeux par permeation

Publications (1)

Publication Number Publication Date
WO2011051622A1 true WO2011051622A1 (fr) 2011-05-05

Family

ID=42224729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052303 WO2011051622A1 (fr) 2009-11-02 2010-10-27 Procédé et dispositif de séparation de mélanges gazeux par perméation

Country Status (9)

Country Link
US (1) US20120210870A1 (fr)
EP (1) EP2496335A1 (fr)
KR (1) KR20120102047A (fr)
CN (1) CN102648038A (fr)
BR (1) BR112012010350A2 (fr)
FR (1) FR2951959B1 (fr)
IN (1) IN2012DN03072A (fr)
RU (1) RU2012122855A (fr)
WO (1) WO2011051622A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130220118A1 (en) * 2012-02-29 2013-08-29 Generon Igs, Inc. Separation of gas mixtures containing condensable hydrocarbons

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8454727B2 (en) * 2010-05-28 2013-06-04 Uop Llc Treatment of natural gas feeds
EP2638951A1 (fr) * 2012-03-14 2013-09-18 Artan Holding Ag Conditionnement de gaz combiné
US20140366446A1 (en) * 2013-06-14 2014-12-18 Uop Llc Methods and systems for gas separation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR704708A (fr) 1930-10-27 1931-05-26 Ig Farbenindustrie Ag Procédé et appareil pour mesurer de facon continue l'énergie de combustion contenue dans des gaz combustibles en écoulement
EP0247585A1 (fr) * 1986-05-27 1987-12-02 Nippon Kokan Kabushiki Kaisha Procédé pour récupérer des vapeurs d'hydrocarbure
EP0209970B1 (fr) 1985-05-24 1991-12-04 Uop Procédé pour la séparation de gaz
DE4412496A1 (de) * 1994-04-12 1995-10-19 Nitsche Manfred Verfahren zur verbesserten Rückgewinnung von Benzin- und/oder Lösemitteldämpfen in mit Druckkondensation und/oder Druckabsorption arbeitenden Anlagen zur Abluftreinigung
FR2832326A1 (fr) * 2001-11-19 2003-05-23 Air Liquide Procede de separation d'un melange gazeux par une unite membranaire de permeation, et installation de mise en oeuvre de ce procede
US20040099138A1 (en) 2002-11-21 2004-05-27 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et Membrane separation process
US7318854B2 (en) 2004-10-29 2008-01-15 New Jersey Institute Of Technology System and method for selective separation of gaseous mixtures using hollow fibers
US20080078294A1 (en) 2006-09-29 2008-04-03 Eleftherios Adamopoulos Integrated Separation And Purification Process
FR2917982A1 (fr) * 2007-06-29 2009-01-02 Inst Francais Du Petrole Procede de desacidification d'un gaz naturel combinant une distillation et une separation par membrane.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548619A (en) * 1984-10-11 1985-10-22 Uop Inc. Dehydrocyclodimerization process
US5069686A (en) * 1990-08-07 1991-12-03 Membrane Technology & Research, Inc. Process for reducing emissions from industrial sterilizers
US5772734A (en) * 1997-01-24 1998-06-30 Membrane Technology And Research, Inc. Membrane hybrid process for treating low-organic-concentration gas streams
US7132008B2 (en) * 2002-10-25 2006-11-07 Membrane Technology & Research, Inc. Natural gas dehydration apparatus
US8419829B2 (en) * 2010-10-27 2013-04-16 General Electric Company Method and system for treating Fishcher-Tropsch reactor tail gas
US8540804B2 (en) * 2010-11-01 2013-09-24 Saudi Arabian Oil Company Sour gas and acid natural gas separation membrane process by pre removal of dissolved elemental sulfur for plugging prevention
US9138714B2 (en) * 2011-10-31 2015-09-22 General Electric Company Microfluidic chip and a related method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR704708A (fr) 1930-10-27 1931-05-26 Ig Farbenindustrie Ag Procédé et appareil pour mesurer de facon continue l'énergie de combustion contenue dans des gaz combustibles en écoulement
EP0209970B1 (fr) 1985-05-24 1991-12-04 Uop Procédé pour la séparation de gaz
EP0247585A1 (fr) * 1986-05-27 1987-12-02 Nippon Kokan Kabushiki Kaisha Procédé pour récupérer des vapeurs d'hydrocarbure
DE4412496A1 (de) * 1994-04-12 1995-10-19 Nitsche Manfred Verfahren zur verbesserten Rückgewinnung von Benzin- und/oder Lösemitteldämpfen in mit Druckkondensation und/oder Druckabsorption arbeitenden Anlagen zur Abluftreinigung
FR2832326A1 (fr) * 2001-11-19 2003-05-23 Air Liquide Procede de separation d'un melange gazeux par une unite membranaire de permeation, et installation de mise en oeuvre de ce procede
US20040099138A1 (en) 2002-11-21 2004-05-27 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et Membrane separation process
US7318854B2 (en) 2004-10-29 2008-01-15 New Jersey Institute Of Technology System and method for selective separation of gaseous mixtures using hollow fibers
US20080078294A1 (en) 2006-09-29 2008-04-03 Eleftherios Adamopoulos Integrated Separation And Purification Process
FR2917982A1 (fr) * 2007-06-29 2009-01-02 Inst Francais Du Petrole Procede de desacidification d'un gaz naturel combinant une distillation et une separation par membrane.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130220118A1 (en) * 2012-02-29 2013-08-29 Generon Igs, Inc. Separation of gas mixtures containing condensable hydrocarbons

Also Published As

Publication number Publication date
FR2951959B1 (fr) 2012-03-23
RU2012122855A (ru) 2013-12-10
CN102648038A (zh) 2012-08-22
BR112012010350A2 (pt) 2017-02-21
FR2951959A1 (fr) 2011-05-06
US20120210870A1 (en) 2012-08-23
IN2012DN03072A (fr) 2015-07-31
EP2496335A1 (fr) 2012-09-12
KR20120102047A (ko) 2012-09-17

Similar Documents

Publication Publication Date Title
EP2310110B1 (fr) Solution absorbante a base de n,n,n',n'-tetramethylhexane-1,6-diamine et d'une amine comportant des fonctions amine primaire ou secondaire et procede d'elimination de composes acides d'un effluent gazeux
KR101388266B1 (ko) 고로가스의 분리방법 및 장치
EP2247559B1 (fr) Procede de separation du propane et du propylene mettant en oeuvre une colonne a distiller et une unite deseparation par membrane
CA2475445A1 (fr) Procede de traitement d'un melange gazeux comprenant de l'hydrogene et du sulfure d'hydrogene
EP3465035B1 (fr) Procédé de séparation cryogénique d'un débit d'alimentation contenant du méthane et des gaz de l'air et installation pour la production de bio méthane par épuration de biogaz issus d'installations de stockage de déchets non-dangereux (isdnd) mettant en oeuvre ledit procédé
LU83463A1 (fr) Procede pour la separation selective d'hydrogene sulfure a partir de melanges gazeux contenant egalement du gaz carbonique
EP2496335A1 (fr) Procédé et dispositif de séparation de mélanges gazeux par perméation
EP0797472A1 (fr) Procede et installation de separation de composes lourds et legers, par extraction par un fluide supercritique et nanofiltration
FR2794665A1 (fr) Procede et dispositif de traitement d'un gaz contenant de l'hydrogene sulfure, comportant une etape de regeneration de la solution catalytique au moyen d'un ejecteur
WO2015173499A1 (fr) Procédé de traitement pour la séparation de dioxyde de carbone et d'hydrogène d'un mélange
FR2832326A1 (fr) Procede de separation d'un melange gazeux par une unite membranaire de permeation, et installation de mise en oeuvre de ce procede
FR3035337A1 (fr) Procede de purification d'un gaz comprenant du methane
FR2836058A1 (fr) Procede de separation d'un melange gazeux et installation de mise en oeuvre d'un tel procede
WO2019162383A1 (fr) Système et procédé pour le traitement de gaz
FR2860442A1 (fr) Utilisation d'une turbine diphasique dans un procede de traitement de gaz
EP3372297B1 (fr) Procede de purification de gaz, notamment de biogaz pour obtenir du biomethane
BR112016012491B1 (pt) Método para separar e purificar um produto de fermentação de um gás residual fermentador
FR2952053A1 (fr) Procede et dispositif de production de derives d'alcenes
FR2916652A1 (fr) Procede de traitement integre d'un gaz naturel permettant de realiser une desacidification complete
EP1682616A2 (fr) Procede de valorisation des flux gazeux hydrogene issus d un ites reactionnelles chimiques mettant en oeuvre de l hydroge ne
FR2906799A1 (fr) Procede de production d'hydrogene utilisant une colonne en lit mobile simule
FR3141864A1 (fr) Procédé de traitement d’un gaz issu d’un gisement pour obtenir de l’hélium et système de mise en œuvre d’un tel procédé
FR2836064A1 (fr) Procede de traitement d'un melange gazeux comprenant de l'hydrogene, du sulfure d'hydrogene et des hydrocarbures
FR2772373A1 (fr) Procede d'elimination de composes polaires sur une unite d'etherification
FR2939054A1 (fr) Recompression et mise en operation d'un adsorbeur a l'aide d'un melange combustible/comburant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049369.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10788104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3072/DELNP/2012

Country of ref document: IN

Ref document number: 2010788104

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127011134

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13505299

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012122855

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010350

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010350

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120502