WO2011050643A1 - 导频发送方法及相应信道估计方法 - Google Patents

导频发送方法及相应信道估计方法 Download PDF

Info

Publication number
WO2011050643A1
WO2011050643A1 PCT/CN2010/075799 CN2010075799W WO2011050643A1 WO 2011050643 A1 WO2011050643 A1 WO 2011050643A1 CN 2010075799 W CN2010075799 W CN 2010075799W WO 2011050643 A1 WO2011050643 A1 WO 2011050643A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
channel state
state information
subframe
resource
Prior art date
Application number
PCT/CN2010/075799
Other languages
English (en)
French (fr)
Inventor
张元涛
王键
周华
吴建明
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Publication of WO2011050643A1 publication Critical patent/WO2011050643A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se

Definitions

  • the present invention generally relates to the field of multi-antenna communication systems, and in particular to channel state information pilots.
  • Channel estimation is performed using pilots in a multi-antenna communication system.
  • Channel estimation has two main purposes.
  • a user equipment calculates channel state information, such as channel quality information (CQI), precoding information (PMI), and using channel estimation values. / or send rank information (RI) and so on.
  • CQI channel quality information
  • PMI precoding information
  • RI rank information
  • the base station can be used for user selection, and a reasonable coding and modulation mode, a precoding transmission mode, and the like are selected for the selected user.
  • the second is that the user equipment uses the channel estimation value to assist data demodulation. .
  • the pilot is divided into a common pilot for estimating channel state information (CSI-RS: Channel State Information-Pilot Signal, which will be described below)
  • CSI-RS Channel State Information-Pilot Signal
  • DM-RS Demodulation-Pilot Signal
  • each cell can support up to 8 antenna ports, in CSI-RS
  • a pilot insertion position needs to be arranged for each antenna port.
  • the antenna port can be either an actual physical antenna or a virtual antenna.
  • the backward compatibility problem should be considered when designing the CSI-RS insertion scheme.
  • the LTE and LTE-Advanced hybrid systems since the CSI-RS is designed for the LTE-Advanced system, the LTE users do not know the CSI- The existence of RS. Therefore, in a subframe in which a CSI-RS is inserted, if a resource block is scheduled for a user of LTE, a CSI-RS needs to be inserted in some data symbols of the user, and the user of the LTE does not know that the user is inserted. The CSI-RS is inevitably causing a loss to the decoding performance of the LTE user. If a resource block is scheduled to the LTE-Advanced user, the CSI-RS can be inserted directly at the pilot position as specified. Based on this, the design of the CSI-RS needs to consider the following two factors:
  • the CSI-RS must be as small as possible in each resource block in which the CSI-RS is inserted to ensure that if this resource block is scheduled for the LTE user, the decoding loss for this user can be reduced.
  • the CSI-RS must be sufficient in the resource block to ensure that the LTE-Advanced user can estimate the channel state information with sufficient accuracy. For example, users of LTE-Advanced need to do for each
  • the antenna port estimates two channel estimates to correctly estimate the channel state information, ⁇ ,
  • the LTE-Advanced user needs 2 CSI-RSs corresponding to each antenna port for channel state estimation.
  • Patent Document 1 US Patent Publication No. 20090257519A1 to Lin Chih-Yuan, et al., entitled "Pilot pattern design for high-rank MIMO OFDMA systems";
  • Patent Document 2 Hsieh Yu-tao, et al., Entitled: "System and method for pilot design for data transmitted in wireless networks"
  • Patent Document 3 Lin Chih-Yuan et al., entitled “Resource block based pilot pattern design for 1/2 - stream mimo of dma systems", US Patent 1 J Publication US 20090257342 Al;
  • Patent Document 5 Mondal Bishwarup, et al., entitled “Method and system for codebook based closed loop MIMO using common pilots and analog feedback” US Patent Publication US 20090238303 Al. Summary of the invention
  • a channel state signal is transmitted in a multi-antenna communication system a method of using a pilot, the method comprising the steps of: inserting, in each subframe for transmitting a channel state information pilot, a CSI corresponding to all antenna ports configured for each cell to which data is to be transmitted to the user equipment. And transmitting the subframe in which the CSI-RS is inserted to the user equipment.
  • a base station that transmits a channel state information pilot to a user equipment using the method according to the present invention.
  • a method for channel state estimation using pilots in a multi-antenna communication system comprising: extracting, from each subframe, corresponding to transmitting data to a user equipment a CSI-RS of all antenna ports configured by each cell; performing channel estimation using the extracted two CSI-RSs corresponding to the same antenna port and storing the estimated channel values; and calculating channel states by using the channel values information.
  • a base station that transmits a channel state information pilot to a user equipment in accordance with the above method.
  • a multi-antenna communication system comprising: a base station transmitting a channel state information pilot to a user equipment according to the method of the present invention; and a user equipment according to the present invention
  • the above method performs channel state estimation.
  • a storage medium comprising machine readable program code, the program code causing the multi-antenna communication when the program code is executed on a multi-antenna communication system or an information processing system
  • the system or information processing system performs the above method.
  • a program product comprising machine executable instructions for causing said multi-antenna communication system or information when said instructions are executed on a multi-antenna communication system or information processing system
  • the processing system performs the above method.
  • the method and apparatus according to the present invention can improve LTE-Advance user channel state information estimation performance while ensuring acceptable decoding performance of LTE users.
  • 1 shows a schematic flow chart for transmitting pilots and using pilots for channel state information estimation in a multi-antenna communication system
  • 2 is a schematic flow chart showing when channel state information is estimated by transmitting two CSI-RSs corresponding to the same antenna port by two resource blocks using one subframe
  • FIG. 3 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate two-cell channel state information, two cells are each equipped with four antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 16.
  • FIG. 4 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate two-cell channel state information, two cells are each equipped with four antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 8.
  • FIG. 5 shows an example of an insertion scheme of a CSI-RS when it is required to estimate two-cell channel state information, two cells are each equipped with eight antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 16.
  • FIG. 6 shows an example of an insertion scheme of a CSI-RS when it is required to estimate three-cell channel state information, three cells are each equipped with four antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 12.
  • FIG. 7 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate three-cell channel state information, three cells are each equipped with eight antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 16.
  • FIG. 8 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate four-cell channel state information, four cells are each equipped with four antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 16.
  • Figure 9 is a schematic flow chart showing the use of two subframes to transmit channel state information pilots to estimate channel state information
  • FIG. 10 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate one cell channel state information, the cell is equipped with 8 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 8.
  • FIG. 11 shows another example of an insertion scheme of a CSI-RS when it is necessary to estimate one cell channel state information, the cell is equipped with 8 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 8.
  • FIG. 12 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate two cell channel state information, two cells are each equipped with 4 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 8.
  • FIG. 13 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate two cell channel state information, two cells are each equipped with 8 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 8.
  • FIG. 14 shows another insertion scheme of CSI-RS when it is necessary to estimate two cell channel state information, two cells are each equipped with 8 antenna ports, and the number of subcarriers occupied by LTE tolerable CSI-RS is 8.
  • FIG. 15 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate two cell channel state information, two cells are each equipped with 8 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 16.
  • 16 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate three cell channel state information, three cells are each equipped with 4 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 12.
  • FIG. 17 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate three cell channel state information, three cells are each equipped with 8 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 12.
  • FIG. 18 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate four cell channel state information, four cells are each equipped with 4 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 16.
  • Figure 19 shows a schematic structural diagram of a base station according to the present invention.
  • Fig. 20 shows a schematic structural diagram of a user equipment according to the present invention. detailed description
  • Fig. 1 shows a schematic flow chart for transmitting pilots and using pilots for channel state information estimation in a multi-antenna communication system.
  • the base station determines the number of cells to be jointly transmitted and the antenna configuration of each cell.
  • Gp the base station determines the number of cells to transmit data to the user equipment (UE: user equipment) and the number of antenna ports of each cell.
  • UE user equipment
  • the first data transmission mode is to send data only through the cell where the UE is located, and the other data transmission mode is not only to send data through the serving cell where the UE is located, but also to The cell sends data.
  • the number of cells that transmit data to the UE is one.
  • the cell that sends data to the UE is a serving cell where the UE is located and an adjacent cell to which data is to be sent to the UE.
  • the number of cells to be jointly transmitted and the antenna configuration of each cell are not the inventive points of the present invention, and those skilled in the art can determine any suitable method by using existing and/or later development methods. The number of cells jointly transmitted and the antenna configuration of each cell.
  • step S102 the base station sends control information indicating a manner in which the base station sends data to the UE to the user equipment, to notify the UE of the number of cells to be jointly transmitted and the antenna configuration of each cell.
  • step S104 according to the control information sent by the base station, the UE can know in which subframes the CSI-RS is inserted according to the system predetermined specification, and insert the CSI-RS corresponding to each antenna port in the subframes.
  • the position that is, the index number of the subcarrier of the resource particle in which the CSI-RS is inserted in each resource block in the subframe, and the index number of the orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • step S106 the base station inserts data corresponding to the user equipment to be transmitted in each subframe for transmitting the channel state information pilot according to the number of cells to be jointly transmitted and the number of antennas of each cell determined in step S100.
  • CSI-RS of all antenna ports configured for each cell. The insertion scheme of the CSI-RS in each subframe will be explained in more detail later.
  • step S108 the subframe in which the CSI-RS is inserted is transmitted to the UE.
  • step S110 the UE extracts, from each received subframe, all the antennas configured corresponding to each cell to which data is to be sent to the user equipment, by using the insertion position of the CSI-RS learned in step S104. Port CSI-RS.
  • step S112 the UE separately performs channel by using two CSI-RSs of each cell in the inserted subframe.
  • the estimated channel estimate is estimated and stored. How to use CSI-RS for channel estimation is not an inventive point of the present invention, and those skilled in the art can perform channel estimation based on CSI-RS by using existing or later developed applicable methods.
  • step S114 the UE calculates the channel quality information CQI, the precoding information PMI, the transmission rank information RI, and the like by using the stored two channel estimation values.
  • How to calculate channel quality information CQI, precoding information PMI and transmission rank information RI by using two stored channel estimation values is not an inventive point of the present invention, and those skilled in the art can utilize the existing or later developed applicable methods.
  • the stored two channel estimation values are used to calculate channel quality information CQI, precoding information PMI, and transmission rank information RI.
  • the channel state information that the UE can calculate is not limited to the channel quality information CQI, the precoding information PMI, and the transmission rank information RI, but the parameters that need to be calculated can be selected according to the actual needs of the system.
  • step S106 may be performed when steps S102 and S104 are performed, or may be performed before step S102 and step S104 are performed, or between step S102 and step S104.
  • steps S100 and S102 may not be included.
  • a CSI-RS corresponding to all antenna ports is inserted in each subframe for transmitting channel state information pilots, whereby when the UE receives the subframe in which the CSI-RS is inserted, It is now possible to start estimating all channels. Therefore, the number of resource particles used for inserting CSI-RS in each subframe is acceptable to users of LTE, that is, the LTE-Advance user channel is improved on the premise that the impact on the performance of the LTE user is acceptable to the user. Status information estimates performance.
  • Two CSI-RSs corresponding to the same antenna port may be inserted in two resource particles having the same OFDM symbol, or may be inserted in two resource particles having different OFDM symbol index numbers.
  • two CSI-RSs corresponding to the same antenna port are inserted in two resource particles having different OFDM symbol index numbers.
  • the UE can track the channel change in the time domain when performing channel estimation, so that the accuracy of the LTE-Advance user channel state information estimation can be improved.
  • Two CSI-RSs corresponding to the same antenna port may be inserted in two resource particles having the same subcarrier index number, or may be inserted in two resource particles having different subcarrier index numbers.
  • two CSI-RSs corresponding to the same antenna port are inserted in two resource particles having different subcarrier index numbers. Therefore, the UE can track the channel change in the frequency domain when performing channel estimation, so that the accuracy of the LTE-Advance user channel state information estimation can be improved.
  • the UE can track the channel change in the time domain when performing channel estimation, thereby improving the accuracy of the LTE-Advance user channel state information estimation.
  • the two subframes for transmitting the CSI-RS may be any two subframes, for example, subframes 2 and 4 may be used.
  • the two subframes for transmitting the CSI-RS are temporally adjacent (i.e., the difference of the index numbers is 1) two subframes, for example, subframe 2 and subframe 3.
  • the order of transmission of the two subframes in which the CSI-RS is inserted does not have to be fixed.
  • the order of transmission of the two subframes may be exchanged, or may be separated by a middle.
  • the OFDM symbol index number of the resource particle in which the CSI-RS is inserted in each subframe may be optional.
  • the index number of the OFDM symbol in the subframe 2 is preferably 10; the index number of the OFDM symbol in the subframe 3 is preferably 3 and 10.
  • the index numbers of the OFDM symbols of the resource particles in which the CSI-RS is inserted in the two subframes may be the same or different, but are preferably different. of.
  • each resource block in the LTE system can tolerate for CSI-RS.
  • it can be divided into three cases that can tolerate 8 subcarriers, 12 subcarriers, and 16 subcarriers.
  • the number of subcarriers required to estimate the channel state information is n, and the shell lj:
  • n number of cells X number of antenna ports per cell X number of subcarriers required for daily line ports
  • Equation 1 In the LTE-Advanced system, the user equipment needs to estimate two channel estimation values for each antenna port, so the number of subcarriers required for the line port per day is two.
  • the number of subcarriers n determined according to the number of cells to be jointly transmitted and the antenna configuration of each cell (including the number of antenna ports per cell) determined by the base station in step S100 is not greater than "CSI-RS tolerated by each resource block"
  • CSI-RSs corresponding to all antenna ports of each cell are inserted in each resource block of the subframe.
  • the number of subcarriers n determined according to the number of cells to be jointly transmitted and the antenna configuration of each cell (including the number of antenna ports per cell) determined by the base station in step S100 is greater than "the CSI-RS occupancy tolerated by each resource block"
  • each two or more adjacent resource blocks in the subframe constitute a group of resource blocks, and are inserted in each group of resource blocks.
  • two CSI-RSs corresponding to the same antenna port are respectively inserted in two resource blocks.
  • the number of resource blocks in each group of resource blocks is equal to the number of the determined number of subcarriers divided by the product of the number of subcarriers occupied by the CSI-RS tolerated by each resource block and the number of subframes used to transmit the CSI-RS. "The quotient obtained.
  • the difference between the two OFDM symbol index numbers inserted with the CSI-RS is preferably one.
  • FIG. 2 shows a schematic flow chart when estimating channel state information by transmitting two CSI-RSs corresponding to the same antenna port by two resource blocks using one subframe.
  • the same steps as those in Fig. 1 are denoted by the same reference numerals, and a detailed description thereof will be omitted herein.
  • step S108 the UE performs channel estimation using the CSI-RS of one resource block of the subframe inserted in each cell and stores the estimated channel estimation value in step S211.
  • step S213 the UE performs channel estimation by using the CSI-RS of each cell inserted in another resource block of the same resource block in the subframe and the resource block in the subframe and stores the estimated channel estimation value.
  • step S114 the channel state is calculated using the stored two channel estimation values.
  • Figure 3 shows the need to estimate the channel state information of two cells, and each of the two cells is equipped with 4 days.
  • the number of cells is two, and the number of antenna ports per cell is four. Therefore, Equation 1 can calculate that the number of subcarriers n required for making channel state information estimation is 16. Therefore, the number of subcarriers n is not greater than "the product of the number of subcarriers 16 occupied by the LTE tolerable CSI-RS and the number of subframes used to transmit the CSI-RS (ie, 16)". Therefore, CSI-RSs corresponding to all antenna ports (4) of each cell are inserted in each resource block of the subframe.
  • Figure 3 shows only one of the resource blocks. Typically, the insertion scheme for each resource block in the subframe is the same.
  • the CSI-RS is inserted in the subframe 2
  • the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in each resource block are 3 and 10.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particle in which each CSI-RS is inserted is as shown in Table 1 below.
  • two CSI-RSs corresponding to the same antenna port are not only inserted in two resource particles having different subcarriers, but the OFDM symbols of the two resource particles are also different. . Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of the LTE-Advance user channel state information estimation.
  • Equation 1 can calculate that the number of subcarriers n required for making channel state information estimation is 16.
  • the number of subcarriers n is greater than "the product of the number of subcarriers 8 occupied by the LTE tolerable CSI-RS and the number of subframes used to transmit the CSI-RS (ie, 8)", and the number of subcarriers n is "LTE"
  • the product of the number of subcarriers 8 occupied by the CSI-RS and the number of subframes used to transmit the CSI-RS (gp, 8) can be tolerated twice. Therefore, two resource blocks adjacent to each other (ie, the first resource block and the second resource block) of the subframe constitute a group of resource blocks, and all antennas corresponding to each cell are inserted in each group of resource blocks. Port (4) CSI-RS. Meanwhile, in each resource block, two CSI-RSs corresponding to the same antenna port are inserted in different resources. In the block. Figure 4 shows only one set of resource blocks. Typically, the insertion scheme for each set of resource blocks in the subframe is the same.
  • the CSI-RS is inserted in the subframe No. 2, and the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in the first resource block and the second resource block are 10 and 3, respectively.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particles inserted into each CSI-RS is as shown in Table 2 below.
  • two CSI-RSs corresponding to the same antenna port are not only inserted in two resource blocks, respectively, but are inserted in two resource particles having different OFDM index numbers. Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of channel state information estimation of the LTE-Advance user.
  • Fig. 5 shows an example of an insertion scheme of CSI-RS when it is necessary to estimate two-cell channel state information
  • two cells are each equipped with eight antenna ports, and the number of subcarriers occupied by LTE tolerable CSI-RS is 16.
  • the number of cells is two, and the number of antenna ports per cell is 8, so that the number of subcarriers n required for estimating channel state information can be calculated by Equation 1 as 32.
  • the number of subcarriers n is greater than "the product of the number of subcarriers 16 occupied by the LTE tolerable CSI-RS and the number of subframes used to transmit the CSI-RS (ie, 16)", and the number of subcarriers n is "LTE"
  • the number of subcarriers 16 occupied by the CSI-RS can be tolerated by 2 times the product of the number of subframes used to transmit the CSI-RS (ie, 16). Therefore, two resource blocks adjacent to each other (ie, the first resource block and the second resource block) of the subframe constitute a group of resource blocks, and all antenna ports corresponding to each cell are inserted in each group of resource blocks.
  • CSI-RS CSI-RS. Meanwhile, in each resource block, two CSI-RSs corresponding to the same antenna port are inserted in different resource blocks.
  • Figure 5 shows only one set of resource blocks. Typically, the insertion scheme for each set of resource blocks in the subframe is the same.
  • the CSI-RS is inserted in the subframe No. 2, and the index numbers of the OFDM symbols in which the resource particles of the CSI-RS are inserted in the first and second resource blocks are both 3 and 10.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particle in which each CSI-RS is inserted is As shown in Table 3 below, where the parentheses are the index numbers of the OFDM symbols.
  • the CSI-RSs are not only inserted in two resource blocks, respectively, but are inserted in two resource particles having different OFDM symbol index numbers.
  • Gp two CSI-RSs corresponding to the same antenna port of all cells are placed in a time domain and frequency domain interleaving manner. Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of the LTE-Advance user channel state information estimation.
  • Fig. 6 shows an example of an insertion scheme of CSI-RS when it is necessary to estimate three-cell channel state information
  • three cells are each equipped with four antenna ports, and the number of subcarriers occupied by LTE tolerable CSI-RS is 12.
  • the number of cells is 3, and the number of antenna ports per cell is 4, so Equation 1 can calculate the number of subcarriers n required for estimating channel state information once to be 24.
  • the number of subcarriers n is greater than "the product of the number of subcarriers 12 occupied by the LTE tolerable CSI-RS and the number of subframes used to transmit the CSI-RS (ie, 12)", and the number of subcarriers n is "LTE"
  • the number of subcarriers 12 occupied by the CSI-RS and the number of subframes (ie, 12) used to transmit the CSI-RS can be tolerated twice. Therefore, two resource blocks adjacent to each other (ie, the first resource block and the second resource block) of the subframe constitute a group of resource blocks, and all antenna ports corresponding to each cell are inserted in each group of resource blocks. (4) CSI-RS. Meanwhile, in each resource block, two CSI-RSs corresponding to the same antenna port are inserted in different resource blocks.
  • Figure 6 shows only one set of resource blocks. Typically, the insertion scheme for each set of resource blocks in the subframe is the same.
  • the CSI-RS is inserted in the subframe No. 2, and the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in the first resource block and the second resource block are 10 and 3, respectively.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particles inserted into each CSI-RS is as shown in Table 4 below.
  • two CSI-RSs corresponding to the same antenna port are not only inserted in two resource blocks, respectively, but are inserted in two resource particles having different OFDM index numbers. Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of channel state information estimation of the LTE-Advance user.
  • Fig. 7 shows an example of an insertion scheme of CSI-RS when it is necessary to estimate three-cell channel state information
  • three cells are each equipped with eight antenna ports, and the number of subcarriers occupied by LTE tolerable CSI-RS is 16.
  • the number of cells is 3, and the number of antenna ports per cell is 8, so Equation 1 can calculate the number of subcarriers n required for estimating channel state information once to be 48.
  • the number of subcarriers n is greater than "the product of the number of subcarriers 16 occupied by the LTE tolerable CSI-RS and the number of subframes used to transmit the CSI-RS (ie, 16)", and the number of subcarriers n is "LTE"
  • the number of subcarriers 16 occupied by the CSI-RS can be tolerated by 3 times the product of the number of subframes used to transmit the CSI-RS (ie, 16). Therefore, three resource blocks adjacent to each other in the subframe (ie, the first resource block, the second resource block, and the third resource block) constitute a group of resource blocks, and each of the resource blocks is inserted with a corresponding one for each group of resource blocks.
  • the CSI-RS is inserted in the subframe 2, and the index numbers of the OFDM symbols of the resource particles in which the CSI-RS is inserted in each resource block are 10 and 3.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particle in which each CSI-RS is inserted is as shown in Table 5 below, and the index number of the OFDM symbol is shown in parentheses.
  • the CSI-RSs are not only inserted in two resource blocks, respectively, but are inserted in two resource particles having different subcarrier indices, and the OFDM symbol index numbers of the two resource particles are also different.
  • BP two CSI-RSs of all cells corresponding to the same antenna port are placed in a time domain and frequency domain interleaving manner. Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, so that the accuracy of the LTE-Advance user channel state information estimation can be improved.
  • Fig. 8 shows an example of an insertion scheme of CSI-RS when it is necessary to estimate four-cell channel state information
  • four cells are each equipped with four antenna ports, and the number of subcarriers occupied by LTE tolerable CSI-RS is 16.
  • the number of cells is 4, and the number of antenna ports per cell is 4. Therefore, Equation 1 can calculate the number of subcarriers n required for estimating channel state information once to be 32.
  • the number of subcarriers n is greater than "the product of the number of subcarriers 16 occupied by the LTE tolerable CSI-RS and the number of subframes used to transmit the CSI-RS (ie, 16)", and the number of subcarriers n is "LTE"
  • the number of subcarriers 16 occupied by the CSI-RS can be tolerated by 2 times the product of the number of subframes used to transmit the CSI-RS (ie, 16). Therefore, two resource blocks adjacent to each other (ie, the first resource block and the second resource block) of the subframe constitute a group of resource blocks, and all antenna ports corresponding to each cell are inserted in each group of resource blocks.
  • CSI-RS CSI-RS. Meanwhile, in each resource block, two CSI-RSs corresponding to the same antenna port are inserted in different resource blocks.
  • Figure 8 shows only one set of resource blocks. Typically, the insertion scheme for each set of resource blocks in the subframe is the same.
  • the CSI-RS is inserted in the subframe 2, and the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in each resource block are 9 and 10.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particle into which each CSI-RS is inserted is as shown in Table 6 below, and the index number of the OFDM symbol is shown in parentheses. Table 6
  • two CSI-RSs corresponding to the same antenna port are not only inserted in two resource blocks, respectively, but are inserted in two resource particles having different OFDM index numbers. Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving The accuracy of LTE-Advance user channel state information estimation.
  • Fig. 9 shows a schematic flow chart for estimating channel state information by transmitting pilots for channel state estimation using two subframes.
  • the same steps as those in Fig. 1 are given the same reference numerals, and a detailed description thereof will be omitted.
  • the base station transmits a first subframe in which the CSI-RS corresponding to all antenna ports of each cell has been inserted, in step S908.
  • step S909 the user equipment extracts CSI-RSs corresponding to all antenna ports of each cell from the received first subframe based on the insertion position of the CSI-RS learned in step S104.
  • step S910 the user equipment performs channel estimation by using the CSI-RS of each cell in the extracted first subframe and stores the channel estimation value.
  • step S911 the base station transmits a second subframe in which the CSI-RS corresponding to all antenna ports of each cell is inserted.
  • step S912 the user equipment extracts CSI-RSs corresponding to all antenna ports of each cell from the received second subframe based on the insertion position of the CSI-RS learned in step S104.
  • step S913 the user equipment performs channel estimation by using the CSI-RS of each cell in the extracted second subframe and stores the channel estimation value.
  • step S114 the UE calculates the channel quality information CQK precoding information PMI, the transmission rank information RI, and the like by using the stored two channel estimation values.
  • Fig. 10 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate one cell channel state information
  • the cell is equipped with 8 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 8.
  • the number of cells is 1, and the number of antenna ports per cell is 8, so Equation 1 can calculate that the number of subcarriers n required for estimating channel state information is 16 .
  • the number n of subcarriers is equal to "the product of the number of subcarriers 8 occupied by the LTE tolerable CSI-RS and the number of subframes (ie, 2) used to transmit the CSI-RS", so in this sub A CSI-RS corresponding to all antenna ports (eight) of each cell is inserted in each resource block of the frame.
  • Figure 10 shows only one resource block in each subframe. Typically, the insertion scheme for each resource block in each subframe is the same.
  • the CSI-RS is inserted in subframes 2 and 3, and in subframe 2 and 3
  • the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in the number subframe are 10 and 3, respectively.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particles inserted into each CSI-RS is as shown in Table 7 below.
  • two CSI-RSs corresponding to the same antenna port are not only inserted in two resource particles having different subcarrier index numbers of two subframes, respectively, and the OFDM symbol index numbers of the two resource particles are also different. . Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of LTE-Advance user channel state information estimation.
  • Fig. 11 shows another example of an insertion scheme of CSI-RS when it is necessary to estimate one cell channel state information, the cell is equipped with 8 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 8.
  • the only difference from FIG. 10 is that, in FIG. 11, the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in the subframes 2 and 3 are the same, and are all 10.
  • two CSI-RSs corresponding to the same antenna port are not only inserted in two subframes, respectively, but also inserted in two resource particles having different subcarrier index numbers. Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of the LTE-Advance user channel state information estimation.
  • Fig. 12 shows an example of an insertion scheme of CSI-RS when it is necessary to estimate two cell channel state information
  • two cells are each equipped with four antenna ports, and the number of subcarriers occupied by LTE tolerable CSI-RS is eight.
  • the number of cells is 2.
  • the number of antenna ports per cell is 4. Therefore, Equation 1 can calculate that the number of subcarriers n required for estimating channel state information is 16 . Therefore, the number of subcarriers n is equal to "the product of the number of subcarriers 8 occupied by the LTE tolerable CSI-RS and the number of subframes (i.e., 2) used to transmit the CSI-RS". Therefore, CSI-RSs corresponding to all antenna ports (4) of each cell are inserted in each resource block of each subframe.
  • Figure 12 shows only one resource block in each subframe. Typically, the insertion scheme for each resource block in each subframe is the same.
  • the CSI-RS is inserted in the subframe 2 and the subframe 3
  • the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in the subframes 2 and 3 are respectively 10 and 3.
  • the antenna port number corresponding to each CSI-RS and the subcarrier of the resource particle into which each CSI-RS is inserted Table 8
  • two CSI-RSs corresponding to the same antenna port are not only inserted into two resource particles having different subcarrier index numbers in two subframes, respectively, and the OFDM symbol index numbers of the two resource particles are also not the same. Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of LTE-Advance user channel state information estimation.
  • Fig. 13 shows an example of an insertion scheme of CSI-RS when it is necessary to estimate two cell channel state information
  • two cells are each equipped with 8 antenna ports, and the number of subcarriers occupied by LTE tolerable CSI-RS is 8.
  • the number of cells is 2.
  • the number of antenna ports per cell is 8, so Equation 1 can calculate that the number of subcarriers n required for channel state information estimation is 32.
  • the number of subcarriers n is larger than the product of the number of subcarriers 8 occupied by the LTE tolerable CSI-RS and the number of subframes (ie, 2) for transmitting the CSI-RS, and the subcarrier
  • the number n is "double the product of the number of subcarriers 8 occupied by the LTE tolerable CSI-RS and the number of subframes used to transmit the CSI-RS (ie, 16)". Therefore, two resource blocks (ie, a first resource block and a second resource block) adjacent to each other in each subframe constitute a group of resource blocks, and all antenna ports corresponding to each cell are inserted in each group of resource blocks. (8) CSI-RS.
  • each group of resource blocks two CSI-RSs corresponding to the same antenna port are inserted in different resource blocks.
  • Figure 13 shows only one set of resource blocks in each subframe.
  • the insertion scheme for each group of resource blocks in each subframe is the same.
  • the CSI-RS is inserted in the subframe 2 and the subframe 3
  • the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in the subframes 2 and 3 are respectively 10 and 3.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particles in which each CSI-RS is inserted is as shown in Table 9 below.
  • two CSI-RSs corresponding to the same antenna port are not only inserted in two resource particles having different OFDM symbol index numbers in two subframes, respectively.
  • the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of channel state information estimation of the LTE-Advance user.
  • FIG. 14 shows another insertion scheme of a CSI-RS when it is necessary to estimate 2 cell channel state information, two cells are each equipped with 8 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 8.
  • Example. The difference between this example and the example shown in Fig. 13 is that the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particles in which each CSI-RS is inserted is different. The details are shown in Table 10 below.
  • two CSI-RSs corresponding to the same antenna port are not only inserted in two resource particles having different OFDM symbol index numbers in two subframes, respectively.
  • the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of channel state information estimation of the LTE-Advance user.
  • FIG. 15 shows an example of an insertion scheme of a CSI-RS when it is necessary to estimate two cell channel state information
  • two cells are each equipped with 8 antenna ports, and the number of subcarriers occupied by the LTE tolerable CSI-RS is 16.
  • the number of cells is 2, and the number of antenna ports per cell is 8, so that the number of subcarriers n required for estimating channel state information can be calculated by Equation 1 to be 32.
  • the number of subcarriers n is equal to "the product of the number of subcarriers 16 occupied by the LTE tolerable CSI-RS and the number of subframes (ie, 2) used to transmit the CSI-RS", so in this sub
  • Each resource block of the frame is inserted corresponding to each CSI-RS of all antenna ports (8) of each cell.
  • Figure 15 shows only one resource block in each subframe. Typically, the insertion scheme for each resource block in each subframe is the same.
  • the CSI-RS is inserted in the subframe 2 and the subframe 3, and the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in the subframe 2 are 9 and 10, and in the 3rd subframe
  • the OFDM symbol index numbers of the resource particles into which the CSI-RS is inserted are 3 and 4.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particles in which each CSI-RS is inserted is as shown in Table 11 below, and the parentheses are the OFDM symbol index numbers.
  • two CSI-RSs corresponding to the same antenna port are not only inserted into two resource particles having different subcarrier index numbers in two subframes, respectively, and the OFDM symbol index numbers of the two resource particles are also different. . Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of LTE-Advance user channel state information estimation.
  • Equation 1 can calculate that the number of subcarriers n required for estimating channel state information is 24 . Therefore, the number of subcarriers n is equal to "the product of the number of subcarriers 12 occupied by the LTE tolerable CSI-RS and the number of subframes (i.e., 2) used to transmit the CSI-RS". Therefore, CSI-RSs corresponding to all antenna ports (4) of each cell are inserted in each resource block of each subframe. Fig. 16 shows only one resource block in each subframe. Typically, the insertion scheme for each resource block in each subframe is the same.
  • the CSI-RS is inserted in the subframe 2 and the subframe 3
  • the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in the subframes 2 and 3 are respectively 10 and 3.
  • Table 12 The correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particles inserted into each CSI-RS is as shown in Table 12 below. Table 12
  • two CSI-RSs corresponding to the same antenna port are not only inserted in two resource particles having different subcarrier index numbers in two subframes, respectively, and the OFDM symbol index numbers of the two resource particles are also not the same. Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of LTE-Advance user channel state information estimation.
  • Fig. 17 shows an example of an insertion scheme of CSI-RS when it is necessary to estimate three cell channel state information
  • three cells are each equipped with 8 antenna ports, and the number of subcarriers occupied by LTE tolerable CSI-RS is 12.
  • the number of cells is 3, and the number of antenna ports per cell is 8, so Equation 1 can calculate that the number of subcarriers n required for estimating channel state information is 48.
  • the number of subcarriers n is greater than "the product of the number of subcarriers 12 occupied by the LTE tolerable CSI-RS and the number of subframes (ie, 2) used to transmit the CSI-RS", and the subcarrier The number n is "double the product of the number of subcarriers 12 occupied by the LTE tolerable CSI-RS and the number of subframes used to transmit the CSI-RS (gp, 24)". Therefore, two resource blocks (ie, a first resource block and a second resource block) adjacent to each other in each subframe constitute a group of resource blocks, and all antenna ports corresponding to each cell are inserted in each group of resource blocks. (8) CSI-RS.
  • each group of resource blocks two CSI-RSs corresponding to the same antenna port are inserted in different resource blocks.
  • Figure 17 shows only one set of resource blocks in each subframe.
  • the insertion scheme for each group of resource blocks in each subframe is the same.
  • the CSI-RS is inserted in the subframe 2 and the subframe 3
  • the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in the subframes 2 and 3 are respectively 10 and 3.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particles inserted into each CSI-RS is as shown in Table 13 below.
  • two CSI-RSs corresponding to the same antenna port are inserted not only in two subframes, but also in two resource particles having different OFDM symbol index numbers. Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of the LTE-Advance user channel state information estimation.
  • Fig. 18 shows an example of an insertion scheme of CSI-RS when it is necessary to estimate four cell channel state information
  • four cells are each equipped with four antenna ports, and the number of subcarriers occupied by LTE tolerable CSI-RS is 16.
  • the number of cells is 4, and the number of antenna ports per cell is 4. Therefore, Equation 1 can calculate that the number of subcarriers n required for estimating channel state information is 32. Therefore, the number of subcarriers n is equal to "the product of the number of subcarriers 16 occupied by the LTE tolerable CSI-RS and the number of subframes (i.e., 2,) used to transmit the CSI-RS". Therefore, CSI-RSs corresponding to all antenna ports (4) of each cell are inserted in each resource block of each subframe.
  • Fig. 18 shows only one resource block in each subframe. Typically, the insertion scheme for each resource block in each subframe is the same.
  • the CSI-RS is inserted in the subframe 2 and the subframe 3, and the OFDM symbol index numbers of the resource particles in which the CSI-RS is inserted in the subframe 2 and the subframe 3 are 9 and 10.
  • the correspondence between the antenna port number corresponding to each CSI-RS and the subcarrier index number of the resource particles inserted into each CSI-RS is as shown in Table 14 below, and the OFDM symbol index number is shown in parentheses.
  • two CSI-RSs corresponding to the same antenna port are not only inserted in two subframes, respectively.
  • Two resource particles with different subcarrier index numbers, and the OFDM symbol index numbers of the two resource particles are also different. Therefore, the UE can simultaneously track channel changes in the time domain and the frequency domain when performing channel estimation, thereby improving the accuracy of LTE-Advance user channel state information estimation.
  • the CSI-RS used to perform one channel state information estimation by one subframe or two subframes has its own advantages and disadvantages.
  • the advantage of transmitting the CSI-RS used to complete the channel state information estimation by two subframes compared to the CSI-RS used to transmit the primary channel state information estimation by one subframe is: in the same configuration, each The number of subcarriers in the resource block as CSI-RS is halved, so that the performance loss of LTE users can be reduced.
  • the disadvantage of transmitting CSI-RS used to complete one channel state information estimation by two subframes compared to the CSI-RS used to transmit one channel state information estimation by one subframe is that each user equipment needs to do Two channel measurements are required to complete the estimate.
  • the CSI-RS used to transmit the completion of the channel state information estimation by one subframe has a large performance loss to the LTE user, but can be completed only by one measurement, so that power is saved.
  • the antenna port numbers shown in the above examples are merely exemplary, and those skilled in the art will understand that the present invention is not limited thereto, and may be arranged in any suitable order.
  • the CSI-RS corresponding to the 0-3th antenna port is continuously inserted in the resource particles
  • the CSI-RS corresponding to the 4-7th antenna port is continuously inserted in each resource particle.
  • the present invention is not limited thereto, and the CSI-RS corresponding to each antenna port may be inserted separately or continuously into each resource particle.
  • Fig. 19 shows a schematic structural diagram of a base station according to the present invention.
  • the base station 1 includes: a determining module 11 configured to determine a number of cells to be jointly transmitted and an antenna configuration of each cell; and a first sending module 12, configured to send, to the user equipment, the base station to send to the UE The control information of the manner of the data; the insertion module 13, which inserts the corresponding number in each subframe for transmitting the channel state information pilot according to the number of cells to be jointly transmitted and the number of antennas of each cell determined by the determining module a CSI-RS of all antenna ports configured by each cell that transmits data to the user equipment; and a second transmitting module 14 that transmits the subframes into which the CSI-RS is inserted to the UE.
  • the base station according to the present invention can transmit the channel state information pilot to the user equipment using the method of transmitting the channel state information pilot in the multi-antenna communication system according to the present invention.
  • Fig. 20 shows a schematic structural diagram of a user equipment according to the present invention.
  • the user equipment 2 includes: a CIS-RS location understanding module 21, according to the control information sent by the base station, according to a predetermined specification of the system, it can be known in which subframe the CSI-RS is inserted, and in the subframes.
  • the user equipment 2 can perform channel state estimation based on a method of channel state estimation using pilots.
  • the determining module 11, the first sending module 12, the inserting module 13 and the second sending module 14 in the base station 1 can be implemented by logic circuits or by programs stored on a machine readable medium.
  • the CIS-RS location understanding module 21, the extraction module 22, the estimation module 23, and the calculation module 24 in the user equipment 2 can be implemented by either a logic circuit or a program stored on a machine readable medium.
  • the present invention is also directed to a method for channel state estimation using pilots in a multi-antenna communication system, the method comprising: extracting, from each subframe, each cell corresponding to a data to be transmitted to a user equipment CSI-RS of all configured antenna ports; performing channel estimation using the extracted two CSI-RSs corresponding to the same antenna port and storing the estimated channel values; and calculating channel state information using the channel values.
  • a multi-antenna communication system wherein the base station 1 transmits a channel state information pilot to a user equipment by using a method of transmitting channel state information pilot according to the present invention; and a user equipment 2 according to the present invention
  • the channel state estimation is performed by using a pilot to perform channel state estimation.
  • the object of the present invention can also be achieved by: providing a storage medium storing the above executable program code directly or indirectly to a system or device, and a computer or central processing unit (CPU) in the system or device Read and execute the above program code.
  • a storage medium storing the above executable program code directly or indirectly to a system or device
  • CPU central processing unit
  • Read and execute the above program code Read and execute the above program code.
  • the embodiment of the present invention is not limited to the program, and the program may be in any form, for example, the target program, the program executed by the interpreter, or provided to the operating system. Scripts, etc.
  • machine readable storage media include, but are not limited to: various memories and storage units, semi-conductive Body devices, disk units such as optical, magnetic and magneto-optical disks, and other media suitable for storing information.
  • the present invention can also be implemented by a computer by connecting to a corresponding website on the Internet, and downloading and installing the computer program code according to the present invention into a computer, and then executing the program.

Description

导频发送方法及相应信道估计方法 技术领域
本发明一般涉及多天线通信系统领域, 具体涉及信道状态信息导频
(CSI-RS) 的发送方法及相应信道估计方法。 背景技术
在多天线通信系统中采用导频进行信道估计,信道估计主要有两种用途, 其一用户设备为利用信道估计值计算信道状态信息, 诸如信道质量信息 (CQI)、 预编码信息 (PMI) 和 /或发送秩信息 (RI) 等。 此类信道状态信息 反馈到基站端后, 可用于基站进行用户选择, 并为所选择的用户选择合理的 编码调制方式、 预编码发送方式等; 其二为用户设备利用信道估计值辅助数 据解调。根据导频的这两类用途,在下一代多天线通信系统 LTE-Advanced中, 导频分为用于估计信道状态信息的公用导频 (CSI-RS: Channel State Information-Pilot Signal, 下面将其称为信道状态信息导频 ) 和用于数据解调 的专用导频(DM-RS: Demodulation-Pilot Signal) 在 LTE-Advanced系统中, 每个小区最多可支持 8个天线端口, 在 CSI-RS的插入方案中, 需要为每个天 线端口安排导频插入位置。 另外需注意, 天线端口可以为实际的物理天线, 也可以为虚拟天线。
在设计 CSI-RS 插入方案时要考虑后向兼容问题, 即在 LTE 和 LTE-Advanced混合系统中,由于 CSI-RS是专为 LTE-Advanced系统而设计的, 所以 LTE的用户并不知道 CSI-RS的存在。 所以在插入有 CSI-RS的子帧中, 如果某个资源块调度给 LTE的用户, 则需要在此用户的某些数据符号中插入 CSI-RS, 而此 LTE的用户并不知道插入了此 CSI-RS, 所以不可避免地对 LTE 用户的解码性能带来损失; 如果某个资源块调度给 LTE-Advanced的用户, 则 可以按照规定直接在导频的位置插入 CSI-RS。 基于此, 在设计 CSI-RS的设 计时需要综合考虑以下两个因素:
1. CSI-RS在每个插入有 CSI-RS的子帧的资源块中必须尽量少, 以保 证如果此资源块调度给 LTE的用户, 可以减少对此用户的解码损失。
2. CSI-RS在资源块中必须足够多, 以保证 LTE-Advanced的用户可以 估计得到足够精确的信道状态信息。 例如, LTE-Advanced的用户需要为每个 天线端口估计两个信道估计值, 才能正确地估计出信道状态信息, §卩,
LTE-Advanced的用户需要对应于每个天线端口的 2个 CSI-RS来进行信道状 态估计。
在设计 CSI-RS 时, 需要同时考虑上述两点的影响。 因此, 存在对兼容 LTE和 LTE-Advanced的信道状态信息导频的传输方法的需求。
应该注意, 上面对常规技术的说明只是为了方便对本发明的技术方案进 行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。 不能仅仅因 为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领 域技术人员所公知。
以下列出了本发明的参考文献, 通过引用将它们并入于此, 如同在本说 明书中作了详尽描述。
1、 [专利文献 1] : Lin Chih-Yuan, 等人的,发明名称为: "Pilot pattern design for high-rank MIMO OFDMA systems" 的美国专利公开 US 20090257519A1;
2、 [专利文献 2] : Hsieh Yu-tao, 等人的,发明名称为: " System and method for pilot design for data transmitted in wireless networks " 的美国专禾1 J公开
US20090257516 A1 ;
3、 [专利文献 3] : Lin Chih-Yuan等人的, 发明名称为: "Resource block based pilot pattern design for 1/2 - stream mimo ofdma systems"的美国专禾1 J公开 US 20090257342 Al ;
4、 [专禾 lj文献 4] : Krishnamoorthi Raghuraman, 等人的, 发明名称为:
"Methods and apparatus for adapting channel estimation in a communication system" 的美国专利公开 US 20090245333 Al; 以及
5、 [专利文献 5] : Mondal Bishwarup, 等人的, 发明名称为: "Method and system for codebook based closed loop MIMO using common pilots and analog feedback" 的美国专利公开 US 20090238303 Al。 发明内容
本发明的目的在于提供一种可以兼容 LTE和 LTE-Advanced的发送信道状 态信息导频的方法。
为了实现上述目的以及其它附加目的, 本申请提供了以下方面。
根据本发明的一个方面,提供了一种在多天线通信系统中发送信道状态信 息导频的方法, 该方法包括以下歩骤: 在用于发送信道状态信息导频的每个 子帧中都插入对应于要向用户设备发送数据的每个小区所配置的所有天线端 口的 CSI-RS; 以及将插入有 CSI-RS的所述子帧发送给所述用户设备。
根据本发明的另一个方面, 提供了一种基站, 其利用根据本发明所述的方 法向用户设备发送信道状态信息导频。
根据本发明的另一个方面,提供了一种在多天线通信系统中利用导频进行 信道状态估计的方法, 该包括以下歩骤: 从每一子帧中提取对应于要向用户 设备发送数据的每个小区所配置的所有天线端口的 CSI-RS; 利用提取的对应 于同一天线端口的两个 CSI-RS 分别进行信道估计并且存储所估计出的信道 值; 以及利用所述信道值计算信道状态信息。
根据本发明的另一方面, 提供了一种基站, 其根据上述方法向用户设备发 送信道状态信息导频。
根据本发明的另一方面, 提供了一种多天线通信系统, 该多天线通信系统 包括: 基站, 其根据本发明的方法向用户设备发送信道状态信息导频; 以及 用户设备, 其根据本发明的上述方法进行信道状态估计。
根据本发明的另一方面, 提供了一种包括机器可读程序代码的存储介质, 当在多天线通信系统或者信息处理系统上执行所述程序代码时, 所述程序代 码使得所述多天线通信系统或者信息处理系统执行上述方法。
根据本发明的另一方面, 提供了一种包括机器可执行指令的程序产品, 当 在多天线通信系统或信息处理系统上执行所述指令时, 所述指令使得所述多 天线通信系统或者信息处理系统执行上述方法。
根据本发明的方法和装置可以在保证 LTE用户可接受的解码性能的前提 下提高 LTE-Advance用户信道状态信息估计性能。
通过以下结合附图对本发明的最佳实施例的详细说明,本发明的这些以及 其他优点将更加明显。 附图说明
附图示出了本发明的优选实施例, 构成了说明书的一部分, 用于与文字 说明一起详细地阐释本发明的原理。 其中:
图 1示出了在多天线通信系统中发送导频和利用导频进行信道状态信息 估计的示意性流程图; 图 2示出了采用一个子帧由两个资源块发送对应于同一天线端口的两个 CSI-RS来估计信道状态信息时的示意性流程图;
图 3示出了在需要估计两小区信道状态信息、 两个小区各配备有 4个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案的 示例;
图 4示出了在需要估计两小区信道状态信息、 两个小区各配备有 4个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方案的 示例;
图 5示出了在需要估计两小区信道状态信息、 两个小区各配备有 8个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案的 示例;
图 6示出了在需要估计三小区信道状态信息、 三个小区各配备有 4个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 12时的 CSI-RS的插入方案的 示例;
图 7示出了在需要估计三小区信道状态信息、 三个小区各配备有 8个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案的 示例;
图 8示出了在需要估计四小区信道状态信息、 四个小区各配备有 4个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案的 示例;
图 9示出了采用两个子帧发送信道状态信息导频来估计信道状态信息时 的示意性流程图;
图 10示出了在需要估计一个小区信道状态信息、该小区配备有 8个天线 端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方案的示 例;
图 11示出了在需要估计一个小区信道状态信息、该小区配备有 8个天线 端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方案的另 一示例;
图 12 示出了在需要估计两个小区信道状态信息、 两个小区各配备有 4 个天线端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方 案的示例; 图 13 示出了在需要估计两个小区信道状态信息、 两个小区各配备有 8 个天线端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方 案的示例;
图 14 示出了在需要估计两个小区信道状态信息、 两个小区各配备有 8 个天线端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方 案的另一示例;
图 15 示出了在需要估计两个小区信道状态信息、 两个小区各配备有 8 个天线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方 案的示例;
图 16 示出了在需要估计三个小区信道状态信息、 三个小区各配备有 4 个天线端口、 LTE可容忍 CSI-RS占用的子载波数为 12时的 CSI-RS的插入方 案的示例;
图 17 示出了在需要估计三个小区信道状态信息、 三个小区各配备有 8 个天线端口、 LTE可容忍 CSI-RS占用的子载波数为 12时的 CSI-RS的插入方 案的示例;
图 18示出了在需要估计四个小区信道状态信息、 四个小区各配备有 4个 天线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案 的示例;
图 19示出了根据本发明的基站的示意性结构图; 以及
图 20示出了根据本发明的用户设备的示意性结构图。 具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明 起见, 在说明书中并未描述实际实施方式的所有特征。 然而, 应该了解, 在 开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定, 以 便实现开发人员的具体目标, 例如, 符合与系统及业务相关的那些限制条件, 并且这些限制条件可能会随着实施方式的不同而有所改变。 此外, 还应该了 解, 虽然开发工作有可能是非常复杂和费时的, 但对得益于本公开内容的本 领域技术人员来说, 这种开发工作仅仅是例行的任务。
在此, 还需要说明的一点是, 为了避免因不必要的细节而模糊了本发明, 在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和 /或处理歩 骤, 而省略了与本发明关系不大的其他细节。
下面,将参照附图把根据本发明的在多天线通信系统中发送信道状态信息 导频的方法和利用导频进行信道状态信息估计的方法结合在一起进行说明。
图 1 示出了在多天线通信系统中发送导频和利用导频进行信道状态信息 估计的示意性流程图。
首先, 在歩骤 S100中, 基站确定要联合发送的小区数和各小区的天线配 置。 gp, 基站确定要向用户设备 (UE: user equipment) 发送数据的小区的数 量和各小区的天线端口数量。基站向 UE发送数据的方式可以有两种,第一种 数据发送方式为只通过 UE所在的小区发送数据;而另一种数据发送方式为不 仅通过 UE所在的服务小区发送数据, 还通过相邻小区发送数据。在第一种数 据发送方式下,向 UE发送数据的小区的数量为 1。在第二种数据发送方式下, 向 UE发送数据的小区为 UE所在的服务小区以及要向 UE发送数据的相邻小 区。 在该歩骤 S100中, 如何确定要联合发送的小区数和各小区的天线配置不 是本发明的发明点, 本领域技术人员可以采用现有的和 /或以后开发的任何适 宜的方法来确定要联合发送的小区数和各小区的天线配置。
在歩骤 S102,基站向用户设备发送表示基站向 UE发送数据的方式的控制 信息, 以通知 UE要联合发送的小区数和各小区的天线配置。
在歩骤 S104中, UE根据基站所发送的控制信息,按照系统预定的规范可 以了解 CSI-RS插入在哪些子帧中, 以及在这些子帧中每个天线端口所对应的 CSI-RS的插入位置, 即在该子帧中在各资源块中插入有 CSI-RS的资源粒子 的子载波的索引号和正交频分复用 (OFDM: orthogonal frequency division multiplexing ) 符号的索引号。
在歩骤 S106, 基站根据在歩骤 S100确定的要联合发送的小区数和各小区 的天线数, 在用于发送信道状态信息导频的每个子帧中都插入对应于要向用 户设备发送数据的每个小区所配置的所有天线端口的 CSI-RS。 在各子帧中 CSI-RS的插入方案将在后面更详细地说明。 在歩骤 S108, 将插入有 CSI-RS 的子帧发送给 UE。
然后, 在歩骤 S110, UE利用在歩骤 S104所了解的 CSI-RS的插入位置, 从接收的每个子帧中提取出对应于要向该用户设备发送数据的每个小区所配 置的所有天线端口的 CSI-RS。
在歩骤 S112, UE利用插入子帧中每个小区的两个 CSI-RS分别进行信道 估计并且存储估计的信道估计值。 如何利用 CSI-RS进行信道估计, 不是本发 明的发明点, 本领域技术人员可以利用现有的或以后开发的适用的方法根据 CSI-RS进行信道估计。
在歩骤 S114, UE利用存储的两个信道估计值, 计算信道质量信息 CQI、 预编码信息 PMI和发送秩信息 RI等。如何利用存储的两个信道估计值,计算 信道质量信息 CQI、预编码信息 PMI和发送秩信息 RI,不是本发明的发明点, 本领域技术人员可以通过现有的或以后开发的适用的方法利用存储的两个信 道估计值, 来计算信道质量信息 CQI、 预编码信息 PMI和发送秩信息 RI。
此外, 本领域技术人员可以理解, UE可以计算的信道状态信息并不限于 信道质量信息 CQI、 预编码信息 PMI和发送秩信息 RI, 而是可以根据系统的 实际需求, 选择所需要计算的参数。
此外, 本领域技术人员应该了解上述歩骤并不是必须要按照上述顺序执 行。例如歩骤 S106可以在执行歩骤 S102和 S104时执行, 也可以在执行歩骤 S102和歩骤 S104之前进行, 或者在歩骤 S102和歩骤 S104之间执行。 本领 域技术人员可以根据系统的实际需求, 调整各歩骤的执行顺序。 并且本领域 技术人员可以理解, 并不是所有这些歩骤都是必须的, 例如对于仅具有第一 种数据发送方式或者天线配置固定的系统来说, 可以不包括歩骤 S100 和 S102。
在本发明中,在用于发送信道状态信息导频的每个子帧中都插入了对应于 所有天线端口的 CSI-RS, 由此, UE在接收到插入有 CSI-RS的该子帧时, 就 可以开始对所有信道进行估计。 因此, 在每个子帧中用于插入 CSI-RS的资源 粒子的数量在 LTE的用户可以接受的前提下, 即在对 LTE用户性能的影响在 用户可接受的前提下, 提高 LTE-Advance用户信道状态信息估计性能。
下面将更详细地说明应用于根据本发明的多天线通信系统中发送信道状 态信息导频的方法的 CSI-RS的插入方案。
对应于同一天线端口的两个 CSI-RS可以插入在具有相同 OFDM符号索弓 1 号的两个资源粒子中, 也可以插入在具有不同 OFDM符号索引号的两个资源 粒子中。优选的是对应于同一天线端口的两个 CSI-RS插入在具有不同 OFDM 符号索引号的两个资源粒子。 由此, 。 由此, UE在进行信道估计时能够跟踪 时域的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准确 性。 对应于同一天线端口的两个 CSI-RS可以插入在具有相同子载波索引号的 两个资源粒子中, 也可以插入在具有不同子载波索引号的两个资源粒子中。 优选的是对应于同一天线端口的两个 CSI-RS插入在具有不同子载波索引号的 两个资源粒子中。 由此, UE在进行信道估计时能够跟踪频域的信道变化, 从 而可以提高 LTE-Advance用户信道状态信息估计的准确性。
在采用两个子帧发送 CSI-RS的情况下, 优选地, 对应于同一天线端口的 两个 CSI-RS分别插在两个子帧中。 由此, UE在进行信道估计时能够跟踪时 域的信道变化,从而可以提高 LTE-Advance用户信道状态信息估计的准确性。
在采用两个子帧发送 CSI-RS的情况下,用于发送 CSI-RS的两个子帧可以 是任意两个子帧, 例如, 可以 2号子帧和 4号子帧。 但是, 优选地, 用于发 送 CSI-RS的两个子帧是时间上相邻的 (即, 索引号的差为 1 ) 两个子帧, 例 如, 2号子帧和 3号子帧。 同时, 插入有 CSI-RS的两个子帧的发送顺序也不 是必须是固定的, 相反, 这两个子帧的发送顺序可以交换, 也可以中间有间 隔。
在每个子帧中插入有 CSI-RS的资源粒子的 OFDM符号索引号可以是任选 的。其中,在 2号子帧中 OFDM符号的索引号优选地为 10; 3号子帧中 OFDM 符号的索引号优选地为 3和 10。另夕卜, 当在两个子帧中插入有 CSI-RS时, 两 个子帧中插入 CSI-RS的资源粒子的 OFDM符号的索引号可以是相同的, 也 可以是不同的, 但是优选的为不同的。
为了兼容 LTE和 LTE-Advanced系统, 需要考虑 LTE系统中每个资源块 可以容忍 CSI-RS 占用的子载波数。 通常, 可以分为可容忍 8个子载波、 12 个子载波和 16个子载波三种情况。 设做一次信道状态信息估计需要的子载波 数为 n, 贝 lj:
n=小区数 X每小区天线端口数 X每天线端口需要的子载波数
(式 1 ) 在 LTE-Advanced系统中,用户设备需要为每个天线端口估计两个信道估计值, 因此每天线端口需要的子载波数为 2。
当根据在歩骤 S100中基站所确定的要联合发送的小区数和各小区的天线 配置 (包括每小区天线端口数) 所确定的子载波数 n不大于 "每个资源块所 容忍 CSI-RS占用的子载波数与用于发送 CSI-RS的子帧数的乘积" 时, 在子 帧的每个资源块中都插入对应于每个小区的所有天线端口的 CSI-RS。 当根据在歩骤 S100中基站所确定的要联合发送的小区数和各小区的天线 配置 (包括每小区天线端口数) 所确定的子载波数 n大于 "每个资源块所容 忍 CSI-RS占用的子载波数与用于发送 CSI-RS的子帧数的乘积" 时, 将子帧 中每两个或更多个相邻的资源块构成一组资源块, 在每一组资源块中插入有 对应于每个小区的所有天线端口的 CSI-RS。 优选地, 在每一组资源块中, 对 应于同一天线端口的两个 CSI-RS分别插入在两个资源块中。 由此, UE在进 行信道估计时能够跟踪频域的信道变化, 从而可以提高 LTE-Advance用户信 道状态信息估计的准确性。 其中, 每一组资源块中资源块的个数等于所确定 子载波数 n 除以 "每个资源块所容忍 CSI-RS 占用的子载波数与用于发送 CSI-RS的子帧数的乘积"所得到的商。
当在同一资源块中有两个 OFDM符号中插入了 CSI-RS时,插入有 CSI-RS 的两个 OFDM符号索引号的差优选地为 1。
下面将按照用于发送信道状态信息导频的子帧的个数更详细地描述根据 本发明的在多天线通信系统中发送信道状态信息导频的方法和利用导频进行 信道状态估计的方法。
(一) 采用一个子帧发送 CSI-RS的情况
当采用一个子帧发送 CSI-RS时, 当对应于同一天线端口的两个 CSI-RS 由同一资源块发送时, 估计信道状态信息的流程图与图 1 相同。 因此, 省略 了对其描述。 下面将参照图 2来更详细地描述当采用一个子帧的两个资源块 来发送对应于同一天线端口的两个 CSI-RS时发送信道状态信息导频的方法和 利用导频进行信道状态估计的方法。
图 2示出了采用一个子帧由两个资源块发送对应于同一天线端口的两个 CSI-RS来估计信道状态信息时的示意性流程图。 其中, 与图 1中相同的歩骤 采用了相同的标号, 在此省略其详细描述。
在歩骤 S108之后, 在歩骤 S211, UE利用每个小区的插入在子帧的一个 资源块的 CSI-RS进行信道估计并且存储估计的信道估计值。 在歩骤 S213 , UE 利用每个小区的插入在该子帧中与上述资源块处于同一组资源块的另一 资源块中的 CSI-RS进行信道估计并且存储估计的信道估计值。 然后, 与参照 图 1所描述的相同, 在歩骤 S114, 利用存储的两个信道估计值计算信道状态 自
图 3示出了在需要估计两小区信道状态信息、 两个小区各配备有 4个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案的 示例。 在该示例中, 小区数为 2、 每小区天线端口数为 4, 因此由式 1可以计 算出做一次信道状态信息估计需要的子载波数 n为 16。 因此, 该子载波数 n 不大于 "LTE可容忍 CSI-RS占用的子载波数 16与用于发送 CSI-RS的子帧数 的乘积 (即, 16 ) "。 所以, 在该子帧的每个资源块中都插入有对应于每个小 区的所有天线端口 (4个) 的 CSI-RS。 图 3仅示出了其中的一个资源块。 通 常, 在该子帧中每个资源块的插入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧中,并且在各资源块中插入有 CSI-RS 的资源粒子的 OFDM符号索引号为 3和 10。 其中, 各 CSI-RS所对应的天线 端口号与插入有各 CSI-RS的资源粒子的子载波索引号的对应关系如下表 1所 表 1
Figure imgf000012_0001
在示例中, 对应于同一天线端口的两个 CSI-RS不仅分别插入在具有不同 子载波索弓 I号的两个资源粒子中, 而且这两个资源粒子的 OFDM符号索弓 I号 也不相同。由此, UE在进行信道估计时能够同时跟踪时域和频域的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准确性。
图 4示出了在需要估计两小区信道状态信息、 两个小区各配备有 4个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方案的 示例。 在该示例中, 小区数为 2、 每小区天线端口数为 4, 因此由式 1可以计 算出做一次信道状态信息估计需要的子载波数 n为 16。 因此, 该子载波数 n 大于 "LTE可容忍 CSI-RS占用的子载波数 8与用于发送 CSI-RS的子帧数的 乘积(即, 8) ", 并且该子载波数 n是" LTE可容忍 CSI-RS占用的子载波数 8 与用于发送 CSI-RS的子帧数的乘积 (gp, 8) "的 2倍。 所以, 由该子帧的彼 此相邻的两个资源块 (即第一资源块和第二资源块) 构成一组资源块, 在每 组资源块中都插入有对应于每个小区的所有天线端口 (4个) 的 CSI-RS。 同 时, 在每组资源块中, 对应于同一天线端口的两个 CSI-RS插入在不同的资源 块中。 图 4 仅示出了其中的一组资源块。 通常, 在该子帧中每组资源块的插 入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧中, 并且在第一资源块和第二资源 块中插入有 CSI-RS的资源粒子的 OFDM符号索引号分别为 10和 3。 其中, 各 CSI-RS所对应的天线端口号与插入各 CSI-RS的资源粒子的子载波索引号 的对应关系如下表 2所示。
表 2
Figure imgf000013_0001
在示例中, 对应于同一天线端口的两个 CSI-RS不仅分别插入在两个资源 块中, 并且是插入在具有不同 OFDM索引号的两个资源粒子中。 由此, UE 在进行信道估计时能够同时跟踪时域和频域的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准确性。
图 5示出了在需要估计两小区信道状态信息、 两个小区各配备有 8个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案的 示例。 在该示例中, 小区数为 2、 每小区天线端口数为 8, 因此由式 1可以计 算出做一次信道状态信息估计需要的子载波数 n为 32。 因此, 该子载波数 n 大于" LTE可容忍 CSI-RS占用的子载波数 16与用于发送 CSI-RS的子帧数的 乘积 (即, 16)", 并且该子载波数 n是 " LTE可容忍 CSI-RS占用的子载波数 16与用于发送 CSI-RS的子帧数的乘积 (即, 16) " 的 2倍。 所以, 由该子帧 的彼此相邻的两个资源块 (即第一资源块和第二资源块) 构成一组资源块, 在每组资源块中都插入对应于每个小区的所有天线端口 (8个) 的 CSI-RS。 同时, 在每组资源块中, 对应于同一天线端口的两个 CSI-RS插入在不同的资 源块中。 图 5 仅示出了其中的一组资源块。 通常, 在该子帧中每组资源块的 插入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧中, 并且在第一和第二资源块中插 入有 CSI-RS的资源粒子的 OFDM符号的索引号都为 3和 10。其中,各 CSI-RS 所对应的天线端口号与插入有各 CSI-RS的资源粒子的子载波索引号的对应关 如下表 3所示, 其中括号内的为 OFDM符号的索引号。
表 3
Figure imgf000014_0001
在示例中, CSI-RS 不仅分别插入在两个资源块中, 并且是插入在具有不 同 OFDM符号索引号的两个资源粒子中。 gp, 所有小区的对应于同一天线端 口的两个 CSI-RS都采用按时域和频域交错的方式放置的。 由此, UE在进行 信道估计时能够同时跟踪时域和频域的信道变化,从而可以提高 LTE-Advance 用户信道状态信息估计的准确性。
图 6示出了在需要估计三小区信道状态信息、 三个小区各配备有 4个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 12时的 CSI-RS的插入方案的 示例。 在该示例中, 小区数为 3、 每小区天线端口数为 4, 因此由式 1可以计 算出做一次信道状态信息估计需要的子载波数 n为 24。 因此, 该子载波数 n 大于" LTE可容忍 CSI-RS占用的子载波数 12与用于发送 CSI-RS的子帧数的 乘积 (即, 12)", 并且该子载波数 n是 " LTE可容忍 CSI-RS占用的子载波数 12与用于发送 CSI-RS的子帧数的乘积 (即, 12) " 的 2倍。 所以, 在该子帧 的彼此相邻的两个资源块 (即第一资源块和第二资源块) 构成一组资源块, 在每组资源块中都插入对应于每个小区的所有天线端口 (4个) 的 CSI-RS。 同时, 在每组资源块中, 对应于同一天线端口的两个 CSI-RS插入在不同的资 源块中。 图 6仅示出了其中的一组资源块。 通常, 在该子帧中每组资源块的 插入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧中, 并且在第一资源块和第二资源 块中插入有 CSI-RS的资源粒子的 OFDM符号索引号分别为 10和 3。 其中, 各 CSI-RS所对应的天线端口号与插入各 CSI-RS的资源粒子的子载波索引号 的对应关系如下表 4所示。
表 4
Figure imgf000014_0002
第一资源块 4-7 0-3 8-11
第二资源块 4-7 0-3 8-11
在示例中, 对应于同一天线端口的两个 CSI-RS不仅分别插入在两个资源 块中, 并且是插入在具有不同 OFDM索引号的两个资源粒子中。 由此, UE 在进行信道估计时能够同时跟踪时域和频域的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准确性。
图 7示出了在需要估计三小区信道状态信息、 三个小区各配备有 8个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案的 示例。 在该示例中, 小区数为 3、 每小区天线端口数为 8, 因此由式 1可以计 算出做一次信道状态信息估计需要的子载波数 n为 48。 因此, 该子载波数 n 大于" LTE可容忍 CSI-RS占用的子载波数 16与用于发送 CSI-RS的子帧数的 乘积 (即, 16)", 并且该子载波数 n是 " LTE可容忍 CSI-RS占用的子载波数 16与用于发送 CSI-RS的子帧数的乘积 (即, 16) " 的 3倍。 所以, 在该子帧 的彼此相邻的三个资源块 (即第一资源块、 第二资源块和第三资源块) 构成 一组资源块,在每组资源块中都插入有对应于每个小区的所有天线端口(8个) 的 CSI-RS。 同时, 在每组资源块中, 对应于同一天线端口的两个 CSI-RS插 入在不同的资源块中。 图 7 仅示出了其中的一组资源块。 通常, 在该子帧中 每组资源块的插入方案是相同的。
在该示例中, CSI-RS 插入在 2 号子帧中, 并且在每个资源块中插入有 CSI-RS的资源粒子的 OFDM符号的索引号都为 10和 3。 其中, 各 CSI-RS所 对应的天线端口号与插入有各 CSI-RS的资源粒子的子载波索引号的对应关系 如下表 5所示, 其中括号内的为 OFDM符号的索引号。 表 5
Figure imgf000015_0001
在示例中, CSI-RS 不仅分别插入在两个资源块中, 并且是插入在具有不 同子载波索引的两个资源粒子中, 并且这两个资源粒子的 OFDM符号索引号 也不同。 BP , 所有小区的对应于同一天线端口的两个 CSI-RS都是采用时域和 频域交错的方式放置的。 由此, UE在进行信道估计时能够同时跟踪时域和频 域的信道变化,从而可以提高 LTE-Advance用户信道状态信息估计的准确性。
图 8示出了在需要估计四小区信道状态信息、 四个小区各配备有 4个天 线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案的 示例。 在该示例中, 小区数为 4、 每小区天线端口数为 4, 因此由式 1可以计 算出做一次信道状态信息估计需要的子载波数 n为 32。 因此, 该子载波数 n 大于" LTE可容忍 CSI-RS占用的子载波数 16与用于发送 CSI-RS的子帧数的 乘积 (即, 16) ", 并且该子载波数 n是 " LTE可容忍 CSI-RS占用的子载波数 16与用于发送 CSI-RS的子帧数的乘积 (即, 16) " 的 2倍。 所以, 在该子帧 的彼此相邻的两个资源块 (即第一资源块和第二资源块) 构成一组资源块, 在每组资源块中都插入对应于每个小区的所有天线端口 (4个) 的 CSI-RS。 同时, 在每组资源块中, 对应于同一天线端口的两个 CSI-RS插入在不同的资 源块中。 图 8仅示出了其中的一组资源块。 通常, 在该子帧中每组资源块的 插入方案是相同的。
在该资源块中, CSI-RS 插入在 2 号子帧中, 并且在各资源块中插入有 CSI-RS的资源粒子的 OFDM符号索引号都为 9和 10。 其中, 各 CSI-RS所对 应的天线端口号与插入有各 CSI-RS的资源粒子的子载波索引号的对应关系如 下表 6所示, 其中括号内的为 OFDM符号的索引号。 表 6
Figure imgf000016_0001
在示例中, 对应于同一天线端口的两个 CSI-RS不仅分别插入在两个资源 块中, 并且是插入在具有不同 OFDM索引号的两个资源粒子中。 由此, UE 在进行信道估计时能够同时跟踪时域和频域的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准确性。
(二) 采用两个帧发送 CSI-RS的情况
下面将参照图 9 来更详细地描述当采用两个子帧时发送信道状态信息导 频的方法和利用导频进行信道状态估计的方法。
图 9示出了采用两个子帧发送用于信道状态估计的导频来估计信道状态 信息的示意性流程图。 其中, 与图 1 中相同的歩骤采用了相同的标号, 在此 省略其详细描述。
在歩骤 S106之后,在歩骤 S908,基站发送已插入有对应于每个小区的所 有天线端口的 CSI-RS的第一子帧。
在歩骤 S909, 用户设备基于在歩骤 S104中了解的 CSI-RS的插入位置, 从接收到的第一子帧中提取对应于每个小区的所有天线端口的 CSI-RS。 在歩 骤 S910,用户设备利用提取的第一个子帧中每个小区的 CSI-RS进行信道估计 并且存储信道估计值。
在歩骤 S911 , 基站发送已插入有对应于每个小区的所有天线端口的 CSI-RS的第二子帧。
在歩骤 S912, 用户设备基于在歩骤 S104中了解的 CSI-RS的插入位置, 从接收到的第二子帧中提取对应于每个小区的所有天线端口的 CSI-RS。 在歩 骤 S913 ,用户设备利用提取的第二个子帧中每个小区的 CSI-RS进行信道估计 并且存储信道估计值。
最后, 在歩骤 S114, UE利用存储的两个信道估计值, 计算信道质量信息 CQK 预编码信息 PMI和发送秩信息 RI等。
图 10示出了在需要估计一个小区信道状态信息、 该小区配备有 8个天线 端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方案的示 例。 在该示例中, 小区数为 1、 每小区天线端口数为 8, 因此由式 1可以计算 出做一次信道状态信息估计需要的子载波数 n为 16。 因此, 该子载波数 n等 于 "LTE可容忍 CSI-RS占用的子载波数 8与用于发送 CSI-RS的子帧数 (即 2,) 的乘积 (即, 16) ", 所以在该子帧的每个资源块中都插入有对应于每个 小区的所有天线端口 (8个) 的 CSI-RS。 图 10仅示出了每个子帧中的一个资 源块。 通常, 在各子帧中每个资源块的插入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧和 3号子帧中, 并且在 2号子帧和 3 号子帧中插入有 CSI-RS的资源粒子的 OFDM符号索引号分别为 10和 3。 其 中, 各 CSI-RS所对应的天线端口号与插入各 CSI-RS的资源粒子的子载波索 引号的对应关系如下表 7所示。
Figure imgf000018_0001
Figure imgf000018_0002
在示例中, 对应于同一天线端口的两个 CSI-RS不仅分别插入在两个子帧 的具有不同子载波索引号的两个资源粒子中, 而且这两个资源粒子的 OFDM 符号索引号也不相同。 由此, UE在进行信道估计时能够同时跟踪时域和频域 的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准确性。
图 11示出了在需要估计一个小区信道状态信息、 该小区配备有 8个天线 端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方案的另 一示例。 与图 10的不同之处仅在于: 在图 11中, 在 2号子帧和 3号子帧中 插入有 CSI-RS的资源粒子的 OFDM符号索引号是相同的, 都为 10。
在示例中, 对应于同一天线端口的两个 CSI-RS不仅分别插入在两个子帧 中, 而且插入在具有不同子载波索引号的两个资源粒子中。 由此, UE在进行 信道估计时能够同时跟踪时域和频域的信道变化,从而可以提高 LTE-Advance 用户信道状态信息估计的准确性。
图 12示出了在需要估计两个小区信道状态信息、 两个小区各配备有 4个 天线端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方案 的示例。 在该示例中, 小区数为 2、 每小区天线端口数为 4, 因此由式 1可以 计算出做一次信道状态信息估计需要的子载波数 n为 16。 因此, 该子载波数 n等于 "LTE可容忍 CSI-RS占用的子载波数 8与用于发送 CSI-RS的子帧数 (即, 2) 的乘积 (即, 16)"。 所以, 在各子帧的每个资源块中都插入对应于 每个小区的所有天线端口 (4个) 的 CSI-RS。 图 12仅示出了每个子帧中的一 个资源块。 通常, 在各子帧中每个资源块的插入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧和 3号子帧中, 并且在 2号子帧和 3 号子帧中插入有 CSI-RS的资源粒子的 OFDM符号索引号分别为 10和 3。 其 中, 各 CSI-RS所对应的天线端口号与插入有各 CSI-RS的资源粒子的子载波 表 8
Figure imgf000019_0001
在示例中, 对应于同一天线端口的两个 CSI-RS不仅分别插入在两个子帧 中的具有不同子载波索引号的两个资源粒子中, 而且这两个资源粒子的 OFDM符号索引号也不相同。 由此, UE在进行信道估计时能够同时跟踪时域 和频域的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准 确性。
图 13示出了在需要估计两个小区信道状态信息、 两个小区各配备有 8个 天线端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方案 的示例。 在该示例中, 小区数为 2、 每小区天线端口数为 8, 因此由式 1可以 计算出做一次信道状态信息估计需要的子载波数 n为 32。 因此, 该子载波数 n大于 "LTE可容忍 CSI-RS占用的子载波数 8与用于发送 CSI-RS的子帧数 (即 2,) 的乘积(即, 16)", 并且该子载波数 n是" LTE可容忍 CSI-RS占用 的子载波数 8与用于发送 CSI-RS的子帧数的乘积 (即, 16)"的 2倍。 所以, 在各子帧中彼此相邻的两个资源块 (即第一资源块和第二资源块) 构成一组 资源块, 在每组资源块中都插入对应于每个小区的所有天线端口 (8 个) 的 CSI-RS。 同时, 在每组资源块中, 对应于同一天线端口的两个 CSI-RS插入在 不同的资源块中。 图 13仅示出了每个子帧中的一组资源块。 通常, 在各子帧 中每组资源块的插入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧和 3号子帧中, 并且在 2号子帧和 3 号子帧中插入有 CSI-RS的资源粒子的 OFDM符号索引号分别为 10和 3。 其 中, 各 CSI-RS所对应的天线端口号与插入有各 CSI-RS的资源粒子的子载波 索引号的对应关系如下表 9所示。
表 9
Figure imgf000019_0002
2号第一资源块 0-3 无 无 8-11 子帧第二资源块 无 8-11 0-3 无
3号第一资源块 无 8-11 0-3 无
子帧第二资源块 0-3 无 无 8-11
在示例中,对应于同一天线端口的两个 CSI-RS不仅分别插入在两个子帧 中的具有不同 OFDM符号索引号的两个资源粒子中。 由此, UE在进行信道 估计时能够同时跟踪时域和频域的信道变化, 从而可以提高 LTE-Advance用 户信道状态信息估计的准确性。
图 14示出了在需要估计 2个小区信道状态信息、 两个小区各配备有 8个 天线端口、 LTE可容忍 CSI-RS占用的子载波数为 8时的 CSI-RS的插入方案 的另一示例。 在该示例与图 13所示示例的不同之处在于各 CSI-RS所对应的 天线端口号与插入有各 CSI-RS的资源粒子的子载波索引号的对应关系不同。 具体如下表 10所示。
表 10
Figure imgf000020_0001
在示例中,对应于同一天线端口的两个 CSI-RS不仅分别插入在两个子帧 中的具有不同 OFDM符号索引号的两个资源粒子中。 由此, UE在进行信道 估计时能够同时跟踪时域和频域的信道变化, 从而可以提高 LTE-Advance用 户信道状态信息估计的准确性。
图 15示出了在需要估计两个小区信道状态信息、 两个小区各配备有 8个 天线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案 的示例。 在该示例中, 小区数为 2、 每小区天线端口数为 8, 因此由式 1可以 计算出做一次信道状态信息估计需要的子载波数 n为 32。 因此, 该子载波数 n等于 "LTE可容忍 CSI-RS占用的子载波数 16与用于发送 CSI-RS的子帧数 (即 2,) 的乘积 (即, 32) ", 所以在该子帧的每个资源块中都插入对应于每 个小区的所有天线端口 (8个) 的 CSI-RS。 图 15仅示出了每个子帧中的一个 资源块。 通常, 在各子帧中每个资源块的插入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧和 3号子帧中, 并且在 2号子帧插 入有 CSI-RS的资源粒子的 OFDM符号索引号为 9和 10, 而在 3号子帧插入 有 CSI-RS的资源粒子的 OFDM符号索引号为 3和 4。 其中, 各 CSI-RS所对 应的天线端口号与插入有各 CSI-RS的资源粒子的子载波索引号的对应关系如 下表 11所示, 括号内的为 OFDM符号索引号。
表 11
Figure imgf000021_0001
在示例中,对应于同一天线端口的两个 CSI-RS不仅分别插入在两个子帧 中的具有不同子载波索引号的两个资源粒子中, 而且这两个资源粒子的 OFDM符号索引号也不同。 由此, UE在进行信道估计时能够同时跟踪时域和 频域的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准确 性。
图 16示出了在需要估计三个小区信道状态信息、 三个小区各配备有 4个 天线端口、 LTE可容忍 CSI-RS占用的子载波数为 12时的 CSI-RS的插入方案 的示例。 在该示例中, 小区数为 3、 每小区天线端口数为 4, 因此由式 1可以 计算出做一次信道状态信息估计需要的子载波数 n为 24。 因此, 该子载波数 n等于 "LTE可容忍 CSI-RS占用的子载波数 12与用于发送 CSI-RS的子帧数 (即 2,) 的乘积 (即, 24)"。 所以, 在各子帧的每个资源块中都插入对应于 每个小区的所有天线端口 (4个) 的 CSI-RS。 图 16仅示出了每个子帧中的一 个资源块。 通常, 在各子帧中每个资源块的插入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧和 3号子帧中, 并且在 2号子帧和 3 号子帧中插入有 CSI-RS的资源粒子的 OFDM符号索引号分别为 10和 3。 其 中, 各 CSI-RS所对应的天线端口号与插入各 CSI-RS的资源粒子的子载波索 引号的对应关系如下表 12所示。 表 12
Figure imgf000022_0001
在示例中,对应于同一天线端口的两个 CSI-RS不仅分别插入在两个子帧 中的具有不同子载波索引号的两个资源粒子中, 而且这两个资源粒子的 OFDM符号索引号也不相同。 由此, UE在进行信道估计时能够同时跟踪时域 和频域的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准 确性。
图 17示出了在需要估计三个小区信道状态信息、 三个小区各配备有 8个 天线端口、 LTE可容忍 CSI-RS占用的子载波数为 12时的 CSI-RS的插入方案 的示例。 在该示例中, 小区数为 3、 每小区天线端口数为 8, 因此由式 1可以 计算出做一次信道状态信息估计需要的子载波数 n为 48。 因此, 该子载波数 n大于 "LTE可容忍 CSI-RS占用的子载波数 12与用于发送 CSI-RS的子帧数 (即 2,) 的乘积(即, 24)", 并且该子载波数 n是" LTE可容忍 CSI-RS占用 的子载波数 12与用于发送 CSI-RS的子帧数的乘积(gp, 24)"的 2倍。所以, 在各子帧中彼此相邻的两个资源块 (即第一资源块和第二资源块) 构成一组 资源块, 在每组资源块中都插入对应于每个小区的所有天线端口 (8 个) 的 CSI-RS。 同时, 在每组资源块中, 对应于同一天线端口的两个 CSI-RS插入在 不同的资源块中。 图 17仅示出了每个子帧中的一组资源块。 通常, 在各子帧 中每组资源块的插入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧和 3号子帧中, 并且在 2号子帧和 3 号子帧中插入有 CSI-RS的资源粒子的 OFDM符号索引号分别为 10和 3。 其 中, 各 CSI-RS所对应的天线端口号与插入各 CSI-RS的资源粒子的子载波索 引号的对应关系如下表 13所示。
表 13
Figure imgf000022_0002
2 第一
0-3 无 8-11 无 4-7 无
号 源块
子 第二
无 8-11 无 0-3 无 4-7
帧 源块
3 第一
无 8-11 无 0-3 无 4-7
号 源块
子 第二
0-3 无 8-11 无 4-7 无
帧 源块
在示例中, 对应于同一天线端口的两个 CSI-RS 不仅分别插入在两个子帧 中, 而且分别插入在具有不同 OFDM符号索引号的两个资源粒子中。 由此, UE在进行信道估计时能够同时跟踪时域和频域的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准确性。
图 18示出了在需要估计四个小区信道状态信息、 四个小区各配备有 4个 天线端口、 LTE可容忍 CSI-RS占用的子载波数为 16时的 CSI-RS的插入方案 的示例。 在该示例中, 小区数为 4、 每小区天线端口数为 4, 因此由式 1可以 计算出做一次信道状态信息估计需要的子载波数 n为 32。 因此, 该子载波数 n等于 "LTE可容忍 CSI-RS占用的子载波数 16与用于发送 CSI-RS的子帧数 (即 2,) 的乘积 (即, 24) "。 所以, 在各子帧的每个资源块中都插入对应于 每个小区的所有天线端口 (4个) 的 CSI-RS。 图 18仅示出了每个子帧中的一 个资源块。 通常, 在各子帧中每个资源块的插入方案是相同的。
在该示例中, CSI-RS插入在 2号子帧和 3号子帧中, 并且在 2号子帧和 3 号子帧中插入有 CSI-RS的资源粒子的 OFDM符号索引号都为 9和 10。其中, 各 CSI-RS所对应的天线端口号与插入各 CSI-RS的资源粒子的子载波索引号 的对应关系如下表 14所示, 括号内的是 OFDM符号索引号。
表 14
Figure imgf000023_0001
在示例中,对应于同一天线端口的两个 CSI-RS不仅分别插入在两个子帧 中的具有不同子载波索引号的两个资源粒子, 而且这两个资源粒子的 OFDM 符号索引号也不相同。 由此, UE在进行信道估计时能够同时跟踪时域和频域 的信道变化, 从而可以提高 LTE-Advance用户信道状态信息估计的准确性。
由一个子帧还是两个子帧来发送完成一次信道状态信息估计所使用的 CSI-RS有各自的优点和缺点。 与由一个子帧来发送完成一次信道状态信息估 计所使用的 CSI-RS相比, 由两个子帧发送完成一次信道状态信息估计所使用 的 CSI-RS的优点在于: 在相同配置下, 每个资源块中作为 CSI-RS的子载波 数量减半, 从而可以减少 LTE用户的性能损失。 与由一个子帧来发送完成一 次信道状态信息估计所使用的 CSI-RS相比, 由两个子帧来发送完成一次信道 状态信息估计所使用的 CSI-RS的缺点在于:每个用户设备需要做两次信道测 量才能完成估计。 相比而言, 由一个子帧来发送完成一次信道状态信息估计 所使用的 CSI-RS对 LTE用户的性能损失较大,但可以只作一次测量就可完成, 所以更省电。
另外, 上面各示例中所示的各天线端口号也仅仅是示例性的, 本领域技术 人员可以理解, 本发明并不限于此, 而是可以按照任何适宜的顺序排列。 同 时, 为了简单起见, 在发明中对应于第 0-3天线端口的 CSI-RS连续地插入在 资源粒子中, 同时对应于第 4-7天线端口的 CSI-RS连续地插入在各资源粒子 中。 但是, 本领域技术人员应该理解, 本发明并不限于此, 对应于各天线端 口的 CSI-RS可以分离地或连续地插入在各资源粒子中。
图 19示出了根据本发明的基站的示意性结构图。 如图 19所示, 该基站 1 包括: 确定模块 11, 其用于确定要联合发送的小区数和各小区的天线配置; 第一发送模块 12, 其用于向用户设备发送表示基站向 UE发送数据的方式的 控制信息; 插入模块 13, 其根据确定模块所确定的要联合发送的小区数和各 小区的天线数, 在用于发送信道状态信息导频的每个子帧中都插入对应于要 向用户设备发送数据的每个小区所配置的所有天线端口的 CSI-RS; 以及第二 发送模块 14, 其用于插入有 CSI-RS的子帧发送给 UE。
因此,根据本发明的基站可以使用根据本发明的在多天线通信系统中发送 信道状态信息导频的方法向用户设备发送信道状态信息导频。
图 20示出了根据本发明的用户设备的示意性结构图。如图 20所示, 用户 设备 2包括: CIS-RS位置了解模块 21, 其根据基站所发送的控制信息, 按照 系统预定的规范可以了解 CSI-RS插入在哪个子帧中, 以及在这些子帧中每个 天线端口所对应的 CSI-RS的插入位置; 提取模块 22, 利用所述 CSI-RS了解 模块了解的 CSI-RS的位置,从接收的每个子帧中提取出对应于要向该用户设 备发送数据的每个小区所配置的所有天线端口的 CSI-RS; 估计模块 23, 其利 用插入子帧中每个小区的两个 CSI-RS分别进行信道估计并且存储估计的信道 估计值; 以及计算模块 24, 其利用存储的两个信道估计值, 计算信道质量信 息 CQI、 预编码信息 PMI和发送秩信息 RI等。
根据本发明的用户设备 2 可以根据利用导频进行信道状态估计的方法进 行信道状态估计。
本领域技术人员应该可以理解, 基站 1 中的确定模块 11、 第一发送模块 12、 插入模块 13和第二发送模块 14既可以由逻辑电路来实现也可以由存储 在机器可读介质上的程序实现。 同样, 用户设备 2中的 CIS-RS位置了解模块 21、 提取模块 22、 估计模块 23以及计算模块 24既可以由逻辑电路来实现也 可以由存储在机器可读介质上的程序实现。
此外,本发明还涉及一种在多天线通信系统中利用导频进行信道状态估计 的方法, 该包括以下歩骤: 从每一子帧中提取对应于要向用户设备发送数据 的每个小区所配置的所有天线端口的 CSI-RS; 利用提取的对应于同一天线端 口的两个 CSI-RS分别进行信道估计并且存储所估计出的信道值; 以及利用所 述信道值计算信道状态信息。
此外, 根据本发明的一种多天线通信系统, 其中, 基站 1, 利用根据本发 明的发送信道状态信息导频的方法向用户设备发送信道状态信息导频; 以及 用户设备 2,其根据本发明的利用导频进行信道状态估计的方法进行信道状态 估计。
此外, 显然, 根据本发明的上述方法的各个操作过程也可以以存储在各种 机器可读的存储介质中的计算机可执行程序的方式实现。
而且, 本发明的目的也可以通过下述方式实现: 将存储有上述可执行程序 代码的存储介质直接或者间接地提供给系统或设备, 并且该系统或设备中的 计算机或者中央处理单元 (CPU) 读出并执行上述程序代码。 此时, 只要该 系统或者设备具有执行程序的功能, 则本发明的实施方式不局限于程序, 并 且该程序也可以是任意的形式, 例如, 目标程序、 解释器执行的程序或者提 供给操作系统的脚本程序等。
上述这些机器可读存储介质包括但不限于: 各种存储器和存储单元, 半导 体设备, 磁盘单元例如光、 磁和磁光盘, 以及其它适于存储信息的介质等。 另外, 计算机通过连接到因特网上的相应网站, 并且将依据本发明的计算 机程序代码下载和安装到计算机中, 然后执行该程序, 也可以实现本发明。
最后, 还需要说明的是, 在本文中, 诸如左和右、 第一和第二等之类的关 系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来, 而不一 定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。 而 且, 术语 "包括"、 "包含"或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 物 品或者设备所固有的要素。在没有更多限制的情况下,由语句 "包括一个…… " 限定的要素, 并不排除在包括所述要素的过程、 方法、 物品或者设备中还存 在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例, 但是应当明白, 上面所描 述的实施方式只是用于说明本发明, 而并不构成对本发明的限制。 对于本领 域的技术人员来说, 可以对上述实施方式作出各种修改和变更而没有背离本 发明的实质和范围。 因此, 本发明的范围仅由所附的权利要求及其等效含义 来限定。

Claims

权利要求书
1、 一种在多天线通信系统中发送信道状态信息导频的方法, 该方法包括 以下歩骤:
在用于发送信道状态信息导频的每个子帧中都插入对应于要向用户设备 发送数据的每个小区所配置的所有天线端口的信道状态信息导频; 以及
将插入有信道状态信息导频的所述子帧发送给所述用户设备。
2、 根据权利要求 1所述的方法, 其中, 对应于同一天线端口的两个信道 状态信息导频分别插入在具有不同的 OFDM符号索弓 I号的两个资源粒子中。
3、 根据权利要求 1所述的方法, 其中, 对应于同一天线端口的两个信道 状态信息导频分别插入在具有不同的子载波索引号的两个资源粒子中。
4、 根据权利要求 1所述的方法, 其中, 对应于同一天线端口的两个信道 状态信息导频分别插入在两个子帧中。
5、 根据权利要求 4所述的方法, 其中, 所述两个子帧的索引号的差为 1。
6、 根据权利要求 1所述的方法, 其中, 所述子帧的每个资源块中都插入 有对应于所述所有天线端口的信道状态信息导频。
7、 根据权利要求 1所述的方法, 其中, 将所述子帧中每两个或更多个相 邻的资源块构成一组资源块, 在每一组资源块中插入有对应于所述所有天线 端口的信道状态信息导频。
8、 根据权利要求 7所述的方法, 其中, 在每一组资源块中, 对应于同一 天线端口的两个信道状态信息导频分别插入在两个资源块中。
9、 根据权利要求 1所述的方法, 其中, 在同一资源块中插入有 CSI-RS的 两个 OFDM符号的索引号的差为 1。
10、 根据权利要求 2所述的方法, 其中, 所述 OFDM符号索引号为 3和 / 或 10。
11、 一种基站, 其根据权利要求 1-10 中任意之一所述的方法向用户设备 发送信道状态信息导频。
12、一种在多天线通信系统中利用导频进行信道状态估计的方法, 该包括 以下歩骤:
从每一子帧中提取对应于要向用户设备发送数据的每个小区所配置的所 有天线端口的信道状态信息导频; 利用提取的对应于同一天线端口的两个信道状态信息导频分别进行信道 估计并且存储所估计出的信道值; 以及
利用所述信道值计算信道状态信息。
13、 一种多天线通信系统, 该多天线通信系统包括:
基站, 其根据权利要求 1-10 中任意一项所述的方法向用户设备发送信道 状态信息导频; 以及
用户设备, 其根据权利要求 12所述的方法进行信道状态估计。
14、一种包括机器可读程序代码的存储介质, 当在多天线通信系统或者信 息处理系统上执行所述程序代码时, 所述程序代码使得所述多天线通信系统 或者信息处理系统根据权利要求 1-10中任意一项所述的方法发送信道状态信 息导频。
15、一种包括机器可执行指令的程序产品, 当在多天线通信系统或信息处 理系统上执行所述指令时, 所述指令使得所述多天线通信系统或者信息处理 系统根据权利要求 1-10中任意一项所述的方法发送信道状态信息导频。
16、一种包括机器可读程序代码的存储介质, 当在多天线通信系统或者信 息处理系统上执行所述程序代码时, 所述程序代码使得所述多天线通信系统 或者信息处理系统根据权利要求 12 中所述的方法利用导频进行信道状态估 计。
17、一种包括机器可执行指令的程序产品, 当在多天线通信系统或信息处 理系统上执行所述指令时, 所述指令使得所述多天线通信系统或者信息处理 系统根据权利要求 12所述的方法利用导频进行信道状态估计。
PCT/CN2010/075799 2009-11-02 2010-08-09 导频发送方法及相应信道估计方法 WO2011050643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102098338A CN102055508A (zh) 2009-11-02 2009-11-02 导频发送方法及相应信道估计方法
CN200910209833.8 2009-11-02

Publications (1)

Publication Number Publication Date
WO2011050643A1 true WO2011050643A1 (zh) 2011-05-05

Family

ID=43921302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075799 WO2011050643A1 (zh) 2009-11-02 2010-08-09 导频发送方法及相应信道估计方法

Country Status (2)

Country Link
CN (1) CN102055508A (zh)
WO (1) WO2011050643A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067349A1 (zh) * 2015-10-23 2017-04-27 中兴通讯股份有限公司 一种导频信号传输方法和装置、以及发射端
WO2017156770A1 (zh) * 2016-03-18 2017-09-21 富士通株式会社 信道状态信息参考信号的传输装置、方法以及通信系统
WO2017167216A1 (zh) * 2016-03-31 2017-10-05 株式会社Ntt都科摩 参考信号发送方法、信道状态信息反馈方法、基站和移动台
WO2018126764A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
US11147076B2 (en) 2017-01-06 2021-10-12 Huawei Technologies Co., Ltd. Information indication method, network device, and terminal device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096475B (zh) * 2011-10-31 2018-01-23 中兴通讯股份有限公司 一种联合发射中资源分配的方法及装置
CN103096369A (zh) * 2011-11-04 2013-05-08 华为技术有限公司 信道质量测量方法和设备
CN102594742B (zh) * 2012-03-15 2014-09-24 哈尔滨工业大学 单载波系统中基于导频的信道岭估计方法
CN104221305A (zh) * 2012-04-12 2014-12-17 诺基亚通信公司 报告信道状态信息的方法
CN103858501A (zh) * 2012-09-26 2014-06-11 华为技术有限公司 反馈csi-rs资源组合的方法和装置、用户设备和基站
CN103840907B (zh) * 2012-11-20 2018-06-05 电信科学技术研究院 一种传输导频信号和信号测量的方法、系统及设备
CN104823399B (zh) * 2013-04-10 2018-02-02 华为技术有限公司 信息发送方法、基站和用户设备
CN106301509B (zh) 2015-05-21 2020-01-17 电信科学技术研究院 一种信道状态信息反馈方法和终端
CN107370584B (zh) * 2016-05-13 2021-12-10 中兴通讯股份有限公司 一种导频信息的发送方法和装置以及接收方法和装置
JP2022511340A (ja) * 2018-09-21 2022-01-31 オッポ広東移動通信有限公司 無線通信方法、送信ノード及び受信ノード

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340228A (zh) * 2008-08-07 2009-01-07 中兴通讯股份有限公司 一种参考信号的传输方法
WO2009104894A1 (en) * 2008-02-19 2009-08-27 Lg Electronics Inc. Method for uplink transmission in ofdm(a) system
WO2009120029A2 (en) * 2008-03-27 2009-10-01 Posdata Co., Ltd. Method and apparatus for pilot signal transmission

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373999B (zh) * 2008-08-12 2013-01-16 中兴通讯股份有限公司 一种用于下行协作多点传输的导频传输方法
CN101505180B (zh) * 2009-03-17 2013-12-04 中兴通讯股份有限公司 高级长期演进系统中csi参考信号的承载方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104894A1 (en) * 2008-02-19 2009-08-27 Lg Electronics Inc. Method for uplink transmission in ofdm(a) system
WO2009120029A2 (en) * 2008-03-27 2009-10-01 Posdata Co., Ltd. Method and apparatus for pilot signal transmission
CN101340228A (zh) * 2008-08-07 2009-01-07 中兴通讯股份有限公司 一种参考信号的传输方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067349A1 (zh) * 2015-10-23 2017-04-27 中兴通讯股份有限公司 一种导频信号传输方法和装置、以及发射端
US10574414B2 (en) 2015-10-23 2020-02-25 Zte Corporation Pilot signal transmission method and apparatus, and transmitting terminal
WO2017156770A1 (zh) * 2016-03-18 2017-09-21 富士通株式会社 信道状态信息参考信号的传输装置、方法以及通信系统
WO2017167216A1 (zh) * 2016-03-31 2017-10-05 株式会社Ntt都科摩 参考信号发送方法、信道状态信息反馈方法、基站和移动台
CN108886430A (zh) * 2016-03-31 2018-11-23 株式会社Ntt都科摩 参考信号发送方法、信道状态信息反馈方法、基站和移动台
CN108886430B (zh) * 2016-03-31 2021-10-26 株式会社Ntt都科摩 参考信号发送方法、信道状态信息反馈方法、基站和移动台
WO2018126764A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
US11147076B2 (en) 2017-01-06 2021-10-12 Huawei Technologies Co., Ltd. Information indication method, network device, and terminal device

Also Published As

Publication number Publication date
CN102055508A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
WO2011050643A1 (zh) 导频发送方法及相应信道估计方法
CN110401472B (zh) 一种3d mimo传输方法和装置
RU2527930C2 (ru) Способ и устройство предварительного кодирования на основе опорных сигналов демодуляции смешанного мультиплексирования
JP5711384B2 (ja) チャネル状態の報告方法およびその装置
CN103283196B (zh) 用于确定和使用信道状态信息的方法和装置
CN101741420B (zh) 信道估计方法、装置及系统
JP6315928B2 (ja) データの送信方法および装置
WO2017050065A1 (zh) 一种配置信道状态测量导频的方法及装置
CN110087286B (zh) 基站装置以及终端装置
WO2011097894A1 (zh) 解调参考信号的发送功率配置方法及装置
CN101779387A (zh) 用于无线通信系统中的控制信息的波束成形的方法和装置
WO2011134377A1 (zh) 一种配置解调参考信号的方法、装置及系统
WO2013107265A1 (zh) 频谱梳信令的通知、探测参考信号的发送方法与装置
WO2017076233A1 (zh) 信道状态测量导频的配置方法及装置、解析方法及装置
WO2013020491A1 (zh) 一种导频信号发送方法和设备
WO2012159343A1 (zh) 一种发送分集方法、相关设备及系统
CN102100045B (zh) 数据发送处理方法与装置、数据接收处理方法与装置
WO2017097269A1 (zh) 一种干扰估计方法和设备
CN114731258A (zh) 利用dci中的可配置的天线端口字段确定和指示天线端口的系统和方法
WO2014169824A1 (zh) 一种物理多播信道的配置、发送和接收方法及系统
WO2016045527A1 (zh) 一种ue、基站中的3d mimo通信方法和设备
WO2017167158A1 (zh) 导频配置信息的传输方法、装置及系统
EP2606619B1 (en) Inserting and decoding replicated data symbols in wireless communications
WO2013063752A1 (zh) 一种信道质量信息的计算方法、反馈方法及装置
US20120147829A1 (en) Pilot addition method and pilot addition apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826006

Country of ref document: EP

Kind code of ref document: A1