WO2011050508A1 - 一种低渗透油藏微生物采油方法 - Google Patents

一种低渗透油藏微生物采油方法 Download PDF

Info

Publication number
WO2011050508A1
WO2011050508A1 PCT/CN2009/001525 CN2009001525W WO2011050508A1 WO 2011050508 A1 WO2011050508 A1 WO 2011050508A1 CN 2009001525 W CN2009001525 W CN 2009001525W WO 2011050508 A1 WO2011050508 A1 WO 2011050508A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
low permeability
oil recovery
fracturing
permeability reservoir
Prior art date
Application number
PCT/CN2009/001525
Other languages
English (en)
French (fr)
Inventor
刘金峰
牟伯中
杨世忠
周蕾
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2011050508A1 publication Critical patent/WO2011050508A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/582Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of bacteria

Definitions

  • the present invention relates to a method of oil recovery, and in particular to a method for microbial oil recovery in a low permeability reservoir.
  • China's oil and gas production will continue to increase in proportion to low-infiltration.
  • China's low-permeability crude oil production was 71 million tons, accounting for 37.6% of the country's total output.
  • the proportion of low-permeability production increased year by year, 34.8% in the past three years, 36 %, 37.6%;
  • China's low-permeability natural gas production was 32 billion cubic meters, accounting for 42.1% of the country's total output.
  • the proportion of low-permeability production increased year by year, with 39.4%, 40.9%, and 42.1% in the past three years. It can be expected that the steady production and increase of oil and gas production will rely more on low-permeability oil and gas.
  • Low-permeability oil and gas will be the main target of oil and gas exploration and development in China in the future. Therefore, it is of practical significance to vigorously promote the development of low-permeability oil reservoirs in China. At the same time, with the rapid development of the global economy and the rapid growth of energy demand, governments are facing the challenge of oil and gas safety. The development and utilization of low-permeability oil and gas resources is of great significance to ensure oil and gas safety.
  • the production of low-permeability oilfields shows that the daily output of single wells is small, and there is basically no capacity even without fracturing; the stable production is poor and the production is decreasing rapidly; the water injection capacity of the injection well is poor, the water injection pressure is high, and the water injection effect is difficult to be seen in the production wells.
  • the oil field sees water, the water content rises rapidly, while the oil production index and oil production index drop sharply, which makes it difficult to stabilize the oil field. Therefore, how to efficiently develop low-permeability oilfields is an urgent problem for oil workers.
  • Fracturing is an important means to efficiently develop oil and gas fields, especially for low permeability oil and gas fields.
  • Internationally renowned fracturing expert Michael, Smith believes that fracturing is the dominant technology for low-permeability reservoirs, and its position in the exploration and development of these reservoirs is becoming more and more important.
  • fracturing and related low-permeability bursting Advances in technology have led to deeper development of low permeability reservoirs.
  • techniques such as "fracturing” were used to make the general low-permeability reservoirs of 10-50 millidarcies effective.
  • the use of "large-scale fracturing, well pattern optimization, water injection” and other technologies made the 1.0-10 millidarcy ultra-low permeability reservoirs basically effective.
  • the prior art is produced after fracturing in a low permeability oil layer, and generally has the following problems:
  • the injection well has high starting pressure, and the formation and water injection pressure rises fast.
  • the starting pressure of the injection wells in low-permeability reservoirs can be as high as lOMpa, which greatly reduces the water injection pressure difference of the injection wells.
  • the injection well pressure in the injection well is increased, and the effective water injection pressure difference is reduced, which cannot meet the needs of reservoir development.
  • the increase of water injection pressure will also cause deformation damage of oil and water well casing, which will seriously threaten the normal water injection development of oil fields.
  • low-permeability reservoir production wells begin to see water injection effects only after half a year of water injection in the corresponding injection wells.
  • the water injection effect is far less obvious than that of medium-high permeability reservoirs, and the oil well production stability can only be maintained within a short period of time.
  • the oil recovery index of the oil well drops drastically, and the oil production increases intensified.
  • the prior art is produced after the fracturing of the low-permeability oil layer.
  • the impurities in the injected water especially the organic impurities, are deposited in the near-well zone, blocking the seepage channel which is weak in the original seepage capacity;
  • the accumulation of wax and scale has led to a rapid decrease in the ability to seep.
  • the organic matter deposition in the injection wells and the waxing and scaling of the production wells further aggravate the above problems in the prior art production, so that the "injection well formation and water injection pressure rises rapidly, and the production well pressure and output decrease" in the production of low permeability reservoirs.
  • the contradiction is more prominent and sharp, and finally results in very low water injection, oil production, mining speed and recovery. In severe cases, the reservoir production is actually in a state of paralysis.
  • the low-permeability oil layer has a low natural production capacity, even without natural production capacity, and generally undergoes fracturing and transformation before it can be officially put into production. Even after fracturing, on the one hand, due to the small pore throat, large specific surface area, low permeability, poor reservoir connectivity, large seepage resistance, and low elastic energy, the production capacity is also very low, and the oil production index is generally only l ⁇ 2t/(d.MPa). On the other hand, after fracturing and production, the permeability of the oil layer is further reduced due to fouling and wax formation in the formation itself, and the seepage capacity is reduced, resulting in oil. Well production is rapidly declining and it is very difficult to stabilize the production of the reservoir.
  • Temporary plugging and fracturing is the use of temporary plugging agent to block the artificial crack generated by the first fracturing of the oil well, forcing the artificial crack to turn, so as to improve the effect of the secondary fracturing transformation of the old well and improve the oil well production.
  • Oil well repeated fracturing is a process in which the oil well is produced after a first fracturing for a period of time due to various reasons, and then the second (or more than two) fracturing is carried out in the same layer. The first is to change the oil flow mode and reduce The resistance of the oil flow into the wellbore; the second is to re-open the old crack system that has been fractured in the past but has been blocked or closed for various reasons.
  • a low-permeability reservoir microbial oil recovery method characterized in that the method comprises the following steps: (1) fracturing production in a low permeability reservoir; (2) generation by fracturing The cracks inject microbes and nutrients into the oil layer for microbial oil recovery.
  • the injection amount of the microorganisms and nutrients in the step (2) is determined by the volume of a rectangular region whose length direction is the direction of the crack generated by the fracturing, the length is the crack length, the width direction is perpendicular to the crack direction, and the crack is two.
  • the sides enter the oil layer 0.05 ⁇ 0.5m, and the thickness is the thickness of the oil layer.
  • the microorganism has a volume concentration of 5% to 20%.
  • the microorganism can degrade crude oil, or be metabolized to produce a surfactant, an organic acid.
  • the nutrient includes a carbon source, a nitrogen source, and a phosphorus source.
  • the carbon source comprises sucrose, glucose, starch
  • the nitrogen source comprises peptone, ammonium chloride
  • the phosphorus source comprises dihydrogen phosphate, potassium dihydrogen phosphate.
  • the method of the invention combines the fracturing technology and the microbial oil recovery technology, and uses the crack of the oil layer opened by the fracturing to transport the microorganisms to the deep part of the reservoir, and exerts its metabolic biosurfactant to enhance the formation crude oil.
  • the degree of recovery at the same time the use of microbial degradation of colloids, wax and other effects, to solve the formation fouling caused by scaling, waxing, improve fluid seepage capacity, and promote the stability of oil well production.
  • V fc X L X H X W ( 1 )
  • V the amount of microbial solution, m 3 ;
  • Fc a composite coefficient, 0.2 ⁇ 0.8.
  • the microbial processing rectangular area is calculated according to formula (1).
  • the synthesis coefficient Fc 0.8 was selected, and the concentration of the microbial fermentation broth was 5%.
  • the amount of microbial solution injected is 57.6 m 3 , wherein the amount of microbial fermentation broth is 2.88 m 3 , and the rest is nutrient solution.
  • the nutrient solution is composed of water produced in the block, wherein peptone 0.15 %, yeast extract 0.2%, KC1 2.0%, NaH 2 P0 4 0.12%. After injecting the microbial solution, shut down the ld and then resume normal production. After the well is resumed, the production liquid is stable and the water content is reduced.
  • Nissan oil increased from 1.3t to 3.5t, with a cumulative oil increase of 157
  • the volume of the micro-organized rectangular area is calculated according to the formula.
  • V 86.4 m 3 .
  • the composite coefficient Fc 0.5 was selected, and the concentration of the microbial fermentation broth was 10%.
  • the amount of microbial solution injected was 43.2 m 3 , wherein the amount of microbial fermentation broth was 4.32 m 3 , and the rest was nutrient solution.
  • the nutrient solution was prepared from the water produced in the block, of which ammonium chloride 0.1%, yeast extract 0.05%, KC12.0% .
  • the microbial solution was injected and the well was shut down for 5 days, and then normal production was resumed. After the well resumes production, the liquid production rises and the water content is stable. Nissan oil increased from 1.9t to 3.1t, and the cumulative oil increase was 97.2t.
  • the volume of the rectangular area treated by the microorganism is calculated according to the formula.
  • V 185 m 3 0
  • the synthesis coefficient Fc 0.2 was selected, and the concentration of the microorganism fermentation broth was 20%.
  • the amount of microbial solution injected is 37 m 3 , wherein the amount of microbial fermentation liquid is 7.4 m 3 , and the rest is nutrient solution.
  • the nutrient solution is composed of water produced in the block, wherein 0.1 g of peptone, 0.04 % of ammonium chloride, and 0.1% of yeast extract. KC12.0%.
  • the microorganism solution was injected and the well was shut down for 2 days, and then normal production was resumed. After the well resumes production, the liquid production rises and the water content is stable.
  • Nissan oil increased from 1.8t to 3.6t, with a cumulative oil increase of 116t.
  • a low-permeability reservoir microbial oil recovery method includes the following steps: After low-permeability reservoir fracturing, microbes and nutrients are injected for oil recovery.
  • the method combines reservoir fracturing with microbial oil recovery, on the one hand, increases the range of action of microorganisms in low-permeability reservoirs, on the other hand, the metabolism of microorganisms helps to maintain the smooth flow of the seepage channels at the fracturing, thereby promoting The well production is stable and the oil production period is prolonged. Therefore, it is a scientific, economical and effective method for microbial oil recovery in low permeability reservoirs.
  • the main steps are to first fracturing the low-permeability reservoir layer, then injecting microbes into the deep part of the reservoir through the fracture crack, promoting the microbes to reproduce and play a role in the reservoir, and improving the recovery degree of the crude oil and the seepage capacity of the formation fluid.
  • the oil well obtains crude oil, which is characterized by the combination of fracturing and microbial oil recovery.
  • the low-permeability reservoir oil well is generally subjected to fracturing production, in order to exert the effect of microbial degradation and the like, and enhance the microbial treatment effect, the present invention determines that the microbial treatment area is a rectangular area, the length direction of the rectangular area is along the crack direction, and the selected length is the crack length; Vertically perpendicular to the crack, each side of the crack enters the oil layer 0.05 ⁇ 0.5m; the thickness is the thickness of the oil layer. In order to ensure that the microorganisms enter the oil layer smoothly, the oil layer is propagated as soon as possible and reaches a certain concentration.
  • the microbial solution is diluted with the nutrient solution to obtain the microbial solution, and the microbial solution is injected into the reservoir and then cultured for 15 to 5 days.
  • the microbial volume concentration is 5% to 20%
  • the composition of the nutrient solution is determined according to the water quality of the reservoir and the physiological properties of the microorganism used, generally by conventional culture.
  • the test can be preferred, and the nutrient solution is prepared by injecting water.
  • composition of injected microorganisms and nutrients is shown in the following table:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

一种低渗透油藏微生物采油方法 技术领域 本发明涉及采油方法, 尤其是涉及一种低渗透油藏微生物采油方法。
背景技术 据国土资源部与国家发改委新一轮油气资源评价结果, 全国石油资源量为
1086亿吨(不含台湾和南海),其中低渗透资源为 537亿吨,占总资源量的 49%; 全国天然气资源量 56万亿立方米, 其中低渗透资源为 24万亿立方米, 占总资 源量的 42.8%。 全国累积探明石油地质储量 287亿吨, 其中低渗透资源为 141 亿吨, 占 49.2%。 全国累积探明天然气地质储量 6.42万亿方, 其中低渗透资源 为 4.1万亿方, 占 63.6%。 目前, 我国新探明储量中低渗透储量相对比例越来 越大 (中国石油近几年探明储量中低渗透资源所占比例平均达到 70%以上) 。
我国油气产量中低渗透所占比例将持续增大, 2008年, 中国低渗透原油产 量 0.71亿吨, 占全国总产量的 37.6%, 低渗透产量比例逐年上升, 近三年分别 为 34.8%、 36%、 37.6%; 2008年, 中国低渗透天然气产量 320亿立方米, 占全 国总产量的 42.1%,低渗透产量的比例逐年上升,近三年分别为 39.4%、 40.9%、 42.1%。 可以预期, 油气产量稳产、 增产将更多地依靠低渗透油气。 低渗透油 气将是我国未来油气勘探开发的主要对象, 因此, 大力推动我国石油低渗透油 藏开发具有现实意义。 同时, 随着全球经济的快速发展, 能源需求快速增长, 各国政府都面临着油气安全的挑战。 而低渗透油气资源的开发利用对确保油气 安全具有重要意义。
低渗透油田在生产上表现为单井日产量小, 甚至不压裂就基本上无产能; 稳产状况差, 产量递减快; 注水井吸水能力差, 注水压力高, 而采油井难见到 注水效果; 油田见水后含水上升快, 而采液指数和采油指数急剧下降, 对油田 稳产造成很大困难。 因此, 如何高效开发低渗透油田是石油工作者面临的一个 急待解决的问题。
压裂是高效开发油气田, 特别是低渗透油气田提高采收率的重要手段。 国 际著名压裂专家迈克尔,史密斯认为压裂是幵发低渗透油气藏的主导技术,在这 些油气藏油田勘探开发中的地位越来越重要。 随着压裂及相关低渗透幵发配套 技术的进步, 对低渗透油藏开发越来越深入。 80年代以前, 采 " 规压裂 "等 技术, 使 10-50毫达西的一般低渗透油藏得到有效动用。 90年代初, 采用"大 规模压裂、 井网优化、 注水"等技术, 使 1.0-10 毫达西的特低渗透油藏基本可 以有效动用。 90 年代初, 安塞特低渗透油田开发采用 "丛式钻井、 中等规模压 裂、温和注水"等技术,使 0.5毫达西的特低渗透油田实现了规模有效开发。 2000 年以来, 鄂尔多斯盆地其它油田, 采用"整体压裂、 超前注水"等技术, 使得低 于 0.5毫达西以下的数十亿吨特低渗透储量得到了有效动用。
现有技术在低渗透油层实施压裂后生产, 一般存在以下问题:
1 注水井启动压力高, 地层和注水压力上升快
低渗透油藏注水井启动压力可高到 lOMpa以上,大大降低了注水井的注水 压差。 注水井地层压力升高, 有效注水压差减少, 满足不了油藏开发需要。 同 时, 注水压力升高还会造成油、 水井套管变形损害, 严重威胁油田正常注水开 发。
2 生产井注水效果差, 产油量递减快
一般而言, 低渗透油藏生产井在相应注水井注水半年以后才开始见到注水 效果, 注水效果远不如中高渗透油藏那样明显, 只能短 ^间内维持油井产量稳 定。 而且油井见水后油井采液指数大幅度下降, 产油量加剧递减。
现有技术在低渗透油层实施压裂后生产, 随着生产的进行, 由于注入水中 杂质尤其是有机物杂质在近井地带的淤积, 堵塞了本来渗流能力微弱的渗流通 道; 采油井近井地带结蜡、 结垢日益积累, 导致了渗流能力的快速降低。 注水 井有机物质淤积和采油井结蜡结垢等进一步加剧了现有技术生产中存在的上述 问题, 使低渗透油藏生产存在的 "注水井地层和注水压力上升快, 生产井压力 和产量下降快" 的矛盾更加突出和尖锐, 最后导致注水量、 产油量、 开采速度 和采收率都非常低。 严重时, 使油藏生产实际上处于瘫痪状态。
低渗透油层自然生产能力很低, 甚至没有自然产能, 一般都要经过压裂改 造后才能正式投产。 即使经压裂改造, 一方面, 由于油层孔喉细小, 比表面积 大、 渗透率低、 储层连通性差、 渗流阻力大、 弹性能量小等原因, 其生产能力 也都很低, 采油指数一般只有 l~2t/(d.MPa)。 另一方面, 压裂投产后, 由于地 层本身的结垢和结蜡等往往使油层渗透率进一步降低, 渗流能力下降, 导致油 井产量快速下降, 油藏稳产非常困难。 为了克服这些问题, 发展了暂堵压裂、 油井重复压裂等工艺来促进产量稳定。 暂堵压裂是运用暂堵剂封堵油井第一次 压裂产生的人工裂缝,迫使人工裂缝转向, 以便改善老井二次压裂改造的效果, 提高油井产量。 油井重复压裂是油井在第一次压裂后生产一段时间因各种原因 产量下降,再在同一层进行第二次 (或二次以上)压裂的工艺,一是改变油流模式, 减少油流流入井筒的阻力; 二是重新压开过去已压裂的但因各种原因目前己堵 塞或闭合的老裂缝系统。
由此可见, 尽管暂堵压裂或重复压裂可以起到缓解油井产量降低的作用, 但是, 无法解决地层结蜡、 结垢等问题, 另一方面, 这些措施同时需要大量的 投资, 同时存在施工安全问题。 发明内容 本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种科学、 经 济、 有效的低渗透油藏微生物采油方法。
本发明的目的可以通过以下技术方案来实现: 一种低渗透油藏微生物采油 方法, 其特征在于, 该方法包括如下步骤: (1 ) 低渗透油藏压裂生产; (2) 通 过压裂产生的裂缝向油层中注入微生物及营养物进行微生物采油。
步骤(2)所述的微生物及营养物的注入量由一矩形区域的体积确定, 该矩 形区域的长度方向为压裂产生的裂缝方向, 长度为裂缝长度, 宽度方向垂直于 裂缝方向, 裂缝两侧各进入油层 0.05〜0.5m, 厚度为油层的厚度。
所述的微生物的体积浓度为 5%-20%。
所述的微生物及营养物注入后, 处理井关井 1-5天。
所述的微生物可降解原油, 或代谢产生表面活性剂、 有机酸。
所述的微生物选自枯草芽孢杆菌、 丙酮丁醇梭菌、 嗜热脂肪芽孢杆菌、 G. e^ra^、 地下地杆菌、 迟缓芽孢杆菌、 铜绿假单胞菌、 阴沟肠杆菌、 盐生盐 杆菌、 荧光假单胞菌、 恶臭单胞菌中的一种或几种。
所述的营养物包括碳源、 氮源、 磷源。
所述的碳源包括蔗糖、 葡萄糖、 淀粉, 所述的氮源包括蛋白胨、 氯化铵, 所述的磷源包括磷酸氢二纳、 磷酸二氢钾。 为了有利于微生物在井筒中发挥作用, 同时有利于开井后可快速恢复正常 生产, 试验时先向油套环空注入微生物溶液, 此时保持抽油机工作, 直到井口 取样观察到注入液时才停止抽油机工作, 然后继续按设计注入微生物溶液, 关 井。
与现有技术相比, 本发明方法将压裂技术和微生物采油技术结合起来, 利 用压裂开启的油层裂缝将微生物输送到有藏深部, 发挥其代谢生物表面活性剂 等作用, 提高地层原油的采出程度, 同时利用微生物的降解胶质、 蜡等作用, 解决地层结垢、结蜡引起的堵塞, 提高流体的渗流能力, 促进油井产量的稳定。 具体实施方式 下面结合具体实施例对本发明进行详细说明。
微生物溶液量计算公式:
V = fc X L X H X W ( 1 )
式中-
V—微生物溶液量, m3;
L—处理区长度, m;
H—处理油层有效厚度, m;
W—处理区宽度, m;
fc一综合系数, 0.2 ~ 0.8。
实施例 1
1. 某油田 A1-11井, 油层厚度为 H=14.4m, 压裂裂缝长度 L=50m, 处理 宽度 W=0.1m (裂缝两侧各 0.05m), 根据公式 (1 ) 计算微生物处理矩形区域体 积为 V=72 m3。 选择综合系数 Fc=0.8, 微生物发酵液浓度为 5%。 注入微生物 溶液量 57.6 m3, 其中, 微生物发酵液用量 2.88 m3, 其余为营养液, 营养液由 该区块产出水配置, 其中蛋白胨 0.15 %, 酵母膏 0.2%, KC1 2.0%, NaH2P04 0.12%。 注入微生物溶液后关井 ld, 然后恢复正常生产。 该井恢复生产后产液 稳定, 含水下降。 日产油由 1.3t上升到 3.5t, 累计增油 157t。
2. 某油田 A1-18井, 油层厚度为 H=9.6m, 压裂裂缝长度 L=15m, 处理 宽度 W=0.6m (裂缝两侧各 0.3m), 根据公式计算微生物处理矩形区域体积为 V=86.4 m3。 选择综合系数 Fc=0.5, 微生物发酵液浓度为 10%。 注入微生物溶 液量 43.2 m3, 其中, 微生物发酵液用量 4.32 m3, 其余为营养液, 营养液由该 区块产出水配置, 其中氯化铵 0.1 %, 酵母膏 0.05%, KC12.0%。注入微生物溶 液后关井 5d, 然后恢复正常生产。 该井恢复生产后产液上升, 含水稳定。 日产 油由 1.9t上升到 3.1t, 累计增油 97.2t。
3. 某油田 A1-24井, 油层的厚度为 H=3.7m, 压裂裂缝长度 L=50m, 处 理宽度 W=1.0m (裂缝两侧各 0.5m), 根据公式计算微生物处理矩形区域体积为 V=185m3 0 选择综合系数 Fc=0.2, 微生物发酵液浓度为 20%。 注入微生物溶液 量 37 m3, 其中, 微生物发酵液用量 7.4 m3, 其余为营养液, 营养液由该区块产 出水配置, 其中蛋白胨 0.10 %, 氯化铵 0.04 %, 酵母膏 0.1%, KC12.0%。 注入 微生物溶液后关井 2d, 然后恢复正常生产。 该井恢复生产后产液上升, 含水稳 定。 日产油由 1.8t上升到 3.6t, 累计增油 116t。
实施例 2-5
一种低渗透油藏微生物采油方法: 包括如下步骤: 低渗透油藏压裂后注入 微生物和营养物进行采油。 该方法将油藏压裂和微生物采油结合起来, 一方面 增大了微生物在低渗透油藏中的作用范围, 另一方面微生物的代谢作用有助于 保持压裂处渗流通道的畅通, 进而促进油井产量稳定、 延长油田稳产时间, 因 此是一种既科学、 经济、 有效的低渗透油藏微生物采油方法。
主要步骤为先对低渗透油层进行压裂改造, 然后通过压裂裂缝将微生物注 入油藏深部, 促使微生物在油藏中繁殖并发挥作用, 提高原油采出程度和地层 流体渗流能力, 最后由采油井获得原油, 其特征在于, 压裂与微生物采油相结 合。 低渗透油藏油井一般压裂生产, 为了发挥微生物降解等作用, 增强微生物 处理效果, 本发明确定微生物处理区域为一矩形区域, 矩形区域长度方向为沿 裂缝方向, 选择长度为裂缝长度; 宽度方向垂直于裂缝方, 裂缝两侧各进入油 层 0.05~0.5m; 厚度为油层的厚度。 为了保证微生物顺利进入油层, 在油层中 尽快繁殖并达到一定的浓度, 用营养液将微生物发酵液稀释获得微生物溶液, 将微生物溶液注入油藏后关井培养 l〜5d。 其中, 微生物体积浓度为 5 %〜 20%, 营养液组成根据油藏水质和所用微生物生理性能确定, 一般通过常规的培养实 验即可优选出来, 营养液是采用注入水配制。
为了有利于微生物在井筒中发挥作用, 同时有利于开井后可快速恢复正常 生产, 试验时先向油套环空注入微生物溶液, 此时保持抽油机工作, 直到井口 取样观察到注入液时才停止抽油机工作, 然后继续按设计注入微生物溶液, 关 井。
注入微生物及营养物组成见下表:
Figure imgf000007_0001

Claims

权 利 要 求
1 . 一种低渗透油藏微生物采油方法, 其特征在于, 该方法包括如下步骤: ( 1 )低渗透油藏压裂生产; (2 )通过压裂产生的裂缝向油层中注入微生物及营 养物进行微生物采油。
2. 根据权利要求 1所述的一种低渗透油藏微生物采油方法, 其特征在于, 步骤(2 )所述的微生物及营养物的注入量由一矩形区域的体积确定, 该矩形区 域的长度方向为压裂产生的裂缝方向, 长度为裂缝长度, 宽度方向垂直于裂缝 方向, 裂缝两侧各进入油层 0.05〜0.5m, 厚度为油层的厚度。
3.根据权利要求 1或 2所述的一种低渗透油藏微生物采油方法,其特征在 于, 所述的微生物的体积浓度为 5%-20%。
4. 根据权利要求 1所述的一种低渗透油藏微生物采油方法, 其特征在于, 所述的微生物及营养物注入后, 处理井关井 1-5天。
5. 根据权利要求 1所述的一种低渗透油藏微生物采油方法, 其特征在于, 所述的微生物可降解原油, 或代谢产生表面活性剂、 有机酸。
6. 根据权利要求 1或 5所述的一种低渗透油藏微生物采油方法,其特征在 于, 所述的微生物选自枯草芽孢杆菌、 丙酮丁醇梭菌、 嗜热脂肪芽孢杆菌、 G. uzenensis, 地下地杆菌、 迟缓芽孢杆菌、 铜绿假单胞菌、 阴沟肠杆菌、 盐生盐 杆菌、 荧光假单胞菌、 恶臭单胞菌中的一种或几种。
7.根据权利要求 1所述的一种低渗透油藏微生物采油方法, 其特征在于, 所述的营养物包括碳源、 氮源、 磷源。
8. 根据权利要求 7所述的一种低渗透油藏微生物采油方法, 其特征在于, 所述的碳源包括蔗糖、 葡萄糖、 淀粉, 所述的氮源包括蛋白胨、 氯化铵, 所述 的磷源包括磷酸氢二纳、 磷酸二氢钾。
PCT/CN2009/001525 2009-10-30 2009-12-21 一种低渗透油藏微生物采油方法 WO2011050508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910197996A CN101699026B (zh) 2009-10-30 2009-10-30 一种低渗透油藏微生物采油方法
CN200910197996.9 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011050508A1 true WO2011050508A1 (zh) 2011-05-05

Family

ID=42147491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001525 WO2011050508A1 (zh) 2009-10-30 2009-12-21 一种低渗透油藏微生物采油方法

Country Status (2)

Country Link
CN (1) CN101699026B (zh)
WO (1) WO2011050508A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720546B2 (en) * 2010-11-01 2014-05-13 E I Du Pont De Nemours And Company Prevention of biomass aggregation at injection wells
CN102900411B (zh) * 2012-10-29 2015-05-06 山西蓝焰煤层气集团有限责任公司 一种煤储层的生物增透方法
CN103912254B (zh) * 2013-01-09 2016-11-16 中国石油化工股份有限公司 一种利用复合激活剂提高水力压裂井产能的方法
CN103912249A (zh) * 2013-01-09 2014-07-09 中国石油化工股份有限公司 一种向地层中输送微生物的方法
CN103232966B (zh) * 2013-04-27 2015-04-15 中国石油大学(北京) 耐中高温产胞外水不溶性多糖原生质体融合工程菌及其应用
CN103614314A (zh) * 2013-10-12 2014-03-05 北京市捷博特能源技术有限公司 一种采油用微生物组合
CN104373094B (zh) * 2014-12-05 2017-09-01 中国石油天然气股份有限公司 一种低渗透油藏微生物采油复合制剂及其使用方法
CN105626014A (zh) * 2015-07-29 2016-06-01 中国石油化工股份有限公司 一种微生物单井处理提高油井产量的方法
CN105626026B (zh) * 2016-02-29 2018-03-06 烟台智本知识产权运营管理有限公司 一种低渗透含蜡油井提高单井产量的方法
CN105756649B (zh) * 2016-02-29 2018-02-27 烟台智本知识产权运营管理有限公司 一种低渗透含蜡油井增产的方法
CN105735953B (zh) * 2016-04-21 2018-06-29 烟台智本知识产权运营管理有限公司 一种稠油井复合吞吐提高单井产量的方法
CN106635863B (zh) * 2016-07-19 2018-09-11 桂林理工大学 厌氧降解处理采油废水的梭菌属菌株yb-7的培养方法
CN107956460B (zh) * 2017-10-27 2020-07-03 中国石油化工股份有限公司 一种利用改性功能微生物降低油藏水敏的方法
CN107955591B (zh) * 2017-12-06 2020-10-27 大庆华营化工有限公司 一种微生物驱油剂及其制备方法
CN112145143A (zh) * 2020-11-09 2020-12-29 黄山联合应用技术研究院 一种新型油井修复方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6758270B1 (en) * 1999-11-04 2004-07-06 Statoil Asa Method of microbial enhanced oil recovery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6758270B1 (en) * 1999-11-04 2004-07-06 Statoil Asa Method of microbial enhanced oil recovery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALIREZE SOUDMAND-ASLI ET AL.: "The in situ Microbial Enhanced Oil Recovery in Fractured Porous Media.", JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING., vol. 58, 2007, pages 161 - 172, XP022166394, DOI: doi:10.1016/j.petrol.2006.12.004 *
CUI,JUNCHENG: "Experimental Research of Microorganism oil Recovery Technique", DISSERTATION OF ENGINEERING MASTER PROFESSION OF DAQING PETROLEUM INSTITUTE, 16 March 2006 (2006-03-16), pages 2,11,12,35 *

Also Published As

Publication number Publication date
CN101699026A (zh) 2010-04-28
CN101699026B (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2011050508A1 (zh) 一种低渗透油藏微生物采油方法
CN102116143B (zh) 聚合物驱后油藏本源微生物采油方法
CN102852497B (zh) 一种低渗透油田复合微生物采油方法
CN107558972A (zh) 一种微生物单井吞吐提高油井产量的方法
CN106801597A (zh) 稠油油藏组合式驱油方法及驱油组合物
CN107387044A (zh) 一种利用煤层本源真菌提高生物煤层气产量的方法
CN102391847A (zh) 一种复合微生物驱油剂及其用途
CN103865820B (zh) 一种藤黄色单胞菌及其制备和应用
CN105154355A (zh) 一株热反硝化地芽孢杆菌cf-1及其用途
CN110578502B (zh) 一种高含水稠油油藏的微生物吞吐采油方法、高含水稠油油藏的稠油降粘方法、营养激活剂
CN108729893A (zh) 一种提高稠油油藏采收率的泡沫复合冷采方法
CN110591980A (zh) 一种用于降解高凝油的微生物复合菌剂及其应用
CN105064964A (zh) 一种空气泡沫驱微生物减氧方法
WO2018069934A2 (en) Methane production from underground coalbed methane wells
CN103865821B (zh) 一种螯合球菌及其制备和应用
CN102410007B (zh) 一种稠油油田保压热采工艺
CN102168049B (zh) 一种生产破胶酶的菌株及其应用
CN112796720A (zh) 一种应用微生物提高低渗透油藏采收率的方法
CN113685163A (zh) 微生物菌剂油井压裂前置液新工艺
CN108531155A (zh) 一种用于高温高矿化度油藏的微生物驱油剂及制备方法
CN113586027A (zh) 一种利用功能微生物强化压裂-驱油效果的方法
CN104179488A (zh) 一种提高开发低渗透碳酸盐岩稠油油藏效果的方法
CN115612630B (zh) Fe(III)还原菌株、其培养方法、缩膨制剂及应用
CN114427410B (zh) 一种热采油藏转微生物驱油的方法
Cheng et al. Experiments on EOR employing indigenous microorganisms.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850714

Country of ref document: EP

Kind code of ref document: A1