WO2011049362A2 - Screw rotor type vacuum pump incorporating motor - Google Patents

Screw rotor type vacuum pump incorporating motor Download PDF

Info

Publication number
WO2011049362A2
WO2011049362A2 PCT/KR2010/007189 KR2010007189W WO2011049362A2 WO 2011049362 A2 WO2011049362 A2 WO 2011049362A2 KR 2010007189 W KR2010007189 W KR 2010007189W WO 2011049362 A2 WO2011049362 A2 WO 2011049362A2
Authority
WO
WIPO (PCT)
Prior art keywords
screw rotor
screw
pair
vacuum pump
type vacuum
Prior art date
Application number
PCT/KR2010/007189
Other languages
French (fr)
Korean (ko)
Other versions
WO2011049362A3 (en
Inventor
이헌
Original Assignee
(주)코디박
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)코디박 filed Critical (주)코디박
Priority to JP2012534124A priority Critical patent/JP2013507575A/en
Publication of WO2011049362A2 publication Critical patent/WO2011049362A2/en
Publication of WO2011049362A3 publication Critical patent/WO2011049362A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/20Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with dissimilar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof

Definitions

  • the present invention relates to a screw rotor type vacuum pump in which a motor for driving is built into one of the screw rotors of the pair of screw rotors, and the deformation of the rotational balance during rotation of the pair of screw rotors can be reduced. It's about technology.
  • a vacuum means a space where no substance exists, but in reality, since it is difficult to make it, it refers to a low pressure of about 1/1000 mmHg or less.
  • the pressure of the gas remaining in the container made of vacuum is called the degree of vacuum at that time, and the degree of vacuum is expressed by using the pressure of air at low pressure.
  • the maximum degree of vacuum that can be reached artificially is about 10 -12 mmHg, and there are about 35,000 gas molecules per cubic centimeter.
  • the semiconductor manufacturing process and the display panel manufacturing process requires high vacuum, and various technologies are currently being developed to maintain the vacuum efficiently.
  • the present invention for solving these problems, a screw that can reduce the deformation of the rotational balance during the rotation of a pair of screw rotor by embedding a motor for driving in any one of the screw rotor of the pair of screw rotor It is to provide a rotor type vacuum pump.
  • a pair of screw rotor that rotates in engagement with each other;
  • a housing accommodating the pair of screw rotors, one side of which is provided with a suction port and the other side of which a discharge port is provided;
  • a motor built in the screw rotor of any one of the pair of screw rotors to drive the rotating shaft.
  • a screw rotor type vacuum pump comprising a.
  • the centrifugal pump provided on the pair of screw rotor rotation shafts preferably, the centrifugal pump includes an oil supply passage that extends through the center of the rotation shaft to the holes formed on both sides of the outer circumferential surface of the rotation shaft.
  • a non-contact seal for non-contact sealing between the rotation shaft and the motor fixing member is interposed, and the inner diameter of the non-contact seal is preferably larger than the outer diameter of the rotation shaft.
  • a sealing gas supply passage is provided inside the motor fixing member so as to pass through the motor fixing member and the non-contact seal, and sealing gas is supplied to a gap between the inner circumferential surface of the non-contact seal and the outer circumferential surface of the rotary shaft to seal the gas.
  • a sealing gas discharge passage is provided so that the sealing gas supplied into the gap between the inner peripheral surface of the non-contact seal and the outer peripheral surface of the rotary shaft can be discharged.
  • a sealing ring is provided between the inner circumferential surface of the motor fixing member and the outer circumferential surface of the non-contact seal so as to prevent leakage of the sealing gas from above and below the sealing gas supply passage.
  • the lead angle of the screw thread formed on the pair of screw rotor outer peripheral surfaces continuously changes.
  • the threads formed on the outer circumferential surfaces of the pair of screw rotors are continuously connected along the back lead section (a), the uneven lead section (b), and the back lead section (c).
  • the outer diameter of any one of the pair of screw rotors is larger than the outer diameter of the other screw rotors.
  • a motor is installed inside the screw rotor having a large outer diameter.
  • the screw rotor type vacuum which can minimize the deformation of the rotational balance during rotation of the pair of screw rotors by embedding a motor for driving in any one of the screw rotors of the pair of screw rotors Pumps may be provided.
  • the imbalance problem of the rotational balance is reduced, so that the pumping for the vacuum can be efficiently performed at a high rotational force.
  • FIG. 1 is a cross-sectional view of a built-in screw rotor type vacuum pump according to the present invention.
  • Figure 2 is a conceptual diagram for explaining the operation principle of the centrifugal pump according to the present invention.
  • FIG. 3 is a conceptual diagram illustrating a non-contact sealing according to the present invention.
  • Figure 4 is a cross-sectional view of the screw rotor included in the screw rotor type vacuum pump according to an embodiment of the present invention.
  • FIG 5 is a cross-sectional view of the screw rotor included in the screw rotor type vacuum pump according to another embodiment of the present invention.
  • sealing gas supply passage 15 sealing gas discharge passage
  • Oil supply passage 17 Sealing ring
  • FIG. 1 is a cross-sectional view of the built-in screw rotor type vacuum pump according to the present invention
  • Figure 2 is a conceptual diagram for explaining the operation principle of the centrifugal pump according to the present invention and in Figure 3 non-contact sealing according to the present invention
  • a conceptual diagram is shown to illustrate.
  • Figure 4 is a cross-sectional view of the screw rotor included in the screw rotor type vacuum pump according to an embodiment of the present invention is shown in Figure 5 of the screw rotor included in the screw rotor type vacuum pump according to another embodiment of the present invention A cross section is shown.
  • a vacuum pump includes a male screw rotor 26 and a female screw rotor 25 capable of compressing and transporting gases, and a housing 27 surrounding them externally. It includes.
  • the motor 4 is provided in order to rotate the rotors 25 and 26 inside any one of the pair of screw rotors.
  • the motor 4 consists of a rotor 4a and a stator 4b.
  • the rotor 4a surrounds the rotating shaft 11 connected to the screw rotor to rotate the rotating shaft 11, and the stator 4b is surrounded by the motor fixing member 12 installed in the housing 27.
  • the motor 4 may be present inside the screw rotor, thereby miniaturizing the pump.
  • the motor 4 may be mounted inside the male screw rotor 26. This is because the outer diameter of the male screw rotor 26 is generally larger than the outer diameter of the female screw rotor 25, so that a larger driving force can be obtained.
  • the centrifugal pump (1) provided in the pair of screw rotor shaft is formed in the lower end of the thin tube, such as a capillary tube in contact with the oil.
  • the centrifugal pump includes an oil supply passage that passes through the center of the rotating shaft and continues to a hole formed at both sides of the outer circumferential surface of the rotating shaft. At this time, the oil rises into the vacuum pump as shown by the arrow through the oil supply passage 16, and the oil acting as a lubricant to the bearing 3 is supplied by the centrifugal force to achieve a smooth operation. In this case, since the oil may move into the shaft through the oil supply passage 16, the oil may directly cool the shaft.
  • a non-contact seal 13 is interposed between the rotation shaft 11 and the motor fixing member 12.
  • the inner diameter of the non-contact seal 13 is preferably larger than the outer diameter of the rotary shaft 11.
  • the motor fixing member 12 includes a sealing gas supply passage 14 and a sealing gas discharge passage 15 through which the sealing gas may move.
  • sealing gas may be sealed up and down as the arrow direction is supplied through the sealing gas supply passage 14.
  • a sealing ring 17 may be provided between the inner circumferential surface of the motor fixing member 13 and the outer circumferential surface of the non-contact seal so as not to leak the sealing gas.
  • the motor-mounted screw rotor type vacuum pump includes a male screw rotor 26 and a female screw rotor 25 and a housing 27 accommodating these rotors.
  • An operating chamber 28 is formed.
  • the operating chamber 28 includes a suction port 21 connected to one side of the operating chamber and a discharge port 22 connected to the other side of the operating chamber.
  • the thread formed on the outer circumferential surface of the screw rotor may be in the form of an uneven interval in which the lead angle is continuously changed.
  • the lead angle is an angle formed by the screw rotor and the thread, as shown in FIG. 4.
  • the male screw rotor 26 and the female screw rotor 25 inside the working chamber 28 perform compression conveyance of gas in the direction of the arrow.
  • the outer diameter of the male screw rotor 26 is larger than the outer diameter of the female screw rotor 25. This is because due to the difference in the rotational speed due to the difference in the outer diameter, it is possible to suppress the phenomenon that the process by-products accumulate due to the frictional force of the contact portion between the male screw rotor 26 and the female screw rotor 25.
  • the housing end face plate 24 is formed to be inclined in the form of gradually narrowing the cross sectional area in the direction of the discharge port 22, and has a cross section between the housing end face plate 24 and the screw rotors 25 and 26. There is a gap 23. Due to the inclined shape of the housing end face plate 24, the gas from the screw rotors 25 and 26 can be efficiently discharged toward the discharge port 22, and at the same time, the gas can be prevented from being despread.
  • the lead angle gradually decreases from the inlet to the outlet. Therefore, the volume formed by the thread in the operating chamber 28 becomes smaller as it approaches the discharge port 22, so that the discharge pressure at the discharge port 22 increases and the flow of gas rapidly increases toward the discharge port 22. Will increase. Therefore, it is possible to smoothly discharge the gas to prevent overheating of the discharge port 22 side can be a vacuum pump of a thermally stable structure.
  • the thread formed on the outer circumferential surface of the screw rotor is continuously along the back lead section (a), the uneven lead section (b), and the back lead section (c). May be connected.
  • the same components as those in FIG. 4 are given the same reference numerals, and detailed descriptions thereof will be omitted.
  • the shape of the thread in each section is the back lead section (a) is , The unequal lead interval (b) , And the lead section (c) follows the shape of the graph represented by.
  • the a 1 value of the back lead section a is determined by the ratio of the height of the screw rotor that satisfies the proper pump capacity calculated by the lead value (circumference) and the volume of the screw groove by the diameter when the screw rotor rotates.
  • C 1 is a range that can eliminate the overlap between each other caused by the difference in diameter between the male and female screw rotors. In the case of the male screw rotors, the value is “0”. It has a calculated value in the resolution range.
  • the a 3 value of the back lead section c has the same meaning as the a1 value of the back lead section a, and c 3 is determined by the height of the back lead section a and the uneven lead section b.
  • the slope obtained by differentiating is equal to a 1, a 3 .
  • a1 is the inclination of the point where the back lead section a and the inequality lead section b meet
  • a3 is the inclination of the point where the uneven lead section b meets the back lead section a.
  • the centrifugal pump also rotates due to the rotation of the screw rotor.
  • the centrifugal force generated by the screw rotor rotates along the oil supply passage 16 of the centrifugal pump as shown in the arrow direction of FIG. 3. Supplied. Therefore, smooth rotation of the motor can be achieved.
  • the sealing gas moves to the motor fixing member 12 surrounding the outer circumference of the non-contact seal 13 and the bearing 3 via the sealing gas supply passage 16.
  • the moved sealing gas is supplied in the gap formed between the inner circumferential surface of the non-contact seal and the outer circumferential surface of the rotating shaft 11 in the direction of the arrow, and some sealing gas moves downward through the sealing gas discharge passage 15 in the direction of the arrow.
  • the rotation of the pair of screw rotors 25 and 26 sucks gas from the inlet 21 and simultaneously traps the sucked gas in the operating chamber 28.
  • the sucked gas trapped in the operation chamber 28 is compressed and transported by the continuous rotation of the screw rotor to be discharged to the discharge port 22, resulting in high vacuum.
  • the deformation of the rotational balance during rotation of the screw rotor can be minimized by embedding the motor inside the screw rotor.
  • the space occupied when the motor is externally installed it can be miniaturized than the existing pump of the same capacity, so the utilization of the work space is high.
  • the centrifugal pump is mounted inside the shaft of the screw rotor to smooth the lubrication of the bearing and move the oil into the shaft so that the shaft can be directly cooled to have an excellent cooling effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The present invention relates to a screw rotor type vacuum pump incorporating a driving motor in any one of the pair of screw rotors, wherein the deformation of rotation balance may be reduced when the pair of screw rotors rotates. According to the present invention, provided is a screw rotor type vacuum pump comprising: a pair of screw rotors of which rotates and is to be engaged with each other; a housing for receiving the pair of screw rotors and having a suction hole at one side and a discharge hole at the other side; and a motor incorporated in any one of the pair of screw rotors for driving the rotation shaft thereof.

Description

모터 내장형 스크루 로터 타입 진공펌프Screw rotor type vacuum pump with built-in motor
본 발명은 한 쌍의 스크루 로터 중 어느 하나의 스크루 로터 내부에 구동을 위한 모터가 내장된 스크루 로터 타입 진공펌프에 관한 것으로서, 상기 한 쌍의 스크루 로터의 회전시 회전 밸런스의 변형을 감소시킬 수 있는 기술에 관한 것이다.The present invention relates to a screw rotor type vacuum pump in which a motor for driving is built into one of the screw rotors of the pair of screw rotors, and the deformation of the rotational balance during rotation of the pair of screw rotors can be reduced. It's about technology.
진공이란 물질이 전혀 존재하지 않는 공간을 의미하지만, 실제로는 이렇게 만들기가 어렵기 때문에 1/1000㎜Hg 정도 이하의 저압을 가리킨다. 진공으로 만든 용기 내에 남아 있는 기체의 압력을 그때의 진공도라 하는데 진공도는 저압상태의 공기의 압력을 그대로 이용하여 표현한다.A vacuum means a space where no substance exists, but in reality, since it is difficult to make it, it refers to a low pressure of about 1/1000 mmHg or less. The pressure of the gas remaining in the container made of vacuum is called the degree of vacuum at that time, and the degree of vacuum is expressed by using the pressure of air at low pressure.
진공 상태를 통하여 타기체의 영향에 의한 부식 산화 등을 막아주고, 물질의 끊는 점을 낮추어 주며, 타기구로는 운반하기 어려운 물체의 운반을 가능하게 해주며, 양자 등과 같은 하전입자 주의의 공기분자충돌이 작아지므로 작업시 컨트롤이 용이하게 된다. It prevents corrosive oxidation due to the influence of other bodies through the vacuum state, lowers the breaking point of materials, enables the transport of objects that are difficult to carry by other devices, and air molecule collisions such as protons. This makes it easier to control during operation.
현재 인공적으로 도달할 수 있는 최고진공도는 10-12㎜Hg 정도인데, 이때에도 1㎤당 약 3만 5000개나 되는 기체분자가 남아 있다. 하지만 반도체 제조공정이나 디스플레이 패널 제조공정은 고진공이 요구되므로 현재 효율적으로 진공을 유지할 수 있는 다양한 기술들이 개발되고 있다.At present, the maximum degree of vacuum that can be reached artificially is about 10 -12 mmHg, and there are about 35,000 gas molecules per cubic centimeter. However, the semiconductor manufacturing process and the display panel manufacturing process requires high vacuum, and various technologies are currently being developed to maintain the vacuum efficiently.
하지만 종래 진공펌프에는 극복해야 할 문제들이 많이 있다. 특히 스크루 로터 타입 진공펌프 중 모터 외장형의 경우, 모터와 스크루 로터가 커플링 또는 유사부품으로 결합 되어 회전하게 된다. 이때 커플링에 의한 틈새 공차 또는 모터와 회전체의 중심이 일직선상에 위치하지 않는 경우로 인해 회전체의 밸런스가 맞지 않을 수 있고, 진동의 원인이 될 수도 있다. However, there are many problems to overcome in the conventional vacuum pump. In particular, in the case of an external motor of a screw rotor type vacuum pump, the motor and the screw rotor are combined with a coupling or similar parts to rotate. At this time, due to the gap tolerance due to the coupling or the center of the motor and the rotating body is not located in a straight line, the balance of the rotating body may be unbalanced, or may cause vibration.
회전 밸런스가 맞지 않는 문제로 인해서 모터 과부하에 의한 열이 발생 될 수 있으며, 회전체와 하우징 간의 마찰로 진공펌프의 파손 우려가 있다. 또한 회전력 손실로 펌핑용량 저하의 원인이 될 수도 있으며 베어링의 내구성에 문제가 발생하여 잦은 고장의 원인이 되며, 운전시 소음이 과도하게 발생하여 작업환경에 문제가 될 수도 있다.Due to the problem that the rotation balance is not matched, heat may be generated due to the motor overload, and there is a risk of damage to the vacuum pump due to friction between the rotor and the housing. In addition, the loss of rotational force may cause a decrease in pumping capacity, a problem in the durability of the bearing may be a cause of frequent failures, excessive noise during operation may be a problem in the working environment.
이러한 종래의 문제점들을 해결하기 위한 본 발명은, 한 쌍의 스크루 로터 중 어느 하나의 스크루 로터 내부에 구동을 위한 모터를 내장하여 한 쌍의 스크루 로터의 회전시 회전 밸런스의 변형을 감소시킬 수 있는 스크루 로터 타입 진공펌프를 제공하고자 하는 것이다.The present invention for solving these problems, a screw that can reduce the deformation of the rotational balance during the rotation of a pair of screw rotor by embedding a motor for driving in any one of the screw rotor of the pair of screw rotor It is to provide a rotor type vacuum pump.
상기 목적을 달성하기 위한 본 발명에 따르면, 서로 맞물리며 회전하는 한 쌍의 스크루 로터와; 상기 한 쌍의 스크루 로터를 수납하며, 일측에는 흡입구가 구비되고 타측에는 토출구가 구비된 하우징; 및 상기 한 쌍의 스크루 로터 중 어느 하나의 스크루 로터 내부에, 회전축의 구동을 위하여 내장된 모터; 를 포함하는 것을 특징으로 하는 스크루 로터 타입 진공 펌프가 제공된다.According to the present invention for achieving the above object, a pair of screw rotor that rotates in engagement with each other; A housing accommodating the pair of screw rotors, one side of which is provided with a suction port and the other side of which a discharge port is provided; And a motor built in the screw rotor of any one of the pair of screw rotors to drive the rotating shaft. There is provided a screw rotor type vacuum pump comprising a.
상기 한 쌍의 스크루 로터 회전축에 구비된 원심펌프로서, 상기 원심펌프는, 회전축 중심을 관통하여 회전축 외주면의 양측에 형성된 구멍까지 이어지는 오일 공급통로를 포함하는 것이 바람직하다.The centrifugal pump provided on the pair of screw rotor rotation shafts, preferably, the centrifugal pump includes an oil supply passage that extends through the center of the rotation shaft to the holes formed on both sides of the outer circumferential surface of the rotation shaft.
상기 한 쌍의 스크루 로터 내부에는, 회전축과 모터 고정부재 사이에서 비접촉 씰링을 하기 위한 비접촉 씰이 개재되어 있으며, 상기 비접촉 씰의 내경은 회전축의 외경보다 큰 것이 바람직하다.In the pair of screw rotors, a non-contact seal for non-contact sealing between the rotation shaft and the motor fixing member is interposed, and the inner diameter of the non-contact seal is preferably larger than the outer diameter of the rotation shaft.
상기 모터 고정부재 내부에는 씰링가스 공급통로가 구비되어 모터 고정부재와 비접촉 씰을 관통하도록 이어지며, 상기 비접촉 씰의 내주면과 상기 회전축의 외주면 사이의 틈새로 씰링가스가 공급되어 씰링이 이루어지는 것이 바람직하다.A sealing gas supply passage is provided inside the motor fixing member so as to pass through the motor fixing member and the non-contact seal, and sealing gas is supplied to a gap between the inner circumferential surface of the non-contact seal and the outer circumferential surface of the rotary shaft to seal the gas. .
상기 모터 고정부재 내부에는, 상기 비접촉 씰의 내주면과 상기 회전축의 외주면 사이의 틈새로 공급된 씰링가스가 배출될 수 있도록 씰링가스 배출통로가 구비되어 있는 것이 바람직하다.The inside of the motor fixing member, a sealing gas discharge passage is provided so that the sealing gas supplied into the gap between the inner peripheral surface of the non-contact seal and the outer peripheral surface of the rotary shaft can be discharged.
상기 모터 고정부재의 내주면과 상기 비접촉 씰의 외주면 사이에는, 씰링가스의 누출이 일어나지 않도록, 씰링가스 공급통로 상하의 위치에 밀봉링이 구비되어 있는 것이 바람직하다.It is preferable that a sealing ring is provided between the inner circumferential surface of the motor fixing member and the outer circumferential surface of the non-contact seal so as to prevent leakage of the sealing gas from above and below the sealing gas supply passage.
상기 한 쌍의 스크루 로터 외주면에 형성된 나사산은, 리드각이 연속적으로 변화하는 것이 바람직하다.It is preferable that the lead angle of the screw thread formed on the pair of screw rotor outer peripheral surfaces continuously changes.
상기 한 쌍의 스크루 로터 외주면에 형성된 나사산은, 등 리드 구간(a), 부등 리드 구간(b), 등 리드 구간(c)을 따라 연속적으로 연결된 것이 바람직하다.It is preferable that the threads formed on the outer circumferential surfaces of the pair of screw rotors are continuously connected along the back lead section (a), the uneven lead section (b), and the back lead section (c).
상기 한 쌍의 스크루 로터 중 어느 하나의 스크루 로터의 외경이 다른 스크루 로터의 외경보다 큰 것이 바람직하다.It is preferable that the outer diameter of any one of the pair of screw rotors is larger than the outer diameter of the other screw rotors.
상기 외경이 큰 스크루 로터의 내부에 모터가 설치되는 것이 바람직하다.It is preferable that a motor is installed inside the screw rotor having a large outer diameter.
상술한 바와 같은 본 발명에 의하면, 한 쌍의 스크루 로터 중 어느 하나의 스크루 로터 내부에 구동을 위한 모터를 내장하여 한 쌍의 스크루 로터의 회전시 회전 밸런스의 변형을 최소화할 수 있는 스크루 로터 타입 진공펌프가 제공될 수 있다.According to the present invention as described above, the screw rotor type vacuum which can minimize the deformation of the rotational balance during rotation of the pair of screw rotors by embedding a motor for driving in any one of the screw rotors of the pair of screw rotors Pumps may be provided.
그에 따라 본 발명에 의하면, 회전 밸런스의 불균형 문제가 줄어들어 높은 회전력으로 효율적으로 진공을 위한 펌핑이 가능하게 된다.Accordingly, according to the present invention, the imbalance problem of the rotational balance is reduced, so that the pumping for the vacuum can be efficiently performed at a high rotational force.
도 1은 본 발명에 따른 모터 내장형 스크루 로터 타입 진공펌프의 단면도.1 is a cross-sectional view of a built-in screw rotor type vacuum pump according to the present invention.
도 2는 본 발명에 따른 원심펌프의 작동원리를 설명하기 위한 개념도.Figure 2 is a conceptual diagram for explaining the operation principle of the centrifugal pump according to the present invention.
도 3은 본 발명에 따른 비접촉 씰링을 설명하기 위한 개념도.3 is a conceptual diagram illustrating a non-contact sealing according to the present invention.
도 4는 본 발명의 일 실시예에 따른 스크루 로터 타입 진공 펌프에 포함된 스크루 로터의 단면도.Figure 4 is a cross-sectional view of the screw rotor included in the screw rotor type vacuum pump according to an embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따른 스크루 로터 타입 진공 펌프에 포함된 스크루 로터의 단면도.5 is a cross-sectional view of the screw rotor included in the screw rotor type vacuum pump according to another embodiment of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
1:원심펌프 3:베어링1: centrifugal pump 3: bearing
4a:회전자 4b:고정자4a: rotor 4b: stator
4:모터 11:회전축4: motor 11: rotary shaft
12:모터 고정부재 13:비접촉 씰12: Motor fixing member 13: Non-contact seal
14:씰링 가스 공급통로 15:씰링 가스 배출통로14: sealing gas supply passage 15: sealing gas discharge passage
16:오일 공급통로 17:밀봉링16: Oil supply passage 17: Sealing ring
21:흡입구 22:토출구21: inlet 22: discharge outlet
25:암 스크루 로터 26:수 스크루 로터25: female screw rotor 26: male screw rotor
27:하우징 28:작동실 27: housing 28: operating room
이하, 본 발명의 바람직한 실시예에 따른, 모터 내장형 구조를 갖는 스크루 로터 타입 진공 펌프를 도면을 참조하여 상세하게 설명한다.Hereinafter, a screw rotor type vacuum pump having a motor built-in structure according to a preferred embodiment of the present invention will be described in detail with reference to the drawings.
도 1에는 본 발명에 따른 모터 내장형 스크루 로터 타입 진공펌프의 단면도가 도시되어 있으며 도 2에는 본 발명에 따른 원심펌프의 작동원리를 설명하기 위한 개념도가 도시되어 있고 도 3에는 본 발명에 따른 비접촉 씰링을 설명하기 위한 개념도가 도시되어 있다. 도 4에는 본 발명의 일 실시예에 따른 스크루 로터 타입 진공 펌프에 포함된 스크루 로터의 단면도가 도시되어 있고 도 5에는 본 발명의 또 다른 실시예에 따른 스크루 로터 타입 진공 펌프에 포함된 스크루 로터의 단면도가 도시되어 있다.1 is a cross-sectional view of the built-in screw rotor type vacuum pump according to the present invention, Figure 2 is a conceptual diagram for explaining the operation principle of the centrifugal pump according to the present invention and in Figure 3 non-contact sealing according to the present invention A conceptual diagram is shown to illustrate. Figure 4 is a cross-sectional view of the screw rotor included in the screw rotor type vacuum pump according to an embodiment of the present invention is shown in Figure 5 of the screw rotor included in the screw rotor type vacuum pump according to another embodiment of the present invention A cross section is shown.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 진공펌프는 기체를 압축 이송할 수 있는 수 스크루 로터(26) 및 암 스크루 로터(25)와, 이들을 외부에서 둘러싸는 하우징(27)을 포함한다. 상기 한 쌍의 스크루 로터 중 어느 하나의 스크루 로터 내부에 로터(25, 26)를 회전시키기 위해서 모터(4)가 구비되어 있다. 각 로터(25, 26)의 회전축(11)에는 이를 지지하기 위한 베어링(3)이 있다. 로터(25,26) 아래 측에는 타이밍 기어(2)가 있으며, 상기 타이밍 기어(2)는 수 스크루 로터(26)의 회전축과 암 스크루 로터(25)의 회전축을 함께 동기시켜 회전시킬 수 있도록 한다. As shown in FIG. 1, a vacuum pump according to an embodiment of the present invention includes a male screw rotor 26 and a female screw rotor 25 capable of compressing and transporting gases, and a housing 27 surrounding them externally. It includes. The motor 4 is provided in order to rotate the rotors 25 and 26 inside any one of the pair of screw rotors. On the rotating shaft 11 of each rotor 25, 26 there is a bearing 3 for supporting it. Below the rotors 25 and 26 there is a timing gear 2 which allows the rotary shaft of the male screw rotor 26 and the female screw rotor 25 to rotate in synchronization with each other.
상기 모터(4)는 회전자(4a)와 고정자(4b)로 이루어진다. 회전자(4a)는 스크루 로터와 연결된 회전축(11)을 둘러싸며 회전축(11)을 회전시키며, 고정자(4b)는 하우징(27)내에 설치된 모터 고정부재(12)에 의해 둘러싸여 지지 된다. The motor 4 consists of a rotor 4a and a stator 4b. The rotor 4a surrounds the rotating shaft 11 connected to the screw rotor to rotate the rotating shaft 11, and the stator 4b is surrounded by the motor fixing member 12 installed in the housing 27.
본 발명의 일 실시예에 따라 회전자(4a)가 스크루 로터와 일체로 회전함으로써, 회전 밸런스의 변형을 감소시킬 수 있다. 또한 상기 모터(4)는 스크루 로터의 내부에 존재하게 되어 펌프가 소형화될 수도 있다. 바람직하게는 상기 모터(4)는 수 스크루 로터(26) 내부에 장착될 수 있다. 이는 일반적으로 수 스크루 로터(26)의 외경이 암 스크루 로터(25)의 외경보다 크므로 보다 큰 구동력을 얻을 수 있기 때문이다.According to one embodiment of the present invention, by rotating the rotor 4a integrally with the screw rotor, it is possible to reduce the deformation of the rotational balance. In addition, the motor 4 may be present inside the screw rotor, thereby miniaturizing the pump. Preferably, the motor 4 may be mounted inside the male screw rotor 26. This is because the outer diameter of the male screw rotor 26 is generally larger than the outer diameter of the female screw rotor 25, so that a larger driving force can be obtained.
도 1 내지 도 3에 도시된 바와 같이, 상기 한 쌍의 스크루 로터 축에 구비된 원심펌프(1)는 아래쪽 말단부에 모세관과 같이 가는 관이 오일과 접촉하며 형성되어 있다. 원심펌프는 회전축 중심을 관통하여 회전축 외주면의 양측에 형성된 구멍까지 이어지는 오일 공급통로를 포함한다. 이때 오일 공급통로(16)를 통해서 화살표 방향과 같이 오일이 진공펌프 내부로 상승하게 되며, 원심력에 의해 베어링(3)에 윤활제 역할을 하는 오일이 공급되어 원활한 작동이 이루어 지게 된다. 이때 오일 공급통로(16)를 통하여 축 내부로 오일이 이동할 수 있으므로, 오일이 축을 직접 냉각시킬 수도 있다.As shown in Figures 1 to 3, the centrifugal pump (1) provided in the pair of screw rotor shaft is formed in the lower end of the thin tube, such as a capillary tube in contact with the oil. The centrifugal pump includes an oil supply passage that passes through the center of the rotating shaft and continues to a hole formed at both sides of the outer circumferential surface of the rotating shaft. At this time, the oil rises into the vacuum pump as shown by the arrow through the oil supply passage 16, and the oil acting as a lubricant to the bearing 3 is supplied by the centrifugal force to achieve a smooth operation. In this case, since the oil may move into the shaft through the oil supply passage 16, the oil may directly cool the shaft.
도 3에 도시된 바와 같이 회전축(11)과 모터 고정부재(12) 사이에는 비접촉 씰(13)이 개재되어 있다. 비접촉 방식의 씰링을 하기 위하여 비접촉 씰(13)의 내경은 회전축(11)의 외경보다 큰 것이 바람직하다. 모터 고정부재(12) 내부에는 씰링가스가 이동할 수 있는 씰링가스 공급통로(14)와 씰링가스 배출통로(15)를 포함한다.As shown in FIG. 3, a non-contact seal 13 is interposed between the rotation shaft 11 and the motor fixing member 12. In order to seal the non-contact type, the inner diameter of the non-contact seal 13 is preferably larger than the outer diameter of the rotary shaft 11. The motor fixing member 12 includes a sealing gas supply passage 14 and a sealing gas discharge passage 15 through which the sealing gas may move.
비접촉 씰(13)의 내경과 회전축(11)의 외경 사이에 형성된 틈새에는 씰링가스가 씰링가스 공급통로(14)를 통하여 화살표방향과 같이 상하로 공급되므로 씰링이 이루어질 수 있다. 이때 상기 모터 고정부재(13)의 내주면과 상기 비접촉 씰의 외주면 사이에는 씰링가스의 누출이 일어나지 않도록 씰링가스 공급통로(16) 상하의 위치에 밀봉링(17)이 구비될 수 있다.In the gap formed between the inner diameter of the non-contact seal 13 and the outer diameter of the rotary shaft 11, sealing gas may be sealed up and down as the arrow direction is supplied through the sealing gas supply passage 14. In this case, a sealing ring 17 may be provided between the inner circumferential surface of the motor fixing member 13 and the outer circumferential surface of the non-contact seal so as not to leak the sealing gas.
상기와 같은 비접촉 씰링 방식에 의해서, 오일이 화살표 방향과 같이 오일 공급통로(16)를 통하여 베어링에 공급되었을 때, 오일이 가스화되어 유출되는 것을 방지할 수 있다. 또한 비접촉 씰(13)이 회전축(11)과 비접촉으로 회전하기 때문에 물리적 마찰에 의한 마모 및 소음, 분진 등이 발생하지 않게 되며 축 씰링용 가스 사용을 최소화할 수 있다.By the non-contact sealing method as described above, when oil is supplied to the bearing through the oil supply passage 16 in the direction of the arrow, it is possible to prevent the oil is gasified outflow. In addition, since the non-contact seal 13 rotates in contact with the rotary shaft 11, wear, noise, dust, etc. due to physical friction may not occur, and the use of gas for shaft sealing may be minimized.
도 4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 모터 내장형 스크루 로터 타입 진공 펌프는, 수 스크루 로터(26) 및 암 스크루 로터(25)와 이들 로터를 수납하는 하우징(27)에 의해 형성되는 작동실(28)을 포함한다. 작동실(28)은 작동실의 일측에 연결된 흡입구(21) 및 작동실의 타측에 연결된 토출구(22)를 포함한다. 또한 스크루 로터의 외주면에 형성된 나사산은 리드각이 연속적으로 변화하는 부등 간격의 형태일 수 있다. 여기서 리드각이란 스크루 로터와 나사산이 이루는 각으로 도 4에 도시된 바와 같다.As shown in FIG. 4, the motor-mounted screw rotor type vacuum pump according to an embodiment of the present invention includes a male screw rotor 26 and a female screw rotor 25 and a housing 27 accommodating these rotors. An operating chamber 28 is formed. The operating chamber 28 includes a suction port 21 connected to one side of the operating chamber and a discharge port 22 connected to the other side of the operating chamber. In addition, the thread formed on the outer circumferential surface of the screw rotor may be in the form of an uneven interval in which the lead angle is continuously changed. Here, the lead angle is an angle formed by the screw rotor and the thread, as shown in FIG. 4.
상기 작동실(28) 내부에서 수 스크루 로터(26) 와 암 스크루 로터(25)에 의해, 화살표 방향으로, 기체의 압축 이송이 이루어진다. 바람직하게는 수 스크루 로터(26)의 외경이 암 스크루 로터(25)의 외경보다 크다. 이는 외경의 차이로 인한 회전속도의 차이로 인해, 수 스크루 로터(26)와 암 스크루 로터(25)가 접하는 부분의 마찰력으로 공정부산물이 쌓이는 현상을 억제할 수 있기 때문이다. The male screw rotor 26 and the female screw rotor 25 inside the working chamber 28 perform compression conveyance of gas in the direction of the arrow. Preferably, the outer diameter of the male screw rotor 26 is larger than the outer diameter of the female screw rotor 25. This is because due to the difference in the rotational speed due to the difference in the outer diameter, it is possible to suppress the phenomenon that the process by-products accumulate due to the frictional force of the contact portion between the male screw rotor 26 and the female screw rotor 25.
작동실(28) 아래쪽에는 하우징 단면 플레이트(24)가, 토출구(22)방향으로, 단면적이 점차 좁아지는 형태로 경사지게 형성되어 있으며 하우징 단면 플레이트(24)와 스크루 로터(25,26) 사이에는 단면틈새(23)가 존재한다. 상기 하우징 단면 플레이트(24)의 경사진 형태에 의해 스크루 로터(25,26)에서 나온 가스가 토출구(22) 쪽으로 효율적으로 방출될 수 있으며 동시에 가스가 역확산 되는 것을 방지할 수 있다.Under the operating chamber 28, the housing end face plate 24 is formed to be inclined in the form of gradually narrowing the cross sectional area in the direction of the discharge port 22, and has a cross section between the housing end face plate 24 and the screw rotors 25 and 26. There is a gap 23. Due to the inclined shape of the housing end face plate 24, the gas from the screw rotors 25 and 26 can be efficiently discharged toward the discharge port 22, and at the same time, the gas can be prevented from being despread.
또한 부등 간격의 연속적으로 변화되는 리드를 가지는 수 스크루 로터(26) 및 암 스크루 로터(25)를 이용하면, 리드각이 흡입구에서부터 토출구 방향으로 가면서 점차 감소하게 된다. 따라서 작동실(28) 내에 있는 나사산에 의해 형성되는 용적이, 토출구(22)에 가까워질수록 작아지게 되므로 토출구(22)에서의 토출 압력이 증가하여 토출구(22) 쪽으로 갈수록 가스의 흐름이 급격하게 증가하게 된다. 따라서 가스의 원활한 배출이 이루어져 토출구(22)쪽의 과열을 방지할 수 있어 열적으로도 안정적인 구조의 진공펌프가 될 수 있다.In addition, by using the male screw rotor 26 and the female screw rotor 25 having leads that are continuously changed at different intervals, the lead angle gradually decreases from the inlet to the outlet. Therefore, the volume formed by the thread in the operating chamber 28 becomes smaller as it approaches the discharge port 22, so that the discharge pressure at the discharge port 22 increases and the flow of gas rapidly increases toward the discharge port 22. Will increase. Therefore, it is possible to smoothly discharge the gas to prevent overheating of the discharge port 22 side can be a vacuum pump of a thermally stable structure.
하지만 도 5에 도시된 바와 같이, 본 발명의 또 다른 실시예에 따르면 스크루 로터의 외주면에 형성된 나사산은 등 리드 구간(a), 부등 리드 구간(b), 등 리드 구간(c)을 따라 연속적으로 연결될 수도 있다. 이하 도 4와 동일한 구성요소에는 동일한 부재번호를 부여하고 상세한 설명은 생략한다.However, as shown in FIG. 5, according to another embodiment of the present invention, the thread formed on the outer circumferential surface of the screw rotor is continuously along the back lead section (a), the uneven lead section (b), and the back lead section (c). May be connected. Hereinafter, the same components as those in FIG. 4 are given the same reference numerals, and detailed descriptions thereof will be omitted.
상기 각각의 구간에서 나사산의 형태는 등 리드 구간(a)은
Figure PCTKR2010007189-appb-I000001
, 부등 리드 구간(b)은
Figure PCTKR2010007189-appb-I000002
, 등 리드 구간(c)은
Figure PCTKR2010007189-appb-I000003
의 함수가 나타내는 그래프의 모양을 따른다.
The shape of the thread in each section is the back lead section (a) is
Figure PCTKR2010007189-appb-I000001
, The unequal lead interval (b)
Figure PCTKR2010007189-appb-I000002
, And the lead section (c)                 
Figure PCTKR2010007189-appb-I000003
Follow the shape of the graph represented by.
상기 등 리드 구간(a)의 a1값은 스크루 로터의 회전시 지름에 의한 리드값(원주)과 스크루 치홈의 부피에 의해 계산된 적정 펌프 용량을 만족하는 스크루 로터의 높이의 비에 의해 구해지는 기울기이며, c1은 암,수 스크루 로터의 지름차에 의해 발생 되는 상호 치간의 겹침을 해소할 수 있는 범위의 값으로, 수 스크루 로터의 경우는“0”의 값을 가지며, 암 스크루 로터는 해소 범위에 있는 계산된 값을 가진다.The a 1 value of the back lead section a is determined by the ratio of the height of the screw rotor that satisfies the proper pump capacity calculated by the lead value (circumference) and the volume of the screw groove by the diameter when the screw rotor rotates. C 1 is a range that can eliminate the overlap between each other caused by the difference in diameter between the male and female screw rotors. In the case of the male screw rotors, the value is “0”. It has a calculated value in the resolution range.
상기 등 리드 구간(c)의 a3값은 등 리드 구간(a)의 a1값과 같은 의미를 가지며 c3는 등 리드 구간(a), 부등 리드 구간(b)의 높이에 의해 결정된다.The a 3 value of the back lead section c has the same meaning as the a1 value of the back lead section a, and c 3 is determined by the height of the back lead section a and the uneven lead section b.
상기 부등 리드 구간(b)에서
Figure PCTKR2010007189-appb-I000004
을 미분하여 얻어지는 기울기는 a1, a3과 같다. a1은 등 리드 구간(a)과 부등 리드 구간(b)이 만나는 점의 기울기이며 a3은 부등 리드 구간(b)과 등 리드 구간(a)이 만나는 점의 기울기이다. 이를 통해 등 리드 구간(a)의 나사산과 등 리드 구간(c)의 나사산을 연결하는 무리함수 곡선을 가지게 된다. 또한 용적계산에 의해 얻어진 부등 리드 구간(b)의 최소 높이 값을 동시에 만족하는 a2, b2, c2 값을 구함으로써 곡선이 완성된다.
In the uneven lead section (b)
Figure PCTKR2010007189-appb-I000004
The slope obtained by differentiating is equal to a 1, a 3 . a1 is the inclination of the point where the back lead section a and the inequality lead section b meet, and a3 is the inclination of the point where the uneven lead section b meets the back lead section a. Through this, it has a force function curve that connects the thread of the back lead section (a) and the thread of the back lead section (c). Further , the curve is completed by obtaining a 2, b 2, and c 2 values that simultaneously satisfy the minimum height value of the uneven lead section b obtained by volume calculation.
이하, 상술한 바와 같이 구성되어 있는 본 발명에 따른 모터 내장형 스크루 로터 타입 진공펌프의 작동을 설명한다.Hereinafter, the operation of the motor-built screw rotor type vacuum pump according to the present invention configured as described above will be described.
도 1에 도시된 바와 같이, 한 쌍의 스크루 로터(25,26) 중 어느 하나의 스크루 로터 내부에 장착된 모터(4)를 구동시키게 되면, 모터(4)에 연결된 회전축이 회전하게 되고, 타이밍 기어(2)가 수 스크루 로터의 회전축과 암 스크루 로터의 회전축을 함께 동기시켜 상기 한 쌍의 스크루 로터(25,26)가 회전하게 된다. As shown in FIG. 1, when a motor 4 mounted in one of the pair of screw rotors 25 and 26 is driven, the rotating shaft connected to the motor 4 rotates, and the timing The pair of screw rotors 25 and 26 are rotated by the gear 2 synchronizing the rotary shaft of the male screw rotor with the rotary shaft of the female screw rotor.
도 2 에 도시된 바와 같이 스크루 로터의 회전으로 인해 원심펌프도 회전하게 되며, 이때 생긴 원심력으로 인해 도 3의 화살표 방향과 같이 원심펌프의 오일공급통로(16)를 따라 베어링(3)에 오일이 공급된다. 따라서 모터의 원활한 회전이 이루어질 수 있다.As shown in FIG. 2, the centrifugal pump also rotates due to the rotation of the screw rotor. The centrifugal force generated by the screw rotor rotates along the oil supply passage 16 of the centrifugal pump as shown in the arrow direction of FIG. 3. Supplied. Therefore, smooth rotation of the motor can be achieved.
비접촉 씰(13)과 베어링(3)의 외주를 둘러싸는 모터 고정부재(12)에는, 씰링가스 공급통로(16)를 통하여 씰링가스가 이동한다. 이동된 씰링가스는 비접촉 씰의 내주면과 회전축(11)의 외주면 사이에 형성된 틈새로 화살표 방향과 같이 공급되며 일부 씰링가스는 씰링가스 배출통로(15)를 통하여 화살표 방향과 같이 아래로 이동한다.The sealing gas moves to the motor fixing member 12 surrounding the outer circumference of the non-contact seal 13 and the bearing 3 via the sealing gas supply passage 16. The moved sealing gas is supplied in the gap formed between the inner circumferential surface of the non-contact seal and the outer circumferential surface of the rotating shaft 11 in the direction of the arrow, and some sealing gas moves downward through the sealing gas discharge passage 15 in the direction of the arrow.
비접촉 씰의 내주면과 회전축(11)의 외주면 사이에 형성된 틈새로 화살표 방향과 같이 씰링가스가 공급될 때 완전한 씰링이 이루어지며, 베어링(3)에 공급된 오일이 가스화되어 진공펌프 내부로 유출되는 것을 원천적으로 방지할 수 있다. When the sealing gas is supplied to the gap formed between the inner circumferential surface of the non-contact seal and the outer circumferential surface of the rotating shaft 11 as shown in the direction of the arrow, complete sealing is performed, and the oil supplied to the bearing 3 is gasified and discharged into the vacuum pump. It can be prevented at the source.
상기 한 쌍의 스크루 로터(25,26)의 회전으로 흡입구(21)로부터 기체를 흡입하는 동시에 흡입된 기체를 작동실(28) 내에 가두게 된다. 작동실(28)에 갇힌 흡입된 기체는 스크루 로터의 계속된 회전으로 압축,이송되어 토출구(22)로 토출되며 결과적으로 고진공을 형성하게 된다.The rotation of the pair of screw rotors 25 and 26 sucks gas from the inlet 21 and simultaneously traps the sucked gas in the operating chamber 28. The sucked gas trapped in the operation chamber 28 is compressed and transported by the continuous rotation of the screw rotor to be discharged to the discharge port 22, resulting in high vacuum.
이와 같이 본 발명인 모터 내장형 진공펌프의 구조에 따르면, 모터를 스크루 로터 내부에 내장함으로써 스크루 로터의 회전시 회전 밸런스의 변형을 최소화할 수 있다. 나아가 모터가 외부에 장착될 때 차지하는 공간이 없어지므로 같은 용량의 기존 펌프보다 소형화가 가능하여 작업공간의 활용도가 높다.As described above, according to the structure of the vacuum pump with a built-in motor of the present invention, the deformation of the rotational balance during rotation of the screw rotor can be minimized by embedding the motor inside the screw rotor. In addition, since the space occupied when the motor is externally installed, it can be miniaturized than the existing pump of the same capacity, so the utilization of the work space is high.
또한 본 발명에 의한 진공 펌프를 사용함으로써, 스크루 로터의 축 내부에 원심펌프를 장착하게 되어 베어링의 윤활을 원활하게 하며 축 내부로 오일이 이동하므로 직접적으로 축을 냉각시켜 우수한 냉각효과를 가질 수 있다.In addition, by using the vacuum pump according to the present invention, the centrifugal pump is mounted inside the shaft of the screw rotor to smooth the lubrication of the bearing and move the oil into the shaft so that the shaft can be directly cooled to have an excellent cooling effect.
이상과 같이 본 발명에 따른 모터 내장형 스크루 로터 타입 진공 펌프를, 본 발명의 바람직한 실시예를 참조하여 설명하였다. 하지만 본 발명은 이상에서 설명된 실시예와 도면에 의해 한정되지 않으며 특허청구범위 내에서 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자들에 의해 다양한 수정 및 변형이 이루어질 수 있음은 물론이다.As described above, the motor-built screw rotor type vacuum pump according to the present invention has been described with reference to a preferred embodiment of the present invention. However, the present invention is not limited to the embodiments and drawings described above, and various modifications and changes may be made by those skilled in the art within the scope of the claims.

Claims (10)

  1. 서로 맞물리며 회전하는 한 쌍의 스크루 로터;A pair of screw rotors engaged with each other and rotating;
    상기 한 쌍의 스크루 로터를 수납하며, 일측에는 흡입구가 구비되고 타측에는 토출구가 구비된 하우징; 및A housing accommodating the pair of screw rotors, one side of which is provided with a suction port and the other side of which a discharge port is provided; And
    상기 한 쌍의 스크루 로터 중 어느 하나의 스크루 로터 내부에, 회전축의 구동을 위하여 내장된 모터; 를 포함하는 것을 특징으로 하는 스크루 로터 타입 진공 펌프.A motor built in one of the screw rotors of the pair of screw rotors for driving the rotating shaft; Screw rotor type vacuum pump comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 한 쌍의 스크루 로터 회전축에 구비된 원심펌프로서, As a centrifugal pump provided in the pair of screw rotor rotation shaft,
    상기 원심펌프는, 회전축 중심을 관통하여 회전축 외주면의 양측에 형성된 구멍까지 이어지는 오일 공급통로를 포함하는 것을 특징으로 하는 스크루 로터 타입 진공펌프.The centrifugal pump is a screw rotor type vacuum pump, characterized in that it comprises an oil supply passage passing through the center of the rotating shaft to the holes formed on both sides of the outer peripheral surface of the rotating shaft.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 한 쌍의 스크루 로터 내부에는, 회전축과 모터 고정부재 사이에서 비접촉 씰링을 하기 위한 비접촉 씰이 개재되어 있으며,In the pair of screw rotor, a non-contact seal for non-contact sealing between the rotating shaft and the motor fixing member is interposed,
    상기 비접촉 씰의 내경은 회전축의 외경보다 큰 것을 특징으로 하는 스크루 로터 타입 진공 펌프. The inner diameter of the non-contact seal is a screw rotor type vacuum pump, characterized in that larger than the outer diameter of the rotating shaft.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 모터 고정부재 내부에는 씰링가스 공급통로가 구비되어 모터 고정부재와 비접촉 씰을 관통하도록 이어지며,A sealing gas supply passage is provided inside the motor fixing member to penetrate the motor fixing member and the non-contact seal.
    상기 비접촉 씰의 내주면과 상기 회전축의 외주면 사이의 틈새로 씰링가스가 공급되어 씰링이 이루어지는 것을 특징으로 하는 스크루 로터 타입 진공 펌프. And a sealing gas is supplied to a gap between the inner circumferential surface of the non-contact seal and the outer circumferential surface of the rotating shaft to seal the screw rotor type vacuum pump.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 모터 고정부재 내부에는, 상기 비접촉 씰의 내주면과 상기 회전축의 외주면 사이의 틈새로 공급된 씰링가스가 배출될 수 있도록 씰링가스 배출통로가 구비되어 있는 것을 특징으로 하는 스크루 로터 타입 진공 펌프. And a sealing gas discharge passage is provided in the motor fixing member so that the sealing gas supplied into the gap between the inner circumferential surface of the non-contact seal and the outer circumferential surface of the rotating shaft is discharged.
  6. 청구항 3에 있어서, The method according to claim 3,
    상기 모터 고정부재의 내주면과 상기 비접촉 씰의 외주면 사이에는, 씰링가스의 누출이 일어나지 않도록, 씰링가스 공급통로 상하의 위치에 밀봉링이 구비되어 있는 것을 특징으로 하는 스크루 로터 타입 진공 펌프. And a sealing ring provided between the inner circumferential surface of the motor fixing member and the outer circumferential surface of the non-contact seal so as to prevent leakage of the sealing gas so that sealing rings are provided above and below the sealing gas supply passage.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 한 쌍의 스크루 로터 외주면에 형성된 나사산은, 리드각이 연속적으로 변화하는 것을 특징으로 하는 스크루 로터 타입 진공 펌프.A screw rotor formed on the outer circumferential surface of the pair of screw rotors, wherein the lead angle is continuously changed.
  8. 청구항 1에 있어서, The method according to claim 1,
    상기 한 쌍의 스크루 로터 외주면에 형성된 나사산은, 등 리드 구간(a), 부등 리드 구간(b), 등 리드 구간(c)을 따라 연속적으로 연결된 것을 특징으로 하는 스크루 로터 타입 진공펌프.The screw thread formed on the outer circumferential surface of the pair of screw rotors, the screw rotor type vacuum pump, characterized in that connected continuously along the back lead section (a), the uneven lead section (b), the back lead section (c).
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 한 쌍의 스크루 로터 중 어느 하나의 스크루 로터의 외경이 다른 스크루 로터의 외경보다 큰 것을 특징으로 하는 스크루 로터 타입 진공펌프.Screw rotor type vacuum pump, characterized in that the outer diameter of any one of the pair of screw rotor is larger than the outer diameter of the other screw rotor.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 외경이 큰 스크루 로터의 내부에 모터가 설치되는 것을 특징으로 하는 스크루 로터 타입 진공펌프.The screw rotor type vacuum pump, characterized in that the motor is installed inside the screw rotor having a large outer diameter.
PCT/KR2010/007189 2009-10-21 2010-10-20 Screw rotor type vacuum pump incorporating motor WO2011049362A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012534124A JP2013507575A (en) 2009-10-21 2010-10-20 Screw rotor vacuum pump with built-in motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090100399A KR101138389B1 (en) 2009-10-21 2009-10-21 Screw rotor type vaccum pump with built in motor
KR10-2009-0100399 2009-10-21

Publications (2)

Publication Number Publication Date
WO2011049362A2 true WO2011049362A2 (en) 2011-04-28
WO2011049362A3 WO2011049362A3 (en) 2011-10-27

Family

ID=43900818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007189 WO2011049362A2 (en) 2009-10-21 2010-10-20 Screw rotor type vacuum pump incorporating motor

Country Status (3)

Country Link
JP (1) JP2013507575A (en)
KR (1) KR101138389B1 (en)
WO (1) WO2011049362A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020120746A1 (en) * 2018-12-13 2020-06-18 Vogelsang Gmbh & Co. Kg Lobe pump with inner bearing
FR3124236A1 (en) * 2021-07-05 2022-12-23 Pfeiffer Vacuum Vacuum pump

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101333056B1 (en) * 2012-01-20 2013-11-26 주식회사 코디박 Screw rotor type vaccum pump with built in motor having cooling function
WO2015083194A1 (en) * 2013-12-02 2015-06-11 株式会社飯塚鉄工所 Screw vacuum pump
WO2015128906A1 (en) * 2014-02-28 2015-09-03 国立大学法人東北大学 Oil supply component for screw exhaust pump, and screw exhaust pump provided with said component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055992A (en) * 1999-07-19 2001-02-27 Sterling Fluid Systems Germany Gmbh Compressive medium discharger
JP2004263629A (en) * 2003-03-03 2004-09-24 Tadahiro Omi Screw vacuum pump
KR20050042066A (en) * 2001-11-15 2005-05-04 라이볼트 바쿰 게엠베하 Tempering method for a screw-type vacuum pump
JP2005195027A (en) * 2005-02-14 2005-07-21 Dia Shinku Kk Screw fluid machine and screw gear

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336680U (en) * 1986-08-27 1988-03-09
JPH01267384A (en) * 1988-04-15 1989-10-25 Hitachi Ltd Screw rotor having beveled tooth
JPH02283898A (en) * 1989-04-21 1990-11-21 Hitachi Koki Co Ltd Thread groove molecular drag pump
JPH07217748A (en) * 1994-01-31 1995-08-15 Hitachi Ltd Shaft sealing device for vacuum pump
JPH08100779A (en) * 1994-10-04 1996-04-16 Matsushita Electric Ind Co Ltd Vacuum pump
KR100360236B1 (en) * 1999-10-04 2002-11-08 엘지전자 주식회사 Structure for reducing gas-leakage of scrollcompressor
JP5197157B2 (en) 2008-05-27 2013-05-15 株式会社神戸製鋼所 Screw fluid machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055992A (en) * 1999-07-19 2001-02-27 Sterling Fluid Systems Germany Gmbh Compressive medium discharger
KR20050042066A (en) * 2001-11-15 2005-05-04 라이볼트 바쿰 게엠베하 Tempering method for a screw-type vacuum pump
JP2004263629A (en) * 2003-03-03 2004-09-24 Tadahiro Omi Screw vacuum pump
JP2005195027A (en) * 2005-02-14 2005-07-21 Dia Shinku Kk Screw fluid machine and screw gear

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020120746A1 (en) * 2018-12-13 2020-06-18 Vogelsang Gmbh & Co. Kg Lobe pump with inner bearing
CN113316688A (en) * 2018-12-13 2021-08-27 福格申有限责任两合公司 Rotary piston pump comprising an internal bearing arrangement
US11953007B2 (en) 2018-12-13 2024-04-09 Vogelsang Gmbh & Co Kg Rotary lobe pump with internal bearing
FR3124236A1 (en) * 2021-07-05 2022-12-23 Pfeiffer Vacuum Vacuum pump
WO2023280660A1 (en) * 2021-07-05 2023-01-12 Pfeiffer Vacuum Vacuum pump

Also Published As

Publication number Publication date
WO2011049362A3 (en) 2011-10-27
JP2013507575A (en) 2013-03-04
KR20110043331A (en) 2011-04-27
KR101138389B1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
WO2011049362A2 (en) Screw rotor type vacuum pump incorporating motor
WO2013051788A1 (en) Scroll compressor with supporting member in axial direction
US6652250B2 (en) Screw compressor having intermediate shaft bearing
AU731955B2 (en) Scroll vacuum pump
JPH0144914B2 (en)
KR20130050488A (en) Multistage dry vaccum pump
WO2018151428A1 (en) Rotary compressor
WO2013005906A1 (en) Scroll compressor
JPS61261694A (en) Scroll fluid machine
KR101641887B1 (en) Dry Vacuum Pump having Screw Rotor and Groove
GB2175956A (en) Dealing with leakage between pump stages
US20020168279A1 (en) Shaft seal structure of vacuum pumps
WO2012176991A2 (en) Screw-type vacuum pump having a direct cooling device
WO2021112327A1 (en) Rotor having cooling function
WO2011049364A2 (en) Screw rotor vacuum pump integrating rotation shafts of motor and rotor
TW202225563A (en) Dry vacuum pump
KR20010064028A (en) Safety of turbo compressor
WO2018151512A1 (en) Scroll compressor
JPH10281089A (en) Vacuum pump
WO2019216519A1 (en) Compressor, and thrust plate manufacturing method for manufacturing thrust plate included in same compressor
WO2020145569A1 (en) Compressor
KR101333056B1 (en) Screw rotor type vaccum pump with built in motor having cooling function
CN110529379B (en) Vacuum pump
WO2020153665A1 (en) Scroll compressor
WO2023121160A1 (en) Electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534124

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10825187

Country of ref document: EP

Kind code of ref document: A2